< prev index next >

src/java.desktop/share/classes/sun/java2d/marlin/DHelpers.java

Print this page




   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package sun.java2d.marlin;
  27 
  28 import static java.lang.Math.PI;
  29 import static java.lang.Math.cos;
  30 import static java.lang.Math.sqrt;
  31 import static java.lang.Math.cbrt;
  32 import static java.lang.Math.acos;
  33 
  34 final class DHelpers implements MarlinConst {
  35 
  36     private DHelpers() {
  37         throw new Error("This is a non instantiable class");
  38     }
  39 
  40     static boolean within(final double x, final double y, final double err) {
  41         final double d = y - x;
  42         return (d <= err && d >= -err);
  43     }
  44 
  45     static int quadraticRoots(final double a, final double b,
  46                               final double c, double[] zeroes, final int off)
  47     {
  48         int ret = off;
  49         double t;
  50         if (a != 0.0d) {
  51             final double dis = b*b - 4*a*c;
  52             if (dis > 0.0d) {


  98         //  substitute x = y - A/3 to eliminate quadratic term:
  99         //     x^3 +Px + Q = 0
 100         //
 101         // Since we actually need P/3 and Q/2 for all of the
 102         // calculations that follow, we will calculate
 103         // p = P/3
 104         // q = Q/2
 105         // instead and use those values for simplicity of the code.
 106         double sq_A = a * a;
 107         double p = (1.0d/3.0d) * ((-1.0d/3.0d) * sq_A + b);
 108         double q = (1.0d/2.0d) * ((2.0d/27.0d) * a * sq_A - (1.0d/3.0d) * a * b + c);
 109 
 110         // use Cardano's formula
 111 
 112         double cb_p = p * p * p;
 113         double D = q * q + cb_p;
 114 
 115         int num;
 116         if (D < 0.0d) {
 117             // see: http://en.wikipedia.org/wiki/Cubic_function#Trigonometric_.28and_hyperbolic.29_method
 118             final double phi = (1.0d/3.0d) * acos(-q / sqrt(-cb_p));
 119             final double t = 2.0d * sqrt(-p);
 120 
 121             pts[ off+0 ] = ( t * cos(phi));
 122             pts[ off+1 ] = (-t * cos(phi + (PI / 3.0d)));
 123             pts[ off+2 ] = (-t * cos(phi - (PI / 3.0d)));
 124             num = 3;
 125         } else {
 126             final double sqrt_D = sqrt(D);
 127             final double u = cbrt(sqrt_D - q);
 128             final double v = - cbrt(sqrt_D + q);
 129 
 130             pts[ off ] = (u + v);
 131             num = 1;
 132 
 133             if (within(D, 0.0d, 1e-8d)) {
 134                 pts[off+1] = -(pts[off] / 2.0d);
 135                 num = 2;
 136             }
 137         }
 138 
 139         final double sub = (1.0d/3.0d) * a;
 140 
 141         for (int i = 0; i < num; ++i) {
 142             pts[ off+i ] -= sub;
 143         }
 144 
 145         return filterOutNotInAB(pts, off, num, A, B) - off;
 146     }
 147 
 148     static double evalCubic(final double a, final double b,


 154 
 155     static double evalQuad(final double a, final double b,
 156                           final double c, final double t)
 157     {
 158         return t * (t * a + b) + c;
 159     }
 160 
 161     // returns the index 1 past the last valid element remaining after filtering
 162     static int filterOutNotInAB(double[] nums, final int off, final int len,
 163                                 final double a, final double b)
 164     {
 165         int ret = off;
 166         for (int i = off, end = off + len; i < end; i++) {
 167             if (nums[i] >= a && nums[i] < b) {
 168                 nums[ret++] = nums[i];
 169             }
 170         }
 171         return ret;
 172     }
 173 
 174     static double polyLineLength(double[] poly, final int off, final int nCoords) {
 175         assert nCoords % 2 == 0 && poly.length >= off + nCoords : "";
 176         double acc = 0.0d;
 177         for (int i = off + 2; i < off + nCoords; i += 2) {
 178             acc += linelen(poly[i], poly[i+1], poly[i-2], poly[i-1]);
 179         }
 180         return acc;
 181     }
 182 
 183     static double linelen(double x1, double y1, double x2, double y2) {
 184         final double dx = x2 - x1;
 185         final double dy = y2 - y1;
 186         return Math.sqrt(dx*dx + dy*dy);
 187     }
 188 
 189     static void subdivide(double[] src, int srcoff, double[] left, int leftoff,
 190                           double[] right, int rightoff, int type)
 191     {
 192         switch(type) {
 193         case 6:
 194             DHelpers.subdivideQuad(src, srcoff, left, leftoff, right, rightoff);
 195             return;
 196         case 8:
 197             DHelpers.subdivideCubic(src, srcoff, left, leftoff, right, rightoff);
 198             return;
 199         default:
 200             throw new InternalError("Unsupported curve type");
 201         }
 202     }


 414         }
 415         if (right != null) {
 416             right[rightoff + 0] = ctrlx;
 417             right[rightoff + 1] = ctrly;
 418             right[rightoff + 2] = x2;
 419             right[rightoff + 3] = y2;
 420         }
 421     }
 422 
 423     static void subdivideAt(double t, double[] src, int srcoff,
 424                             double[] left, int leftoff,
 425                             double[] right, int rightoff, int size)
 426     {
 427         switch(size) {
 428         case 8:
 429             subdivideCubicAt(t, src, srcoff, left, leftoff, right, rightoff);
 430             return;
 431         case 6:
 432             subdivideQuadAt(t, src, srcoff, left, leftoff, right, rightoff);
 433             return;
































































































































































































































































































































































































 434         }
 435     }
 436 }


   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package sun.java2d.marlin;
  27 
  28 import static java.lang.Math.PI;
  29 import java.util.Arrays;
  30 import static sun.java2d.marlin.MarlinConst.INITIAL_EDGES_COUNT;
  31 import sun.java2d.marlin.stats.Histogram;
  32 import sun.java2d.marlin.stats.StatLong;
  33 
  34 final class DHelpers implements MarlinConst {
  35 
  36     private DHelpers() {
  37         throw new Error("This is a non instantiable class");
  38     }
  39 
  40     static boolean within(final double x, final double y, final double err) {
  41         final double d = y - x;
  42         return (d <= err && d >= -err);
  43     }
  44 
  45     static int quadraticRoots(final double a, final double b,
  46                               final double c, double[] zeroes, final int off)
  47     {
  48         int ret = off;
  49         double t;
  50         if (a != 0.0d) {
  51             final double dis = b*b - 4*a*c;
  52             if (dis > 0.0d) {


  98         //  substitute x = y - A/3 to eliminate quadratic term:
  99         //     x^3 +Px + Q = 0
 100         //
 101         // Since we actually need P/3 and Q/2 for all of the
 102         // calculations that follow, we will calculate
 103         // p = P/3
 104         // q = Q/2
 105         // instead and use those values for simplicity of the code.
 106         double sq_A = a * a;
 107         double p = (1.0d/3.0d) * ((-1.0d/3.0d) * sq_A + b);
 108         double q = (1.0d/2.0d) * ((2.0d/27.0d) * a * sq_A - (1.0d/3.0d) * a * b + c);
 109 
 110         // use Cardano's formula
 111 
 112         double cb_p = p * p * p;
 113         double D = q * q + cb_p;
 114 
 115         int num;
 116         if (D < 0.0d) {
 117             // see: http://en.wikipedia.org/wiki/Cubic_function#Trigonometric_.28and_hyperbolic.29_method
 118             final double phi = (1.0d/3.0d) * Math.acos(-q / Math.sqrt(-cb_p));
 119             final double t = 2.0d * Math.sqrt(-p);
 120 
 121             pts[ off+0 ] = ( t * Math.cos(phi));
 122             pts[ off+1 ] = (-t * Math.cos(phi + (PI / 3.0d)));
 123             pts[ off+2 ] = (-t * Math.cos(phi - (PI / 3.0d)));
 124             num = 3;
 125         } else {
 126             final double sqrt_D = Math.sqrt(D);
 127             final double u =   Math.cbrt(sqrt_D - q);
 128             final double v = - Math.cbrt(sqrt_D + q);
 129 
 130             pts[ off ] = (u + v);
 131             num = 1;
 132 
 133             if (within(D, 0.0d, 1e-8d)) {
 134                 pts[off+1] = -(pts[off] / 2.0d);
 135                 num = 2;
 136             }
 137         }
 138 
 139         final double sub = (1.0d/3.0d) * a;
 140 
 141         for (int i = 0; i < num; ++i) {
 142             pts[ off+i ] -= sub;
 143         }
 144 
 145         return filterOutNotInAB(pts, off, num, A, B) - off;
 146     }
 147 
 148     static double evalCubic(final double a, final double b,


 154 
 155     static double evalQuad(final double a, final double b,
 156                           final double c, final double t)
 157     {
 158         return t * (t * a + b) + c;
 159     }
 160 
 161     // returns the index 1 past the last valid element remaining after filtering
 162     static int filterOutNotInAB(double[] nums, final int off, final int len,
 163                                 final double a, final double b)
 164     {
 165         int ret = off;
 166         for (int i = off, end = off + len; i < end; i++) {
 167             if (nums[i] >= a && nums[i] < b) {
 168                 nums[ret++] = nums[i];
 169             }
 170         }
 171         return ret;
 172     }
 173 









 174     static double linelen(double x1, double y1, double x2, double y2) {
 175         final double dx = x2 - x1;
 176         final double dy = y2 - y1;
 177         return Math.sqrt(dx*dx + dy*dy);
 178     }
 179 
 180     static void subdivide(double[] src, int srcoff, double[] left, int leftoff,
 181                           double[] right, int rightoff, int type)
 182     {
 183         switch(type) {
 184         case 6:
 185             DHelpers.subdivideQuad(src, srcoff, left, leftoff, right, rightoff);
 186             return;
 187         case 8:
 188             DHelpers.subdivideCubic(src, srcoff, left, leftoff, right, rightoff);
 189             return;
 190         default:
 191             throw new InternalError("Unsupported curve type");
 192         }
 193     }


 405         }
 406         if (right != null) {
 407             right[rightoff + 0] = ctrlx;
 408             right[rightoff + 1] = ctrly;
 409             right[rightoff + 2] = x2;
 410             right[rightoff + 3] = y2;
 411         }
 412     }
 413 
 414     static void subdivideAt(double t, double[] src, int srcoff,
 415                             double[] left, int leftoff,
 416                             double[] right, int rightoff, int size)
 417     {
 418         switch(size) {
 419         case 8:
 420             subdivideCubicAt(t, src, srcoff, left, leftoff, right, rightoff);
 421             return;
 422         case 6:
 423             subdivideQuadAt(t, src, srcoff, left, leftoff, right, rightoff);
 424             return;
 425         }
 426     }
 427 
 428     // From sun.java2d.loops.GeneralRenderer:
 429 
 430     static int outcode(final double x, final double y,
 431                        final double[] clipRect)
 432     {
 433         int code;
 434         if (y < clipRect[0]) {
 435             code = OUTCODE_TOP;
 436         } else if (y >= clipRect[1]) {
 437             code = OUTCODE_BOTTOM;
 438         } else {
 439             code = 0;
 440         }
 441         if (x < clipRect[2]) {
 442             code |= OUTCODE_LEFT;
 443         } else if (x >= clipRect[3]) {
 444             code |= OUTCODE_RIGHT;
 445         }
 446         return code;
 447     }
 448 
 449     // a stack of polynomial curves where each curve shares endpoints with
 450     // adjacent ones.
 451     static final class PolyStack {
 452         private static final byte TYPE_LINETO  = (byte) 0;
 453         private static final byte TYPE_QUADTO  = (byte) 1;
 454         private static final byte TYPE_CUBICTO = (byte) 2;
 455 
 456         // curves capacity = edges count (8192) = edges x 2 (coords)
 457         private static final int INITIAL_CURVES_COUNT = INITIAL_EDGES_COUNT << 1;
 458 
 459         // types capacity = edges count (4096)
 460         private static final int INITIAL_TYPES_COUNT = INITIAL_EDGES_COUNT;
 461 
 462         double[] curves;
 463         int end;
 464         byte[] curveTypes;
 465         int numCurves;
 466 
 467         // curves ref (dirty)
 468         final DoubleArrayCache.Reference curves_ref;
 469         // curveTypes ref (dirty)
 470         final ByteArrayCache.Reference curveTypes_ref;
 471 
 472         // used marks (stats only)
 473         int curveTypesUseMark;
 474         int curvesUseMark;
 475 
 476         private final StatLong stat_polystack_types;
 477         private final StatLong stat_polystack_curves;
 478         private final Histogram hist_polystack_curves;
 479         private final StatLong stat_array_polystack_curves;
 480         private final StatLong stat_array_polystack_curveTypes;
 481 
 482         PolyStack(final DRendererContext rdrCtx) {
 483             this(rdrCtx, null, null, null, null, null);
 484         }
 485 
 486         PolyStack(final DRendererContext rdrCtx,
 487                   final StatLong stat_polystack_types,
 488                   final StatLong stat_polystack_curves,
 489                   final Histogram hist_polystack_curves,
 490                   final StatLong stat_array_polystack_curves,
 491                   final StatLong stat_array_polystack_curveTypes)
 492         {
 493             curves_ref = rdrCtx.newDirtyDoubleArrayRef(INITIAL_CURVES_COUNT); // 32K
 494             curves     = curves_ref.initial;
 495 
 496             curveTypes_ref = rdrCtx.newDirtyByteArrayRef(INITIAL_TYPES_COUNT); // 4K
 497             curveTypes     = curveTypes_ref.initial;
 498             numCurves = 0;
 499             end = 0;
 500 
 501             if (DO_STATS) {
 502                 curveTypesUseMark = 0;
 503                 curvesUseMark = 0;
 504             }
 505             this.stat_polystack_types = stat_polystack_types;
 506             this.stat_polystack_curves = stat_polystack_curves;
 507             this.hist_polystack_curves = hist_polystack_curves;
 508             this.stat_array_polystack_curves = stat_array_polystack_curves;
 509             this.stat_array_polystack_curveTypes = stat_array_polystack_curveTypes;
 510         }
 511 
 512         /**
 513          * Disposes this PolyStack:
 514          * clean up before reusing this instance
 515          */
 516         void dispose() {
 517             end = 0;
 518             numCurves = 0;
 519 
 520             if (DO_STATS) {
 521                 stat_polystack_types.add(curveTypesUseMark);
 522                 stat_polystack_curves.add(curvesUseMark);
 523                 hist_polystack_curves.add(curvesUseMark);
 524 
 525                 // reset marks
 526                 curveTypesUseMark = 0;
 527                 curvesUseMark = 0;
 528             }
 529 
 530             // Return arrays:
 531             // curves and curveTypes are kept dirty
 532             curves     = curves_ref.putArray(curves);
 533             curveTypes = curveTypes_ref.putArray(curveTypes);
 534         }
 535 
 536         private void ensureSpace(final int n) {
 537             // use substraction to avoid integer overflow:
 538             if (curves.length - end < n) {
 539                 if (DO_STATS) {
 540                     stat_array_polystack_curves.add(end + n);
 541                 }
 542                 curves = curves_ref.widenArray(curves, end, end + n);
 543             }
 544             if (curveTypes.length <= numCurves) {
 545                 if (DO_STATS) {
 546                     stat_array_polystack_curveTypes.add(numCurves + 1);
 547                 }
 548                 curveTypes = curveTypes_ref.widenArray(curveTypes,
 549                                                        numCurves,
 550                                                        numCurves + 1);
 551             }
 552         }
 553 
 554         void pushCubic(double x0, double y0,
 555                        double x1, double y1,
 556                        double x2, double y2)
 557         {
 558             ensureSpace(6);
 559             curveTypes[numCurves++] = TYPE_CUBICTO;
 560             // we reverse the coordinate order to make popping easier
 561             final double[] _curves = curves;
 562             int e = end;
 563             _curves[e++] = x2;    _curves[e++] = y2;
 564             _curves[e++] = x1;    _curves[e++] = y1;
 565             _curves[e++] = x0;    _curves[e++] = y0;
 566             end = e;
 567         }
 568 
 569         void pushQuad(double x0, double y0,
 570                       double x1, double y1)
 571         {
 572             ensureSpace(4);
 573             curveTypes[numCurves++] = TYPE_QUADTO;
 574             final double[] _curves = curves;
 575             int e = end;
 576             _curves[e++] = x1;    _curves[e++] = y1;
 577             _curves[e++] = x0;    _curves[e++] = y0;
 578             end = e;
 579         }
 580 
 581         void pushLine(double x, double y) {
 582             ensureSpace(2);
 583             curveTypes[numCurves++] = TYPE_LINETO;
 584             curves[end++] = x;    curves[end++] = y;
 585         }
 586 
 587         void pullAll(final DPathConsumer2D io) {
 588             final int nc = numCurves;
 589             if (nc == 0) {
 590                 return;
 591             }
 592             if (DO_STATS) {
 593                 // update used marks:
 594                 if (numCurves > curveTypesUseMark) {
 595                     curveTypesUseMark = numCurves;
 596                 }
 597                 if (end > curvesUseMark) {
 598                     curvesUseMark = end;
 599                 }
 600             }
 601             final byte[]  _curveTypes = curveTypes;
 602             final double[] _curves = curves;
 603             int e = 0;
 604 
 605             for (int i = 0; i < nc; i++) {
 606                 switch(_curveTypes[i]) {
 607                 case TYPE_LINETO:
 608                     io.lineTo(_curves[e], _curves[e+1]);
 609                     e += 2;
 610                     continue;
 611                 case TYPE_QUADTO:
 612                     io.quadTo(_curves[e+0], _curves[e+1],
 613                               _curves[e+2], _curves[e+3]);
 614                     e += 4;
 615                     continue;
 616                 case TYPE_CUBICTO:
 617                     io.curveTo(_curves[e+0], _curves[e+1],
 618                                _curves[e+2], _curves[e+3],
 619                                _curves[e+4], _curves[e+5]);
 620                     e += 6;
 621                     continue;
 622                 default:
 623                 }
 624             }
 625             numCurves = 0;
 626             end = 0;
 627         }
 628 
 629         void popAll(final DPathConsumer2D io) {
 630             int nc = numCurves;
 631             if (nc == 0) {
 632                 return;
 633             }
 634             if (DO_STATS) {
 635                 // update used marks:
 636                 if (numCurves > curveTypesUseMark) {
 637                     curveTypesUseMark = numCurves;
 638                 }
 639                 if (end > curvesUseMark) {
 640                     curvesUseMark = end;
 641                 }
 642             }
 643             final byte[]  _curveTypes = curveTypes;
 644             final double[] _curves = curves;
 645             int e  = end;
 646 
 647             while (nc != 0) {
 648                 switch(_curveTypes[--nc]) {
 649                 case TYPE_LINETO:
 650                     e -= 2;
 651                     io.lineTo(_curves[e], _curves[e+1]);
 652                     continue;
 653                 case TYPE_QUADTO:
 654                     e -= 4;
 655                     io.quadTo(_curves[e+0], _curves[e+1],
 656                               _curves[e+2], _curves[e+3]);
 657                     continue;
 658                 case TYPE_CUBICTO:
 659                     e -= 6;
 660                     io.curveTo(_curves[e+0], _curves[e+1],
 661                                _curves[e+2], _curves[e+3],
 662                                _curves[e+4], _curves[e+5]);
 663                     continue;
 664                 default:
 665                 }
 666             }
 667             numCurves = 0;
 668             end = 0;
 669         }
 670 
 671         @Override
 672         public String toString() {
 673             String ret = "";
 674             int nc = numCurves;
 675             int last = end;
 676             int len;
 677             while (nc != 0) {
 678                 switch(curveTypes[--nc]) {
 679                 case TYPE_LINETO:
 680                     len = 2;
 681                     ret += "line: ";
 682                     break;
 683                 case TYPE_QUADTO:
 684                     len = 4;
 685                     ret += "quad: ";
 686                     break;
 687                 case TYPE_CUBICTO:
 688                     len = 6;
 689                     ret += "cubic: ";
 690                     break;
 691                 default:
 692                     len = 0;
 693                 }
 694                 last -= len;
 695                 ret += Arrays.toString(Arrays.copyOfRange(curves, last, last+len))
 696                                        + "\n";
 697             }
 698             return ret;
 699         }
 700     }
 701 
 702     // a stack of integer indices
 703     static final class IndexStack {
 704 
 705         // integer capacity = edges count / 4 ~ 1024
 706         private static final int INITIAL_COUNT = INITIAL_EDGES_COUNT >> 2;
 707 
 708         private int end;
 709         private int[] indices;
 710 
 711         // indices ref (dirty)
 712         private final IntArrayCache.Reference indices_ref;
 713 
 714         // used marks (stats only)
 715         private int indicesUseMark;
 716 
 717         private final StatLong stat_idxstack_indices;
 718         private final Histogram hist_idxstack_indices;
 719         private final StatLong stat_array_idxstack_indices;
 720 
 721         IndexStack(final DRendererContext rdrCtx) {
 722             this(rdrCtx, null, null, null);
 723         }
 724 
 725         IndexStack(final DRendererContext rdrCtx,
 726                    final StatLong stat_idxstack_indices,
 727                    final Histogram hist_idxstack_indices,
 728                    final StatLong stat_array_idxstack_indices)
 729         {
 730             indices_ref = rdrCtx.newDirtyIntArrayRef(INITIAL_COUNT); // 4K
 731             indices     = indices_ref.initial;
 732             end = 0;
 733 
 734             if (DO_STATS) {
 735                 indicesUseMark = 0;
 736             }
 737             this.stat_idxstack_indices = stat_idxstack_indices;
 738             this.hist_idxstack_indices = hist_idxstack_indices;
 739             this.stat_array_idxstack_indices = stat_array_idxstack_indices;
 740         }
 741 
 742         /**
 743          * Disposes this PolyStack:
 744          * clean up before reusing this instance
 745          */
 746         void dispose() {
 747             end = 0;
 748 
 749             if (DO_STATS) {
 750                 stat_idxstack_indices.add(indicesUseMark);
 751                 hist_idxstack_indices.add(indicesUseMark);
 752 
 753                 // reset marks
 754                 indicesUseMark = 0;
 755             }
 756 
 757             // Return arrays:
 758             // values is kept dirty
 759             indices = indices_ref.putArray(indices);
 760         }
 761 
 762         boolean isEmpty() {
 763             return (end == 0);
 764         }
 765 
 766         void reset() {
 767             end = 0;
 768         }
 769 
 770         void push(final int v) {
 771             // remove redundant values (reverse order):
 772             int[] _values = indices;
 773             final int nc = end;
 774             if (nc != 0) {
 775                 if (_values[nc - 1] == v) {
 776                     // remove both duplicated values:
 777                     end--;
 778                     return;
 779                 }
 780             }
 781             if (_values.length <= nc) {
 782                 if (DO_STATS) {
 783                     stat_array_idxstack_indices.add(nc + 1);
 784                 }
 785                 indices = _values = indices_ref.widenArray(_values, nc, nc + 1);
 786             }
 787             _values[end++] = v;
 788 
 789             if (DO_STATS) {
 790                 // update used marks:
 791                 if (end > indicesUseMark) {
 792                     indicesUseMark = end;
 793                 }
 794             }
 795         }
 796 
 797         void pullAll(final double[] points, final DPathConsumer2D io) {
 798             final int nc = end;
 799             if (nc == 0) {
 800                 return;
 801             }
 802             final int[] _values = indices;
 803 
 804             for (int i = 0, j; i < nc; i++) {
 805                 j = _values[i] << 1;
 806                 io.lineTo(points[j], points[j + 1]);
 807             }
 808             end = 0;
 809         }
 810     }
 811 }
< prev index next >