1 /* 2 * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "compiler/compileLog.hpp" 27 #include "ci/ciValueKlass.hpp" 28 #include "gc/g1/g1SATBCardTableModRefBS.hpp" 29 #include "gc/g1/heapRegion.hpp" 30 #include "gc/shared/barrierSet.hpp" 31 #include "gc/shared/cardTableModRefBS.hpp" 32 #include "gc/shared/collectedHeap.hpp" 33 #include "opto/addnode.hpp" 34 #include "opto/castnode.hpp" 35 #include "opto/convertnode.hpp" 36 #include "opto/graphKit.hpp" 37 #include "opto/idealKit.hpp" 38 #include "opto/intrinsicnode.hpp" 39 #include "opto/locknode.hpp" 40 #include "opto/machnode.hpp" 41 #include "opto/opaquenode.hpp" 42 #include "opto/parse.hpp" 43 #include "opto/rootnode.hpp" 44 #include "opto/runtime.hpp" 45 #include "opto/valuetypenode.hpp" 46 #include "runtime/deoptimization.hpp" 47 #include "runtime/sharedRuntime.hpp" 48 49 //----------------------------GraphKit----------------------------------------- 50 // Main utility constructor. 51 GraphKit::GraphKit(JVMState* jvms) 52 : Phase(Phase::Parser), 53 _env(C->env()), 54 _gvn(*C->initial_gvn()) 55 { 56 _exceptions = jvms->map()->next_exception(); 57 if (_exceptions != NULL) jvms->map()->set_next_exception(NULL); 58 set_jvms(jvms); 59 } 60 61 // Private constructor for parser. 62 GraphKit::GraphKit() 63 : Phase(Phase::Parser), 64 _env(C->env()), 65 _gvn(*C->initial_gvn()) 66 { 67 _exceptions = NULL; 68 set_map(NULL); 69 debug_only(_sp = -99); 70 debug_only(set_bci(-99)); 71 } 72 73 74 75 //---------------------------clean_stack--------------------------------------- 76 // Clear away rubbish from the stack area of the JVM state. 77 // This destroys any arguments that may be waiting on the stack. 78 void GraphKit::clean_stack(int from_sp) { 79 SafePointNode* map = this->map(); 80 JVMState* jvms = this->jvms(); 81 int stk_size = jvms->stk_size(); 82 int stkoff = jvms->stkoff(); 83 Node* top = this->top(); 84 for (int i = from_sp; i < stk_size; i++) { 85 if (map->in(stkoff + i) != top) { 86 map->set_req(stkoff + i, top); 87 } 88 } 89 } 90 91 92 //--------------------------------sync_jvms----------------------------------- 93 // Make sure our current jvms agrees with our parse state. 94 JVMState* GraphKit::sync_jvms() const { 95 JVMState* jvms = this->jvms(); 96 jvms->set_bci(bci()); // Record the new bci in the JVMState 97 jvms->set_sp(sp()); // Record the new sp in the JVMState 98 assert(jvms_in_sync(), "jvms is now in sync"); 99 return jvms; 100 } 101 102 //--------------------------------sync_jvms_for_reexecute--------------------- 103 // Make sure our current jvms agrees with our parse state. This version 104 // uses the reexecute_sp for reexecuting bytecodes. 105 JVMState* GraphKit::sync_jvms_for_reexecute() { 106 JVMState* jvms = this->jvms(); 107 jvms->set_bci(bci()); // Record the new bci in the JVMState 108 jvms->set_sp(reexecute_sp()); // Record the new sp in the JVMState 109 return jvms; 110 } 111 112 #ifdef ASSERT 113 bool GraphKit::jvms_in_sync() const { 114 Parse* parse = is_Parse(); 115 if (parse == NULL) { 116 if (bci() != jvms()->bci()) return false; 117 if (sp() != (int)jvms()->sp()) return false; 118 return true; 119 } 120 if (jvms()->method() != parse->method()) return false; 121 if (jvms()->bci() != parse->bci()) return false; 122 int jvms_sp = jvms()->sp(); 123 if (jvms_sp != parse->sp()) return false; 124 int jvms_depth = jvms()->depth(); 125 if (jvms_depth != parse->depth()) return false; 126 return true; 127 } 128 129 // Local helper checks for special internal merge points 130 // used to accumulate and merge exception states. 131 // They are marked by the region's in(0) edge being the map itself. 132 // Such merge points must never "escape" into the parser at large, 133 // until they have been handed to gvn.transform. 134 static bool is_hidden_merge(Node* reg) { 135 if (reg == NULL) return false; 136 if (reg->is_Phi()) { 137 reg = reg->in(0); 138 if (reg == NULL) return false; 139 } 140 return reg->is_Region() && reg->in(0) != NULL && reg->in(0)->is_Root(); 141 } 142 143 void GraphKit::verify_map() const { 144 if (map() == NULL) return; // null map is OK 145 assert(map()->req() <= jvms()->endoff(), "no extra garbage on map"); 146 assert(!map()->has_exceptions(), "call add_exception_states_from 1st"); 147 assert(!is_hidden_merge(control()), "call use_exception_state, not set_map"); 148 } 149 150 void GraphKit::verify_exception_state(SafePointNode* ex_map) { 151 assert(ex_map->next_exception() == NULL, "not already part of a chain"); 152 assert(has_saved_ex_oop(ex_map), "every exception state has an ex_oop"); 153 } 154 #endif 155 156 //---------------------------stop_and_kill_map--------------------------------- 157 // Set _map to NULL, signalling a stop to further bytecode execution. 158 // First smash the current map's control to a constant, to mark it dead. 159 void GraphKit::stop_and_kill_map() { 160 SafePointNode* dead_map = stop(); 161 if (dead_map != NULL) { 162 dead_map->disconnect_inputs(NULL, C); // Mark the map as killed. 163 assert(dead_map->is_killed(), "must be so marked"); 164 } 165 } 166 167 168 //--------------------------------stopped-------------------------------------- 169 // Tell if _map is NULL, or control is top. 170 bool GraphKit::stopped() { 171 if (map() == NULL) return true; 172 else if (control() == top()) return true; 173 else return false; 174 } 175 176 177 //-----------------------------has_ex_handler---------------------------------- 178 // Tell if this method or any caller method has exception handlers. 179 bool GraphKit::has_ex_handler() { 180 for (JVMState* jvmsp = jvms(); jvmsp != NULL; jvmsp = jvmsp->caller()) { 181 if (jvmsp->has_method() && jvmsp->method()->has_exception_handlers()) { 182 return true; 183 } 184 } 185 return false; 186 } 187 188 //------------------------------save_ex_oop------------------------------------ 189 // Save an exception without blowing stack contents or other JVM state. 190 void GraphKit::set_saved_ex_oop(SafePointNode* ex_map, Node* ex_oop) { 191 assert(!has_saved_ex_oop(ex_map), "clear ex-oop before setting again"); 192 ex_map->add_req(ex_oop); 193 debug_only(verify_exception_state(ex_map)); 194 } 195 196 inline static Node* common_saved_ex_oop(SafePointNode* ex_map, bool clear_it) { 197 assert(GraphKit::has_saved_ex_oop(ex_map), "ex_oop must be there"); 198 Node* ex_oop = ex_map->in(ex_map->req()-1); 199 if (clear_it) ex_map->del_req(ex_map->req()-1); 200 return ex_oop; 201 } 202 203 //-----------------------------saved_ex_oop------------------------------------ 204 // Recover a saved exception from its map. 205 Node* GraphKit::saved_ex_oop(SafePointNode* ex_map) { 206 return common_saved_ex_oop(ex_map, false); 207 } 208 209 //--------------------------clear_saved_ex_oop--------------------------------- 210 // Erase a previously saved exception from its map. 211 Node* GraphKit::clear_saved_ex_oop(SafePointNode* ex_map) { 212 return common_saved_ex_oop(ex_map, true); 213 } 214 215 #ifdef ASSERT 216 //---------------------------has_saved_ex_oop---------------------------------- 217 // Erase a previously saved exception from its map. 218 bool GraphKit::has_saved_ex_oop(SafePointNode* ex_map) { 219 return ex_map->req() == ex_map->jvms()->endoff()+1; 220 } 221 #endif 222 223 //-------------------------make_exception_state-------------------------------- 224 // Turn the current JVM state into an exception state, appending the ex_oop. 225 SafePointNode* GraphKit::make_exception_state(Node* ex_oop) { 226 sync_jvms(); 227 SafePointNode* ex_map = stop(); // do not manipulate this map any more 228 set_saved_ex_oop(ex_map, ex_oop); 229 return ex_map; 230 } 231 232 233 //--------------------------add_exception_state-------------------------------- 234 // Add an exception to my list of exceptions. 235 void GraphKit::add_exception_state(SafePointNode* ex_map) { 236 if (ex_map == NULL || ex_map->control() == top()) { 237 return; 238 } 239 #ifdef ASSERT 240 verify_exception_state(ex_map); 241 if (has_exceptions()) { 242 assert(ex_map->jvms()->same_calls_as(_exceptions->jvms()), "all collected exceptions must come from the same place"); 243 } 244 #endif 245 246 // If there is already an exception of exactly this type, merge with it. 247 // In particular, null-checks and other low-level exceptions common up here. 248 Node* ex_oop = saved_ex_oop(ex_map); 249 const Type* ex_type = _gvn.type(ex_oop); 250 if (ex_oop == top()) { 251 // No action needed. 252 return; 253 } 254 assert(ex_type->isa_instptr(), "exception must be an instance"); 255 for (SafePointNode* e2 = _exceptions; e2 != NULL; e2 = e2->next_exception()) { 256 const Type* ex_type2 = _gvn.type(saved_ex_oop(e2)); 257 // We check sp also because call bytecodes can generate exceptions 258 // both before and after arguments are popped! 259 if (ex_type2 == ex_type 260 && e2->_jvms->sp() == ex_map->_jvms->sp()) { 261 combine_exception_states(ex_map, e2); 262 return; 263 } 264 } 265 266 // No pre-existing exception of the same type. Chain it on the list. 267 push_exception_state(ex_map); 268 } 269 270 //-----------------------add_exception_states_from----------------------------- 271 void GraphKit::add_exception_states_from(JVMState* jvms) { 272 SafePointNode* ex_map = jvms->map()->next_exception(); 273 if (ex_map != NULL) { 274 jvms->map()->set_next_exception(NULL); 275 for (SafePointNode* next_map; ex_map != NULL; ex_map = next_map) { 276 next_map = ex_map->next_exception(); 277 ex_map->set_next_exception(NULL); 278 add_exception_state(ex_map); 279 } 280 } 281 } 282 283 //-----------------------transfer_exceptions_into_jvms------------------------- 284 JVMState* GraphKit::transfer_exceptions_into_jvms() { 285 if (map() == NULL) { 286 // We need a JVMS to carry the exceptions, but the map has gone away. 287 // Create a scratch JVMS, cloned from any of the exception states... 288 if (has_exceptions()) { 289 _map = _exceptions; 290 _map = clone_map(); 291 _map->set_next_exception(NULL); 292 clear_saved_ex_oop(_map); 293 debug_only(verify_map()); 294 } else { 295 // ...or created from scratch 296 JVMState* jvms = new (C) JVMState(_method, NULL); 297 jvms->set_bci(_bci); 298 jvms->set_sp(_sp); 299 jvms->set_map(new SafePointNode(TypeFunc::Parms, jvms)); 300 set_jvms(jvms); 301 for (uint i = 0; i < map()->req(); i++) map()->init_req(i, top()); 302 set_all_memory(top()); 303 while (map()->req() < jvms->endoff()) map()->add_req(top()); 304 } 305 // (This is a kludge, in case you didn't notice.) 306 set_control(top()); 307 } 308 JVMState* jvms = sync_jvms(); 309 assert(!jvms->map()->has_exceptions(), "no exceptions on this map yet"); 310 jvms->map()->set_next_exception(_exceptions); 311 _exceptions = NULL; // done with this set of exceptions 312 return jvms; 313 } 314 315 static inline void add_n_reqs(Node* dstphi, Node* srcphi) { 316 assert(is_hidden_merge(dstphi), "must be a special merge node"); 317 assert(is_hidden_merge(srcphi), "must be a special merge node"); 318 uint limit = srcphi->req(); 319 for (uint i = PhiNode::Input; i < limit; i++) { 320 dstphi->add_req(srcphi->in(i)); 321 } 322 } 323 static inline void add_one_req(Node* dstphi, Node* src) { 324 assert(is_hidden_merge(dstphi), "must be a special merge node"); 325 assert(!is_hidden_merge(src), "must not be a special merge node"); 326 dstphi->add_req(src); 327 } 328 329 //-----------------------combine_exception_states------------------------------ 330 // This helper function combines exception states by building phis on a 331 // specially marked state-merging region. These regions and phis are 332 // untransformed, and can build up gradually. The region is marked by 333 // having a control input of its exception map, rather than NULL. Such 334 // regions do not appear except in this function, and in use_exception_state. 335 void GraphKit::combine_exception_states(SafePointNode* ex_map, SafePointNode* phi_map) { 336 if (failing()) return; // dying anyway... 337 JVMState* ex_jvms = ex_map->_jvms; 338 assert(ex_jvms->same_calls_as(phi_map->_jvms), "consistent call chains"); 339 assert(ex_jvms->stkoff() == phi_map->_jvms->stkoff(), "matching locals"); 340 assert(ex_jvms->sp() == phi_map->_jvms->sp(), "matching stack sizes"); 341 assert(ex_jvms->monoff() == phi_map->_jvms->monoff(), "matching JVMS"); 342 assert(ex_jvms->scloff() == phi_map->_jvms->scloff(), "matching scalar replaced objects"); 343 assert(ex_map->req() == phi_map->req(), "matching maps"); 344 uint tos = ex_jvms->stkoff() + ex_jvms->sp(); 345 Node* hidden_merge_mark = root(); 346 Node* region = phi_map->control(); 347 MergeMemNode* phi_mem = phi_map->merged_memory(); 348 MergeMemNode* ex_mem = ex_map->merged_memory(); 349 if (region->in(0) != hidden_merge_mark) { 350 // The control input is not (yet) a specially-marked region in phi_map. 351 // Make it so, and build some phis. 352 region = new RegionNode(2); 353 _gvn.set_type(region, Type::CONTROL); 354 region->set_req(0, hidden_merge_mark); // marks an internal ex-state 355 region->init_req(1, phi_map->control()); 356 phi_map->set_control(region); 357 Node* io_phi = PhiNode::make(region, phi_map->i_o(), Type::ABIO); 358 record_for_igvn(io_phi); 359 _gvn.set_type(io_phi, Type::ABIO); 360 phi_map->set_i_o(io_phi); 361 for (MergeMemStream mms(phi_mem); mms.next_non_empty(); ) { 362 Node* m = mms.memory(); 363 Node* m_phi = PhiNode::make(region, m, Type::MEMORY, mms.adr_type(C)); 364 record_for_igvn(m_phi); 365 _gvn.set_type(m_phi, Type::MEMORY); 366 mms.set_memory(m_phi); 367 } 368 } 369 370 // Either or both of phi_map and ex_map might already be converted into phis. 371 Node* ex_control = ex_map->control(); 372 // if there is special marking on ex_map also, we add multiple edges from src 373 bool add_multiple = (ex_control->in(0) == hidden_merge_mark); 374 // how wide was the destination phi_map, originally? 375 uint orig_width = region->req(); 376 377 if (add_multiple) { 378 add_n_reqs(region, ex_control); 379 add_n_reqs(phi_map->i_o(), ex_map->i_o()); 380 } else { 381 // ex_map has no merges, so we just add single edges everywhere 382 add_one_req(region, ex_control); 383 add_one_req(phi_map->i_o(), ex_map->i_o()); 384 } 385 for (MergeMemStream mms(phi_mem, ex_mem); mms.next_non_empty2(); ) { 386 if (mms.is_empty()) { 387 // get a copy of the base memory, and patch some inputs into it 388 const TypePtr* adr_type = mms.adr_type(C); 389 Node* phi = mms.force_memory()->as_Phi()->slice_memory(adr_type); 390 assert(phi->as_Phi()->region() == mms.base_memory()->in(0), ""); 391 mms.set_memory(phi); 392 // Prepare to append interesting stuff onto the newly sliced phi: 393 while (phi->req() > orig_width) phi->del_req(phi->req()-1); 394 } 395 // Append stuff from ex_map: 396 if (add_multiple) { 397 add_n_reqs(mms.memory(), mms.memory2()); 398 } else { 399 add_one_req(mms.memory(), mms.memory2()); 400 } 401 } 402 uint limit = ex_map->req(); 403 for (uint i = TypeFunc::Parms; i < limit; i++) { 404 // Skip everything in the JVMS after tos. (The ex_oop follows.) 405 if (i == tos) i = ex_jvms->monoff(); 406 Node* src = ex_map->in(i); 407 Node* dst = phi_map->in(i); 408 if (src != dst) { 409 PhiNode* phi; 410 if (dst->in(0) != region) { 411 dst = phi = PhiNode::make(region, dst, _gvn.type(dst)); 412 record_for_igvn(phi); 413 _gvn.set_type(phi, phi->type()); 414 phi_map->set_req(i, dst); 415 // Prepare to append interesting stuff onto the new phi: 416 while (dst->req() > orig_width) dst->del_req(dst->req()-1); 417 } else { 418 assert(dst->is_Phi(), "nobody else uses a hidden region"); 419 phi = dst->as_Phi(); 420 } 421 if (add_multiple && src->in(0) == ex_control) { 422 // Both are phis. 423 add_n_reqs(dst, src); 424 } else { 425 while (dst->req() < region->req()) add_one_req(dst, src); 426 } 427 const Type* srctype = _gvn.type(src); 428 if (phi->type() != srctype) { 429 const Type* dsttype = phi->type()->meet_speculative(srctype); 430 if (phi->type() != dsttype) { 431 phi->set_type(dsttype); 432 _gvn.set_type(phi, dsttype); 433 } 434 } 435 } 436 } 437 phi_map->merge_replaced_nodes_with(ex_map); 438 } 439 440 //--------------------------use_exception_state-------------------------------- 441 Node* GraphKit::use_exception_state(SafePointNode* phi_map) { 442 if (failing()) { stop(); return top(); } 443 Node* region = phi_map->control(); 444 Node* hidden_merge_mark = root(); 445 assert(phi_map->jvms()->map() == phi_map, "sanity: 1-1 relation"); 446 Node* ex_oop = clear_saved_ex_oop(phi_map); 447 if (region->in(0) == hidden_merge_mark) { 448 // Special marking for internal ex-states. Process the phis now. 449 region->set_req(0, region); // now it's an ordinary region 450 set_jvms(phi_map->jvms()); // ...so now we can use it as a map 451 // Note: Setting the jvms also sets the bci and sp. 452 set_control(_gvn.transform(region)); 453 uint tos = jvms()->stkoff() + sp(); 454 for (uint i = 1; i < tos; i++) { 455 Node* x = phi_map->in(i); 456 if (x->in(0) == region) { 457 assert(x->is_Phi(), "expected a special phi"); 458 phi_map->set_req(i, _gvn.transform(x)); 459 } 460 } 461 for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) { 462 Node* x = mms.memory(); 463 if (x->in(0) == region) { 464 assert(x->is_Phi(), "nobody else uses a hidden region"); 465 mms.set_memory(_gvn.transform(x)); 466 } 467 } 468 if (ex_oop->in(0) == region) { 469 assert(ex_oop->is_Phi(), "expected a special phi"); 470 ex_oop = _gvn.transform(ex_oop); 471 } 472 } else { 473 set_jvms(phi_map->jvms()); 474 } 475 476 assert(!is_hidden_merge(phi_map->control()), "hidden ex. states cleared"); 477 assert(!is_hidden_merge(phi_map->i_o()), "hidden ex. states cleared"); 478 return ex_oop; 479 } 480 481 //---------------------------------java_bc------------------------------------- 482 Bytecodes::Code GraphKit::java_bc() const { 483 ciMethod* method = this->method(); 484 int bci = this->bci(); 485 if (method != NULL && bci != InvocationEntryBci) 486 return method->java_code_at_bci(bci); 487 else 488 return Bytecodes::_illegal; 489 } 490 491 void GraphKit::uncommon_trap_if_should_post_on_exceptions(Deoptimization::DeoptReason reason, 492 bool must_throw) { 493 // if the exception capability is set, then we will generate code 494 // to check the JavaThread.should_post_on_exceptions flag to see 495 // if we actually need to report exception events (for this 496 // thread). If we don't need to report exception events, we will 497 // take the normal fast path provided by add_exception_events. If 498 // exception event reporting is enabled for this thread, we will 499 // take the uncommon_trap in the BuildCutout below. 500 501 // first must access the should_post_on_exceptions_flag in this thread's JavaThread 502 Node* jthread = _gvn.transform(new ThreadLocalNode()); 503 Node* adr = basic_plus_adr(top(), jthread, in_bytes(JavaThread::should_post_on_exceptions_flag_offset())); 504 Node* should_post_flag = make_load(control(), adr, TypeInt::INT, T_INT, Compile::AliasIdxRaw, MemNode::unordered); 505 506 // Test the should_post_on_exceptions_flag vs. 0 507 Node* chk = _gvn.transform( new CmpINode(should_post_flag, intcon(0)) ); 508 Node* tst = _gvn.transform( new BoolNode(chk, BoolTest::eq) ); 509 510 // Branch to slow_path if should_post_on_exceptions_flag was true 511 { BuildCutout unless(this, tst, PROB_MAX); 512 // Do not try anything fancy if we're notifying the VM on every throw. 513 // Cf. case Bytecodes::_athrow in parse2.cpp. 514 uncommon_trap(reason, Deoptimization::Action_none, 515 (ciKlass*)NULL, (char*)NULL, must_throw); 516 } 517 518 } 519 520 //------------------------------builtin_throw---------------------------------- 521 void GraphKit::builtin_throw(Deoptimization::DeoptReason reason, Node* arg) { 522 bool must_throw = true; 523 524 if (env()->jvmti_can_post_on_exceptions()) { 525 // check if we must post exception events, take uncommon trap if so 526 uncommon_trap_if_should_post_on_exceptions(reason, must_throw); 527 // here if should_post_on_exceptions is false 528 // continue on with the normal codegen 529 } 530 531 // If this particular condition has not yet happened at this 532 // bytecode, then use the uncommon trap mechanism, and allow for 533 // a future recompilation if several traps occur here. 534 // If the throw is hot, try to use a more complicated inline mechanism 535 // which keeps execution inside the compiled code. 536 bool treat_throw_as_hot = false; 537 ciMethodData* md = method()->method_data(); 538 539 if (ProfileTraps) { 540 if (too_many_traps(reason)) { 541 treat_throw_as_hot = true; 542 } 543 // (If there is no MDO at all, assume it is early in 544 // execution, and that any deopts are part of the 545 // startup transient, and don't need to be remembered.) 546 547 // Also, if there is a local exception handler, treat all throws 548 // as hot if there has been at least one in this method. 549 if (C->trap_count(reason) != 0 550 && method()->method_data()->trap_count(reason) != 0 551 && has_ex_handler()) { 552 treat_throw_as_hot = true; 553 } 554 555 // TODO: Check if and how profiling can be used for vbox/vunbox 556 if (java_bc() == Bytecodes::_vbox || java_bc() == Bytecodes::_vunbox) { 557 treat_throw_as_hot = true; 558 } 559 } 560 561 // If this throw happens frequently, an uncommon trap might cause 562 // a performance pothole. If there is a local exception handler, 563 // and if this particular bytecode appears to be deoptimizing often, 564 // let us handle the throw inline, with a preconstructed instance. 565 // Note: If the deopt count has blown up, the uncommon trap 566 // runtime is going to flush this nmethod, not matter what. 567 if (treat_throw_as_hot 568 && (!StackTraceInThrowable || OmitStackTraceInFastThrow)) { 569 // If the throw is local, we use a pre-existing instance and 570 // punt on the backtrace. This would lead to a missing backtrace 571 // (a repeat of 4292742) if the backtrace object is ever asked 572 // for its backtrace. 573 // Fixing this remaining case of 4292742 requires some flavor of 574 // escape analysis. Leave that for the future. 575 ciInstance* ex_obj = NULL; 576 switch (reason) { 577 case Deoptimization::Reason_null_check: 578 ex_obj = env()->NullPointerException_instance(); 579 break; 580 case Deoptimization::Reason_div0_check: 581 ex_obj = env()->ArithmeticException_instance(); 582 break; 583 case Deoptimization::Reason_range_check: 584 ex_obj = env()->ArrayIndexOutOfBoundsException_instance(); 585 break; 586 case Deoptimization::Reason_class_check: 587 if (java_bc() == Bytecodes::_aastore) { 588 ex_obj = env()->ArrayStoreException_instance(); 589 } else { 590 ex_obj = env()->ClassCastException_instance(); 591 } 592 break; 593 } 594 if (failing()) { stop(); return; } // exception allocation might fail 595 if (ex_obj != NULL) { 596 // Cheat with a preallocated exception object. 597 if (C->log() != NULL) 598 C->log()->elem("hot_throw preallocated='1' reason='%s'", 599 Deoptimization::trap_reason_name(reason)); 600 const TypeInstPtr* ex_con = TypeInstPtr::make(ex_obj); 601 Node* ex_node = _gvn.transform(ConNode::make(ex_con)); 602 603 // Clear the detail message of the preallocated exception object. 604 // Weblogic sometimes mutates the detail message of exceptions 605 // using reflection. 606 int offset = java_lang_Throwable::get_detailMessage_offset(); 607 const TypePtr* adr_typ = ex_con->add_offset(offset); 608 609 Node *adr = basic_plus_adr(ex_node, ex_node, offset); 610 const TypeOopPtr* val_type = TypeOopPtr::make_from_klass(env()->String_klass()); 611 // Conservatively release stores of object references. 612 Node *store = store_oop_to_object(control(), ex_node, adr, adr_typ, null(), val_type, T_OBJECT, MemNode::release); 613 614 add_exception_state(make_exception_state(ex_node)); 615 return; 616 } 617 } 618 619 // %%% Maybe add entry to OptoRuntime which directly throws the exc.? 620 // It won't be much cheaper than bailing to the interp., since we'll 621 // have to pass up all the debug-info, and the runtime will have to 622 // create the stack trace. 623 624 // Usual case: Bail to interpreter. 625 // Reserve the right to recompile if we haven't seen anything yet. 626 627 ciMethod* m = Deoptimization::reason_is_speculate(reason) ? C->method() : NULL; 628 Deoptimization::DeoptAction action = Deoptimization::Action_maybe_recompile; 629 if (treat_throw_as_hot 630 && (method()->method_data()->trap_recompiled_at(bci(), m) 631 || C->too_many_traps(reason))) { 632 // We cannot afford to take more traps here. Suffer in the interpreter. 633 if (C->log() != NULL) 634 C->log()->elem("hot_throw preallocated='0' reason='%s' mcount='%d'", 635 Deoptimization::trap_reason_name(reason), 636 C->trap_count(reason)); 637 action = Deoptimization::Action_none; 638 } 639 640 // "must_throw" prunes the JVM state to include only the stack, if there 641 // are no local exception handlers. This should cut down on register 642 // allocation time and code size, by drastically reducing the number 643 // of in-edges on the call to the uncommon trap. 644 645 uncommon_trap(reason, action, (ciKlass*)NULL, (char*)NULL, must_throw); 646 } 647 648 649 //----------------------------PreserveJVMState--------------------------------- 650 PreserveJVMState::PreserveJVMState(GraphKit* kit, bool clone_map) { 651 debug_only(kit->verify_map()); 652 _kit = kit; 653 _map = kit->map(); // preserve the map 654 _sp = kit->sp(); 655 kit->set_map(clone_map ? kit->clone_map() : NULL); 656 #ifdef ASSERT 657 _bci = kit->bci(); 658 Parse* parser = kit->is_Parse(); 659 int block = (parser == NULL || parser->block() == NULL) ? -1 : parser->block()->rpo(); 660 _block = block; 661 #endif 662 } 663 PreserveJVMState::~PreserveJVMState() { 664 GraphKit* kit = _kit; 665 #ifdef ASSERT 666 assert(kit->bci() == _bci, "bci must not shift"); 667 Parse* parser = kit->is_Parse(); 668 int block = (parser == NULL || parser->block() == NULL) ? -1 : parser->block()->rpo(); 669 assert(block == _block, "block must not shift"); 670 #endif 671 kit->set_map(_map); 672 kit->set_sp(_sp); 673 } 674 675 676 //-----------------------------BuildCutout------------------------------------- 677 BuildCutout::BuildCutout(GraphKit* kit, Node* p, float prob, float cnt) 678 : PreserveJVMState(kit) 679 { 680 assert(p->is_Con() || p->is_Bool(), "test must be a bool"); 681 SafePointNode* outer_map = _map; // preserved map is caller's 682 SafePointNode* inner_map = kit->map(); 683 IfNode* iff = kit->create_and_map_if(outer_map->control(), p, prob, cnt); 684 outer_map->set_control(kit->gvn().transform( new IfTrueNode(iff) )); 685 inner_map->set_control(kit->gvn().transform( new IfFalseNode(iff) )); 686 } 687 BuildCutout::~BuildCutout() { 688 GraphKit* kit = _kit; 689 assert(kit->stopped(), "cutout code must stop, throw, return, etc."); 690 } 691 692 //---------------------------PreserveReexecuteState---------------------------- 693 PreserveReexecuteState::PreserveReexecuteState(GraphKit* kit) { 694 assert(!kit->stopped(), "must call stopped() before"); 695 _kit = kit; 696 _sp = kit->sp(); 697 _reexecute = kit->jvms()->_reexecute; 698 } 699 PreserveReexecuteState::~PreserveReexecuteState() { 700 if (_kit->stopped()) return; 701 _kit->jvms()->_reexecute = _reexecute; 702 _kit->set_sp(_sp); 703 } 704 705 //------------------------------clone_map-------------------------------------- 706 // Implementation of PreserveJVMState 707 // 708 // Only clone_map(...) here. If this function is only used in the 709 // PreserveJVMState class we may want to get rid of this extra 710 // function eventually and do it all there. 711 712 SafePointNode* GraphKit::clone_map() { 713 if (map() == NULL) return NULL; 714 715 // Clone the memory edge first 716 Node* mem = MergeMemNode::make(map()->memory()); 717 gvn().set_type_bottom(mem); 718 719 SafePointNode *clonemap = (SafePointNode*)map()->clone(); 720 JVMState* jvms = this->jvms(); 721 JVMState* clonejvms = jvms->clone_shallow(C); 722 clonemap->set_memory(mem); 723 clonemap->set_jvms(clonejvms); 724 clonejvms->set_map(clonemap); 725 record_for_igvn(clonemap); 726 gvn().set_type_bottom(clonemap); 727 return clonemap; 728 } 729 730 731 //-----------------------------set_map_clone----------------------------------- 732 void GraphKit::set_map_clone(SafePointNode* m) { 733 _map = m; 734 _map = clone_map(); 735 _map->set_next_exception(NULL); 736 debug_only(verify_map()); 737 } 738 739 740 //----------------------------kill_dead_locals--------------------------------- 741 // Detect any locals which are known to be dead, and force them to top. 742 void GraphKit::kill_dead_locals() { 743 // Consult the liveness information for the locals. If any 744 // of them are unused, then they can be replaced by top(). This 745 // should help register allocation time and cut down on the size 746 // of the deoptimization information. 747 748 // This call is made from many of the bytecode handling 749 // subroutines called from the Big Switch in do_one_bytecode. 750 // Every bytecode which might include a slow path is responsible 751 // for killing its dead locals. The more consistent we 752 // are about killing deads, the fewer useless phis will be 753 // constructed for them at various merge points. 754 755 // bci can be -1 (InvocationEntryBci). We return the entry 756 // liveness for the method. 757 758 if (method() == NULL || method()->code_size() == 0) { 759 // We are building a graph for a call to a native method. 760 // All locals are live. 761 return; 762 } 763 764 ResourceMark rm; 765 766 // Consult the liveness information for the locals. If any 767 // of them are unused, then they can be replaced by top(). This 768 // should help register allocation time and cut down on the size 769 // of the deoptimization information. 770 MethodLivenessResult live_locals = method()->liveness_at_bci(bci()); 771 772 int len = (int)live_locals.size(); 773 assert(len <= jvms()->loc_size(), "too many live locals"); 774 for (int local = 0; local < len; local++) { 775 if (!live_locals.at(local)) { 776 set_local(local, top()); 777 } 778 } 779 } 780 781 #ifdef ASSERT 782 //-------------------------dead_locals_are_killed------------------------------ 783 // Return true if all dead locals are set to top in the map. 784 // Used to assert "clean" debug info at various points. 785 bool GraphKit::dead_locals_are_killed() { 786 if (method() == NULL || method()->code_size() == 0) { 787 // No locals need to be dead, so all is as it should be. 788 return true; 789 } 790 791 // Make sure somebody called kill_dead_locals upstream. 792 ResourceMark rm; 793 for (JVMState* jvms = this->jvms(); jvms != NULL; jvms = jvms->caller()) { 794 if (jvms->loc_size() == 0) continue; // no locals to consult 795 SafePointNode* map = jvms->map(); 796 ciMethod* method = jvms->method(); 797 int bci = jvms->bci(); 798 if (jvms == this->jvms()) { 799 bci = this->bci(); // it might not yet be synched 800 } 801 MethodLivenessResult live_locals = method->liveness_at_bci(bci); 802 int len = (int)live_locals.size(); 803 if (!live_locals.is_valid() || len == 0) 804 // This method is trivial, or is poisoned by a breakpoint. 805 return true; 806 assert(len == jvms->loc_size(), "live map consistent with locals map"); 807 for (int local = 0; local < len; local++) { 808 if (!live_locals.at(local) && map->local(jvms, local) != top()) { 809 if (PrintMiscellaneous && (Verbose || WizardMode)) { 810 tty->print_cr("Zombie local %d: ", local); 811 jvms->dump(); 812 } 813 return false; 814 } 815 } 816 } 817 return true; 818 } 819 820 #endif //ASSERT 821 822 // Helper function for enforcing certain bytecodes to reexecute if 823 // deoptimization happens 824 static bool should_reexecute_implied_by_bytecode(JVMState *jvms, bool is_anewarray) { 825 ciMethod* cur_method = jvms->method(); 826 int cur_bci = jvms->bci(); 827 if (cur_method != NULL && cur_bci != InvocationEntryBci) { 828 Bytecodes::Code code = cur_method->java_code_at_bci(cur_bci); 829 return Interpreter::bytecode_should_reexecute(code) || 830 is_anewarray && code == Bytecodes::_multianewarray; 831 // Reexecute _multianewarray bytecode which was replaced with 832 // sequence of [a]newarray. See Parse::do_multianewarray(). 833 // 834 // Note: interpreter should not have it set since this optimization 835 // is limited by dimensions and guarded by flag so in some cases 836 // multianewarray() runtime calls will be generated and 837 // the bytecode should not be reexecutes (stack will not be reset). 838 } else 839 return false; 840 } 841 842 // Helper function for adding JVMState and debug information to node 843 void GraphKit::add_safepoint_edges(SafePointNode* call, bool must_throw) { 844 // Add the safepoint edges to the call (or other safepoint). 845 846 // Make sure dead locals are set to top. This 847 // should help register allocation time and cut down on the size 848 // of the deoptimization information. 849 assert(dead_locals_are_killed(), "garbage in debug info before safepoint"); 850 851 // Walk the inline list to fill in the correct set of JVMState's 852 // Also fill in the associated edges for each JVMState. 853 854 // If the bytecode needs to be reexecuted we need to put 855 // the arguments back on the stack. 856 const bool should_reexecute = jvms()->should_reexecute(); 857 JVMState* youngest_jvms = should_reexecute ? sync_jvms_for_reexecute() : sync_jvms(); 858 859 // NOTE: set_bci (called from sync_jvms) might reset the reexecute bit to 860 // undefined if the bci is different. This is normal for Parse but it 861 // should not happen for LibraryCallKit because only one bci is processed. 862 assert(!is_LibraryCallKit() || (jvms()->should_reexecute() == should_reexecute), 863 "in LibraryCallKit the reexecute bit should not change"); 864 865 // If we are guaranteed to throw, we can prune everything but the 866 // input to the current bytecode. 867 bool can_prune_locals = false; 868 uint stack_slots_not_pruned = 0; 869 int inputs = 0, depth = 0; 870 if (must_throw) { 871 assert(method() == youngest_jvms->method(), "sanity"); 872 if (compute_stack_effects(inputs, depth)) { 873 can_prune_locals = true; 874 stack_slots_not_pruned = inputs; 875 } 876 } 877 878 if (env()->should_retain_local_variables()) { 879 // At any safepoint, this method can get breakpointed, which would 880 // then require an immediate deoptimization. 881 can_prune_locals = false; // do not prune locals 882 stack_slots_not_pruned = 0; 883 } 884 885 // do not scribble on the input jvms 886 JVMState* out_jvms = youngest_jvms->clone_deep(C); 887 call->set_jvms(out_jvms); // Start jvms list for call node 888 889 // For a known set of bytecodes, the interpreter should reexecute them if 890 // deoptimization happens. We set the reexecute state for them here 891 if (out_jvms->is_reexecute_undefined() && //don't change if already specified 892 should_reexecute_implied_by_bytecode(out_jvms, call->is_AllocateArray())) { 893 out_jvms->set_should_reexecute(true); //NOTE: youngest_jvms not changed 894 } 895 896 // Presize the call: 897 DEBUG_ONLY(uint non_debug_edges = call->req()); 898 call->add_req_batch(top(), youngest_jvms->debug_depth()); 899 assert(call->req() == non_debug_edges + youngest_jvms->debug_depth(), ""); 900 901 // Set up edges so that the call looks like this: 902 // Call [state:] ctl io mem fptr retadr 903 // [parms:] parm0 ... parmN 904 // [root:] loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN 905 // [...mid:] loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN [...] 906 // [young:] loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN 907 // Note that caller debug info precedes callee debug info. 908 909 // Fill pointer walks backwards from "young:" to "root:" in the diagram above: 910 uint debug_ptr = call->req(); 911 912 // Loop over the map input edges associated with jvms, add them 913 // to the call node, & reset all offsets to match call node array. 914 for (JVMState* in_jvms = youngest_jvms; in_jvms != NULL; ) { 915 uint debug_end = debug_ptr; 916 uint debug_start = debug_ptr - in_jvms->debug_size(); 917 debug_ptr = debug_start; // back up the ptr 918 919 uint p = debug_start; // walks forward in [debug_start, debug_end) 920 uint j, k, l; 921 SafePointNode* in_map = in_jvms->map(); 922 out_jvms->set_map(call); 923 924 if (can_prune_locals) { 925 assert(in_jvms->method() == out_jvms->method(), "sanity"); 926 // If the current throw can reach an exception handler in this JVMS, 927 // then we must keep everything live that can reach that handler. 928 // As a quick and dirty approximation, we look for any handlers at all. 929 if (in_jvms->method()->has_exception_handlers()) { 930 can_prune_locals = false; 931 } 932 } 933 934 // Add the Locals 935 k = in_jvms->locoff(); 936 l = in_jvms->loc_size(); 937 out_jvms->set_locoff(p); 938 if (!can_prune_locals) { 939 for (j = 0; j < l; j++) 940 call->set_req(p++, in_map->in(k+j)); 941 } else { 942 p += l; // already set to top above by add_req_batch 943 } 944 945 // Add the Expression Stack 946 k = in_jvms->stkoff(); 947 l = in_jvms->sp(); 948 out_jvms->set_stkoff(p); 949 if (!can_prune_locals) { 950 for (j = 0; j < l; j++) 951 call->set_req(p++, in_map->in(k+j)); 952 } else if (can_prune_locals && stack_slots_not_pruned != 0) { 953 // Divide stack into {S0,...,S1}, where S0 is set to top. 954 uint s1 = stack_slots_not_pruned; 955 stack_slots_not_pruned = 0; // for next iteration 956 if (s1 > l) s1 = l; 957 uint s0 = l - s1; 958 p += s0; // skip the tops preinstalled by add_req_batch 959 for (j = s0; j < l; j++) 960 call->set_req(p++, in_map->in(k+j)); 961 } else { 962 p += l; // already set to top above by add_req_batch 963 } 964 965 // Add the Monitors 966 k = in_jvms->monoff(); 967 l = in_jvms->mon_size(); 968 out_jvms->set_monoff(p); 969 for (j = 0; j < l; j++) 970 call->set_req(p++, in_map->in(k+j)); 971 972 // Copy any scalar object fields. 973 k = in_jvms->scloff(); 974 l = in_jvms->scl_size(); 975 out_jvms->set_scloff(p); 976 for (j = 0; j < l; j++) 977 call->set_req(p++, in_map->in(k+j)); 978 979 // Finish the new jvms. 980 out_jvms->set_endoff(p); 981 982 assert(out_jvms->endoff() == debug_end, "fill ptr must match"); 983 assert(out_jvms->depth() == in_jvms->depth(), "depth must match"); 984 assert(out_jvms->loc_size() == in_jvms->loc_size(), "size must match"); 985 assert(out_jvms->mon_size() == in_jvms->mon_size(), "size must match"); 986 assert(out_jvms->scl_size() == in_jvms->scl_size(), "size must match"); 987 assert(out_jvms->debug_size() == in_jvms->debug_size(), "size must match"); 988 989 // Update the two tail pointers in parallel. 990 out_jvms = out_jvms->caller(); 991 in_jvms = in_jvms->caller(); 992 } 993 994 assert(debug_ptr == non_debug_edges, "debug info must fit exactly"); 995 996 // Test the correctness of JVMState::debug_xxx accessors: 997 assert(call->jvms()->debug_start() == non_debug_edges, ""); 998 assert(call->jvms()->debug_end() == call->req(), ""); 999 assert(call->jvms()->debug_depth() == call->req() - non_debug_edges, ""); 1000 } 1001 1002 bool GraphKit::compute_stack_effects(int& inputs, int& depth) { 1003 Bytecodes::Code code = java_bc(); 1004 if (code == Bytecodes::_wide) { 1005 code = method()->java_code_at_bci(bci() + 1); 1006 } 1007 1008 BasicType rtype = T_ILLEGAL; 1009 int rsize = 0; 1010 1011 if (code != Bytecodes::_illegal) { 1012 depth = Bytecodes::depth(code); // checkcast=0, athrow=-1 1013 rtype = Bytecodes::result_type(code); // checkcast=P, athrow=V 1014 if (rtype < T_CONFLICT) 1015 rsize = type2size[rtype]; 1016 } 1017 1018 switch (code) { 1019 case Bytecodes::_illegal: 1020 return false; 1021 1022 case Bytecodes::_ldc: 1023 case Bytecodes::_ldc_w: 1024 case Bytecodes::_ldc2_w: 1025 inputs = 0; 1026 break; 1027 1028 case Bytecodes::_dup: inputs = 1; break; 1029 case Bytecodes::_dup_x1: inputs = 2; break; 1030 case Bytecodes::_dup_x2: inputs = 3; break; 1031 case Bytecodes::_dup2: inputs = 2; break; 1032 case Bytecodes::_dup2_x1: inputs = 3; break; 1033 case Bytecodes::_dup2_x2: inputs = 4; break; 1034 case Bytecodes::_swap: inputs = 2; break; 1035 case Bytecodes::_arraylength: inputs = 1; break; 1036 1037 case Bytecodes::_getstatic: 1038 case Bytecodes::_putstatic: 1039 case Bytecodes::_getfield: 1040 case Bytecodes::_vgetfield: 1041 case Bytecodes::_putfield: 1042 { 1043 bool ignored_will_link; 1044 ciField* field = method()->get_field_at_bci(bci(), ignored_will_link); 1045 int size = field->type()->size(); 1046 bool is_get = (depth >= 0), is_static = (depth & 1); 1047 inputs = (is_static ? 0 : 1); 1048 if (is_get) { 1049 depth = size - inputs; 1050 } else { 1051 inputs += size; // putxxx pops the value from the stack 1052 depth = - inputs; 1053 } 1054 } 1055 break; 1056 1057 case Bytecodes::_invokevirtual: 1058 case Bytecodes::_invokedirect: 1059 case Bytecodes::_invokespecial: 1060 case Bytecodes::_invokestatic: 1061 case Bytecodes::_invokedynamic: 1062 case Bytecodes::_invokeinterface: 1063 { 1064 bool ignored_will_link; 1065 ciSignature* declared_signature = NULL; 1066 ciMethod* ignored_callee = method()->get_method_at_bci(bci(), ignored_will_link, &declared_signature); 1067 assert(declared_signature != NULL, "cannot be null"); 1068 inputs = declared_signature->arg_size_for_bc(code); 1069 int size = declared_signature->return_type()->size(); 1070 depth = size - inputs; 1071 } 1072 break; 1073 1074 case Bytecodes::_multianewarray: 1075 { 1076 ciBytecodeStream iter(method()); 1077 iter.reset_to_bci(bci()); 1078 iter.next(); 1079 inputs = iter.get_dimensions(); 1080 assert(rsize == 1, ""); 1081 depth = rsize - inputs; 1082 } 1083 break; 1084 1085 case Bytecodes::_vnew: { 1086 // vnew pops the values from the stack 1087 ciValueKlass* vk = method()->holder()->as_value_klass(); 1088 inputs = vk->field_size(); 1089 depth = rsize - inputs; 1090 break; 1091 } 1092 case Bytecodes::_vwithfield: { 1093 bool ignored_will_link; 1094 ciField* field = method()->get_field_at_bci(bci(), ignored_will_link); 1095 int size = field->type()->size(); 1096 inputs = size+1; 1097 depth = rsize - inputs; 1098 break; 1099 } 1100 1101 case Bytecodes::_ireturn: 1102 case Bytecodes::_lreturn: 1103 case Bytecodes::_freturn: 1104 case Bytecodes::_dreturn: 1105 case Bytecodes::_areturn: 1106 case Bytecodes::_vreturn: 1107 assert(rsize = -depth, ""); 1108 inputs = rsize; 1109 break; 1110 1111 case Bytecodes::_jsr: 1112 case Bytecodes::_jsr_w: 1113 inputs = 0; 1114 depth = 1; // S.B. depth=1, not zero 1115 break; 1116 1117 default: 1118 // bytecode produces a typed result 1119 inputs = rsize - depth; 1120 assert(inputs >= 0, ""); 1121 break; 1122 } 1123 1124 #ifdef ASSERT 1125 // spot check 1126 int outputs = depth + inputs; 1127 assert(outputs >= 0, "sanity"); 1128 switch (code) { 1129 case Bytecodes::_checkcast: assert(inputs == 1 && outputs == 1, ""); break; 1130 case Bytecodes::_athrow: assert(inputs == 1 && outputs == 0, ""); break; 1131 case Bytecodes::_aload_0: assert(inputs == 0 && outputs == 1, ""); break; 1132 case Bytecodes::_return: assert(inputs == 0 && outputs == 0, ""); break; 1133 case Bytecodes::_drem: assert(inputs == 4 && outputs == 2, ""); break; 1134 } 1135 #endif //ASSERT 1136 1137 return true; 1138 } 1139 1140 1141 1142 //------------------------------basic_plus_adr--------------------------------- 1143 Node* GraphKit::basic_plus_adr(Node* base, Node* ptr, Node* offset) { 1144 // short-circuit a common case 1145 if (offset == intcon(0)) return ptr; 1146 return _gvn.transform( new AddPNode(base, ptr, offset) ); 1147 } 1148 1149 Node* GraphKit::ConvI2L(Node* offset) { 1150 // short-circuit a common case 1151 jint offset_con = find_int_con(offset, Type::OffsetBot); 1152 if (offset_con != Type::OffsetBot) { 1153 return longcon((jlong) offset_con); 1154 } 1155 return _gvn.transform( new ConvI2LNode(offset)); 1156 } 1157 1158 Node* GraphKit::ConvI2UL(Node* offset) { 1159 juint offset_con = (juint) find_int_con(offset, Type::OffsetBot); 1160 if (offset_con != (juint) Type::OffsetBot) { 1161 return longcon((julong) offset_con); 1162 } 1163 Node* conv = _gvn.transform( new ConvI2LNode(offset)); 1164 Node* mask = _gvn.transform(ConLNode::make((julong) max_juint)); 1165 return _gvn.transform( new AndLNode(conv, mask) ); 1166 } 1167 1168 Node* GraphKit::ConvL2I(Node* offset) { 1169 // short-circuit a common case 1170 jlong offset_con = find_long_con(offset, (jlong)Type::OffsetBot); 1171 if (offset_con != (jlong)Type::OffsetBot) { 1172 return intcon((int) offset_con); 1173 } 1174 return _gvn.transform( new ConvL2INode(offset)); 1175 } 1176 1177 //-------------------------load_object_klass----------------------------------- 1178 Node* GraphKit::load_object_klass(Node* obj) { 1179 // Special-case a fresh allocation to avoid building nodes: 1180 Node* akls = AllocateNode::Ideal_klass(obj, &_gvn); 1181 if (akls != NULL) return akls; 1182 Node* k_adr = basic_plus_adr(obj, oopDesc::klass_offset_in_bytes()); 1183 return _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), k_adr, TypeInstPtr::KLASS)); 1184 } 1185 1186 //-------------------------load_array_length----------------------------------- 1187 Node* GraphKit::load_array_length(Node* array) { 1188 // Special-case a fresh allocation to avoid building nodes: 1189 AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(array, &_gvn); 1190 Node *alen; 1191 if (alloc == NULL) { 1192 Node *r_adr = basic_plus_adr(array, arrayOopDesc::length_offset_in_bytes()); 1193 alen = _gvn.transform( new LoadRangeNode(0, immutable_memory(), r_adr, TypeInt::POS)); 1194 } else { 1195 alen = alloc->Ideal_length(); 1196 Node* ccast = alloc->make_ideal_length(_gvn.type(array)->is_oopptr(), &_gvn); 1197 if (ccast != alen) { 1198 alen = _gvn.transform(ccast); 1199 } 1200 } 1201 return alen; 1202 } 1203 1204 //------------------------------do_null_check---------------------------------- 1205 // Helper function to do a NULL pointer check. Returned value is 1206 // the incoming address with NULL casted away. You are allowed to use the 1207 // not-null value only if you are control dependent on the test. 1208 #ifndef PRODUCT 1209 extern int explicit_null_checks_inserted, 1210 explicit_null_checks_elided; 1211 #endif 1212 Node* GraphKit::null_check_common(Node* value, BasicType type, 1213 // optional arguments for variations: 1214 bool assert_null, 1215 Node* *null_control, 1216 bool speculative) { 1217 assert(!assert_null || null_control == NULL, "not both at once"); 1218 if (stopped()) return top(); 1219 if (!GenerateCompilerNullChecks && !assert_null && null_control == NULL) { 1220 // For some performance testing, we may wish to suppress null checking. 1221 value = cast_not_null(value); // Make it appear to be non-null (4962416). 1222 return value; 1223 } 1224 NOT_PRODUCT(explicit_null_checks_inserted++); 1225 1226 // Construct NULL check 1227 Node *chk = NULL; 1228 switch(type) { 1229 case T_LONG : chk = new CmpLNode(value, _gvn.zerocon(T_LONG)); break; 1230 case T_INT : chk = new CmpINode(value, _gvn.intcon(0)); break; 1231 case T_ARRAY : // fall through 1232 type = T_OBJECT; // simplify further tests 1233 case T_OBJECT : { 1234 const Type *t = _gvn.type( value ); 1235 1236 const TypeOopPtr* tp = t->isa_oopptr(); 1237 if (tp != NULL && tp->klass() != NULL && !tp->klass()->is_loaded() 1238 // Only for do_null_check, not any of its siblings: 1239 && !assert_null && null_control == NULL) { 1240 // Usually, any field access or invocation on an unloaded oop type 1241 // will simply fail to link, since the statically linked class is 1242 // likely also to be unloaded. However, in -Xcomp mode, sometimes 1243 // the static class is loaded but the sharper oop type is not. 1244 // Rather than checking for this obscure case in lots of places, 1245 // we simply observe that a null check on an unloaded class 1246 // will always be followed by a nonsense operation, so we 1247 // can just issue the uncommon trap here. 1248 // Our access to the unloaded class will only be correct 1249 // after it has been loaded and initialized, which requires 1250 // a trip through the interpreter. 1251 #ifndef PRODUCT 1252 if (WizardMode) { tty->print("Null check of unloaded "); tp->klass()->print(); tty->cr(); } 1253 #endif 1254 uncommon_trap(Deoptimization::Reason_unloaded, 1255 Deoptimization::Action_reinterpret, 1256 tp->klass(), "!loaded"); 1257 return top(); 1258 } 1259 1260 if (assert_null) { 1261 // See if the type is contained in NULL_PTR. 1262 // If so, then the value is already null. 1263 if (t->higher_equal(TypePtr::NULL_PTR)) { 1264 NOT_PRODUCT(explicit_null_checks_elided++); 1265 return value; // Elided null assert quickly! 1266 } 1267 } else { 1268 // See if mixing in the NULL pointer changes type. 1269 // If so, then the NULL pointer was not allowed in the original 1270 // type. In other words, "value" was not-null. 1271 if (t->meet(TypePtr::NULL_PTR) != t->remove_speculative()) { 1272 // same as: if (!TypePtr::NULL_PTR->higher_equal(t)) ... 1273 NOT_PRODUCT(explicit_null_checks_elided++); 1274 return value; // Elided null check quickly! 1275 } 1276 } 1277 chk = new CmpPNode( value, null() ); 1278 break; 1279 } 1280 1281 default: 1282 fatal("unexpected type: %s", type2name(type)); 1283 } 1284 assert(chk != NULL, "sanity check"); 1285 chk = _gvn.transform(chk); 1286 1287 BoolTest::mask btest = assert_null ? BoolTest::eq : BoolTest::ne; 1288 BoolNode *btst = new BoolNode( chk, btest); 1289 Node *tst = _gvn.transform( btst ); 1290 1291 //----------- 1292 // if peephole optimizations occurred, a prior test existed. 1293 // If a prior test existed, maybe it dominates as we can avoid this test. 1294 if (tst != btst && type == T_OBJECT) { 1295 // At this point we want to scan up the CFG to see if we can 1296 // find an identical test (and so avoid this test altogether). 1297 Node *cfg = control(); 1298 int depth = 0; 1299 while( depth < 16 ) { // Limit search depth for speed 1300 if( cfg->Opcode() == Op_IfTrue && 1301 cfg->in(0)->in(1) == tst ) { 1302 // Found prior test. Use "cast_not_null" to construct an identical 1303 // CastPP (and hence hash to) as already exists for the prior test. 1304 // Return that casted value. 1305 if (assert_null) { 1306 replace_in_map(value, null()); 1307 return null(); // do not issue the redundant test 1308 } 1309 Node *oldcontrol = control(); 1310 set_control(cfg); 1311 Node *res = cast_not_null(value); 1312 set_control(oldcontrol); 1313 NOT_PRODUCT(explicit_null_checks_elided++); 1314 return res; 1315 } 1316 cfg = IfNode::up_one_dom(cfg, /*linear_only=*/ true); 1317 if (cfg == NULL) break; // Quit at region nodes 1318 depth++; 1319 } 1320 } 1321 1322 //----------- 1323 // Branch to failure if null 1324 float ok_prob = PROB_MAX; // a priori estimate: nulls never happen 1325 Deoptimization::DeoptReason reason; 1326 if (assert_null) { 1327 reason = Deoptimization::Reason_null_assert; 1328 } else if (type == T_OBJECT) { 1329 reason = Deoptimization::reason_null_check(speculative); 1330 } else { 1331 reason = Deoptimization::Reason_div0_check; 1332 } 1333 // %%% Since Reason_unhandled is not recorded on a per-bytecode basis, 1334 // ciMethodData::has_trap_at will return a conservative -1 if any 1335 // must-be-null assertion has failed. This could cause performance 1336 // problems for a method after its first do_null_assert failure. 1337 // Consider using 'Reason_class_check' instead? 1338 1339 // To cause an implicit null check, we set the not-null probability 1340 // to the maximum (PROB_MAX). For an explicit check the probability 1341 // is set to a smaller value. 1342 if (null_control != NULL || too_many_traps(reason)) { 1343 // probability is less likely 1344 ok_prob = PROB_LIKELY_MAG(3); 1345 } else if (!assert_null && 1346 (ImplicitNullCheckThreshold > 0) && 1347 method() != NULL && 1348 (method()->method_data()->trap_count(reason) 1349 >= (uint)ImplicitNullCheckThreshold)) { 1350 ok_prob = PROB_LIKELY_MAG(3); 1351 } 1352 1353 if (null_control != NULL) { 1354 IfNode* iff = create_and_map_if(control(), tst, ok_prob, COUNT_UNKNOWN); 1355 Node* null_true = _gvn.transform( new IfFalseNode(iff)); 1356 set_control( _gvn.transform( new IfTrueNode(iff))); 1357 #ifndef PRODUCT 1358 if (null_true == top()) { 1359 explicit_null_checks_elided++; 1360 } 1361 #endif 1362 (*null_control) = null_true; 1363 } else { 1364 BuildCutout unless(this, tst, ok_prob); 1365 // Check for optimizer eliding test at parse time 1366 if (stopped()) { 1367 // Failure not possible; do not bother making uncommon trap. 1368 NOT_PRODUCT(explicit_null_checks_elided++); 1369 } else if (assert_null) { 1370 uncommon_trap(reason, 1371 Deoptimization::Action_make_not_entrant, 1372 NULL, "assert_null"); 1373 } else { 1374 replace_in_map(value, zerocon(type)); 1375 builtin_throw(reason); 1376 } 1377 } 1378 1379 // Must throw exception, fall-thru not possible? 1380 if (stopped()) { 1381 return top(); // No result 1382 } 1383 1384 if (assert_null) { 1385 // Cast obj to null on this path. 1386 replace_in_map(value, zerocon(type)); 1387 return zerocon(type); 1388 } 1389 1390 // Cast obj to not-null on this path, if there is no null_control. 1391 // (If there is a null_control, a non-null value may come back to haunt us.) 1392 if (type == T_OBJECT) { 1393 Node* cast = cast_not_null(value, false); 1394 if (null_control == NULL || (*null_control) == top()) 1395 replace_in_map(value, cast); 1396 value = cast; 1397 } 1398 1399 return value; 1400 } 1401 1402 1403 //------------------------------cast_not_null---------------------------------- 1404 // Cast obj to not-null on this path 1405 Node* GraphKit::cast_not_null(Node* obj, bool do_replace_in_map) { 1406 const Type *t = _gvn.type(obj); 1407 const Type *t_not_null = t->join_speculative(TypePtr::NOTNULL); 1408 // Object is already not-null? 1409 if( t == t_not_null ) return obj; 1410 1411 Node *cast = new CastPPNode(obj,t_not_null); 1412 cast->init_req(0, control()); 1413 cast = _gvn.transform( cast ); 1414 1415 // Scan for instances of 'obj' in the current JVM mapping. 1416 // These instances are known to be not-null after the test. 1417 if (do_replace_in_map) 1418 replace_in_map(obj, cast); 1419 1420 return cast; // Return casted value 1421 } 1422 1423 1424 //--------------------------replace_in_map------------------------------------- 1425 void GraphKit::replace_in_map(Node* old, Node* neww) { 1426 if (old == neww) { 1427 return; 1428 } 1429 1430 map()->replace_edge(old, neww); 1431 1432 // Note: This operation potentially replaces any edge 1433 // on the map. This includes locals, stack, and monitors 1434 // of the current (innermost) JVM state. 1435 1436 // don't let inconsistent types from profiling escape this 1437 // method 1438 1439 const Type* told = _gvn.type(old); 1440 const Type* tnew = _gvn.type(neww); 1441 1442 if (!tnew->higher_equal(told)) { 1443 return; 1444 } 1445 1446 map()->record_replaced_node(old, neww); 1447 } 1448 1449 1450 //============================================================================= 1451 //--------------------------------memory--------------------------------------- 1452 Node* GraphKit::memory(uint alias_idx) { 1453 MergeMemNode* mem = merged_memory(); 1454 Node* p = mem->memory_at(alias_idx); 1455 _gvn.set_type(p, Type::MEMORY); // must be mapped 1456 return p; 1457 } 1458 1459 //-----------------------------reset_memory------------------------------------ 1460 Node* GraphKit::reset_memory() { 1461 Node* mem = map()->memory(); 1462 // do not use this node for any more parsing! 1463 debug_only( map()->set_memory((Node*)NULL) ); 1464 return _gvn.transform( mem ); 1465 } 1466 1467 //------------------------------set_all_memory--------------------------------- 1468 void GraphKit::set_all_memory(Node* newmem) { 1469 Node* mergemem = MergeMemNode::make(newmem); 1470 gvn().set_type_bottom(mergemem); 1471 map()->set_memory(mergemem); 1472 } 1473 1474 //------------------------------set_all_memory_call---------------------------- 1475 void GraphKit::set_all_memory_call(Node* call, bool separate_io_proj) { 1476 Node* newmem = _gvn.transform( new ProjNode(call, TypeFunc::Memory, separate_io_proj) ); 1477 set_all_memory(newmem); 1478 } 1479 1480 //============================================================================= 1481 // 1482 // parser factory methods for MemNodes 1483 // 1484 // These are layered on top of the factory methods in LoadNode and StoreNode, 1485 // and integrate with the parser's memory state and _gvn engine. 1486 // 1487 1488 // factory methods in "int adr_idx" 1489 Node* GraphKit::make_load(Node* ctl, Node* adr, const Type* t, BasicType bt, 1490 int adr_idx, 1491 MemNode::MemOrd mo, 1492 LoadNode::ControlDependency control_dependency, 1493 bool require_atomic_access, 1494 bool unaligned, 1495 bool mismatched) { 1496 assert(adr_idx != Compile::AliasIdxTop, "use other make_load factory" ); 1497 const TypePtr* adr_type = NULL; // debug-mode-only argument 1498 debug_only(adr_type = C->get_adr_type(adr_idx)); 1499 Node* mem = memory(adr_idx); 1500 Node* ld; 1501 if (require_atomic_access && bt == T_LONG) { 1502 ld = LoadLNode::make_atomic(ctl, mem, adr, adr_type, t, mo, control_dependency, unaligned, mismatched); 1503 } else if (require_atomic_access && bt == T_DOUBLE) { 1504 ld = LoadDNode::make_atomic(ctl, mem, adr, adr_type, t, mo, control_dependency, unaligned, mismatched); 1505 } else { 1506 ld = LoadNode::make(_gvn, ctl, mem, adr, adr_type, t, bt, mo, control_dependency, unaligned, mismatched); 1507 } 1508 ld = _gvn.transform(ld); 1509 1510 if (bt == T_VALUETYPE) { 1511 // Load value type from oop 1512 ld = ValueTypeNode::make(gvn(), map()->memory(), ld); 1513 } else if ((bt == T_OBJECT) && C->do_escape_analysis() || C->eliminate_boxing()) { 1514 // Improve graph before escape analysis and boxing elimination. 1515 record_for_igvn(ld); 1516 } 1517 return ld; 1518 } 1519 1520 Node* GraphKit::store_to_memory(Node* ctl, Node* adr, Node *val, BasicType bt, 1521 int adr_idx, 1522 MemNode::MemOrd mo, 1523 bool require_atomic_access, 1524 bool unaligned, 1525 bool mismatched) { 1526 assert(adr_idx != Compile::AliasIdxTop, "use other store_to_memory factory" ); 1527 const TypePtr* adr_type = NULL; 1528 debug_only(adr_type = C->get_adr_type(adr_idx)); 1529 Node *mem = memory(adr_idx); 1530 Node* st; 1531 if (require_atomic_access && bt == T_LONG) { 1532 st = StoreLNode::make_atomic(ctl, mem, adr, adr_type, val, mo); 1533 } else if (require_atomic_access && bt == T_DOUBLE) { 1534 st = StoreDNode::make_atomic(ctl, mem, adr, adr_type, val, mo); 1535 } else { 1536 st = StoreNode::make(_gvn, ctl, mem, adr, adr_type, val, bt, mo); 1537 } 1538 if (unaligned) { 1539 st->as_Store()->set_unaligned_access(); 1540 } 1541 if (mismatched) { 1542 st->as_Store()->set_mismatched_access(); 1543 } 1544 st = _gvn.transform(st); 1545 set_memory(st, adr_idx); 1546 // Back-to-back stores can only remove intermediate store with DU info 1547 // so push on worklist for optimizer. 1548 if (mem->req() > MemNode::Address && adr == mem->in(MemNode::Address)) 1549 record_for_igvn(st); 1550 1551 return st; 1552 } 1553 1554 1555 void GraphKit::pre_barrier(bool do_load, 1556 Node* ctl, 1557 Node* obj, 1558 Node* adr, 1559 uint adr_idx, 1560 Node* val, 1561 const TypeOopPtr* val_type, 1562 Node* pre_val, 1563 BasicType bt) { 1564 1565 BarrierSet* bs = Universe::heap()->barrier_set(); 1566 set_control(ctl); 1567 switch (bs->kind()) { 1568 case BarrierSet::G1SATBCTLogging: 1569 g1_write_barrier_pre(do_load, obj, adr, adr_idx, val, val_type, pre_val, bt); 1570 break; 1571 1572 case BarrierSet::CardTableForRS: 1573 case BarrierSet::CardTableExtension: 1574 case BarrierSet::ModRef: 1575 break; 1576 1577 default : 1578 ShouldNotReachHere(); 1579 1580 } 1581 } 1582 1583 bool GraphKit::can_move_pre_barrier() const { 1584 BarrierSet* bs = Universe::heap()->barrier_set(); 1585 switch (bs->kind()) { 1586 case BarrierSet::G1SATBCTLogging: 1587 return true; // Can move it if no safepoint 1588 1589 case BarrierSet::CardTableForRS: 1590 case BarrierSet::CardTableExtension: 1591 case BarrierSet::ModRef: 1592 return true; // There is no pre-barrier 1593 1594 default : 1595 ShouldNotReachHere(); 1596 } 1597 return false; 1598 } 1599 1600 void GraphKit::post_barrier(Node* ctl, 1601 Node* store, 1602 Node* obj, 1603 Node* adr, 1604 uint adr_idx, 1605 Node* val, 1606 BasicType bt, 1607 bool use_precise) { 1608 BarrierSet* bs = Universe::heap()->barrier_set(); 1609 set_control(ctl); 1610 switch (bs->kind()) { 1611 case BarrierSet::G1SATBCTLogging: 1612 g1_write_barrier_post(store, obj, adr, adr_idx, val, bt, use_precise); 1613 break; 1614 1615 case BarrierSet::CardTableForRS: 1616 case BarrierSet::CardTableExtension: 1617 write_barrier_post(store, obj, adr, adr_idx, val, use_precise); 1618 break; 1619 1620 case BarrierSet::ModRef: 1621 break; 1622 1623 default : 1624 ShouldNotReachHere(); 1625 1626 } 1627 } 1628 1629 Node* GraphKit::store_oop(Node* ctl, 1630 Node* obj, 1631 Node* adr, 1632 const TypePtr* adr_type, 1633 Node* val, 1634 const TypeOopPtr* val_type, 1635 BasicType bt, 1636 bool use_precise, 1637 MemNode::MemOrd mo, 1638 bool mismatched) { 1639 // Transformation of a value which could be NULL pointer (CastPP #NULL) 1640 // could be delayed during Parse (for example, in adjust_map_after_if()). 1641 // Execute transformation here to avoid barrier generation in such case. 1642 if (_gvn.type(val) == TypePtr::NULL_PTR) 1643 val = _gvn.makecon(TypePtr::NULL_PTR); 1644 1645 set_control(ctl); 1646 if (stopped()) return top(); // Dead path ? 1647 1648 assert(bt == T_OBJECT || bt == T_VALUETYPE, "sanity"); 1649 assert(val != NULL, "not dead path"); 1650 uint adr_idx = C->get_alias_index(adr_type); 1651 assert(adr_idx != Compile::AliasIdxTop, "use other store_to_memory factory" ); 1652 1653 if (bt == T_VALUETYPE) { 1654 // Allocate value type and store oop 1655 val = val->as_ValueType()->store_to_memory(this); 1656 } 1657 1658 pre_barrier(true /* do_load */, 1659 control(), obj, adr, adr_idx, val, val_type, 1660 NULL /* pre_val */, 1661 bt); 1662 1663 Node* store = store_to_memory(control(), adr, val, bt, adr_idx, mo, mismatched); 1664 post_barrier(control(), store, obj, adr, adr_idx, val, bt, use_precise); 1665 return store; 1666 } 1667 1668 // Could be an array or object we don't know at compile time (unsafe ref.) 1669 Node* GraphKit::store_oop_to_unknown(Node* ctl, 1670 Node* obj, // containing obj 1671 Node* adr, // actual adress to store val at 1672 const TypePtr* adr_type, 1673 Node* val, 1674 BasicType bt, 1675 MemNode::MemOrd mo, 1676 bool mismatched) { 1677 Compile::AliasType* at = C->alias_type(adr_type); 1678 const TypeOopPtr* val_type = NULL; 1679 if (adr_type->isa_instptr()) { 1680 if (at->field() != NULL) { 1681 // known field. This code is a copy of the do_put_xxx logic. 1682 ciField* field = at->field(); 1683 if (!field->type()->is_loaded()) { 1684 val_type = TypeInstPtr::BOTTOM; 1685 } else { 1686 val_type = TypeOopPtr::make_from_klass(field->type()->as_klass()); 1687 } 1688 } 1689 } else if (adr_type->isa_aryptr()) { 1690 val_type = adr_type->is_aryptr()->elem()->make_oopptr(); 1691 } 1692 if (val_type == NULL) { 1693 val_type = TypeInstPtr::BOTTOM; 1694 } 1695 return store_oop(ctl, obj, adr, adr_type, val, val_type, bt, true, mo, mismatched); 1696 } 1697 1698 1699 //-------------------------array_element_address------------------------- 1700 Node* GraphKit::array_element_address(Node* ary, Node* idx, BasicType elembt, 1701 const TypeInt* sizetype, Node* ctrl) { 1702 uint shift = exact_log2(type2aelembytes(elembt)); 1703 ciKlass* arytype_klass = _gvn.type(ary)->is_aryptr()->klass(); 1704 if (arytype_klass->is_value_array_klass()) { 1705 ciValueArrayKlass* vak = arytype_klass->as_value_array_klass(); 1706 shift = vak->log2_element_size(); 1707 } 1708 uint header = arrayOopDesc::base_offset_in_bytes(elembt); 1709 1710 // short-circuit a common case (saves lots of confusing waste motion) 1711 jint idx_con = find_int_con(idx, -1); 1712 if (idx_con >= 0) { 1713 intptr_t offset = header + ((intptr_t)idx_con << shift); 1714 return basic_plus_adr(ary, offset); 1715 } 1716 1717 // must be correct type for alignment purposes 1718 Node* base = basic_plus_adr(ary, header); 1719 idx = Compile::conv_I2X_index(&_gvn, idx, sizetype, ctrl); 1720 Node* scale = _gvn.transform( new LShiftXNode(idx, intcon(shift)) ); 1721 return basic_plus_adr(ary, base, scale); 1722 } 1723 1724 //-------------------------load_array_element------------------------- 1725 Node* GraphKit::load_array_element(Node* ctl, Node* ary, Node* idx, const TypeAryPtr* arytype) { 1726 const Type* elemtype = arytype->elem(); 1727 BasicType elembt = elemtype->array_element_basic_type(); 1728 assert(elembt != T_VALUETYPE, "value types are not supported by this method"); 1729 Node* adr = array_element_address(ary, idx, elembt, arytype->size()); 1730 Node* ld = make_load(ctl, adr, elemtype, elembt, arytype, MemNode::unordered); 1731 return ld; 1732 } 1733 1734 //-------------------------set_arguments_for_java_call------------------------- 1735 // Arguments (pre-popped from the stack) are taken from the JVMS. 1736 void GraphKit::set_arguments_for_java_call(CallJavaNode* call) { 1737 // Add the call arguments: 1738 uint nargs = call->method()->arg_size(); 1739 for (uint i = 0, idx = 0; i < nargs; i++) { 1740 Node* arg = argument(i); 1741 if (ValueTypePassFieldsAsArgs) { 1742 if (arg->is_ValueType()) { 1743 ValueTypeNode* vt = arg->as_ValueType(); 1744 // We don't pass value type arguments by reference but instead 1745 // pass each field of the value type 1746 idx += vt->set_arguments_for_java_call(call, idx + TypeFunc::Parms, *this); 1747 } else { 1748 call->init_req(idx + TypeFunc::Parms, arg); 1749 idx++; 1750 } 1751 } else { 1752 if (arg->is_ValueType()) { 1753 // Pass value type argument via oop to callee 1754 arg = arg->as_ValueType()->store_to_memory(this); 1755 } 1756 call->init_req(i + TypeFunc::Parms, arg); 1757 } 1758 } 1759 } 1760 1761 //---------------------------set_edges_for_java_call--------------------------- 1762 // Connect a newly created call into the current JVMS. 1763 // A return value node (if any) is returned from set_edges_for_java_call. 1764 void GraphKit::set_edges_for_java_call(CallJavaNode* call, bool must_throw, bool separate_io_proj) { 1765 1766 // Add the predefined inputs: 1767 call->init_req( TypeFunc::Control, control() ); 1768 call->init_req( TypeFunc::I_O , i_o() ); 1769 call->init_req( TypeFunc::Memory , reset_memory() ); 1770 call->init_req( TypeFunc::FramePtr, frameptr() ); 1771 call->init_req( TypeFunc::ReturnAdr, top() ); 1772 1773 add_safepoint_edges(call, must_throw); 1774 1775 Node* xcall = _gvn.transform(call); 1776 1777 if (xcall == top()) { 1778 set_control(top()); 1779 return; 1780 } 1781 assert(xcall == call, "call identity is stable"); 1782 1783 // Re-use the current map to produce the result. 1784 1785 set_control(_gvn.transform(new ProjNode(call, TypeFunc::Control))); 1786 set_i_o( _gvn.transform(new ProjNode(call, TypeFunc::I_O , separate_io_proj))); 1787 set_all_memory_call(xcall, separate_io_proj); 1788 1789 //return xcall; // no need, caller already has it 1790 } 1791 1792 Node* GraphKit::set_results_for_java_call(CallJavaNode* call, bool separate_io_proj) { 1793 if (stopped()) return top(); // maybe the call folded up? 1794 1795 // Capture the return value, if any. 1796 Node* ret; 1797 if (call->method() == NULL || 1798 call->method()->return_type()->basic_type() == T_VOID) 1799 ret = top(); 1800 else ret = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 1801 1802 // Note: Since any out-of-line call can produce an exception, 1803 // we always insert an I_O projection from the call into the result. 1804 1805 make_slow_call_ex(call, env()->Throwable_klass(), separate_io_proj); 1806 1807 if (separate_io_proj) { 1808 // The caller requested separate projections be used by the fall 1809 // through and exceptional paths, so replace the projections for 1810 // the fall through path. 1811 set_i_o(_gvn.transform( new ProjNode(call, TypeFunc::I_O) )); 1812 set_all_memory(_gvn.transform( new ProjNode(call, TypeFunc::Memory) )); 1813 } 1814 return ret; 1815 } 1816 1817 //--------------------set_predefined_input_for_runtime_call-------------------- 1818 // Reading and setting the memory state is way conservative here. 1819 // The real problem is that I am not doing real Type analysis on memory, 1820 // so I cannot distinguish card mark stores from other stores. Across a GC 1821 // point the Store Barrier and the card mark memory has to agree. I cannot 1822 // have a card mark store and its barrier split across the GC point from 1823 // either above or below. Here I get that to happen by reading ALL of memory. 1824 // A better answer would be to separate out card marks from other memory. 1825 // For now, return the input memory state, so that it can be reused 1826 // after the call, if this call has restricted memory effects. 1827 Node* GraphKit::set_predefined_input_for_runtime_call(SafePointNode* call) { 1828 // Set fixed predefined input arguments 1829 Node* memory = reset_memory(); 1830 call->init_req( TypeFunc::Control, control() ); 1831 call->init_req( TypeFunc::I_O, top() ); // does no i/o 1832 call->init_req( TypeFunc::Memory, memory ); // may gc ptrs 1833 call->init_req( TypeFunc::FramePtr, frameptr() ); 1834 call->init_req( TypeFunc::ReturnAdr, top() ); 1835 return memory; 1836 } 1837 1838 //-------------------set_predefined_output_for_runtime_call-------------------- 1839 // Set control and memory (not i_o) from the call. 1840 // If keep_mem is not NULL, use it for the output state, 1841 // except for the RawPtr output of the call, if hook_mem is TypeRawPtr::BOTTOM. 1842 // If hook_mem is NULL, this call produces no memory effects at all. 1843 // If hook_mem is a Java-visible memory slice (such as arraycopy operands), 1844 // then only that memory slice is taken from the call. 1845 // In the last case, we must put an appropriate memory barrier before 1846 // the call, so as to create the correct anti-dependencies on loads 1847 // preceding the call. 1848 void GraphKit::set_predefined_output_for_runtime_call(Node* call, 1849 Node* keep_mem, 1850 const TypePtr* hook_mem) { 1851 // no i/o 1852 set_control(_gvn.transform( new ProjNode(call,TypeFunc::Control) )); 1853 if (keep_mem) { 1854 // First clone the existing memory state 1855 set_all_memory(keep_mem); 1856 if (hook_mem != NULL) { 1857 // Make memory for the call 1858 Node* mem = _gvn.transform( new ProjNode(call, TypeFunc::Memory) ); 1859 // Set the RawPtr memory state only. This covers all the heap top/GC stuff 1860 // We also use hook_mem to extract specific effects from arraycopy stubs. 1861 set_memory(mem, hook_mem); 1862 } 1863 // ...else the call has NO memory effects. 1864 1865 // Make sure the call advertises its memory effects precisely. 1866 // This lets us build accurate anti-dependences in gcm.cpp. 1867 assert(C->alias_type(call->adr_type()) == C->alias_type(hook_mem), 1868 "call node must be constructed correctly"); 1869 } else { 1870 assert(hook_mem == NULL, ""); 1871 // This is not a "slow path" call; all memory comes from the call. 1872 set_all_memory_call(call); 1873 } 1874 } 1875 1876 1877 // Replace the call with the current state of the kit. 1878 void GraphKit::replace_call(CallNode* call, Node* result, bool do_replaced_nodes) { 1879 JVMState* ejvms = NULL; 1880 if (has_exceptions()) { 1881 ejvms = transfer_exceptions_into_jvms(); 1882 } 1883 1884 ReplacedNodes replaced_nodes = map()->replaced_nodes(); 1885 ReplacedNodes replaced_nodes_exception; 1886 Node* ex_ctl = top(); 1887 1888 SafePointNode* final_state = stop(); 1889 1890 // Find all the needed outputs of this call 1891 CallProjections callprojs; 1892 call->extract_projections(&callprojs, true); 1893 1894 Node* init_mem = call->in(TypeFunc::Memory); 1895 Node* final_mem = final_state->in(TypeFunc::Memory); 1896 Node* final_ctl = final_state->in(TypeFunc::Control); 1897 Node* final_io = final_state->in(TypeFunc::I_O); 1898 1899 // Replace all the old call edges with the edges from the inlining result 1900 if (callprojs.fallthrough_catchproj != NULL) { 1901 C->gvn_replace_by(callprojs.fallthrough_catchproj, final_ctl); 1902 } 1903 if (callprojs.fallthrough_memproj != NULL) { 1904 if (final_mem->is_MergeMem()) { 1905 // Parser's exits MergeMem was not transformed but may be optimized 1906 final_mem = _gvn.transform(final_mem); 1907 } 1908 C->gvn_replace_by(callprojs.fallthrough_memproj, final_mem); 1909 } 1910 if (callprojs.fallthrough_ioproj != NULL) { 1911 C->gvn_replace_by(callprojs.fallthrough_ioproj, final_io); 1912 } 1913 1914 // Replace the result with the new result if it exists and is used 1915 if (callprojs.resproj != NULL && result != NULL) { 1916 C->gvn_replace_by(callprojs.resproj, result); 1917 } 1918 1919 if (ejvms == NULL) { 1920 // No exception edges to simply kill off those paths 1921 if (callprojs.catchall_catchproj != NULL) { 1922 C->gvn_replace_by(callprojs.catchall_catchproj, C->top()); 1923 } 1924 if (callprojs.catchall_memproj != NULL) { 1925 C->gvn_replace_by(callprojs.catchall_memproj, C->top()); 1926 } 1927 if (callprojs.catchall_ioproj != NULL) { 1928 C->gvn_replace_by(callprojs.catchall_ioproj, C->top()); 1929 } 1930 // Replace the old exception object with top 1931 if (callprojs.exobj != NULL) { 1932 C->gvn_replace_by(callprojs.exobj, C->top()); 1933 } 1934 } else { 1935 GraphKit ekit(ejvms); 1936 1937 // Load my combined exception state into the kit, with all phis transformed: 1938 SafePointNode* ex_map = ekit.combine_and_pop_all_exception_states(); 1939 replaced_nodes_exception = ex_map->replaced_nodes(); 1940 1941 Node* ex_oop = ekit.use_exception_state(ex_map); 1942 1943 if (callprojs.catchall_catchproj != NULL) { 1944 C->gvn_replace_by(callprojs.catchall_catchproj, ekit.control()); 1945 ex_ctl = ekit.control(); 1946 } 1947 if (callprojs.catchall_memproj != NULL) { 1948 C->gvn_replace_by(callprojs.catchall_memproj, ekit.reset_memory()); 1949 } 1950 if (callprojs.catchall_ioproj != NULL) { 1951 C->gvn_replace_by(callprojs.catchall_ioproj, ekit.i_o()); 1952 } 1953 1954 // Replace the old exception object with the newly created one 1955 if (callprojs.exobj != NULL) { 1956 C->gvn_replace_by(callprojs.exobj, ex_oop); 1957 } 1958 } 1959 1960 // Disconnect the call from the graph 1961 call->disconnect_inputs(NULL, C); 1962 C->gvn_replace_by(call, C->top()); 1963 1964 // Clean up any MergeMems that feed other MergeMems since the 1965 // optimizer doesn't like that. 1966 if (final_mem->is_MergeMem()) { 1967 Node_List wl; 1968 for (SimpleDUIterator i(final_mem); i.has_next(); i.next()) { 1969 Node* m = i.get(); 1970 if (m->is_MergeMem() && !wl.contains(m)) { 1971 wl.push(m); 1972 } 1973 } 1974 while (wl.size() > 0) { 1975 _gvn.transform(wl.pop()); 1976 } 1977 } 1978 1979 if (callprojs.fallthrough_catchproj != NULL && !final_ctl->is_top() && do_replaced_nodes) { 1980 replaced_nodes.apply(C, final_ctl); 1981 } 1982 if (!ex_ctl->is_top() && do_replaced_nodes) { 1983 replaced_nodes_exception.apply(C, ex_ctl); 1984 } 1985 } 1986 1987 1988 //------------------------------increment_counter------------------------------ 1989 // for statistics: increment a VM counter by 1 1990 1991 void GraphKit::increment_counter(address counter_addr) { 1992 Node* adr1 = makecon(TypeRawPtr::make(counter_addr)); 1993 increment_counter(adr1); 1994 } 1995 1996 void GraphKit::increment_counter(Node* counter_addr) { 1997 int adr_type = Compile::AliasIdxRaw; 1998 Node* ctrl = control(); 1999 Node* cnt = make_load(ctrl, counter_addr, TypeInt::INT, T_INT, adr_type, MemNode::unordered); 2000 Node* incr = _gvn.transform(new AddINode(cnt, _gvn.intcon(1))); 2001 store_to_memory(ctrl, counter_addr, incr, T_INT, adr_type, MemNode::unordered); 2002 } 2003 2004 2005 //------------------------------uncommon_trap---------------------------------- 2006 // Bail out to the interpreter in mid-method. Implemented by calling the 2007 // uncommon_trap blob. This helper function inserts a runtime call with the 2008 // right debug info. 2009 void GraphKit::uncommon_trap(int trap_request, 2010 ciKlass* klass, const char* comment, 2011 bool must_throw, 2012 bool keep_exact_action) { 2013 if (failing()) stop(); 2014 if (stopped()) return; // trap reachable? 2015 2016 // Note: If ProfileTraps is true, and if a deopt. actually 2017 // occurs here, the runtime will make sure an MDO exists. There is 2018 // no need to call method()->ensure_method_data() at this point. 2019 2020 // Set the stack pointer to the right value for reexecution: 2021 set_sp(reexecute_sp()); 2022 2023 #ifdef ASSERT 2024 if (!must_throw) { 2025 // Make sure the stack has at least enough depth to execute 2026 // the current bytecode. 2027 int inputs, ignored_depth; 2028 if (compute_stack_effects(inputs, ignored_depth)) { 2029 assert(sp() >= inputs, "must have enough JVMS stack to execute %s: sp=%d, inputs=%d", 2030 Bytecodes::name(java_bc()), sp(), inputs); 2031 } 2032 } 2033 #endif 2034 2035 Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(trap_request); 2036 Deoptimization::DeoptAction action = Deoptimization::trap_request_action(trap_request); 2037 2038 switch (action) { 2039 case Deoptimization::Action_maybe_recompile: 2040 case Deoptimization::Action_reinterpret: 2041 // Temporary fix for 6529811 to allow virtual calls to be sure they 2042 // get the chance to go from mono->bi->mega 2043 if (!keep_exact_action && 2044 Deoptimization::trap_request_index(trap_request) < 0 && 2045 too_many_recompiles(reason)) { 2046 // This BCI is causing too many recompilations. 2047 if (C->log() != NULL) { 2048 C->log()->elem("observe that='trap_action_change' reason='%s' from='%s' to='none'", 2049 Deoptimization::trap_reason_name(reason), 2050 Deoptimization::trap_action_name(action)); 2051 } 2052 action = Deoptimization::Action_none; 2053 trap_request = Deoptimization::make_trap_request(reason, action); 2054 } else { 2055 C->set_trap_can_recompile(true); 2056 } 2057 break; 2058 case Deoptimization::Action_make_not_entrant: 2059 C->set_trap_can_recompile(true); 2060 break; 2061 #ifdef ASSERT 2062 case Deoptimization::Action_none: 2063 case Deoptimization::Action_make_not_compilable: 2064 break; 2065 default: 2066 fatal("unknown action %d: %s", action, Deoptimization::trap_action_name(action)); 2067 break; 2068 #endif 2069 } 2070 2071 if (TraceOptoParse) { 2072 char buf[100]; 2073 tty->print_cr("Uncommon trap %s at bci:%d", 2074 Deoptimization::format_trap_request(buf, sizeof(buf), 2075 trap_request), bci()); 2076 } 2077 2078 CompileLog* log = C->log(); 2079 if (log != NULL) { 2080 int kid = (klass == NULL)? -1: log->identify(klass); 2081 log->begin_elem("uncommon_trap bci='%d'", bci()); 2082 char buf[100]; 2083 log->print(" %s", Deoptimization::format_trap_request(buf, sizeof(buf), 2084 trap_request)); 2085 if (kid >= 0) log->print(" klass='%d'", kid); 2086 if (comment != NULL) log->print(" comment='%s'", comment); 2087 log->end_elem(); 2088 } 2089 2090 // Make sure any guarding test views this path as very unlikely 2091 Node *i0 = control()->in(0); 2092 if (i0 != NULL && i0->is_If()) { // Found a guarding if test? 2093 IfNode *iff = i0->as_If(); 2094 float f = iff->_prob; // Get prob 2095 if (control()->Opcode() == Op_IfTrue) { 2096 if (f > PROB_UNLIKELY_MAG(4)) 2097 iff->_prob = PROB_MIN; 2098 } else { 2099 if (f < PROB_LIKELY_MAG(4)) 2100 iff->_prob = PROB_MAX; 2101 } 2102 } 2103 2104 // Clear out dead values from the debug info. 2105 kill_dead_locals(); 2106 2107 // Now insert the uncommon trap subroutine call 2108 address call_addr = SharedRuntime::uncommon_trap_blob()->entry_point(); 2109 const TypePtr* no_memory_effects = NULL; 2110 // Pass the index of the class to be loaded 2111 Node* call = make_runtime_call(RC_NO_LEAF | RC_UNCOMMON | 2112 (must_throw ? RC_MUST_THROW : 0), 2113 OptoRuntime::uncommon_trap_Type(), 2114 call_addr, "uncommon_trap", no_memory_effects, 2115 intcon(trap_request)); 2116 assert(call->as_CallStaticJava()->uncommon_trap_request() == trap_request, 2117 "must extract request correctly from the graph"); 2118 assert(trap_request != 0, "zero value reserved by uncommon_trap_request"); 2119 2120 call->set_req(TypeFunc::ReturnAdr, returnadr()); 2121 // The debug info is the only real input to this call. 2122 2123 // Halt-and-catch fire here. The above call should never return! 2124 HaltNode* halt = new HaltNode(control(), frameptr()); 2125 _gvn.set_type_bottom(halt); 2126 root()->add_req(halt); 2127 2128 stop_and_kill_map(); 2129 } 2130 2131 2132 //--------------------------just_allocated_object------------------------------ 2133 // Report the object that was just allocated. 2134 // It must be the case that there are no intervening safepoints. 2135 // We use this to determine if an object is so "fresh" that 2136 // it does not require card marks. 2137 Node* GraphKit::just_allocated_object(Node* current_control) { 2138 if (C->recent_alloc_ctl() == current_control) 2139 return C->recent_alloc_obj(); 2140 return NULL; 2141 } 2142 2143 2144 void GraphKit::round_double_arguments(ciMethod* dest_method) { 2145 // (Note: TypeFunc::make has a cache that makes this fast.) 2146 const TypeFunc* tf = TypeFunc::make(dest_method); 2147 int nargs = tf->domain_sig()->cnt() - TypeFunc::Parms; 2148 for (int j = 0; j < nargs; j++) { 2149 const Type *targ = tf->domain_sig()->field_at(j + TypeFunc::Parms); 2150 if( targ->basic_type() == T_DOUBLE ) { 2151 // If any parameters are doubles, they must be rounded before 2152 // the call, dstore_rounding does gvn.transform 2153 Node *arg = argument(j); 2154 arg = dstore_rounding(arg); 2155 set_argument(j, arg); 2156 } 2157 } 2158 } 2159 2160 /** 2161 * Record profiling data exact_kls for Node n with the type system so 2162 * that it can propagate it (speculation) 2163 * 2164 * @param n node that the type applies to 2165 * @param exact_kls type from profiling 2166 * @param maybe_null did profiling see null? 2167 * 2168 * @return node with improved type 2169 */ 2170 Node* GraphKit::record_profile_for_speculation(Node* n, ciKlass* exact_kls, bool maybe_null) { 2171 const Type* current_type = _gvn.type(n); 2172 assert(UseTypeSpeculation, "type speculation must be on"); 2173 2174 const TypePtr* speculative = current_type->speculative(); 2175 2176 // Should the klass from the profile be recorded in the speculative type? 2177 if (current_type->would_improve_type(exact_kls, jvms()->depth())) { 2178 const TypeKlassPtr* tklass = TypeKlassPtr::make(exact_kls); 2179 const TypeOopPtr* xtype = tklass->as_instance_type(); 2180 assert(xtype->klass_is_exact(), "Should be exact"); 2181 // Any reason to believe n is not null (from this profiling or a previous one)? 2182 const TypePtr* ptr = (maybe_null && current_type->speculative_maybe_null()) ? TypePtr::BOTTOM : TypePtr::NOTNULL; 2183 // record the new speculative type's depth 2184 speculative = xtype->cast_to_ptr_type(ptr->ptr())->is_ptr(); 2185 speculative = speculative->with_inline_depth(jvms()->depth()); 2186 } else if (current_type->would_improve_ptr(maybe_null)) { 2187 // Profiling report that null was never seen so we can change the 2188 // speculative type to non null ptr. 2189 assert(!maybe_null, "nothing to improve"); 2190 if (speculative == NULL) { 2191 speculative = TypePtr::NOTNULL; 2192 } else { 2193 const TypePtr* ptr = TypePtr::NOTNULL; 2194 speculative = speculative->cast_to_ptr_type(ptr->ptr())->is_ptr(); 2195 } 2196 } 2197 2198 if (speculative != current_type->speculative()) { 2199 // Build a type with a speculative type (what we think we know 2200 // about the type but will need a guard when we use it) 2201 const TypeOopPtr* spec_type = TypeOopPtr::make(TypePtr::BotPTR, Type::Offset::bottom, TypeOopPtr::InstanceBot, speculative); 2202 // We're changing the type, we need a new CheckCast node to carry 2203 // the new type. The new type depends on the control: what 2204 // profiling tells us is only valid from here as far as we can 2205 // tell. 2206 Node* cast = new CheckCastPPNode(control(), n, current_type->remove_speculative()->join_speculative(spec_type)); 2207 cast = _gvn.transform(cast); 2208 replace_in_map(n, cast); 2209 n = cast; 2210 } 2211 2212 return n; 2213 } 2214 2215 /** 2216 * Record profiling data from receiver profiling at an invoke with the 2217 * type system so that it can propagate it (speculation) 2218 * 2219 * @param n receiver node 2220 * 2221 * @return node with improved type 2222 */ 2223 Node* GraphKit::record_profiled_receiver_for_speculation(Node* n) { 2224 if (!UseTypeSpeculation) { 2225 return n; 2226 } 2227 ciKlass* exact_kls = profile_has_unique_klass(); 2228 bool maybe_null = true; 2229 if (java_bc() == Bytecodes::_checkcast || 2230 java_bc() == Bytecodes::_instanceof || 2231 java_bc() == Bytecodes::_aastore) { 2232 ciProfileData* data = method()->method_data()->bci_to_data(bci()); 2233 bool maybe_null = data == NULL ? true : data->as_BitData()->null_seen(); 2234 } 2235 return record_profile_for_speculation(n, exact_kls, maybe_null); 2236 return n; 2237 } 2238 2239 /** 2240 * Record profiling data from argument profiling at an invoke with the 2241 * type system so that it can propagate it (speculation) 2242 * 2243 * @param dest_method target method for the call 2244 * @param bc what invoke bytecode is this? 2245 */ 2246 void GraphKit::record_profiled_arguments_for_speculation(ciMethod* dest_method, Bytecodes::Code bc) { 2247 if (!UseTypeSpeculation) { 2248 return; 2249 } 2250 const TypeFunc* tf = TypeFunc::make(dest_method); 2251 int nargs = tf->domain_sig()->cnt() - TypeFunc::Parms; 2252 int skip = Bytecodes::has_receiver(bc) ? 1 : 0; 2253 for (int j = skip, i = 0; j < nargs && i < TypeProfileArgsLimit; j++) { 2254 const Type *targ = tf->domain_sig()->field_at(j + TypeFunc::Parms); 2255 if (targ->basic_type() == T_OBJECT || targ->basic_type() == T_ARRAY) { 2256 bool maybe_null = true; 2257 ciKlass* better_type = NULL; 2258 if (method()->argument_profiled_type(bci(), i, better_type, maybe_null)) { 2259 record_profile_for_speculation(argument(j), better_type, maybe_null); 2260 } 2261 i++; 2262 } 2263 } 2264 } 2265 2266 /** 2267 * Record profiling data from parameter profiling at an invoke with 2268 * the type system so that it can propagate it (speculation) 2269 */ 2270 void GraphKit::record_profiled_parameters_for_speculation() { 2271 if (!UseTypeSpeculation) { 2272 return; 2273 } 2274 for (int i = 0, j = 0; i < method()->arg_size() ; i++) { 2275 if (_gvn.type(local(i))->isa_oopptr()) { 2276 bool maybe_null = true; 2277 ciKlass* better_type = NULL; 2278 if (method()->parameter_profiled_type(j, better_type, maybe_null)) { 2279 record_profile_for_speculation(local(i), better_type, maybe_null); 2280 } 2281 j++; 2282 } 2283 } 2284 } 2285 2286 /** 2287 * Record profiling data from return value profiling at an invoke with 2288 * the type system so that it can propagate it (speculation) 2289 */ 2290 void GraphKit::record_profiled_return_for_speculation() { 2291 if (!UseTypeSpeculation) { 2292 return; 2293 } 2294 bool maybe_null = true; 2295 ciKlass* better_type = NULL; 2296 if (method()->return_profiled_type(bci(), better_type, maybe_null)) { 2297 // If profiling reports a single type for the return value, 2298 // feed it to the type system so it can propagate it as a 2299 // speculative type 2300 record_profile_for_speculation(stack(sp()-1), better_type, maybe_null); 2301 } 2302 } 2303 2304 void GraphKit::round_double_result(ciMethod* dest_method) { 2305 // A non-strict method may return a double value which has an extended 2306 // exponent, but this must not be visible in a caller which is 'strict' 2307 // If a strict caller invokes a non-strict callee, round a double result 2308 2309 BasicType result_type = dest_method->return_type()->basic_type(); 2310 assert( method() != NULL, "must have caller context"); 2311 if( result_type == T_DOUBLE && method()->is_strict() && !dest_method->is_strict() ) { 2312 // Destination method's return value is on top of stack 2313 // dstore_rounding() does gvn.transform 2314 Node *result = pop_pair(); 2315 result = dstore_rounding(result); 2316 push_pair(result); 2317 } 2318 } 2319 2320 // rounding for strict float precision conformance 2321 Node* GraphKit::precision_rounding(Node* n) { 2322 return UseStrictFP && _method->flags().is_strict() 2323 && UseSSE == 0 && Matcher::strict_fp_requires_explicit_rounding 2324 ? _gvn.transform( new RoundFloatNode(0, n) ) 2325 : n; 2326 } 2327 2328 // rounding for strict double precision conformance 2329 Node* GraphKit::dprecision_rounding(Node *n) { 2330 return UseStrictFP && _method->flags().is_strict() 2331 && UseSSE <= 1 && Matcher::strict_fp_requires_explicit_rounding 2332 ? _gvn.transform( new RoundDoubleNode(0, n) ) 2333 : n; 2334 } 2335 2336 // rounding for non-strict double stores 2337 Node* GraphKit::dstore_rounding(Node* n) { 2338 return Matcher::strict_fp_requires_explicit_rounding 2339 && UseSSE <= 1 2340 ? _gvn.transform( new RoundDoubleNode(0, n) ) 2341 : n; 2342 } 2343 2344 //============================================================================= 2345 // Generate a fast path/slow path idiom. Graph looks like: 2346 // [foo] indicates that 'foo' is a parameter 2347 // 2348 // [in] NULL 2349 // \ / 2350 // CmpP 2351 // Bool ne 2352 // If 2353 // / \ 2354 // True False-<2> 2355 // / | 2356 // / cast_not_null 2357 // Load | | ^ 2358 // [fast_test] | | 2359 // gvn to opt_test | | 2360 // / \ | <1> 2361 // True False | 2362 // | \\ | 2363 // [slow_call] \[fast_result] 2364 // Ctl Val \ \ 2365 // | \ \ 2366 // Catch <1> \ \ 2367 // / \ ^ \ \ 2368 // Ex No_Ex | \ \ 2369 // | \ \ | \ <2> \ 2370 // ... \ [slow_res] | | \ [null_result] 2371 // \ \--+--+--- | | 2372 // \ | / \ | / 2373 // --------Region Phi 2374 // 2375 //============================================================================= 2376 // Code is structured as a series of driver functions all called 'do_XXX' that 2377 // call a set of helper functions. Helper functions first, then drivers. 2378 2379 //------------------------------null_check_oop--------------------------------- 2380 // Null check oop. Set null-path control into Region in slot 3. 2381 // Make a cast-not-nullness use the other not-null control. Return cast. 2382 Node* GraphKit::null_check_oop(Node* value, Node* *null_control, 2383 bool never_see_null, 2384 bool safe_for_replace, 2385 bool speculative) { 2386 // Initial NULL check taken path 2387 (*null_control) = top(); 2388 Node* cast = null_check_common(value, T_OBJECT, false, null_control, speculative); 2389 2390 // Generate uncommon_trap: 2391 if (never_see_null && (*null_control) != top()) { 2392 // If we see an unexpected null at a check-cast we record it and force a 2393 // recompile; the offending check-cast will be compiled to handle NULLs. 2394 // If we see more than one offending BCI, then all checkcasts in the 2395 // method will be compiled to handle NULLs. 2396 PreserveJVMState pjvms(this); 2397 set_control(*null_control); 2398 replace_in_map(value, null()); 2399 Deoptimization::DeoptReason reason = Deoptimization::reason_null_check(speculative); 2400 uncommon_trap(reason, 2401 Deoptimization::Action_make_not_entrant); 2402 (*null_control) = top(); // NULL path is dead 2403 } 2404 if ((*null_control) == top() && safe_for_replace) { 2405 replace_in_map(value, cast); 2406 } 2407 2408 // Cast away null-ness on the result 2409 return cast; 2410 } 2411 2412 //------------------------------opt_iff---------------------------------------- 2413 // Optimize the fast-check IfNode. Set the fast-path region slot 2. 2414 // Return slow-path control. 2415 Node* GraphKit::opt_iff(Node* region, Node* iff) { 2416 IfNode *opt_iff = _gvn.transform(iff)->as_If(); 2417 2418 // Fast path taken; set region slot 2 2419 Node *fast_taken = _gvn.transform( new IfFalseNode(opt_iff) ); 2420 region->init_req(2,fast_taken); // Capture fast-control 2421 2422 // Fast path not-taken, i.e. slow path 2423 Node *slow_taken = _gvn.transform( new IfTrueNode(opt_iff) ); 2424 return slow_taken; 2425 } 2426 2427 //-----------------------------make_runtime_call------------------------------- 2428 Node* GraphKit::make_runtime_call(int flags, 2429 const TypeFunc* call_type, address call_addr, 2430 const char* call_name, 2431 const TypePtr* adr_type, 2432 // The following parms are all optional. 2433 // The first NULL ends the list. 2434 Node* parm0, Node* parm1, 2435 Node* parm2, Node* parm3, 2436 Node* parm4, Node* parm5, 2437 Node* parm6, Node* parm7) { 2438 // Slow-path call 2439 bool is_leaf = !(flags & RC_NO_LEAF); 2440 bool has_io = (!is_leaf && !(flags & RC_NO_IO)); 2441 if (call_name == NULL) { 2442 assert(!is_leaf, "must supply name for leaf"); 2443 call_name = OptoRuntime::stub_name(call_addr); 2444 } 2445 CallNode* call; 2446 if (!is_leaf) { 2447 call = new CallStaticJavaNode(call_type, call_addr, call_name, 2448 bci(), adr_type); 2449 } else if (flags & RC_NO_FP) { 2450 call = new CallLeafNoFPNode(call_type, call_addr, call_name, adr_type); 2451 } else { 2452 call = new CallLeafNode(call_type, call_addr, call_name, adr_type); 2453 } 2454 2455 // The following is similar to set_edges_for_java_call, 2456 // except that the memory effects of the call are restricted to AliasIdxRaw. 2457 2458 // Slow path call has no side-effects, uses few values 2459 bool wide_in = !(flags & RC_NARROW_MEM); 2460 bool wide_out = (C->get_alias_index(adr_type) == Compile::AliasIdxBot); 2461 2462 Node* prev_mem = NULL; 2463 if (wide_in) { 2464 prev_mem = set_predefined_input_for_runtime_call(call); 2465 } else { 2466 assert(!wide_out, "narrow in => narrow out"); 2467 Node* narrow_mem = memory(adr_type); 2468 prev_mem = reset_memory(); 2469 map()->set_memory(narrow_mem); 2470 set_predefined_input_for_runtime_call(call); 2471 } 2472 2473 // Hook each parm in order. Stop looking at the first NULL. 2474 if (parm0 != NULL) { call->init_req(TypeFunc::Parms+0, parm0); 2475 if (parm1 != NULL) { call->init_req(TypeFunc::Parms+1, parm1); 2476 if (parm2 != NULL) { call->init_req(TypeFunc::Parms+2, parm2); 2477 if (parm3 != NULL) { call->init_req(TypeFunc::Parms+3, parm3); 2478 if (parm4 != NULL) { call->init_req(TypeFunc::Parms+4, parm4); 2479 if (parm5 != NULL) { call->init_req(TypeFunc::Parms+5, parm5); 2480 if (parm6 != NULL) { call->init_req(TypeFunc::Parms+6, parm6); 2481 if (parm7 != NULL) { call->init_req(TypeFunc::Parms+7, parm7); 2482 /* close each nested if ===> */ } } } } } } } } 2483 assert(call->in(call->req()-1) != NULL, "must initialize all parms"); 2484 2485 if (!is_leaf) { 2486 // Non-leaves can block and take safepoints: 2487 add_safepoint_edges(call, ((flags & RC_MUST_THROW) != 0)); 2488 } 2489 // Non-leaves can throw exceptions: 2490 if (has_io) { 2491 call->set_req(TypeFunc::I_O, i_o()); 2492 } 2493 2494 if (flags & RC_UNCOMMON) { 2495 // Set the count to a tiny probability. Cf. Estimate_Block_Frequency. 2496 // (An "if" probability corresponds roughly to an unconditional count. 2497 // Sort of.) 2498 call->set_cnt(PROB_UNLIKELY_MAG(4)); 2499 } 2500 2501 Node* c = _gvn.transform(call); 2502 assert(c == call, "cannot disappear"); 2503 2504 if (wide_out) { 2505 // Slow path call has full side-effects. 2506 set_predefined_output_for_runtime_call(call); 2507 } else { 2508 // Slow path call has few side-effects, and/or sets few values. 2509 set_predefined_output_for_runtime_call(call, prev_mem, adr_type); 2510 } 2511 2512 if (has_io) { 2513 set_i_o(_gvn.transform(new ProjNode(call, TypeFunc::I_O))); 2514 } 2515 return call; 2516 2517 } 2518 2519 //------------------------------merge_memory----------------------------------- 2520 // Merge memory from one path into the current memory state. 2521 void GraphKit::merge_memory(Node* new_mem, Node* region, int new_path) { 2522 for (MergeMemStream mms(merged_memory(), new_mem->as_MergeMem()); mms.next_non_empty2(); ) { 2523 Node* old_slice = mms.force_memory(); 2524 Node* new_slice = mms.memory2(); 2525 if (old_slice != new_slice) { 2526 PhiNode* phi; 2527 if (old_slice->is_Phi() && old_slice->as_Phi()->region() == region) { 2528 if (mms.is_empty()) { 2529 // clone base memory Phi's inputs for this memory slice 2530 assert(old_slice == mms.base_memory(), "sanity"); 2531 phi = PhiNode::make(region, NULL, Type::MEMORY, mms.adr_type(C)); 2532 _gvn.set_type(phi, Type::MEMORY); 2533 for (uint i = 1; i < phi->req(); i++) { 2534 phi->init_req(i, old_slice->in(i)); 2535 } 2536 } else { 2537 phi = old_slice->as_Phi(); // Phi was generated already 2538 } 2539 } else { 2540 phi = PhiNode::make(region, old_slice, Type::MEMORY, mms.adr_type(C)); 2541 _gvn.set_type(phi, Type::MEMORY); 2542 } 2543 phi->set_req(new_path, new_slice); 2544 mms.set_memory(phi); 2545 } 2546 } 2547 } 2548 2549 //------------------------------make_slow_call_ex------------------------------ 2550 // Make the exception handler hookups for the slow call 2551 void GraphKit::make_slow_call_ex(Node* call, ciInstanceKlass* ex_klass, bool separate_io_proj, bool deoptimize) { 2552 if (stopped()) return; 2553 2554 // Make a catch node with just two handlers: fall-through and catch-all 2555 Node* i_o = _gvn.transform( new ProjNode(call, TypeFunc::I_O, separate_io_proj) ); 2556 Node* catc = _gvn.transform( new CatchNode(control(), i_o, 2) ); 2557 Node* norm = _gvn.transform( new CatchProjNode(catc, CatchProjNode::fall_through_index, CatchProjNode::no_handler_bci) ); 2558 Node* excp = _gvn.transform( new CatchProjNode(catc, CatchProjNode::catch_all_index, CatchProjNode::no_handler_bci) ); 2559 2560 { PreserveJVMState pjvms(this); 2561 set_control(excp); 2562 set_i_o(i_o); 2563 2564 if (excp != top()) { 2565 if (deoptimize) { 2566 // Deoptimize if an exception is caught. Don't construct exception state in this case. 2567 uncommon_trap(Deoptimization::Reason_unhandled, 2568 Deoptimization::Action_none); 2569 } else { 2570 // Create an exception state also. 2571 // Use an exact type if the caller has specified a specific exception. 2572 const Type* ex_type = TypeOopPtr::make_from_klass_unique(ex_klass)->cast_to_ptr_type(TypePtr::NotNull); 2573 Node* ex_oop = new CreateExNode(ex_type, control(), i_o); 2574 add_exception_state(make_exception_state(_gvn.transform(ex_oop))); 2575 } 2576 } 2577 } 2578 2579 // Get the no-exception control from the CatchNode. 2580 set_control(norm); 2581 } 2582 2583 static IfNode* gen_subtype_check_compare(Node* ctrl, Node* in1, Node* in2, BoolTest::mask test, float p, PhaseGVN* gvn, BasicType bt) { 2584 Node* cmp = NULL; 2585 switch(bt) { 2586 case T_INT: cmp = new CmpINode(in1, in2); break; 2587 case T_ADDRESS: cmp = new CmpPNode(in1, in2); break; 2588 default: fatal("unexpected comparison type %s", type2name(bt)); 2589 } 2590 gvn->transform(cmp); 2591 Node* bol = gvn->transform(new BoolNode(cmp, test)); 2592 IfNode* iff = new IfNode(ctrl, bol, p, COUNT_UNKNOWN); 2593 gvn->transform(iff); 2594 if (!bol->is_Con()) gvn->record_for_igvn(iff); 2595 return iff; 2596 } 2597 2598 2599 //-------------------------------gen_subtype_check----------------------------- 2600 // Generate a subtyping check. Takes as input the subtype and supertype. 2601 // Returns 2 values: sets the default control() to the true path and returns 2602 // the false path. Only reads invariant memory; sets no (visible) memory. 2603 // The PartialSubtypeCheckNode sets the hidden 1-word cache in the encoding 2604 // but that's not exposed to the optimizer. This call also doesn't take in an 2605 // Object; if you wish to check an Object you need to load the Object's class 2606 // prior to coming here. 2607 Node* Phase::gen_subtype_check(Node* subklass, Node* superklass, Node** ctrl, MergeMemNode* mem, PhaseGVN* gvn) { 2608 Compile* C = gvn->C; 2609 2610 if ((*ctrl)->is_top()) { 2611 return C->top(); 2612 } 2613 2614 // Fast check for identical types, perhaps identical constants. 2615 // The types can even be identical non-constants, in cases 2616 // involving Array.newInstance, Object.clone, etc. 2617 if (subklass == superklass) 2618 return C->top(); // false path is dead; no test needed. 2619 2620 if (gvn->type(superklass)->singleton()) { 2621 ciKlass* superk = gvn->type(superklass)->is_klassptr()->klass(); 2622 ciKlass* subk = gvn->type(subklass)->is_klassptr()->klass(); 2623 2624 // In the common case of an exact superklass, try to fold up the 2625 // test before generating code. You may ask, why not just generate 2626 // the code and then let it fold up? The answer is that the generated 2627 // code will necessarily include null checks, which do not always 2628 // completely fold away. If they are also needless, then they turn 2629 // into a performance loss. Example: 2630 // Foo[] fa = blah(); Foo x = fa[0]; fa[1] = x; 2631 // Here, the type of 'fa' is often exact, so the store check 2632 // of fa[1]=x will fold up, without testing the nullness of x. 2633 switch (C->static_subtype_check(superk, subk)) { 2634 case Compile::SSC_always_false: 2635 { 2636 Node* always_fail = *ctrl; 2637 *ctrl = gvn->C->top(); 2638 return always_fail; 2639 } 2640 case Compile::SSC_always_true: 2641 return C->top(); 2642 case Compile::SSC_easy_test: 2643 { 2644 // Just do a direct pointer compare and be done. 2645 IfNode* iff = gen_subtype_check_compare(*ctrl, subklass, superklass, BoolTest::eq, PROB_STATIC_FREQUENT, gvn, T_ADDRESS); 2646 *ctrl = gvn->transform(new IfTrueNode(iff)); 2647 return gvn->transform(new IfFalseNode(iff)); 2648 } 2649 case Compile::SSC_full_test: 2650 break; 2651 default: 2652 ShouldNotReachHere(); 2653 } 2654 } 2655 2656 // %%% Possible further optimization: Even if the superklass is not exact, 2657 // if the subklass is the unique subtype of the superklass, the check 2658 // will always succeed. We could leave a dependency behind to ensure this. 2659 2660 // First load the super-klass's check-offset 2661 Node *p1 = gvn->transform(new AddPNode(superklass, superklass, gvn->MakeConX(in_bytes(Klass::super_check_offset_offset())))); 2662 Node* m = mem->memory_at(C->get_alias_index(gvn->type(p1)->is_ptr())); 2663 Node *chk_off = gvn->transform(new LoadINode(NULL, m, p1, gvn->type(p1)->is_ptr(), TypeInt::INT, MemNode::unordered)); 2664 int cacheoff_con = in_bytes(Klass::secondary_super_cache_offset()); 2665 bool might_be_cache = (gvn->find_int_con(chk_off, cacheoff_con) == cacheoff_con); 2666 2667 // Load from the sub-klass's super-class display list, or a 1-word cache of 2668 // the secondary superclass list, or a failing value with a sentinel offset 2669 // if the super-klass is an interface or exceptionally deep in the Java 2670 // hierarchy and we have to scan the secondary superclass list the hard way. 2671 // Worst-case type is a little odd: NULL is allowed as a result (usually 2672 // klass loads can never produce a NULL). 2673 Node *chk_off_X = chk_off; 2674 #ifdef _LP64 2675 chk_off_X = gvn->transform(new ConvI2LNode(chk_off_X)); 2676 #endif 2677 Node *p2 = gvn->transform(new AddPNode(subklass,subklass,chk_off_X)); 2678 // For some types like interfaces the following loadKlass is from a 1-word 2679 // cache which is mutable so can't use immutable memory. Other 2680 // types load from the super-class display table which is immutable. 2681 m = mem->memory_at(C->get_alias_index(gvn->type(p2)->is_ptr())); 2682 Node *kmem = might_be_cache ? m : C->immutable_memory(); 2683 Node *nkls = gvn->transform(LoadKlassNode::make(*gvn, NULL, kmem, p2, gvn->type(p2)->is_ptr(), TypeKlassPtr::OBJECT_OR_NULL)); 2684 2685 // Compile speed common case: ARE a subtype and we canNOT fail 2686 if( superklass == nkls ) 2687 return C->top(); // false path is dead; no test needed. 2688 2689 // See if we get an immediate positive hit. Happens roughly 83% of the 2690 // time. Test to see if the value loaded just previously from the subklass 2691 // is exactly the superklass. 2692 IfNode *iff1 = gen_subtype_check_compare(*ctrl, superklass, nkls, BoolTest::eq, PROB_LIKELY(0.83f), gvn, T_ADDRESS); 2693 Node *iftrue1 = gvn->transform( new IfTrueNode (iff1)); 2694 *ctrl = gvn->transform(new IfFalseNode(iff1)); 2695 2696 // Compile speed common case: Check for being deterministic right now. If 2697 // chk_off is a constant and not equal to cacheoff then we are NOT a 2698 // subklass. In this case we need exactly the 1 test above and we can 2699 // return those results immediately. 2700 if (!might_be_cache) { 2701 Node* not_subtype_ctrl = *ctrl; 2702 *ctrl = iftrue1; // We need exactly the 1 test above 2703 return not_subtype_ctrl; 2704 } 2705 2706 // Gather the various success & failures here 2707 RegionNode *r_ok_subtype = new RegionNode(4); 2708 gvn->record_for_igvn(r_ok_subtype); 2709 RegionNode *r_not_subtype = new RegionNode(3); 2710 gvn->record_for_igvn(r_not_subtype); 2711 2712 r_ok_subtype->init_req(1, iftrue1); 2713 2714 // Check for immediate negative hit. Happens roughly 11% of the time (which 2715 // is roughly 63% of the remaining cases). Test to see if the loaded 2716 // check-offset points into the subklass display list or the 1-element 2717 // cache. If it points to the display (and NOT the cache) and the display 2718 // missed then it's not a subtype. 2719 Node *cacheoff = gvn->intcon(cacheoff_con); 2720 IfNode *iff2 = gen_subtype_check_compare(*ctrl, chk_off, cacheoff, BoolTest::ne, PROB_LIKELY(0.63f), gvn, T_INT); 2721 r_not_subtype->init_req(1, gvn->transform(new IfTrueNode (iff2))); 2722 *ctrl = gvn->transform(new IfFalseNode(iff2)); 2723 2724 // Check for self. Very rare to get here, but it is taken 1/3 the time. 2725 // No performance impact (too rare) but allows sharing of secondary arrays 2726 // which has some footprint reduction. 2727 IfNode *iff3 = gen_subtype_check_compare(*ctrl, subklass, superklass, BoolTest::eq, PROB_LIKELY(0.36f), gvn, T_ADDRESS); 2728 r_ok_subtype->init_req(2, gvn->transform(new IfTrueNode(iff3))); 2729 *ctrl = gvn->transform(new IfFalseNode(iff3)); 2730 2731 // -- Roads not taken here: -- 2732 // We could also have chosen to perform the self-check at the beginning 2733 // of this code sequence, as the assembler does. This would not pay off 2734 // the same way, since the optimizer, unlike the assembler, can perform 2735 // static type analysis to fold away many successful self-checks. 2736 // Non-foldable self checks work better here in second position, because 2737 // the initial primary superclass check subsumes a self-check for most 2738 // types. An exception would be a secondary type like array-of-interface, 2739 // which does not appear in its own primary supertype display. 2740 // Finally, we could have chosen to move the self-check into the 2741 // PartialSubtypeCheckNode, and from there out-of-line in a platform 2742 // dependent manner. But it is worthwhile to have the check here, 2743 // where it can be perhaps be optimized. The cost in code space is 2744 // small (register compare, branch). 2745 2746 // Now do a linear scan of the secondary super-klass array. Again, no real 2747 // performance impact (too rare) but it's gotta be done. 2748 // Since the code is rarely used, there is no penalty for moving it 2749 // out of line, and it can only improve I-cache density. 2750 // The decision to inline or out-of-line this final check is platform 2751 // dependent, and is found in the AD file definition of PartialSubtypeCheck. 2752 Node* psc = gvn->transform( 2753 new PartialSubtypeCheckNode(*ctrl, subklass, superklass)); 2754 2755 IfNode *iff4 = gen_subtype_check_compare(*ctrl, psc, gvn->zerocon(T_OBJECT), BoolTest::ne, PROB_FAIR, gvn, T_ADDRESS); 2756 r_not_subtype->init_req(2, gvn->transform(new IfTrueNode (iff4))); 2757 r_ok_subtype ->init_req(3, gvn->transform(new IfFalseNode(iff4))); 2758 2759 // Return false path; set default control to true path. 2760 *ctrl = gvn->transform(r_ok_subtype); 2761 return gvn->transform(r_not_subtype); 2762 } 2763 2764 // Profile-driven exact type check: 2765 Node* GraphKit::type_check_receiver(Node* receiver, ciKlass* klass, 2766 float prob, 2767 Node* *casted_receiver) { 2768 const TypeKlassPtr* tklass = TypeKlassPtr::make(klass); 2769 Node* recv_klass = load_object_klass(receiver); 2770 Node* want_klass = makecon(tklass); 2771 Node* cmp = _gvn.transform( new CmpPNode(recv_klass, want_klass) ); 2772 Node* bol = _gvn.transform( new BoolNode(cmp, BoolTest::eq) ); 2773 IfNode* iff = create_and_xform_if(control(), bol, prob, COUNT_UNKNOWN); 2774 set_control( _gvn.transform( new IfTrueNode (iff) )); 2775 Node* fail = _gvn.transform( new IfFalseNode(iff) ); 2776 2777 const TypeOopPtr* recv_xtype = tklass->as_instance_type(); 2778 assert(recv_xtype->klass_is_exact(), ""); 2779 2780 // Subsume downstream occurrences of receiver with a cast to 2781 // recv_xtype, since now we know what the type will be. 2782 Node* cast = new CheckCastPPNode(control(), receiver, recv_xtype); 2783 (*casted_receiver) = _gvn.transform(cast); 2784 // (User must make the replace_in_map call.) 2785 2786 return fail; 2787 } 2788 2789 2790 //------------------------------seems_never_null------------------------------- 2791 // Use null_seen information if it is available from the profile. 2792 // If we see an unexpected null at a type check we record it and force a 2793 // recompile; the offending check will be recompiled to handle NULLs. 2794 // If we see several offending BCIs, then all checks in the 2795 // method will be recompiled. 2796 bool GraphKit::seems_never_null(Node* obj, ciProfileData* data, bool& speculating) { 2797 speculating = !_gvn.type(obj)->speculative_maybe_null(); 2798 Deoptimization::DeoptReason reason = Deoptimization::reason_null_check(speculating); 2799 if (UncommonNullCast // Cutout for this technique 2800 && obj != null() // And not the -Xcomp stupid case? 2801 && !too_many_traps(reason) 2802 ) { 2803 if (speculating) { 2804 return true; 2805 } 2806 if (data == NULL) 2807 // Edge case: no mature data. Be optimistic here. 2808 return true; 2809 // If the profile has not seen a null, assume it won't happen. 2810 assert(java_bc() == Bytecodes::_checkcast || 2811 java_bc() == Bytecodes::_instanceof || 2812 java_bc() == Bytecodes::_aastore, "MDO must collect null_seen bit here"); 2813 return !data->as_BitData()->null_seen(); 2814 } 2815 speculating = false; 2816 return false; 2817 } 2818 2819 //------------------------maybe_cast_profiled_receiver------------------------- 2820 // If the profile has seen exactly one type, narrow to exactly that type. 2821 // Subsequent type checks will always fold up. 2822 Node* GraphKit::maybe_cast_profiled_receiver(Node* not_null_obj, 2823 ciKlass* require_klass, 2824 ciKlass* spec_klass, 2825 bool safe_for_replace) { 2826 if (!UseTypeProfile || !TypeProfileCasts) return NULL; 2827 2828 Deoptimization::DeoptReason reason = Deoptimization::reason_class_check(spec_klass != NULL); 2829 2830 // Make sure we haven't already deoptimized from this tactic. 2831 if (too_many_traps(reason) || too_many_recompiles(reason)) 2832 return NULL; 2833 2834 // (No, this isn't a call, but it's enough like a virtual call 2835 // to use the same ciMethod accessor to get the profile info...) 2836 // If we have a speculative type use it instead of profiling (which 2837 // may not help us) 2838 ciKlass* exact_kls = spec_klass == NULL ? profile_has_unique_klass() : spec_klass; 2839 if (exact_kls != NULL) {// no cast failures here 2840 if (require_klass == NULL || 2841 C->static_subtype_check(require_klass, exact_kls) == Compile::SSC_always_true) { 2842 // If we narrow the type to match what the type profile sees or 2843 // the speculative type, we can then remove the rest of the 2844 // cast. 2845 // This is a win, even if the exact_kls is very specific, 2846 // because downstream operations, such as method calls, 2847 // will often benefit from the sharper type. 2848 Node* exact_obj = not_null_obj; // will get updated in place... 2849 Node* slow_ctl = type_check_receiver(exact_obj, exact_kls, 1.0, 2850 &exact_obj); 2851 { PreserveJVMState pjvms(this); 2852 set_control(slow_ctl); 2853 uncommon_trap_exact(reason, Deoptimization::Action_maybe_recompile); 2854 } 2855 if (safe_for_replace) { 2856 replace_in_map(not_null_obj, exact_obj); 2857 } 2858 return exact_obj; 2859 } 2860 // assert(ssc == Compile::SSC_always_true)... except maybe the profile lied to us. 2861 } 2862 2863 return NULL; 2864 } 2865 2866 /** 2867 * Cast obj to type and emit guard unless we had too many traps here 2868 * already 2869 * 2870 * @param obj node being casted 2871 * @param type type to cast the node to 2872 * @param not_null true if we know node cannot be null 2873 */ 2874 Node* GraphKit::maybe_cast_profiled_obj(Node* obj, 2875 ciKlass* type, 2876 bool not_null) { 2877 if (stopped()) { 2878 return obj; 2879 } 2880 2881 // type == NULL if profiling tells us this object is always null 2882 if (type != NULL) { 2883 Deoptimization::DeoptReason class_reason = Deoptimization::Reason_speculate_class_check; 2884 Deoptimization::DeoptReason null_reason = Deoptimization::Reason_speculate_null_check; 2885 2886 if (!too_many_traps(null_reason) && !too_many_recompiles(null_reason) && 2887 !too_many_traps(class_reason) && 2888 !too_many_recompiles(class_reason)) { 2889 Node* not_null_obj = NULL; 2890 // not_null is true if we know the object is not null and 2891 // there's no need for a null check 2892 if (!not_null) { 2893 Node* null_ctl = top(); 2894 not_null_obj = null_check_oop(obj, &null_ctl, true, true, true); 2895 assert(null_ctl->is_top(), "no null control here"); 2896 } else { 2897 not_null_obj = obj; 2898 } 2899 2900 Node* exact_obj = not_null_obj; 2901 ciKlass* exact_kls = type; 2902 Node* slow_ctl = type_check_receiver(exact_obj, exact_kls, 1.0, 2903 &exact_obj); 2904 { 2905 PreserveJVMState pjvms(this); 2906 set_control(slow_ctl); 2907 uncommon_trap_exact(class_reason, Deoptimization::Action_maybe_recompile); 2908 } 2909 replace_in_map(not_null_obj, exact_obj); 2910 obj = exact_obj; 2911 } 2912 } else { 2913 if (!too_many_traps(Deoptimization::Reason_null_assert) && 2914 !too_many_recompiles(Deoptimization::Reason_null_assert)) { 2915 Node* exact_obj = null_assert(obj); 2916 replace_in_map(obj, exact_obj); 2917 obj = exact_obj; 2918 } 2919 } 2920 return obj; 2921 } 2922 2923 //-------------------------------gen_instanceof-------------------------------- 2924 // Generate an instance-of idiom. Used by both the instance-of bytecode 2925 // and the reflective instance-of call. 2926 Node* GraphKit::gen_instanceof(Node* obj, Node* superklass, bool safe_for_replace) { 2927 kill_dead_locals(); // Benefit all the uncommon traps 2928 assert( !stopped(), "dead parse path should be checked in callers" ); 2929 assert(!TypePtr::NULL_PTR->higher_equal(_gvn.type(superklass)->is_klassptr()), 2930 "must check for not-null not-dead klass in callers"); 2931 2932 // Make the merge point 2933 enum { _obj_path = 1, _fail_path, _null_path, PATH_LIMIT }; 2934 RegionNode* region = new RegionNode(PATH_LIMIT); 2935 Node* phi = new PhiNode(region, TypeInt::BOOL); 2936 C->set_has_split_ifs(true); // Has chance for split-if optimization 2937 2938 ciProfileData* data = NULL; 2939 if (java_bc() == Bytecodes::_instanceof) { // Only for the bytecode 2940 data = method()->method_data()->bci_to_data(bci()); 2941 } 2942 bool speculative_not_null = false; 2943 bool never_see_null = (ProfileDynamicTypes // aggressive use of profile 2944 && seems_never_null(obj, data, speculative_not_null)); 2945 2946 // Null check; get casted pointer; set region slot 3 2947 Node* null_ctl = top(); 2948 Node* not_null_obj = null_check_oop(obj, &null_ctl, never_see_null, safe_for_replace, speculative_not_null); 2949 2950 // If not_null_obj is dead, only null-path is taken 2951 if (stopped()) { // Doing instance-of on a NULL? 2952 set_control(null_ctl); 2953 return intcon(0); 2954 } 2955 region->init_req(_null_path, null_ctl); 2956 phi ->init_req(_null_path, intcon(0)); // Set null path value 2957 if (null_ctl == top()) { 2958 // Do this eagerly, so that pattern matches like is_diamond_phi 2959 // will work even during parsing. 2960 assert(_null_path == PATH_LIMIT-1, "delete last"); 2961 region->del_req(_null_path); 2962 phi ->del_req(_null_path); 2963 } 2964 2965 // Do we know the type check always succeed? 2966 bool known_statically = false; 2967 if (_gvn.type(superklass)->singleton()) { 2968 ciKlass* superk = _gvn.type(superklass)->is_klassptr()->klass(); 2969 ciKlass* subk = _gvn.type(obj)->is_oopptr()->klass(); 2970 if (subk != NULL && subk->is_loaded()) { 2971 int static_res = C->static_subtype_check(superk, subk); 2972 known_statically = (static_res == Compile::SSC_always_true || static_res == Compile::SSC_always_false); 2973 } 2974 } 2975 2976 if (known_statically && UseTypeSpeculation) { 2977 // If we know the type check always succeeds then we don't use the 2978 // profiling data at this bytecode. Don't lose it, feed it to the 2979 // type system as a speculative type. 2980 not_null_obj = record_profiled_receiver_for_speculation(not_null_obj); 2981 } else { 2982 const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr(); 2983 // We may not have profiling here or it may not help us. If we 2984 // have a speculative type use it to perform an exact cast. 2985 ciKlass* spec_obj_type = obj_type->speculative_type(); 2986 if (spec_obj_type != NULL || (ProfileDynamicTypes && data != NULL)) { 2987 Node* cast_obj = maybe_cast_profiled_receiver(not_null_obj, NULL, spec_obj_type, safe_for_replace); 2988 if (stopped()) { // Profile disagrees with this path. 2989 set_control(null_ctl); // Null is the only remaining possibility. 2990 return intcon(0); 2991 } 2992 if (cast_obj != NULL) { 2993 not_null_obj = cast_obj; 2994 } 2995 } 2996 } 2997 2998 // Load the object's klass 2999 Node* obj_klass = load_object_klass(not_null_obj); 3000 3001 // Generate the subtype check 3002 Node* not_subtype_ctrl = gen_subtype_check(obj_klass, superklass); 3003 3004 // Plug in the success path to the general merge in slot 1. 3005 region->init_req(_obj_path, control()); 3006 phi ->init_req(_obj_path, intcon(1)); 3007 3008 // Plug in the failing path to the general merge in slot 2. 3009 region->init_req(_fail_path, not_subtype_ctrl); 3010 phi ->init_req(_fail_path, intcon(0)); 3011 3012 // Return final merged results 3013 set_control( _gvn.transform(region) ); 3014 record_for_igvn(region); 3015 return _gvn.transform(phi); 3016 } 3017 3018 //-------------------------------gen_checkcast--------------------------------- 3019 // Generate a checkcast idiom. Used by both the checkcast bytecode and the 3020 // array store bytecode. Stack must be as-if BEFORE doing the bytecode so the 3021 // uncommon-trap paths work. Adjust stack after this call. 3022 // If failure_control is supplied and not null, it is filled in with 3023 // the control edge for the cast failure. Otherwise, an appropriate 3024 // uncommon trap or exception is thrown. 3025 Node* GraphKit::gen_checkcast(Node *obj, Node* superklass, 3026 Node* *failure_control) { 3027 kill_dead_locals(); // Benefit all the uncommon traps 3028 const TypeKlassPtr *tk = _gvn.type(superklass)->is_klassptr(); 3029 const Type *toop = TypeOopPtr::make_from_klass(tk->klass()); 3030 3031 // Fast cutout: Check the case that the cast is vacuously true. 3032 // This detects the common cases where the test will short-circuit 3033 // away completely. We do this before we perform the null check, 3034 // because if the test is going to turn into zero code, we don't 3035 // want a residual null check left around. (Causes a slowdown, 3036 // for example, in some objArray manipulations, such as a[i]=a[j].) 3037 if (tk->singleton()) { 3038 const TypeOopPtr* objtp = _gvn.type(obj)->isa_oopptr(); 3039 if (objtp != NULL && objtp->klass() != NULL) { 3040 switch (C->static_subtype_check(tk->klass(), objtp->klass())) { 3041 case Compile::SSC_always_true: 3042 // If we know the type check always succeed then we don't use 3043 // the profiling data at this bytecode. Don't lose it, feed it 3044 // to the type system as a speculative type. 3045 return record_profiled_receiver_for_speculation(obj); 3046 case Compile::SSC_always_false: 3047 // It needs a null check because a null will *pass* the cast check. 3048 // A non-null value will always produce an exception. 3049 return null_assert(obj); 3050 } 3051 } 3052 } 3053 3054 ciProfileData* data = NULL; 3055 bool safe_for_replace = false; 3056 if (failure_control == NULL && 3057 java_bc() != Bytecodes::_vbox && 3058 java_bc() != Bytecodes::_vunbox) { // use MDO in regular case only 3059 // Don't use MDO for the vunbox and vbox as no profile 3060 // information is recorded for that bytecode. 3061 // TOOD: Implement profiling for vunbox. 3062 assert(java_bc() == Bytecodes::_aastore || 3063 java_bc() == Bytecodes::_checkcast, 3064 "interpreter profiles type checks only for these BCs"); 3065 data = method()->method_data()->bci_to_data(bci()); 3066 safe_for_replace = true; 3067 } 3068 3069 // Make the merge point 3070 enum { _obj_path = 1, _null_path, PATH_LIMIT }; 3071 RegionNode* region = new RegionNode(PATH_LIMIT); 3072 Node* phi = new PhiNode(region, toop); 3073 C->set_has_split_ifs(true); // Has chance for split-if optimization 3074 3075 // Use null-cast information if it is available 3076 bool speculative_not_null = false; 3077 bool never_see_null = ((failure_control == NULL) // regular case only 3078 && java_bc() != Bytecodes::_vunbox // TODO: Implement profiling for vunbox and vbox. 3079 && java_bc() != Bytecodes::_vbox 3080 && seems_never_null(obj, data, speculative_not_null)); 3081 3082 // Null check; get casted pointer; set region slot 3 3083 Node* null_ctl = top(); 3084 Node* not_null_obj = null_check_oop(obj, &null_ctl, never_see_null, safe_for_replace, speculative_not_null); 3085 3086 // If not_null_obj is dead, only null-path is taken 3087 if (stopped()) { // Doing instance-of on a NULL? 3088 set_control(null_ctl); 3089 return null(); 3090 } 3091 region->init_req(_null_path, null_ctl); 3092 phi ->init_req(_null_path, null()); // Set null path value 3093 if (null_ctl == top()) { 3094 // Do this eagerly, so that pattern matches like is_diamond_phi 3095 // will work even during parsing. 3096 assert(_null_path == PATH_LIMIT-1, "delete last"); 3097 region->del_req(_null_path); 3098 phi ->del_req(_null_path); 3099 } 3100 3101 Node* cast_obj = NULL; 3102 if (tk->klass_is_exact()) { 3103 // The following optimization tries to statically cast the speculative type of the object 3104 // (for example obtained during profiling) to the type of the superklass and then do a 3105 // dynamic check that the type of the object is what we expect. To work correctly 3106 // for checkcast and aastore the type of superklass should be exact. 3107 const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr(); 3108 // We may not have profiling here or it may not help us. If we have 3109 // a speculative type use it to perform an exact cast. 3110 ciKlass* spec_obj_type = obj_type->speculative_type(); 3111 if (spec_obj_type != NULL || data != NULL) { 3112 cast_obj = maybe_cast_profiled_receiver(not_null_obj, tk->klass(), spec_obj_type, safe_for_replace); 3113 if (cast_obj != NULL) { 3114 if (failure_control != NULL) // failure is now impossible 3115 (*failure_control) = top(); 3116 // adjust the type of the phi to the exact klass: 3117 phi->raise_bottom_type(_gvn.type(cast_obj)->meet_speculative(TypePtr::NULL_PTR)); 3118 } 3119 } 3120 } 3121 3122 if (cast_obj == NULL) { 3123 // Load the object's klass 3124 Node* obj_klass = load_object_klass(not_null_obj); 3125 3126 // Generate the subtype check 3127 Node* not_subtype_ctrl = gen_subtype_check( obj_klass, superklass ); 3128 3129 // Plug in success path into the merge 3130 cast_obj = _gvn.transform(new CheckCastPPNode(control(), not_null_obj, toop)); 3131 // Failure path ends in uncommon trap (or may be dead - failure impossible) 3132 if (failure_control == NULL) { 3133 if (not_subtype_ctrl != top()) { // If failure is possible 3134 PreserveJVMState pjvms(this); 3135 set_control(not_subtype_ctrl); 3136 builtin_throw(Deoptimization::Reason_class_check, obj_klass); 3137 } 3138 } else { 3139 (*failure_control) = not_subtype_ctrl; 3140 } 3141 } 3142 3143 region->init_req(_obj_path, control()); 3144 phi ->init_req(_obj_path, cast_obj); 3145 3146 // A merge of NULL or Casted-NotNull obj 3147 Node* res = _gvn.transform(phi); 3148 3149 // Note I do NOT always 'replace_in_map(obj,result)' here. 3150 // if( tk->klass()->can_be_primary_super() ) 3151 // This means that if I successfully store an Object into an array-of-String 3152 // I 'forget' that the Object is really now known to be a String. I have to 3153 // do this because we don't have true union types for interfaces - if I store 3154 // a Baz into an array-of-Interface and then tell the optimizer it's an 3155 // Interface, I forget that it's also a Baz and cannot do Baz-like field 3156 // references to it. FIX THIS WHEN UNION TYPES APPEAR! 3157 // replace_in_map( obj, res ); 3158 3159 // Return final merged results 3160 set_control( _gvn.transform(region) ); 3161 record_for_igvn(region); 3162 return res; 3163 } 3164 3165 //------------------------------next_monitor----------------------------------- 3166 // What number should be given to the next monitor? 3167 int GraphKit::next_monitor() { 3168 int current = jvms()->monitor_depth()* C->sync_stack_slots(); 3169 int next = current + C->sync_stack_slots(); 3170 // Keep the toplevel high water mark current: 3171 if (C->fixed_slots() < next) C->set_fixed_slots(next); 3172 return current; 3173 } 3174 3175 //------------------------------insert_mem_bar--------------------------------- 3176 // Memory barrier to avoid floating things around 3177 // The membar serves as a pinch point between both control and all memory slices. 3178 Node* GraphKit::insert_mem_bar(int opcode, Node* precedent) { 3179 MemBarNode* mb = MemBarNode::make(C, opcode, Compile::AliasIdxBot, precedent); 3180 mb->init_req(TypeFunc::Control, control()); 3181 mb->init_req(TypeFunc::Memory, reset_memory()); 3182 Node* membar = _gvn.transform(mb); 3183 set_control(_gvn.transform(new ProjNode(membar, TypeFunc::Control))); 3184 set_all_memory_call(membar); 3185 return membar; 3186 } 3187 3188 //-------------------------insert_mem_bar_volatile---------------------------- 3189 // Memory barrier to avoid floating things around 3190 // The membar serves as a pinch point between both control and memory(alias_idx). 3191 // If you want to make a pinch point on all memory slices, do not use this 3192 // function (even with AliasIdxBot); use insert_mem_bar() instead. 3193 Node* GraphKit::insert_mem_bar_volatile(int opcode, int alias_idx, Node* precedent) { 3194 // When Parse::do_put_xxx updates a volatile field, it appends a series 3195 // of MemBarVolatile nodes, one for *each* volatile field alias category. 3196 // The first membar is on the same memory slice as the field store opcode. 3197 // This forces the membar to follow the store. (Bug 6500685 broke this.) 3198 // All the other membars (for other volatile slices, including AliasIdxBot, 3199 // which stands for all unknown volatile slices) are control-dependent 3200 // on the first membar. This prevents later volatile loads or stores 3201 // from sliding up past the just-emitted store. 3202 3203 MemBarNode* mb = MemBarNode::make(C, opcode, alias_idx, precedent); 3204 mb->set_req(TypeFunc::Control,control()); 3205 if (alias_idx == Compile::AliasIdxBot) { 3206 mb->set_req(TypeFunc::Memory, merged_memory()->base_memory()); 3207 } else { 3208 assert(!(opcode == Op_Initialize && alias_idx != Compile::AliasIdxRaw), "fix caller"); 3209 mb->set_req(TypeFunc::Memory, memory(alias_idx)); 3210 } 3211 Node* membar = _gvn.transform(mb); 3212 set_control(_gvn.transform(new ProjNode(membar, TypeFunc::Control))); 3213 if (alias_idx == Compile::AliasIdxBot) { 3214 merged_memory()->set_base_memory(_gvn.transform(new ProjNode(membar, TypeFunc::Memory))); 3215 } else { 3216 set_memory(_gvn.transform(new ProjNode(membar, TypeFunc::Memory)),alias_idx); 3217 } 3218 return membar; 3219 } 3220 3221 void GraphKit::insert_store_load_for_barrier() { 3222 Node* mem = reset_memory(); 3223 MemBarNode* mb = MemBarNode::make(C, Op_MemBarVolatile, Compile::AliasIdxBot); 3224 mb->init_req(TypeFunc::Control, control()); 3225 mb->init_req(TypeFunc::Memory, mem); 3226 Node* membar = _gvn.transform(mb); 3227 set_control(_gvn.transform(new ProjNode(membar, TypeFunc::Control))); 3228 Node* newmem = _gvn.transform(new ProjNode(membar, TypeFunc::Memory)); 3229 set_all_memory(mem); 3230 set_memory(newmem, Compile::AliasIdxRaw); 3231 } 3232 3233 3234 //------------------------------shared_lock------------------------------------ 3235 // Emit locking code. 3236 FastLockNode* GraphKit::shared_lock(Node* obj) { 3237 // bci is either a monitorenter bc or InvocationEntryBci 3238 // %%% SynchronizationEntryBCI is redundant; use InvocationEntryBci in interfaces 3239 assert(SynchronizationEntryBCI == InvocationEntryBci, ""); 3240 3241 if( !GenerateSynchronizationCode ) 3242 return NULL; // Not locking things? 3243 if (stopped()) // Dead monitor? 3244 return NULL; 3245 3246 assert(dead_locals_are_killed(), "should kill locals before sync. point"); 3247 3248 // Box the stack location 3249 Node* box = _gvn.transform(new BoxLockNode(next_monitor())); 3250 Node* mem = reset_memory(); 3251 3252 FastLockNode * flock = _gvn.transform(new FastLockNode(0, obj, box) )->as_FastLock(); 3253 if (UseBiasedLocking && PrintPreciseBiasedLockingStatistics) { 3254 // Create the counters for this fast lock. 3255 flock->create_lock_counter(sync_jvms()); // sync_jvms used to get current bci 3256 } 3257 3258 // Create the rtm counters for this fast lock if needed. 3259 flock->create_rtm_lock_counter(sync_jvms()); // sync_jvms used to get current bci 3260 3261 // Add monitor to debug info for the slow path. If we block inside the 3262 // slow path and de-opt, we need the monitor hanging around 3263 map()->push_monitor( flock ); 3264 3265 const TypeFunc *tf = LockNode::lock_type(); 3266 LockNode *lock = new LockNode(C, tf); 3267 3268 lock->init_req( TypeFunc::Control, control() ); 3269 lock->init_req( TypeFunc::Memory , mem ); 3270 lock->init_req( TypeFunc::I_O , top() ) ; // does no i/o 3271 lock->init_req( TypeFunc::FramePtr, frameptr() ); 3272 lock->init_req( TypeFunc::ReturnAdr, top() ); 3273 3274 lock->init_req(TypeFunc::Parms + 0, obj); 3275 lock->init_req(TypeFunc::Parms + 1, box); 3276 lock->init_req(TypeFunc::Parms + 2, flock); 3277 add_safepoint_edges(lock); 3278 3279 lock = _gvn.transform( lock )->as_Lock(); 3280 3281 // lock has no side-effects, sets few values 3282 set_predefined_output_for_runtime_call(lock, mem, TypeRawPtr::BOTTOM); 3283 3284 insert_mem_bar(Op_MemBarAcquireLock); 3285 3286 // Add this to the worklist so that the lock can be eliminated 3287 record_for_igvn(lock); 3288 3289 #ifndef PRODUCT 3290 if (PrintLockStatistics) { 3291 // Update the counter for this lock. Don't bother using an atomic 3292 // operation since we don't require absolute accuracy. 3293 lock->create_lock_counter(map()->jvms()); 3294 increment_counter(lock->counter()->addr()); 3295 } 3296 #endif 3297 3298 return flock; 3299 } 3300 3301 3302 //------------------------------shared_unlock---------------------------------- 3303 // Emit unlocking code. 3304 void GraphKit::shared_unlock(Node* box, Node* obj) { 3305 // bci is either a monitorenter bc or InvocationEntryBci 3306 // %%% SynchronizationEntryBCI is redundant; use InvocationEntryBci in interfaces 3307 assert(SynchronizationEntryBCI == InvocationEntryBci, ""); 3308 3309 if( !GenerateSynchronizationCode ) 3310 return; 3311 if (stopped()) { // Dead monitor? 3312 map()->pop_monitor(); // Kill monitor from debug info 3313 return; 3314 } 3315 3316 // Memory barrier to avoid floating things down past the locked region 3317 insert_mem_bar(Op_MemBarReleaseLock); 3318 3319 const TypeFunc *tf = OptoRuntime::complete_monitor_exit_Type(); 3320 UnlockNode *unlock = new UnlockNode(C, tf); 3321 #ifdef ASSERT 3322 unlock->set_dbg_jvms(sync_jvms()); 3323 #endif 3324 uint raw_idx = Compile::AliasIdxRaw; 3325 unlock->init_req( TypeFunc::Control, control() ); 3326 unlock->init_req( TypeFunc::Memory , memory(raw_idx) ); 3327 unlock->init_req( TypeFunc::I_O , top() ) ; // does no i/o 3328 unlock->init_req( TypeFunc::FramePtr, frameptr() ); 3329 unlock->init_req( TypeFunc::ReturnAdr, top() ); 3330 3331 unlock->init_req(TypeFunc::Parms + 0, obj); 3332 unlock->init_req(TypeFunc::Parms + 1, box); 3333 unlock = _gvn.transform(unlock)->as_Unlock(); 3334 3335 Node* mem = reset_memory(); 3336 3337 // unlock has no side-effects, sets few values 3338 set_predefined_output_for_runtime_call(unlock, mem, TypeRawPtr::BOTTOM); 3339 3340 // Kill monitor from debug info 3341 map()->pop_monitor( ); 3342 } 3343 3344 //-------------------------------get_layout_helper----------------------------- 3345 // If the given klass is a constant or known to be an array, 3346 // fetch the constant layout helper value into constant_value 3347 // and return (Node*)NULL. Otherwise, load the non-constant 3348 // layout helper value, and return the node which represents it. 3349 // This two-faced routine is useful because allocation sites 3350 // almost always feature constant types. 3351 Node* GraphKit::get_layout_helper(Node* klass_node, jint& constant_value) { 3352 const TypeKlassPtr* inst_klass = _gvn.type(klass_node)->isa_klassptr(); 3353 if (!StressReflectiveCode && inst_klass != NULL) { 3354 ciKlass* klass = inst_klass->klass(); 3355 bool xklass = inst_klass->klass_is_exact(); 3356 if (xklass || klass->is_array_klass()) { 3357 jint lhelper = klass->layout_helper(); 3358 if (lhelper != Klass::_lh_neutral_value) { 3359 constant_value = lhelper; 3360 return (Node*) NULL; 3361 } 3362 } 3363 } 3364 constant_value = Klass::_lh_neutral_value; // put in a known value 3365 Node* lhp = basic_plus_adr(klass_node, klass_node, in_bytes(Klass::layout_helper_offset())); 3366 return make_load(NULL, lhp, TypeInt::INT, T_INT, MemNode::unordered); 3367 } 3368 3369 // We just put in an allocate/initialize with a big raw-memory effect. 3370 // Hook selected additional alias categories on the initialization. 3371 static void hook_memory_on_init(GraphKit& kit, int alias_idx, 3372 MergeMemNode* init_in_merge, 3373 Node* init_out_raw) { 3374 DEBUG_ONLY(Node* init_in_raw = init_in_merge->base_memory()); 3375 assert(init_in_merge->memory_at(alias_idx) == init_in_raw, ""); 3376 3377 Node* prevmem = kit.memory(alias_idx); 3378 init_in_merge->set_memory_at(alias_idx, prevmem); 3379 kit.set_memory(init_out_raw, alias_idx); 3380 } 3381 3382 //---------------------------set_output_for_allocation------------------------- 3383 Node* GraphKit::set_output_for_allocation(AllocateNode* alloc, 3384 const TypeOopPtr* oop_type, 3385 bool deoptimize_on_exception) { 3386 int rawidx = Compile::AliasIdxRaw; 3387 alloc->set_req( TypeFunc::FramePtr, frameptr() ); 3388 add_safepoint_edges(alloc); 3389 Node* allocx = _gvn.transform(alloc); 3390 set_control( _gvn.transform(new ProjNode(allocx, TypeFunc::Control) ) ); 3391 // create memory projection for i_o 3392 set_memory ( _gvn.transform( new ProjNode(allocx, TypeFunc::Memory, true) ), rawidx ); 3393 make_slow_call_ex(allocx, env()->Throwable_klass(), true, deoptimize_on_exception); 3394 3395 // create a memory projection as for the normal control path 3396 Node* malloc = _gvn.transform(new ProjNode(allocx, TypeFunc::Memory)); 3397 set_memory(malloc, rawidx); 3398 3399 // a normal slow-call doesn't change i_o, but an allocation does 3400 // we create a separate i_o projection for the normal control path 3401 set_i_o(_gvn.transform( new ProjNode(allocx, TypeFunc::I_O, false) ) ); 3402 Node* rawoop = _gvn.transform( new ProjNode(allocx, TypeFunc::Parms) ); 3403 3404 // put in an initialization barrier 3405 InitializeNode* init = insert_mem_bar_volatile(Op_Initialize, rawidx, 3406 rawoop)->as_Initialize(); 3407 assert(alloc->initialization() == init, "2-way macro link must work"); 3408 assert(init ->allocation() == alloc, "2-way macro link must work"); 3409 { 3410 // Extract memory strands which may participate in the new object's 3411 // initialization, and source them from the new InitializeNode. 3412 // This will allow us to observe initializations when they occur, 3413 // and link them properly (as a group) to the InitializeNode. 3414 assert(init->in(InitializeNode::Memory) == malloc, ""); 3415 MergeMemNode* minit_in = MergeMemNode::make(malloc); 3416 init->set_req(InitializeNode::Memory, minit_in); 3417 record_for_igvn(minit_in); // fold it up later, if possible 3418 Node* minit_out = memory(rawidx); 3419 assert(minit_out->is_Proj() && minit_out->in(0) == init, ""); 3420 if (oop_type->isa_aryptr()) { 3421 const TypePtr* telemref = oop_type->add_offset(Type::OffsetBot); 3422 int elemidx = C->get_alias_index(telemref); 3423 hook_memory_on_init(*this, elemidx, minit_in, minit_out); 3424 } else if (oop_type->isa_instptr() || oop_type->isa_valuetypeptr()) { 3425 ciInstanceKlass* ik = oop_type->klass()->as_instance_klass(); 3426 for (int i = 0, len = ik->nof_nonstatic_fields(); i < len; i++) { 3427 ciField* field = ik->nonstatic_field_at(i); 3428 if (field->offset() >= TrackedInitializationLimit * HeapWordSize) 3429 continue; // do not bother to track really large numbers of fields 3430 // Find (or create) the alias category for this field: 3431 int fieldidx = C->alias_type(field)->index(); 3432 hook_memory_on_init(*this, fieldidx, minit_in, minit_out); 3433 } 3434 } 3435 } 3436 3437 // Cast raw oop to the real thing... 3438 Node* javaoop = new CheckCastPPNode(control(), rawoop, oop_type); 3439 javaoop = _gvn.transform(javaoop); 3440 C->set_recent_alloc(control(), javaoop); 3441 assert(just_allocated_object(control()) == javaoop, "just allocated"); 3442 3443 #ifdef ASSERT 3444 { // Verify that the AllocateNode::Ideal_allocation recognizers work: 3445 assert(AllocateNode::Ideal_allocation(rawoop, &_gvn) == alloc, 3446 "Ideal_allocation works"); 3447 assert(AllocateNode::Ideal_allocation(javaoop, &_gvn) == alloc, 3448 "Ideal_allocation works"); 3449 if (alloc->is_AllocateArray()) { 3450 assert(AllocateArrayNode::Ideal_array_allocation(rawoop, &_gvn) == alloc->as_AllocateArray(), 3451 "Ideal_allocation works"); 3452 assert(AllocateArrayNode::Ideal_array_allocation(javaoop, &_gvn) == alloc->as_AllocateArray(), 3453 "Ideal_allocation works"); 3454 } else { 3455 assert(alloc->in(AllocateNode::ALength)->is_top(), "no length, please"); 3456 } 3457 } 3458 #endif //ASSERT 3459 3460 return javaoop; 3461 } 3462 3463 //---------------------------new_instance-------------------------------------- 3464 // This routine takes a klass_node which may be constant (for a static type) 3465 // or may be non-constant (for reflective code). It will work equally well 3466 // for either, and the graph will fold nicely if the optimizer later reduces 3467 // the type to a constant. 3468 // The optional arguments are for specialized use by intrinsics: 3469 // - If 'extra_slow_test' if not null is an extra condition for the slow-path. 3470 // - If 'return_size_val', report the the total object size to the caller. 3471 // - deoptimize_on_exception controls how Java exceptions are handled (rethrow vs deoptimize) 3472 Node* GraphKit::new_instance(Node* klass_node, 3473 Node* extra_slow_test, 3474 Node* *return_size_val, 3475 bool deoptimize_on_exception) { 3476 // Compute size in doublewords 3477 // The size is always an integral number of doublewords, represented 3478 // as a positive bytewise size stored in the klass's layout_helper. 3479 // The layout_helper also encodes (in a low bit) the need for a slow path. 3480 jint layout_con = Klass::_lh_neutral_value; 3481 Node* layout_val = get_layout_helper(klass_node, layout_con); 3482 int layout_is_con = (layout_val == NULL); 3483 3484 if (extra_slow_test == NULL) extra_slow_test = intcon(0); 3485 // Generate the initial go-slow test. It's either ALWAYS (return a 3486 // Node for 1) or NEVER (return a NULL) or perhaps (in the reflective 3487 // case) a computed value derived from the layout_helper. 3488 Node* initial_slow_test = NULL; 3489 if (layout_is_con) { 3490 assert(!StressReflectiveCode, "stress mode does not use these paths"); 3491 bool must_go_slow = Klass::layout_helper_needs_slow_path(layout_con); 3492 initial_slow_test = must_go_slow ? intcon(1) : extra_slow_test; 3493 } else { // reflective case 3494 // This reflective path is used by Unsafe.allocateInstance. 3495 // (It may be stress-tested by specifying StressReflectiveCode.) 3496 // Basically, we want to get into the VM is there's an illegal argument. 3497 Node* bit = intcon(Klass::_lh_instance_slow_path_bit); 3498 initial_slow_test = _gvn.transform( new AndINode(layout_val, bit) ); 3499 if (extra_slow_test != intcon(0)) { 3500 initial_slow_test = _gvn.transform( new OrINode(initial_slow_test, extra_slow_test) ); 3501 } 3502 // (Macro-expander will further convert this to a Bool, if necessary.) 3503 } 3504 3505 // Find the size in bytes. This is easy; it's the layout_helper. 3506 // The size value must be valid even if the slow path is taken. 3507 Node* size = NULL; 3508 if (layout_is_con) { 3509 size = MakeConX(Klass::layout_helper_size_in_bytes(layout_con)); 3510 } else { // reflective case 3511 // This reflective path is used by clone and Unsafe.allocateInstance. 3512 size = ConvI2X(layout_val); 3513 3514 // Clear the low bits to extract layout_helper_size_in_bytes: 3515 assert((int)Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit"); 3516 Node* mask = MakeConX(~ (intptr_t)right_n_bits(LogBytesPerLong)); 3517 size = _gvn.transform( new AndXNode(size, mask) ); 3518 } 3519 if (return_size_val != NULL) { 3520 (*return_size_val) = size; 3521 } 3522 3523 // This is a precise notnull oop of the klass. 3524 // (Actually, it need not be precise if this is a reflective allocation.) 3525 // It's what we cast the result to. 3526 const TypeKlassPtr* tklass = _gvn.type(klass_node)->isa_klassptr(); 3527 if (!tklass) tklass = TypeKlassPtr::OBJECT; 3528 const TypeOopPtr* oop_type = tklass->as_instance_type(); 3529 3530 // Now generate allocation code 3531 3532 // The entire memory state is needed for slow path of the allocation 3533 // since GC and deoptimization can happen. 3534 Node *mem = reset_memory(); 3535 set_all_memory(mem); // Create new memory state 3536 3537 AllocateNode* alloc = new AllocateNode(C, AllocateNode::alloc_type(Type::TOP), 3538 control(), mem, i_o(), 3539 size, klass_node, 3540 initial_slow_test); 3541 3542 return set_output_for_allocation(alloc, oop_type, deoptimize_on_exception); 3543 } 3544 3545 //-------------------------------new_array------------------------------------- 3546 // helper for newarray, anewarray and vnewarray 3547 // The 'length' parameter is (obviously) the length of the array. 3548 // See comments on new_instance for the meaning of the other arguments. 3549 Node* GraphKit::new_array(Node* klass_node, // array klass (maybe variable) 3550 Node* length, // number of array elements 3551 int nargs, // number of arguments to push back for uncommon trap 3552 Node* *return_size_val, 3553 bool deoptimize_on_exception) { 3554 jint layout_con = Klass::_lh_neutral_value; 3555 Node* layout_val = get_layout_helper(klass_node, layout_con); 3556 int layout_is_con = (layout_val == NULL); 3557 3558 if (!layout_is_con && !StressReflectiveCode && 3559 !too_many_traps(Deoptimization::Reason_class_check)) { 3560 // This is a reflective array creation site. 3561 // Optimistically assume that it is a subtype of Object[], 3562 // so that we can fold up all the address arithmetic. 3563 layout_con = Klass::array_layout_helper(T_OBJECT); 3564 Node* cmp_lh = _gvn.transform( new CmpINode(layout_val, intcon(layout_con)) ); 3565 Node* bol_lh = _gvn.transform( new BoolNode(cmp_lh, BoolTest::eq) ); 3566 { BuildCutout unless(this, bol_lh, PROB_MAX); 3567 inc_sp(nargs); 3568 uncommon_trap(Deoptimization::Reason_class_check, 3569 Deoptimization::Action_maybe_recompile); 3570 } 3571 layout_val = NULL; 3572 layout_is_con = true; 3573 } 3574 3575 // Generate the initial go-slow test. Make sure we do not overflow 3576 // if length is huge (near 2Gig) or negative! We do not need 3577 // exact double-words here, just a close approximation of needed 3578 // double-words. We can't add any offset or rounding bits, lest we 3579 // take a size -1 of bytes and make it positive. Use an unsigned 3580 // compare, so negative sizes look hugely positive. 3581 int fast_size_limit = FastAllocateSizeLimit; 3582 if (layout_is_con) { 3583 assert(!StressReflectiveCode, "stress mode does not use these paths"); 3584 // Increase the size limit if we have exact knowledge of array type. 3585 int log2_esize = Klass::layout_helper_log2_element_size(layout_con); 3586 fast_size_limit <<= (LogBytesPerLong - log2_esize); 3587 } 3588 3589 Node* initial_slow_cmp = _gvn.transform( new CmpUNode( length, intcon( fast_size_limit ) ) ); 3590 Node* initial_slow_test = _gvn.transform( new BoolNode( initial_slow_cmp, BoolTest::gt ) ); 3591 3592 // --- Size Computation --- 3593 // array_size = round_to_heap(array_header + (length << elem_shift)); 3594 // where round_to_heap(x) == round_to(x, MinObjAlignmentInBytes) 3595 // and round_to(x, y) == ((x + y-1) & ~(y-1)) 3596 // The rounding mask is strength-reduced, if possible. 3597 int round_mask = MinObjAlignmentInBytes - 1; 3598 Node* header_size = NULL; 3599 int header_size_min = arrayOopDesc::base_offset_in_bytes(T_BYTE); 3600 // (T_BYTE has the weakest alignment and size restrictions...) 3601 if (layout_is_con) { 3602 int hsize = Klass::layout_helper_header_size(layout_con); 3603 int eshift = Klass::layout_helper_log2_element_size(layout_con); 3604 BasicType etype = Klass::layout_helper_element_type(layout_con); 3605 bool is_value_array = Klass::layout_helper_is_valueArray(layout_con); 3606 if ((round_mask & ~right_n_bits(eshift)) == 0) 3607 round_mask = 0; // strength-reduce it if it goes away completely 3608 assert(is_value_array || (hsize & right_n_bits(eshift)) == 0, "hsize is pre-rounded"); 3609 assert(header_size_min <= hsize, "generic minimum is smallest"); 3610 header_size_min = hsize; 3611 header_size = intcon(hsize + round_mask); 3612 } else { 3613 Node* hss = intcon(Klass::_lh_header_size_shift); 3614 Node* hsm = intcon(Klass::_lh_header_size_mask); 3615 Node* hsize = _gvn.transform( new URShiftINode(layout_val, hss) ); 3616 hsize = _gvn.transform( new AndINode(hsize, hsm) ); 3617 Node* mask = intcon(round_mask); 3618 header_size = _gvn.transform( new AddINode(hsize, mask) ); 3619 } 3620 3621 Node* elem_shift = NULL; 3622 if (layout_is_con) { 3623 int eshift = Klass::layout_helper_log2_element_size(layout_con); 3624 if (eshift != 0) 3625 elem_shift = intcon(eshift); 3626 } else { 3627 // There is no need to mask or shift this value. 3628 // The semantics of LShiftINode include an implicit mask to 0x1F. 3629 assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place"); 3630 elem_shift = layout_val; 3631 } 3632 3633 // Transition to native address size for all offset calculations: 3634 Node* lengthx = ConvI2X(length); 3635 Node* headerx = ConvI2X(header_size); 3636 #ifdef _LP64 3637 { const TypeInt* tilen = _gvn.find_int_type(length); 3638 if (tilen != NULL && tilen->_lo < 0) { 3639 // Add a manual constraint to a positive range. Cf. array_element_address. 3640 jint size_max = fast_size_limit; 3641 if (size_max > tilen->_hi) size_max = tilen->_hi; 3642 const TypeInt* tlcon = TypeInt::make(0, size_max, Type::WidenMin); 3643 3644 // Only do a narrow I2L conversion if the range check passed. 3645 IfNode* iff = new IfNode(control(), initial_slow_test, PROB_MIN, COUNT_UNKNOWN); 3646 _gvn.transform(iff); 3647 RegionNode* region = new RegionNode(3); 3648 _gvn.set_type(region, Type::CONTROL); 3649 lengthx = new PhiNode(region, TypeLong::LONG); 3650 _gvn.set_type(lengthx, TypeLong::LONG); 3651 3652 // Range check passed. Use ConvI2L node with narrow type. 3653 Node* passed = IfFalse(iff); 3654 region->init_req(1, passed); 3655 // Make I2L conversion control dependent to prevent it from 3656 // floating above the range check during loop optimizations. 3657 lengthx->init_req(1, C->constrained_convI2L(&_gvn, length, tlcon, passed)); 3658 3659 // Range check failed. Use ConvI2L with wide type because length may be invalid. 3660 region->init_req(2, IfTrue(iff)); 3661 lengthx->init_req(2, ConvI2X(length)); 3662 3663 set_control(region); 3664 record_for_igvn(region); 3665 record_for_igvn(lengthx); 3666 } 3667 } 3668 #endif 3669 3670 // Combine header size (plus rounding) and body size. Then round down. 3671 // This computation cannot overflow, because it is used only in two 3672 // places, one where the length is sharply limited, and the other 3673 // after a successful allocation. 3674 Node* abody = lengthx; 3675 if (elem_shift != NULL) 3676 abody = _gvn.transform( new LShiftXNode(lengthx, elem_shift) ); 3677 Node* size = _gvn.transform( new AddXNode(headerx, abody) ); 3678 if (round_mask != 0) { 3679 Node* mask = MakeConX(~round_mask); 3680 size = _gvn.transform( new AndXNode(size, mask) ); 3681 } 3682 // else if round_mask == 0, the size computation is self-rounding 3683 3684 if (return_size_val != NULL) { 3685 // This is the size 3686 (*return_size_val) = size; 3687 } 3688 3689 // Now generate allocation code 3690 3691 // The entire memory state is needed for slow path of the allocation 3692 // since GC and deoptimization can happen. 3693 Node *mem = reset_memory(); 3694 set_all_memory(mem); // Create new memory state 3695 3696 if (initial_slow_test->is_Bool()) { 3697 // Hide it behind a CMoveI, or else PhaseIdealLoop::split_up will get sick. 3698 initial_slow_test = initial_slow_test->as_Bool()->as_int_value(&_gvn); 3699 } 3700 3701 // Create the AllocateArrayNode and its result projections 3702 AllocateArrayNode* alloc 3703 = new AllocateArrayNode(C, AllocateArrayNode::alloc_type(TypeInt::INT), 3704 control(), mem, i_o(), 3705 size, klass_node, 3706 initial_slow_test, 3707 length); 3708 3709 // Cast to correct type. Note that the klass_node may be constant or not, 3710 // and in the latter case the actual array type will be inexact also. 3711 // (This happens via a non-constant argument to inline_native_newArray.) 3712 // In any case, the value of klass_node provides the desired array type. 3713 const TypeInt* length_type = _gvn.find_int_type(length); 3714 const TypeOopPtr* ary_type = _gvn.type(klass_node)->is_klassptr()->as_instance_type(); 3715 if (ary_type->isa_aryptr() && length_type != NULL) { 3716 // Try to get a better type than POS for the size 3717 ary_type = ary_type->is_aryptr()->cast_to_size(length_type); 3718 } 3719 3720 Node* javaoop = set_output_for_allocation(alloc, ary_type, deoptimize_on_exception); 3721 3722 // Cast length on remaining path to be as narrow as possible 3723 if (map()->find_edge(length) >= 0) { 3724 Node* ccast = alloc->make_ideal_length(ary_type, &_gvn); 3725 if (ccast != length) { 3726 _gvn.set_type_bottom(ccast); 3727 record_for_igvn(ccast); 3728 replace_in_map(length, ccast); 3729 } 3730 } 3731 3732 const TypeAryPtr* ary_ptr = ary_type->isa_aryptr(); 3733 ciKlass* elem_klass = ary_ptr != NULL ? ary_ptr->klass()->as_array_klass()->element_klass() : NULL; 3734 if (elem_klass != NULL && elem_klass->is_valuetype()) { 3735 ciValueKlass* vk = elem_klass->as_value_klass(); 3736 if (!vk->flatten_array()) { 3737 // Non-flattened value type arrays need to be initialized with default value type oops 3738 initialize_value_type_array(javaoop, length, elem_klass->as_value_klass(), nargs); 3739 InitializeNode* init = alloc->initialization(); 3740 init->set_complete_with_arraycopy(); 3741 } 3742 } 3743 3744 return javaoop; 3745 } 3746 3747 void GraphKit::initialize_value_type_array(Node* array, Node* length, ciValueKlass* vk, int nargs) { 3748 // Check for zero length 3749 Node* null_ctl = top(); 3750 null_check_common(length, T_INT, false, &null_ctl, false); 3751 if (stopped()) { 3752 set_control(null_ctl); // Always zero 3753 return; 3754 } 3755 3756 // Prepare for merging control and IO 3757 RegionNode* res_ctl = new RegionNode(3); 3758 res_ctl->init_req(1, null_ctl); 3759 gvn().set_type(res_ctl, Type::CONTROL); 3760 record_for_igvn(res_ctl); 3761 Node* res_io = PhiNode::make(res_ctl, i_o(), Type::ABIO); 3762 gvn().set_type(res_io, Type::ABIO); 3763 record_for_igvn(res_io); 3764 3765 // TODO comment 3766 SafePointNode* loop_map = NULL; 3767 { 3768 PreserveJVMState pjvms(this); 3769 // Create default value type and store it to memory 3770 Node* oop = ValueTypeNode::make_default(gvn(), vk); 3771 oop = oop->as_ValueType()->store_to_memory(this); 3772 3773 length = SubI(length, intcon(1)); 3774 add_predicate(nargs); 3775 RegionNode* loop = new RegionNode(3); 3776 loop->init_req(1, control()); 3777 gvn().set_type(loop, Type::CONTROL); 3778 record_for_igvn(loop); 3779 3780 Node* index = new PhiNode(loop, TypeInt::INT); 3781 index->init_req(1, intcon(0)); 3782 gvn().set_type(index, TypeInt::INT); 3783 record_for_igvn(index); 3784 3785 // TODO explain why we need to capture all memory 3786 PhiNode* mem = new PhiNode(loop, Type::MEMORY, TypePtr::BOTTOM); 3787 mem->init_req(1, reset_memory()); 3788 gvn().set_type(mem, Type::MEMORY); 3789 record_for_igvn(mem); 3790 set_control(loop); 3791 set_all_memory(mem); 3792 // Initialize array element 3793 Node* adr = array_element_address(array, index, T_OBJECT); 3794 const TypeOopPtr* elemtype = TypeValueTypePtr::make(TypePtr::NotNull, vk); 3795 Node* store = store_oop_to_array(control(), array, adr, TypeAryPtr::OOPS, oop, elemtype, T_OBJECT, MemNode::release); 3796 3797 IfNode* iff = create_and_map_if(control(), Bool(CmpI(index, length), BoolTest::lt), PROB_FAIR, COUNT_UNKNOWN); 3798 loop->init_req(2, IfTrue(iff)); 3799 mem->init_req(2, merged_memory()); 3800 index->init_req(2, AddI(index, intcon(1))); 3801 3802 res_ctl->init_req(2, IfFalse(iff)); 3803 res_io->set_req(2, i_o()); 3804 loop_map = stop(); 3805 } 3806 // Set merged control, IO and memory 3807 set_control(res_ctl); 3808 set_i_o(res_io); 3809 merge_memory(loop_map->merged_memory(), res_ctl, 2); 3810 3811 // Transform new memory Phis. 3812 for (MergeMemStream mms(merged_memory()); mms.next_non_empty();) { 3813 Node* phi = mms.memory(); 3814 if (phi->is_Phi() && phi->in(0) == res_ctl) { 3815 mms.set_memory(gvn().transform(phi)); 3816 } 3817 } 3818 } 3819 3820 // The following "Ideal_foo" functions are placed here because they recognize 3821 // the graph shapes created by the functions immediately above. 3822 3823 //---------------------------Ideal_allocation---------------------------------- 3824 // Given an oop pointer or raw pointer, see if it feeds from an AllocateNode. 3825 AllocateNode* AllocateNode::Ideal_allocation(Node* ptr, PhaseTransform* phase) { 3826 if (ptr == NULL) { // reduce dumb test in callers 3827 return NULL; 3828 } 3829 if (ptr->is_CheckCastPP()) { // strip only one raw-to-oop cast 3830 ptr = ptr->in(1); 3831 if (ptr == NULL) return NULL; 3832 } 3833 // Return NULL for allocations with several casts: 3834 // j.l.reflect.Array.newInstance(jobject, jint) 3835 // Object.clone() 3836 // to keep more precise type from last cast. 3837 if (ptr->is_Proj()) { 3838 Node* allo = ptr->in(0); 3839 if (allo != NULL && allo->is_Allocate()) { 3840 return allo->as_Allocate(); 3841 } 3842 } 3843 // Report failure to match. 3844 return NULL; 3845 } 3846 3847 // Fancy version which also strips off an offset (and reports it to caller). 3848 AllocateNode* AllocateNode::Ideal_allocation(Node* ptr, PhaseTransform* phase, 3849 intptr_t& offset) { 3850 Node* base = AddPNode::Ideal_base_and_offset(ptr, phase, offset); 3851 if (base == NULL) return NULL; 3852 return Ideal_allocation(base, phase); 3853 } 3854 3855 // Trace Initialize <- Proj[Parm] <- Allocate 3856 AllocateNode* InitializeNode::allocation() { 3857 Node* rawoop = in(InitializeNode::RawAddress); 3858 if (rawoop->is_Proj()) { 3859 Node* alloc = rawoop->in(0); 3860 if (alloc->is_Allocate()) { 3861 return alloc->as_Allocate(); 3862 } 3863 } 3864 return NULL; 3865 } 3866 3867 // Trace Allocate -> Proj[Parm] -> Initialize 3868 InitializeNode* AllocateNode::initialization() { 3869 ProjNode* rawoop = proj_out(AllocateNode::RawAddress); 3870 if (rawoop == NULL) return NULL; 3871 for (DUIterator_Fast imax, i = rawoop->fast_outs(imax); i < imax; i++) { 3872 Node* init = rawoop->fast_out(i); 3873 if (init->is_Initialize()) { 3874 assert(init->as_Initialize()->allocation() == this, "2-way link"); 3875 return init->as_Initialize(); 3876 } 3877 } 3878 return NULL; 3879 } 3880 3881 //----------------------------- loop predicates --------------------------- 3882 3883 //------------------------------add_predicate_impl---------------------------- 3884 void GraphKit::add_predicate_impl(Deoptimization::DeoptReason reason, int nargs) { 3885 // Too many traps seen? 3886 if (too_many_traps(reason)) { 3887 #ifdef ASSERT 3888 if (TraceLoopPredicate) { 3889 int tc = C->trap_count(reason); 3890 tty->print("too many traps=%s tcount=%d in ", 3891 Deoptimization::trap_reason_name(reason), tc); 3892 method()->print(); // which method has too many predicate traps 3893 tty->cr(); 3894 } 3895 #endif 3896 // We cannot afford to take more traps here, 3897 // do not generate predicate. 3898 return; 3899 } 3900 3901 Node *cont = _gvn.intcon(1); 3902 Node* opq = _gvn.transform(new Opaque1Node(C, cont)); 3903 Node *bol = _gvn.transform(new Conv2BNode(opq)); 3904 IfNode* iff = create_and_map_if(control(), bol, PROB_MAX, COUNT_UNKNOWN); 3905 Node* iffalse = _gvn.transform(new IfFalseNode(iff)); 3906 C->add_predicate_opaq(opq); 3907 { 3908 PreserveJVMState pjvms(this); 3909 set_control(iffalse); 3910 inc_sp(nargs); 3911 uncommon_trap(reason, Deoptimization::Action_maybe_recompile); 3912 } 3913 Node* iftrue = _gvn.transform(new IfTrueNode(iff)); 3914 set_control(iftrue); 3915 } 3916 3917 //------------------------------add_predicate--------------------------------- 3918 void GraphKit::add_predicate(int nargs) { 3919 if (UseLoopPredicate) { 3920 add_predicate_impl(Deoptimization::Reason_predicate, nargs); 3921 } 3922 // loop's limit check predicate should be near the loop. 3923 if (LoopLimitCheck) { 3924 add_predicate_impl(Deoptimization::Reason_loop_limit_check, nargs); 3925 } 3926 } 3927 3928 //----------------------------- store barriers ---------------------------- 3929 #define __ ideal. 3930 3931 void GraphKit::sync_kit(IdealKit& ideal) { 3932 set_all_memory(__ merged_memory()); 3933 set_i_o(__ i_o()); 3934 set_control(__ ctrl()); 3935 } 3936 3937 void GraphKit::final_sync(IdealKit& ideal) { 3938 // Final sync IdealKit and graphKit. 3939 sync_kit(ideal); 3940 } 3941 3942 Node* GraphKit::byte_map_base_node() { 3943 // Get base of card map 3944 CardTableModRefBS* ct = 3945 barrier_set_cast<CardTableModRefBS>(Universe::heap()->barrier_set()); 3946 assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust users of this code"); 3947 if (ct->byte_map_base != NULL) { 3948 return makecon(TypeRawPtr::make((address)ct->byte_map_base)); 3949 } else { 3950 return null(); 3951 } 3952 } 3953 3954 // vanilla/CMS post barrier 3955 // Insert a write-barrier store. This is to let generational GC work; we have 3956 // to flag all oop-stores before the next GC point. 3957 void GraphKit::write_barrier_post(Node* oop_store, 3958 Node* obj, 3959 Node* adr, 3960 uint adr_idx, 3961 Node* val, 3962 bool use_precise) { 3963 // No store check needed if we're storing a NULL or an old object 3964 // (latter case is probably a string constant). The concurrent 3965 // mark sweep garbage collector, however, needs to have all nonNull 3966 // oop updates flagged via card-marks. 3967 if (val != NULL && val->is_Con()) { 3968 // must be either an oop or NULL 3969 const Type* t = val->bottom_type(); 3970 if (t == TypePtr::NULL_PTR || t == Type::TOP) 3971 // stores of null never (?) need barriers 3972 return; 3973 } 3974 3975 if (use_ReduceInitialCardMarks() 3976 && obj == just_allocated_object(control())) { 3977 // We can skip marks on a freshly-allocated object in Eden. 3978 // Keep this code in sync with new_store_pre_barrier() in runtime.cpp. 3979 // That routine informs GC to take appropriate compensating steps, 3980 // upon a slow-path allocation, so as to make this card-mark 3981 // elision safe. 3982 return; 3983 } 3984 3985 if (!use_precise) { 3986 // All card marks for a (non-array) instance are in one place: 3987 adr = obj; 3988 } 3989 // (Else it's an array (or unknown), and we want more precise card marks.) 3990 assert(adr != NULL, ""); 3991 3992 IdealKit ideal(this, true); 3993 3994 // Convert the pointer to an int prior to doing math on it 3995 Node* cast = __ CastPX(__ ctrl(), adr); 3996 3997 // Divide by card size 3998 assert(Universe::heap()->barrier_set()->is_a(BarrierSet::CardTableModRef), 3999 "Only one we handle so far."); 4000 Node* card_offset = __ URShiftX( cast, __ ConI(CardTableModRefBS::card_shift) ); 4001 4002 // Combine card table base and card offset 4003 Node* card_adr = __ AddP(__ top(), byte_map_base_node(), card_offset ); 4004 4005 // Get the alias_index for raw card-mark memory 4006 int adr_type = Compile::AliasIdxRaw; 4007 Node* zero = __ ConI(0); // Dirty card value 4008 BasicType bt = T_BYTE; 4009 4010 if (UseConcMarkSweepGC && UseCondCardMark) { 4011 insert_store_load_for_barrier(); 4012 __ sync_kit(this); 4013 } 4014 4015 if (UseCondCardMark) { 4016 // The classic GC reference write barrier is typically implemented 4017 // as a store into the global card mark table. Unfortunately 4018 // unconditional stores can result in false sharing and excessive 4019 // coherence traffic as well as false transactional aborts. 4020 // UseCondCardMark enables MP "polite" conditional card mark 4021 // stores. In theory we could relax the load from ctrl() to 4022 // no_ctrl, but that doesn't buy much latitude. 4023 Node* card_val = __ load( __ ctrl(), card_adr, TypeInt::BYTE, bt, adr_type); 4024 __ if_then(card_val, BoolTest::ne, zero); 4025 } 4026 4027 // Smash zero into card 4028 if( !UseConcMarkSweepGC ) { 4029 __ store(__ ctrl(), card_adr, zero, bt, adr_type, MemNode::unordered); 4030 } else { 4031 // Specialized path for CM store barrier 4032 __ storeCM(__ ctrl(), card_adr, zero, oop_store, adr_idx, bt, adr_type); 4033 } 4034 4035 if (UseCondCardMark) { 4036 __ end_if(); 4037 } 4038 4039 // Final sync IdealKit and GraphKit. 4040 final_sync(ideal); 4041 } 4042 /* 4043 * Determine if the G1 pre-barrier can be removed. The pre-barrier is 4044 * required by SATB to make sure all objects live at the start of the 4045 * marking are kept alive, all reference updates need to any previous 4046 * reference stored before writing. 4047 * 4048 * If the previous value is NULL there is no need to save the old value. 4049 * References that are NULL are filtered during runtime by the barrier 4050 * code to avoid unnecessary queuing. 4051 * 4052 * However in the case of newly allocated objects it might be possible to 4053 * prove that the reference about to be overwritten is NULL during compile 4054 * time and avoid adding the barrier code completely. 4055 * 4056 * The compiler needs to determine that the object in which a field is about 4057 * to be written is newly allocated, and that no prior store to the same field 4058 * has happened since the allocation. 4059 * 4060 * Returns true if the pre-barrier can be removed 4061 */ 4062 bool GraphKit::g1_can_remove_pre_barrier(PhaseTransform* phase, Node* adr, 4063 BasicType bt, uint adr_idx) { 4064 intptr_t offset = 0; 4065 Node* base = AddPNode::Ideal_base_and_offset(adr, phase, offset); 4066 AllocateNode* alloc = AllocateNode::Ideal_allocation(base, phase); 4067 4068 if (offset == Type::OffsetBot) { 4069 return false; // cannot unalias unless there are precise offsets 4070 } 4071 4072 if (alloc == NULL) { 4073 return false; // No allocation found 4074 } 4075 4076 intptr_t size_in_bytes = type2aelembytes(bt); 4077 4078 Node* mem = memory(adr_idx); // start searching here... 4079 4080 for (int cnt = 0; cnt < 50; cnt++) { 4081 4082 if (mem->is_Store()) { 4083 4084 Node* st_adr = mem->in(MemNode::Address); 4085 intptr_t st_offset = 0; 4086 Node* st_base = AddPNode::Ideal_base_and_offset(st_adr, phase, st_offset); 4087 4088 if (st_base == NULL) { 4089 break; // inscrutable pointer 4090 } 4091 4092 // Break we have found a store with same base and offset as ours so break 4093 if (st_base == base && st_offset == offset) { 4094 break; 4095 } 4096 4097 if (st_offset != offset && st_offset != Type::OffsetBot) { 4098 const int MAX_STORE = BytesPerLong; 4099 if (st_offset >= offset + size_in_bytes || 4100 st_offset <= offset - MAX_STORE || 4101 st_offset <= offset - mem->as_Store()->memory_size()) { 4102 // Success: The offsets are provably independent. 4103 // (You may ask, why not just test st_offset != offset and be done? 4104 // The answer is that stores of different sizes can co-exist 4105 // in the same sequence of RawMem effects. We sometimes initialize 4106 // a whole 'tile' of array elements with a single jint or jlong.) 4107 mem = mem->in(MemNode::Memory); 4108 continue; // advance through independent store memory 4109 } 4110 } 4111 4112 if (st_base != base 4113 && MemNode::detect_ptr_independence(base, alloc, st_base, 4114 AllocateNode::Ideal_allocation(st_base, phase), 4115 phase)) { 4116 // Success: The bases are provably independent. 4117 mem = mem->in(MemNode::Memory); 4118 continue; // advance through independent store memory 4119 } 4120 } else if (mem->is_Proj() && mem->in(0)->is_Initialize()) { 4121 4122 InitializeNode* st_init = mem->in(0)->as_Initialize(); 4123 AllocateNode* st_alloc = st_init->allocation(); 4124 4125 // Make sure that we are looking at the same allocation site. 4126 // The alloc variable is guaranteed to not be null here from earlier check. 4127 if (alloc == st_alloc) { 4128 // Check that the initialization is storing NULL so that no previous store 4129 // has been moved up and directly write a reference 4130 Node* captured_store = st_init->find_captured_store(offset, 4131 type2aelembytes(T_OBJECT), 4132 phase); 4133 if (captured_store == NULL || captured_store == st_init->zero_memory()) { 4134 return true; 4135 } 4136 } 4137 } 4138 4139 // Unless there is an explicit 'continue', we must bail out here, 4140 // because 'mem' is an inscrutable memory state (e.g., a call). 4141 break; 4142 } 4143 4144 return false; 4145 } 4146 4147 // G1 pre/post barriers 4148 void GraphKit::g1_write_barrier_pre(bool do_load, 4149 Node* obj, 4150 Node* adr, 4151 uint alias_idx, 4152 Node* val, 4153 const TypeOopPtr* val_type, 4154 Node* pre_val, 4155 BasicType bt) { 4156 4157 // Some sanity checks 4158 // Note: val is unused in this routine. 4159 4160 if (do_load) { 4161 // We need to generate the load of the previous value 4162 assert(obj != NULL, "must have a base"); 4163 assert(adr != NULL, "where are loading from?"); 4164 assert(pre_val == NULL, "loaded already?"); 4165 assert(val_type != NULL, "need a type"); 4166 4167 if (use_ReduceInitialCardMarks() 4168 && g1_can_remove_pre_barrier(&_gvn, adr, bt, alias_idx)) { 4169 return; 4170 } 4171 4172 } else { 4173 // In this case both val_type and alias_idx are unused. 4174 assert(pre_val != NULL, "must be loaded already"); 4175 // Nothing to be done if pre_val is null. 4176 if (pre_val->bottom_type() == TypePtr::NULL_PTR) return; 4177 assert(pre_val->bottom_type()->basic_type() == T_OBJECT, "or we shouldn't be here"); 4178 } 4179 assert(bt == T_OBJECT || bt == T_VALUETYPE, "or we shouldn't be here"); 4180 4181 IdealKit ideal(this, true); 4182 4183 Node* tls = __ thread(); // ThreadLocalStorage 4184 4185 Node* no_ctrl = NULL; 4186 Node* no_base = __ top(); 4187 Node* zero = __ ConI(0); 4188 Node* zeroX = __ ConX(0); 4189 4190 float likely = PROB_LIKELY(0.999); 4191 float unlikely = PROB_UNLIKELY(0.999); 4192 4193 BasicType active_type = in_bytes(SATBMarkQueue::byte_width_of_active()) == 4 ? T_INT : T_BYTE; 4194 assert(in_bytes(SATBMarkQueue::byte_width_of_active()) == 4 || in_bytes(SATBMarkQueue::byte_width_of_active()) == 1, "flag width"); 4195 4196 // Offsets into the thread 4197 const int marking_offset = in_bytes(JavaThread::satb_mark_queue_offset() + // 648 4198 SATBMarkQueue::byte_offset_of_active()); 4199 const int index_offset = in_bytes(JavaThread::satb_mark_queue_offset() + // 656 4200 SATBMarkQueue::byte_offset_of_index()); 4201 const int buffer_offset = in_bytes(JavaThread::satb_mark_queue_offset() + // 652 4202 SATBMarkQueue::byte_offset_of_buf()); 4203 4204 // Now the actual pointers into the thread 4205 Node* marking_adr = __ AddP(no_base, tls, __ ConX(marking_offset)); 4206 Node* buffer_adr = __ AddP(no_base, tls, __ ConX(buffer_offset)); 4207 Node* index_adr = __ AddP(no_base, tls, __ ConX(index_offset)); 4208 4209 // Now some of the values 4210 Node* marking = __ load(__ ctrl(), marking_adr, TypeInt::INT, active_type, Compile::AliasIdxRaw); 4211 4212 // if (!marking) 4213 __ if_then(marking, BoolTest::ne, zero, unlikely); { 4214 BasicType index_bt = TypeX_X->basic_type(); 4215 assert(sizeof(size_t) == type2aelembytes(index_bt), "Loading G1 SATBMarkQueue::_index with wrong size."); 4216 Node* index = __ load(__ ctrl(), index_adr, TypeX_X, index_bt, Compile::AliasIdxRaw); 4217 4218 if (do_load) { 4219 // load original value 4220 // alias_idx correct?? 4221 pre_val = __ load(__ ctrl(), adr, val_type, bt, alias_idx); 4222 } 4223 4224 // if (pre_val != NULL) 4225 __ if_then(pre_val, BoolTest::ne, null()); { 4226 Node* buffer = __ load(__ ctrl(), buffer_adr, TypeRawPtr::NOTNULL, T_ADDRESS, Compile::AliasIdxRaw); 4227 4228 // is the queue for this thread full? 4229 __ if_then(index, BoolTest::ne, zeroX, likely); { 4230 4231 // decrement the index 4232 Node* next_index = _gvn.transform(new SubXNode(index, __ ConX(sizeof(intptr_t)))); 4233 4234 // Now get the buffer location we will log the previous value into and store it 4235 Node *log_addr = __ AddP(no_base, buffer, next_index); 4236 __ store(__ ctrl(), log_addr, pre_val, T_OBJECT, Compile::AliasIdxRaw, MemNode::unordered); 4237 // update the index 4238 __ store(__ ctrl(), index_adr, next_index, index_bt, Compile::AliasIdxRaw, MemNode::unordered); 4239 4240 } __ else_(); { 4241 4242 // logging buffer is full, call the runtime 4243 const TypeFunc *tf = OptoRuntime::g1_wb_pre_Type(); 4244 __ make_leaf_call(tf, CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), "g1_wb_pre", pre_val, tls); 4245 } __ end_if(); // (!index) 4246 } __ end_if(); // (pre_val != NULL) 4247 } __ end_if(); // (!marking) 4248 4249 // Final sync IdealKit and GraphKit. 4250 final_sync(ideal); 4251 } 4252 4253 /* 4254 * G1 similar to any GC with a Young Generation requires a way to keep track of 4255 * references from Old Generation to Young Generation to make sure all live 4256 * objects are found. G1 also requires to keep track of object references 4257 * between different regions to enable evacuation of old regions, which is done 4258 * as part of mixed collections. References are tracked in remembered sets and 4259 * is continuously updated as reference are written to with the help of the 4260 * post-barrier. 4261 * 4262 * To reduce the number of updates to the remembered set the post-barrier 4263 * filters updates to fields in objects located in the Young Generation, 4264 * the same region as the reference, when the NULL is being written or 4265 * if the card is already marked as dirty by an earlier write. 4266 * 4267 * Under certain circumstances it is possible to avoid generating the 4268 * post-barrier completely if it is possible during compile time to prove 4269 * the object is newly allocated and that no safepoint exists between the 4270 * allocation and the store. 4271 * 4272 * In the case of slow allocation the allocation code must handle the barrier 4273 * as part of the allocation in the case the allocated object is not located 4274 * in the nursery, this would happen for humongous objects. This is similar to 4275 * how CMS is required to handle this case, see the comments for the method 4276 * CollectedHeap::new_store_pre_barrier and OptoRuntime::new_store_pre_barrier. 4277 * A deferred card mark is required for these objects and handled in the above 4278 * mentioned methods. 4279 * 4280 * Returns true if the post barrier can be removed 4281 */ 4282 bool GraphKit::g1_can_remove_post_barrier(PhaseTransform* phase, Node* store, 4283 Node* adr) { 4284 intptr_t offset = 0; 4285 Node* base = AddPNode::Ideal_base_and_offset(adr, phase, offset); 4286 AllocateNode* alloc = AllocateNode::Ideal_allocation(base, phase); 4287 4288 if (offset == Type::OffsetBot) { 4289 return false; // cannot unalias unless there are precise offsets 4290 } 4291 4292 if (alloc == NULL) { 4293 return false; // No allocation found 4294 } 4295 4296 // Start search from Store node 4297 Node* mem = store->in(MemNode::Control); 4298 if (mem->is_Proj() && mem->in(0)->is_Initialize()) { 4299 4300 InitializeNode* st_init = mem->in(0)->as_Initialize(); 4301 AllocateNode* st_alloc = st_init->allocation(); 4302 4303 // Make sure we are looking at the same allocation 4304 if (alloc == st_alloc) { 4305 return true; 4306 } 4307 } 4308 4309 return false; 4310 } 4311 4312 // 4313 // Update the card table and add card address to the queue 4314 // 4315 void GraphKit::g1_mark_card(IdealKit& ideal, 4316 Node* card_adr, 4317 Node* oop_store, 4318 uint oop_alias_idx, 4319 Node* index, 4320 Node* index_adr, 4321 Node* buffer, 4322 const TypeFunc* tf) { 4323 4324 Node* zero = __ ConI(0); 4325 Node* zeroX = __ ConX(0); 4326 Node* no_base = __ top(); 4327 BasicType card_bt = T_BYTE; 4328 // Smash zero into card. MUST BE ORDERED WRT TO STORE 4329 __ storeCM(__ ctrl(), card_adr, zero, oop_store, oop_alias_idx, card_bt, Compile::AliasIdxRaw); 4330 4331 // Now do the queue work 4332 __ if_then(index, BoolTest::ne, zeroX); { 4333 4334 Node* next_index = _gvn.transform(new SubXNode(index, __ ConX(sizeof(intptr_t)))); 4335 Node* log_addr = __ AddP(no_base, buffer, next_index); 4336 4337 // Order, see storeCM. 4338 __ store(__ ctrl(), log_addr, card_adr, T_ADDRESS, Compile::AliasIdxRaw, MemNode::unordered); 4339 __ store(__ ctrl(), index_adr, next_index, TypeX_X->basic_type(), Compile::AliasIdxRaw, MemNode::unordered); 4340 4341 } __ else_(); { 4342 __ make_leaf_call(tf, CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), "g1_wb_post", card_adr, __ thread()); 4343 } __ end_if(); 4344 4345 } 4346 4347 void GraphKit::g1_write_barrier_post(Node* oop_store, 4348 Node* obj, 4349 Node* adr, 4350 uint alias_idx, 4351 Node* val, 4352 BasicType bt, 4353 bool use_precise) { 4354 // If we are writing a NULL then we need no post barrier 4355 4356 if (val != NULL && val->is_Con() && val->bottom_type() == TypePtr::NULL_PTR) { 4357 // Must be NULL 4358 const Type* t = val->bottom_type(); 4359 assert(t == Type::TOP || t == TypePtr::NULL_PTR, "must be NULL"); 4360 // No post barrier if writing NULLx 4361 return; 4362 } 4363 4364 if (use_ReduceInitialCardMarks() && obj == just_allocated_object(control())) { 4365 // We can skip marks on a freshly-allocated object in Eden. 4366 // Keep this code in sync with new_store_pre_barrier() in runtime.cpp. 4367 // That routine informs GC to take appropriate compensating steps, 4368 // upon a slow-path allocation, so as to make this card-mark 4369 // elision safe. 4370 return; 4371 } 4372 4373 if (use_ReduceInitialCardMarks() 4374 && g1_can_remove_post_barrier(&_gvn, oop_store, adr)) { 4375 return; 4376 } 4377 4378 if (!use_precise) { 4379 // All card marks for a (non-array) instance are in one place: 4380 adr = obj; 4381 } 4382 // (Else it's an array (or unknown), and we want more precise card marks.) 4383 assert(adr != NULL, ""); 4384 4385 IdealKit ideal(this, true); 4386 4387 Node* tls = __ thread(); // ThreadLocalStorage 4388 4389 Node* no_base = __ top(); 4390 float likely = PROB_LIKELY(0.999); 4391 float unlikely = PROB_UNLIKELY(0.999); 4392 Node* young_card = __ ConI((jint)G1SATBCardTableModRefBS::g1_young_card_val()); 4393 Node* dirty_card = __ ConI((jint)CardTableModRefBS::dirty_card_val()); 4394 Node* zeroX = __ ConX(0); 4395 4396 // Get the alias_index for raw card-mark memory 4397 const TypePtr* card_type = TypeRawPtr::BOTTOM; 4398 4399 const TypeFunc *tf = OptoRuntime::g1_wb_post_Type(); 4400 4401 // Offsets into the thread 4402 const int index_offset = in_bytes(JavaThread::dirty_card_queue_offset() + 4403 DirtyCardQueue::byte_offset_of_index()); 4404 const int buffer_offset = in_bytes(JavaThread::dirty_card_queue_offset() + 4405 DirtyCardQueue::byte_offset_of_buf()); 4406 4407 // Pointers into the thread 4408 4409 Node* buffer_adr = __ AddP(no_base, tls, __ ConX(buffer_offset)); 4410 Node* index_adr = __ AddP(no_base, tls, __ ConX(index_offset)); 4411 4412 // Now some values 4413 // Use ctrl to avoid hoisting these values past a safepoint, which could 4414 // potentially reset these fields in the JavaThread. 4415 Node* index = __ load(__ ctrl(), index_adr, TypeX_X, TypeX_X->basic_type(), Compile::AliasIdxRaw); 4416 Node* buffer = __ load(__ ctrl(), buffer_adr, TypeRawPtr::NOTNULL, T_ADDRESS, Compile::AliasIdxRaw); 4417 4418 // Convert the store obj pointer to an int prior to doing math on it 4419 // Must use ctrl to prevent "integerized oop" existing across safepoint 4420 Node* cast = __ CastPX(__ ctrl(), adr); 4421 4422 // Divide pointer by card size 4423 Node* card_offset = __ URShiftX( cast, __ ConI(CardTableModRefBS::card_shift) ); 4424 4425 // Combine card table base and card offset 4426 Node* card_adr = __ AddP(no_base, byte_map_base_node(), card_offset ); 4427 4428 // If we know the value being stored does it cross regions? 4429 4430 if (val != NULL) { 4431 // Does the store cause us to cross regions? 4432 4433 // Should be able to do an unsigned compare of region_size instead of 4434 // and extra shift. Do we have an unsigned compare?? 4435 // Node* region_size = __ ConI(1 << HeapRegion::LogOfHRGrainBytes); 4436 Node* xor_res = __ URShiftX ( __ XorX( cast, __ CastPX(__ ctrl(), val)), __ ConI(HeapRegion::LogOfHRGrainBytes)); 4437 4438 // if (xor_res == 0) same region so skip 4439 __ if_then(xor_res, BoolTest::ne, zeroX); { 4440 4441 // No barrier if we are storing a NULL 4442 __ if_then(val, BoolTest::ne, null(), unlikely); { 4443 4444 // Ok must mark the card if not already dirty 4445 4446 // load the original value of the card 4447 Node* card_val = __ load(__ ctrl(), card_adr, TypeInt::INT, T_BYTE, Compile::AliasIdxRaw); 4448 4449 __ if_then(card_val, BoolTest::ne, young_card); { 4450 sync_kit(ideal); 4451 insert_store_load_for_barrier(); 4452 __ sync_kit(this); 4453 4454 Node* card_val_reload = __ load(__ ctrl(), card_adr, TypeInt::INT, T_BYTE, Compile::AliasIdxRaw); 4455 __ if_then(card_val_reload, BoolTest::ne, dirty_card); { 4456 g1_mark_card(ideal, card_adr, oop_store, alias_idx, index, index_adr, buffer, tf); 4457 } __ end_if(); 4458 } __ end_if(); 4459 } __ end_if(); 4460 } __ end_if(); 4461 } else { 4462 // Object.clone() instrinsic uses this path. 4463 g1_mark_card(ideal, card_adr, oop_store, alias_idx, index, index_adr, buffer, tf); 4464 } 4465 4466 // Final sync IdealKit and GraphKit. 4467 final_sync(ideal); 4468 } 4469 #undef __ 4470 4471 4472 Node* GraphKit::load_String_length(Node* ctrl, Node* str) { 4473 Node* len = load_array_length(load_String_value(ctrl, str)); 4474 Node* coder = load_String_coder(ctrl, str); 4475 // Divide length by 2 if coder is UTF16 4476 return _gvn.transform(new RShiftINode(len, coder)); 4477 } 4478 4479 Node* GraphKit::load_String_value(Node* ctrl, Node* str) { 4480 int value_offset = java_lang_String::value_offset_in_bytes(); 4481 const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(), 4482 false, NULL, Type::Offset(0)); 4483 const TypePtr* value_field_type = string_type->add_offset(value_offset); 4484 const TypeAryPtr* value_type = TypeAryPtr::make(TypePtr::NotNull, 4485 TypeAry::make(TypeInt::BYTE, TypeInt::POS), 4486 ciTypeArrayKlass::make(T_BYTE), true, Type::Offset(0)); 4487 int value_field_idx = C->get_alias_index(value_field_type); 4488 Node* load = make_load(ctrl, basic_plus_adr(str, str, value_offset), 4489 value_type, T_OBJECT, value_field_idx, MemNode::unordered); 4490 // String.value field is known to be @Stable. 4491 if (UseImplicitStableValues) { 4492 load = cast_array_to_stable(load, value_type); 4493 } 4494 return load; 4495 } 4496 4497 Node* GraphKit::load_String_coder(Node* ctrl, Node* str) { 4498 if (java_lang_String::has_coder_field()) { 4499 if (!CompactStrings) { 4500 return intcon(java_lang_String::CODER_UTF16); 4501 } 4502 int coder_offset = java_lang_String::coder_offset_in_bytes(); 4503 const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(), 4504 false, NULL, Type::Offset(0)); 4505 const TypePtr* coder_field_type = string_type->add_offset(coder_offset); 4506 int coder_field_idx = C->get_alias_index(coder_field_type); 4507 return make_load(ctrl, basic_plus_adr(str, str, coder_offset), 4508 TypeInt::BYTE, T_BYTE, coder_field_idx, MemNode::unordered); 4509 } else { 4510 return intcon(0); // false 4511 } 4512 } 4513 4514 void GraphKit::store_String_value(Node* ctrl, Node* str, Node* value) { 4515 int value_offset = java_lang_String::value_offset_in_bytes(); 4516 const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(), 4517 false, NULL, Type::Offset(0)); 4518 const TypePtr* value_field_type = string_type->add_offset(value_offset); 4519 store_oop_to_object(ctrl, str, basic_plus_adr(str, value_offset), value_field_type, 4520 value, TypeAryPtr::BYTES, T_OBJECT, MemNode::unordered); 4521 } 4522 4523 void GraphKit::store_String_coder(Node* ctrl, Node* str, Node* value) { 4524 int coder_offset = java_lang_String::coder_offset_in_bytes(); 4525 const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(), 4526 false, NULL, Type::Offset(0)); 4527 const TypePtr* coder_field_type = string_type->add_offset(coder_offset); 4528 int coder_field_idx = C->get_alias_index(coder_field_type); 4529 store_to_memory(ctrl, basic_plus_adr(str, coder_offset), 4530 value, T_BYTE, coder_field_idx, MemNode::unordered); 4531 } 4532 4533 // Capture src and dst memory state with a MergeMemNode 4534 Node* GraphKit::capture_memory(const TypePtr* src_type, const TypePtr* dst_type) { 4535 if (src_type == dst_type) { 4536 // Types are equal, we don't need a MergeMemNode 4537 return memory(src_type); 4538 } 4539 MergeMemNode* merge = MergeMemNode::make(map()->memory()); 4540 record_for_igvn(merge); // fold it up later, if possible 4541 int src_idx = C->get_alias_index(src_type); 4542 int dst_idx = C->get_alias_index(dst_type); 4543 merge->set_memory_at(src_idx, memory(src_idx)); 4544 merge->set_memory_at(dst_idx, memory(dst_idx)); 4545 return merge; 4546 } 4547 4548 Node* GraphKit::compress_string(Node* src, const TypeAryPtr* src_type, Node* dst, Node* count) { 4549 assert(Matcher::match_rule_supported(Op_StrCompressedCopy), "Intrinsic not supported"); 4550 assert(src_type == TypeAryPtr::BYTES || src_type == TypeAryPtr::CHARS, "invalid source type"); 4551 // If input and output memory types differ, capture both states to preserve 4552 // the dependency between preceding and subsequent loads/stores. 4553 // For example, the following program: 4554 // StoreB 4555 // compress_string 4556 // LoadB 4557 // has this memory graph (use->def): 4558 // LoadB -> compress_string -> CharMem 4559 // ... -> StoreB -> ByteMem 4560 // The intrinsic hides the dependency between LoadB and StoreB, causing 4561 // the load to read from memory not containing the result of the StoreB. 4562 // The correct memory graph should look like this: 4563 // LoadB -> compress_string -> MergeMem(CharMem, StoreB(ByteMem)) 4564 Node* mem = capture_memory(src_type, TypeAryPtr::BYTES); 4565 StrCompressedCopyNode* str = new StrCompressedCopyNode(control(), mem, src, dst, count); 4566 Node* res_mem = _gvn.transform(new SCMemProjNode(str)); 4567 set_memory(res_mem, TypeAryPtr::BYTES); 4568 return str; 4569 } 4570 4571 void GraphKit::inflate_string(Node* src, Node* dst, const TypeAryPtr* dst_type, Node* count) { 4572 assert(Matcher::match_rule_supported(Op_StrInflatedCopy), "Intrinsic not supported"); 4573 assert(dst_type == TypeAryPtr::BYTES || dst_type == TypeAryPtr::CHARS, "invalid dest type"); 4574 // Capture src and dst memory (see comment in 'compress_string'). 4575 Node* mem = capture_memory(TypeAryPtr::BYTES, dst_type); 4576 StrInflatedCopyNode* str = new StrInflatedCopyNode(control(), mem, src, dst, count); 4577 set_memory(_gvn.transform(str), dst_type); 4578 } 4579 4580 void GraphKit::inflate_string_slow(Node* src, Node* dst, Node* start, Node* count) { 4581 /** 4582 * int i_char = start; 4583 * for (int i_byte = 0; i_byte < count; i_byte++) { 4584 * dst[i_char++] = (char)(src[i_byte] & 0xff); 4585 * } 4586 */ 4587 add_predicate(); 4588 RegionNode* head = new RegionNode(3); 4589 head->init_req(1, control()); 4590 gvn().set_type(head, Type::CONTROL); 4591 record_for_igvn(head); 4592 4593 Node* i_byte = new PhiNode(head, TypeInt::INT); 4594 i_byte->init_req(1, intcon(0)); 4595 gvn().set_type(i_byte, TypeInt::INT); 4596 record_for_igvn(i_byte); 4597 4598 Node* i_char = new PhiNode(head, TypeInt::INT); 4599 i_char->init_req(1, start); 4600 gvn().set_type(i_char, TypeInt::INT); 4601 record_for_igvn(i_char); 4602 4603 Node* mem = PhiNode::make(head, memory(TypeAryPtr::BYTES), Type::MEMORY, TypeAryPtr::BYTES); 4604 gvn().set_type(mem, Type::MEMORY); 4605 record_for_igvn(mem); 4606 set_control(head); 4607 set_memory(mem, TypeAryPtr::BYTES); 4608 Node* ch = load_array_element(control(), src, i_byte, TypeAryPtr::BYTES); 4609 Node* st = store_to_memory(control(), array_element_address(dst, i_char, T_BYTE), 4610 AndI(ch, intcon(0xff)), T_CHAR, TypeAryPtr::BYTES, MemNode::unordered, 4611 false, false, true /* mismatched */); 4612 4613 IfNode* iff = create_and_map_if(head, Bool(CmpI(i_byte, count), BoolTest::lt), PROB_FAIR, COUNT_UNKNOWN); 4614 head->init_req(2, IfTrue(iff)); 4615 mem->init_req(2, st); 4616 i_byte->init_req(2, AddI(i_byte, intcon(1))); 4617 i_char->init_req(2, AddI(i_char, intcon(2))); 4618 4619 set_control(IfFalse(iff)); 4620 set_memory(st, TypeAryPtr::BYTES); 4621 } 4622 4623 Node* GraphKit::cast_array_to_stable(Node* ary, const TypeAryPtr* ary_type) { 4624 // Reify the property as a CastPP node in Ideal graph to comply with monotonicity 4625 // assumption of CCP analysis. 4626 return _gvn.transform(new CastPPNode(ary, ary_type->cast_to_stable(true))); 4627 }