1 /*
   2  * Copyright (c) 2000, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "aot/aotLoader.hpp"
  27 #include "classfile/symbolTable.hpp"
  28 #include "classfile/stringTable.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "classfile/vmSymbols.hpp"
  31 #include "code/codeCache.hpp"
  32 #include "code/icBuffer.hpp"
  33 #include "gc/shared/collectedHeap.inline.hpp"
  34 #include "gc/shared/collectorCounters.hpp"
  35 #include "gc/shared/gcId.hpp"
  36 #include "gc/shared/gcLocker.inline.hpp"
  37 #include "gc/shared/gcTrace.hpp"
  38 #include "gc/shared/gcTraceTime.inline.hpp"
  39 #include "gc/shared/genCollectedHeap.hpp"
  40 #include "gc/shared/genOopClosures.inline.hpp"
  41 #include "gc/shared/generationSpec.hpp"
  42 #include "gc/shared/space.hpp"
  43 #include "gc/shared/strongRootsScope.hpp"
  44 #include "gc/shared/vmGCOperations.hpp"
  45 #include "gc/shared/weakProcessor.hpp"
  46 #include "gc/shared/workgroup.hpp"
  47 #include "memory/filemap.hpp"
  48 #include "memory/resourceArea.hpp"
  49 #include "oops/oop.inline.hpp"
  50 #include "runtime/biasedLocking.hpp"
  51 #include "runtime/handles.hpp"
  52 #include "runtime/handles.inline.hpp"
  53 #include "runtime/java.hpp"
  54 #include "runtime/vmThread.hpp"
  55 #include "services/management.hpp"
  56 #include "services/memoryService.hpp"
  57 #include "utilities/debug.hpp"
  58 #include "utilities/formatBuffer.hpp"
  59 #include "utilities/macros.hpp"
  60 #include "utilities/stack.inline.hpp"
  61 #include "utilities/vmError.hpp"
  62 
  63 GenCollectedHeap::GenCollectedHeap(GenCollectorPolicy *policy) :
  64   CollectedHeap(),
  65   _rem_set(NULL),
  66   _gen_policy(policy),
  67   _process_strong_tasks(new SubTasksDone(GCH_PS_NumElements)),
  68   _full_collections_completed(0)
  69 {
  70   assert(policy != NULL, "Sanity check");
  71 }
  72 
  73 jint GenCollectedHeap::initialize() {
  74   CollectedHeap::pre_initialize();
  75 
  76   // While there are no constraints in the GC code that HeapWordSize
  77   // be any particular value, there are multiple other areas in the
  78   // system which believe this to be true (e.g. oop->object_size in some
  79   // cases incorrectly returns the size in wordSize units rather than
  80   // HeapWordSize).
  81   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
  82 
  83   // Allocate space for the heap.
  84 
  85   char* heap_address;
  86   ReservedSpace heap_rs;
  87 
  88   size_t heap_alignment = collector_policy()->heap_alignment();
  89 
  90   heap_address = allocate(heap_alignment, &heap_rs);
  91 
  92   if (!heap_rs.is_reserved()) {
  93     vm_shutdown_during_initialization(
  94       "Could not reserve enough space for object heap");
  95     return JNI_ENOMEM;
  96   }
  97 
  98   initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size()));
  99 
 100   _rem_set = collector_policy()->create_rem_set(reserved_region());
 101   set_barrier_set(rem_set()->bs());
 102 
 103   ReservedSpace young_rs = heap_rs.first_part(gen_policy()->young_gen_spec()->max_size(), false, false);
 104   _young_gen = gen_policy()->young_gen_spec()->init(young_rs, rem_set());
 105   heap_rs = heap_rs.last_part(gen_policy()->young_gen_spec()->max_size());
 106 
 107   ReservedSpace old_rs = heap_rs.first_part(gen_policy()->old_gen_spec()->max_size(), false, false);
 108   _old_gen = gen_policy()->old_gen_spec()->init(old_rs, rem_set());
 109   clear_incremental_collection_failed();
 110 
 111   return JNI_OK;
 112 }
 113 
 114 char* GenCollectedHeap::allocate(size_t alignment,
 115                                  ReservedSpace* heap_rs){
 116   // Now figure out the total size.
 117   const size_t pageSize = UseLargePages ? os::large_page_size() : os::vm_page_size();
 118   assert(alignment % pageSize == 0, "Must be");
 119 
 120   GenerationSpec* young_spec = gen_policy()->young_gen_spec();
 121   GenerationSpec* old_spec = gen_policy()->old_gen_spec();
 122 
 123   // Check for overflow.
 124   size_t total_reserved = young_spec->max_size() + old_spec->max_size();
 125   if (total_reserved < young_spec->max_size()) {
 126     vm_exit_during_initialization("The size of the object heap + VM data exceeds "
 127                                   "the maximum representable size");
 128   }
 129   assert(total_reserved % alignment == 0,
 130          "Gen size; total_reserved=" SIZE_FORMAT ", alignment="
 131          SIZE_FORMAT, total_reserved, alignment);
 132 
 133   *heap_rs = Universe::reserve_heap(total_reserved, alignment);
 134 
 135   os::trace_page_sizes("Heap",
 136                        collector_policy()->min_heap_byte_size(),
 137                        total_reserved,
 138                        alignment,
 139                        heap_rs->base(),
 140                        heap_rs->size());
 141 
 142   return heap_rs->base();
 143 }
 144 
 145 void GenCollectedHeap::post_initialize() {
 146   CollectedHeap::post_initialize();
 147   ref_processing_init();
 148   check_gen_kinds();
 149   DefNewGeneration* def_new_gen = (DefNewGeneration*)_young_gen;
 150 
 151   _gen_policy->initialize_size_policy(def_new_gen->eden()->capacity(),
 152                                       _old_gen->capacity(),
 153                                       def_new_gen->from()->capacity());
 154   _gen_policy->initialize_gc_policy_counters();
 155 }
 156 
 157 void GenCollectedHeap::ref_processing_init() {
 158   _young_gen->ref_processor_init();
 159   _old_gen->ref_processor_init();
 160 }
 161 
 162 size_t GenCollectedHeap::capacity() const {
 163   return _young_gen->capacity() + _old_gen->capacity();
 164 }
 165 
 166 size_t GenCollectedHeap::used() const {
 167   return _young_gen->used() + _old_gen->used();
 168 }
 169 
 170 void GenCollectedHeap::save_used_regions() {
 171   _old_gen->save_used_region();
 172   _young_gen->save_used_region();
 173 }
 174 
 175 size_t GenCollectedHeap::max_capacity() const {
 176   return _young_gen->max_capacity() + _old_gen->max_capacity();
 177 }
 178 
 179 // Update the _full_collections_completed counter
 180 // at the end of a stop-world full GC.
 181 unsigned int GenCollectedHeap::update_full_collections_completed() {
 182   MonitorLockerEx ml(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
 183   assert(_full_collections_completed <= _total_full_collections,
 184          "Can't complete more collections than were started");
 185   _full_collections_completed = _total_full_collections;
 186   ml.notify_all();
 187   return _full_collections_completed;
 188 }
 189 
 190 // Update the _full_collections_completed counter, as appropriate,
 191 // at the end of a concurrent GC cycle. Note the conditional update
 192 // below to allow this method to be called by a concurrent collector
 193 // without synchronizing in any manner with the VM thread (which
 194 // may already have initiated a STW full collection "concurrently").
 195 unsigned int GenCollectedHeap::update_full_collections_completed(unsigned int count) {
 196   MonitorLockerEx ml(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
 197   assert((_full_collections_completed <= _total_full_collections) &&
 198          (count <= _total_full_collections),
 199          "Can't complete more collections than were started");
 200   if (count > _full_collections_completed) {
 201     _full_collections_completed = count;
 202     ml.notify_all();
 203   }
 204   return _full_collections_completed;
 205 }
 206 
 207 
 208 #ifndef PRODUCT
 209 // Override of memory state checking method in CollectedHeap:
 210 // Some collectors (CMS for example) can't have badHeapWordVal written
 211 // in the first two words of an object. (For instance , in the case of
 212 // CMS these words hold state used to synchronize between certain
 213 // (concurrent) GC steps and direct allocating mutators.)
 214 // The skip_header_HeapWords() method below, allows us to skip
 215 // over the requisite number of HeapWord's. Note that (for
 216 // generational collectors) this means that those many words are
 217 // skipped in each object, irrespective of the generation in which
 218 // that object lives. The resultant loss of precision seems to be
 219 // harmless and the pain of avoiding that imprecision appears somewhat
 220 // higher than we are prepared to pay for such rudimentary debugging
 221 // support.
 222 void GenCollectedHeap::check_for_non_bad_heap_word_value(HeapWord* addr,
 223                                                          size_t size) {
 224   if (CheckMemoryInitialization && ZapUnusedHeapArea) {
 225     // We are asked to check a size in HeapWords,
 226     // but the memory is mangled in juint words.
 227     juint* start = (juint*) (addr + skip_header_HeapWords());
 228     juint* end   = (juint*) (addr + size);
 229     for (juint* slot = start; slot < end; slot += 1) {
 230       assert(*slot == badHeapWordVal,
 231              "Found non badHeapWordValue in pre-allocation check");
 232     }
 233   }
 234 }
 235 #endif
 236 
 237 HeapWord* GenCollectedHeap::attempt_allocation(size_t size,
 238                                                bool is_tlab,
 239                                                bool first_only) {
 240   HeapWord* res = NULL;
 241 
 242   if (_young_gen->should_allocate(size, is_tlab)) {
 243     res = _young_gen->allocate(size, is_tlab);
 244     if (res != NULL || first_only) {
 245       return res;
 246     }
 247   }
 248 
 249   if (_old_gen->should_allocate(size, is_tlab)) {
 250     res = _old_gen->allocate(size, is_tlab);
 251   }
 252 
 253   return res;
 254 }
 255 
 256 HeapWord* GenCollectedHeap::mem_allocate(size_t size,
 257                                          bool* gc_overhead_limit_was_exceeded) {
 258   return gen_policy()->mem_allocate_work(size,
 259                                          false /* is_tlab */,
 260                                          gc_overhead_limit_was_exceeded);
 261 }
 262 
 263 bool GenCollectedHeap::must_clear_all_soft_refs() {
 264   return _gc_cause == GCCause::_metadata_GC_clear_soft_refs ||
 265          _gc_cause == GCCause::_wb_full_gc;
 266 }
 267 
 268 void GenCollectedHeap::collect_generation(Generation* gen, bool full, size_t size,
 269                                           bool is_tlab, bool run_verification, bool clear_soft_refs,
 270                                           bool restore_marks_for_biased_locking) {
 271   FormatBuffer<> title("Collect gen: %s", gen->short_name());
 272   GCTraceTime(Trace, gc, phases) t1(title);
 273   TraceCollectorStats tcs(gen->counters());
 274   TraceMemoryManagerStats tmms(gen->gc_manager(), gc_cause());
 275 
 276   gen->stat_record()->invocations++;
 277   gen->stat_record()->accumulated_time.start();
 278 
 279   // Must be done anew before each collection because
 280   // a previous collection will do mangling and will
 281   // change top of some spaces.
 282   record_gen_tops_before_GC();
 283 
 284   log_trace(gc)("%s invoke=%d size=" SIZE_FORMAT, heap()->is_young_gen(gen) ? "Young" : "Old", gen->stat_record()->invocations, size * HeapWordSize);
 285 
 286   if (run_verification && VerifyBeforeGC) {
 287     HandleMark hm;  // Discard invalid handles created during verification
 288     Universe::verify("Before GC");
 289   }
 290   COMPILER2_PRESENT(DerivedPointerTable::clear());
 291 
 292   if (restore_marks_for_biased_locking) {
 293     // We perform this mark word preservation work lazily
 294     // because it's only at this point that we know whether we
 295     // absolutely have to do it; we want to avoid doing it for
 296     // scavenge-only collections where it's unnecessary
 297     BiasedLocking::preserve_marks();
 298   }
 299 
 300   // Do collection work
 301   {
 302     // Note on ref discovery: For what appear to be historical reasons,
 303     // GCH enables and disabled (by enqueing) refs discovery.
 304     // In the future this should be moved into the generation's
 305     // collect method so that ref discovery and enqueueing concerns
 306     // are local to a generation. The collect method could return
 307     // an appropriate indication in the case that notification on
 308     // the ref lock was needed. This will make the treatment of
 309     // weak refs more uniform (and indeed remove such concerns
 310     // from GCH). XXX
 311 
 312     HandleMark hm;  // Discard invalid handles created during gc
 313     save_marks();   // save marks for all gens
 314     // We want to discover references, but not process them yet.
 315     // This mode is disabled in process_discovered_references if the
 316     // generation does some collection work, or in
 317     // enqueue_discovered_references if the generation returns
 318     // without doing any work.
 319     ReferenceProcessor* rp = gen->ref_processor();
 320     // If the discovery of ("weak") refs in this generation is
 321     // atomic wrt other collectors in this configuration, we
 322     // are guaranteed to have empty discovered ref lists.
 323     if (rp->discovery_is_atomic()) {
 324       rp->enable_discovery();
 325       rp->setup_policy(clear_soft_refs);
 326     } else {
 327       // collect() below will enable discovery as appropriate
 328     }
 329     gen->collect(full, clear_soft_refs, size, is_tlab);
 330     if (!rp->enqueuing_is_done()) {
 331       ReferenceProcessorPhaseTimes pt(NULL, rp->num_q());
 332       rp->enqueue_discovered_references(NULL, &pt);
 333       pt.print_enqueue_phase();
 334     } else {
 335       rp->set_enqueuing_is_done(false);
 336     }
 337     rp->verify_no_references_recorded();
 338   }
 339 
 340   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
 341 
 342   gen->stat_record()->accumulated_time.stop();
 343 
 344   update_gc_stats(gen, full);
 345 
 346   if (run_verification && VerifyAfterGC) {
 347     HandleMark hm;  // Discard invalid handles created during verification
 348     Universe::verify("After GC");
 349   }
 350 }
 351 
 352 void GenCollectedHeap::do_collection(bool           full,
 353                                      bool           clear_all_soft_refs,
 354                                      size_t         size,
 355                                      bool           is_tlab,
 356                                      GenerationType max_generation) {
 357   ResourceMark rm;
 358   DEBUG_ONLY(Thread* my_thread = Thread::current();)
 359 
 360   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
 361   assert(my_thread->is_VM_thread() ||
 362          my_thread->is_ConcurrentGC_thread(),
 363          "incorrect thread type capability");
 364   assert(Heap_lock->is_locked(),
 365          "the requesting thread should have the Heap_lock");
 366   guarantee(!is_gc_active(), "collection is not reentrant");
 367 
 368   if (GCLocker::check_active_before_gc()) {
 369     return; // GC is disabled (e.g. JNI GetXXXCritical operation)
 370   }
 371 
 372   GCIdMarkAndRestore gc_id_mark;
 373 
 374   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
 375                           collector_policy()->should_clear_all_soft_refs();
 376 
 377   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
 378 
 379   const size_t metadata_prev_used = MetaspaceAux::used_bytes();
 380 
 381   print_heap_before_gc();
 382 
 383   {
 384     FlagSetting fl(_is_gc_active, true);
 385 
 386     bool complete = full && (max_generation == OldGen);
 387     bool old_collects_young = complete && !ScavengeBeforeFullGC;
 388     bool do_young_collection = !old_collects_young && _young_gen->should_collect(full, size, is_tlab);
 389 
 390     FormatBuffer<> gc_string("%s", "Pause ");
 391     if (do_young_collection) {
 392       gc_string.append("Young");
 393     } else {
 394       gc_string.append("Full");
 395     }
 396 
 397     GCTraceCPUTime tcpu;
 398     GCTraceTime(Info, gc) t(gc_string, NULL, gc_cause(), true);
 399 
 400     gc_prologue(complete);
 401     increment_total_collections(complete);
 402 
 403     size_t young_prev_used = _young_gen->used();
 404     size_t old_prev_used = _old_gen->used();
 405 
 406     bool run_verification = total_collections() >= VerifyGCStartAt;
 407 
 408     bool prepared_for_verification = false;
 409     bool collected_old = false;
 410 
 411     if (do_young_collection) {
 412       if (run_verification && VerifyGCLevel <= 0 && VerifyBeforeGC) {
 413         prepare_for_verify();
 414         prepared_for_verification = true;
 415       }
 416 
 417       collect_generation(_young_gen,
 418                          full,
 419                          size,
 420                          is_tlab,
 421                          run_verification && VerifyGCLevel <= 0,
 422                          do_clear_all_soft_refs,
 423                          false);
 424 
 425       if (size > 0 && (!is_tlab || _young_gen->supports_tlab_allocation()) &&
 426           size * HeapWordSize <= _young_gen->unsafe_max_alloc_nogc()) {
 427         // Allocation request was met by young GC.
 428         size = 0;
 429       }
 430     }
 431 
 432     bool must_restore_marks_for_biased_locking = false;
 433 
 434     if (max_generation == OldGen && _old_gen->should_collect(full, size, is_tlab)) {
 435       if (!complete) {
 436         // The full_collections increment was missed above.
 437         increment_total_full_collections();
 438       }
 439 
 440       if (!prepared_for_verification && run_verification &&
 441           VerifyGCLevel <= 1 && VerifyBeforeGC) {
 442         prepare_for_verify();
 443       }
 444 
 445       if (do_young_collection) {
 446         // We did a young GC. Need a new GC id for the old GC.
 447         GCIdMarkAndRestore gc_id_mark;
 448         GCTraceTime(Info, gc) t("Pause Full", NULL, gc_cause(), true);
 449         collect_generation(_old_gen, full, size, is_tlab, run_verification && VerifyGCLevel <= 1, do_clear_all_soft_refs, true);
 450       } else {
 451         // No young GC done. Use the same GC id as was set up earlier in this method.
 452         collect_generation(_old_gen, full, size, is_tlab, run_verification && VerifyGCLevel <= 1, do_clear_all_soft_refs, true);
 453       }
 454 
 455       must_restore_marks_for_biased_locking = true;
 456       collected_old = true;
 457     }
 458 
 459     // Update "complete" boolean wrt what actually transpired --
 460     // for instance, a promotion failure could have led to
 461     // a whole heap collection.
 462     complete = complete || collected_old;
 463 
 464     print_heap_change(young_prev_used, old_prev_used);
 465     MetaspaceAux::print_metaspace_change(metadata_prev_used);
 466 
 467     // Adjust generation sizes.
 468     if (collected_old) {
 469       _old_gen->compute_new_size();
 470     }
 471     _young_gen->compute_new_size();
 472 
 473     if (complete) {
 474       // Delete metaspaces for unloaded class loaders and clean up loader_data graph
 475       ClassLoaderDataGraph::purge();
 476       MetaspaceAux::verify_metrics();
 477       // Resize the metaspace capacity after full collections
 478       MetaspaceGC::compute_new_size();
 479       update_full_collections_completed();
 480     }
 481 
 482     // Track memory usage and detect low memory after GC finishes
 483     MemoryService::track_memory_usage();
 484 
 485     gc_epilogue(complete);
 486 
 487     if (must_restore_marks_for_biased_locking) {
 488       BiasedLocking::restore_marks();
 489     }
 490   }
 491 
 492   print_heap_after_gc();
 493 
 494 #ifdef TRACESPINNING
 495   ParallelTaskTerminator::print_termination_counts();
 496 #endif
 497 }
 498 
 499 void GenCollectedHeap::register_nmethod(nmethod* nm) {
 500   CodeCache::register_scavenge_root_nmethod(nm);
 501 }
 502 
 503 void GenCollectedHeap::verify_nmethod(nmethod* nm) {
 504   CodeCache::verify_scavenge_root_nmethod(nm);
 505 }
 506 
 507 HeapWord* GenCollectedHeap::satisfy_failed_allocation(size_t size, bool is_tlab) {
 508   return gen_policy()->satisfy_failed_allocation(size, is_tlab);
 509 }
 510 
 511 #ifdef ASSERT
 512 class AssertNonScavengableClosure: public OopClosure {
 513 public:
 514   virtual void do_oop(oop* p) {
 515     assert(!GenCollectedHeap::heap()->is_in_partial_collection(*p),
 516       "Referent should not be scavengable.");  }
 517   virtual void do_oop(narrowOop* p) { ShouldNotReachHere(); }
 518 };
 519 static AssertNonScavengableClosure assert_is_non_scavengable_closure;
 520 #endif
 521 
 522 void GenCollectedHeap::process_roots(StrongRootsScope* scope,
 523                                      ScanningOption so,
 524                                      OopClosure* strong_roots,
 525                                      OopClosure* weak_roots,
 526                                      CLDClosure* strong_cld_closure,
 527                                      CLDClosure* weak_cld_closure,
 528                                      CodeBlobToOopClosure* code_roots) {
 529   // General roots.
 530   assert(Threads::thread_claim_parity() != 0, "must have called prologue code");
 531   assert(code_roots != NULL, "code root closure should always be set");
 532   // _n_termination for _process_strong_tasks should be set up stream
 533   // in a method not running in a GC worker.  Otherwise the GC worker
 534   // could be trying to change the termination condition while the task
 535   // is executing in another GC worker.
 536 
 537   if (!_process_strong_tasks->is_task_claimed(GCH_PS_ClassLoaderDataGraph_oops_do)) {
 538     ClassLoaderDataGraph::roots_cld_do(strong_cld_closure, weak_cld_closure);
 539   }
 540 
 541   // Only process code roots from thread stacks if we aren't visiting the entire CodeCache anyway
 542   CodeBlobToOopClosure* roots_from_code_p = (so & SO_AllCodeCache) ? NULL : code_roots;
 543 
 544   bool is_par = scope->n_threads() > 1;
 545   Threads::possibly_parallel_oops_do(is_par, strong_roots, roots_from_code_p);
 546 
 547   if (!_process_strong_tasks->is_task_claimed(GCH_PS_Universe_oops_do)) {
 548     Universe::oops_do(strong_roots);
 549   }
 550   // Global (strong) JNI handles
 551   if (!_process_strong_tasks->is_task_claimed(GCH_PS_JNIHandles_oops_do)) {
 552     JNIHandles::oops_do(strong_roots);
 553   }
 554 
 555   if (!_process_strong_tasks->is_task_claimed(GCH_PS_ObjectSynchronizer_oops_do)) {
 556     ObjectSynchronizer::oops_do(strong_roots);
 557   }
 558   if (!_process_strong_tasks->is_task_claimed(GCH_PS_Management_oops_do)) {
 559     Management::oops_do(strong_roots);
 560   }
 561   if (!_process_strong_tasks->is_task_claimed(GCH_PS_jvmti_oops_do)) {
 562     JvmtiExport::oops_do(strong_roots);
 563   }
 564   if (UseAOT && !_process_strong_tasks->is_task_claimed(GCH_PS_aot_oops_do)) {
 565     AOTLoader::oops_do(strong_roots);
 566   }
 567 
 568   if (!_process_strong_tasks->is_task_claimed(GCH_PS_SystemDictionary_oops_do)) {
 569     SystemDictionary::roots_oops_do(strong_roots, weak_roots);
 570   }
 571 
 572   if (!_process_strong_tasks->is_task_claimed(GCH_PS_CodeCache_oops_do)) {
 573     if (so & SO_ScavengeCodeCache) {
 574       assert(code_roots != NULL, "must supply closure for code cache");
 575 
 576       // We only visit parts of the CodeCache when scavenging.
 577       CodeCache::scavenge_root_nmethods_do(code_roots);
 578     }
 579     if (so & SO_AllCodeCache) {
 580       assert(code_roots != NULL, "must supply closure for code cache");
 581 
 582       // CMSCollector uses this to do intermediate-strength collections.
 583       // We scan the entire code cache, since CodeCache::do_unloading is not called.
 584       CodeCache::blobs_do(code_roots);
 585     }
 586     // Verify that the code cache contents are not subject to
 587     // movement by a scavenging collection.
 588     DEBUG_ONLY(CodeBlobToOopClosure assert_code_is_non_scavengable(&assert_is_non_scavengable_closure, !CodeBlobToOopClosure::FixRelocations));
 589     DEBUG_ONLY(CodeCache::asserted_non_scavengable_nmethods_do(&assert_code_is_non_scavengable));
 590   }
 591 }
 592 
 593 void GenCollectedHeap::process_string_table_roots(StrongRootsScope* scope,
 594                                                   OopClosure* root_closure) {
 595   assert(root_closure != NULL, "Must be set");
 596   // All threads execute the following. A specific chunk of buckets
 597   // from the StringTable are the individual tasks.
 598   if (scope->n_threads() > 1) {
 599     StringTable::possibly_parallel_oops_do(root_closure);
 600   } else {
 601     StringTable::oops_do(root_closure);
 602   }
 603 }
 604 
 605 void GenCollectedHeap::young_process_roots(StrongRootsScope* scope,
 606                                            OopsInGenClosure* root_closure,
 607                                            OopsInGenClosure* old_gen_closure,
 608                                            CLDClosure* cld_closure) {
 609   MarkingCodeBlobClosure mark_code_closure(root_closure, CodeBlobToOopClosure::FixRelocations);
 610 
 611   process_roots(scope, SO_ScavengeCodeCache, root_closure, root_closure,
 612                 cld_closure, cld_closure, &mark_code_closure);
 613   process_string_table_roots(scope, root_closure);
 614 
 615   if (!_process_strong_tasks->is_task_claimed(GCH_PS_younger_gens)) {
 616     root_closure->reset_generation();
 617   }
 618 
 619   // When collection is parallel, all threads get to cooperate to do
 620   // old generation scanning.
 621   old_gen_closure->set_generation(_old_gen);
 622   rem_set()->younger_refs_iterate(_old_gen, old_gen_closure, scope->n_threads());
 623   old_gen_closure->reset_generation();
 624 
 625   _process_strong_tasks->all_tasks_completed(scope->n_threads());
 626 }
 627 
 628 void GenCollectedHeap::full_process_roots(StrongRootsScope* scope,
 629                                           bool is_adjust_phase,
 630                                           ScanningOption so,
 631                                           bool only_strong_roots,
 632                                           OopsInGenClosure* root_closure,
 633                                           CLDClosure* cld_closure) {
 634   MarkingCodeBlobClosure mark_code_closure(root_closure, is_adjust_phase);
 635   OopsInGenClosure* weak_roots = only_strong_roots ? NULL : root_closure;
 636   CLDClosure* weak_cld_closure = only_strong_roots ? NULL : cld_closure;
 637 
 638   process_roots(scope, so, root_closure, weak_roots, cld_closure, weak_cld_closure, &mark_code_closure);
 639   if (is_adjust_phase) {
 640     // We never treat the string table as roots during marking
 641     // for the full gc, so we only need to process it during
 642     // the adjust phase.
 643     process_string_table_roots(scope, root_closure);
 644   }
 645 
 646   _process_strong_tasks->all_tasks_completed(scope->n_threads());
 647 }
 648 
 649 void GenCollectedHeap::gen_process_weak_roots(OopClosure* root_closure) {
 650   WeakProcessor::oops_do(root_closure);
 651   _young_gen->ref_processor()->weak_oops_do(root_closure);
 652   _old_gen->ref_processor()->weak_oops_do(root_closure);
 653 }
 654 
 655 #define GCH_SINCE_SAVE_MARKS_ITERATE_DEFN(OopClosureType, nv_suffix)    \
 656 void GenCollectedHeap::                                                 \
 657 oop_since_save_marks_iterate(GenerationType gen,                        \
 658                              OopClosureType* cur,                       \
 659                              OopClosureType* older) {                   \
 660   if (gen == YoungGen) {                              \
 661     _young_gen->oop_since_save_marks_iterate##nv_suffix(cur);           \
 662     _old_gen->oop_since_save_marks_iterate##nv_suffix(older);           \
 663   } else {                                                              \
 664     _old_gen->oop_since_save_marks_iterate##nv_suffix(cur);             \
 665   }                                                                     \
 666 }
 667 
 668 ALL_SINCE_SAVE_MARKS_CLOSURES(GCH_SINCE_SAVE_MARKS_ITERATE_DEFN)
 669 
 670 #undef GCH_SINCE_SAVE_MARKS_ITERATE_DEFN
 671 
 672 bool GenCollectedHeap::no_allocs_since_save_marks() {
 673   return _young_gen->no_allocs_since_save_marks() &&
 674          _old_gen->no_allocs_since_save_marks();
 675 }
 676 
 677 bool GenCollectedHeap::supports_inline_contig_alloc() const {
 678   return _young_gen->supports_inline_contig_alloc();
 679 }
 680 
 681 HeapWord* volatile* GenCollectedHeap::top_addr() const {
 682   return _young_gen->top_addr();
 683 }
 684 
 685 HeapWord** GenCollectedHeap::end_addr() const {
 686   return _young_gen->end_addr();
 687 }
 688 
 689 // public collection interfaces
 690 
 691 void GenCollectedHeap::collect(GCCause::Cause cause) {
 692   if (cause == GCCause::_wb_young_gc) {
 693     // Young collection for the WhiteBox API.
 694     collect(cause, YoungGen);
 695   } else {
 696 #ifdef ASSERT
 697   if (cause == GCCause::_scavenge_alot) {
 698     // Young collection only.
 699     collect(cause, YoungGen);
 700   } else {
 701     // Stop-the-world full collection.
 702     collect(cause, OldGen);
 703   }
 704 #else
 705     // Stop-the-world full collection.
 706     collect(cause, OldGen);
 707 #endif
 708   }
 709 }
 710 
 711 void GenCollectedHeap::collect(GCCause::Cause cause, GenerationType max_generation) {
 712   // The caller doesn't have the Heap_lock
 713   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
 714   MutexLocker ml(Heap_lock);
 715   collect_locked(cause, max_generation);
 716 }
 717 
 718 void GenCollectedHeap::collect_locked(GCCause::Cause cause) {
 719   // The caller has the Heap_lock
 720   assert(Heap_lock->owned_by_self(), "this thread should own the Heap_lock");
 721   collect_locked(cause, OldGen);
 722 }
 723 
 724 // this is the private collection interface
 725 // The Heap_lock is expected to be held on entry.
 726 
 727 void GenCollectedHeap::collect_locked(GCCause::Cause cause, GenerationType max_generation) {
 728   // Read the GC count while holding the Heap_lock
 729   unsigned int gc_count_before      = total_collections();
 730   unsigned int full_gc_count_before = total_full_collections();
 731   {
 732     MutexUnlocker mu(Heap_lock);  // give up heap lock, execute gets it back
 733     VM_GenCollectFull op(gc_count_before, full_gc_count_before,
 734                          cause, max_generation);
 735     VMThread::execute(&op);
 736   }
 737 }
 738 
 739 void GenCollectedHeap::do_full_collection(bool clear_all_soft_refs) {
 740    do_full_collection(clear_all_soft_refs, OldGen);
 741 }
 742 
 743 void GenCollectedHeap::do_full_collection(bool clear_all_soft_refs,
 744                                           GenerationType last_generation) {
 745   GenerationType local_last_generation;
 746   if (!incremental_collection_will_fail(false /* don't consult_young */) &&
 747       gc_cause() == GCCause::_gc_locker) {
 748     local_last_generation = YoungGen;
 749   } else {
 750     local_last_generation = last_generation;
 751   }
 752 
 753   do_collection(true,                   // full
 754                 clear_all_soft_refs,    // clear_all_soft_refs
 755                 0,                      // size
 756                 false,                  // is_tlab
 757                 local_last_generation); // last_generation
 758   // Hack XXX FIX ME !!!
 759   // A scavenge may not have been attempted, or may have
 760   // been attempted and failed, because the old gen was too full
 761   if (local_last_generation == YoungGen && gc_cause() == GCCause::_gc_locker &&
 762       incremental_collection_will_fail(false /* don't consult_young */)) {
 763     log_debug(gc, jni)("GC locker: Trying a full collection because scavenge failed");
 764     // This time allow the old gen to be collected as well
 765     do_collection(true,                // full
 766                   clear_all_soft_refs, // clear_all_soft_refs
 767                   0,                   // size
 768                   false,               // is_tlab
 769                   OldGen);             // last_generation
 770   }
 771 }
 772 
 773 bool GenCollectedHeap::is_in_young(oop p) {
 774   bool result = ((HeapWord*)p) < _old_gen->reserved().start();
 775   assert(result == _young_gen->is_in_reserved(p),
 776          "incorrect test - result=%d, p=" INTPTR_FORMAT, result, p2i((void*)p));
 777   return result;
 778 }
 779 
 780 // Returns "TRUE" iff "p" points into the committed areas of the heap.
 781 bool GenCollectedHeap::is_in(const void* p) const {
 782   return _young_gen->is_in(p) || _old_gen->is_in(p);
 783 }
 784 
 785 #ifdef ASSERT
 786 // Don't implement this by using is_in_young().  This method is used
 787 // in some cases to check that is_in_young() is correct.
 788 bool GenCollectedHeap::is_in_partial_collection(const void* p) {
 789   assert(is_in_reserved(p) || p == NULL,
 790     "Does not work if address is non-null and outside of the heap");
 791   return p < _young_gen->reserved().end() && p != NULL;
 792 }
 793 #endif
 794 
 795 void GenCollectedHeap::oop_iterate_no_header(OopClosure* cl) {
 796   NoHeaderExtendedOopClosure no_header_cl(cl);
 797   oop_iterate(&no_header_cl);
 798 }
 799 
 800 void GenCollectedHeap::oop_iterate(ExtendedOopClosure* cl) {
 801   _young_gen->oop_iterate(cl);
 802   _old_gen->oop_iterate(cl);
 803 }
 804 
 805 void GenCollectedHeap::object_iterate(ObjectClosure* cl) {
 806   _young_gen->object_iterate(cl);
 807   _old_gen->object_iterate(cl);
 808 }
 809 
 810 void GenCollectedHeap::safe_object_iterate(ObjectClosure* cl) {
 811   _young_gen->safe_object_iterate(cl);
 812   _old_gen->safe_object_iterate(cl);
 813 }
 814 
 815 Space* GenCollectedHeap::space_containing(const void* addr) const {
 816   Space* res = _young_gen->space_containing(addr);
 817   if (res != NULL) {
 818     return res;
 819   }
 820   res = _old_gen->space_containing(addr);
 821   assert(res != NULL, "Could not find containing space");
 822   return res;
 823 }
 824 
 825 HeapWord* GenCollectedHeap::block_start(const void* addr) const {
 826   assert(is_in_reserved(addr), "block_start of address outside of heap");
 827   if (_young_gen->is_in_reserved(addr)) {
 828     assert(_young_gen->is_in(addr), "addr should be in allocated part of generation");
 829     return _young_gen->block_start(addr);
 830   }
 831 
 832   assert(_old_gen->is_in_reserved(addr), "Some generation should contain the address");
 833   assert(_old_gen->is_in(addr), "addr should be in allocated part of generation");
 834   return _old_gen->block_start(addr);
 835 }
 836 
 837 size_t GenCollectedHeap::block_size(const HeapWord* addr) const {
 838   assert(is_in_reserved(addr), "block_size of address outside of heap");
 839   if (_young_gen->is_in_reserved(addr)) {
 840     assert(_young_gen->is_in(addr), "addr should be in allocated part of generation");
 841     return _young_gen->block_size(addr);
 842   }
 843 
 844   assert(_old_gen->is_in_reserved(addr), "Some generation should contain the address");
 845   assert(_old_gen->is_in(addr), "addr should be in allocated part of generation");
 846   return _old_gen->block_size(addr);
 847 }
 848 
 849 bool GenCollectedHeap::block_is_obj(const HeapWord* addr) const {
 850   assert(is_in_reserved(addr), "block_is_obj of address outside of heap");
 851   assert(block_start(addr) == addr, "addr must be a block start");
 852   if (_young_gen->is_in_reserved(addr)) {
 853     return _young_gen->block_is_obj(addr);
 854   }
 855 
 856   assert(_old_gen->is_in_reserved(addr), "Some generation should contain the address");
 857   return _old_gen->block_is_obj(addr);
 858 }
 859 
 860 bool GenCollectedHeap::supports_tlab_allocation() const {
 861   assert(!_old_gen->supports_tlab_allocation(), "Old gen supports TLAB allocation?!");
 862   return _young_gen->supports_tlab_allocation();
 863 }
 864 
 865 size_t GenCollectedHeap::tlab_capacity(Thread* thr) const {
 866   assert(!_old_gen->supports_tlab_allocation(), "Old gen supports TLAB allocation?!");
 867   if (_young_gen->supports_tlab_allocation()) {
 868     return _young_gen->tlab_capacity();
 869   }
 870   return 0;
 871 }
 872 
 873 size_t GenCollectedHeap::tlab_used(Thread* thr) const {
 874   assert(!_old_gen->supports_tlab_allocation(), "Old gen supports TLAB allocation?!");
 875   if (_young_gen->supports_tlab_allocation()) {
 876     return _young_gen->tlab_used();
 877   }
 878   return 0;
 879 }
 880 
 881 size_t GenCollectedHeap::unsafe_max_tlab_alloc(Thread* thr) const {
 882   assert(!_old_gen->supports_tlab_allocation(), "Old gen supports TLAB allocation?!");
 883   if (_young_gen->supports_tlab_allocation()) {
 884     return _young_gen->unsafe_max_tlab_alloc();
 885   }
 886   return 0;
 887 }
 888 
 889 HeapWord* GenCollectedHeap::allocate_new_tlab(size_t size) {
 890   bool gc_overhead_limit_was_exceeded;
 891   return gen_policy()->mem_allocate_work(size /* size */,
 892                                          true /* is_tlab */,
 893                                          &gc_overhead_limit_was_exceeded);
 894 }
 895 
 896 // Requires "*prev_ptr" to be non-NULL.  Deletes and a block of minimal size
 897 // from the list headed by "*prev_ptr".
 898 static ScratchBlock *removeSmallestScratch(ScratchBlock **prev_ptr) {
 899   bool first = true;
 900   size_t min_size = 0;   // "first" makes this conceptually infinite.
 901   ScratchBlock **smallest_ptr, *smallest;
 902   ScratchBlock  *cur = *prev_ptr;
 903   while (cur) {
 904     assert(*prev_ptr == cur, "just checking");
 905     if (first || cur->num_words < min_size) {
 906       smallest_ptr = prev_ptr;
 907       smallest     = cur;
 908       min_size     = smallest->num_words;
 909       first        = false;
 910     }
 911     prev_ptr = &cur->next;
 912     cur     =  cur->next;
 913   }
 914   smallest      = *smallest_ptr;
 915   *smallest_ptr = smallest->next;
 916   return smallest;
 917 }
 918 
 919 // Sort the scratch block list headed by res into decreasing size order,
 920 // and set "res" to the result.
 921 static void sort_scratch_list(ScratchBlock*& list) {
 922   ScratchBlock* sorted = NULL;
 923   ScratchBlock* unsorted = list;
 924   while (unsorted) {
 925     ScratchBlock *smallest = removeSmallestScratch(&unsorted);
 926     smallest->next  = sorted;
 927     sorted          = smallest;
 928   }
 929   list = sorted;
 930 }
 931 
 932 ScratchBlock* GenCollectedHeap::gather_scratch(Generation* requestor,
 933                                                size_t max_alloc_words) {
 934   ScratchBlock* res = NULL;
 935   _young_gen->contribute_scratch(res, requestor, max_alloc_words);
 936   _old_gen->contribute_scratch(res, requestor, max_alloc_words);
 937   sort_scratch_list(res);
 938   return res;
 939 }
 940 
 941 void GenCollectedHeap::release_scratch() {
 942   _young_gen->reset_scratch();
 943   _old_gen->reset_scratch();
 944 }
 945 
 946 class GenPrepareForVerifyClosure: public GenCollectedHeap::GenClosure {
 947   void do_generation(Generation* gen) {
 948     gen->prepare_for_verify();
 949   }
 950 };
 951 
 952 void GenCollectedHeap::prepare_for_verify() {
 953   ensure_parsability(false);        // no need to retire TLABs
 954   GenPrepareForVerifyClosure blk;
 955   generation_iterate(&blk, false);
 956 }
 957 
 958 void GenCollectedHeap::generation_iterate(GenClosure* cl,
 959                                           bool old_to_young) {
 960   if (old_to_young) {
 961     cl->do_generation(_old_gen);
 962     cl->do_generation(_young_gen);
 963   } else {
 964     cl->do_generation(_young_gen);
 965     cl->do_generation(_old_gen);
 966   }
 967 }
 968 
 969 bool GenCollectedHeap::is_maximal_no_gc() const {
 970   return _young_gen->is_maximal_no_gc() && _old_gen->is_maximal_no_gc();
 971 }
 972 
 973 void GenCollectedHeap::save_marks() {
 974   _young_gen->save_marks();
 975   _old_gen->save_marks();
 976 }
 977 
 978 GenCollectedHeap* GenCollectedHeap::heap() {
 979   CollectedHeap* heap = Universe::heap();
 980   assert(heap != NULL, "Uninitialized access to GenCollectedHeap::heap()");
 981   assert(heap->kind() == CollectedHeap::SerialHeap ||
 982          heap->kind() == CollectedHeap::CMSHeap, "Not a GenCollectedHeap");
 983   return (GenCollectedHeap*) heap;
 984 }
 985 
 986 void GenCollectedHeap::prepare_for_compaction() {
 987   // Start by compacting into same gen.
 988   CompactPoint cp(_old_gen);
 989   _old_gen->prepare_for_compaction(&cp);
 990   _young_gen->prepare_for_compaction(&cp);
 991 }
 992 
 993 void GenCollectedHeap::verify(VerifyOption option /* ignored */) {
 994   log_debug(gc, verify)("%s", _old_gen->name());
 995   _old_gen->verify();
 996 
 997   log_debug(gc, verify)("%s", _old_gen->name());
 998   _young_gen->verify();
 999 
1000   log_debug(gc, verify)("RemSet");
1001   rem_set()->verify();
1002 }
1003 
1004 void GenCollectedHeap::print_on(outputStream* st) const {
1005   _young_gen->print_on(st);
1006   _old_gen->print_on(st);
1007   MetaspaceAux::print_on(st);
1008 }
1009 
1010 void GenCollectedHeap::gc_threads_do(ThreadClosure* tc) const {
1011 }
1012 
1013 void GenCollectedHeap::print_gc_threads_on(outputStream* st) const {
1014 }
1015 
1016 void GenCollectedHeap::print_tracing_info() const {
1017   if (log_is_enabled(Debug, gc, heap, exit)) {
1018     LogStreamHandle(Debug, gc, heap, exit) lsh;
1019     _young_gen->print_summary_info_on(&lsh);
1020     _old_gen->print_summary_info_on(&lsh);
1021   }
1022 }
1023 
1024 void GenCollectedHeap::print_heap_change(size_t young_prev_used, size_t old_prev_used) const {
1025   log_info(gc, heap)("%s: " SIZE_FORMAT "K->" SIZE_FORMAT "K("  SIZE_FORMAT "K)",
1026                      _young_gen->short_name(), young_prev_used / K, _young_gen->used() /K, _young_gen->capacity() /K);
1027   log_info(gc, heap)("%s: " SIZE_FORMAT "K->" SIZE_FORMAT "K("  SIZE_FORMAT "K)",
1028                      _old_gen->short_name(), old_prev_used / K, _old_gen->used() /K, _old_gen->capacity() /K);
1029 }
1030 
1031 class GenGCPrologueClosure: public GenCollectedHeap::GenClosure {
1032  private:
1033   bool _full;
1034  public:
1035   void do_generation(Generation* gen) {
1036     gen->gc_prologue(_full);
1037   }
1038   GenGCPrologueClosure(bool full) : _full(full) {};
1039 };
1040 
1041 void GenCollectedHeap::gc_prologue(bool full) {
1042   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
1043 
1044   // Fill TLAB's and such
1045   CollectedHeap::accumulate_statistics_all_tlabs();
1046   ensure_parsability(true);   // retire TLABs
1047 
1048   // Walk generations
1049   GenGCPrologueClosure blk(full);
1050   generation_iterate(&blk, false);  // not old-to-young.
1051 };
1052 
1053 class GenGCEpilogueClosure: public GenCollectedHeap::GenClosure {
1054  private:
1055   bool _full;
1056  public:
1057   void do_generation(Generation* gen) {
1058     gen->gc_epilogue(_full);
1059   }
1060   GenGCEpilogueClosure(bool full) : _full(full) {};
1061 };
1062 
1063 void GenCollectedHeap::gc_epilogue(bool full) {
1064 #if COMPILER2_OR_JVMCI
1065   assert(DerivedPointerTable::is_empty(), "derived pointer present");
1066   size_t actual_gap = pointer_delta((HeapWord*) (max_uintx-3), *(end_addr()));
1067   guarantee(is_client_compilation_mode_vm() || actual_gap > (size_t)FastAllocateSizeLimit, "inline allocation wraps");
1068 #endif // COMPILER2_OR_JVMCI
1069 
1070   resize_all_tlabs();
1071 
1072   GenGCEpilogueClosure blk(full);
1073   generation_iterate(&blk, false);  // not old-to-young.
1074 
1075   if (!CleanChunkPoolAsync) {
1076     Chunk::clean_chunk_pool();
1077   }
1078 
1079   MetaspaceCounters::update_performance_counters();
1080   CompressedClassSpaceCounters::update_performance_counters();
1081 };
1082 
1083 #ifndef PRODUCT
1084 class GenGCSaveTopsBeforeGCClosure: public GenCollectedHeap::GenClosure {
1085  private:
1086  public:
1087   void do_generation(Generation* gen) {
1088     gen->record_spaces_top();
1089   }
1090 };
1091 
1092 void GenCollectedHeap::record_gen_tops_before_GC() {
1093   if (ZapUnusedHeapArea) {
1094     GenGCSaveTopsBeforeGCClosure blk;
1095     generation_iterate(&blk, false);  // not old-to-young.
1096   }
1097 }
1098 #endif  // not PRODUCT
1099 
1100 class GenEnsureParsabilityClosure: public GenCollectedHeap::GenClosure {
1101  public:
1102   void do_generation(Generation* gen) {
1103     gen->ensure_parsability();
1104   }
1105 };
1106 
1107 void GenCollectedHeap::ensure_parsability(bool retire_tlabs) {
1108   CollectedHeap::ensure_parsability(retire_tlabs);
1109   GenEnsureParsabilityClosure ep_cl;
1110   generation_iterate(&ep_cl, false);
1111 }
1112 
1113 oop GenCollectedHeap::handle_failed_promotion(Generation* old_gen,
1114                                               oop obj,
1115                                               size_t obj_size) {
1116   guarantee(old_gen == _old_gen, "We only get here with an old generation");
1117   assert(obj_size == (size_t)obj->size(), "bad obj_size passed in");
1118   HeapWord* result = NULL;
1119 
1120   result = old_gen->expand_and_allocate(obj_size, false);
1121 
1122   if (result != NULL) {
1123     Copy::aligned_disjoint_words((HeapWord*)obj, result, obj_size);
1124   }
1125   return oop(result);
1126 }
1127 
1128 class GenTimeOfLastGCClosure: public GenCollectedHeap::GenClosure {
1129   jlong _time;   // in ms
1130   jlong _now;    // in ms
1131 
1132  public:
1133   GenTimeOfLastGCClosure(jlong now) : _time(now), _now(now) { }
1134 
1135   jlong time() { return _time; }
1136 
1137   void do_generation(Generation* gen) {
1138     _time = MIN2(_time, gen->time_of_last_gc(_now));
1139   }
1140 };
1141 
1142 jlong GenCollectedHeap::millis_since_last_gc() {
1143   // javaTimeNanos() is guaranteed to be monotonically non-decreasing
1144   // provided the underlying platform provides such a time source
1145   // (and it is bug free). So we still have to guard against getting
1146   // back a time later than 'now'.
1147   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
1148   GenTimeOfLastGCClosure tolgc_cl(now);
1149   // iterate over generations getting the oldest
1150   // time that a generation was collected
1151   generation_iterate(&tolgc_cl, false);
1152 
1153   jlong retVal = now - tolgc_cl.time();
1154   if (retVal < 0) {
1155     log_warning(gc)("millis_since_last_gc() would return : " JLONG_FORMAT
1156        ". returning zero instead.", retVal);
1157     return 0;
1158   }
1159   return retVal;
1160 }