public final class Math extends Object
Math
contains methods for performing basic
numeric operations such as the elementary exponential, logarithm,
square root, and trigonometric functions.
Unlike some of the numeric methods of class
StrictMath
, all implementations of the equivalent
functions of class Math
are not defined to return the
bit-for-bit same results. This relaxation permits
better-performing implementations where strict reproducibility is
not required.
By default many of the Math
methods simply call
the equivalent method in StrictMath
for their
implementation. Code generators are encouraged to use
platform-specific native libraries or microprocessor instructions,
where available, to provide higher-performance implementations of
Math
methods. Such higher-performance
implementations still must conform to the specification for
Math
.
The quality of implementation specifications concern two
properties, accuracy of the returned result and monotonicity of the
method. Accuracy of the floating-point Math
methods is
measured in terms of ulps, units in the last place. For a
given floating-point format, an ulp of a
specific real number value is the distance between the two
floating-point values bracketing that numerical value. When
discussing the accuracy of a method as a whole rather than at a
specific argument, the number of ulps cited is for the worst-case
error at any argument. If a method always has an error less than
0.5 ulps, the method always returns the floating-point number
nearest the exact result; such a method is correctly
rounded. A correctly rounded method is generally the best a
floating-point approximation can be; however, it is impractical for
many floating-point methods to be correctly rounded. Instead, for
the Math
class, a larger error bound of 1 or 2 ulps is
allowed for certain methods. Informally, with a 1 ulp error bound,
when the exact result is a representable number, the exact result
should be returned as the computed result; otherwise, either of the
two floating-point values which bracket the exact result may be
returned. For exact results large in magnitude, one of the
endpoints of the bracket may be infinite. Besides accuracy at
individual arguments, maintaining proper relations between the
method at different arguments is also important. Therefore, most
methods with more than 0.5 ulp errors are required to be
semi-monotonic: whenever the mathematical function is
non-decreasing, so is the floating-point approximation, likewise,
whenever the mathematical function is non-increasing, so is the
floating-point approximation. Not all approximations that have 1
ulp accuracy will automatically meet the monotonicity requirements.
The platform uses signed two's complement integer arithmetic with
int and long primitive types. The developer should choose
the primitive type to ensure that arithmetic operations consistently
produce correct results, which in some cases means the operations
will not overflow the range of values of the computation.
The best practice is to choose the primitive type and algorithm to avoid
overflow. In cases where the size is int
or long
and
overflow errors need to be detected, the methods addExact
,
subtractExact
, multiplyExact
, and toIntExact
throw an ArithmeticException
when the results overflow.
For other arithmetic operations such as divide, absolute value,
increment by one, decrement by one, and negation, overflow occurs only with
a specific minimum or maximum value and should be checked against
the minimum or maximum as appropriate.
Modifier and Type | Field | Description |
---|---|---|
static double |
E |
The
double value that is closer than any other to
e, the base of the natural logarithms. |
static double |
PI |
The
double value that is closer than any other to
pi, the ratio of the circumference of a circle to its
diameter. |
Modifier and Type | Method | Description |
---|---|---|
static double |
abs(double a) |
Returns the absolute value of a
double value. |
static float |
abs(float a) |
Returns the absolute value of a
float value. |
static int |
abs(int a) |
Returns the absolute value of an
int value. |
static long |
abs(long a) |
Returns the absolute value of a
long value. |
static double |
acos(double a) |
Returns the arc cosine of a value; the returned angle is in the
range 0.0 through pi.
|
static int |
addExact(int x,
int y) |
Returns the sum of its arguments,
throwing an exception if the result overflows an
int . |
static long |
addExact(long x,
long y) |
Returns the sum of its arguments,
throwing an exception if the result overflows a
long . |
static double |
asin(double a) |
Returns the arc sine of a value; the returned angle is in the
range -pi/2 through pi/2.
|
static double |
atan(double a) |
Returns the arc tangent of a value; the returned angle is in the
range -pi/2 through pi/2.
|
static double |
atan2(double y,
double x) |
Returns the angle theta from the conversion of rectangular
coordinates (
x , y ) to polar
coordinates (r, theta). |
static double |
cbrt(double a) |
Returns the cube root of a
double value. |
static double |
ceil(double a) |
Returns the smallest (closest to negative infinity)
double value that is greater than or equal to the
argument and is equal to a mathematical integer. |
static double |
copySign(double magnitude,
double sign) |
Returns the first floating-point argument with the sign of the
second floating-point argument.
|
static float |
copySign(float magnitude,
float sign) |
Returns the first floating-point argument with the sign of the
second floating-point argument.
|
static double |
cos(double a) |
Returns the trigonometric cosine of an angle.
|
static double |
cosh(double x) |
Returns the hyperbolic cosine of a
double value. |
static int |
decrementExact(int a) |
Returns the argument decremented by one, throwing an exception if the
result overflows an
int . |
static long |
decrementExact(long a) |
Returns the argument decremented by one, throwing an exception if the
result overflows a
long . |
static double |
exp(double a) |
Returns Euler's number e raised to the power of a
double value. |
static double |
expm1(double x) |
Returns ex -1.
|
static double |
floor(double a) |
Returns the largest (closest to positive infinity)
double value that is less than or equal to the
argument and is equal to a mathematical integer. |
static int |
floorDiv(int x,
int y) |
Returns the largest (closest to positive infinity)
int value that is less than or equal to the algebraic quotient. |
static long |
floorDiv(long x,
int y) |
Returns the largest (closest to positive infinity)
long value that is less than or equal to the algebraic quotient. |
static long |
floorDiv(long x,
long y) |
Returns the largest (closest to positive infinity)
long value that is less than or equal to the algebraic quotient. |
static int |
floorMod(int x,
int y) |
Returns the floor modulus of the
int arguments. |
static int |
floorMod(long x,
int y) |
Returns the floor modulus of the
long and arguments. |
static long |
floorMod(long x,
long y) |
Returns the floor modulus of the
long arguments. |
static double |
fma(double a,
double b,
double c) |
Returns the fused multiply add of the three arguments; that is,
returns the exact product of the first two arguments summed
with the third argument and then rounded once to the nearest
double . |
static float |
fma(float a,
float b,
float c) |
Returns the fused multiply add of the three arguments; that is,
returns the exact product of the first two arguments summed
with the third argument and then rounded once to the nearest
float . |
static int |
getExponent(double d) |
Returns the unbiased exponent used in the representation of a
double . |
static int |
getExponent(float f) |
Returns the unbiased exponent used in the representation of a
float . |
static double |
hypot(double x,
double y) |
Returns sqrt(x2 +y2)
without intermediate overflow or underflow.
|
static double |
IEEEremainder(double f1,
double f2) |
Computes the remainder operation on two arguments as prescribed
by the IEEE 754 standard.
|
static int |
incrementExact(int a) |
Returns the argument incremented by one, throwing an exception if the
result overflows an
int . |
static long |
incrementExact(long a) |
Returns the argument incremented by one, throwing an exception if the
result overflows a
long . |
static double |
log(double a) |
Returns the natural logarithm (base e) of a
double
value. |
static double |
log10(double a) |
Returns the base 10 logarithm of a
double value. |
static double |
log1p(double x) |
Returns the natural logarithm of the sum of the argument and 1.
|
static double |
max(double a,
double b) |
Returns the greater of two
double values. |
static float |
max(float a,
float b) |
Returns the greater of two
float values. |
static int |
max(int a,
int b) |
Returns the greater of two
int values. |
static long |
max(long a,
long b) |
Returns the greater of two
long values. |
static double |
min(double a,
double b) |
Returns the smaller of two
double values. |
static float |
min(float a,
float b) |
Returns the smaller of two
float values. |
static int |
min(int a,
int b) |
Returns the smaller of two
int values. |
static long |
min(long a,
long b) |
Returns the smaller of two
long values. |
static int |
multiplyExact(int x,
int y) |
Returns the product of the arguments,
throwing an exception if the result overflows an
int . |
static long |
multiplyExact(long x,
int y) |
Returns the product of the arguments, throwing an exception if the result
overflows a
long . |
static long |
multiplyExact(long x,
long y) |
Returns the product of the arguments,
throwing an exception if the result overflows a
long . |
static long |
multiplyFull(int x,
int y) |
Returns the exact mathematical product of the arguments.
|
static long |
multiplyHigh(long x,
long y) |
Returns as a
long the most significant 64 bits of the 128-bit
product of two 64-bit factors. |
static int |
negateExact(int a) |
Returns the negation of the argument, throwing an exception if the
result overflows an
int . |
static long |
negateExact(long a) |
Returns the negation of the argument, throwing an exception if the
result overflows a
long . |
static double |
nextAfter(double start,
double direction) |
Returns the floating-point number adjacent to the first
argument in the direction of the second argument.
|
static float |
nextAfter(float start,
double direction) |
Returns the floating-point number adjacent to the first
argument in the direction of the second argument.
|
static double |
nextDown(double d) |
Returns the floating-point value adjacent to
d in
the direction of negative infinity. |
static float |
nextDown(float f) |
Returns the floating-point value adjacent to
f in
the direction of negative infinity. |
static double |
nextUp(double d) |
Returns the floating-point value adjacent to
d in
the direction of positive infinity. |
static float |
nextUp(float f) |
Returns the floating-point value adjacent to
f in
the direction of positive infinity. |
static double |
pow(double a,
double b) |
Returns the value of the first argument raised to the power of the
second argument.
|
static double |
random() |
Returns a
double value with a positive sign, greater
than or equal to 0.0 and less than 1.0 . |
static double |
rint(double a) |
Returns the
double value that is closest in value
to the argument and is equal to a mathematical integer. |
static long |
round(double a) |
Returns the closest
long to the argument, with ties
rounding to positive infinity. |
static int |
round(float a) |
Returns the closest
int to the argument, with ties
rounding to positive infinity. |
static double |
scalb(double d,
int scaleFactor) |
Returns
d ×
2scaleFactor rounded as if performed
by a single correctly rounded floating-point multiply to a
member of the double value set. |
static float |
scalb(float f,
int scaleFactor) |
Returns
f ×
2scaleFactor rounded as if performed
by a single correctly rounded floating-point multiply to a
member of the float value set. |
static double |
signum(double d) |
Returns the signum function of the argument; zero if the argument
is zero, 1.0 if the argument is greater than zero, -1.0 if the
argument is less than zero.
|
static float |
signum(float f) |
Returns the signum function of the argument; zero if the argument
is zero, 1.0f if the argument is greater than zero, -1.0f if the
argument is less than zero.
|
static double |
sin(double a) |
Returns the trigonometric sine of an angle.
|
static double |
sinh(double x) |
Returns the hyperbolic sine of a
double value. |
static double |
sqrt(double a) |
Returns the correctly rounded positive square root of a
double value. |
static int |
subtractExact(int x,
int y) |
Returns the difference of the arguments,
throwing an exception if the result overflows an
int . |
static long |
subtractExact(long x,
long y) |
Returns the difference of the arguments,
throwing an exception if the result overflows a
long . |
static double |
tan(double a) |
Returns the trigonometric tangent of an angle.
|
static double |
tanh(double x) |
Returns the hyperbolic tangent of a
double value. |
static double |
toDegrees(double angrad) |
Converts an angle measured in radians to an approximately
equivalent angle measured in degrees.
|
static int |
toIntExact(long value) |
Returns the value of the
long argument;
throwing an exception if the value overflows an int . |
static double |
toRadians(double angdeg) |
Converts an angle measured in degrees to an approximately
equivalent angle measured in radians.
|
static double |
ulp(double d) |
Returns the size of an ulp of the argument.
|
static float |
ulp(float f) |
Returns the size of an ulp of the argument.
|
public static final double E
double
value that is closer than any other to
e, the base of the natural logarithms.public static final double PI
double
value that is closer than any other to
pi, the ratio of the circumference of a circle to its
diameter.public static double sin(double a)
The computed result must be within 1 ulp of the exact result. Results must be semi-monotonic.
a
- an angle, in radians.public static double cos(double a)
The computed result must be within 1 ulp of the exact result. Results must be semi-monotonic.
a
- an angle, in radians.public static double tan(double a)
The computed result must be within 1 ulp of the exact result. Results must be semi-monotonic.
a
- an angle, in radians.public static double asin(double a)
The computed result must be within 1 ulp of the exact result. Results must be semi-monotonic.
a
- the value whose arc sine is to be returned.public static double acos(double a)
The computed result must be within 1 ulp of the exact result. Results must be semi-monotonic.
a
- the value whose arc cosine is to be returned.public static double atan(double a)
The computed result must be within 1 ulp of the exact result. Results must be semi-monotonic.
a
- the value whose arc tangent is to be returned.public static double toRadians(double angdeg)
angdeg
- an angle, in degreesangdeg
in radians.public static double toDegrees(double angrad)
cos(toRadians(90.0))
to exactly
equal 0.0
.angrad
- an angle, in radiansangrad
in degrees.public static double exp(double a)
double
value. Special cases:
The computed result must be within 1 ulp of the exact result. Results must be semi-monotonic.
a
- the exponent to raise e to.a
,
where e is the base of the natural logarithms.public static double log(double a)
double
value. Special cases:
The computed result must be within 1 ulp of the exact result. Results must be semi-monotonic.
a
- a valuea
, the natural logarithm of
a
.public static double log10(double a)
double
value.
Special cases:
The computed result must be within 1 ulp of the exact result. Results must be semi-monotonic.
a
- a valuea
.public static double sqrt(double a)
double
value.
Special cases:
double
value closest to
the true mathematical square root of the argument value.a
- a value.a
.
If the argument is NaN or less than zero, the result is NaN.public static double cbrt(double a)
double
value. For
positive finite x
, cbrt(-x) ==
-cbrt(x)
; that is, the cube root of a negative value is
the negative of the cube root of that value's magnitude.
Special cases:
The computed result must be within 1 ulp of the exact result.
a
- a value.a
.public static double IEEEremainder(double f1, double f2)
f1 - f2
× n,
where n is the mathematical integer closest to the exact
mathematical value of the quotient f1/f2
, and if two
mathematical integers are equally close to f1/f2
,
then n is the integer that is even. If the remainder is
zero, its sign is the same as the sign of the first argument.
Special cases:
f1
- the dividend.f2
- the divisor.f1
is divided by
f2
.public static double ceil(double a)
double
value that is greater than or equal to the
argument and is equal to a mathematical integer. Special cases:
Math.ceil(x)
is exactly the
value of -Math.floor(-x)
.a
- a value.public static double floor(double a)
double
value that is less than or equal to the
argument and is equal to a mathematical integer. Special cases:
a
- a value.public static double rint(double a)
double
value that is closest in value
to the argument and is equal to a mathematical integer. If two
double
values that are mathematical integers are
equally close, the result is the integer value that is
even. Special cases:
a
- a double
value.a
that is
equal to a mathematical integer.public static double atan2(double y, double x)
x
, y
) to polar
coordinates (r, theta).
This method computes the phase theta by computing an arc tangent
of y/x
in the range of -pi to pi. Special
cases:
double
value closest to pi.
double
value closest to -pi.
double
value closest to pi/2.
double
value closest to -pi/2.
double
value closest to pi/4.
double
value closest to 3*pi/4.
double
value
closest to -pi/4.
double
value closest to -3*pi/4.The computed result must be within 2 ulps of the exact result. Results must be semi-monotonic.
y
- the ordinate coordinatex
- the abscissa coordinatepublic static double pow(double a, double b)
double
value.(In the foregoing descriptions, a floating-point value is
considered to be an integer if and only if it is finite and a
fixed point of the method ceil
or,
equivalently, a fixed point of the method floor
. A value is a fixed point of a one-argument
method if and only if the result of applying the method to the
value is equal to the value.)
The computed result must be within 1 ulp of the exact result. Results must be semi-monotonic.
a
- the base.b
- the exponent.a
b
.public static int round(float a)
int
to the argument, with ties
rounding to positive infinity.
Special cases:
Integer.MIN_VALUE
, the result is
equal to the value of Integer.MIN_VALUE
.
Integer.MAX_VALUE
, the result is
equal to the value of Integer.MAX_VALUE
.a
- a floating-point value to be rounded to an integer.int
value.Integer.MAX_VALUE
,
Integer.MIN_VALUE
public static long round(double a)
long
to the argument, with ties
rounding to positive infinity.
Special cases:
Long.MIN_VALUE
, the result is
equal to the value of Long.MIN_VALUE
.
Long.MAX_VALUE
, the result is
equal to the value of Long.MAX_VALUE
.a
- a floating-point value to be rounded to a
long
.long
value.Long.MAX_VALUE
,
Long.MIN_VALUE
public static double random()
double
value with a positive sign, greater
than or equal to 0.0
and less than 1.0
.
Returned values are chosen pseudorandomly with (approximately)
uniform distribution from that range.
When this method is first called, it creates a single new pseudorandom-number generator, exactly as if by the expression
new java.util.Random()
This new pseudorandom-number generator is used thereafter for
all calls to this method and is used nowhere else.
This method is properly synchronized to allow correct use by more than one thread. However, if many threads need to generate pseudorandom numbers at a great rate, it may reduce contention for each thread to have its own pseudorandom-number generator.
double
value less than 1.0
is Math.nextDown(1.0)
, a value x
in the closed range
[x1,x2]
where x1<=x2
may be defined by the statements
double f = Math.random()/Math.nextDown(1.0); double x = x1*(1.0 - f) + x2*f;
double
greater than or equal
to 0.0
and less than 1.0
.nextDown(double)
,
Random.nextDouble()
public static int addExact(int x, int y)
int
.x
- the first valuey
- the second valueArithmeticException
- if the result overflows an intpublic static long addExact(long x, long y)
long
.x
- the first valuey
- the second valueArithmeticException
- if the result overflows a longpublic static int subtractExact(int x, int y)
int
.x
- the first valuey
- the second value to subtract from the firstArithmeticException
- if the result overflows an intpublic static long subtractExact(long x, long y)
long
.x
- the first valuey
- the second value to subtract from the firstArithmeticException
- if the result overflows a longpublic static int multiplyExact(int x, int y)
int
.x
- the first valuey
- the second valueArithmeticException
- if the result overflows an intpublic static long multiplyExact(long x, int y)
long
.x
- the first valuey
- the second valueArithmeticException
- if the result overflows a longpublic static long multiplyExact(long x, long y)
long
.x
- the first valuey
- the second valueArithmeticException
- if the result overflows a longpublic static int incrementExact(int a)
int
.a
- the value to incrementArithmeticException
- if the result overflows an intpublic static long incrementExact(long a)
long
.a
- the value to incrementArithmeticException
- if the result overflows a longpublic static int decrementExact(int a)
int
.a
- the value to decrementArithmeticException
- if the result overflows an intpublic static long decrementExact(long a)
long
.a
- the value to decrementArithmeticException
- if the result overflows a longpublic static int negateExact(int a)
int
.a
- the value to negateArithmeticException
- if the result overflows an intpublic static long negateExact(long a)
long
.a
- the value to negateArithmeticException
- if the result overflows a longpublic static int toIntExact(long value)
long
argument;
throwing an exception if the value overflows an int
.value
- the long valueArithmeticException
- if the argument
overflows an intpublic static long multiplyFull(int x, int y)
x
- the first valuey
- the second valuepublic static long multiplyHigh(long x, long y)
long
the most significant 64 bits of the 128-bit
product of two 64-bit factors.x
- the first valuey
- the second valuepublic static int floorDiv(int x, int y)
int
value that is less than or equal to the algebraic quotient.
There is one special case, if the dividend is the
Integer.MIN_VALUE and the divisor is -1
,
then integer overflow occurs and
the result is equal to Integer.MIN_VALUE
.
Normal integer division operates under the round to zero rounding mode (truncation). This operation instead acts under the round toward negative infinity (floor) rounding mode. The floor rounding mode gives different results from truncation when the exact result is negative.
floorDiv
and the /
operator are the same. floorDiv(4, 3) == 1
and (4 / 3) == 1
.floorDiv
returns the integer less than or equal to the quotient
and the /
operator returns the integer closest to zero.floorDiv(-4, 3) == -2
,
whereas (-4 / 3) == -1
.
x
- the dividendy
- the divisorint
value that is less than or equal to the algebraic quotient.ArithmeticException
- if the divisor y
is zerofloorMod(int, int)
,
floor(double)
public static long floorDiv(long x, int y)
long
value that is less than or equal to the algebraic quotient.
There is one special case, if the dividend is the
Long.MIN_VALUE and the divisor is -1
,
then integer overflow occurs and
the result is equal to Long.MIN_VALUE
.
Normal integer division operates under the round to zero rounding mode (truncation). This operation instead acts under the round toward negative infinity (floor) rounding mode. The floor rounding mode gives different results from truncation when the exact result is negative.
For examples, see floorDiv(int, int)
.
x
- the dividendy
- the divisorint
value that is less than or equal to the algebraic quotient.ArithmeticException
- if the divisor y
is zerofloorMod(long, int)
,
floor(double)
public static long floorDiv(long x, long y)
long
value that is less than or equal to the algebraic quotient.
There is one special case, if the dividend is the
Long.MIN_VALUE and the divisor is -1
,
then integer overflow occurs and
the result is equal to Long.MIN_VALUE
.
Normal integer division operates under the round to zero rounding mode (truncation). This operation instead acts under the round toward negative infinity (floor) rounding mode. The floor rounding mode gives different results from truncation when the exact result is negative.
For examples, see floorDiv(int, int)
.
x
- the dividendy
- the divisorlong
value that is less than or equal to the algebraic quotient.ArithmeticException
- if the divisor y
is zerofloorMod(long, long)
,
floor(double)
public static int floorMod(int x, int y)
int
arguments.
The floor modulus is x - (floorDiv(x, y) * y)
,
has the same sign as the divisor y
, and
is in the range of -abs(y) < r < +abs(y)
.
The relationship between floorDiv
and floorMod
is such that:
floorDiv(x, y) * y + floorMod(x, y) == x
The difference in values between floorMod
and
the %
operator is due to the difference between
floorDiv
that returns the integer less than or equal to the quotient
and the /
operator that returns the integer closest to zero.
Examples:
floorMod
and the %
operator are the same. floorMod(4, 3) == 1
; and (4 % 3) == 1
%
operator.floorMod(+4, -3) == -2
; and (+4 % -3) == +1
floorMod(-4, +3) == +2
; and (-4 % +3) == -1
floorMod(-4, -3) == -1
; and (-4 % -3) == -1
If the signs of arguments are unknown and a positive modulus
is needed it can be computed as (floorMod(x, y) + abs(y)) % abs(y)
.
x
- the dividendy
- the divisorx - (floorDiv(x, y) * y)
ArithmeticException
- if the divisor y
is zerofloorDiv(int, int)
public static int floorMod(long x, int y)
long
and arguments.
The floor modulus is x - (floorDiv(x, y) * y)
,
has the same sign as the divisor y
, and
is in the range of -abs(y) < r < +abs(y)
.
The relationship between floorDiv
and floorMod
is such that:
floorDiv(x, y) * y + floorMod(x, y) == x
For examples, see floorMod(int, int)
.
x
- the dividendy
- the divisorx - (floorDiv(x, y) * y)
ArithmeticException
- if the divisor y
is zerofloorDiv(long, int)
public static long floorMod(long x, long y)
long
arguments.
The floor modulus is x - (floorDiv(x, y) * y)
,
has the same sign as the divisor y
, and
is in the range of -abs(y) < r < +abs(y)
.
The relationship between floorDiv
and floorMod
is such that:
floorDiv(x, y) * y + floorMod(x, y) == x
For examples, see floorMod(int, int)
.
x
- the dividendy
- the divisorx - (floorDiv(x, y) * y)
ArithmeticException
- if the divisor y
is zerofloorDiv(long, long)
public static int abs(int a)
int
value.
If the argument is not negative, the argument is returned.
If the argument is negative, the negation of the argument is returned.
Note that if the argument is equal to the value of
Integer.MIN_VALUE
, the most negative representable
int
value, the result is that same value, which is
negative.
a
- the argument whose absolute value is to be determinedpublic static long abs(long a)
long
value.
If the argument is not negative, the argument is returned.
If the argument is negative, the negation of the argument is returned.
Note that if the argument is equal to the value of
Long.MIN_VALUE
, the most negative representable
long
value, the result is that same value, which
is negative.
a
- the argument whose absolute value is to be determinedpublic static float abs(float a)
float
value.
If the argument is not negative, the argument is returned.
If the argument is negative, the negation of the argument is returned.
Special cases:
float
with the same exponent and significand as the
argument but with a guaranteed zero sign bit indicating a
positive value:Float.intBitsToFloat(0x7fffffff & Float.floatToRawIntBits(a))
a
- the argument whose absolute value is to be determinedpublic static double abs(double a)
double
value.
If the argument is not negative, the argument is returned.
If the argument is negative, the negation of the argument is returned.
Special cases:
double
with the same exponent and significand as the
argument but with a guaranteed zero sign bit indicating a
positive value:Double.longBitsToDouble((Double.doubleToRawLongBits(a)<<1)>>>1)
a
- the argument whose absolute value is to be determinedpublic static int max(int a, int b)
int
values. That is, the
result is the argument closer to the value of
Integer.MAX_VALUE
. If the arguments have the same value,
the result is that same value.a
- an argument.b
- another argument.a
and b
.public static long max(long a, long b)
long
values. That is, the
result is the argument closer to the value of
Long.MAX_VALUE
. If the arguments have the same value,
the result is that same value.a
- an argument.b
- another argument.a
and b
.public static float max(float a, float b)
float
values. That is,
the result is the argument closer to positive infinity. If the
arguments have the same value, the result is that same
value. If either value is NaN, then the result is NaN. Unlike
the numerical comparison operators, this method considers
negative zero to be strictly smaller than positive zero. If one
argument is positive zero and the other negative zero, the
result is positive zero.a
- an argument.b
- another argument.a
and b
.public static double max(double a, double b)
double
values. That
is, the result is the argument closer to positive infinity. If
the arguments have the same value, the result is that same
value. If either value is NaN, then the result is NaN. Unlike
the numerical comparison operators, this method considers
negative zero to be strictly smaller than positive zero. If one
argument is positive zero and the other negative zero, the
result is positive zero.a
- an argument.b
- another argument.a
and b
.public static int min(int a, int b)
int
values. That is,
the result the argument closer to the value of
Integer.MIN_VALUE
. If the arguments have the same
value, the result is that same value.a
- an argument.b
- another argument.a
and b
.public static long min(long a, long b)
long
values. That is,
the result is the argument closer to the value of
Long.MIN_VALUE
. If the arguments have the same
value, the result is that same value.a
- an argument.b
- another argument.a
and b
.public static float min(float a, float b)
float
values. That is,
the result is the value closer to negative infinity. If the
arguments have the same value, the result is that same
value. If either value is NaN, then the result is NaN. Unlike
the numerical comparison operators, this method considers
negative zero to be strictly smaller than positive zero. If
one argument is positive zero and the other is negative zero,
the result is negative zero.a
- an argument.b
- another argument.a
and b
.public static double min(double a, double b)
double
values. That
is, the result is the value closer to negative infinity. If the
arguments have the same value, the result is that same
value. If either value is NaN, then the result is NaN. Unlike
the numerical comparison operators, this method considers
negative zero to be strictly smaller than positive zero. If one
argument is positive zero and the other is negative zero, the
result is negative zero.a
- an argument.b
- another argument.a
and b
.public static double fma(double a, double b, double c)
double
.
The rounding is done using the round to nearest even
rounding mode.
In contrast, if a * b + c
is evaluated as a regular
floating-point expression, two rounding errors are involved,
the first for the multiply operation, the second for the
addition operation.
Special cases:
Note that fma(a, 1.0, c)
returns the same
result as (a + c
). However,
fma(a, b, +0.0)
does not always return the
same result as (a * b
) since
fma(-0.0, +0.0, +0.0)
is +0.0
while
(-0.0 * +0.0
) is -0.0
; fma(a, b, -0.0)
is
equivalent to (a * b
) however.
a
- a valueb
- a valuec
- a valuedouble
valuepublic static float fma(float a, float b, float c)
float
.
The rounding is done using the round to nearest even
rounding mode.
In contrast, if a * b + c
is evaluated as a regular
floating-point expression, two rounding errors are involved,
the first for the multiply operation, the second for the
addition operation.
Special cases:
Note that fma(a, 1.0f, c)
returns the same
result as (a + c
). However,
fma(a, b, +0.0f)
does not always return the
same result as (a * b
) since
fma(-0.0f, +0.0f, +0.0f)
is +0.0f
while
(-0.0f * +0.0f
) is -0.0f
; fma(a, b, -0.0f)
is
equivalent to (a * b
) however.
a
- a valueb
- a valuec
- a valuefloat
valuepublic static double ulp(double d)
double
value is the positive
distance between this floating-point value and the
double
value next larger in magnitude. Note that for non-NaN
x, ulp(-x) == ulp(x)
.
Special Cases:
Double.MIN_VALUE
.
Double.MAX_VALUE
, then
the result is equal to 2971.
d
- the floating-point value whose ulp is to be returnedpublic static float ulp(float f)
float
value is the positive
distance between this floating-point value and the
float
value next larger in magnitude. Note that for non-NaN
x, ulp(-x) == ulp(x)
.
Special Cases:
Float.MIN_VALUE
.
Float.MAX_VALUE
, then
the result is equal to 2104.
f
- the floating-point value whose ulp is to be returnedpublic static double signum(double d)
Special Cases:
d
- the floating-point value whose signum is to be returnedpublic static float signum(float f)
Special Cases:
f
- the floating-point value whose signum is to be returnedpublic static double sinh(double x)
double
value.
The hyperbolic sine of x is defined to be
(ex - e-x)/2
where e is Euler's number.
Special cases:
The computed result must be within 2.5 ulps of the exact result.
x
- The number whose hyperbolic sine is to be returned.x
.public static double cosh(double x)
double
value.
The hyperbolic cosine of x is defined to be
(ex + e-x)/2
where e is Euler's number.
Special cases:
1.0
.
The computed result must be within 2.5 ulps of the exact result.
x
- The number whose hyperbolic cosine is to be returned.x
.public static double tanh(double x)
double
value.
The hyperbolic tangent of x is defined to be
(ex - e-x)/(ex + e-x),
in other words, sinh(x)/cosh(x). Note
that the absolute value of the exact tanh is always less than
1.
Special cases:
+1.0
.
-1.0
.
The computed result must be within 2.5 ulps of the exact result.
The result of tanh
for any finite input must have
an absolute value less than or equal to 1. Note that once the
exact result of tanh is within 1/2 of an ulp of the limit value
of ±1, correctly signed ±1.0
should
be returned.
x
- The number whose hyperbolic tangent is to be returned.x
.public static double hypot(double x, double y)
Special cases:
The computed result must be within 1 ulp of the exact result. If one parameter is held constant, the results must be semi-monotonic in the other parameter.
x
- a valuey
- a valuepublic static double expm1(double x)
expm1(x)
+ 1 is much closer to the true
result of ex than exp(x)
.
Special cases:
The computed result must be within 1 ulp of the exact result.
Results must be semi-monotonic. The result of
expm1
for any finite input must be greater than or
equal to -1.0
. Note that once the exact result of
ex
- 1 is within 1/2
ulp of the limit value -1, -1.0
should be
returned.
x
- the exponent to raise e to in the computation of
ex
-1.x
- 1.public static double log1p(double x)
x
, the result of
log1p(x)
is much closer to the true result of ln(1
+ x
) than the floating-point evaluation of
log(1.0+x)
.
Special cases:
The computed result must be within 1 ulp of the exact result. Results must be semi-monotonic.
x
- a valuex
+ 1), the natural
log of x
+ 1public static double copySign(double magnitude, double sign)
StrictMath.copySign
method, this method does not require NaN sign
arguments to be treated as positive values; implementations are
permitted to treat some NaN arguments as positive and other NaN
arguments as negative to allow greater performance.magnitude
- the parameter providing the magnitude of the resultsign
- the parameter providing the sign of the resultmagnitude
and the sign of sign
.public static float copySign(float magnitude, float sign)
StrictMath.copySign
method, this method does not require NaN sign
arguments to be treated as positive values; implementations are
permitted to treat some NaN arguments as positive and other NaN
arguments as negative to allow greater performance.magnitude
- the parameter providing the magnitude of the resultsign
- the parameter providing the sign of the resultmagnitude
and the sign of sign
.public static int getExponent(float f)
float
. Special cases:
Float.MAX_EXPONENT
+ 1.
Float.MIN_EXPONENT
-1.
f
- a float
valuepublic static int getExponent(double d)
double
. Special cases:
Double.MAX_EXPONENT
+ 1.
Double.MIN_EXPONENT
-1.
d
- a double
valuepublic static double nextAfter(double start, double direction)
Special cases:
direction
is returned unchanged (as implied by the requirement of
returning the second argument if the arguments compare as
equal).
start
is
±Double.MIN_VALUE
and direction
has a value such that the result should have a smaller
magnitude, then a zero with the same sign as start
is returned.
start
is infinite and
direction
has a value such that the result should
have a smaller magnitude, Double.MAX_VALUE
with the
same sign as start
is returned.
start
is equal to ±
Double.MAX_VALUE
and direction
has a
value such that the result should have a larger magnitude, an
infinity with same sign as start
is returned.
start
- starting floating-point valuedirection
- value indicating which of
start
's neighbors or start
should
be returnedstart
in the
direction of direction
.public static float nextAfter(float start, double direction)
Special cases:
direction
is returned.
start
is
±Float.MIN_VALUE
and direction
has a value such that the result should have a smaller
magnitude, then a zero with the same sign as start
is returned.
start
is infinite and
direction
has a value such that the result should
have a smaller magnitude, Float.MAX_VALUE
with the
same sign as start
is returned.
start
is equal to ±
Float.MAX_VALUE
and direction
has a
value such that the result should have a larger magnitude, an
infinity with same sign as start
is returned.
start
- starting floating-point valuedirection
- value indicating which of
start
's neighbors or start
should
be returnedstart
in the
direction of direction
.public static double nextUp(double d)
d
in
the direction of positive infinity. This method is
semantically equivalent to nextAfter(d,
Double.POSITIVE_INFINITY)
; however, a nextUp
implementation may run faster than its equivalent
nextAfter
call.
Special Cases:
Double.MIN_VALUE
d
- starting floating-point valuepublic static float nextUp(float f)
f
in
the direction of positive infinity. This method is
semantically equivalent to nextAfter(f,
Float.POSITIVE_INFINITY)
; however, a nextUp
implementation may run faster than its equivalent
nextAfter
call.
Special Cases:
Float.MIN_VALUE
f
- starting floating-point valuepublic static double nextDown(double d)
d
in
the direction of negative infinity. This method is
semantically equivalent to nextAfter(d,
Double.NEGATIVE_INFINITY)
; however, a
nextDown
implementation may run faster than its
equivalent nextAfter
call.
Special Cases:
-Double.MIN_VALUE
d
- starting floating-point valuepublic static float nextDown(float f)
f
in
the direction of negative infinity. This method is
semantically equivalent to nextAfter(f,
Float.NEGATIVE_INFINITY)
; however, a
nextDown
implementation may run faster than its
equivalent nextAfter
call.
Special Cases:
-Float.MIN_VALUE
f
- starting floating-point valuepublic static double scalb(double d, int scaleFactor)
d
×
2scaleFactor
rounded as if performed
by a single correctly rounded floating-point multiply to a
member of the double value set. See the Java
Language Specification for a discussion of floating-point
value sets. If the exponent of the result is between Double.MIN_EXPONENT
and Double.MAX_EXPONENT
, the
answer is calculated exactly. If the exponent of the result
would be larger than Double.MAX_EXPONENT
, an
infinity is returned. Note that if the result is subnormal,
precision may be lost; that is, when scalb(x, n)
is subnormal, scalb(scalb(x, n), -n)
may not equal
x. When the result is non-NaN, the result has the same
sign as d
.
Special cases:
d
- number to be scaled by a power of two.scaleFactor
- power of 2 used to scale d
d
× 2scaleFactor
public static float scalb(float f, int scaleFactor)
f
×
2scaleFactor
rounded as if performed
by a single correctly rounded floating-point multiply to a
member of the float value set. See the Java
Language Specification for a discussion of floating-point
value sets. If the exponent of the result is between Float.MIN_EXPONENT
and Float.MAX_EXPONENT
, the
answer is calculated exactly. If the exponent of the result
would be larger than Float.MAX_EXPONENT
, an
infinity is returned. Note that if the result is subnormal,
precision may be lost; that is, when scalb(x, n)
is subnormal, scalb(scalb(x, n), -n)
may not equal
x. When the result is non-NaN, the result has the same
sign as f
.
Special cases:
f
- number to be scaled by a power of two.scaleFactor
- power of 2 used to scale f
f
× 2scaleFactor
Submit a bug or feature
For further API reference and developer documentation, see Java SE Documentation. That documentation contains more detailed, developer-targeted descriptions, with conceptual overviews, definitions of terms, workarounds, and working code examples.
Copyright © 1993, 2017, Oracle and/or its affiliates. 500 Oracle Parkway
Redwood Shores, CA 94065 USA. All rights reserved.
DRAFT 9-internal+0-adhoc.mlchung.jdk9-jdeps