120 sum += d; 121 } 122 double cycles = phase / sum; 123 if (phase < 0.0d) { 124 if (-cycles >= MAX_CYCLES) { 125 phase = 0.0d; 126 } else { 127 int fullcycles = FloatMath.floor_int(-cycles); 128 if ((fullcycles & dash.length & 1) != 0) { 129 dashOn = !dashOn; 130 } 131 phase += fullcycles * sum; 132 while (phase < 0.0d) { 133 if (--sidx < 0) { 134 sidx = dash.length - 1; 135 } 136 phase += dash[sidx]; 137 dashOn = !dashOn; 138 } 139 } 140 } else if (phase > 0) { 141 if (cycles >= MAX_CYCLES) { 142 phase = 0.0d; 143 } else { 144 int fullcycles = FloatMath.floor_int(cycles); 145 if ((fullcycles & dash.length & 1) != 0) { 146 dashOn = !dashOn; 147 } 148 phase -= fullcycles * sum; 149 double d; 150 while (phase >= (d = dash[sidx])) { 151 phase -= d; 152 sidx = (sidx + 1) % dash.length; 153 dashOn = !dashOn; 154 } 155 } 156 } 157 158 this.dash = dash; 159 this.dashLen = dashLen; 160 this.startPhase = this.phase = phase; 161 this.startDashOn = dashOn; 162 this.startIdx = sidx; 163 this.starting = true; 164 needsMoveTo = false; 165 firstSegidx = 0; 166 167 this.recycleDashes = recycleDashes; 168 169 return this; // fluent API 170 } 171 172 /** 173 * Disposes this dasher: 174 * clean up before reusing this instance 175 */ 176 void dispose() { 177 if (DO_CLEAN_DIRTY) { 178 // Force zero-fill dirty arrays: 179 Arrays.fill(curCurvepts, 0.0d); 180 } 181 // Return arrays: 182 if (recycleDashes) { 183 dash = dashes_ref.putArray(dash); 184 } 185 firstSegmentsBuffer = firstSegmentsBuffer_ref.putArray(firstSegmentsBuffer); 186 } 187 188 double[] copyDashArray(final float[] dashes) { 189 final int len = dashes.length; 190 final double[] newDashes; 191 if (len <= MarlinConst.INITIAL_ARRAY) { 192 newDashes = dashes_ref.initial; 193 } else { 194 if (DO_STATS) { 195 rdrCtx.stats.stat_array_dasher_dasher.add(len); 196 } 197 newDashes = dashes_ref.getArray(len); 198 } 199 for (int i = 0; i < len; i++) { newDashes[i] = dashes[i]; } 200 return newDashes; 201 } 202 203 @Override 204 public void moveTo(double x0, double y0) { 205 if (firstSegidx > 0) { 206 out.moveTo(sx, sy); 207 emitFirstSegments(); 208 } 209 needsMoveTo = true; 210 this.idx = startIdx; 211 this.dashOn = this.startDashOn; 212 this.phase = this.startPhase; 213 this.sx = this.x0 = x0; 214 this.sy = this.y0 = y0; 215 this.starting = true; 216 } 217 218 private void emitSeg(double[] buf, int off, int type) { 219 switch (type) { 220 case 8: 221 out.curveTo(buf[off+0], buf[off+1], 222 buf[off+2], buf[off+3], 223 buf[off+4], buf[off+5]); 224 return; 225 case 6: 226 out.quadTo(buf[off+0], buf[off+1], 227 buf[off+2], buf[off+3]); 228 return; 229 case 4: 230 out.lineTo(buf[off], buf[off+1]); 231 return; 232 default: 233 } 234 } 235 236 private void emitFirstSegments() { 237 final double[] fSegBuf = firstSegmentsBuffer; 238 239 for (int i = 0; i < firstSegidx; ) { 240 int type = (int)fSegBuf[i]; 241 emitSeg(fSegBuf, i + 1, type); 242 i += (type - 1); 243 } 244 firstSegidx = 0; 245 } 246 // We don't emit the first dash right away. If we did, caps would be 247 // drawn on it, but we need joins to be drawn if there's a closePath() 248 // So, we store the path elements that make up the first dash in the 249 // buffer below. 250 private double[] firstSegmentsBuffer; // dynamic array 251 private int firstSegidx; 252 253 // precondition: pts must be in relative coordinates (relative to x0,y0) 254 private void goTo(double[] pts, int off, final int type) { 255 double x = pts[off + type - 4]; 256 double y = pts[off + type - 3]; 257 if (dashOn) { 258 if (starting) { 259 int len = type - 1; // - 2 + 1 260 int segIdx = firstSegidx; 261 double[] buf = firstSegmentsBuffer; 262 if (segIdx + len > buf.length) { 263 if (DO_STATS) { 264 rdrCtx.stats.stat_array_dasher_firstSegmentsBuffer 265 .add(segIdx + len); 266 } 267 firstSegmentsBuffer = buf 268 = firstSegmentsBuffer_ref.widenArray(buf, segIdx, 269 segIdx + len); 270 } 271 buf[segIdx++] = type; 272 len--; 273 // small arraycopy (2, 4 or 6) but with offset: 274 System.arraycopy(pts, off, buf, segIdx, len); 275 segIdx += len; 276 firstSegidx = segIdx; 277 } else { 278 if (needsMoveTo) { 279 out.moveTo(x0, y0); 280 needsMoveTo = false; 281 } 282 emitSeg(pts, off, type); 283 } 284 } else { 285 starting = false; 286 needsMoveTo = true; 287 } 288 this.x0 = x; 289 this.y0 = y; 290 } 291 292 @Override 293 public void lineTo(double x1, double y1) { 294 double dx = x1 - x0; 295 double dy = y1 - y0; 296 297 double len = dx*dx + dy*dy; 298 if (len == 0.0d) { 299 return; 300 } 301 len = Math.sqrt(len); 302 303 // The scaling factors needed to get the dx and dy of the 304 // transformed dash segments. 305 final double cx = dx / len; 306 final double cy = dy / len; 307 308 final double[] _curCurvepts = curCurvepts; 309 final double[] _dash = dash; 310 311 double leftInThisDashSegment; 312 double dashdx, dashdy, p; 313 314 while (true) { 315 leftInThisDashSegment = _dash[idx] - phase; 316 317 if (len <= leftInThisDashSegment) { 318 _curCurvepts[0] = x1; 319 _curCurvepts[1] = y1; 320 goTo(_curCurvepts, 0, 4); 321 322 // Advance phase within current dash segment 323 phase += len; 324 // TODO: compare double values using epsilon: 325 if (len == leftInThisDashSegment) { 326 phase = 0.0d; 327 idx = (idx + 1) % dashLen; 328 dashOn = !dashOn; 329 } 330 return; 331 } 332 333 dashdx = _dash[idx] * cx; 334 dashdy = _dash[idx] * cy; 335 336 if (phase == 0.0d) { 337 _curCurvepts[0] = x0 + dashdx; 338 _curCurvepts[1] = y0 + dashdy; 339 } else { 340 p = leftInThisDashSegment / _dash[idx]; 341 _curCurvepts[0] = x0 + p * dashdx; 342 _curCurvepts[1] = y0 + p * dashdy; 343 } 344 345 goTo(_curCurvepts, 0, 4); 346 347 len -= leftInThisDashSegment; 348 // Advance to next dash segment 349 idx = (idx + 1) % dashLen; 350 dashOn = !dashOn; 351 phase = 0.0d; 352 } 353 } 354 355 // shared instance in DDasher 356 private final LengthIterator li = new LengthIterator(); 357 358 // preconditions: curCurvepts must be an array of length at least 2 * type, 359 // that contains the curve we want to dash in the first type elements 360 private void somethingTo(int type) { 361 if (pointCurve(curCurvepts, type)) { 362 return; 363 } 364 li.initializeIterationOnCurve(curCurvepts, type); 365 366 // initially the current curve is at curCurvepts[0...type] 367 int curCurveoff = 0; 368 double lastSplitT = 0.0d; 369 double t; 370 double leftInThisDashSegment = dash[idx] - phase; 371 372 while ((t = li.next(leftInThisDashSegment)) < 1.0d) { 373 if (t != 0.0d) { 374 DHelpers.subdivideAt((t - lastSplitT) / (1.0d - lastSplitT), 375 curCurvepts, curCurveoff, 376 curCurvepts, 0, 377 curCurvepts, type, type); 378 lastSplitT = t; 379 goTo(curCurvepts, 2, type); 380 curCurveoff = type; 381 } 382 // Advance to next dash segment 383 idx = (idx + 1) % dashLen; 384 dashOn = !dashOn; 385 phase = 0.0d; 386 leftInThisDashSegment = dash[idx]; 387 } 388 goTo(curCurvepts, curCurveoff+2, type); 389 phase += li.lastSegLen(); 390 if (phase >= dash[idx]) { 391 phase = 0.0d; 392 idx = (idx + 1) % dashLen; 393 dashOn = !dashOn; 394 } 395 // reset LengthIterator: 396 li.reset(); 397 } 398 399 private static boolean pointCurve(double[] curve, int type) { 400 for (int i = 2; i < type; i++) { 401 if (curve[i] != curve[i-2]) { 402 return false; 403 } 404 } 405 return true; 406 } 407 408 // Objects of this class are used to iterate through curves. They return 409 // t values where the left side of the curve has a specified length. 410 // It does this by subdividing the input curve until a certain error 411 // condition has been met. A recursive subdivision procedure would 412 // return as many as 1<<limit curves, but this is an iterator and we 413 // don't need all the curves all at once, so what we carry out a 414 // lazy inorder traversal of the recursion tree (meaning we only move 415 // through the tree when we need the next subdivided curve). This saves 416 // us a lot of memory because at any one time we only need to store 417 // limit+1 curves - one for each level of the tree + 1. 418 // NOTE: the way we do things here is not enough to traverse a general 419 // tree; however, the trees we are interested in have the property that 420 // every non leaf node has exactly 2 children 421 static final class LengthIterator { 422 private enum Side {LEFT, RIGHT}; 423 // Holds the curves at various levels of the recursion. The root 424 // (i.e. the original curve) is at recCurveStack[0] (but then it 425 // gets subdivided, the left half is put at 1, so most of the time 426 // only the right half of the original curve is at 0) 427 private final double[][] recCurveStack; // dirty 428 // sides[i] indicates whether the node at level i+1 in the path from 429 // the root to the current leaf is a left or right child of its parent. 430 private final Side[] sides; // dirty 431 private int curveType; 432 // lastT and nextT delimit the current leaf. 433 private double nextT; 434 private double lenAtNextT; 435 private double lastT; 436 private double lenAtLastT; 437 private double lenAtLastSplit; 438 private double lastSegLen; 439 // the current level in the recursion tree. 0 is the root. limit 440 // is the deepest possible leaf. 441 private int recLevel; 442 private boolean done; 652 lastT = nextT; 653 lenAtLastT = lenAtNextT; 654 nextT += (1 << (REC_LIMIT - recLevel)) * MIN_T_INC; 655 lenAtNextT += len; 656 // invalidate caches 657 flatLeafCoefCache[2] = -1.0d; 658 cachedHaveLowAcceleration = -1; 659 } else { 660 DHelpers.subdivide(recCurveStack[recLevel], 0, 661 recCurveStack[recLevel+1], 0, 662 recCurveStack[recLevel], 0, curveType); 663 sides[recLevel] = Side.LEFT; 664 recLevel++; 665 goLeft(); 666 } 667 } 668 669 // this is a bit of a hack. It returns -1 if we're not on a leaf, and 670 // the length of the leaf if we are on a leaf. 671 private double onLeaf() { 672 double[] curve = recCurveStack[recLevel]; 673 double polyLen = 0.0d; 674 675 double x0 = curve[0], y0 = curve[1]; 676 for (int i = 2; i < curveType; i += 2) { 677 final double x1 = curve[i], y1 = curve[i+1]; 678 final double len = DHelpers.linelen(x0, y0, x1, y1); 679 polyLen += len; 680 curLeafCtrlPolyLengths[i/2 - 1] = len; 681 x0 = x1; 682 y0 = y1; 683 } 684 685 final double lineLen = DHelpers.linelen(curve[0], curve[1], 686 curve[curveType-2], 687 curve[curveType-1]); 688 if ((polyLen - lineLen) < ERR || recLevel == REC_LIMIT) { 689 return (polyLen + lineLen) / 2.0d; 690 } 691 return -1.0d; 692 } 693 } 694 695 @Override 696 public void curveTo(double x1, double y1, 697 double x2, double y2, 698 double x3, double y3) 699 { 700 final double[] _curCurvepts = curCurvepts; 701 _curCurvepts[0] = x0; _curCurvepts[1] = y0; 702 _curCurvepts[2] = x1; _curCurvepts[3] = y1; 703 _curCurvepts[4] = x2; _curCurvepts[5] = y2; 704 _curCurvepts[6] = x3; _curCurvepts[7] = y3; 705 somethingTo(8); 706 } 707 708 @Override 709 public void quadTo(double x1, double y1, double x2, double y2) { 710 final double[] _curCurvepts = curCurvepts; 711 _curCurvepts[0] = x0; _curCurvepts[1] = y0; 712 _curCurvepts[2] = x1; _curCurvepts[3] = y1; 713 _curCurvepts[4] = x2; _curCurvepts[5] = y2; 714 somethingTo(6); 715 } 716 717 @Override 718 public void closePath() { 719 lineTo(sx, sy); 720 if (firstSegidx > 0) { 721 if (!dashOn || needsMoveTo) { 722 out.moveTo(sx, sy); 723 } 724 emitFirstSegments(); 725 } 726 moveTo(sx, sy); 727 } 728 729 @Override 730 public void pathDone() { 731 if (firstSegidx > 0) { 732 out.moveTo(sx, sy); 733 emitFirstSegments(); 734 } 735 out.pathDone(); 736 737 // Dispose this instance: 738 dispose(); 739 } 740 741 @Override 742 public long getNativeConsumer() { 743 throw new InternalError("DDasher does not use a native consumer"); 744 } 745 } 746 | 120 sum += d; 121 } 122 double cycles = phase / sum; 123 if (phase < 0.0d) { 124 if (-cycles >= MAX_CYCLES) { 125 phase = 0.0d; 126 } else { 127 int fullcycles = FloatMath.floor_int(-cycles); 128 if ((fullcycles & dash.length & 1) != 0) { 129 dashOn = !dashOn; 130 } 131 phase += fullcycles * sum; 132 while (phase < 0.0d) { 133 if (--sidx < 0) { 134 sidx = dash.length - 1; 135 } 136 phase += dash[sidx]; 137 dashOn = !dashOn; 138 } 139 } 140 } else if (phase > 0.0d) { 141 if (cycles >= MAX_CYCLES) { 142 phase = 0.0d; 143 } else { 144 int fullcycles = FloatMath.floor_int(cycles); 145 if ((fullcycles & dash.length & 1) != 0) { 146 dashOn = !dashOn; 147 } 148 phase -= fullcycles * sum; 149 double d; 150 while (phase >= (d = dash[sidx])) { 151 phase -= d; 152 sidx = (sidx + 1) % dash.length; 153 dashOn = !dashOn; 154 } 155 } 156 } 157 158 this.dash = dash; 159 this.dashLen = dashLen; 160 this.phase = phase; 161 this.startPhase = phase; 162 this.startDashOn = dashOn; 163 this.startIdx = sidx; 164 this.starting = true; 165 this.needsMoveTo = false; 166 this.firstSegidx = 0; 167 168 this.recycleDashes = recycleDashes; 169 170 return this; // fluent API 171 } 172 173 /** 174 * Disposes this dasher: 175 * clean up before reusing this instance 176 */ 177 void dispose() { 178 if (DO_CLEAN_DIRTY) { 179 // Force zero-fill dirty arrays: 180 Arrays.fill(curCurvepts, 0.0d); 181 } 182 // Return arrays: 183 if (recycleDashes) { 184 dash = dashes_ref.putArray(dash); 185 } 186 firstSegmentsBuffer = firstSegmentsBuffer_ref.putArray(firstSegmentsBuffer); 187 } 188 189 double[] copyDashArray(final float[] dashes) { 190 final int len = dashes.length; 191 final double[] newDashes; 192 if (len <= MarlinConst.INITIAL_ARRAY) { 193 newDashes = dashes_ref.initial; 194 } else { 195 if (DO_STATS) { 196 rdrCtx.stats.stat_array_dasher_dasher.add(len); 197 } 198 newDashes = dashes_ref.getArray(len); 199 } 200 for (int i = 0; i < len; i++) { newDashes[i] = dashes[i]; } 201 return newDashes; 202 } 203 204 @Override 205 public void moveTo(final double x0, final double y0) { 206 if (firstSegidx != 0) { 207 out.moveTo(sx, sy); 208 emitFirstSegments(); 209 } 210 needsMoveTo = true; 211 this.idx = startIdx; 212 this.dashOn = this.startDashOn; 213 this.phase = this.startPhase; 214 this.sx = x0; 215 this.sy = y0; 216 this.x0 = x0; 217 this.y0 = y0; 218 this.starting = true; 219 } 220 221 private void emitSeg(double[] buf, int off, int type) { 222 switch (type) { 223 case 8: 224 out.curveTo(buf[off+0], buf[off+1], 225 buf[off+2], buf[off+3], 226 buf[off+4], buf[off+5]); 227 return; 228 case 6: 229 out.quadTo(buf[off+0], buf[off+1], 230 buf[off+2], buf[off+3]); 231 return; 232 case 4: 233 out.lineTo(buf[off], buf[off+1]); 234 return; 235 default: 236 } 237 } 238 239 private void emitFirstSegments() { 240 final double[] fSegBuf = firstSegmentsBuffer; 241 242 for (int i = 0, len = firstSegidx; i < len; ) { 243 int type = (int)fSegBuf[i]; 244 emitSeg(fSegBuf, i + 1, type); 245 i += (type - 1); 246 } 247 firstSegidx = 0; 248 } 249 // We don't emit the first dash right away. If we did, caps would be 250 // drawn on it, but we need joins to be drawn if there's a closePath() 251 // So, we store the path elements that make up the first dash in the 252 // buffer below. 253 private double[] firstSegmentsBuffer; // dynamic array 254 private int firstSegidx; 255 256 // precondition: pts must be in relative coordinates (relative to x0,y0) 257 private void goTo(final double[] pts, final int off, final int type, 258 final boolean on) 259 { 260 final int index = off + type; 261 final double x = pts[index - 4]; 262 final double y = pts[index - 3]; 263 264 if (on) { 265 if (starting) { 266 goTo_starting(pts, off, type); 267 } else { 268 if (needsMoveTo) { 269 needsMoveTo = false; 270 out.moveTo(x0, y0); 271 } 272 emitSeg(pts, off, type); 273 } 274 } else { 275 if (starting) { 276 // low probability test (hotspot) 277 starting = false; 278 } 279 needsMoveTo = true; 280 } 281 this.x0 = x; 282 this.y0 = y; 283 } 284 285 private void goTo_starting(final double[] pts, final int off, final int type) { 286 int len = type - 1; // - 2 + 1 287 int segIdx = firstSegidx; 288 double[] buf = firstSegmentsBuffer; 289 290 if (segIdx + len > buf.length) { 291 if (DO_STATS) { 292 rdrCtx.stats.stat_array_dasher_firstSegmentsBuffer 293 .add(segIdx + len); 294 } 295 firstSegmentsBuffer = buf 296 = firstSegmentsBuffer_ref.widenArray(buf, segIdx, 297 segIdx + len); 298 } 299 buf[segIdx++] = type; 300 len--; 301 // small arraycopy (2, 4 or 6) but with offset: 302 System.arraycopy(pts, off, buf, segIdx, len); 303 firstSegidx = segIdx + len; 304 } 305 306 @Override 307 public void lineTo(final double x1, final double y1) { 308 final double dx = x1 - x0; 309 final double dy = y1 - y0; 310 311 double len = dx*dx + dy*dy; 312 if (len == 0.0d) { 313 return; 314 } 315 len = Math.sqrt(len); 316 317 // The scaling factors needed to get the dx and dy of the 318 // transformed dash segments. 319 final double cx = dx / len; 320 final double cy = dy / len; 321 322 final double[] _curCurvepts = curCurvepts; 323 final double[] _dash = dash; 324 final int _dashLen = this.dashLen; 325 326 int _idx = idx; 327 boolean _dashOn = dashOn; 328 double _phase = phase; 329 330 double leftInThisDashSegment; 331 double d, dashdx, dashdy, p; 332 333 while (true) { 334 d = _dash[_idx]; 335 leftInThisDashSegment = d - _phase; 336 337 if (len <= leftInThisDashSegment) { 338 _curCurvepts[0] = x1; 339 _curCurvepts[1] = y1; 340 341 goTo(_curCurvepts, 0, 4, _dashOn); 342 343 // Advance phase within current dash segment 344 _phase += len; 345 346 // TODO: compare double values using epsilon: 347 if (len == leftInThisDashSegment) { 348 _phase = 0.0d; 349 _idx = (_idx + 1) % _dashLen; 350 _dashOn = !_dashOn; 351 } 352 353 // Save local state: 354 idx = _idx; 355 dashOn = _dashOn; 356 phase = _phase; 357 return; 358 } 359 360 dashdx = d * cx; 361 dashdy = d * cy; 362 363 if (_phase == 0.0d) { 364 _curCurvepts[0] = x0 + dashdx; 365 _curCurvepts[1] = y0 + dashdy; 366 } else { 367 p = leftInThisDashSegment / d; 368 _curCurvepts[0] = x0 + p * dashdx; 369 _curCurvepts[1] = y0 + p * dashdy; 370 } 371 372 goTo(_curCurvepts, 0, 4, _dashOn); 373 374 len -= leftInThisDashSegment; 375 // Advance to next dash segment 376 _idx = (_idx + 1) % _dashLen; 377 _dashOn = !_dashOn; 378 _phase = 0.0d; 379 } 380 } 381 382 // shared instance in DDasher 383 private final LengthIterator li = new LengthIterator(); 384 385 // preconditions: curCurvepts must be an array of length at least 2 * type, 386 // that contains the curve we want to dash in the first type elements 387 private void somethingTo(int type) { 388 if (pointCurve(curCurvepts, type)) { 389 return; 390 } 391 final LengthIterator _li = li; 392 final double[] _curCurvepts = curCurvepts; 393 final double[] _dash = dash; 394 final int _dashLen = this.dashLen; 395 396 _li.initializeIterationOnCurve(_curCurvepts, type); 397 398 int _idx = idx; 399 boolean _dashOn = dashOn; 400 double _phase = phase; 401 402 // initially the current curve is at curCurvepts[0...type] 403 int curCurveoff = 0; 404 double lastSplitT = 0.0d; 405 double t; 406 double leftInThisDashSegment = _dash[_idx] - _phase; 407 408 while ((t = _li.next(leftInThisDashSegment)) < 1.0d) { 409 if (t != 0.0d) { 410 DHelpers.subdivideAt((t - lastSplitT) / (1.0d - lastSplitT), 411 _curCurvepts, curCurveoff, 412 _curCurvepts, 0, 413 _curCurvepts, type, type); 414 lastSplitT = t; 415 goTo(_curCurvepts, 2, type, _dashOn); 416 curCurveoff = type; 417 } 418 // Advance to next dash segment 419 _idx = (_idx + 1) % _dashLen; 420 _dashOn = !_dashOn; 421 _phase = 0.0d; 422 leftInThisDashSegment = _dash[_idx]; 423 } 424 425 goTo(_curCurvepts, curCurveoff + 2, type, _dashOn); 426 427 _phase += _li.lastSegLen(); 428 if (_phase >= _dash[_idx]) { 429 _phase = 0.0d; 430 _idx = (_idx + 1) % _dashLen; 431 _dashOn = !_dashOn; 432 } 433 // Save local state: 434 idx = _idx; 435 dashOn = _dashOn; 436 phase = _phase; 437 438 // reset LengthIterator: 439 _li.reset(); 440 } 441 442 private static boolean pointCurve(double[] curve, int type) { 443 for (int i = 2; i < type; i++) { 444 if (curve[i] != curve[i-2]) { 445 return false; 446 } 447 } 448 return true; 449 } 450 451 // Objects of this class are used to iterate through curves. They return 452 // t values where the left side of the curve has a specified length. 453 // It does this by subdividing the input curve until a certain error 454 // condition has been met. A recursive subdivision procedure would 455 // return as many as 1<<limit curves, but this is an iterator and we 456 // don't need all the curves all at once, so what we carry out a 457 // lazy inorder traversal of the recursion tree (meaning we only move 458 // through the tree when we need the next subdivided curve). This saves 459 // us a lot of memory because at any one time we only need to store 460 // limit+1 curves - one for each level of the tree + 1. 461 // NOTE: the way we do things here is not enough to traverse a general 462 // tree; however, the trees we are interested in have the property that 463 // every non leaf node has exactly 2 children 464 static final class LengthIterator { 465 private enum Side {LEFT, RIGHT} 466 // Holds the curves at various levels of the recursion. The root 467 // (i.e. the original curve) is at recCurveStack[0] (but then it 468 // gets subdivided, the left half is put at 1, so most of the time 469 // only the right half of the original curve is at 0) 470 private final double[][] recCurveStack; // dirty 471 // sides[i] indicates whether the node at level i+1 in the path from 472 // the root to the current leaf is a left or right child of its parent. 473 private final Side[] sides; // dirty 474 private int curveType; 475 // lastT and nextT delimit the current leaf. 476 private double nextT; 477 private double lenAtNextT; 478 private double lastT; 479 private double lenAtLastT; 480 private double lenAtLastSplit; 481 private double lastSegLen; 482 // the current level in the recursion tree. 0 is the root. limit 483 // is the deepest possible leaf. 484 private int recLevel; 485 private boolean done; 695 lastT = nextT; 696 lenAtLastT = lenAtNextT; 697 nextT += (1 << (REC_LIMIT - recLevel)) * MIN_T_INC; 698 lenAtNextT += len; 699 // invalidate caches 700 flatLeafCoefCache[2] = -1.0d; 701 cachedHaveLowAcceleration = -1; 702 } else { 703 DHelpers.subdivide(recCurveStack[recLevel], 0, 704 recCurveStack[recLevel+1], 0, 705 recCurveStack[recLevel], 0, curveType); 706 sides[recLevel] = Side.LEFT; 707 recLevel++; 708 goLeft(); 709 } 710 } 711 712 // this is a bit of a hack. It returns -1 if we're not on a leaf, and 713 // the length of the leaf if we are on a leaf. 714 private double onLeaf() { 715 final double[] curve = recCurveStack[recLevel]; 716 final int _curveType = curveType; 717 double polyLen = 0.0d; 718 719 double x0 = curve[0], y0 = curve[1]; 720 for (int i = 2; i < _curveType; i += 2) { 721 final double x1 = curve[i], y1 = curve[i+1]; 722 final double len = DHelpers.linelen(x0, y0, x1, y1); 723 polyLen += len; 724 curLeafCtrlPolyLengths[i/2 - 1] = len; 725 x0 = x1; 726 y0 = y1; 727 } 728 729 final double lineLen = DHelpers.linelen(curve[0], curve[1], 730 curve[_curveType-2], 731 curve[_curveType-1]); 732 if ((polyLen - lineLen) < ERR || recLevel == REC_LIMIT) { 733 return (polyLen + lineLen) / 2.0d; 734 } 735 return -1.0d; 736 } 737 } 738 739 @Override 740 public void curveTo(final double x1, final double y1, 741 final double x2, final double y2, 742 final double x3, final double y3) 743 { 744 final double[] _curCurvepts = curCurvepts; 745 _curCurvepts[0] = x0; _curCurvepts[1] = y0; 746 _curCurvepts[2] = x1; _curCurvepts[3] = y1; 747 _curCurvepts[4] = x2; _curCurvepts[5] = y2; 748 _curCurvepts[6] = x3; _curCurvepts[7] = y3; 749 somethingTo(8); 750 } 751 752 @Override 753 public void quadTo(final double x1, final double y1, 754 final double x2, final double y2) 755 { 756 final double[] _curCurvepts = curCurvepts; 757 _curCurvepts[0] = x0; _curCurvepts[1] = y0; 758 _curCurvepts[2] = x1; _curCurvepts[3] = y1; 759 _curCurvepts[4] = x2; _curCurvepts[5] = y2; 760 somethingTo(6); 761 } 762 763 @Override 764 public void closePath() { 765 lineTo(sx, sy); 766 if (firstSegidx != 0) { 767 if (!dashOn || needsMoveTo) { 768 out.moveTo(sx, sy); 769 } 770 emitFirstSegments(); 771 } 772 moveTo(sx, sy); 773 } 774 775 @Override 776 public void pathDone() { 777 if (firstSegidx != 0) { 778 out.moveTo(sx, sy); 779 emitFirstSegments(); 780 } 781 out.pathDone(); 782 783 // Dispose this instance: 784 dispose(); 785 } 786 787 @Override 788 public long getNativeConsumer() { 789 throw new InternalError("DDasher does not use a native consumer"); 790 } 791 } 792 |