1 /* 2 * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "ci/ciMethodData.hpp" 27 #include "ci/ciTypeFlow.hpp" 28 #include "ci/ciValueKlass.hpp" 29 #include "classfile/symbolTable.hpp" 30 #include "classfile/systemDictionary.hpp" 31 #include "compiler/compileLog.hpp" 32 #include "gc/shared/gcLocker.hpp" 33 #include "libadt/dict.hpp" 34 #include "memory/oopFactory.hpp" 35 #include "memory/resourceArea.hpp" 36 #include "oops/instanceKlass.hpp" 37 #include "oops/instanceMirrorKlass.hpp" 38 #include "oops/objArrayKlass.hpp" 39 #include "oops/typeArrayKlass.hpp" 40 #include "opto/matcher.hpp" 41 #include "opto/node.hpp" 42 #include "opto/opcodes.hpp" 43 #include "opto/type.hpp" 44 45 // Portions of code courtesy of Clifford Click 46 47 // Optimization - Graph Style 48 49 // Dictionary of types shared among compilations. 50 Dict* Type::_shared_type_dict = NULL; 51 52 // Array which maps compiler types to Basic Types 53 Type::TypeInfo Type::_type_info[Type::lastype] = { 54 { Bad, T_ILLEGAL, "bad", false, Node::NotAMachineReg, relocInfo::none }, // Bad 55 { Control, T_ILLEGAL, "control", false, 0, relocInfo::none }, // Control 56 { Bottom, T_VOID, "top", false, 0, relocInfo::none }, // Top 57 { Bad, T_INT, "int:", false, Op_RegI, relocInfo::none }, // Int 58 { Bad, T_LONG, "long:", false, Op_RegL, relocInfo::none }, // Long 59 { Half, T_VOID, "half", false, 0, relocInfo::none }, // Half 60 { Bad, T_NARROWOOP, "narrowoop:", false, Op_RegN, relocInfo::none }, // NarrowOop 61 { Bad, T_NARROWKLASS,"narrowklass:", false, Op_RegN, relocInfo::none }, // NarrowKlass 62 { Bad, T_ILLEGAL, "tuple:", false, Node::NotAMachineReg, relocInfo::none }, // Tuple 63 { Bad, T_ARRAY, "array:", false, Node::NotAMachineReg, relocInfo::none }, // Array 64 65 #ifdef SPARC 66 { Bad, T_ILLEGAL, "vectors:", false, 0, relocInfo::none }, // VectorS 67 { Bad, T_ILLEGAL, "vectord:", false, Op_RegD, relocInfo::none }, // VectorD 68 { Bad, T_ILLEGAL, "vectorx:", false, 0, relocInfo::none }, // VectorX 69 { Bad, T_ILLEGAL, "vectory:", false, 0, relocInfo::none }, // VectorY 70 { Bad, T_ILLEGAL, "vectorz:", false, 0, relocInfo::none }, // VectorZ 71 #elif defined(PPC64) 72 { Bad, T_ILLEGAL, "vectors:", false, 0, relocInfo::none }, // VectorS 73 { Bad, T_ILLEGAL, "vectord:", false, Op_RegL, relocInfo::none }, // VectorD 74 { Bad, T_ILLEGAL, "vectorx:", false, 0, relocInfo::none }, // VectorX 75 { Bad, T_ILLEGAL, "vectory:", false, 0, relocInfo::none }, // VectorY 76 { Bad, T_ILLEGAL, "vectorz:", false, 0, relocInfo::none }, // VectorZ 77 #else // all other 78 { Bad, T_ILLEGAL, "vectors:", false, Op_VecS, relocInfo::none }, // VectorS 79 { Bad, T_ILLEGAL, "vectord:", false, Op_VecD, relocInfo::none }, // VectorD 80 { Bad, T_ILLEGAL, "vectorx:", false, Op_VecX, relocInfo::none }, // VectorX 81 { Bad, T_ILLEGAL, "vectory:", false, Op_VecY, relocInfo::none }, // VectorY 82 { Bad, T_ILLEGAL, "vectorz:", false, Op_VecZ, relocInfo::none }, // VectorZ 83 #endif 84 { Bad, T_VALUETYPE, "value:", false, Node::NotAMachineReg, relocInfo::none }, // ValueType 85 { Bad, T_ADDRESS, "anyptr:", false, Op_RegP, relocInfo::none }, // AnyPtr 86 { Bad, T_ADDRESS, "rawptr:", false, Op_RegP, relocInfo::none }, // RawPtr 87 { Bad, T_OBJECT, "oop:", true, Op_RegP, relocInfo::oop_type }, // OopPtr 88 { Bad, T_OBJECT, "inst:", true, Op_RegP, relocInfo::oop_type }, // InstPtr 89 { Bad, T_OBJECT, "valueptr:", true, Op_RegP, relocInfo::oop_type }, // ValueTypePtr 90 { Bad, T_OBJECT, "ary:", true, Op_RegP, relocInfo::oop_type }, // AryPtr 91 { Bad, T_METADATA, "metadata:", false, Op_RegP, relocInfo::metadata_type }, // MetadataPtr 92 { Bad, T_METADATA, "klass:", false, Op_RegP, relocInfo::metadata_type }, // KlassPtr 93 { Bad, T_OBJECT, "func", false, 0, relocInfo::none }, // Function 94 { Abio, T_ILLEGAL, "abIO", false, 0, relocInfo::none }, // Abio 95 { Return_Address, T_ADDRESS, "return_address",false, Op_RegP, relocInfo::none }, // Return_Address 96 { Memory, T_ILLEGAL, "memory", false, 0, relocInfo::none }, // Memory 97 { FloatBot, T_FLOAT, "float_top", false, Op_RegF, relocInfo::none }, // FloatTop 98 { FloatCon, T_FLOAT, "ftcon:", false, Op_RegF, relocInfo::none }, // FloatCon 99 { FloatTop, T_FLOAT, "float", false, Op_RegF, relocInfo::none }, // FloatBot 100 { DoubleBot, T_DOUBLE, "double_top", false, Op_RegD, relocInfo::none }, // DoubleTop 101 { DoubleCon, T_DOUBLE, "dblcon:", false, Op_RegD, relocInfo::none }, // DoubleCon 102 { DoubleTop, T_DOUBLE, "double", false, Op_RegD, relocInfo::none }, // DoubleBot 103 { Top, T_ILLEGAL, "bottom", false, 0, relocInfo::none } // Bottom 104 }; 105 106 // Map ideal registers (machine types) to ideal types 107 const Type *Type::mreg2type[_last_machine_leaf]; 108 109 // Map basic types to canonical Type* pointers. 110 const Type* Type:: _const_basic_type[T_CONFLICT+1]; 111 112 // Map basic types to constant-zero Types. 113 const Type* Type:: _zero_type[T_CONFLICT+1]; 114 115 // Map basic types to array-body alias types. 116 const TypeAryPtr* TypeAryPtr::_array_body_type[T_CONFLICT+1]; 117 118 //============================================================================= 119 // Convenience common pre-built types. 120 const Type *Type::ABIO; // State-of-machine only 121 const Type *Type::BOTTOM; // All values 122 const Type *Type::CONTROL; // Control only 123 const Type *Type::DOUBLE; // All doubles 124 const Type *Type::FLOAT; // All floats 125 const Type *Type::HALF; // Placeholder half of doublewide type 126 const Type *Type::MEMORY; // Abstract store only 127 const Type *Type::RETURN_ADDRESS; 128 const Type *Type::TOP; // No values in set 129 130 //------------------------------get_const_type--------------------------- 131 const Type* Type::get_const_type(ciType* type) { 132 if (type == NULL) { 133 return NULL; 134 } else if (type->is_primitive_type()) { 135 return get_const_basic_type(type->basic_type()); 136 } else { 137 return TypeOopPtr::make_from_klass(type->as_klass()); 138 } 139 } 140 141 //---------------------------array_element_basic_type--------------------------------- 142 // Mapping to the array element's basic type. 143 BasicType Type::array_element_basic_type() const { 144 BasicType bt = basic_type(); 145 if (bt == T_INT) { 146 if (this == TypeInt::INT) return T_INT; 147 if (this == TypeInt::CHAR) return T_CHAR; 148 if (this == TypeInt::BYTE) return T_BYTE; 149 if (this == TypeInt::BOOL) return T_BOOLEAN; 150 if (this == TypeInt::SHORT) return T_SHORT; 151 return T_VOID; 152 } 153 return bt; 154 } 155 156 // For two instance arrays of same dimension, return the base element types. 157 // Otherwise or if the arrays have different dimensions, return NULL. 158 void Type::get_arrays_base_elements(const Type *a1, const Type *a2, 159 const TypeInstPtr **e1, const TypeInstPtr **e2) { 160 161 if (e1) *e1 = NULL; 162 if (e2) *e2 = NULL; 163 const TypeAryPtr* a1tap = (a1 == NULL) ? NULL : a1->isa_aryptr(); 164 const TypeAryPtr* a2tap = (a2 == NULL) ? NULL : a2->isa_aryptr(); 165 166 if (a1tap != NULL && a2tap != NULL) { 167 // Handle multidimensional arrays 168 const TypePtr* a1tp = a1tap->elem()->make_ptr(); 169 const TypePtr* a2tp = a2tap->elem()->make_ptr(); 170 while (a1tp && a1tp->isa_aryptr() && a2tp && a2tp->isa_aryptr()) { 171 a1tap = a1tp->is_aryptr(); 172 a2tap = a2tp->is_aryptr(); 173 a1tp = a1tap->elem()->make_ptr(); 174 a2tp = a2tap->elem()->make_ptr(); 175 } 176 if (a1tp && a1tp->isa_instptr() && a2tp && a2tp->isa_instptr()) { 177 if (e1) *e1 = a1tp->is_instptr(); 178 if (e2) *e2 = a2tp->is_instptr(); 179 } 180 } 181 } 182 183 //---------------------------get_typeflow_type--------------------------------- 184 // Import a type produced by ciTypeFlow. 185 const Type* Type::get_typeflow_type(ciType* type) { 186 switch (type->basic_type()) { 187 188 case ciTypeFlow::StateVector::T_BOTTOM: 189 assert(type == ciTypeFlow::StateVector::bottom_type(), ""); 190 return Type::BOTTOM; 191 192 case ciTypeFlow::StateVector::T_TOP: 193 assert(type == ciTypeFlow::StateVector::top_type(), ""); 194 return Type::TOP; 195 196 case ciTypeFlow::StateVector::T_NULL: 197 assert(type == ciTypeFlow::StateVector::null_type(), ""); 198 return TypePtr::NULL_PTR; 199 200 case ciTypeFlow::StateVector::T_LONG2: 201 // The ciTypeFlow pass pushes a long, then the half. 202 // We do the same. 203 assert(type == ciTypeFlow::StateVector::long2_type(), ""); 204 return TypeInt::TOP; 205 206 case ciTypeFlow::StateVector::T_DOUBLE2: 207 // The ciTypeFlow pass pushes double, then the half. 208 // Our convention is the same. 209 assert(type == ciTypeFlow::StateVector::double2_type(), ""); 210 return Type::TOP; 211 212 case T_ADDRESS: 213 assert(type->is_return_address(), ""); 214 return TypeRawPtr::make((address)(intptr_t)type->as_return_address()->bci()); 215 216 case T_VALUETYPE: 217 return TypeValueType::make(type->as_value_klass()); 218 219 default: 220 // make sure we did not mix up the cases: 221 assert(type != ciTypeFlow::StateVector::bottom_type(), ""); 222 assert(type != ciTypeFlow::StateVector::top_type(), ""); 223 assert(type != ciTypeFlow::StateVector::null_type(), ""); 224 assert(type != ciTypeFlow::StateVector::long2_type(), ""); 225 assert(type != ciTypeFlow::StateVector::double2_type(), ""); 226 assert(!type->is_return_address(), ""); 227 228 return Type::get_const_type(type); 229 } 230 } 231 232 233 //-----------------------make_from_constant------------------------------------ 234 const Type* Type::make_from_constant(ciConstant constant, bool require_constant) { 235 switch (constant.basic_type()) { 236 case T_BOOLEAN: return TypeInt::make(constant.as_boolean()); 237 case T_CHAR: return TypeInt::make(constant.as_char()); 238 case T_BYTE: return TypeInt::make(constant.as_byte()); 239 case T_SHORT: return TypeInt::make(constant.as_short()); 240 case T_INT: return TypeInt::make(constant.as_int()); 241 case T_LONG: return TypeLong::make(constant.as_long()); 242 case T_FLOAT: return TypeF::make(constant.as_float()); 243 case T_DOUBLE: return TypeD::make(constant.as_double()); 244 case T_ARRAY: 245 case T_OBJECT: 246 { 247 // cases: 248 // can_be_constant = (oop not scavengable || ScavengeRootsInCode != 0) 249 // should_be_constant = (oop not scavengable || ScavengeRootsInCode >= 2) 250 // An oop is not scavengable if it is in the perm gen. 251 ciObject* oop_constant = constant.as_object(); 252 if (oop_constant->is_null_object()) { 253 return Type::get_zero_type(T_OBJECT); 254 } else if (require_constant || oop_constant->should_be_constant()) { 255 return TypeOopPtr::make_from_constant(oop_constant, require_constant); 256 } 257 } 258 case T_ILLEGAL: 259 // Invalid ciConstant returned due to OutOfMemoryError in the CI 260 assert(Compile::current()->env()->failing(), "otherwise should not see this"); 261 return NULL; 262 } 263 // Fall through to failure 264 return NULL; 265 } 266 267 268 const Type* Type::make_constant(ciField* field, Node* obj) { 269 if (!field->is_constant()) return NULL; 270 271 const Type* con_type = NULL; 272 if (field->is_static()) { 273 // final static field 274 con_type = Type::make_from_constant(field->constant_value(), /*require_const=*/true); 275 if (Compile::current()->eliminate_boxing() && field->is_autobox_cache() && con_type != NULL) { 276 con_type = con_type->is_aryptr()->cast_to_autobox_cache(true); 277 } 278 } else { 279 // final or stable non-static field 280 // Treat final non-static fields of trusted classes (classes in 281 // java.lang.invoke and sun.invoke packages and subpackages) as 282 // compile time constants. 283 if (obj->is_Con()) { 284 const TypeOopPtr* oop_ptr = obj->bottom_type()->isa_oopptr(); 285 ciObject* constant_oop = oop_ptr->const_oop(); 286 ciConstant constant = field->constant_value_of(constant_oop); 287 con_type = Type::make_from_constant(constant, /*require_const=*/true); 288 } 289 } 290 if (FoldStableValues && field->is_stable() && con_type != NULL) { 291 if (con_type->is_zero_type()) { 292 return NULL; // the field hasn't been initialized yet 293 } else if (con_type->isa_oopptr()) { 294 const Type* stable_type = Type::get_const_type(field->type()); 295 if (field->type()->is_array_klass()) { 296 int stable_dimension = field->type()->as_array_klass()->dimension(); 297 stable_type = stable_type->is_aryptr()->cast_to_stable(true, stable_dimension); 298 } 299 if (stable_type != NULL) { 300 con_type = con_type->join_speculative(stable_type); 301 } 302 } 303 } 304 return con_type; 305 } 306 307 //------------------------------make------------------------------------------- 308 // Create a simple Type, with default empty symbol sets. Then hashcons it 309 // and look for an existing copy in the type dictionary. 310 const Type *Type::make( enum TYPES t ) { 311 return (new Type(t))->hashcons(); 312 } 313 314 //------------------------------cmp-------------------------------------------- 315 int Type::cmp( const Type *const t1, const Type *const t2 ) { 316 if( t1->_base != t2->_base ) 317 return 1; // Missed badly 318 assert(t1 != t2 || t1->eq(t2), "eq must be reflexive"); 319 return !t1->eq(t2); // Return ZERO if equal 320 } 321 322 const Type* Type::maybe_remove_speculative(bool include_speculative) const { 323 if (!include_speculative) { 324 return remove_speculative(); 325 } 326 return this; 327 } 328 329 //------------------------------hash------------------------------------------- 330 int Type::uhash( const Type *const t ) { 331 return t->hash(); 332 } 333 334 #define SMALLINT ((juint)3) // a value too insignificant to consider widening 335 336 //--------------------------Initialize_shared---------------------------------- 337 void Type::Initialize_shared(Compile* current) { 338 // This method does not need to be locked because the first system 339 // compilations (stub compilations) occur serially. If they are 340 // changed to proceed in parallel, then this section will need 341 // locking. 342 343 Arena* save = current->type_arena(); 344 Arena* shared_type_arena = new (mtCompiler)Arena(mtCompiler); 345 346 current->set_type_arena(shared_type_arena); 347 _shared_type_dict = 348 new (shared_type_arena) Dict( (CmpKey)Type::cmp, (Hash)Type::uhash, 349 shared_type_arena, 128 ); 350 current->set_type_dict(_shared_type_dict); 351 352 // Make shared pre-built types. 353 CONTROL = make(Control); // Control only 354 TOP = make(Top); // No values in set 355 MEMORY = make(Memory); // Abstract store only 356 ABIO = make(Abio); // State-of-machine only 357 RETURN_ADDRESS=make(Return_Address); 358 FLOAT = make(FloatBot); // All floats 359 DOUBLE = make(DoubleBot); // All doubles 360 BOTTOM = make(Bottom); // Everything 361 HALF = make(Half); // Placeholder half of doublewide type 362 363 TypeF::ZERO = TypeF::make(0.0); // Float 0 (positive zero) 364 TypeF::ONE = TypeF::make(1.0); // Float 1 365 366 TypeD::ZERO = TypeD::make(0.0); // Double 0 (positive zero) 367 TypeD::ONE = TypeD::make(1.0); // Double 1 368 369 TypeInt::MINUS_1 = TypeInt::make(-1); // -1 370 TypeInt::ZERO = TypeInt::make( 0); // 0 371 TypeInt::ONE = TypeInt::make( 1); // 1 372 TypeInt::BOOL = TypeInt::make(0,1, WidenMin); // 0 or 1, FALSE or TRUE. 373 TypeInt::CC = TypeInt::make(-1, 1, WidenMin); // -1, 0 or 1, condition codes 374 TypeInt::CC_LT = TypeInt::make(-1,-1, WidenMin); // == TypeInt::MINUS_1 375 TypeInt::CC_GT = TypeInt::make( 1, 1, WidenMin); // == TypeInt::ONE 376 TypeInt::CC_EQ = TypeInt::make( 0, 0, WidenMin); // == TypeInt::ZERO 377 TypeInt::CC_LE = TypeInt::make(-1, 0, WidenMin); 378 TypeInt::CC_GE = TypeInt::make( 0, 1, WidenMin); // == TypeInt::BOOL 379 TypeInt::BYTE = TypeInt::make(-128,127, WidenMin); // Bytes 380 TypeInt::UBYTE = TypeInt::make(0, 255, WidenMin); // Unsigned Bytes 381 TypeInt::CHAR = TypeInt::make(0,65535, WidenMin); // Java chars 382 TypeInt::SHORT = TypeInt::make(-32768,32767, WidenMin); // Java shorts 383 TypeInt::POS = TypeInt::make(0,max_jint, WidenMin); // Non-neg values 384 TypeInt::POS1 = TypeInt::make(1,max_jint, WidenMin); // Positive values 385 TypeInt::INT = TypeInt::make(min_jint,max_jint, WidenMax); // 32-bit integers 386 TypeInt::SYMINT = TypeInt::make(-max_jint,max_jint,WidenMin); // symmetric range 387 TypeInt::TYPE_DOMAIN = TypeInt::INT; 388 // CmpL is overloaded both as the bytecode computation returning 389 // a trinary (-1,0,+1) integer result AND as an efficient long 390 // compare returning optimizer ideal-type flags. 391 assert( TypeInt::CC_LT == TypeInt::MINUS_1, "types must match for CmpL to work" ); 392 assert( TypeInt::CC_GT == TypeInt::ONE, "types must match for CmpL to work" ); 393 assert( TypeInt::CC_EQ == TypeInt::ZERO, "types must match for CmpL to work" ); 394 assert( TypeInt::CC_GE == TypeInt::BOOL, "types must match for CmpL to work" ); 395 assert( (juint)(TypeInt::CC->_hi - TypeInt::CC->_lo) <= SMALLINT, "CC is truly small"); 396 397 TypeLong::MINUS_1 = TypeLong::make(-1); // -1 398 TypeLong::ZERO = TypeLong::make( 0); // 0 399 TypeLong::ONE = TypeLong::make( 1); // 1 400 TypeLong::POS = TypeLong::make(0,max_jlong, WidenMin); // Non-neg values 401 TypeLong::LONG = TypeLong::make(min_jlong,max_jlong,WidenMax); // 64-bit integers 402 TypeLong::INT = TypeLong::make((jlong)min_jint,(jlong)max_jint,WidenMin); 403 TypeLong::UINT = TypeLong::make(0,(jlong)max_juint,WidenMin); 404 TypeLong::TYPE_DOMAIN = TypeLong::LONG; 405 406 const Type **fboth =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*)); 407 fboth[0] = Type::CONTROL; 408 fboth[1] = Type::CONTROL; 409 TypeTuple::IFBOTH = TypeTuple::make( 2, fboth ); 410 411 const Type **ffalse =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*)); 412 ffalse[0] = Type::CONTROL; 413 ffalse[1] = Type::TOP; 414 TypeTuple::IFFALSE = TypeTuple::make( 2, ffalse ); 415 416 const Type **fneither =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*)); 417 fneither[0] = Type::TOP; 418 fneither[1] = Type::TOP; 419 TypeTuple::IFNEITHER = TypeTuple::make( 2, fneither ); 420 421 const Type **ftrue =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*)); 422 ftrue[0] = Type::TOP; 423 ftrue[1] = Type::CONTROL; 424 TypeTuple::IFTRUE = TypeTuple::make( 2, ftrue ); 425 426 const Type **floop =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*)); 427 floop[0] = Type::CONTROL; 428 floop[1] = TypeInt::INT; 429 TypeTuple::LOOPBODY = TypeTuple::make( 2, floop ); 430 431 TypePtr::NULL_PTR= TypePtr::make(AnyPtr, TypePtr::Null, 0); 432 TypePtr::NOTNULL = TypePtr::make(AnyPtr, TypePtr::NotNull, OffsetBot); 433 TypePtr::BOTTOM = TypePtr::make(AnyPtr, TypePtr::BotPTR, OffsetBot); 434 435 TypeRawPtr::BOTTOM = TypeRawPtr::make( TypePtr::BotPTR ); 436 TypeRawPtr::NOTNULL= TypeRawPtr::make( TypePtr::NotNull ); 437 438 const Type **fmembar = TypeTuple::fields(0); 439 TypeTuple::MEMBAR = TypeTuple::make(TypeFunc::Parms+0, fmembar); 440 441 const Type **fsc = (const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*)); 442 fsc[0] = TypeInt::CC; 443 fsc[1] = Type::MEMORY; 444 TypeTuple::STORECONDITIONAL = TypeTuple::make(2, fsc); 445 446 TypeInstPtr::NOTNULL = TypeInstPtr::make(TypePtr::NotNull, current->env()->Object_klass()); 447 TypeInstPtr::BOTTOM = TypeInstPtr::make(TypePtr::BotPTR, current->env()->Object_klass()); 448 TypeInstPtr::MIRROR = TypeInstPtr::make(TypePtr::NotNull, current->env()->Class_klass()); 449 TypeInstPtr::MARK = TypeInstPtr::make(TypePtr::BotPTR, current->env()->Object_klass(), 450 false, 0, oopDesc::mark_offset_in_bytes()); 451 TypeInstPtr::KLASS = TypeInstPtr::make(TypePtr::BotPTR, current->env()->Object_klass(), 452 false, 0, oopDesc::klass_offset_in_bytes()); 453 TypeOopPtr::BOTTOM = TypeOopPtr::make(TypePtr::BotPTR, OffsetBot, TypeOopPtr::InstanceBot); 454 455 TypeMetadataPtr::BOTTOM = TypeMetadataPtr::make(TypePtr::BotPTR, NULL, OffsetBot); 456 457 TypeNarrowOop::NULL_PTR = TypeNarrowOop::make( TypePtr::NULL_PTR ); 458 TypeNarrowOop::BOTTOM = TypeNarrowOop::make( TypeInstPtr::BOTTOM ); 459 460 TypeNarrowKlass::NULL_PTR = TypeNarrowKlass::make( TypePtr::NULL_PTR ); 461 462 mreg2type[Op_Node] = Type::BOTTOM; 463 mreg2type[Op_Set ] = 0; 464 mreg2type[Op_RegN] = TypeNarrowOop::BOTTOM; 465 mreg2type[Op_RegI] = TypeInt::INT; 466 mreg2type[Op_RegP] = TypePtr::BOTTOM; 467 mreg2type[Op_RegF] = Type::FLOAT; 468 mreg2type[Op_RegD] = Type::DOUBLE; 469 mreg2type[Op_RegL] = TypeLong::LONG; 470 mreg2type[Op_RegFlags] = TypeInt::CC; 471 472 TypeAryPtr::RANGE = TypeAryPtr::make( TypePtr::BotPTR, TypeAry::make(Type::BOTTOM,TypeInt::POS), NULL /* current->env()->Object_klass() */, false, arrayOopDesc::length_offset_in_bytes()); 473 474 TypeAryPtr::NARROWOOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeNarrowOop::BOTTOM, TypeInt::POS), NULL /*ciArrayKlass::make(o)*/, false, Type::OffsetBot); 475 476 #ifdef _LP64 477 if (UseCompressedOops) { 478 assert(TypeAryPtr::NARROWOOPS->is_ptr_to_narrowoop(), "array of narrow oops must be ptr to narrow oop"); 479 TypeAryPtr::OOPS = TypeAryPtr::NARROWOOPS; 480 } else 481 #endif 482 { 483 // There is no shared klass for Object[]. See note in TypeAryPtr::klass(). 484 TypeAryPtr::OOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInstPtr::BOTTOM,TypeInt::POS), NULL /*ciArrayKlass::make(o)*/, false, Type::OffsetBot); 485 } 486 TypeAryPtr::BYTES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::BYTE ,TypeInt::POS), ciTypeArrayKlass::make(T_BYTE), true, Type::OffsetBot); 487 TypeAryPtr::SHORTS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::SHORT ,TypeInt::POS), ciTypeArrayKlass::make(T_SHORT), true, Type::OffsetBot); 488 TypeAryPtr::CHARS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::CHAR ,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR), true, Type::OffsetBot); 489 TypeAryPtr::INTS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::INT ,TypeInt::POS), ciTypeArrayKlass::make(T_INT), true, Type::OffsetBot); 490 TypeAryPtr::LONGS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeLong::LONG ,TypeInt::POS), ciTypeArrayKlass::make(T_LONG), true, Type::OffsetBot); 491 TypeAryPtr::FLOATS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::FLOAT ,TypeInt::POS), ciTypeArrayKlass::make(T_FLOAT), true, Type::OffsetBot); 492 TypeAryPtr::DOUBLES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::DOUBLE ,TypeInt::POS), ciTypeArrayKlass::make(T_DOUBLE), true, Type::OffsetBot); 493 494 // Nobody should ask _array_body_type[T_NARROWOOP]. Use NULL as assert. 495 TypeAryPtr::_array_body_type[T_NARROWOOP] = NULL; 496 TypeAryPtr::_array_body_type[T_OBJECT] = TypeAryPtr::OOPS; 497 TypeAryPtr::_array_body_type[T_ARRAY] = TypeAryPtr::OOPS; // arrays are stored in oop arrays 498 TypeAryPtr::_array_body_type[T_VALUETYPE] = TypeAryPtr::OOPS; 499 TypeAryPtr::_array_body_type[T_BYTE] = TypeAryPtr::BYTES; 500 TypeAryPtr::_array_body_type[T_BOOLEAN] = TypeAryPtr::BYTES; // boolean[] is a byte array 501 TypeAryPtr::_array_body_type[T_SHORT] = TypeAryPtr::SHORTS; 502 TypeAryPtr::_array_body_type[T_CHAR] = TypeAryPtr::CHARS; 503 TypeAryPtr::_array_body_type[T_INT] = TypeAryPtr::INTS; 504 TypeAryPtr::_array_body_type[T_LONG] = TypeAryPtr::LONGS; 505 TypeAryPtr::_array_body_type[T_FLOAT] = TypeAryPtr::FLOATS; 506 TypeAryPtr::_array_body_type[T_DOUBLE] = TypeAryPtr::DOUBLES; 507 508 TypeKlassPtr::OBJECT = TypeKlassPtr::make( TypePtr::NotNull, current->env()->Object_klass(), 0 ); 509 TypeKlassPtr::OBJECT_OR_NULL = TypeKlassPtr::make( TypePtr::BotPTR, current->env()->Object_klass(), 0 ); 510 511 const Type **fi2c = TypeTuple::fields(2); 512 fi2c[TypeFunc::Parms+0] = TypeInstPtr::BOTTOM; // Method* 513 fi2c[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // argument pointer 514 TypeTuple::START_I2C = TypeTuple::make(TypeFunc::Parms+2, fi2c); 515 516 const Type **intpair = TypeTuple::fields(2); 517 intpair[0] = TypeInt::INT; 518 intpair[1] = TypeInt::INT; 519 TypeTuple::INT_PAIR = TypeTuple::make(2, intpair); 520 521 const Type **longpair = TypeTuple::fields(2); 522 longpair[0] = TypeLong::LONG; 523 longpair[1] = TypeLong::LONG; 524 TypeTuple::LONG_PAIR = TypeTuple::make(2, longpair); 525 526 const Type **intccpair = TypeTuple::fields(2); 527 intccpair[0] = TypeInt::INT; 528 intccpair[1] = TypeInt::CC; 529 TypeTuple::INT_CC_PAIR = TypeTuple::make(2, intccpair); 530 531 const Type **longccpair = TypeTuple::fields(2); 532 longccpair[0] = TypeLong::LONG; 533 longccpair[1] = TypeInt::CC; 534 TypeTuple::LONG_CC_PAIR = TypeTuple::make(2, longccpair); 535 536 _const_basic_type[T_NARROWOOP] = TypeNarrowOop::BOTTOM; 537 _const_basic_type[T_NARROWKLASS] = Type::BOTTOM; 538 _const_basic_type[T_BOOLEAN] = TypeInt::BOOL; 539 _const_basic_type[T_CHAR] = TypeInt::CHAR; 540 _const_basic_type[T_BYTE] = TypeInt::BYTE; 541 _const_basic_type[T_SHORT] = TypeInt::SHORT; 542 _const_basic_type[T_INT] = TypeInt::INT; 543 _const_basic_type[T_LONG] = TypeLong::LONG; 544 _const_basic_type[T_FLOAT] = Type::FLOAT; 545 _const_basic_type[T_DOUBLE] = Type::DOUBLE; 546 _const_basic_type[T_OBJECT] = TypeInstPtr::BOTTOM; 547 _const_basic_type[T_ARRAY] = TypeInstPtr::BOTTOM; // there is no separate bottom for arrays 548 _const_basic_type[T_VALUETYPE] = TypeInstPtr::BOTTOM; 549 _const_basic_type[T_VOID] = TypePtr::NULL_PTR; // reflection represents void this way 550 _const_basic_type[T_ADDRESS] = TypeRawPtr::BOTTOM; // both interpreter return addresses & random raw ptrs 551 _const_basic_type[T_CONFLICT] = Type::BOTTOM; // why not? 552 553 _zero_type[T_NARROWOOP] = TypeNarrowOop::NULL_PTR; 554 _zero_type[T_NARROWKLASS] = TypeNarrowKlass::NULL_PTR; 555 _zero_type[T_BOOLEAN] = TypeInt::ZERO; // false == 0 556 _zero_type[T_CHAR] = TypeInt::ZERO; // '\0' == 0 557 _zero_type[T_BYTE] = TypeInt::ZERO; // 0x00 == 0 558 _zero_type[T_SHORT] = TypeInt::ZERO; // 0x0000 == 0 559 _zero_type[T_INT] = TypeInt::ZERO; 560 _zero_type[T_LONG] = TypeLong::ZERO; 561 _zero_type[T_FLOAT] = TypeF::ZERO; 562 _zero_type[T_DOUBLE] = TypeD::ZERO; 563 _zero_type[T_OBJECT] = TypePtr::NULL_PTR; 564 _zero_type[T_ARRAY] = TypePtr::NULL_PTR; // null array is null oop 565 _zero_type[T_VALUETYPE] = TypePtr::NULL_PTR; 566 _zero_type[T_ADDRESS] = TypePtr::NULL_PTR; // raw pointers use the same null 567 _zero_type[T_VOID] = Type::TOP; // the only void value is no value at all 568 569 // get_zero_type() should not happen for T_CONFLICT 570 _zero_type[T_CONFLICT]= NULL; 571 572 // Vector predefined types, it needs initialized _const_basic_type[]. 573 if (Matcher::vector_size_supported(T_BYTE,4)) { 574 TypeVect::VECTS = TypeVect::make(T_BYTE,4); 575 } 576 if (Matcher::vector_size_supported(T_FLOAT,2)) { 577 TypeVect::VECTD = TypeVect::make(T_FLOAT,2); 578 } 579 if (Matcher::vector_size_supported(T_FLOAT,4)) { 580 TypeVect::VECTX = TypeVect::make(T_FLOAT,4); 581 } 582 if (Matcher::vector_size_supported(T_FLOAT,8)) { 583 TypeVect::VECTY = TypeVect::make(T_FLOAT,8); 584 } 585 if (Matcher::vector_size_supported(T_FLOAT,16)) { 586 TypeVect::VECTZ = TypeVect::make(T_FLOAT,16); 587 } 588 mreg2type[Op_VecS] = TypeVect::VECTS; 589 mreg2type[Op_VecD] = TypeVect::VECTD; 590 mreg2type[Op_VecX] = TypeVect::VECTX; 591 mreg2type[Op_VecY] = TypeVect::VECTY; 592 mreg2type[Op_VecZ] = TypeVect::VECTZ; 593 594 // Restore working type arena. 595 current->set_type_arena(save); 596 current->set_type_dict(NULL); 597 } 598 599 //------------------------------Initialize------------------------------------- 600 void Type::Initialize(Compile* current) { 601 assert(current->type_arena() != NULL, "must have created type arena"); 602 603 if (_shared_type_dict == NULL) { 604 Initialize_shared(current); 605 } 606 607 Arena* type_arena = current->type_arena(); 608 609 // Create the hash-cons'ing dictionary with top-level storage allocation 610 Dict *tdic = new (type_arena) Dict( (CmpKey)Type::cmp,(Hash)Type::uhash, type_arena, 128 ); 611 current->set_type_dict(tdic); 612 613 // Transfer the shared types. 614 DictI i(_shared_type_dict); 615 for( ; i.test(); ++i ) { 616 Type* t = (Type*)i._value; 617 tdic->Insert(t,t); // New Type, insert into Type table 618 } 619 } 620 621 //------------------------------hashcons--------------------------------------- 622 // Do the hash-cons trick. If the Type already exists in the type table, 623 // delete the current Type and return the existing Type. Otherwise stick the 624 // current Type in the Type table. 625 const Type *Type::hashcons(void) { 626 debug_only(base()); // Check the assertion in Type::base(). 627 // Look up the Type in the Type dictionary 628 Dict *tdic = type_dict(); 629 Type* old = (Type*)(tdic->Insert(this, this, false)); 630 if( old ) { // Pre-existing Type? 631 if( old != this ) // Yes, this guy is not the pre-existing? 632 delete this; // Yes, Nuke this guy 633 assert( old->_dual, "" ); 634 return old; // Return pre-existing 635 } 636 637 // Every type has a dual (to make my lattice symmetric). 638 // Since we just discovered a new Type, compute its dual right now. 639 assert( !_dual, "" ); // No dual yet 640 _dual = xdual(); // Compute the dual 641 if( cmp(this,_dual)==0 ) { // Handle self-symmetric 642 _dual = this; 643 return this; 644 } 645 assert( !_dual->_dual, "" ); // No reverse dual yet 646 assert( !(*tdic)[_dual], "" ); // Dual not in type system either 647 // New Type, insert into Type table 648 tdic->Insert((void*)_dual,(void*)_dual); 649 ((Type*)_dual)->_dual = this; // Finish up being symmetric 650 #ifdef ASSERT 651 Type *dual_dual = (Type*)_dual->xdual(); 652 assert( eq(dual_dual), "xdual(xdual()) should be identity" ); 653 delete dual_dual; 654 #endif 655 return this; // Return new Type 656 } 657 658 //------------------------------eq--------------------------------------------- 659 // Structural equality check for Type representations 660 bool Type::eq( const Type * ) const { 661 return true; // Nothing else can go wrong 662 } 663 664 //------------------------------hash------------------------------------------- 665 // Type-specific hashing function. 666 int Type::hash(void) const { 667 return _base; 668 } 669 670 //------------------------------is_finite-------------------------------------- 671 // Has a finite value 672 bool Type::is_finite() const { 673 return false; 674 } 675 676 //------------------------------is_nan----------------------------------------- 677 // Is not a number (NaN) 678 bool Type::is_nan() const { 679 return false; 680 } 681 682 //----------------------interface_vs_oop--------------------------------------- 683 #ifdef ASSERT 684 bool Type::interface_vs_oop_helper(const Type *t) const { 685 bool result = false; 686 687 const TypePtr* this_ptr = this->make_ptr(); // In case it is narrow_oop 688 const TypePtr* t_ptr = t->make_ptr(); 689 if( this_ptr == NULL || t_ptr == NULL ) 690 return result; 691 692 const TypeInstPtr* this_inst = this_ptr->isa_instptr(); 693 const TypeInstPtr* t_inst = t_ptr->isa_instptr(); 694 if( this_inst && this_inst->is_loaded() && t_inst && t_inst->is_loaded() ) { 695 bool this_interface = this_inst->klass()->is_interface(); 696 bool t_interface = t_inst->klass()->is_interface(); 697 result = this_interface ^ t_interface; 698 } 699 700 return result; 701 } 702 703 bool Type::interface_vs_oop(const Type *t) const { 704 if (interface_vs_oop_helper(t)) { 705 return true; 706 } 707 // Now check the speculative parts as well 708 const TypePtr* this_spec = isa_ptr() != NULL ? is_ptr()->speculative() : NULL; 709 const TypePtr* t_spec = t->isa_ptr() != NULL ? t->is_ptr()->speculative() : NULL; 710 if (this_spec != NULL && t_spec != NULL) { 711 if (this_spec->interface_vs_oop_helper(t_spec)) { 712 return true; 713 } 714 return false; 715 } 716 if (this_spec != NULL && this_spec->interface_vs_oop_helper(t)) { 717 return true; 718 } 719 if (t_spec != NULL && interface_vs_oop_helper(t_spec)) { 720 return true; 721 } 722 return false; 723 } 724 725 #endif 726 727 //------------------------------meet------------------------------------------- 728 // Compute the MEET of two types. NOT virtual. It enforces that meet is 729 // commutative and the lattice is symmetric. 730 const Type *Type::meet_helper(const Type *t, bool include_speculative) const { 731 if (isa_narrowoop() && t->isa_narrowoop()) { 732 const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative); 733 return result->make_narrowoop(); 734 } 735 if (isa_narrowklass() && t->isa_narrowklass()) { 736 const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative); 737 return result->make_narrowklass(); 738 } 739 740 const Type *this_t = maybe_remove_speculative(include_speculative); 741 t = t->maybe_remove_speculative(include_speculative); 742 743 const Type *mt = this_t->xmeet(t); 744 if (isa_narrowoop() || t->isa_narrowoop()) return mt; 745 if (isa_narrowklass() || t->isa_narrowklass()) return mt; 746 #ifdef ASSERT 747 assert(mt == t->xmeet(this_t), "meet not commutative"); 748 const Type* dual_join = mt->_dual; 749 const Type *t2t = dual_join->xmeet(t->_dual); 750 const Type *t2this = dual_join->xmeet(this_t->_dual); 751 752 // Interface meet Oop is Not Symmetric: 753 // Interface:AnyNull meet Oop:AnyNull == Interface:AnyNull 754 // Interface:NotNull meet Oop:NotNull == java/lang/Object:NotNull 755 756 if( !interface_vs_oop(t) && (t2t != t->_dual || t2this != this_t->_dual) ) { 757 tty->print_cr("=== Meet Not Symmetric ==="); 758 tty->print("t = "); t->dump(); tty->cr(); 759 tty->print("this= "); this_t->dump(); tty->cr(); 760 tty->print("mt=(t meet this)= "); mt->dump(); tty->cr(); 761 762 tty->print("t_dual= "); t->_dual->dump(); tty->cr(); 763 tty->print("this_dual= "); this_t->_dual->dump(); tty->cr(); 764 tty->print("mt_dual= "); mt->_dual->dump(); tty->cr(); 765 766 tty->print("mt_dual meet t_dual= "); t2t ->dump(); tty->cr(); 767 tty->print("mt_dual meet this_dual= "); t2this ->dump(); tty->cr(); 768 769 fatal("meet not symmetric" ); 770 } 771 #endif 772 return mt; 773 } 774 775 //------------------------------xmeet------------------------------------------ 776 // Compute the MEET of two types. It returns a new Type object. 777 const Type *Type::xmeet( const Type *t ) const { 778 // Perform a fast test for common case; meeting the same types together. 779 if( this == t ) return this; // Meeting same type-rep? 780 781 // Meeting TOP with anything? 782 if( _base == Top ) return t; 783 784 // Meeting BOTTOM with anything? 785 if( _base == Bottom ) return BOTTOM; 786 787 // Current "this->_base" is one of: Bad, Multi, Control, Top, 788 // Abio, Abstore, Floatxxx, Doublexxx, Bottom, lastype. 789 switch (t->base()) { // Switch on original type 790 791 // Cut in half the number of cases I must handle. Only need cases for when 792 // the given enum "t->type" is less than or equal to the local enum "type". 793 case FloatCon: 794 case DoubleCon: 795 case Int: 796 case Long: 797 return t->xmeet(this); 798 799 case OopPtr: 800 return t->xmeet(this); 801 802 case InstPtr: 803 case ValueTypePtr: 804 return t->xmeet(this); 805 806 case MetadataPtr: 807 case KlassPtr: 808 return t->xmeet(this); 809 810 case AryPtr: 811 return t->xmeet(this); 812 813 case NarrowOop: 814 return t->xmeet(this); 815 816 case NarrowKlass: 817 return t->xmeet(this); 818 819 case ValueType: 820 return t->xmeet(this); 821 822 case Bad: // Type check 823 default: // Bogus type not in lattice 824 typerr(t); 825 return Type::BOTTOM; 826 827 case Bottom: // Ye Olde Default 828 return t; 829 830 case FloatTop: 831 if( _base == FloatTop ) return this; 832 case FloatBot: // Float 833 if( _base == FloatBot || _base == FloatTop ) return FLOAT; 834 if( _base == DoubleTop || _base == DoubleBot ) return Type::BOTTOM; 835 typerr(t); 836 return Type::BOTTOM; 837 838 case DoubleTop: 839 if( _base == DoubleTop ) return this; 840 case DoubleBot: // Double 841 if( _base == DoubleBot || _base == DoubleTop ) return DOUBLE; 842 if( _base == FloatTop || _base == FloatBot ) return Type::BOTTOM; 843 typerr(t); 844 return Type::BOTTOM; 845 846 // These next few cases must match exactly or it is a compile-time error. 847 case Control: // Control of code 848 case Abio: // State of world outside of program 849 case Memory: 850 if( _base == t->_base ) return this; 851 typerr(t); 852 return Type::BOTTOM; 853 854 case Top: // Top of the lattice 855 return this; 856 } 857 858 // The type is unchanged 859 return this; 860 } 861 862 //-----------------------------filter------------------------------------------ 863 const Type *Type::filter_helper(const Type *kills, bool include_speculative) const { 864 const Type* ft = join_helper(kills, include_speculative); 865 if (ft->empty()) 866 return Type::TOP; // Canonical empty value 867 return ft; 868 } 869 870 //------------------------------xdual------------------------------------------ 871 // Compute dual right now. 872 const Type::TYPES Type::dual_type[Type::lastype] = { 873 Bad, // Bad 874 Control, // Control 875 Bottom, // Top 876 Bad, // Int - handled in v-call 877 Bad, // Long - handled in v-call 878 Half, // Half 879 Bad, // NarrowOop - handled in v-call 880 Bad, // NarrowKlass - handled in v-call 881 882 Bad, // Tuple - handled in v-call 883 Bad, // Array - handled in v-call 884 Bad, // VectorS - handled in v-call 885 Bad, // VectorD - handled in v-call 886 Bad, // VectorX - handled in v-call 887 Bad, // VectorY - handled in v-call 888 Bad, // VectorZ - handled in v-call 889 Bad, // ValueType - handled in v-call 890 891 Bad, // AnyPtr - handled in v-call 892 Bad, // RawPtr - handled in v-call 893 Bad, // OopPtr - handled in v-call 894 Bad, // InstPtr - handled in v-call 895 Bad, // ValueTypePtr - handled in v-call 896 Bad, // AryPtr - handled in v-call 897 898 Bad, // MetadataPtr - handled in v-call 899 Bad, // KlassPtr - handled in v-call 900 901 Bad, // Function - handled in v-call 902 Abio, // Abio 903 Return_Address,// Return_Address 904 Memory, // Memory 905 FloatBot, // FloatTop 906 FloatCon, // FloatCon 907 FloatTop, // FloatBot 908 DoubleBot, // DoubleTop 909 DoubleCon, // DoubleCon 910 DoubleTop, // DoubleBot 911 Top // Bottom 912 }; 913 914 const Type *Type::xdual() const { 915 // Note: the base() accessor asserts the sanity of _base. 916 assert(_type_info[base()].dual_type != Bad, "implement with v-call"); 917 return new Type(_type_info[_base].dual_type); 918 } 919 920 //------------------------------has_memory------------------------------------- 921 bool Type::has_memory() const { 922 Type::TYPES tx = base(); 923 if (tx == Memory) return true; 924 if (tx == Tuple) { 925 const TypeTuple *t = is_tuple(); 926 for (uint i=0; i < t->cnt(); i++) { 927 tx = t->field_at(i)->base(); 928 if (tx == Memory) return true; 929 } 930 } 931 return false; 932 } 933 934 #ifndef PRODUCT 935 //------------------------------dump2------------------------------------------ 936 void Type::dump2( Dict &d, uint depth, outputStream *st ) const { 937 st->print("%s", _type_info[_base].msg); 938 } 939 940 //------------------------------dump------------------------------------------- 941 void Type::dump_on(outputStream *st) const { 942 ResourceMark rm; 943 Dict d(cmpkey,hashkey); // Stop recursive type dumping 944 dump2(d,1, st); 945 if (is_ptr_to_narrowoop()) { 946 st->print(" [narrow]"); 947 } else if (is_ptr_to_narrowklass()) { 948 st->print(" [narrowklass]"); 949 } 950 } 951 #endif 952 953 //------------------------------singleton-------------------------------------- 954 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple 955 // constants (Ldi nodes). Singletons are integer, float or double constants. 956 bool Type::singleton(void) const { 957 return _base == Top || _base == Half; 958 } 959 960 //------------------------------empty------------------------------------------ 961 // TRUE if Type is a type with no values, FALSE otherwise. 962 bool Type::empty(void) const { 963 switch (_base) { 964 case DoubleTop: 965 case FloatTop: 966 case Top: 967 return true; 968 969 case Half: 970 case Abio: 971 case Return_Address: 972 case Memory: 973 case Bottom: 974 case FloatBot: 975 case DoubleBot: 976 return false; // never a singleton, therefore never empty 977 } 978 979 ShouldNotReachHere(); 980 return false; 981 } 982 983 //------------------------------dump_stats------------------------------------- 984 // Dump collected statistics to stderr 985 #ifndef PRODUCT 986 void Type::dump_stats() { 987 tty->print("Types made: %d\n", type_dict()->Size()); 988 } 989 #endif 990 991 //------------------------------typerr----------------------------------------- 992 void Type::typerr( const Type *t ) const { 993 #ifndef PRODUCT 994 tty->print("\nError mixing types: "); 995 dump(); 996 tty->print(" and "); 997 t->dump(); 998 tty->print("\n"); 999 #endif 1000 ShouldNotReachHere(); 1001 } 1002 1003 1004 //============================================================================= 1005 // Convenience common pre-built types. 1006 const TypeF *TypeF::ZERO; // Floating point zero 1007 const TypeF *TypeF::ONE; // Floating point one 1008 1009 //------------------------------make------------------------------------------- 1010 // Create a float constant 1011 const TypeF *TypeF::make(float f) { 1012 return (TypeF*)(new TypeF(f))->hashcons(); 1013 } 1014 1015 //------------------------------meet------------------------------------------- 1016 // Compute the MEET of two types. It returns a new Type object. 1017 const Type *TypeF::xmeet( const Type *t ) const { 1018 // Perform a fast test for common case; meeting the same types together. 1019 if( this == t ) return this; // Meeting same type-rep? 1020 1021 // Current "this->_base" is FloatCon 1022 switch (t->base()) { // Switch on original type 1023 case AnyPtr: // Mixing with oops happens when javac 1024 case RawPtr: // reuses local variables 1025 case OopPtr: 1026 case InstPtr: 1027 case ValueTypePtr: 1028 case AryPtr: 1029 case MetadataPtr: 1030 case KlassPtr: 1031 case NarrowOop: 1032 case NarrowKlass: 1033 case Int: 1034 case Long: 1035 case DoubleTop: 1036 case DoubleCon: 1037 case DoubleBot: 1038 case Bottom: // Ye Olde Default 1039 return Type::BOTTOM; 1040 1041 case FloatBot: 1042 return t; 1043 1044 default: // All else is a mistake 1045 typerr(t); 1046 1047 case FloatCon: // Float-constant vs Float-constant? 1048 if( jint_cast(_f) != jint_cast(t->getf()) ) // unequal constants? 1049 // must compare bitwise as positive zero, negative zero and NaN have 1050 // all the same representation in C++ 1051 return FLOAT; // Return generic float 1052 // Equal constants 1053 case Top: 1054 case FloatTop: 1055 break; // Return the float constant 1056 } 1057 return this; // Return the float constant 1058 } 1059 1060 //------------------------------xdual------------------------------------------ 1061 // Dual: symmetric 1062 const Type *TypeF::xdual() const { 1063 return this; 1064 } 1065 1066 //------------------------------eq--------------------------------------------- 1067 // Structural equality check for Type representations 1068 bool TypeF::eq(const Type *t) const { 1069 // Bitwise comparison to distinguish between +/-0. These values must be treated 1070 // as different to be consistent with C1 and the interpreter. 1071 return (jint_cast(_f) == jint_cast(t->getf())); 1072 } 1073 1074 //------------------------------hash------------------------------------------- 1075 // Type-specific hashing function. 1076 int TypeF::hash(void) const { 1077 return *(int*)(&_f); 1078 } 1079 1080 //------------------------------is_finite-------------------------------------- 1081 // Has a finite value 1082 bool TypeF::is_finite() const { 1083 return g_isfinite(getf()) != 0; 1084 } 1085 1086 //------------------------------is_nan----------------------------------------- 1087 // Is not a number (NaN) 1088 bool TypeF::is_nan() const { 1089 return g_isnan(getf()) != 0; 1090 } 1091 1092 //------------------------------dump2------------------------------------------ 1093 // Dump float constant Type 1094 #ifndef PRODUCT 1095 void TypeF::dump2( Dict &d, uint depth, outputStream *st ) const { 1096 Type::dump2(d,depth, st); 1097 st->print("%f", _f); 1098 } 1099 #endif 1100 1101 //------------------------------singleton-------------------------------------- 1102 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple 1103 // constants (Ldi nodes). Singletons are integer, float or double constants 1104 // or a single symbol. 1105 bool TypeF::singleton(void) const { 1106 return true; // Always a singleton 1107 } 1108 1109 bool TypeF::empty(void) const { 1110 return false; // always exactly a singleton 1111 } 1112 1113 //============================================================================= 1114 // Convenience common pre-built types. 1115 const TypeD *TypeD::ZERO; // Floating point zero 1116 const TypeD *TypeD::ONE; // Floating point one 1117 1118 //------------------------------make------------------------------------------- 1119 const TypeD *TypeD::make(double d) { 1120 return (TypeD*)(new TypeD(d))->hashcons(); 1121 } 1122 1123 //------------------------------meet------------------------------------------- 1124 // Compute the MEET of two types. It returns a new Type object. 1125 const Type *TypeD::xmeet( const Type *t ) const { 1126 // Perform a fast test for common case; meeting the same types together. 1127 if( this == t ) return this; // Meeting same type-rep? 1128 1129 // Current "this->_base" is DoubleCon 1130 switch (t->base()) { // Switch on original type 1131 case AnyPtr: // Mixing with oops happens when javac 1132 case RawPtr: // reuses local variables 1133 case OopPtr: 1134 case InstPtr: 1135 case ValueTypePtr: 1136 case AryPtr: 1137 case MetadataPtr: 1138 case KlassPtr: 1139 case NarrowOop: 1140 case NarrowKlass: 1141 case Int: 1142 case Long: 1143 case FloatTop: 1144 case FloatCon: 1145 case FloatBot: 1146 case Bottom: // Ye Olde Default 1147 return Type::BOTTOM; 1148 1149 case DoubleBot: 1150 return t; 1151 1152 default: // All else is a mistake 1153 typerr(t); 1154 1155 case DoubleCon: // Double-constant vs Double-constant? 1156 if( jlong_cast(_d) != jlong_cast(t->getd()) ) // unequal constants? (see comment in TypeF::xmeet) 1157 return DOUBLE; // Return generic double 1158 case Top: 1159 case DoubleTop: 1160 break; 1161 } 1162 return this; // Return the double constant 1163 } 1164 1165 //------------------------------xdual------------------------------------------ 1166 // Dual: symmetric 1167 const Type *TypeD::xdual() const { 1168 return this; 1169 } 1170 1171 //------------------------------eq--------------------------------------------- 1172 // Structural equality check for Type representations 1173 bool TypeD::eq(const Type *t) const { 1174 // Bitwise comparison to distinguish between +/-0. These values must be treated 1175 // as different to be consistent with C1 and the interpreter. 1176 return (jlong_cast(_d) == jlong_cast(t->getd())); 1177 } 1178 1179 //------------------------------hash------------------------------------------- 1180 // Type-specific hashing function. 1181 int TypeD::hash(void) const { 1182 return *(int*)(&_d); 1183 } 1184 1185 //------------------------------is_finite-------------------------------------- 1186 // Has a finite value 1187 bool TypeD::is_finite() const { 1188 return g_isfinite(getd()) != 0; 1189 } 1190 1191 //------------------------------is_nan----------------------------------------- 1192 // Is not a number (NaN) 1193 bool TypeD::is_nan() const { 1194 return g_isnan(getd()) != 0; 1195 } 1196 1197 //------------------------------dump2------------------------------------------ 1198 // Dump double constant Type 1199 #ifndef PRODUCT 1200 void TypeD::dump2( Dict &d, uint depth, outputStream *st ) const { 1201 Type::dump2(d,depth,st); 1202 st->print("%f", _d); 1203 } 1204 #endif 1205 1206 //------------------------------singleton-------------------------------------- 1207 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple 1208 // constants (Ldi nodes). Singletons are integer, float or double constants 1209 // or a single symbol. 1210 bool TypeD::singleton(void) const { 1211 return true; // Always a singleton 1212 } 1213 1214 bool TypeD::empty(void) const { 1215 return false; // always exactly a singleton 1216 } 1217 1218 //============================================================================= 1219 // Convience common pre-built types. 1220 const TypeInt *TypeInt::MINUS_1;// -1 1221 const TypeInt *TypeInt::ZERO; // 0 1222 const TypeInt *TypeInt::ONE; // 1 1223 const TypeInt *TypeInt::BOOL; // 0 or 1, FALSE or TRUE. 1224 const TypeInt *TypeInt::CC; // -1,0 or 1, condition codes 1225 const TypeInt *TypeInt::CC_LT; // [-1] == MINUS_1 1226 const TypeInt *TypeInt::CC_GT; // [1] == ONE 1227 const TypeInt *TypeInt::CC_EQ; // [0] == ZERO 1228 const TypeInt *TypeInt::CC_LE; // [-1,0] 1229 const TypeInt *TypeInt::CC_GE; // [0,1] == BOOL (!) 1230 const TypeInt *TypeInt::BYTE; // Bytes, -128 to 127 1231 const TypeInt *TypeInt::UBYTE; // Unsigned Bytes, 0 to 255 1232 const TypeInt *TypeInt::CHAR; // Java chars, 0-65535 1233 const TypeInt *TypeInt::SHORT; // Java shorts, -32768-32767 1234 const TypeInt *TypeInt::POS; // Positive 32-bit integers or zero 1235 const TypeInt *TypeInt::POS1; // Positive 32-bit integers 1236 const TypeInt *TypeInt::INT; // 32-bit integers 1237 const TypeInt *TypeInt::SYMINT; // symmetric range [-max_jint..max_jint] 1238 const TypeInt *TypeInt::TYPE_DOMAIN; // alias for TypeInt::INT 1239 1240 //------------------------------TypeInt---------------------------------------- 1241 TypeInt::TypeInt( jint lo, jint hi, int w ) : Type(Int), _lo(lo), _hi(hi), _widen(w) { 1242 } 1243 1244 //------------------------------make------------------------------------------- 1245 const TypeInt *TypeInt::make( jint lo ) { 1246 return (TypeInt*)(new TypeInt(lo,lo,WidenMin))->hashcons(); 1247 } 1248 1249 static int normalize_int_widen( jint lo, jint hi, int w ) { 1250 // Certain normalizations keep us sane when comparing types. 1251 // The 'SMALLINT' covers constants and also CC and its relatives. 1252 if (lo <= hi) { 1253 if (((juint)hi - lo) <= SMALLINT) w = Type::WidenMin; 1254 if (((juint)hi - lo) >= max_juint) w = Type::WidenMax; // TypeInt::INT 1255 } else { 1256 if (((juint)lo - hi) <= SMALLINT) w = Type::WidenMin; 1257 if (((juint)lo - hi) >= max_juint) w = Type::WidenMin; // dual TypeInt::INT 1258 } 1259 return w; 1260 } 1261 1262 const TypeInt *TypeInt::make( jint lo, jint hi, int w ) { 1263 w = normalize_int_widen(lo, hi, w); 1264 return (TypeInt*)(new TypeInt(lo,hi,w))->hashcons(); 1265 } 1266 1267 //------------------------------meet------------------------------------------- 1268 // Compute the MEET of two types. It returns a new Type representation object 1269 // with reference count equal to the number of Types pointing at it. 1270 // Caller should wrap a Types around it. 1271 const Type *TypeInt::xmeet( const Type *t ) const { 1272 // Perform a fast test for common case; meeting the same types together. 1273 if( this == t ) return this; // Meeting same type? 1274 1275 // Currently "this->_base" is a TypeInt 1276 switch (t->base()) { // Switch on original type 1277 case AnyPtr: // Mixing with oops happens when javac 1278 case RawPtr: // reuses local variables 1279 case OopPtr: 1280 case InstPtr: 1281 case ValueTypePtr: 1282 case AryPtr: 1283 case MetadataPtr: 1284 case KlassPtr: 1285 case NarrowOop: 1286 case NarrowKlass: 1287 case Long: 1288 case FloatTop: 1289 case FloatCon: 1290 case FloatBot: 1291 case DoubleTop: 1292 case DoubleCon: 1293 case DoubleBot: 1294 case Bottom: // Ye Olde Default 1295 return Type::BOTTOM; 1296 default: // All else is a mistake 1297 typerr(t); 1298 case Top: // No change 1299 return this; 1300 case Int: // Int vs Int? 1301 break; 1302 } 1303 1304 // Expand covered set 1305 const TypeInt *r = t->is_int(); 1306 return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) ); 1307 } 1308 1309 //------------------------------xdual------------------------------------------ 1310 // Dual: reverse hi & lo; flip widen 1311 const Type *TypeInt::xdual() const { 1312 int w = normalize_int_widen(_hi,_lo, WidenMax-_widen); 1313 return new TypeInt(_hi,_lo,w); 1314 } 1315 1316 //------------------------------widen------------------------------------------ 1317 // Only happens for optimistic top-down optimizations. 1318 const Type *TypeInt::widen( const Type *old, const Type* limit ) const { 1319 // Coming from TOP or such; no widening 1320 if( old->base() != Int ) return this; 1321 const TypeInt *ot = old->is_int(); 1322 1323 // If new guy is equal to old guy, no widening 1324 if( _lo == ot->_lo && _hi == ot->_hi ) 1325 return old; 1326 1327 // If new guy contains old, then we widened 1328 if( _lo <= ot->_lo && _hi >= ot->_hi ) { 1329 // New contains old 1330 // If new guy is already wider than old, no widening 1331 if( _widen > ot->_widen ) return this; 1332 // If old guy was a constant, do not bother 1333 if (ot->_lo == ot->_hi) return this; 1334 // Now widen new guy. 1335 // Check for widening too far 1336 if (_widen == WidenMax) { 1337 int max = max_jint; 1338 int min = min_jint; 1339 if (limit->isa_int()) { 1340 max = limit->is_int()->_hi; 1341 min = limit->is_int()->_lo; 1342 } 1343 if (min < _lo && _hi < max) { 1344 // If neither endpoint is extremal yet, push out the endpoint 1345 // which is closer to its respective limit. 1346 if (_lo >= 0 || // easy common case 1347 (juint)(_lo - min) >= (juint)(max - _hi)) { 1348 // Try to widen to an unsigned range type of 31 bits: 1349 return make(_lo, max, WidenMax); 1350 } else { 1351 return make(min, _hi, WidenMax); 1352 } 1353 } 1354 return TypeInt::INT; 1355 } 1356 // Returned widened new guy 1357 return make(_lo,_hi,_widen+1); 1358 } 1359 1360 // If old guy contains new, then we probably widened too far & dropped to 1361 // bottom. Return the wider fellow. 1362 if ( ot->_lo <= _lo && ot->_hi >= _hi ) 1363 return old; 1364 1365 //fatal("Integer value range is not subset"); 1366 //return this; 1367 return TypeInt::INT; 1368 } 1369 1370 //------------------------------narrow--------------------------------------- 1371 // Only happens for pessimistic optimizations. 1372 const Type *TypeInt::narrow( const Type *old ) const { 1373 if (_lo >= _hi) return this; // already narrow enough 1374 if (old == NULL) return this; 1375 const TypeInt* ot = old->isa_int(); 1376 if (ot == NULL) return this; 1377 jint olo = ot->_lo; 1378 jint ohi = ot->_hi; 1379 1380 // If new guy is equal to old guy, no narrowing 1381 if (_lo == olo && _hi == ohi) return old; 1382 1383 // If old guy was maximum range, allow the narrowing 1384 if (olo == min_jint && ohi == max_jint) return this; 1385 1386 if (_lo < olo || _hi > ohi) 1387 return this; // doesn't narrow; pretty wierd 1388 1389 // The new type narrows the old type, so look for a "death march". 1390 // See comments on PhaseTransform::saturate. 1391 juint nrange = (juint)_hi - _lo; 1392 juint orange = (juint)ohi - olo; 1393 if (nrange < max_juint - 1 && nrange > (orange >> 1) + (SMALLINT*2)) { 1394 // Use the new type only if the range shrinks a lot. 1395 // We do not want the optimizer computing 2^31 point by point. 1396 return old; 1397 } 1398 1399 return this; 1400 } 1401 1402 //-----------------------------filter------------------------------------------ 1403 const Type *TypeInt::filter_helper(const Type *kills, bool include_speculative) const { 1404 const TypeInt* ft = join_helper(kills, include_speculative)->isa_int(); 1405 if (ft == NULL || ft->empty()) 1406 return Type::TOP; // Canonical empty value 1407 if (ft->_widen < this->_widen) { 1408 // Do not allow the value of kill->_widen to affect the outcome. 1409 // The widen bits must be allowed to run freely through the graph. 1410 ft = TypeInt::make(ft->_lo, ft->_hi, this->_widen); 1411 } 1412 return ft; 1413 } 1414 1415 //------------------------------eq--------------------------------------------- 1416 // Structural equality check for Type representations 1417 bool TypeInt::eq( const Type *t ) const { 1418 const TypeInt *r = t->is_int(); // Handy access 1419 return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen; 1420 } 1421 1422 //------------------------------hash------------------------------------------- 1423 // Type-specific hashing function. 1424 int TypeInt::hash(void) const { 1425 return java_add(java_add(_lo, _hi), java_add(_widen, (int)Type::Int)); 1426 } 1427 1428 //------------------------------is_finite-------------------------------------- 1429 // Has a finite value 1430 bool TypeInt::is_finite() const { 1431 return true; 1432 } 1433 1434 //------------------------------dump2------------------------------------------ 1435 // Dump TypeInt 1436 #ifndef PRODUCT 1437 static const char* intname(char* buf, jint n) { 1438 if (n == min_jint) 1439 return "min"; 1440 else if (n < min_jint + 10000) 1441 sprintf(buf, "min+" INT32_FORMAT, n - min_jint); 1442 else if (n == max_jint) 1443 return "max"; 1444 else if (n > max_jint - 10000) 1445 sprintf(buf, "max-" INT32_FORMAT, max_jint - n); 1446 else 1447 sprintf(buf, INT32_FORMAT, n); 1448 return buf; 1449 } 1450 1451 void TypeInt::dump2( Dict &d, uint depth, outputStream *st ) const { 1452 char buf[40], buf2[40]; 1453 if (_lo == min_jint && _hi == max_jint) 1454 st->print("int"); 1455 else if (is_con()) 1456 st->print("int:%s", intname(buf, get_con())); 1457 else if (_lo == BOOL->_lo && _hi == BOOL->_hi) 1458 st->print("bool"); 1459 else if (_lo == BYTE->_lo && _hi == BYTE->_hi) 1460 st->print("byte"); 1461 else if (_lo == CHAR->_lo && _hi == CHAR->_hi) 1462 st->print("char"); 1463 else if (_lo == SHORT->_lo && _hi == SHORT->_hi) 1464 st->print("short"); 1465 else if (_hi == max_jint) 1466 st->print("int:>=%s", intname(buf, _lo)); 1467 else if (_lo == min_jint) 1468 st->print("int:<=%s", intname(buf, _hi)); 1469 else 1470 st->print("int:%s..%s", intname(buf, _lo), intname(buf2, _hi)); 1471 1472 if (_widen != 0 && this != TypeInt::INT) 1473 st->print(":%.*s", _widen, "wwww"); 1474 } 1475 #endif 1476 1477 //------------------------------singleton-------------------------------------- 1478 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple 1479 // constants. 1480 bool TypeInt::singleton(void) const { 1481 return _lo >= _hi; 1482 } 1483 1484 bool TypeInt::empty(void) const { 1485 return _lo > _hi; 1486 } 1487 1488 //============================================================================= 1489 // Convenience common pre-built types. 1490 const TypeLong *TypeLong::MINUS_1;// -1 1491 const TypeLong *TypeLong::ZERO; // 0 1492 const TypeLong *TypeLong::ONE; // 1 1493 const TypeLong *TypeLong::POS; // >=0 1494 const TypeLong *TypeLong::LONG; // 64-bit integers 1495 const TypeLong *TypeLong::INT; // 32-bit subrange 1496 const TypeLong *TypeLong::UINT; // 32-bit unsigned subrange 1497 const TypeLong *TypeLong::TYPE_DOMAIN; // alias for TypeLong::LONG 1498 1499 //------------------------------TypeLong--------------------------------------- 1500 TypeLong::TypeLong( jlong lo, jlong hi, int w ) : Type(Long), _lo(lo), _hi(hi), _widen(w) { 1501 } 1502 1503 //------------------------------make------------------------------------------- 1504 const TypeLong *TypeLong::make( jlong lo ) { 1505 return (TypeLong*)(new TypeLong(lo,lo,WidenMin))->hashcons(); 1506 } 1507 1508 static int normalize_long_widen( jlong lo, jlong hi, int w ) { 1509 // Certain normalizations keep us sane when comparing types. 1510 // The 'SMALLINT' covers constants. 1511 if (lo <= hi) { 1512 if (((julong)hi - lo) <= SMALLINT) w = Type::WidenMin; 1513 if (((julong)hi - lo) >= max_julong) w = Type::WidenMax; // TypeLong::LONG 1514 } else { 1515 if (((julong)lo - hi) <= SMALLINT) w = Type::WidenMin; 1516 if (((julong)lo - hi) >= max_julong) w = Type::WidenMin; // dual TypeLong::LONG 1517 } 1518 return w; 1519 } 1520 1521 const TypeLong *TypeLong::make( jlong lo, jlong hi, int w ) { 1522 w = normalize_long_widen(lo, hi, w); 1523 return (TypeLong*)(new TypeLong(lo,hi,w))->hashcons(); 1524 } 1525 1526 1527 //------------------------------meet------------------------------------------- 1528 // Compute the MEET of two types. It returns a new Type representation object 1529 // with reference count equal to the number of Types pointing at it. 1530 // Caller should wrap a Types around it. 1531 const Type *TypeLong::xmeet( const Type *t ) const { 1532 // Perform a fast test for common case; meeting the same types together. 1533 if( this == t ) return this; // Meeting same type? 1534 1535 // Currently "this->_base" is a TypeLong 1536 switch (t->base()) { // Switch on original type 1537 case AnyPtr: // Mixing with oops happens when javac 1538 case RawPtr: // reuses local variables 1539 case OopPtr: 1540 case InstPtr: 1541 case ValueTypePtr: 1542 case AryPtr: 1543 case MetadataPtr: 1544 case KlassPtr: 1545 case NarrowOop: 1546 case NarrowKlass: 1547 case Int: 1548 case FloatTop: 1549 case FloatCon: 1550 case FloatBot: 1551 case DoubleTop: 1552 case DoubleCon: 1553 case DoubleBot: 1554 case Bottom: // Ye Olde Default 1555 return Type::BOTTOM; 1556 default: // All else is a mistake 1557 typerr(t); 1558 case Top: // No change 1559 return this; 1560 case Long: // Long vs Long? 1561 break; 1562 } 1563 1564 // Expand covered set 1565 const TypeLong *r = t->is_long(); // Turn into a TypeLong 1566 return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) ); 1567 } 1568 1569 //------------------------------xdual------------------------------------------ 1570 // Dual: reverse hi & lo; flip widen 1571 const Type *TypeLong::xdual() const { 1572 int w = normalize_long_widen(_hi,_lo, WidenMax-_widen); 1573 return new TypeLong(_hi,_lo,w); 1574 } 1575 1576 //------------------------------widen------------------------------------------ 1577 // Only happens for optimistic top-down optimizations. 1578 const Type *TypeLong::widen( const Type *old, const Type* limit ) const { 1579 // Coming from TOP or such; no widening 1580 if( old->base() != Long ) return this; 1581 const TypeLong *ot = old->is_long(); 1582 1583 // If new guy is equal to old guy, no widening 1584 if( _lo == ot->_lo && _hi == ot->_hi ) 1585 return old; 1586 1587 // If new guy contains old, then we widened 1588 if( _lo <= ot->_lo && _hi >= ot->_hi ) { 1589 // New contains old 1590 // If new guy is already wider than old, no widening 1591 if( _widen > ot->_widen ) return this; 1592 // If old guy was a constant, do not bother 1593 if (ot->_lo == ot->_hi) return this; 1594 // Now widen new guy. 1595 // Check for widening too far 1596 if (_widen == WidenMax) { 1597 jlong max = max_jlong; 1598 jlong min = min_jlong; 1599 if (limit->isa_long()) { 1600 max = limit->is_long()->_hi; 1601 min = limit->is_long()->_lo; 1602 } 1603 if (min < _lo && _hi < max) { 1604 // If neither endpoint is extremal yet, push out the endpoint 1605 // which is closer to its respective limit. 1606 if (_lo >= 0 || // easy common case 1607 ((julong)_lo - min) >= ((julong)max - _hi)) { 1608 // Try to widen to an unsigned range type of 32/63 bits: 1609 if (max >= max_juint && _hi < max_juint) 1610 return make(_lo, max_juint, WidenMax); 1611 else 1612 return make(_lo, max, WidenMax); 1613 } else { 1614 return make(min, _hi, WidenMax); 1615 } 1616 } 1617 return TypeLong::LONG; 1618 } 1619 // Returned widened new guy 1620 return make(_lo,_hi,_widen+1); 1621 } 1622 1623 // If old guy contains new, then we probably widened too far & dropped to 1624 // bottom. Return the wider fellow. 1625 if ( ot->_lo <= _lo && ot->_hi >= _hi ) 1626 return old; 1627 1628 // fatal("Long value range is not subset"); 1629 // return this; 1630 return TypeLong::LONG; 1631 } 1632 1633 //------------------------------narrow---------------------------------------- 1634 // Only happens for pessimistic optimizations. 1635 const Type *TypeLong::narrow( const Type *old ) const { 1636 if (_lo >= _hi) return this; // already narrow enough 1637 if (old == NULL) return this; 1638 const TypeLong* ot = old->isa_long(); 1639 if (ot == NULL) return this; 1640 jlong olo = ot->_lo; 1641 jlong ohi = ot->_hi; 1642 1643 // If new guy is equal to old guy, no narrowing 1644 if (_lo == olo && _hi == ohi) return old; 1645 1646 // If old guy was maximum range, allow the narrowing 1647 if (olo == min_jlong && ohi == max_jlong) return this; 1648 1649 if (_lo < olo || _hi > ohi) 1650 return this; // doesn't narrow; pretty wierd 1651 1652 // The new type narrows the old type, so look for a "death march". 1653 // See comments on PhaseTransform::saturate. 1654 julong nrange = _hi - _lo; 1655 julong orange = ohi - olo; 1656 if (nrange < max_julong - 1 && nrange > (orange >> 1) + (SMALLINT*2)) { 1657 // Use the new type only if the range shrinks a lot. 1658 // We do not want the optimizer computing 2^31 point by point. 1659 return old; 1660 } 1661 1662 return this; 1663 } 1664 1665 //-----------------------------filter------------------------------------------ 1666 const Type *TypeLong::filter_helper(const Type *kills, bool include_speculative) const { 1667 const TypeLong* ft = join_helper(kills, include_speculative)->isa_long(); 1668 if (ft == NULL || ft->empty()) 1669 return Type::TOP; // Canonical empty value 1670 if (ft->_widen < this->_widen) { 1671 // Do not allow the value of kill->_widen to affect the outcome. 1672 // The widen bits must be allowed to run freely through the graph. 1673 ft = TypeLong::make(ft->_lo, ft->_hi, this->_widen); 1674 } 1675 return ft; 1676 } 1677 1678 //------------------------------eq--------------------------------------------- 1679 // Structural equality check for Type representations 1680 bool TypeLong::eq( const Type *t ) const { 1681 const TypeLong *r = t->is_long(); // Handy access 1682 return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen; 1683 } 1684 1685 //------------------------------hash------------------------------------------- 1686 // Type-specific hashing function. 1687 int TypeLong::hash(void) const { 1688 return (int)(_lo+_hi+_widen+(int)Type::Long); 1689 } 1690 1691 //------------------------------is_finite-------------------------------------- 1692 // Has a finite value 1693 bool TypeLong::is_finite() const { 1694 return true; 1695 } 1696 1697 //------------------------------dump2------------------------------------------ 1698 // Dump TypeLong 1699 #ifndef PRODUCT 1700 static const char* longnamenear(jlong x, const char* xname, char* buf, jlong n) { 1701 if (n > x) { 1702 if (n >= x + 10000) return NULL; 1703 sprintf(buf, "%s+" JLONG_FORMAT, xname, n - x); 1704 } else if (n < x) { 1705 if (n <= x - 10000) return NULL; 1706 sprintf(buf, "%s-" JLONG_FORMAT, xname, x - n); 1707 } else { 1708 return xname; 1709 } 1710 return buf; 1711 } 1712 1713 static const char* longname(char* buf, jlong n) { 1714 const char* str; 1715 if (n == min_jlong) 1716 return "min"; 1717 else if (n < min_jlong + 10000) 1718 sprintf(buf, "min+" JLONG_FORMAT, n - min_jlong); 1719 else if (n == max_jlong) 1720 return "max"; 1721 else if (n > max_jlong - 10000) 1722 sprintf(buf, "max-" JLONG_FORMAT, max_jlong - n); 1723 else if ((str = longnamenear(max_juint, "maxuint", buf, n)) != NULL) 1724 return str; 1725 else if ((str = longnamenear(max_jint, "maxint", buf, n)) != NULL) 1726 return str; 1727 else if ((str = longnamenear(min_jint, "minint", buf, n)) != NULL) 1728 return str; 1729 else 1730 sprintf(buf, JLONG_FORMAT, n); 1731 return buf; 1732 } 1733 1734 void TypeLong::dump2( Dict &d, uint depth, outputStream *st ) const { 1735 char buf[80], buf2[80]; 1736 if (_lo == min_jlong && _hi == max_jlong) 1737 st->print("long"); 1738 else if (is_con()) 1739 st->print("long:%s", longname(buf, get_con())); 1740 else if (_hi == max_jlong) 1741 st->print("long:>=%s", longname(buf, _lo)); 1742 else if (_lo == min_jlong) 1743 st->print("long:<=%s", longname(buf, _hi)); 1744 else 1745 st->print("long:%s..%s", longname(buf, _lo), longname(buf2, _hi)); 1746 1747 if (_widen != 0 && this != TypeLong::LONG) 1748 st->print(":%.*s", _widen, "wwww"); 1749 } 1750 #endif 1751 1752 //------------------------------singleton-------------------------------------- 1753 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple 1754 // constants 1755 bool TypeLong::singleton(void) const { 1756 return _lo >= _hi; 1757 } 1758 1759 bool TypeLong::empty(void) const { 1760 return _lo > _hi; 1761 } 1762 1763 //============================================================================= 1764 // Convenience common pre-built types. 1765 const TypeTuple *TypeTuple::IFBOTH; // Return both arms of IF as reachable 1766 const TypeTuple *TypeTuple::IFFALSE; 1767 const TypeTuple *TypeTuple::IFTRUE; 1768 const TypeTuple *TypeTuple::IFNEITHER; 1769 const TypeTuple *TypeTuple::LOOPBODY; 1770 const TypeTuple *TypeTuple::MEMBAR; 1771 const TypeTuple *TypeTuple::STORECONDITIONAL; 1772 const TypeTuple *TypeTuple::START_I2C; 1773 const TypeTuple *TypeTuple::INT_PAIR; 1774 const TypeTuple *TypeTuple::LONG_PAIR; 1775 const TypeTuple *TypeTuple::INT_CC_PAIR; 1776 const TypeTuple *TypeTuple::LONG_CC_PAIR; 1777 1778 1779 //------------------------------make------------------------------------------- 1780 // Make a TypeTuple from the range of a method signature 1781 const TypeTuple *TypeTuple::make_range(ciSignature* sig) { 1782 ciType* return_type = sig->return_type(); 1783 uint arg_cnt = return_type->size(); 1784 const Type **field_array = fields(arg_cnt); 1785 switch (return_type->basic_type()) { 1786 case T_LONG: 1787 field_array[TypeFunc::Parms] = TypeLong::LONG; 1788 field_array[TypeFunc::Parms+1] = Type::HALF; 1789 break; 1790 case T_DOUBLE: 1791 field_array[TypeFunc::Parms] = Type::DOUBLE; 1792 field_array[TypeFunc::Parms+1] = Type::HALF; 1793 break; 1794 case T_OBJECT: 1795 case T_VALUETYPE: 1796 case T_ARRAY: 1797 case T_BOOLEAN: 1798 case T_CHAR: 1799 case T_FLOAT: 1800 case T_BYTE: 1801 case T_SHORT: 1802 case T_INT: 1803 field_array[TypeFunc::Parms] = get_const_type(return_type); 1804 break; 1805 case T_VOID: 1806 break; 1807 default: 1808 ShouldNotReachHere(); 1809 } 1810 return (TypeTuple*)(new TypeTuple(TypeFunc::Parms + arg_cnt, field_array))->hashcons(); 1811 } 1812 1813 // Make a TypeTuple from the domain of a method signature 1814 const TypeTuple *TypeTuple::make_domain(ciInstanceKlass* recv, ciSignature* sig) { 1815 uint arg_cnt = sig->size(); 1816 1817 uint pos = TypeFunc::Parms; 1818 const Type **field_array; 1819 if (recv != NULL) { 1820 arg_cnt++; 1821 field_array = fields(arg_cnt); 1822 // Use get_const_type here because it respects UseUniqueSubclasses: 1823 field_array[pos++] = get_const_type(recv)->join_speculative(TypePtr::NOTNULL); 1824 } else { 1825 field_array = fields(arg_cnt); 1826 } 1827 1828 int i = 0; 1829 while (pos < TypeFunc::Parms + arg_cnt) { 1830 ciType* type = sig->type_at(i); 1831 1832 switch (type->basic_type()) { 1833 case T_LONG: 1834 field_array[pos++] = TypeLong::LONG; 1835 field_array[pos++] = Type::HALF; 1836 break; 1837 case T_DOUBLE: 1838 field_array[pos++] = Type::DOUBLE; 1839 field_array[pos++] = Type::HALF; 1840 break; 1841 case T_OBJECT: 1842 case T_VALUETYPE: 1843 case T_ARRAY: 1844 case T_BOOLEAN: 1845 case T_CHAR: 1846 case T_FLOAT: 1847 case T_BYTE: 1848 case T_SHORT: 1849 case T_INT: 1850 field_array[pos++] = get_const_type(type); 1851 break; 1852 default: 1853 ShouldNotReachHere(); 1854 } 1855 i++; 1856 } 1857 1858 return (TypeTuple*)(new TypeTuple(TypeFunc::Parms + arg_cnt, field_array))->hashcons(); 1859 } 1860 1861 const TypeTuple *TypeTuple::make( uint cnt, const Type **fields ) { 1862 return (TypeTuple*)(new TypeTuple(cnt,fields))->hashcons(); 1863 } 1864 1865 //------------------------------fields----------------------------------------- 1866 // Subroutine call type with space allocated for argument types 1867 // Memory for Control, I_O, Memory, FramePtr, and ReturnAdr is allocated implicitly 1868 const Type **TypeTuple::fields( uint arg_cnt ) { 1869 const Type **flds = (const Type **)(Compile::current()->type_arena()->Amalloc_4((TypeFunc::Parms+arg_cnt)*sizeof(Type*) )); 1870 flds[TypeFunc::Control ] = Type::CONTROL; 1871 flds[TypeFunc::I_O ] = Type::ABIO; 1872 flds[TypeFunc::Memory ] = Type::MEMORY; 1873 flds[TypeFunc::FramePtr ] = TypeRawPtr::BOTTOM; 1874 flds[TypeFunc::ReturnAdr] = Type::RETURN_ADDRESS; 1875 1876 return flds; 1877 } 1878 1879 //------------------------------meet------------------------------------------- 1880 // Compute the MEET of two types. It returns a new Type object. 1881 const Type *TypeTuple::xmeet( const Type *t ) const { 1882 // Perform a fast test for common case; meeting the same types together. 1883 if( this == t ) return this; // Meeting same type-rep? 1884 1885 // Current "this->_base" is Tuple 1886 switch (t->base()) { // switch on original type 1887 1888 case Bottom: // Ye Olde Default 1889 return t; 1890 1891 default: // All else is a mistake 1892 typerr(t); 1893 1894 case Tuple: { // Meeting 2 signatures? 1895 const TypeTuple *x = t->is_tuple(); 1896 assert( _cnt == x->_cnt, "" ); 1897 const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) )); 1898 for( uint i=0; i<_cnt; i++ ) 1899 fields[i] = field_at(i)->xmeet( x->field_at(i) ); 1900 return TypeTuple::make(_cnt,fields); 1901 } 1902 case Top: 1903 break; 1904 } 1905 return this; // Return the double constant 1906 } 1907 1908 //------------------------------xdual------------------------------------------ 1909 // Dual: compute field-by-field dual 1910 const Type *TypeTuple::xdual() const { 1911 const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) )); 1912 for( uint i=0; i<_cnt; i++ ) 1913 fields[i] = _fields[i]->dual(); 1914 return new TypeTuple(_cnt,fields); 1915 } 1916 1917 //------------------------------eq--------------------------------------------- 1918 // Structural equality check for Type representations 1919 bool TypeTuple::eq( const Type *t ) const { 1920 const TypeTuple *s = (const TypeTuple *)t; 1921 if (_cnt != s->_cnt) return false; // Unequal field counts 1922 for (uint i = 0; i < _cnt; i++) 1923 if (field_at(i) != s->field_at(i)) // POINTER COMPARE! NO RECURSION! 1924 return false; // Missed 1925 return true; 1926 } 1927 1928 //------------------------------hash------------------------------------------- 1929 // Type-specific hashing function. 1930 int TypeTuple::hash(void) const { 1931 intptr_t sum = _cnt; 1932 for( uint i=0; i<_cnt; i++ ) 1933 sum += (intptr_t)_fields[i]; // Hash on pointers directly 1934 return sum; 1935 } 1936 1937 //------------------------------dump2------------------------------------------ 1938 // Dump signature Type 1939 #ifndef PRODUCT 1940 void TypeTuple::dump2( Dict &d, uint depth, outputStream *st ) const { 1941 st->print("{"); 1942 if( !depth || d[this] ) { // Check for recursive print 1943 st->print("...}"); 1944 return; 1945 } 1946 d.Insert((void*)this, (void*)this); // Stop recursion 1947 if( _cnt ) { 1948 uint i; 1949 for( i=0; i<_cnt-1; i++ ) { 1950 st->print("%d:", i); 1951 _fields[i]->dump2(d, depth-1, st); 1952 st->print(", "); 1953 } 1954 st->print("%d:", i); 1955 _fields[i]->dump2(d, depth-1, st); 1956 } 1957 st->print("}"); 1958 } 1959 #endif 1960 1961 //------------------------------singleton-------------------------------------- 1962 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple 1963 // constants (Ldi nodes). Singletons are integer, float or double constants 1964 // or a single symbol. 1965 bool TypeTuple::singleton(void) const { 1966 return false; // Never a singleton 1967 } 1968 1969 bool TypeTuple::empty(void) const { 1970 for( uint i=0; i<_cnt; i++ ) { 1971 if (_fields[i]->empty()) return true; 1972 } 1973 return false; 1974 } 1975 1976 //============================================================================= 1977 // Convenience common pre-built types. 1978 1979 inline const TypeInt* normalize_array_size(const TypeInt* size) { 1980 // Certain normalizations keep us sane when comparing types. 1981 // We do not want arrayOop variables to differ only by the wideness 1982 // of their index types. Pick minimum wideness, since that is the 1983 // forced wideness of small ranges anyway. 1984 if (size->_widen != Type::WidenMin) 1985 return TypeInt::make(size->_lo, size->_hi, Type::WidenMin); 1986 else 1987 return size; 1988 } 1989 1990 //------------------------------make------------------------------------------- 1991 const TypeAry* TypeAry::make(const Type* elem, const TypeInt* size, bool stable) { 1992 if (UseCompressedOops && elem->isa_oopptr()) { 1993 elem = elem->make_narrowoop(); 1994 } 1995 size = normalize_array_size(size); 1996 return (TypeAry*)(new TypeAry(elem,size,stable))->hashcons(); 1997 } 1998 1999 //------------------------------meet------------------------------------------- 2000 // Compute the MEET of two types. It returns a new Type object. 2001 const Type *TypeAry::xmeet( const Type *t ) const { 2002 // Perform a fast test for common case; meeting the same types together. 2003 if( this == t ) return this; // Meeting same type-rep? 2004 2005 // Current "this->_base" is Ary 2006 switch (t->base()) { // switch on original type 2007 2008 case Bottom: // Ye Olde Default 2009 return t; 2010 2011 default: // All else is a mistake 2012 typerr(t); 2013 2014 case Array: { // Meeting 2 arrays? 2015 const TypeAry *a = t->is_ary(); 2016 return TypeAry::make(_elem->meet_speculative(a->_elem), 2017 _size->xmeet(a->_size)->is_int(), 2018 _stable & a->_stable); 2019 } 2020 case Top: 2021 break; 2022 } 2023 return this; // Return the double constant 2024 } 2025 2026 //------------------------------xdual------------------------------------------ 2027 // Dual: compute field-by-field dual 2028 const Type *TypeAry::xdual() const { 2029 const TypeInt* size_dual = _size->dual()->is_int(); 2030 size_dual = normalize_array_size(size_dual); 2031 return new TypeAry(_elem->dual(), size_dual, !_stable); 2032 } 2033 2034 //------------------------------eq--------------------------------------------- 2035 // Structural equality check for Type representations 2036 bool TypeAry::eq( const Type *t ) const { 2037 const TypeAry *a = (const TypeAry*)t; 2038 return _elem == a->_elem && 2039 _stable == a->_stable && 2040 _size == a->_size; 2041 } 2042 2043 //------------------------------hash------------------------------------------- 2044 // Type-specific hashing function. 2045 int TypeAry::hash(void) const { 2046 return (intptr_t)_elem + (intptr_t)_size + (_stable ? 43 : 0); 2047 } 2048 2049 /** 2050 * Return same type without a speculative part in the element 2051 */ 2052 const Type* TypeAry::remove_speculative() const { 2053 return make(_elem->remove_speculative(), _size, _stable); 2054 } 2055 2056 /** 2057 * Return same type with cleaned up speculative part of element 2058 */ 2059 const Type* TypeAry::cleanup_speculative() const { 2060 return make(_elem->cleanup_speculative(), _size, _stable); 2061 } 2062 2063 /** 2064 * Return same type but with a different inline depth (used for speculation) 2065 * 2066 * @param depth depth to meet with 2067 */ 2068 const TypePtr* TypePtr::with_inline_depth(int depth) const { 2069 if (!UseInlineDepthForSpeculativeTypes) { 2070 return this; 2071 } 2072 return make(AnyPtr, _ptr, _offset, _speculative, depth); 2073 } 2074 2075 //----------------------interface_vs_oop--------------------------------------- 2076 #ifdef ASSERT 2077 bool TypeAry::interface_vs_oop(const Type *t) const { 2078 const TypeAry* t_ary = t->is_ary(); 2079 if (t_ary) { 2080 const TypePtr* this_ptr = _elem->make_ptr(); // In case we have narrow_oops 2081 const TypePtr* t_ptr = t_ary->_elem->make_ptr(); 2082 if(this_ptr != NULL && t_ptr != NULL) { 2083 return this_ptr->interface_vs_oop(t_ptr); 2084 } 2085 } 2086 return false; 2087 } 2088 #endif 2089 2090 //------------------------------dump2------------------------------------------ 2091 #ifndef PRODUCT 2092 void TypeAry::dump2( Dict &d, uint depth, outputStream *st ) const { 2093 if (_stable) st->print("stable:"); 2094 _elem->dump2(d, depth, st); 2095 st->print("["); 2096 _size->dump2(d, depth, st); 2097 st->print("]"); 2098 } 2099 #endif 2100 2101 //------------------------------singleton-------------------------------------- 2102 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple 2103 // constants (Ldi nodes). Singletons are integer, float or double constants 2104 // or a single symbol. 2105 bool TypeAry::singleton(void) const { 2106 return false; // Never a singleton 2107 } 2108 2109 bool TypeAry::empty(void) const { 2110 return _elem->empty() || _size->empty(); 2111 } 2112 2113 //--------------------------ary_must_be_exact---------------------------------- 2114 bool TypeAry::ary_must_be_exact() const { 2115 if (!UseExactTypes) return false; 2116 // This logic looks at the element type of an array, and returns true 2117 // if the element type is either a primitive or a final instance class. 2118 // In such cases, an array built on this ary must have no subclasses. 2119 if (_elem == BOTTOM) return false; // general array not exact 2120 if (_elem == TOP ) return false; // inverted general array not exact 2121 const TypeOopPtr* toop = NULL; 2122 if (UseCompressedOops && _elem->isa_narrowoop()) { 2123 toop = _elem->make_ptr()->isa_oopptr(); 2124 } else { 2125 toop = _elem->isa_oopptr(); 2126 } 2127 if (!toop) return true; // a primitive type, like int 2128 ciKlass* tklass = toop->klass(); 2129 if (tklass == NULL) return false; // unloaded class 2130 if (!tklass->is_loaded()) return false; // unloaded class 2131 const TypeInstPtr* tinst; 2132 if (_elem->isa_narrowoop()) 2133 tinst = _elem->make_ptr()->isa_instptr(); 2134 else 2135 tinst = _elem->isa_instptr(); 2136 if (tinst) 2137 return tklass->as_instance_klass()->is_final(); 2138 const TypeAryPtr* tap; 2139 if (_elem->isa_narrowoop()) 2140 tap = _elem->make_ptr()->isa_aryptr(); 2141 else 2142 tap = _elem->isa_aryptr(); 2143 if (tap) 2144 return tap->ary()->ary_must_be_exact(); 2145 return false; 2146 } 2147 2148 //==============================TypeValueType======================================= 2149 2150 //------------------------------make------------------------------------------- 2151 const TypeValueType* TypeValueType::make(ciValueKlass* vk) { 2152 return (TypeValueType*)(new TypeValueType(vk))->hashcons(); 2153 } 2154 2155 //------------------------------meet------------------------------------------- 2156 // Compute the MEET of two types. It returns a new Type object. 2157 const Type* TypeValueType::xmeet(const Type* t) const { 2158 // Perform a fast test for common case; meeting the same types together. 2159 if(this == t) return this; // Meeting same type-rep? 2160 2161 // Current "this->_base" is ValueType 2162 switch (t->base()) { // switch on original type 2163 2164 case Top: 2165 break; 2166 2167 case Bottom: 2168 return t; 2169 2170 default: // All else is a mistake 2171 typerr(t); 2172 2173 } 2174 return this; 2175 } 2176 2177 //------------------------------xdual------------------------------------------ 2178 const Type* TypeValueType::xdual() const { 2179 // FIXME 2180 return new TypeValueType(_vk); 2181 } 2182 2183 //------------------------------eq--------------------------------------------- 2184 // Structural equality check for Type representations 2185 bool TypeValueType::eq(const Type* t) const { 2186 const TypeValueType* vt = t->is_valuetype(); 2187 return (_vk == vt->value_klass()); 2188 } 2189 2190 //------------------------------hash------------------------------------------- 2191 // Type-specific hashing function. 2192 int TypeValueType::hash(void) const { 2193 return (intptr_t)_vk; 2194 } 2195 2196 //------------------------------singleton-------------------------------------- 2197 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple constants. 2198 bool TypeValueType::singleton(void) const { 2199 // FIXME 2200 return false; 2201 } 2202 2203 //------------------------------empty------------------------------------------ 2204 // TRUE if Type is a type with no values, FALSE otherwise. 2205 bool TypeValueType::empty(void) const { 2206 // FIXME 2207 return false; 2208 } 2209 2210 //------------------------------dump2------------------------------------------ 2211 #ifndef PRODUCT 2212 void TypeValueType::dump2(Dict &d, uint depth, outputStream* st) const { 2213 st->print("valuetype[%d]:{", _vk->param_count()); 2214 st->print("%s", _vk->get_field_type_by_index(0)->name()); 2215 for (int i = 1; i < _vk->param_count(); ++i) { 2216 st->print(", %s", _vk->get_field_type_by_index(i)->name()); 2217 } 2218 st->print("}"); 2219 } 2220 #endif 2221 2222 //==============================TypeVect======================================= 2223 // Convenience common pre-built types. 2224 const TypeVect *TypeVect::VECTS = NULL; // 32-bit vectors 2225 const TypeVect *TypeVect::VECTD = NULL; // 64-bit vectors 2226 const TypeVect *TypeVect::VECTX = NULL; // 128-bit vectors 2227 const TypeVect *TypeVect::VECTY = NULL; // 256-bit vectors 2228 const TypeVect *TypeVect::VECTZ = NULL; // 512-bit vectors 2229 2230 //------------------------------make------------------------------------------- 2231 const TypeVect* TypeVect::make(const Type *elem, uint length) { 2232 BasicType elem_bt = elem->array_element_basic_type(); 2233 assert(is_java_primitive(elem_bt), "only primitive types in vector"); 2234 assert(length > 1 && is_power_of_2(length), "vector length is power of 2"); 2235 assert(Matcher::vector_size_supported(elem_bt, length), "length in range"); 2236 int size = length * type2aelembytes(elem_bt); 2237 switch (Matcher::vector_ideal_reg(size)) { 2238 case Op_VecS: 2239 return (TypeVect*)(new TypeVectS(elem, length))->hashcons(); 2240 case Op_RegL: 2241 case Op_VecD: 2242 case Op_RegD: 2243 return (TypeVect*)(new TypeVectD(elem, length))->hashcons(); 2244 case Op_VecX: 2245 return (TypeVect*)(new TypeVectX(elem, length))->hashcons(); 2246 case Op_VecY: 2247 return (TypeVect*)(new TypeVectY(elem, length))->hashcons(); 2248 case Op_VecZ: 2249 return (TypeVect*)(new TypeVectZ(elem, length))->hashcons(); 2250 } 2251 ShouldNotReachHere(); 2252 return NULL; 2253 } 2254 2255 //------------------------------meet------------------------------------------- 2256 // Compute the MEET of two types. It returns a new Type object. 2257 const Type *TypeVect::xmeet( const Type *t ) const { 2258 // Perform a fast test for common case; meeting the same types together. 2259 if( this == t ) return this; // Meeting same type-rep? 2260 2261 // Current "this->_base" is Vector 2262 switch (t->base()) { // switch on original type 2263 2264 case Bottom: // Ye Olde Default 2265 return t; 2266 2267 default: // All else is a mistake 2268 typerr(t); 2269 2270 case VectorS: 2271 case VectorD: 2272 case VectorX: 2273 case VectorY: 2274 case VectorZ: { // Meeting 2 vectors? 2275 const TypeVect* v = t->is_vect(); 2276 assert( base() == v->base(), ""); 2277 assert(length() == v->length(), ""); 2278 assert(element_basic_type() == v->element_basic_type(), ""); 2279 return TypeVect::make(_elem->xmeet(v->_elem), _length); 2280 } 2281 case Top: 2282 break; 2283 } 2284 return this; 2285 } 2286 2287 //------------------------------xdual------------------------------------------ 2288 // Dual: compute field-by-field dual 2289 const Type *TypeVect::xdual() const { 2290 return new TypeVect(base(), _elem->dual(), _length); 2291 } 2292 2293 //------------------------------eq--------------------------------------------- 2294 // Structural equality check for Type representations 2295 bool TypeVect::eq(const Type *t) const { 2296 const TypeVect *v = t->is_vect(); 2297 return (_elem == v->_elem) && (_length == v->_length); 2298 } 2299 2300 //------------------------------hash------------------------------------------- 2301 // Type-specific hashing function. 2302 int TypeVect::hash(void) const { 2303 return (intptr_t)_elem + (intptr_t)_length; 2304 } 2305 2306 //------------------------------singleton-------------------------------------- 2307 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple 2308 // constants (Ldi nodes). Vector is singleton if all elements are the same 2309 // constant value (when vector is created with Replicate code). 2310 bool TypeVect::singleton(void) const { 2311 // There is no Con node for vectors yet. 2312 // return _elem->singleton(); 2313 return false; 2314 } 2315 2316 bool TypeVect::empty(void) const { 2317 return _elem->empty(); 2318 } 2319 2320 //------------------------------dump2------------------------------------------ 2321 #ifndef PRODUCT 2322 void TypeVect::dump2(Dict &d, uint depth, outputStream *st) const { 2323 switch (base()) { 2324 case VectorS: 2325 st->print("vectors["); break; 2326 case VectorD: 2327 st->print("vectord["); break; 2328 case VectorX: 2329 st->print("vectorx["); break; 2330 case VectorY: 2331 st->print("vectory["); break; 2332 case VectorZ: 2333 st->print("vectorz["); break; 2334 default: 2335 ShouldNotReachHere(); 2336 } 2337 st->print("%d]:{", _length); 2338 _elem->dump2(d, depth, st); 2339 st->print("}"); 2340 } 2341 #endif 2342 2343 2344 //============================================================================= 2345 // Convenience common pre-built types. 2346 const TypePtr *TypePtr::NULL_PTR; 2347 const TypePtr *TypePtr::NOTNULL; 2348 const TypePtr *TypePtr::BOTTOM; 2349 2350 //------------------------------meet------------------------------------------- 2351 // Meet over the PTR enum 2352 const TypePtr::PTR TypePtr::ptr_meet[TypePtr::lastPTR][TypePtr::lastPTR] = { 2353 // TopPTR, AnyNull, Constant, Null, NotNull, BotPTR, 2354 { /* Top */ TopPTR, AnyNull, Constant, Null, NotNull, BotPTR,}, 2355 { /* AnyNull */ AnyNull, AnyNull, Constant, BotPTR, NotNull, BotPTR,}, 2356 { /* Constant*/ Constant, Constant, Constant, BotPTR, NotNull, BotPTR,}, 2357 { /* Null */ Null, BotPTR, BotPTR, Null, BotPTR, BotPTR,}, 2358 { /* NotNull */ NotNull, NotNull, NotNull, BotPTR, NotNull, BotPTR,}, 2359 { /* BotPTR */ BotPTR, BotPTR, BotPTR, BotPTR, BotPTR, BotPTR,} 2360 }; 2361 2362 //------------------------------make------------------------------------------- 2363 const TypePtr *TypePtr::make(TYPES t, enum PTR ptr, int offset, const TypePtr* speculative, int inline_depth) { 2364 return (TypePtr*)(new TypePtr(t,ptr,offset, speculative, inline_depth))->hashcons(); 2365 } 2366 2367 //------------------------------cast_to_ptr_type------------------------------- 2368 const Type *TypePtr::cast_to_ptr_type(PTR ptr) const { 2369 assert(_base == AnyPtr, "subclass must override cast_to_ptr_type"); 2370 if( ptr == _ptr ) return this; 2371 return make(_base, ptr, _offset, _speculative, _inline_depth); 2372 } 2373 2374 //------------------------------get_con---------------------------------------- 2375 intptr_t TypePtr::get_con() const { 2376 assert( _ptr == Null, "" ); 2377 return _offset; 2378 } 2379 2380 //------------------------------meet------------------------------------------- 2381 // Compute the MEET of two types. It returns a new Type object. 2382 const Type *TypePtr::xmeet(const Type *t) const { 2383 const Type* res = xmeet_helper(t); 2384 if (res->isa_ptr() == NULL) { 2385 return res; 2386 } 2387 2388 const TypePtr* res_ptr = res->is_ptr(); 2389 if (res_ptr->speculative() != NULL) { 2390 // type->speculative() == NULL means that speculation is no better 2391 // than type, i.e. type->speculative() == type. So there are 2 2392 // ways to represent the fact that we have no useful speculative 2393 // data and we should use a single one to be able to test for 2394 // equality between types. Check whether type->speculative() == 2395 // type and set speculative to NULL if it is the case. 2396 if (res_ptr->remove_speculative() == res_ptr->speculative()) { 2397 return res_ptr->remove_speculative(); 2398 } 2399 } 2400 2401 return res; 2402 } 2403 2404 const Type *TypePtr::xmeet_helper(const Type *t) const { 2405 // Perform a fast test for common case; meeting the same types together. 2406 if( this == t ) return this; // Meeting same type-rep? 2407 2408 // Current "this->_base" is AnyPtr 2409 switch (t->base()) { // switch on original type 2410 case Int: // Mixing ints & oops happens when javac 2411 case Long: // reuses local variables 2412 case FloatTop: 2413 case FloatCon: 2414 case FloatBot: 2415 case DoubleTop: 2416 case DoubleCon: 2417 case DoubleBot: 2418 case NarrowOop: 2419 case NarrowKlass: 2420 case Bottom: // Ye Olde Default 2421 return Type::BOTTOM; 2422 case Top: 2423 return this; 2424 2425 case AnyPtr: { // Meeting to AnyPtrs 2426 const TypePtr *tp = t->is_ptr(); 2427 const TypePtr* speculative = xmeet_speculative(tp); 2428 int depth = meet_inline_depth(tp->inline_depth()); 2429 return make(AnyPtr, meet_ptr(tp->ptr()), meet_offset(tp->offset()), speculative, depth); 2430 } 2431 case RawPtr: // For these, flip the call around to cut down 2432 case OopPtr: 2433 case InstPtr: // on the cases I have to handle. 2434 case ValueTypePtr: 2435 case AryPtr: 2436 case MetadataPtr: 2437 case KlassPtr: 2438 return t->xmeet(this); // Call in reverse direction 2439 default: // All else is a mistake 2440 typerr(t); 2441 2442 } 2443 return this; 2444 } 2445 2446 //------------------------------meet_offset------------------------------------ 2447 int TypePtr::meet_offset( int offset ) const { 2448 // Either is 'TOP' offset? Return the other offset! 2449 if( _offset == OffsetTop ) return offset; 2450 if( offset == OffsetTop ) return _offset; 2451 // If either is different, return 'BOTTOM' offset 2452 if( _offset != offset ) return OffsetBot; 2453 return _offset; 2454 } 2455 2456 //------------------------------dual_offset------------------------------------ 2457 int TypePtr::dual_offset( ) const { 2458 if( _offset == OffsetTop ) return OffsetBot;// Map 'TOP' into 'BOTTOM' 2459 if( _offset == OffsetBot ) return OffsetTop;// Map 'BOTTOM' into 'TOP' 2460 return _offset; // Map everything else into self 2461 } 2462 2463 //------------------------------xdual------------------------------------------ 2464 // Dual: compute field-by-field dual 2465 const TypePtr::PTR TypePtr::ptr_dual[TypePtr::lastPTR] = { 2466 BotPTR, NotNull, Constant, Null, AnyNull, TopPTR 2467 }; 2468 const Type *TypePtr::xdual() const { 2469 return new TypePtr(AnyPtr, dual_ptr(), dual_offset(), dual_speculative(), dual_inline_depth()); 2470 } 2471 2472 //------------------------------xadd_offset------------------------------------ 2473 int TypePtr::xadd_offset( intptr_t offset ) const { 2474 // Adding to 'TOP' offset? Return 'TOP'! 2475 if( _offset == OffsetTop || offset == OffsetTop ) return OffsetTop; 2476 // Adding to 'BOTTOM' offset? Return 'BOTTOM'! 2477 if( _offset == OffsetBot || offset == OffsetBot ) return OffsetBot; 2478 // Addition overflows or "accidentally" equals to OffsetTop? Return 'BOTTOM'! 2479 offset += (intptr_t)_offset; 2480 if (offset != (int)offset || offset == OffsetTop) return OffsetBot; 2481 2482 // assert( _offset >= 0 && _offset+offset >= 0, "" ); 2483 // It is possible to construct a negative offset during PhaseCCP 2484 2485 return (int)offset; // Sum valid offsets 2486 } 2487 2488 //------------------------------add_offset------------------------------------- 2489 const TypePtr *TypePtr::add_offset( intptr_t offset ) const { 2490 return make(AnyPtr, _ptr, xadd_offset(offset), _speculative, _inline_depth); 2491 } 2492 2493 //------------------------------eq--------------------------------------------- 2494 // Structural equality check for Type representations 2495 bool TypePtr::eq( const Type *t ) const { 2496 const TypePtr *a = (const TypePtr*)t; 2497 return _ptr == a->ptr() && _offset == a->offset() && eq_speculative(a) && _inline_depth == a->_inline_depth; 2498 } 2499 2500 //------------------------------hash------------------------------------------- 2501 // Type-specific hashing function. 2502 int TypePtr::hash(void) const { 2503 return java_add(java_add(_ptr, _offset), java_add( hash_speculative(), _inline_depth)); 2504 ; 2505 } 2506 2507 /** 2508 * Return same type without a speculative part 2509 */ 2510 const Type* TypePtr::remove_speculative() const { 2511 if (_speculative == NULL) { 2512 return this; 2513 } 2514 assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth"); 2515 return make(AnyPtr, _ptr, _offset, NULL, _inline_depth); 2516 } 2517 2518 /** 2519 * Return same type but drop speculative part if we know we won't use 2520 * it 2521 */ 2522 const Type* TypePtr::cleanup_speculative() const { 2523 if (speculative() == NULL) { 2524 return this; 2525 } 2526 const Type* no_spec = remove_speculative(); 2527 // If this is NULL_PTR then we don't need the speculative type 2528 // (with_inline_depth in case the current type inline depth is 2529 // InlineDepthTop) 2530 if (no_spec == NULL_PTR->with_inline_depth(inline_depth())) { 2531 return no_spec; 2532 } 2533 if (above_centerline(speculative()->ptr())) { 2534 return no_spec; 2535 } 2536 const TypeOopPtr* spec_oopptr = speculative()->isa_oopptr(); 2537 // If the speculative may be null and is an inexact klass then it 2538 // doesn't help 2539 if (speculative()->maybe_null() && (spec_oopptr == NULL || !spec_oopptr->klass_is_exact())) { 2540 return no_spec; 2541 } 2542 return this; 2543 } 2544 2545 /** 2546 * dual of the speculative part of the type 2547 */ 2548 const TypePtr* TypePtr::dual_speculative() const { 2549 if (_speculative == NULL) { 2550 return NULL; 2551 } 2552 return _speculative->dual()->is_ptr(); 2553 } 2554 2555 /** 2556 * meet of the speculative parts of 2 types 2557 * 2558 * @param other type to meet with 2559 */ 2560 const TypePtr* TypePtr::xmeet_speculative(const TypePtr* other) const { 2561 bool this_has_spec = (_speculative != NULL); 2562 bool other_has_spec = (other->speculative() != NULL); 2563 2564 if (!this_has_spec && !other_has_spec) { 2565 return NULL; 2566 } 2567 2568 // If we are at a point where control flow meets and one branch has 2569 // a speculative type and the other has not, we meet the speculative 2570 // type of one branch with the actual type of the other. If the 2571 // actual type is exact and the speculative is as well, then the 2572 // result is a speculative type which is exact and we can continue 2573 // speculation further. 2574 const TypePtr* this_spec = _speculative; 2575 const TypePtr* other_spec = other->speculative(); 2576 2577 if (!this_has_spec) { 2578 this_spec = this; 2579 } 2580 2581 if (!other_has_spec) { 2582 other_spec = other; 2583 } 2584 2585 return this_spec->meet(other_spec)->is_ptr(); 2586 } 2587 2588 /** 2589 * dual of the inline depth for this type (used for speculation) 2590 */ 2591 int TypePtr::dual_inline_depth() const { 2592 return -inline_depth(); 2593 } 2594 2595 /** 2596 * meet of 2 inline depths (used for speculation) 2597 * 2598 * @param depth depth to meet with 2599 */ 2600 int TypePtr::meet_inline_depth(int depth) const { 2601 return MAX2(inline_depth(), depth); 2602 } 2603 2604 /** 2605 * Are the speculative parts of 2 types equal? 2606 * 2607 * @param other type to compare this one to 2608 */ 2609 bool TypePtr::eq_speculative(const TypePtr* other) const { 2610 if (_speculative == NULL || other->speculative() == NULL) { 2611 return _speculative == other->speculative(); 2612 } 2613 2614 if (_speculative->base() != other->speculative()->base()) { 2615 return false; 2616 } 2617 2618 return _speculative->eq(other->speculative()); 2619 } 2620 2621 /** 2622 * Hash of the speculative part of the type 2623 */ 2624 int TypePtr::hash_speculative() const { 2625 if (_speculative == NULL) { 2626 return 0; 2627 } 2628 2629 return _speculative->hash(); 2630 } 2631 2632 /** 2633 * add offset to the speculative part of the type 2634 * 2635 * @param offset offset to add 2636 */ 2637 const TypePtr* TypePtr::add_offset_speculative(intptr_t offset) const { 2638 if (_speculative == NULL) { 2639 return NULL; 2640 } 2641 return _speculative->add_offset(offset)->is_ptr(); 2642 } 2643 2644 /** 2645 * return exact klass from the speculative type if there's one 2646 */ 2647 ciKlass* TypePtr::speculative_type() const { 2648 if (_speculative != NULL && _speculative->isa_oopptr()) { 2649 const TypeOopPtr* speculative = _speculative->join(this)->is_oopptr(); 2650 if (speculative->klass_is_exact()) { 2651 return speculative->klass(); 2652 } 2653 } 2654 return NULL; 2655 } 2656 2657 /** 2658 * return true if speculative type may be null 2659 */ 2660 bool TypePtr::speculative_maybe_null() const { 2661 if (_speculative != NULL) { 2662 const TypePtr* speculative = _speculative->join(this)->is_ptr(); 2663 return speculative->maybe_null(); 2664 } 2665 return true; 2666 } 2667 2668 /** 2669 * Same as TypePtr::speculative_type() but return the klass only if 2670 * the speculative tells us is not null 2671 */ 2672 ciKlass* TypePtr::speculative_type_not_null() const { 2673 if (speculative_maybe_null()) { 2674 return NULL; 2675 } 2676 return speculative_type(); 2677 } 2678 2679 /** 2680 * Check whether new profiling would improve speculative type 2681 * 2682 * @param exact_kls class from profiling 2683 * @param inline_depth inlining depth of profile point 2684 * 2685 * @return true if type profile is valuable 2686 */ 2687 bool TypePtr::would_improve_type(ciKlass* exact_kls, int inline_depth) const { 2688 // no profiling? 2689 if (exact_kls == NULL) { 2690 return false; 2691 } 2692 // no speculative type or non exact speculative type? 2693 if (speculative_type() == NULL) { 2694 return true; 2695 } 2696 // If the node already has an exact speculative type keep it, 2697 // unless it was provided by profiling that is at a deeper 2698 // inlining level. Profiling at a higher inlining depth is 2699 // expected to be less accurate. 2700 if (_speculative->inline_depth() == InlineDepthBottom) { 2701 return false; 2702 } 2703 assert(_speculative->inline_depth() != InlineDepthTop, "can't do the comparison"); 2704 return inline_depth < _speculative->inline_depth(); 2705 } 2706 2707 /** 2708 * Check whether new profiling would improve ptr (= tells us it is non 2709 * null) 2710 * 2711 * @param maybe_null true if profiling tells the ptr may be null 2712 * 2713 * @return true if ptr profile is valuable 2714 */ 2715 bool TypePtr::would_improve_ptr(bool maybe_null) const { 2716 // profiling doesn't tell us anything useful 2717 if (maybe_null) { 2718 return false; 2719 } 2720 // We already know this is not be null 2721 if (!this->maybe_null()) { 2722 return false; 2723 } 2724 // We already know the speculative type cannot be null 2725 if (!speculative_maybe_null()) { 2726 return false; 2727 } 2728 return true; 2729 } 2730 2731 //------------------------------dump2------------------------------------------ 2732 const char *const TypePtr::ptr_msg[TypePtr::lastPTR] = { 2733 "TopPTR","AnyNull","Constant","NULL","NotNull","BotPTR" 2734 }; 2735 2736 #ifndef PRODUCT 2737 void TypePtr::dump2( Dict &d, uint depth, outputStream *st ) const { 2738 if( _ptr == Null ) st->print("NULL"); 2739 else st->print("%s *", ptr_msg[_ptr]); 2740 if( _offset == OffsetTop ) st->print("+top"); 2741 else if( _offset == OffsetBot ) st->print("+bot"); 2742 else if( _offset ) st->print("+%d", _offset); 2743 dump_inline_depth(st); 2744 dump_speculative(st); 2745 } 2746 2747 /** 2748 *dump the speculative part of the type 2749 */ 2750 void TypePtr::dump_speculative(outputStream *st) const { 2751 if (_speculative != NULL) { 2752 st->print(" (speculative="); 2753 _speculative->dump_on(st); 2754 st->print(")"); 2755 } 2756 } 2757 2758 /** 2759 *dump the inline depth of the type 2760 */ 2761 void TypePtr::dump_inline_depth(outputStream *st) const { 2762 if (_inline_depth != InlineDepthBottom) { 2763 if (_inline_depth == InlineDepthTop) { 2764 st->print(" (inline_depth=InlineDepthTop)"); 2765 } else { 2766 st->print(" (inline_depth=%d)", _inline_depth); 2767 } 2768 } 2769 } 2770 #endif 2771 2772 //------------------------------singleton-------------------------------------- 2773 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple 2774 // constants 2775 bool TypePtr::singleton(void) const { 2776 // TopPTR, Null, AnyNull, Constant are all singletons 2777 return (_offset != OffsetBot) && !below_centerline(_ptr); 2778 } 2779 2780 bool TypePtr::empty(void) const { 2781 return (_offset == OffsetTop) || above_centerline(_ptr); 2782 } 2783 2784 //============================================================================= 2785 // Convenience common pre-built types. 2786 const TypeRawPtr *TypeRawPtr::BOTTOM; 2787 const TypeRawPtr *TypeRawPtr::NOTNULL; 2788 2789 //------------------------------make------------------------------------------- 2790 const TypeRawPtr *TypeRawPtr::make( enum PTR ptr ) { 2791 assert( ptr != Constant, "what is the constant?" ); 2792 assert( ptr != Null, "Use TypePtr for NULL" ); 2793 return (TypeRawPtr*)(new TypeRawPtr(ptr,0))->hashcons(); 2794 } 2795 2796 const TypeRawPtr *TypeRawPtr::make( address bits ) { 2797 assert( bits, "Use TypePtr for NULL" ); 2798 return (TypeRawPtr*)(new TypeRawPtr(Constant,bits))->hashcons(); 2799 } 2800 2801 //------------------------------cast_to_ptr_type------------------------------- 2802 const Type *TypeRawPtr::cast_to_ptr_type(PTR ptr) const { 2803 assert( ptr != Constant, "what is the constant?" ); 2804 assert( ptr != Null, "Use TypePtr for NULL" ); 2805 assert( _bits==0, "Why cast a constant address?"); 2806 if( ptr == _ptr ) return this; 2807 return make(ptr); 2808 } 2809 2810 //------------------------------get_con---------------------------------------- 2811 intptr_t TypeRawPtr::get_con() const { 2812 assert( _ptr == Null || _ptr == Constant, "" ); 2813 return (intptr_t)_bits; 2814 } 2815 2816 //------------------------------meet------------------------------------------- 2817 // Compute the MEET of two types. It returns a new Type object. 2818 const Type *TypeRawPtr::xmeet( const Type *t ) const { 2819 // Perform a fast test for common case; meeting the same types together. 2820 if( this == t ) return this; // Meeting same type-rep? 2821 2822 // Current "this->_base" is RawPtr 2823 switch( t->base() ) { // switch on original type 2824 case Bottom: // Ye Olde Default 2825 return t; 2826 case Top: 2827 return this; 2828 case AnyPtr: // Meeting to AnyPtrs 2829 break; 2830 case RawPtr: { // might be top, bot, any/not or constant 2831 enum PTR tptr = t->is_ptr()->ptr(); 2832 enum PTR ptr = meet_ptr( tptr ); 2833 if( ptr == Constant ) { // Cannot be equal constants, so... 2834 if( tptr == Constant && _ptr != Constant) return t; 2835 if( _ptr == Constant && tptr != Constant) return this; 2836 ptr = NotNull; // Fall down in lattice 2837 } 2838 return make( ptr ); 2839 } 2840 2841 case OopPtr: 2842 case InstPtr: 2843 case ValueTypePtr: 2844 case AryPtr: 2845 case MetadataPtr: 2846 case KlassPtr: 2847 return TypePtr::BOTTOM; // Oop meet raw is not well defined 2848 default: // All else is a mistake 2849 typerr(t); 2850 } 2851 2852 // Found an AnyPtr type vs self-RawPtr type 2853 const TypePtr *tp = t->is_ptr(); 2854 switch (tp->ptr()) { 2855 case TypePtr::TopPTR: return this; 2856 case TypePtr::BotPTR: return t; 2857 case TypePtr::Null: 2858 if( _ptr == TypePtr::TopPTR ) return t; 2859 return TypeRawPtr::BOTTOM; 2860 case TypePtr::NotNull: return TypePtr::make(AnyPtr, meet_ptr(TypePtr::NotNull), tp->meet_offset(0), tp->speculative(), tp->inline_depth()); 2861 case TypePtr::AnyNull: 2862 if( _ptr == TypePtr::Constant) return this; 2863 return make( meet_ptr(TypePtr::AnyNull) ); 2864 default: ShouldNotReachHere(); 2865 } 2866 return this; 2867 } 2868 2869 //------------------------------xdual------------------------------------------ 2870 // Dual: compute field-by-field dual 2871 const Type *TypeRawPtr::xdual() const { 2872 return new TypeRawPtr( dual_ptr(), _bits ); 2873 } 2874 2875 //------------------------------add_offset------------------------------------- 2876 const TypePtr *TypeRawPtr::add_offset( intptr_t offset ) const { 2877 if( offset == OffsetTop ) return BOTTOM; // Undefined offset-> undefined pointer 2878 if( offset == OffsetBot ) return BOTTOM; // Unknown offset-> unknown pointer 2879 if( offset == 0 ) return this; // No change 2880 switch (_ptr) { 2881 case TypePtr::TopPTR: 2882 case TypePtr::BotPTR: 2883 case TypePtr::NotNull: 2884 return this; 2885 case TypePtr::Null: 2886 case TypePtr::Constant: { 2887 address bits = _bits+offset; 2888 if ( bits == 0 ) return TypePtr::NULL_PTR; 2889 return make( bits ); 2890 } 2891 default: ShouldNotReachHere(); 2892 } 2893 return NULL; // Lint noise 2894 } 2895 2896 //------------------------------eq--------------------------------------------- 2897 // Structural equality check for Type representations 2898 bool TypeRawPtr::eq( const Type *t ) const { 2899 const TypeRawPtr *a = (const TypeRawPtr*)t; 2900 return _bits == a->_bits && TypePtr::eq(t); 2901 } 2902 2903 //------------------------------hash------------------------------------------- 2904 // Type-specific hashing function. 2905 int TypeRawPtr::hash(void) const { 2906 return (intptr_t)_bits + TypePtr::hash(); 2907 } 2908 2909 //------------------------------dump2------------------------------------------ 2910 #ifndef PRODUCT 2911 void TypeRawPtr::dump2( Dict &d, uint depth, outputStream *st ) const { 2912 if( _ptr == Constant ) 2913 st->print(INTPTR_FORMAT, p2i(_bits)); 2914 else 2915 st->print("rawptr:%s", ptr_msg[_ptr]); 2916 } 2917 #endif 2918 2919 //============================================================================= 2920 // Convenience common pre-built type. 2921 const TypeOopPtr *TypeOopPtr::BOTTOM; 2922 2923 //------------------------------TypeOopPtr------------------------------------- 2924 TypeOopPtr::TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, 2925 int instance_id, const TypePtr* speculative, int inline_depth) 2926 : TypePtr(t, ptr, offset, speculative, inline_depth), 2927 _const_oop(o), _klass(k), 2928 _klass_is_exact(xk), 2929 _is_ptr_to_narrowoop(false), 2930 _is_ptr_to_narrowklass(false), 2931 _is_ptr_to_boxed_value(false), 2932 _instance_id(instance_id) { 2933 if (Compile::current()->eliminate_boxing() && (t == InstPtr) && 2934 (offset > 0) && xk && (k != 0) && k->is_instance_klass()) { 2935 _is_ptr_to_boxed_value = k->as_instance_klass()->is_boxed_value_offset(offset); 2936 } 2937 #ifdef _LP64 2938 if (_offset != 0) { 2939 if (_offset == oopDesc::klass_offset_in_bytes()) { 2940 _is_ptr_to_narrowklass = UseCompressedClassPointers; 2941 } else if (klass() == NULL) { 2942 // Array with unknown body type 2943 assert(this->isa_aryptr(), "only arrays without klass"); 2944 _is_ptr_to_narrowoop = UseCompressedOops; 2945 } else if (this->isa_aryptr()) { 2946 _is_ptr_to_narrowoop = (UseCompressedOops && klass()->is_obj_array_klass() && 2947 _offset != arrayOopDesc::length_offset_in_bytes()); 2948 } else if (klass()->is_instance_klass()) { 2949 ciInstanceKlass* ik = klass()->as_instance_klass(); 2950 ciField* field = NULL; 2951 if (this->isa_klassptr()) { 2952 // Perm objects don't use compressed references 2953 } else if (_offset == OffsetBot || _offset == OffsetTop) { 2954 // unsafe access 2955 _is_ptr_to_narrowoop = UseCompressedOops; 2956 } else { // exclude unsafe ops 2957 assert(this->isa_instptr() || this->isa_valuetypeptr(), "must be an instance ptr."); 2958 2959 if (klass() == ciEnv::current()->Class_klass() && 2960 (_offset == java_lang_Class::klass_offset_in_bytes() || 2961 _offset == java_lang_Class::array_klass_offset_in_bytes())) { 2962 // Special hidden fields from the Class. 2963 assert(this->isa_instptr(), "must be an instance ptr."); 2964 _is_ptr_to_narrowoop = false; 2965 } else if (klass() == ciEnv::current()->Class_klass() && 2966 _offset >= InstanceMirrorKlass::offset_of_static_fields()) { 2967 // Static fields 2968 assert(o != NULL, "must be constant"); 2969 ciInstanceKlass* k = o->as_instance()->java_lang_Class_klass()->as_instance_klass(); 2970 ciField* field = k->get_field_by_offset(_offset, true); 2971 assert(field != NULL, "missing field"); 2972 BasicType basic_elem_type = field->layout_type(); 2973 _is_ptr_to_narrowoop = UseCompressedOops && (basic_elem_type == T_OBJECT || 2974 basic_elem_type == T_ARRAY); 2975 } else { 2976 // Instance fields which contains a compressed oop references. 2977 field = ik->get_field_by_offset(_offset, false); 2978 if (field != NULL) { 2979 BasicType basic_elem_type = field->layout_type(); 2980 _is_ptr_to_narrowoop = UseCompressedOops && (basic_elem_type == T_OBJECT || 2981 basic_elem_type == T_ARRAY); 2982 } else if (klass()->equals(ciEnv::current()->Object_klass())) { 2983 // Compile::find_alias_type() cast exactness on all types to verify 2984 // that it does not affect alias type. 2985 _is_ptr_to_narrowoop = UseCompressedOops; 2986 } else { 2987 // Type for the copy start in LibraryCallKit::inline_native_clone(). 2988 _is_ptr_to_narrowoop = UseCompressedOops; 2989 } 2990 } 2991 } 2992 } 2993 } 2994 #endif 2995 } 2996 2997 //------------------------------make------------------------------------------- 2998 const TypeOopPtr *TypeOopPtr::make(PTR ptr, int offset, int instance_id, 2999 const TypePtr* speculative, int inline_depth) { 3000 assert(ptr != Constant, "no constant generic pointers"); 3001 ciKlass* k = Compile::current()->env()->Object_klass(); 3002 bool xk = false; 3003 ciObject* o = NULL; 3004 return (TypeOopPtr*)(new TypeOopPtr(OopPtr, ptr, k, xk, o, offset, instance_id, speculative, inline_depth))->hashcons(); 3005 } 3006 3007 3008 //------------------------------cast_to_ptr_type------------------------------- 3009 const Type *TypeOopPtr::cast_to_ptr_type(PTR ptr) const { 3010 assert(_base == OopPtr, "subclass must override cast_to_ptr_type"); 3011 if( ptr == _ptr ) return this; 3012 return make(ptr, _offset, _instance_id, _speculative, _inline_depth); 3013 } 3014 3015 //-----------------------------cast_to_instance_id---------------------------- 3016 const TypeOopPtr *TypeOopPtr::cast_to_instance_id(int instance_id) const { 3017 // There are no instances of a general oop. 3018 // Return self unchanged. 3019 return this; 3020 } 3021 3022 //-----------------------------cast_to_exactness------------------------------- 3023 const Type *TypeOopPtr::cast_to_exactness(bool klass_is_exact) const { 3024 // There is no such thing as an exact general oop. 3025 // Return self unchanged. 3026 return this; 3027 } 3028 3029 3030 //------------------------------as_klass_type---------------------------------- 3031 // Return the klass type corresponding to this instance or array type. 3032 // It is the type that is loaded from an object of this type. 3033 const TypeKlassPtr* TypeOopPtr::as_klass_type() const { 3034 ciKlass* k = klass(); 3035 bool xk = klass_is_exact(); 3036 if (k == NULL) 3037 return TypeKlassPtr::OBJECT; 3038 else 3039 return TypeKlassPtr::make(xk? Constant: NotNull, k, 0); 3040 } 3041 3042 //------------------------------meet------------------------------------------- 3043 // Compute the MEET of two types. It returns a new Type object. 3044 const Type *TypeOopPtr::xmeet_helper(const Type *t) const { 3045 // Perform a fast test for common case; meeting the same types together. 3046 if( this == t ) return this; // Meeting same type-rep? 3047 3048 // Current "this->_base" is OopPtr 3049 switch (t->base()) { // switch on original type 3050 3051 case Int: // Mixing ints & oops happens when javac 3052 case Long: // reuses local variables 3053 case FloatTop: 3054 case FloatCon: 3055 case FloatBot: 3056 case DoubleTop: 3057 case DoubleCon: 3058 case DoubleBot: 3059 case NarrowOop: 3060 case NarrowKlass: 3061 case Bottom: // Ye Olde Default 3062 return Type::BOTTOM; 3063 case Top: 3064 return this; 3065 3066 default: // All else is a mistake 3067 typerr(t); 3068 3069 case RawPtr: 3070 case MetadataPtr: 3071 case KlassPtr: 3072 return TypePtr::BOTTOM; // Oop meet raw is not well defined 3073 3074 case AnyPtr: { 3075 // Found an AnyPtr type vs self-OopPtr type 3076 const TypePtr *tp = t->is_ptr(); 3077 int offset = meet_offset(tp->offset()); 3078 PTR ptr = meet_ptr(tp->ptr()); 3079 const TypePtr* speculative = xmeet_speculative(tp); 3080 int depth = meet_inline_depth(tp->inline_depth()); 3081 switch (tp->ptr()) { 3082 case Null: 3083 if (ptr == Null) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth); 3084 // else fall through: 3085 case TopPTR: 3086 case AnyNull: { 3087 int instance_id = meet_instance_id(InstanceTop); 3088 return make(ptr, offset, instance_id, speculative, depth); 3089 } 3090 case BotPTR: 3091 case NotNull: 3092 return TypePtr::make(AnyPtr, ptr, offset, speculative, depth); 3093 default: typerr(t); 3094 } 3095 } 3096 3097 case OopPtr: { // Meeting to other OopPtrs 3098 const TypeOopPtr *tp = t->is_oopptr(); 3099 int instance_id = meet_instance_id(tp->instance_id()); 3100 const TypePtr* speculative = xmeet_speculative(tp); 3101 int depth = meet_inline_depth(tp->inline_depth()); 3102 return make(meet_ptr(tp->ptr()), meet_offset(tp->offset()), instance_id, speculative, depth); 3103 } 3104 3105 case InstPtr: // For these, flip the call around to cut down 3106 case ValueTypePtr: 3107 case AryPtr: 3108 return t->xmeet(this); // Call in reverse direction 3109 3110 } // End of switch 3111 return this; // Return the double constant 3112 } 3113 3114 3115 //------------------------------xdual------------------------------------------ 3116 // Dual of a pure heap pointer. No relevant klass or oop information. 3117 const Type *TypeOopPtr::xdual() const { 3118 assert(klass() == Compile::current()->env()->Object_klass(), "no klasses here"); 3119 assert(const_oop() == NULL, "no constants here"); 3120 return new TypeOopPtr(_base, dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative(), dual_inline_depth()); 3121 } 3122 3123 //--------------------------make_from_klass_common----------------------------- 3124 // Computes the element-type given a klass. 3125 const TypeOopPtr* TypeOopPtr::make_from_klass_common(ciKlass *klass, bool klass_change, bool try_for_exact) { 3126 if (klass->is_valuetype()) { 3127 return TypeValueTypePtr::make(TypeValueType::make(klass->as_value_klass()), TypePtr::NotNull); 3128 } else if (klass->is_instance_klass()) { 3129 Compile* C = Compile::current(); 3130 Dependencies* deps = C->dependencies(); 3131 assert((deps != NULL) == (C->method() != NULL && C->method()->code_size() > 0), "sanity"); 3132 // Element is an instance 3133 bool klass_is_exact = false; 3134 if (klass->is_loaded()) { 3135 // Try to set klass_is_exact. 3136 ciInstanceKlass* ik = klass->as_instance_klass(); 3137 klass_is_exact = ik->is_final(); 3138 if (!klass_is_exact && klass_change 3139 && deps != NULL && UseUniqueSubclasses) { 3140 ciInstanceKlass* sub = ik->unique_concrete_subklass(); 3141 if (sub != NULL) { 3142 deps->assert_abstract_with_unique_concrete_subtype(ik, sub); 3143 klass = ik = sub; 3144 klass_is_exact = sub->is_final(); 3145 } 3146 } 3147 if (!klass_is_exact && try_for_exact 3148 && deps != NULL && UseExactTypes) { 3149 if (!ik->is_interface() && !ik->has_subklass()) { 3150 // Add a dependence; if concrete subclass added we need to recompile 3151 deps->assert_leaf_type(ik); 3152 klass_is_exact = true; 3153 } 3154 } 3155 } 3156 return TypeInstPtr::make(TypePtr::BotPTR, klass, klass_is_exact, NULL, 0); 3157 } else if (klass->is_obj_array_klass()) { 3158 // Element is an object array. Recursively call ourself. 3159 const TypeOopPtr *etype = TypeOopPtr::make_from_klass_common(klass->as_obj_array_klass()->element_klass(), false, try_for_exact); 3160 bool xk = etype->klass_is_exact(); 3161 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS); 3162 // We used to pass NotNull in here, asserting that the sub-arrays 3163 // are all not-null. This is not true in generally, as code can 3164 // slam NULLs down in the subarrays. 3165 const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, xk, 0); 3166 return arr; 3167 } else if (klass->is_type_array_klass()) { 3168 // Element is an typeArray 3169 const Type* etype = get_const_basic_type(klass->as_type_array_klass()->element_type()); 3170 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS); 3171 // We used to pass NotNull in here, asserting that the array pointer 3172 // is not-null. That was not true in general. 3173 const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, true, 0); 3174 return arr; 3175 } else { 3176 ShouldNotReachHere(); 3177 return NULL; 3178 } 3179 } 3180 3181 //------------------------------make_from_constant----------------------------- 3182 // Make a java pointer from an oop constant 3183 const TypeOopPtr* TypeOopPtr::make_from_constant(ciObject* o, bool require_constant) { 3184 assert(!o->is_null_object(), "null object not yet handled here."); 3185 ciKlass* klass = o->klass(); 3186 if (klass->is_instance_klass()) { 3187 // Element is an instance 3188 if (require_constant) { 3189 if (!o->can_be_constant()) return NULL; 3190 } else if (!o->should_be_constant()) { 3191 return TypeInstPtr::make(TypePtr::NotNull, klass, true, NULL, 0); 3192 } 3193 return TypeInstPtr::make(o); 3194 } else if (klass->is_obj_array_klass()) { 3195 // Element is an object array. Recursively call ourself. 3196 const TypeOopPtr *etype = 3197 TypeOopPtr::make_from_klass_raw(klass->as_obj_array_klass()->element_klass()); 3198 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length())); 3199 // We used to pass NotNull in here, asserting that the sub-arrays 3200 // are all not-null. This is not true in generally, as code can 3201 // slam NULLs down in the subarrays. 3202 if (require_constant) { 3203 if (!o->can_be_constant()) return NULL; 3204 } else if (!o->should_be_constant()) { 3205 return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0); 3206 } 3207 const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0); 3208 return arr; 3209 } else if (klass->is_type_array_klass()) { 3210 // Element is an typeArray 3211 const Type* etype = 3212 (Type*)get_const_basic_type(klass->as_type_array_klass()->element_type()); 3213 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length())); 3214 // We used to pass NotNull in here, asserting that the array pointer 3215 // is not-null. That was not true in general. 3216 if (require_constant) { 3217 if (!o->can_be_constant()) return NULL; 3218 } else if (!o->should_be_constant()) { 3219 return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0); 3220 } 3221 const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0); 3222 return arr; 3223 } 3224 3225 fatal("unhandled object type"); 3226 return NULL; 3227 } 3228 3229 //------------------------------get_con---------------------------------------- 3230 intptr_t TypeOopPtr::get_con() const { 3231 assert( _ptr == Null || _ptr == Constant, "" ); 3232 assert( _offset >= 0, "" ); 3233 3234 if (_offset != 0) { 3235 // After being ported to the compiler interface, the compiler no longer 3236 // directly manipulates the addresses of oops. Rather, it only has a pointer 3237 // to a handle at compile time. This handle is embedded in the generated 3238 // code and dereferenced at the time the nmethod is made. Until that time, 3239 // it is not reasonable to do arithmetic with the addresses of oops (we don't 3240 // have access to the addresses!). This does not seem to currently happen, 3241 // but this assertion here is to help prevent its occurence. 3242 tty->print_cr("Found oop constant with non-zero offset"); 3243 ShouldNotReachHere(); 3244 } 3245 3246 return (intptr_t)const_oop()->constant_encoding(); 3247 } 3248 3249 3250 //-----------------------------filter------------------------------------------ 3251 // Do not allow interface-vs.-noninterface joins to collapse to top. 3252 const Type *TypeOopPtr::filter_helper(const Type *kills, bool include_speculative) const { 3253 3254 const Type* ft = join_helper(kills, include_speculative); 3255 const TypeInstPtr* ftip = ft->isa_instptr(); 3256 const TypeInstPtr* ktip = kills->isa_instptr(); 3257 3258 if (ft->empty()) { 3259 // Check for evil case of 'this' being a class and 'kills' expecting an 3260 // interface. This can happen because the bytecodes do not contain 3261 // enough type info to distinguish a Java-level interface variable 3262 // from a Java-level object variable. If we meet 2 classes which 3263 // both implement interface I, but their meet is at 'j/l/O' which 3264 // doesn't implement I, we have no way to tell if the result should 3265 // be 'I' or 'j/l/O'. Thus we'll pick 'j/l/O'. If this then flows 3266 // into a Phi which "knows" it's an Interface type we'll have to 3267 // uplift the type. 3268 if (!empty()) { 3269 if (ktip != NULL && ktip->is_loaded() && ktip->klass()->is_interface()) { 3270 return kills; // Uplift to interface 3271 } 3272 // Also check for evil cases of 'this' being a class array 3273 // and 'kills' expecting an array of interfaces. 3274 Type::get_arrays_base_elements(ft, kills, NULL, &ktip); 3275 if (ktip != NULL && ktip->is_loaded() && ktip->klass()->is_interface()) { 3276 return kills; // Uplift to array of interface 3277 } 3278 } 3279 3280 return Type::TOP; // Canonical empty value 3281 } 3282 3283 // If we have an interface-typed Phi or cast and we narrow to a class type, 3284 // the join should report back the class. However, if we have a J/L/Object 3285 // class-typed Phi and an interface flows in, it's possible that the meet & 3286 // join report an interface back out. This isn't possible but happens 3287 // because the type system doesn't interact well with interfaces. 3288 if (ftip != NULL && ktip != NULL && 3289 ftip->is_loaded() && ftip->klass()->is_interface() && 3290 ktip->is_loaded() && !ktip->klass()->is_interface()) { 3291 assert(!ftip->klass_is_exact(), "interface could not be exact"); 3292 return ktip->cast_to_ptr_type(ftip->ptr()); 3293 } 3294 3295 return ft; 3296 } 3297 3298 //------------------------------eq--------------------------------------------- 3299 // Structural equality check for Type representations 3300 bool TypeOopPtr::eq( const Type *t ) const { 3301 const TypeOopPtr *a = (const TypeOopPtr*)t; 3302 if (_klass_is_exact != a->_klass_is_exact || 3303 _instance_id != a->_instance_id) return false; 3304 ciObject* one = const_oop(); 3305 ciObject* two = a->const_oop(); 3306 if (one == NULL || two == NULL) { 3307 return (one == two) && TypePtr::eq(t); 3308 } else { 3309 return one->equals(two) && TypePtr::eq(t); 3310 } 3311 } 3312 3313 //------------------------------hash------------------------------------------- 3314 // Type-specific hashing function. 3315 int TypeOopPtr::hash(void) const { 3316 return 3317 java_add(java_add(const_oop() ? const_oop()->hash() : 0, _klass_is_exact), 3318 java_add(_instance_id, TypePtr::hash())); 3319 } 3320 3321 //------------------------------dump2------------------------------------------ 3322 #ifndef PRODUCT 3323 void TypeOopPtr::dump2( Dict &d, uint depth, outputStream *st ) const { 3324 st->print("oopptr:%s", ptr_msg[_ptr]); 3325 if( _klass_is_exact ) st->print(":exact"); 3326 if( const_oop() ) st->print(INTPTR_FORMAT, p2i(const_oop())); 3327 switch( _offset ) { 3328 case OffsetTop: st->print("+top"); break; 3329 case OffsetBot: st->print("+any"); break; 3330 case 0: break; 3331 default: st->print("+%d",_offset); break; 3332 } 3333 if (_instance_id == InstanceTop) 3334 st->print(",iid=top"); 3335 else if (_instance_id != InstanceBot) 3336 st->print(",iid=%d",_instance_id); 3337 3338 dump_inline_depth(st); 3339 dump_speculative(st); 3340 } 3341 #endif 3342 3343 //------------------------------singleton-------------------------------------- 3344 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple 3345 // constants 3346 bool TypeOopPtr::singleton(void) const { 3347 // detune optimizer to not generate constant oop + constant offset as a constant! 3348 // TopPTR, Null, AnyNull, Constant are all singletons 3349 return (_offset == 0) && !below_centerline(_ptr); 3350 } 3351 3352 //------------------------------add_offset------------------------------------- 3353 const TypePtr *TypeOopPtr::add_offset(intptr_t offset) const { 3354 return make(_ptr, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth); 3355 } 3356 3357 /** 3358 * Return same type without a speculative part 3359 */ 3360 const Type* TypeOopPtr::remove_speculative() const { 3361 if (_speculative == NULL) { 3362 return this; 3363 } 3364 assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth"); 3365 return make(_ptr, _offset, _instance_id, NULL, _inline_depth); 3366 } 3367 3368 /** 3369 * Return same type but drop speculative part if we know we won't use 3370 * it 3371 */ 3372 const Type* TypeOopPtr::cleanup_speculative() const { 3373 // If the klass is exact and the ptr is not null then there's 3374 // nothing that the speculative type can help us with 3375 if (klass_is_exact() && !maybe_null()) { 3376 return remove_speculative(); 3377 } 3378 return TypePtr::cleanup_speculative(); 3379 } 3380 3381 /** 3382 * Return same type but with a different inline depth (used for speculation) 3383 * 3384 * @param depth depth to meet with 3385 */ 3386 const TypePtr* TypeOopPtr::with_inline_depth(int depth) const { 3387 if (!UseInlineDepthForSpeculativeTypes) { 3388 return this; 3389 } 3390 return make(_ptr, _offset, _instance_id, _speculative, depth); 3391 } 3392 3393 //------------------------------meet_instance_id-------------------------------- 3394 int TypeOopPtr::meet_instance_id( int instance_id ) const { 3395 // Either is 'TOP' instance? Return the other instance! 3396 if( _instance_id == InstanceTop ) return instance_id; 3397 if( instance_id == InstanceTop ) return _instance_id; 3398 // If either is different, return 'BOTTOM' instance 3399 if( _instance_id != instance_id ) return InstanceBot; 3400 return _instance_id; 3401 } 3402 3403 //------------------------------dual_instance_id-------------------------------- 3404 int TypeOopPtr::dual_instance_id( ) const { 3405 if( _instance_id == InstanceTop ) return InstanceBot; // Map TOP into BOTTOM 3406 if( _instance_id == InstanceBot ) return InstanceTop; // Map BOTTOM into TOP 3407 return _instance_id; // Map everything else into self 3408 } 3409 3410 /** 3411 * Check whether new profiling would improve speculative type 3412 * 3413 * @param exact_kls class from profiling 3414 * @param inline_depth inlining depth of profile point 3415 * 3416 * @return true if type profile is valuable 3417 */ 3418 bool TypeOopPtr::would_improve_type(ciKlass* exact_kls, int inline_depth) const { 3419 // no way to improve an already exact type 3420 if (klass_is_exact()) { 3421 return false; 3422 } 3423 return TypePtr::would_improve_type(exact_kls, inline_depth); 3424 } 3425 3426 //============================================================================= 3427 // Convenience common pre-built types. 3428 const TypeInstPtr *TypeInstPtr::NOTNULL; 3429 const TypeInstPtr *TypeInstPtr::BOTTOM; 3430 const TypeInstPtr *TypeInstPtr::MIRROR; 3431 const TypeInstPtr *TypeInstPtr::MARK; 3432 const TypeInstPtr *TypeInstPtr::KLASS; 3433 3434 //------------------------------TypeInstPtr------------------------------------- 3435 TypeInstPtr::TypeInstPtr(PTR ptr, ciKlass* k, bool xk, ciObject* o, int off, 3436 int instance_id, const TypePtr* speculative, int inline_depth) 3437 : TypeOopPtr(InstPtr, ptr, k, xk, o, off, instance_id, speculative, inline_depth), 3438 _name(k->name()) { 3439 assert(k != NULL && 3440 (k->is_loaded() || o == NULL), 3441 "cannot have constants with non-loaded klass"); 3442 }; 3443 3444 //------------------------------make------------------------------------------- 3445 const TypeInstPtr *TypeInstPtr::make(PTR ptr, 3446 ciKlass* k, 3447 bool xk, 3448 ciObject* o, 3449 int offset, 3450 int instance_id, 3451 const TypePtr* speculative, 3452 int inline_depth) { 3453 assert( !k->is_loaded() || k->is_instance_klass(), "Must be for instance"); 3454 // Either const_oop() is NULL or else ptr is Constant 3455 assert( (!o && ptr != Constant) || (o && ptr == Constant), 3456 "constant pointers must have a value supplied" ); 3457 // Ptr is never Null 3458 assert( ptr != Null, "NULL pointers are not typed" ); 3459 3460 assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed"); 3461 if (!UseExactTypes) xk = false; 3462 if (ptr == Constant) { 3463 // Note: This case includes meta-object constants, such as methods. 3464 xk = true; 3465 } else if (k->is_loaded()) { 3466 ciInstanceKlass* ik = k->as_instance_klass(); 3467 if (!xk && ik->is_final()) xk = true; // no inexact final klass 3468 if (xk && ik->is_interface()) xk = false; // no exact interface 3469 } 3470 3471 // Now hash this baby 3472 TypeInstPtr *result = 3473 (TypeInstPtr*)(new TypeInstPtr(ptr, k, xk, o ,offset, instance_id, speculative, inline_depth))->hashcons(); 3474 3475 return result; 3476 } 3477 3478 /** 3479 * Create constant type for a constant boxed value 3480 */ 3481 const Type* TypeInstPtr::get_const_boxed_value() const { 3482 assert(is_ptr_to_boxed_value(), "should be called only for boxed value"); 3483 assert((const_oop() != NULL), "should be called only for constant object"); 3484 ciConstant constant = const_oop()->as_instance()->field_value_by_offset(offset()); 3485 BasicType bt = constant.basic_type(); 3486 switch (bt) { 3487 case T_BOOLEAN: return TypeInt::make(constant.as_boolean()); 3488 case T_INT: return TypeInt::make(constant.as_int()); 3489 case T_CHAR: return TypeInt::make(constant.as_char()); 3490 case T_BYTE: return TypeInt::make(constant.as_byte()); 3491 case T_SHORT: return TypeInt::make(constant.as_short()); 3492 case T_FLOAT: return TypeF::make(constant.as_float()); 3493 case T_DOUBLE: return TypeD::make(constant.as_double()); 3494 case T_LONG: return TypeLong::make(constant.as_long()); 3495 default: break; 3496 } 3497 fatal("Invalid boxed value type '%s'", type2name(bt)); 3498 return NULL; 3499 } 3500 3501 //------------------------------cast_to_ptr_type------------------------------- 3502 const Type *TypeInstPtr::cast_to_ptr_type(PTR ptr) const { 3503 if( ptr == _ptr ) return this; 3504 // Reconstruct _sig info here since not a problem with later lazy 3505 // construction, _sig will show up on demand. 3506 return make(ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, _speculative, _inline_depth); 3507 } 3508 3509 3510 //-----------------------------cast_to_exactness------------------------------- 3511 const Type *TypeInstPtr::cast_to_exactness(bool klass_is_exact) const { 3512 if( klass_is_exact == _klass_is_exact ) return this; 3513 if (!UseExactTypes) return this; 3514 if (!_klass->is_loaded()) return this; 3515 ciInstanceKlass* ik = _klass->as_instance_klass(); 3516 if( (ik->is_final() || _const_oop) ) return this; // cannot clear xk 3517 if( ik->is_interface() ) return this; // cannot set xk 3518 return make(ptr(), klass(), klass_is_exact, const_oop(), _offset, _instance_id, _speculative, _inline_depth); 3519 } 3520 3521 //-----------------------------cast_to_instance_id---------------------------- 3522 const TypeOopPtr *TypeInstPtr::cast_to_instance_id(int instance_id) const { 3523 if( instance_id == _instance_id ) return this; 3524 return make(_ptr, klass(), _klass_is_exact, const_oop(), _offset, instance_id, _speculative, _inline_depth); 3525 } 3526 3527 //------------------------------xmeet_unloaded--------------------------------- 3528 // Compute the MEET of two InstPtrs when at least one is unloaded. 3529 // Assume classes are different since called after check for same name/class-loader 3530 const TypeInstPtr *TypeInstPtr::xmeet_unloaded(const TypeInstPtr *tinst) const { 3531 int off = meet_offset(tinst->offset()); 3532 PTR ptr = meet_ptr(tinst->ptr()); 3533 int instance_id = meet_instance_id(tinst->instance_id()); 3534 const TypePtr* speculative = xmeet_speculative(tinst); 3535 int depth = meet_inline_depth(tinst->inline_depth()); 3536 3537 const TypeInstPtr *loaded = is_loaded() ? this : tinst; 3538 const TypeInstPtr *unloaded = is_loaded() ? tinst : this; 3539 if( loaded->klass()->equals(ciEnv::current()->Object_klass()) ) { 3540 // 3541 // Meet unloaded class with java/lang/Object 3542 // 3543 // Meet 3544 // | Unloaded Class 3545 // Object | TOP | AnyNull | Constant | NotNull | BOTTOM | 3546 // =================================================================== 3547 // TOP | ..........................Unloaded......................| 3548 // AnyNull | U-AN |................Unloaded......................| 3549 // Constant | ... O-NN .................................. | O-BOT | 3550 // NotNull | ... O-NN .................................. | O-BOT | 3551 // BOTTOM | ........................Object-BOTTOM ..................| 3552 // 3553 assert(loaded->ptr() != TypePtr::Null, "insanity check"); 3554 // 3555 if( loaded->ptr() == TypePtr::TopPTR ) { return unloaded; } 3556 else if (loaded->ptr() == TypePtr::AnyNull) { return TypeInstPtr::make(ptr, unloaded->klass(), false, NULL, off, instance_id, speculative, depth); } 3557 else if (loaded->ptr() == TypePtr::BotPTR ) { return TypeInstPtr::BOTTOM; } 3558 else if (loaded->ptr() == TypePtr::Constant || loaded->ptr() == TypePtr::NotNull) { 3559 if (unloaded->ptr() == TypePtr::BotPTR ) { return TypeInstPtr::BOTTOM; } 3560 else { return TypeInstPtr::NOTNULL; } 3561 } 3562 else if( unloaded->ptr() == TypePtr::TopPTR ) { return unloaded; } 3563 3564 return unloaded->cast_to_ptr_type(TypePtr::AnyNull)->is_instptr(); 3565 } 3566 3567 // Both are unloaded, not the same class, not Object 3568 // Or meet unloaded with a different loaded class, not java/lang/Object 3569 if( ptr != TypePtr::BotPTR ) { 3570 return TypeInstPtr::NOTNULL; 3571 } 3572 return TypeInstPtr::BOTTOM; 3573 } 3574 3575 3576 //------------------------------meet------------------------------------------- 3577 // Compute the MEET of two types. It returns a new Type object. 3578 const Type *TypeInstPtr::xmeet_helper(const Type *t) const { 3579 // Perform a fast test for common case; meeting the same types together. 3580 if( this == t ) return this; // Meeting same type-rep? 3581 3582 // Current "this->_base" is Pointer 3583 switch (t->base()) { // switch on original type 3584 3585 case Int: // Mixing ints & oops happens when javac 3586 case Long: // reuses local variables 3587 case FloatTop: 3588 case FloatCon: 3589 case FloatBot: 3590 case DoubleTop: 3591 case DoubleCon: 3592 case DoubleBot: 3593 case NarrowOop: 3594 case NarrowKlass: 3595 case Bottom: // Ye Olde Default 3596 return Type::BOTTOM; 3597 case Top: 3598 return this; 3599 3600 default: // All else is a mistake 3601 typerr(t); 3602 3603 case MetadataPtr: 3604 case KlassPtr: 3605 case RawPtr: return TypePtr::BOTTOM; 3606 3607 case AryPtr: { // All arrays inherit from Object class 3608 const TypeAryPtr *tp = t->is_aryptr(); 3609 int offset = meet_offset(tp->offset()); 3610 PTR ptr = meet_ptr(tp->ptr()); 3611 int instance_id = meet_instance_id(tp->instance_id()); 3612 const TypePtr* speculative = xmeet_speculative(tp); 3613 int depth = meet_inline_depth(tp->inline_depth()); 3614 switch (ptr) { 3615 case TopPTR: 3616 case AnyNull: // Fall 'down' to dual of object klass 3617 // For instances when a subclass meets a superclass we fall 3618 // below the centerline when the superclass is exact. We need to 3619 // do the same here. 3620 if (klass()->equals(ciEnv::current()->Object_klass()) && !klass_is_exact()) { 3621 return TypeAryPtr::make(ptr, tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id, speculative, depth); 3622 } else { 3623 // cannot subclass, so the meet has to fall badly below the centerline 3624 ptr = NotNull; 3625 instance_id = InstanceBot; 3626 return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative, depth); 3627 } 3628 case Constant: 3629 case NotNull: 3630 case BotPTR: // Fall down to object klass 3631 // LCA is object_klass, but if we subclass from the top we can do better 3632 if( above_centerline(_ptr) ) { // if( _ptr == TopPTR || _ptr == AnyNull ) 3633 // If 'this' (InstPtr) is above the centerline and it is Object class 3634 // then we can subclass in the Java class hierarchy. 3635 // For instances when a subclass meets a superclass we fall 3636 // below the centerline when the superclass is exact. We need 3637 // to do the same here. 3638 if (klass()->equals(ciEnv::current()->Object_klass()) && !klass_is_exact()) { 3639 // that is, tp's array type is a subtype of my klass 3640 return TypeAryPtr::make(ptr, (ptr == Constant ? tp->const_oop() : NULL), 3641 tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id, speculative, depth); 3642 } 3643 } 3644 // The other case cannot happen, since I cannot be a subtype of an array. 3645 // The meet falls down to Object class below centerline. 3646 if( ptr == Constant ) 3647 ptr = NotNull; 3648 instance_id = InstanceBot; 3649 return make(ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative, depth); 3650 default: typerr(t); 3651 } 3652 } 3653 3654 case OopPtr: { // Meeting to OopPtrs 3655 // Found a OopPtr type vs self-InstPtr type 3656 const TypeOopPtr *tp = t->is_oopptr(); 3657 int offset = meet_offset(tp->offset()); 3658 PTR ptr = meet_ptr(tp->ptr()); 3659 switch (tp->ptr()) { 3660 case TopPTR: 3661 case AnyNull: { 3662 int instance_id = meet_instance_id(InstanceTop); 3663 const TypePtr* speculative = xmeet_speculative(tp); 3664 int depth = meet_inline_depth(tp->inline_depth()); 3665 return make(ptr, klass(), klass_is_exact(), 3666 (ptr == Constant ? const_oop() : NULL), offset, instance_id, speculative, depth); 3667 } 3668 case NotNull: 3669 case BotPTR: { 3670 int instance_id = meet_instance_id(tp->instance_id()); 3671 const TypePtr* speculative = xmeet_speculative(tp); 3672 int depth = meet_inline_depth(tp->inline_depth()); 3673 return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth); 3674 } 3675 default: typerr(t); 3676 } 3677 } 3678 3679 case AnyPtr: { // Meeting to AnyPtrs 3680 // Found an AnyPtr type vs self-InstPtr type 3681 const TypePtr *tp = t->is_ptr(); 3682 int offset = meet_offset(tp->offset()); 3683 PTR ptr = meet_ptr(tp->ptr()); 3684 int instance_id = meet_instance_id(InstanceTop); 3685 const TypePtr* speculative = xmeet_speculative(tp); 3686 int depth = meet_inline_depth(tp->inline_depth()); 3687 switch (tp->ptr()) { 3688 case Null: 3689 if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth); 3690 // else fall through to AnyNull 3691 case TopPTR: 3692 case AnyNull: { 3693 return make(ptr, klass(), klass_is_exact(), 3694 (ptr == Constant ? const_oop() : NULL), offset, instance_id, speculative, depth); 3695 } 3696 case NotNull: 3697 case BotPTR: 3698 return TypePtr::make(AnyPtr, ptr, offset, speculative,depth); 3699 default: typerr(t); 3700 } 3701 } 3702 3703 /* 3704 A-top } 3705 / | \ } Tops 3706 B-top A-any C-top } 3707 | / | \ | } Any-nulls 3708 B-any | C-any } 3709 | | | 3710 B-con A-con C-con } constants; not comparable across classes 3711 | | | 3712 B-not | C-not } 3713 | \ | / | } not-nulls 3714 B-bot A-not C-bot } 3715 \ | / } Bottoms 3716 A-bot } 3717 */ 3718 3719 case InstPtr: { // Meeting 2 Oops? 3720 // Found an InstPtr sub-type vs self-InstPtr type 3721 const TypeInstPtr *tinst = t->is_instptr(); 3722 int off = meet_offset( tinst->offset() ); 3723 PTR ptr = meet_ptr( tinst->ptr() ); 3724 int instance_id = meet_instance_id(tinst->instance_id()); 3725 const TypePtr* speculative = xmeet_speculative(tinst); 3726 int depth = meet_inline_depth(tinst->inline_depth()); 3727 3728 // Check for easy case; klasses are equal (and perhaps not loaded!) 3729 // If we have constants, then we created oops so classes are loaded 3730 // and we can handle the constants further down. This case handles 3731 // both-not-loaded or both-loaded classes 3732 if (ptr != Constant && klass()->equals(tinst->klass()) && klass_is_exact() == tinst->klass_is_exact()) { 3733 return make(ptr, klass(), klass_is_exact(), NULL, off, instance_id, speculative, depth); 3734 } 3735 3736 // Classes require inspection in the Java klass hierarchy. Must be loaded. 3737 ciKlass* tinst_klass = tinst->klass(); 3738 ciKlass* this_klass = this->klass(); 3739 bool tinst_xk = tinst->klass_is_exact(); 3740 bool this_xk = this->klass_is_exact(); 3741 if (!tinst_klass->is_loaded() || !this_klass->is_loaded() ) { 3742 // One of these classes has not been loaded 3743 const TypeInstPtr *unloaded_meet = xmeet_unloaded(tinst); 3744 #ifndef PRODUCT 3745 if( PrintOpto && Verbose ) { 3746 tty->print("meet of unloaded classes resulted in: "); unloaded_meet->dump(); tty->cr(); 3747 tty->print(" this == "); this->dump(); tty->cr(); 3748 tty->print(" tinst == "); tinst->dump(); tty->cr(); 3749 } 3750 #endif 3751 return unloaded_meet; 3752 } 3753 3754 // Handle mixing oops and interfaces first. 3755 if( this_klass->is_interface() && !(tinst_klass->is_interface() || 3756 tinst_klass == ciEnv::current()->Object_klass())) { 3757 ciKlass *tmp = tinst_klass; // Swap interface around 3758 tinst_klass = this_klass; 3759 this_klass = tmp; 3760 bool tmp2 = tinst_xk; 3761 tinst_xk = this_xk; 3762 this_xk = tmp2; 3763 } 3764 if (tinst_klass->is_interface() && 3765 !(this_klass->is_interface() || 3766 // Treat java/lang/Object as an honorary interface, 3767 // because we need a bottom for the interface hierarchy. 3768 this_klass == ciEnv::current()->Object_klass())) { 3769 // Oop meets interface! 3770 3771 // See if the oop subtypes (implements) interface. 3772 ciKlass *k; 3773 bool xk; 3774 if( this_klass->is_subtype_of( tinst_klass ) ) { 3775 // Oop indeed subtypes. Now keep oop or interface depending 3776 // on whether we are both above the centerline or either is 3777 // below the centerline. If we are on the centerline 3778 // (e.g., Constant vs. AnyNull interface), use the constant. 3779 k = below_centerline(ptr) ? tinst_klass : this_klass; 3780 // If we are keeping this_klass, keep its exactness too. 3781 xk = below_centerline(ptr) ? tinst_xk : this_xk; 3782 } else { // Does not implement, fall to Object 3783 // Oop does not implement interface, so mixing falls to Object 3784 // just like the verifier does (if both are above the 3785 // centerline fall to interface) 3786 k = above_centerline(ptr) ? tinst_klass : ciEnv::current()->Object_klass(); 3787 xk = above_centerline(ptr) ? tinst_xk : false; 3788 // Watch out for Constant vs. AnyNull interface. 3789 if (ptr == Constant) ptr = NotNull; // forget it was a constant 3790 instance_id = InstanceBot; 3791 } 3792 ciObject* o = NULL; // the Constant value, if any 3793 if (ptr == Constant) { 3794 // Find out which constant. 3795 o = (this_klass == klass()) ? const_oop() : tinst->const_oop(); 3796 } 3797 return make(ptr, k, xk, o, off, instance_id, speculative, depth); 3798 } 3799 3800 // Either oop vs oop or interface vs interface or interface vs Object 3801 3802 // !!! Here's how the symmetry requirement breaks down into invariants: 3803 // If we split one up & one down AND they subtype, take the down man. 3804 // If we split one up & one down AND they do NOT subtype, "fall hard". 3805 // If both are up and they subtype, take the subtype class. 3806 // If both are up and they do NOT subtype, "fall hard". 3807 // If both are down and they subtype, take the supertype class. 3808 // If both are down and they do NOT subtype, "fall hard". 3809 // Constants treated as down. 3810 3811 // Now, reorder the above list; observe that both-down+subtype is also 3812 // "fall hard"; "fall hard" becomes the default case: 3813 // If we split one up & one down AND they subtype, take the down man. 3814 // If both are up and they subtype, take the subtype class. 3815 3816 // If both are down and they subtype, "fall hard". 3817 // If both are down and they do NOT subtype, "fall hard". 3818 // If both are up and they do NOT subtype, "fall hard". 3819 // If we split one up & one down AND they do NOT subtype, "fall hard". 3820 3821 // If a proper subtype is exact, and we return it, we return it exactly. 3822 // If a proper supertype is exact, there can be no subtyping relationship! 3823 // If both types are equal to the subtype, exactness is and-ed below the 3824 // centerline and or-ed above it. (N.B. Constants are always exact.) 3825 3826 // Check for subtyping: 3827 ciKlass *subtype = NULL; 3828 bool subtype_exact = false; 3829 if( tinst_klass->equals(this_klass) ) { 3830 subtype = this_klass; 3831 subtype_exact = below_centerline(ptr) ? (this_xk & tinst_xk) : (this_xk | tinst_xk); 3832 } else if( !tinst_xk && this_klass->is_subtype_of( tinst_klass ) ) { 3833 subtype = this_klass; // Pick subtyping class 3834 subtype_exact = this_xk; 3835 } else if( !this_xk && tinst_klass->is_subtype_of( this_klass ) ) { 3836 subtype = tinst_klass; // Pick subtyping class 3837 subtype_exact = tinst_xk; 3838 } 3839 3840 if( subtype ) { 3841 if( above_centerline(ptr) ) { // both are up? 3842 this_klass = tinst_klass = subtype; 3843 this_xk = tinst_xk = subtype_exact; 3844 } else if( above_centerline(this ->_ptr) && !above_centerline(tinst->_ptr) ) { 3845 this_klass = tinst_klass; // tinst is down; keep down man 3846 this_xk = tinst_xk; 3847 } else if( above_centerline(tinst->_ptr) && !above_centerline(this ->_ptr) ) { 3848 tinst_klass = this_klass; // this is down; keep down man 3849 tinst_xk = this_xk; 3850 } else { 3851 this_xk = subtype_exact; // either they are equal, or we'll do an LCA 3852 } 3853 } 3854 3855 // Check for classes now being equal 3856 if (tinst_klass->equals(this_klass)) { 3857 // If the klasses are equal, the constants may still differ. Fall to 3858 // NotNull if they do (neither constant is NULL; that is a special case 3859 // handled elsewhere). 3860 ciObject* o = NULL; // Assume not constant when done 3861 ciObject* this_oop = const_oop(); 3862 ciObject* tinst_oop = tinst->const_oop(); 3863 if( ptr == Constant ) { 3864 if (this_oop != NULL && tinst_oop != NULL && 3865 this_oop->equals(tinst_oop) ) 3866 o = this_oop; 3867 else if (above_centerline(this ->_ptr)) 3868 o = tinst_oop; 3869 else if (above_centerline(tinst ->_ptr)) 3870 o = this_oop; 3871 else 3872 ptr = NotNull; 3873 } 3874 return make(ptr, this_klass, this_xk, o, off, instance_id, speculative, depth); 3875 } // Else classes are not equal 3876 3877 // Since klasses are different, we require a LCA in the Java 3878 // class hierarchy - which means we have to fall to at least NotNull. 3879 if( ptr == TopPTR || ptr == AnyNull || ptr == Constant ) 3880 ptr = NotNull; 3881 3882 instance_id = InstanceBot; 3883 3884 // Now we find the LCA of Java classes 3885 ciKlass* k = this_klass->least_common_ancestor(tinst_klass); 3886 return make(ptr, k, false, NULL, off, instance_id, speculative, depth); 3887 } // End of case InstPtr 3888 3889 } // End of switch 3890 return this; // Return the double constant 3891 } 3892 3893 3894 //------------------------java_mirror_type-------------------------------------- 3895 ciType* TypeInstPtr::java_mirror_type() const { 3896 // must be a singleton type 3897 if( const_oop() == NULL ) return NULL; 3898 3899 // must be of type java.lang.Class 3900 if( klass() != ciEnv::current()->Class_klass() ) return NULL; 3901 3902 return const_oop()->as_instance()->java_mirror_type(); 3903 } 3904 3905 3906 //------------------------------xdual------------------------------------------ 3907 // Dual: do NOT dual on klasses. This means I do NOT understand the Java 3908 // inheritance mechanism. 3909 const Type *TypeInstPtr::xdual() const { 3910 return new TypeInstPtr(dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative(), dual_inline_depth()); 3911 } 3912 3913 //------------------------------eq--------------------------------------------- 3914 // Structural equality check for Type representations 3915 bool TypeInstPtr::eq( const Type *t ) const { 3916 const TypeInstPtr *p = t->is_instptr(); 3917 return 3918 klass()->equals(p->klass()) && 3919 TypeOopPtr::eq(p); // Check sub-type stuff 3920 } 3921 3922 //------------------------------hash------------------------------------------- 3923 // Type-specific hashing function. 3924 int TypeInstPtr::hash(void) const { 3925 int hash = java_add(klass()->hash(), TypeOopPtr::hash()); 3926 return hash; 3927 } 3928 3929 //------------------------------dump2------------------------------------------ 3930 // Dump oop Type 3931 #ifndef PRODUCT 3932 void TypeInstPtr::dump2( Dict &d, uint depth, outputStream *st ) const { 3933 // Print the name of the klass. 3934 klass()->print_name_on(st); 3935 3936 switch( _ptr ) { 3937 case Constant: 3938 // TO DO: Make CI print the hex address of the underlying oop. 3939 if (WizardMode || Verbose) { 3940 const_oop()->print_oop(st); 3941 } 3942 case BotPTR: 3943 if (!WizardMode && !Verbose) { 3944 if( _klass_is_exact ) st->print(":exact"); 3945 break; 3946 } 3947 case TopPTR: 3948 case AnyNull: 3949 case NotNull: 3950 st->print(":%s", ptr_msg[_ptr]); 3951 if( _klass_is_exact ) st->print(":exact"); 3952 break; 3953 } 3954 3955 if( _offset ) { // Dump offset, if any 3956 if( _offset == OffsetBot ) st->print("+any"); 3957 else if( _offset == OffsetTop ) st->print("+unknown"); 3958 else st->print("+%d", _offset); 3959 } 3960 3961 st->print(" *"); 3962 if (_instance_id == InstanceTop) 3963 st->print(",iid=top"); 3964 else if (_instance_id != InstanceBot) 3965 st->print(",iid=%d",_instance_id); 3966 3967 dump_inline_depth(st); 3968 dump_speculative(st); 3969 } 3970 #endif 3971 3972 //------------------------------add_offset------------------------------------- 3973 const TypePtr *TypeInstPtr::add_offset(intptr_t offset) const { 3974 return make(_ptr, klass(), klass_is_exact(), const_oop(), xadd_offset(offset), 3975 _instance_id, add_offset_speculative(offset), _inline_depth); 3976 } 3977 3978 const Type *TypeInstPtr::remove_speculative() const { 3979 if (_speculative == NULL) { 3980 return this; 3981 } 3982 assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth"); 3983 return make(_ptr, klass(), klass_is_exact(), const_oop(), _offset, 3984 _instance_id, NULL, _inline_depth); 3985 } 3986 3987 const TypePtr *TypeInstPtr::with_inline_depth(int depth) const { 3988 if (!UseInlineDepthForSpeculativeTypes) { 3989 return this; 3990 } 3991 return make(_ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, _speculative, depth); 3992 } 3993 3994 //============================================================================= 3995 // Convenience common pre-built types. 3996 const TypeAryPtr *TypeAryPtr::RANGE; 3997 const TypeAryPtr *TypeAryPtr::OOPS; 3998 const TypeAryPtr *TypeAryPtr::NARROWOOPS; 3999 const TypeAryPtr *TypeAryPtr::BYTES; 4000 const TypeAryPtr *TypeAryPtr::SHORTS; 4001 const TypeAryPtr *TypeAryPtr::CHARS; 4002 const TypeAryPtr *TypeAryPtr::INTS; 4003 const TypeAryPtr *TypeAryPtr::LONGS; 4004 const TypeAryPtr *TypeAryPtr::FLOATS; 4005 const TypeAryPtr *TypeAryPtr::DOUBLES; 4006 4007 //------------------------------make------------------------------------------- 4008 const TypeAryPtr *TypeAryPtr::make(PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset, 4009 int instance_id, const TypePtr* speculative, int inline_depth) { 4010 assert(!(k == NULL && ary->_elem->isa_int()), 4011 "integral arrays must be pre-equipped with a class"); 4012 if (!xk) xk = ary->ary_must_be_exact(); 4013 assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed"); 4014 if (!UseExactTypes) xk = (ptr == Constant); 4015 return (TypeAryPtr*)(new TypeAryPtr(ptr, NULL, ary, k, xk, offset, instance_id, false, speculative, inline_depth))->hashcons(); 4016 } 4017 4018 //------------------------------make------------------------------------------- 4019 const TypeAryPtr *TypeAryPtr::make(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset, 4020 int instance_id, const TypePtr* speculative, int inline_depth, 4021 bool is_autobox_cache) { 4022 assert(!(k == NULL && ary->_elem->isa_int()), 4023 "integral arrays must be pre-equipped with a class"); 4024 assert( (ptr==Constant && o) || (ptr!=Constant && !o), "" ); 4025 if (!xk) xk = (o != NULL) || ary->ary_must_be_exact(); 4026 assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed"); 4027 if (!UseExactTypes) xk = (ptr == Constant); 4028 return (TypeAryPtr*)(new TypeAryPtr(ptr, o, ary, k, xk, offset, instance_id, is_autobox_cache, speculative, inline_depth))->hashcons(); 4029 } 4030 4031 //------------------------------cast_to_ptr_type------------------------------- 4032 const Type *TypeAryPtr::cast_to_ptr_type(PTR ptr) const { 4033 if( ptr == _ptr ) return this; 4034 return make(ptr, const_oop(), _ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth); 4035 } 4036 4037 4038 //-----------------------------cast_to_exactness------------------------------- 4039 const Type *TypeAryPtr::cast_to_exactness(bool klass_is_exact) const { 4040 if( klass_is_exact == _klass_is_exact ) return this; 4041 if (!UseExactTypes) return this; 4042 if (_ary->ary_must_be_exact()) return this; // cannot clear xk 4043 return make(ptr(), const_oop(), _ary, klass(), klass_is_exact, _offset, _instance_id, _speculative, _inline_depth); 4044 } 4045 4046 //-----------------------------cast_to_instance_id---------------------------- 4047 const TypeOopPtr *TypeAryPtr::cast_to_instance_id(int instance_id) const { 4048 if( instance_id == _instance_id ) return this; 4049 return make(_ptr, const_oop(), _ary, klass(), _klass_is_exact, _offset, instance_id, _speculative, _inline_depth); 4050 } 4051 4052 //-----------------------------narrow_size_type------------------------------- 4053 // Local cache for arrayOopDesc::max_array_length(etype), 4054 // which is kind of slow (and cached elsewhere by other users). 4055 static jint max_array_length_cache[T_CONFLICT+1]; 4056 static jint max_array_length(BasicType etype) { 4057 jint& cache = max_array_length_cache[etype]; 4058 jint res = cache; 4059 if (res == 0) { 4060 switch (etype) { 4061 case T_NARROWOOP: 4062 etype = T_OBJECT; 4063 break; 4064 case T_NARROWKLASS: 4065 case T_CONFLICT: 4066 case T_ILLEGAL: 4067 case T_VOID: 4068 etype = T_BYTE; // will produce conservatively high value 4069 } 4070 cache = res = arrayOopDesc::max_array_length(etype); 4071 } 4072 return res; 4073 } 4074 4075 // Narrow the given size type to the index range for the given array base type. 4076 // Return NULL if the resulting int type becomes empty. 4077 const TypeInt* TypeAryPtr::narrow_size_type(const TypeInt* size) const { 4078 jint hi = size->_hi; 4079 jint lo = size->_lo; 4080 jint min_lo = 0; 4081 jint max_hi = max_array_length(elem()->basic_type()); 4082 //if (index_not_size) --max_hi; // type of a valid array index, FTR 4083 bool chg = false; 4084 if (lo < min_lo) { 4085 lo = min_lo; 4086 if (size->is_con()) { 4087 hi = lo; 4088 } 4089 chg = true; 4090 } 4091 if (hi > max_hi) { 4092 hi = max_hi; 4093 if (size->is_con()) { 4094 lo = hi; 4095 } 4096 chg = true; 4097 } 4098 // Negative length arrays will produce weird intermediate dead fast-path code 4099 if (lo > hi) 4100 return TypeInt::ZERO; 4101 if (!chg) 4102 return size; 4103 return TypeInt::make(lo, hi, Type::WidenMin); 4104 } 4105 4106 //-------------------------------cast_to_size---------------------------------- 4107 const TypeAryPtr* TypeAryPtr::cast_to_size(const TypeInt* new_size) const { 4108 assert(new_size != NULL, ""); 4109 new_size = narrow_size_type(new_size); 4110 if (new_size == size()) return this; 4111 const TypeAry* new_ary = TypeAry::make(elem(), new_size, is_stable()); 4112 return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth); 4113 } 4114 4115 //------------------------------cast_to_stable--------------------------------- 4116 const TypeAryPtr* TypeAryPtr::cast_to_stable(bool stable, int stable_dimension) const { 4117 if (stable_dimension <= 0 || (stable_dimension == 1 && stable == this->is_stable())) 4118 return this; 4119 4120 const Type* elem = this->elem(); 4121 const TypePtr* elem_ptr = elem->make_ptr(); 4122 4123 if (stable_dimension > 1 && elem_ptr != NULL && elem_ptr->isa_aryptr()) { 4124 // If this is widened from a narrow oop, TypeAry::make will re-narrow it. 4125 elem = elem_ptr = elem_ptr->is_aryptr()->cast_to_stable(stable, stable_dimension - 1); 4126 } 4127 4128 const TypeAry* new_ary = TypeAry::make(elem, size(), stable); 4129 4130 return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth); 4131 } 4132 4133 //-----------------------------stable_dimension-------------------------------- 4134 int TypeAryPtr::stable_dimension() const { 4135 if (!is_stable()) return 0; 4136 int dim = 1; 4137 const TypePtr* elem_ptr = elem()->make_ptr(); 4138 if (elem_ptr != NULL && elem_ptr->isa_aryptr()) 4139 dim += elem_ptr->is_aryptr()->stable_dimension(); 4140 return dim; 4141 } 4142 4143 //----------------------cast_to_autobox_cache----------------------------------- 4144 const TypeAryPtr* TypeAryPtr::cast_to_autobox_cache(bool cache) const { 4145 if (is_autobox_cache() == cache) return this; 4146 const TypeOopPtr* etype = elem()->make_oopptr(); 4147 if (etype == NULL) return this; 4148 // The pointers in the autobox arrays are always non-null. 4149 TypePtr::PTR ptr_type = cache ? TypePtr::NotNull : TypePtr::AnyNull; 4150 etype = etype->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr(); 4151 const TypeAry* new_ary = TypeAry::make(etype, size(), is_stable()); 4152 return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth, cache); 4153 } 4154 4155 //------------------------------eq--------------------------------------------- 4156 // Structural equality check for Type representations 4157 bool TypeAryPtr::eq( const Type *t ) const { 4158 const TypeAryPtr *p = t->is_aryptr(); 4159 return 4160 _ary == p->_ary && // Check array 4161 TypeOopPtr::eq(p); // Check sub-parts 4162 } 4163 4164 //------------------------------hash------------------------------------------- 4165 // Type-specific hashing function. 4166 int TypeAryPtr::hash(void) const { 4167 return (intptr_t)_ary + TypeOopPtr::hash(); 4168 } 4169 4170 //------------------------------meet------------------------------------------- 4171 // Compute the MEET of two types. It returns a new Type object. 4172 const Type *TypeAryPtr::xmeet_helper(const Type *t) const { 4173 // Perform a fast test for common case; meeting the same types together. 4174 if( this == t ) return this; // Meeting same type-rep? 4175 // Current "this->_base" is Pointer 4176 switch (t->base()) { // switch on original type 4177 4178 // Mixing ints & oops happens when javac reuses local variables 4179 case Int: 4180 case Long: 4181 case FloatTop: 4182 case FloatCon: 4183 case FloatBot: 4184 case DoubleTop: 4185 case DoubleCon: 4186 case DoubleBot: 4187 case NarrowOop: 4188 case NarrowKlass: 4189 case Bottom: // Ye Olde Default 4190 return Type::BOTTOM; 4191 case Top: 4192 return this; 4193 4194 default: // All else is a mistake 4195 typerr(t); 4196 4197 case OopPtr: { // Meeting to OopPtrs 4198 // Found a OopPtr type vs self-AryPtr type 4199 const TypeOopPtr *tp = t->is_oopptr(); 4200 int offset = meet_offset(tp->offset()); 4201 PTR ptr = meet_ptr(tp->ptr()); 4202 int depth = meet_inline_depth(tp->inline_depth()); 4203 const TypePtr* speculative = xmeet_speculative(tp); 4204 switch (tp->ptr()) { 4205 case TopPTR: 4206 case AnyNull: { 4207 int instance_id = meet_instance_id(InstanceTop); 4208 return make(ptr, (ptr == Constant ? const_oop() : NULL), 4209 _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth); 4210 } 4211 case BotPTR: 4212 case NotNull: { 4213 int instance_id = meet_instance_id(tp->instance_id()); 4214 return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth); 4215 } 4216 default: ShouldNotReachHere(); 4217 } 4218 } 4219 4220 case AnyPtr: { // Meeting two AnyPtrs 4221 // Found an AnyPtr type vs self-AryPtr type 4222 const TypePtr *tp = t->is_ptr(); 4223 int offset = meet_offset(tp->offset()); 4224 PTR ptr = meet_ptr(tp->ptr()); 4225 const TypePtr* speculative = xmeet_speculative(tp); 4226 int depth = meet_inline_depth(tp->inline_depth()); 4227 switch (tp->ptr()) { 4228 case TopPTR: 4229 return this; 4230 case BotPTR: 4231 case NotNull: 4232 return TypePtr::make(AnyPtr, ptr, offset, speculative, depth); 4233 case Null: 4234 if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth); 4235 // else fall through to AnyNull 4236 case AnyNull: { 4237 int instance_id = meet_instance_id(InstanceTop); 4238 return make(ptr, (ptr == Constant ? const_oop() : NULL), 4239 _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth); 4240 } 4241 default: ShouldNotReachHere(); 4242 } 4243 } 4244 4245 case MetadataPtr: 4246 case KlassPtr: 4247 case RawPtr: return TypePtr::BOTTOM; 4248 4249 case AryPtr: { // Meeting 2 references? 4250 const TypeAryPtr *tap = t->is_aryptr(); 4251 int off = meet_offset(tap->offset()); 4252 const TypeAry *tary = _ary->meet_speculative(tap->_ary)->is_ary(); 4253 PTR ptr = meet_ptr(tap->ptr()); 4254 int instance_id = meet_instance_id(tap->instance_id()); 4255 const TypePtr* speculative = xmeet_speculative(tap); 4256 int depth = meet_inline_depth(tap->inline_depth()); 4257 ciKlass* lazy_klass = NULL; 4258 if (tary->_elem->isa_int()) { 4259 // Integral array element types have irrelevant lattice relations. 4260 // It is the klass that determines array layout, not the element type. 4261 if (_klass == NULL) 4262 lazy_klass = tap->_klass; 4263 else if (tap->_klass == NULL || tap->_klass == _klass) { 4264 lazy_klass = _klass; 4265 } else { 4266 // Something like byte[int+] meets char[int+]. 4267 // This must fall to bottom, not (int[-128..65535])[int+]. 4268 instance_id = InstanceBot; 4269 tary = TypeAry::make(Type::BOTTOM, tary->_size, tary->_stable); 4270 } 4271 } else // Non integral arrays. 4272 // Must fall to bottom if exact klasses in upper lattice 4273 // are not equal or super klass is exact. 4274 if ((above_centerline(ptr) || ptr == Constant) && klass() != tap->klass() && 4275 // meet with top[] and bottom[] are processed further down: 4276 tap->_klass != NULL && this->_klass != NULL && 4277 // both are exact and not equal: 4278 ((tap->_klass_is_exact && this->_klass_is_exact) || 4279 // 'tap' is exact and super or unrelated: 4280 (tap->_klass_is_exact && !tap->klass()->is_subtype_of(klass())) || 4281 // 'this' is exact and super or unrelated: 4282 (this->_klass_is_exact && !klass()->is_subtype_of(tap->klass())))) { 4283 if (above_centerline(ptr)) { 4284 tary = TypeAry::make(Type::BOTTOM, tary->_size, tary->_stable); 4285 } 4286 return make(NotNull, NULL, tary, lazy_klass, false, off, InstanceBot, speculative, depth); 4287 } 4288 4289 bool xk = false; 4290 switch (tap->ptr()) { 4291 case AnyNull: 4292 case TopPTR: 4293 // Compute new klass on demand, do not use tap->_klass 4294 if (below_centerline(this->_ptr)) { 4295 xk = this->_klass_is_exact; 4296 } else { 4297 xk = (tap->_klass_is_exact | this->_klass_is_exact); 4298 } 4299 return make(ptr, const_oop(), tary, lazy_klass, xk, off, instance_id, speculative, depth); 4300 case Constant: { 4301 ciObject* o = const_oop(); 4302 if( _ptr == Constant ) { 4303 if( tap->const_oop() != NULL && !o->equals(tap->const_oop()) ) { 4304 xk = (klass() == tap->klass()); 4305 ptr = NotNull; 4306 o = NULL; 4307 instance_id = InstanceBot; 4308 } else { 4309 xk = true; 4310 } 4311 } else if(above_centerline(_ptr)) { 4312 o = tap->const_oop(); 4313 xk = true; 4314 } else { 4315 // Only precise for identical arrays 4316 xk = this->_klass_is_exact && (klass() == tap->klass()); 4317 } 4318 return TypeAryPtr::make(ptr, o, tary, lazy_klass, xk, off, instance_id, speculative, depth); 4319 } 4320 case NotNull: 4321 case BotPTR: 4322 // Compute new klass on demand, do not use tap->_klass 4323 if (above_centerline(this->_ptr)) 4324 xk = tap->_klass_is_exact; 4325 else xk = (tap->_klass_is_exact & this->_klass_is_exact) && 4326 (klass() == tap->klass()); // Only precise for identical arrays 4327 return TypeAryPtr::make(ptr, NULL, tary, lazy_klass, xk, off, instance_id, speculative, depth); 4328 default: ShouldNotReachHere(); 4329 } 4330 } 4331 4332 // All arrays inherit from Object class 4333 case InstPtr: { 4334 const TypeInstPtr *tp = t->is_instptr(); 4335 int offset = meet_offset(tp->offset()); 4336 PTR ptr = meet_ptr(tp->ptr()); 4337 int instance_id = meet_instance_id(tp->instance_id()); 4338 const TypePtr* speculative = xmeet_speculative(tp); 4339 int depth = meet_inline_depth(tp->inline_depth()); 4340 switch (ptr) { 4341 case TopPTR: 4342 case AnyNull: // Fall 'down' to dual of object klass 4343 // For instances when a subclass meets a superclass we fall 4344 // below the centerline when the superclass is exact. We need to 4345 // do the same here. 4346 if (tp->klass()->equals(ciEnv::current()->Object_klass()) && !tp->klass_is_exact()) { 4347 return TypeAryPtr::make(ptr, _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth); 4348 } else { 4349 // cannot subclass, so the meet has to fall badly below the centerline 4350 ptr = NotNull; 4351 instance_id = InstanceBot; 4352 return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id, speculative, depth); 4353 } 4354 case Constant: 4355 case NotNull: 4356 case BotPTR: // Fall down to object klass 4357 // LCA is object_klass, but if we subclass from the top we can do better 4358 if (above_centerline(tp->ptr())) { 4359 // If 'tp' is above the centerline and it is Object class 4360 // then we can subclass in the Java class hierarchy. 4361 // For instances when a subclass meets a superclass we fall 4362 // below the centerline when the superclass is exact. We need 4363 // to do the same here. 4364 if (tp->klass()->equals(ciEnv::current()->Object_klass()) && !tp->klass_is_exact()) { 4365 // that is, my array type is a subtype of 'tp' klass 4366 return make(ptr, (ptr == Constant ? const_oop() : NULL), 4367 _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth); 4368 } 4369 } 4370 // The other case cannot happen, since t cannot be a subtype of an array. 4371 // The meet falls down to Object class below centerline. 4372 if( ptr == Constant ) 4373 ptr = NotNull; 4374 instance_id = InstanceBot; 4375 return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id, speculative, depth); 4376 default: typerr(t); 4377 } 4378 } 4379 } 4380 return this; // Lint noise 4381 } 4382 4383 //------------------------------xdual------------------------------------------ 4384 // Dual: compute field-by-field dual 4385 const Type *TypeAryPtr::xdual() const { 4386 return new TypeAryPtr(dual_ptr(), _const_oop, _ary->dual()->is_ary(),_klass, _klass_is_exact, dual_offset(), dual_instance_id(), is_autobox_cache(), dual_speculative(), dual_inline_depth()); 4387 } 4388 4389 //----------------------interface_vs_oop--------------------------------------- 4390 #ifdef ASSERT 4391 bool TypeAryPtr::interface_vs_oop(const Type *t) const { 4392 const TypeAryPtr* t_aryptr = t->isa_aryptr(); 4393 if (t_aryptr) { 4394 return _ary->interface_vs_oop(t_aryptr->_ary); 4395 } 4396 return false; 4397 } 4398 #endif 4399 4400 //------------------------------dump2------------------------------------------ 4401 #ifndef PRODUCT 4402 void TypeAryPtr::dump2( Dict &d, uint depth, outputStream *st ) const { 4403 _ary->dump2(d,depth,st); 4404 switch( _ptr ) { 4405 case Constant: 4406 const_oop()->print(st); 4407 break; 4408 case BotPTR: 4409 if (!WizardMode && !Verbose) { 4410 if( _klass_is_exact ) st->print(":exact"); 4411 break; 4412 } 4413 case TopPTR: 4414 case AnyNull: 4415 case NotNull: 4416 st->print(":%s", ptr_msg[_ptr]); 4417 if( _klass_is_exact ) st->print(":exact"); 4418 break; 4419 } 4420 4421 if( _offset != 0 ) { 4422 int header_size = objArrayOopDesc::header_size() * wordSize; 4423 if( _offset == OffsetTop ) st->print("+undefined"); 4424 else if( _offset == OffsetBot ) st->print("+any"); 4425 else if( _offset < header_size ) st->print("+%d", _offset); 4426 else { 4427 BasicType basic_elem_type = elem()->basic_type(); 4428 int array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type); 4429 int elem_size = type2aelembytes(basic_elem_type); 4430 st->print("[%d]", (_offset - array_base)/elem_size); 4431 } 4432 } 4433 st->print(" *"); 4434 if (_instance_id == InstanceTop) 4435 st->print(",iid=top"); 4436 else if (_instance_id != InstanceBot) 4437 st->print(",iid=%d",_instance_id); 4438 4439 dump_inline_depth(st); 4440 dump_speculative(st); 4441 } 4442 #endif 4443 4444 bool TypeAryPtr::empty(void) const { 4445 if (_ary->empty()) return true; 4446 return TypeOopPtr::empty(); 4447 } 4448 4449 //------------------------------add_offset------------------------------------- 4450 const TypePtr *TypeAryPtr::add_offset(intptr_t offset) const { 4451 return make(_ptr, _const_oop, _ary, _klass, _klass_is_exact, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth); 4452 } 4453 4454 const Type *TypeAryPtr::remove_speculative() const { 4455 if (_speculative == NULL) { 4456 return this; 4457 } 4458 assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth"); 4459 return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _instance_id, NULL, _inline_depth); 4460 } 4461 4462 const TypePtr *TypeAryPtr::with_inline_depth(int depth) const { 4463 if (!UseInlineDepthForSpeculativeTypes) { 4464 return this; 4465 } 4466 return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _instance_id, _speculative, depth); 4467 } 4468 4469 //============================================================================= 4470 4471 4472 //============================================================================= 4473 4474 //------------------------------make------------------------------------------- 4475 const TypeValueTypePtr* TypeValueTypePtr::make(const TypeValueType* vt, PTR ptr, int offset, int instance_id, const TypePtr* speculative, int inline_depth) { 4476 return (TypeValueTypePtr*)(new TypeValueTypePtr(vt, ptr, offset, instance_id, speculative, inline_depth))->hashcons(); 4477 }; 4478 4479 const TypePtr* TypeValueTypePtr::add_offset(intptr_t offset) const { 4480 return make(_vt, _ptr, offset, _instance_id, _speculative, _inline_depth); 4481 } 4482 4483 //------------------------------cast_to_ptr_type------------------------------- 4484 const Type* TypeValueTypePtr::cast_to_ptr_type(PTR ptr) const { 4485 if (ptr == _ptr) return this; 4486 return make(_vt, ptr, _offset, _instance_id, _speculative, _inline_depth); 4487 } 4488 4489 //-----------------------------cast_to_instance_id---------------------------- 4490 const TypeOopPtr* TypeValueTypePtr::cast_to_instance_id(int instance_id) const { 4491 if (instance_id == _instance_id) return this; 4492 return make(_vt, _ptr, _offset, instance_id, _speculative, _inline_depth); 4493 } 4494 4495 //------------------------------meet------------------------------------------- 4496 // Compute the MEET of two types. It returns a new Type object. 4497 const Type* TypeValueTypePtr::xmeet_helper(const Type* t) const { 4498 // Perform a fast test for common case; meeting the same types together. 4499 if (this == t) return this; // Meeting same type-rep? 4500 4501 switch (t->base()) { // switch on original type 4502 case Int: // Mixing ints & oops happens when javac 4503 case Long: // reuses local variables 4504 case FloatTop: 4505 case FloatCon: 4506 case FloatBot: 4507 case DoubleTop: 4508 case DoubleCon: 4509 case DoubleBot: 4510 case NarrowOop: 4511 case NarrowKlass: 4512 case MetadataPtr: 4513 case KlassPtr: 4514 case RawPtr: 4515 case AryPtr: 4516 case InstPtr: 4517 case Bottom: // Ye Olde Default 4518 return Type::BOTTOM; 4519 case Top: 4520 return this; 4521 4522 default: // All else is a mistake 4523 typerr(t); 4524 4525 case OopPtr: { 4526 // Found a OopPtr type vs self-ValueTypePtr type 4527 const TypeOopPtr* tp = t->is_oopptr(); 4528 int offset = meet_offset(tp->offset()); 4529 PTR ptr = meet_ptr(tp->ptr()); 4530 int instance_id = meet_instance_id(tp->instance_id()); 4531 const TypePtr* speculative = xmeet_speculative(tp); 4532 int depth = meet_inline_depth(tp->inline_depth()); 4533 switch (tp->ptr()) { 4534 case TopPTR: 4535 case AnyNull: { 4536 return make(_vt, ptr, offset, instance_id, speculative, depth); 4537 } 4538 case NotNull: 4539 case BotPTR: { 4540 return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth); 4541 } 4542 default: typerr(t); 4543 } 4544 } 4545 4546 case AnyPtr: { 4547 // Found an AnyPtr type vs self-ValueTypePtr type 4548 const TypePtr* tp = t->is_ptr(); 4549 int offset = meet_offset(tp->offset()); 4550 PTR ptr = meet_ptr(tp->ptr()); 4551 int instance_id = meet_instance_id(InstanceTop); 4552 const TypePtr* speculative = xmeet_speculative(tp); 4553 int depth = meet_inline_depth(tp->inline_depth()); 4554 switch (tp->ptr()) { 4555 case Null: 4556 if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth); 4557 // else fall through to AnyNull 4558 case TopPTR: 4559 case AnyNull: { 4560 return make(_vt, ptr, offset, instance_id, speculative, depth); 4561 } 4562 case NotNull: 4563 case BotPTR: 4564 return TypePtr::make(AnyPtr, ptr, offset, speculative, depth); 4565 default: typerr(t); 4566 } 4567 } 4568 4569 case ValueTypePtr: { 4570 // Found an ValueTypePtr type vs self-ValueTypePtr type 4571 const TypeValueTypePtr* tp = t->is_valuetypeptr(); 4572 int offset = meet_offset(tp->offset()); 4573 PTR ptr = meet_ptr(tp->ptr()); 4574 int instance_id = meet_instance_id(InstanceTop); 4575 const TypePtr* speculative = xmeet_speculative(tp); 4576 int depth = meet_inline_depth(tp->inline_depth()); 4577 return make(_vt, ptr, offset, instance_id, speculative, depth); 4578 } 4579 } 4580 } 4581 4582 // Dual: compute field-by-field dual 4583 const Type* TypeValueTypePtr::xdual() const { 4584 return new TypeValueTypePtr(_vt, dual_ptr(), dual_offset(), dual_instance_id(), dual_speculative(), dual_inline_depth()); 4585 } 4586 4587 //------------------------------eq--------------------------------------------- 4588 // Structural equality check for Type representations 4589 bool TypeValueTypePtr::eq(const Type* t) const { 4590 const TypeValueTypePtr* p = t->is_valuetypeptr(); 4591 return _vt->eq(p->value_type()) && TypeOopPtr::eq(p); 4592 } 4593 4594 //------------------------------hash------------------------------------------- 4595 // Type-specific hashing function. 4596 int TypeValueTypePtr::hash(void) const { 4597 return java_add(_vt->hash(), TypeOopPtr::hash()); 4598 } 4599 4600 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple constants 4601 bool TypeValueTypePtr::singleton(void) const { 4602 // FIXME 4603 return false; 4604 } 4605 4606 //------------------------------empty------------------------------------------ 4607 // TRUE if Type is a type with no values, FALSE otherwise. 4608 bool TypeValueTypePtr::empty(void) const { 4609 // FIXME 4610 return false; 4611 } 4612 4613 //------------------------------dump2------------------------------------------ 4614 #ifndef PRODUCT 4615 void TypeValueTypePtr::dump2(Dict &d, uint depth, outputStream *st) const { 4616 st->print("valuetype*"); 4617 st->print(":%s", ptr_msg[_ptr]); 4618 switch (_offset) { 4619 case 0: 4620 break; 4621 case OffsetTop: 4622 st->print("+undefined"); 4623 break; 4624 case OffsetBot: 4625 st->print("+any"); 4626 break; 4627 default: 4628 st->print("+%d", _offset); 4629 } 4630 } 4631 #endif 4632 4633 //============================================================================= 4634 4635 //------------------------------hash------------------------------------------- 4636 // Type-specific hashing function. 4637 int TypeNarrowPtr::hash(void) const { 4638 return _ptrtype->hash() + 7; 4639 } 4640 4641 bool TypeNarrowPtr::singleton(void) const { // TRUE if type is a singleton 4642 return _ptrtype->singleton(); 4643 } 4644 4645 bool TypeNarrowPtr::empty(void) const { 4646 return _ptrtype->empty(); 4647 } 4648 4649 intptr_t TypeNarrowPtr::get_con() const { 4650 return _ptrtype->get_con(); 4651 } 4652 4653 bool TypeNarrowPtr::eq( const Type *t ) const { 4654 const TypeNarrowPtr* tc = isa_same_narrowptr(t); 4655 if (tc != NULL) { 4656 if (_ptrtype->base() != tc->_ptrtype->base()) { 4657 return false; 4658 } 4659 return tc->_ptrtype->eq(_ptrtype); 4660 } 4661 return false; 4662 } 4663 4664 const Type *TypeNarrowPtr::xdual() const { // Compute dual right now. 4665 const TypePtr* odual = _ptrtype->dual()->is_ptr(); 4666 return make_same_narrowptr(odual); 4667 } 4668 4669 4670 const Type *TypeNarrowPtr::filter_helper(const Type *kills, bool include_speculative) const { 4671 if (isa_same_narrowptr(kills)) { 4672 const Type* ft =_ptrtype->filter_helper(is_same_narrowptr(kills)->_ptrtype, include_speculative); 4673 if (ft->empty()) 4674 return Type::TOP; // Canonical empty value 4675 if (ft->isa_ptr()) { 4676 return make_hash_same_narrowptr(ft->isa_ptr()); 4677 } 4678 return ft; 4679 } else if (kills->isa_ptr()) { 4680 const Type* ft = _ptrtype->join_helper(kills, include_speculative); 4681 if (ft->empty()) 4682 return Type::TOP; // Canonical empty value 4683 return ft; 4684 } else { 4685 return Type::TOP; 4686 } 4687 } 4688 4689 //------------------------------xmeet------------------------------------------ 4690 // Compute the MEET of two types. It returns a new Type object. 4691 const Type *TypeNarrowPtr::xmeet( const Type *t ) const { 4692 // Perform a fast test for common case; meeting the same types together. 4693 if( this == t ) return this; // Meeting same type-rep? 4694 4695 if (t->base() == base()) { 4696 const Type* result = _ptrtype->xmeet(t->make_ptr()); 4697 if (result->isa_ptr()) { 4698 return make_hash_same_narrowptr(result->is_ptr()); 4699 } 4700 return result; 4701 } 4702 4703 // Current "this->_base" is NarrowKlass or NarrowOop 4704 switch (t->base()) { // switch on original type 4705 4706 case Int: // Mixing ints & oops happens when javac 4707 case Long: // reuses local variables 4708 case FloatTop: 4709 case FloatCon: 4710 case FloatBot: 4711 case DoubleTop: 4712 case DoubleCon: 4713 case DoubleBot: 4714 case AnyPtr: 4715 case RawPtr: 4716 case OopPtr: 4717 case InstPtr: 4718 case ValueTypePtr: 4719 case AryPtr: 4720 case MetadataPtr: 4721 case KlassPtr: 4722 case NarrowOop: 4723 case NarrowKlass: 4724 4725 case Bottom: // Ye Olde Default 4726 return Type::BOTTOM; 4727 case Top: 4728 return this; 4729 4730 default: // All else is a mistake 4731 typerr(t); 4732 4733 } // End of switch 4734 4735 return this; 4736 } 4737 4738 #ifndef PRODUCT 4739 void TypeNarrowPtr::dump2( Dict & d, uint depth, outputStream *st ) const { 4740 _ptrtype->dump2(d, depth, st); 4741 } 4742 #endif 4743 4744 const TypeNarrowOop *TypeNarrowOop::BOTTOM; 4745 const TypeNarrowOop *TypeNarrowOop::NULL_PTR; 4746 4747 4748 const TypeNarrowOop* TypeNarrowOop::make(const TypePtr* type) { 4749 return (const TypeNarrowOop*)(new TypeNarrowOop(type))->hashcons(); 4750 } 4751 4752 const Type* TypeNarrowOop::remove_speculative() const { 4753 return make(_ptrtype->remove_speculative()->is_ptr()); 4754 } 4755 4756 const Type* TypeNarrowOop::cleanup_speculative() const { 4757 return make(_ptrtype->cleanup_speculative()->is_ptr()); 4758 } 4759 4760 #ifndef PRODUCT 4761 void TypeNarrowOop::dump2( Dict & d, uint depth, outputStream *st ) const { 4762 st->print("narrowoop: "); 4763 TypeNarrowPtr::dump2(d, depth, st); 4764 } 4765 #endif 4766 4767 const TypeNarrowKlass *TypeNarrowKlass::NULL_PTR; 4768 4769 const TypeNarrowKlass* TypeNarrowKlass::make(const TypePtr* type) { 4770 return (const TypeNarrowKlass*)(new TypeNarrowKlass(type))->hashcons(); 4771 } 4772 4773 #ifndef PRODUCT 4774 void TypeNarrowKlass::dump2( Dict & d, uint depth, outputStream *st ) const { 4775 st->print("narrowklass: "); 4776 TypeNarrowPtr::dump2(d, depth, st); 4777 } 4778 #endif 4779 4780 4781 //------------------------------eq--------------------------------------------- 4782 // Structural equality check for Type representations 4783 bool TypeMetadataPtr::eq( const Type *t ) const { 4784 const TypeMetadataPtr *a = (const TypeMetadataPtr*)t; 4785 ciMetadata* one = metadata(); 4786 ciMetadata* two = a->metadata(); 4787 if (one == NULL || two == NULL) { 4788 return (one == two) && TypePtr::eq(t); 4789 } else { 4790 return one->equals(two) && TypePtr::eq(t); 4791 } 4792 } 4793 4794 //------------------------------hash------------------------------------------- 4795 // Type-specific hashing function. 4796 int TypeMetadataPtr::hash(void) const { 4797 return 4798 (metadata() ? metadata()->hash() : 0) + 4799 TypePtr::hash(); 4800 } 4801 4802 //------------------------------singleton-------------------------------------- 4803 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple 4804 // constants 4805 bool TypeMetadataPtr::singleton(void) const { 4806 // detune optimizer to not generate constant metadata + constant offset as a constant! 4807 // TopPTR, Null, AnyNull, Constant are all singletons 4808 return (_offset == 0) && !below_centerline(_ptr); 4809 } 4810 4811 //------------------------------add_offset------------------------------------- 4812 const TypePtr *TypeMetadataPtr::add_offset( intptr_t offset ) const { 4813 return make( _ptr, _metadata, xadd_offset(offset)); 4814 } 4815 4816 //-----------------------------filter------------------------------------------ 4817 // Do not allow interface-vs.-noninterface joins to collapse to top. 4818 const Type *TypeMetadataPtr::filter_helper(const Type *kills, bool include_speculative) const { 4819 const TypeMetadataPtr* ft = join_helper(kills, include_speculative)->isa_metadataptr(); 4820 if (ft == NULL || ft->empty()) 4821 return Type::TOP; // Canonical empty value 4822 return ft; 4823 } 4824 4825 //------------------------------get_con---------------------------------------- 4826 intptr_t TypeMetadataPtr::get_con() const { 4827 assert( _ptr == Null || _ptr == Constant, "" ); 4828 assert( _offset >= 0, "" ); 4829 4830 if (_offset != 0) { 4831 // After being ported to the compiler interface, the compiler no longer 4832 // directly manipulates the addresses of oops. Rather, it only has a pointer 4833 // to a handle at compile time. This handle is embedded in the generated 4834 // code and dereferenced at the time the nmethod is made. Until that time, 4835 // it is not reasonable to do arithmetic with the addresses of oops (we don't 4836 // have access to the addresses!). This does not seem to currently happen, 4837 // but this assertion here is to help prevent its occurence. 4838 tty->print_cr("Found oop constant with non-zero offset"); 4839 ShouldNotReachHere(); 4840 } 4841 4842 return (intptr_t)metadata()->constant_encoding(); 4843 } 4844 4845 //------------------------------cast_to_ptr_type------------------------------- 4846 const Type *TypeMetadataPtr::cast_to_ptr_type(PTR ptr) const { 4847 if( ptr == _ptr ) return this; 4848 return make(ptr, metadata(), _offset); 4849 } 4850 4851 //------------------------------meet------------------------------------------- 4852 // Compute the MEET of two types. It returns a new Type object. 4853 const Type *TypeMetadataPtr::xmeet( const Type *t ) const { 4854 // Perform a fast test for common case; meeting the same types together. 4855 if( this == t ) return this; // Meeting same type-rep? 4856 4857 // Current "this->_base" is OopPtr 4858 switch (t->base()) { // switch on original type 4859 4860 case Int: // Mixing ints & oops happens when javac 4861 case Long: // reuses local variables 4862 case FloatTop: 4863 case FloatCon: 4864 case FloatBot: 4865 case DoubleTop: 4866 case DoubleCon: 4867 case DoubleBot: 4868 case NarrowOop: 4869 case NarrowKlass: 4870 case Bottom: // Ye Olde Default 4871 return Type::BOTTOM; 4872 case Top: 4873 return this; 4874 4875 default: // All else is a mistake 4876 typerr(t); 4877 4878 case AnyPtr: { 4879 // Found an AnyPtr type vs self-OopPtr type 4880 const TypePtr *tp = t->is_ptr(); 4881 int offset = meet_offset(tp->offset()); 4882 PTR ptr = meet_ptr(tp->ptr()); 4883 switch (tp->ptr()) { 4884 case Null: 4885 if (ptr == Null) return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth()); 4886 // else fall through: 4887 case TopPTR: 4888 case AnyNull: { 4889 return make(ptr, _metadata, offset); 4890 } 4891 case BotPTR: 4892 case NotNull: 4893 return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth()); 4894 default: typerr(t); 4895 } 4896 } 4897 4898 case RawPtr: 4899 case KlassPtr: 4900 case OopPtr: 4901 case InstPtr: 4902 case ValueTypePtr: 4903 case AryPtr: 4904 return TypePtr::BOTTOM; // Oop meet raw is not well defined 4905 4906 case MetadataPtr: { 4907 const TypeMetadataPtr *tp = t->is_metadataptr(); 4908 int offset = meet_offset(tp->offset()); 4909 PTR tptr = tp->ptr(); 4910 PTR ptr = meet_ptr(tptr); 4911 ciMetadata* md = (tptr == TopPTR) ? metadata() : tp->metadata(); 4912 if (tptr == TopPTR || _ptr == TopPTR || 4913 metadata()->equals(tp->metadata())) { 4914 return make(ptr, md, offset); 4915 } 4916 // metadata is different 4917 if( ptr == Constant ) { // Cannot be equal constants, so... 4918 if( tptr == Constant && _ptr != Constant) return t; 4919 if( _ptr == Constant && tptr != Constant) return this; 4920 ptr = NotNull; // Fall down in lattice 4921 } 4922 return make(ptr, NULL, offset); 4923 break; 4924 } 4925 } // End of switch 4926 return this; // Return the double constant 4927 } 4928 4929 4930 //------------------------------xdual------------------------------------------ 4931 // Dual of a pure metadata pointer. 4932 const Type *TypeMetadataPtr::xdual() const { 4933 return new TypeMetadataPtr(dual_ptr(), metadata(), dual_offset()); 4934 } 4935 4936 //------------------------------dump2------------------------------------------ 4937 #ifndef PRODUCT 4938 void TypeMetadataPtr::dump2( Dict &d, uint depth, outputStream *st ) const { 4939 st->print("metadataptr:%s", ptr_msg[_ptr]); 4940 if( metadata() ) st->print(INTPTR_FORMAT, p2i(metadata())); 4941 switch( _offset ) { 4942 case OffsetTop: st->print("+top"); break; 4943 case OffsetBot: st->print("+any"); break; 4944 case 0: break; 4945 default: st->print("+%d",_offset); break; 4946 } 4947 } 4948 #endif 4949 4950 4951 //============================================================================= 4952 // Convenience common pre-built type. 4953 const TypeMetadataPtr *TypeMetadataPtr::BOTTOM; 4954 4955 TypeMetadataPtr::TypeMetadataPtr(PTR ptr, ciMetadata* metadata, int offset): 4956 TypePtr(MetadataPtr, ptr, offset), _metadata(metadata) { 4957 } 4958 4959 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethod* m) { 4960 return make(Constant, m, 0); 4961 } 4962 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethodData* m) { 4963 return make(Constant, m, 0); 4964 } 4965 4966 //------------------------------make------------------------------------------- 4967 // Create a meta data constant 4968 const TypeMetadataPtr *TypeMetadataPtr::make(PTR ptr, ciMetadata* m, int offset) { 4969 assert(m == NULL || !m->is_klass(), "wrong type"); 4970 return (TypeMetadataPtr*)(new TypeMetadataPtr(ptr, m, offset))->hashcons(); 4971 } 4972 4973 4974 //============================================================================= 4975 // Convenience common pre-built types. 4976 4977 // Not-null object klass or below 4978 const TypeKlassPtr *TypeKlassPtr::OBJECT; 4979 const TypeKlassPtr *TypeKlassPtr::OBJECT_OR_NULL; 4980 4981 //------------------------------TypeKlassPtr----------------------------------- 4982 TypeKlassPtr::TypeKlassPtr( PTR ptr, ciKlass* klass, int offset ) 4983 : TypePtr(KlassPtr, ptr, offset), _klass(klass), _klass_is_exact(ptr == Constant) { 4984 } 4985 4986 //------------------------------make------------------------------------------- 4987 // ptr to klass 'k', if Constant, or possibly to a sub-klass if not a Constant 4988 const TypeKlassPtr *TypeKlassPtr::make( PTR ptr, ciKlass* k, int offset ) { 4989 assert( k != NULL, "Expect a non-NULL klass"); 4990 assert(k->is_instance_klass() || k->is_array_klass(), "Incorrect type of klass oop"); 4991 TypeKlassPtr *r = 4992 (TypeKlassPtr*)(new TypeKlassPtr(ptr, k, offset))->hashcons(); 4993 4994 return r; 4995 } 4996 4997 //------------------------------eq--------------------------------------------- 4998 // Structural equality check for Type representations 4999 bool TypeKlassPtr::eq( const Type *t ) const { 5000 const TypeKlassPtr *p = t->is_klassptr(); 5001 return 5002 klass()->equals(p->klass()) && 5003 TypePtr::eq(p); 5004 } 5005 5006 //------------------------------hash------------------------------------------- 5007 // Type-specific hashing function. 5008 int TypeKlassPtr::hash(void) const { 5009 return java_add(klass()->hash(), TypePtr::hash()); 5010 } 5011 5012 //------------------------------singleton-------------------------------------- 5013 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple 5014 // constants 5015 bool TypeKlassPtr::singleton(void) const { 5016 // detune optimizer to not generate constant klass + constant offset as a constant! 5017 // TopPTR, Null, AnyNull, Constant are all singletons 5018 return (_offset == 0) && !below_centerline(_ptr); 5019 } 5020 5021 // Do not allow interface-vs.-noninterface joins to collapse to top. 5022 const Type *TypeKlassPtr::filter_helper(const Type *kills, bool include_speculative) const { 5023 // logic here mirrors the one from TypeOopPtr::filter. See comments 5024 // there. 5025 const Type* ft = join_helper(kills, include_speculative); 5026 const TypeKlassPtr* ftkp = ft->isa_klassptr(); 5027 const TypeKlassPtr* ktkp = kills->isa_klassptr(); 5028 5029 if (ft->empty()) { 5030 if (!empty() && ktkp != NULL && ktkp->klass()->is_loaded() && ktkp->klass()->is_interface()) 5031 return kills; // Uplift to interface 5032 5033 return Type::TOP; // Canonical empty value 5034 } 5035 5036 // Interface klass type could be exact in opposite to interface type, 5037 // return it here instead of incorrect Constant ptr J/L/Object (6894807). 5038 if (ftkp != NULL && ktkp != NULL && 5039 ftkp->is_loaded() && ftkp->klass()->is_interface() && 5040 !ftkp->klass_is_exact() && // Keep exact interface klass 5041 ktkp->is_loaded() && !ktkp->klass()->is_interface()) { 5042 return ktkp->cast_to_ptr_type(ftkp->ptr()); 5043 } 5044 5045 return ft; 5046 } 5047 5048 //----------------------compute_klass------------------------------------------ 5049 // Compute the defining klass for this class 5050 ciKlass* TypeAryPtr::compute_klass(DEBUG_ONLY(bool verify)) const { 5051 // Compute _klass based on element type. 5052 ciKlass* k_ary = NULL; 5053 const TypeInstPtr *tinst; 5054 const TypeAryPtr *tary; 5055 const Type* el = elem(); 5056 if (el->isa_narrowoop()) { 5057 el = el->make_ptr(); 5058 } 5059 5060 // Get element klass 5061 if ((tinst = el->isa_instptr()) != NULL) { 5062 // Compute array klass from element klass 5063 k_ary = ciObjArrayKlass::make(tinst->klass()); 5064 } else if ((tary = el->isa_aryptr()) != NULL) { 5065 // Compute array klass from element klass 5066 ciKlass* k_elem = tary->klass(); 5067 // If element type is something like bottom[], k_elem will be null. 5068 if (k_elem != NULL) 5069 k_ary = ciObjArrayKlass::make(k_elem); 5070 } else if ((el->base() == Type::Top) || 5071 (el->base() == Type::Bottom)) { 5072 // element type of Bottom occurs from meet of basic type 5073 // and object; Top occurs when doing join on Bottom. 5074 // Leave k_ary at NULL. 5075 } else { 5076 // Cannot compute array klass directly from basic type, 5077 // since subtypes of TypeInt all have basic type T_INT. 5078 #ifdef ASSERT 5079 if (verify && el->isa_int()) { 5080 // Check simple cases when verifying klass. 5081 BasicType bt = T_ILLEGAL; 5082 if (el == TypeInt::BYTE) { 5083 bt = T_BYTE; 5084 } else if (el == TypeInt::SHORT) { 5085 bt = T_SHORT; 5086 } else if (el == TypeInt::CHAR) { 5087 bt = T_CHAR; 5088 } else if (el == TypeInt::INT) { 5089 bt = T_INT; 5090 } else { 5091 return _klass; // just return specified klass 5092 } 5093 return ciTypeArrayKlass::make(bt); 5094 } 5095 #endif 5096 assert(!el->isa_int(), 5097 "integral arrays must be pre-equipped with a class"); 5098 // Compute array klass directly from basic type 5099 k_ary = ciTypeArrayKlass::make(el->basic_type()); 5100 } 5101 return k_ary; 5102 } 5103 5104 //------------------------------klass------------------------------------------ 5105 // Return the defining klass for this class 5106 ciKlass* TypeAryPtr::klass() const { 5107 if( _klass ) return _klass; // Return cached value, if possible 5108 5109 // Oops, need to compute _klass and cache it 5110 ciKlass* k_ary = compute_klass(); 5111 5112 if( this != TypeAryPtr::OOPS && this->dual() != TypeAryPtr::OOPS ) { 5113 // The _klass field acts as a cache of the underlying 5114 // ciKlass for this array type. In order to set the field, 5115 // we need to cast away const-ness. 5116 // 5117 // IMPORTANT NOTE: we *never* set the _klass field for the 5118 // type TypeAryPtr::OOPS. This Type is shared between all 5119 // active compilations. However, the ciKlass which represents 5120 // this Type is *not* shared between compilations, so caching 5121 // this value would result in fetching a dangling pointer. 5122 // 5123 // Recomputing the underlying ciKlass for each request is 5124 // a bit less efficient than caching, but calls to 5125 // TypeAryPtr::OOPS->klass() are not common enough to matter. 5126 ((TypeAryPtr*)this)->_klass = k_ary; 5127 if (UseCompressedOops && k_ary != NULL && k_ary->is_obj_array_klass() && 5128 _offset != 0 && _offset != arrayOopDesc::length_offset_in_bytes()) { 5129 ((TypeAryPtr*)this)->_is_ptr_to_narrowoop = true; 5130 } 5131 } 5132 return k_ary; 5133 } 5134 5135 5136 //------------------------------add_offset------------------------------------- 5137 // Access internals of klass object 5138 const TypePtr *TypeKlassPtr::add_offset( intptr_t offset ) const { 5139 return make( _ptr, klass(), xadd_offset(offset) ); 5140 } 5141 5142 //------------------------------cast_to_ptr_type------------------------------- 5143 const Type *TypeKlassPtr::cast_to_ptr_type(PTR ptr) const { 5144 assert(_base == KlassPtr, "subclass must override cast_to_ptr_type"); 5145 if( ptr == _ptr ) return this; 5146 return make(ptr, _klass, _offset); 5147 } 5148 5149 5150 //-----------------------------cast_to_exactness------------------------------- 5151 const Type *TypeKlassPtr::cast_to_exactness(bool klass_is_exact) const { 5152 if( klass_is_exact == _klass_is_exact ) return this; 5153 if (!UseExactTypes) return this; 5154 return make(klass_is_exact ? Constant : NotNull, _klass, _offset); 5155 } 5156 5157 5158 //-----------------------------as_instance_type-------------------------------- 5159 // Corresponding type for an instance of the given class. 5160 // It will be NotNull, and exact if and only if the klass type is exact. 5161 const TypeOopPtr* TypeKlassPtr::as_instance_type() const { 5162 ciKlass* k = klass(); 5163 bool xk = klass_is_exact(); 5164 //return TypeInstPtr::make(TypePtr::NotNull, k, xk, NULL, 0); 5165 const TypeOopPtr* toop = TypeOopPtr::make_from_klass_raw(k); 5166 guarantee(toop != NULL, "need type for given klass"); 5167 toop = toop->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr(); 5168 return toop->cast_to_exactness(xk)->is_oopptr(); 5169 } 5170 5171 5172 //------------------------------xmeet------------------------------------------ 5173 // Compute the MEET of two types, return a new Type object. 5174 const Type *TypeKlassPtr::xmeet( const Type *t ) const { 5175 // Perform a fast test for common case; meeting the same types together. 5176 if( this == t ) return this; // Meeting same type-rep? 5177 5178 // Current "this->_base" is Pointer 5179 switch (t->base()) { // switch on original type 5180 5181 case Int: // Mixing ints & oops happens when javac 5182 case Long: // reuses local variables 5183 case FloatTop: 5184 case FloatCon: 5185 case FloatBot: 5186 case DoubleTop: 5187 case DoubleCon: 5188 case DoubleBot: 5189 case NarrowOop: 5190 case NarrowKlass: 5191 case Bottom: // Ye Olde Default 5192 return Type::BOTTOM; 5193 case Top: 5194 return this; 5195 5196 default: // All else is a mistake 5197 typerr(t); 5198 5199 case AnyPtr: { // Meeting to AnyPtrs 5200 // Found an AnyPtr type vs self-KlassPtr type 5201 const TypePtr *tp = t->is_ptr(); 5202 int offset = meet_offset(tp->offset()); 5203 PTR ptr = meet_ptr(tp->ptr()); 5204 switch (tp->ptr()) { 5205 case TopPTR: 5206 return this; 5207 case Null: 5208 if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth()); 5209 case AnyNull: 5210 return make( ptr, klass(), offset ); 5211 case BotPTR: 5212 case NotNull: 5213 return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth()); 5214 default: typerr(t); 5215 } 5216 } 5217 5218 case RawPtr: 5219 case MetadataPtr: 5220 case OopPtr: 5221 case AryPtr: // Meet with AryPtr 5222 case InstPtr: // Meet with InstPtr 5223 case ValueTypePtr: 5224 return TypePtr::BOTTOM; 5225 5226 // 5227 // A-top } 5228 // / | \ } Tops 5229 // B-top A-any C-top } 5230 // | / | \ | } Any-nulls 5231 // B-any | C-any } 5232 // | | | 5233 // B-con A-con C-con } constants; not comparable across classes 5234 // | | | 5235 // B-not | C-not } 5236 // | \ | / | } not-nulls 5237 // B-bot A-not C-bot } 5238 // \ | / } Bottoms 5239 // A-bot } 5240 // 5241 5242 case KlassPtr: { // Meet two KlassPtr types 5243 const TypeKlassPtr *tkls = t->is_klassptr(); 5244 int off = meet_offset(tkls->offset()); 5245 PTR ptr = meet_ptr(tkls->ptr()); 5246 5247 // Check for easy case; klasses are equal (and perhaps not loaded!) 5248 // If we have constants, then we created oops so classes are loaded 5249 // and we can handle the constants further down. This case handles 5250 // not-loaded classes 5251 if( ptr != Constant && tkls->klass()->equals(klass()) ) { 5252 return make( ptr, klass(), off ); 5253 } 5254 5255 // Classes require inspection in the Java klass hierarchy. Must be loaded. 5256 ciKlass* tkls_klass = tkls->klass(); 5257 ciKlass* this_klass = this->klass(); 5258 assert( tkls_klass->is_loaded(), "This class should have been loaded."); 5259 assert( this_klass->is_loaded(), "This class should have been loaded."); 5260 5261 // If 'this' type is above the centerline and is a superclass of the 5262 // other, we can treat 'this' as having the same type as the other. 5263 if ((above_centerline(this->ptr())) && 5264 tkls_klass->is_subtype_of(this_klass)) { 5265 this_klass = tkls_klass; 5266 } 5267 // If 'tinst' type is above the centerline and is a superclass of the 5268 // other, we can treat 'tinst' as having the same type as the other. 5269 if ((above_centerline(tkls->ptr())) && 5270 this_klass->is_subtype_of(tkls_klass)) { 5271 tkls_klass = this_klass; 5272 } 5273 5274 // Check for classes now being equal 5275 if (tkls_klass->equals(this_klass)) { 5276 // If the klasses are equal, the constants may still differ. Fall to 5277 // NotNull if they do (neither constant is NULL; that is a special case 5278 // handled elsewhere). 5279 if( ptr == Constant ) { 5280 if (this->_ptr == Constant && tkls->_ptr == Constant && 5281 this->klass()->equals(tkls->klass())); 5282 else if (above_centerline(this->ptr())); 5283 else if (above_centerline(tkls->ptr())); 5284 else 5285 ptr = NotNull; 5286 } 5287 return make( ptr, this_klass, off ); 5288 } // Else classes are not equal 5289 5290 // Since klasses are different, we require the LCA in the Java 5291 // class hierarchy - which means we have to fall to at least NotNull. 5292 if( ptr == TopPTR || ptr == AnyNull || ptr == Constant ) 5293 ptr = NotNull; 5294 // Now we find the LCA of Java classes 5295 ciKlass* k = this_klass->least_common_ancestor(tkls_klass); 5296 return make( ptr, k, off ); 5297 } // End of case KlassPtr 5298 5299 } // End of switch 5300 return this; // Return the double constant 5301 } 5302 5303 //------------------------------xdual------------------------------------------ 5304 // Dual: compute field-by-field dual 5305 const Type *TypeKlassPtr::xdual() const { 5306 return new TypeKlassPtr( dual_ptr(), klass(), dual_offset() ); 5307 } 5308 5309 //------------------------------get_con---------------------------------------- 5310 intptr_t TypeKlassPtr::get_con() const { 5311 assert( _ptr == Null || _ptr == Constant, "" ); 5312 assert( _offset >= 0, "" ); 5313 5314 if (_offset != 0) { 5315 // After being ported to the compiler interface, the compiler no longer 5316 // directly manipulates the addresses of oops. Rather, it only has a pointer 5317 // to a handle at compile time. This handle is embedded in the generated 5318 // code and dereferenced at the time the nmethod is made. Until that time, 5319 // it is not reasonable to do arithmetic with the addresses of oops (we don't 5320 // have access to the addresses!). This does not seem to currently happen, 5321 // but this assertion here is to help prevent its occurence. 5322 tty->print_cr("Found oop constant with non-zero offset"); 5323 ShouldNotReachHere(); 5324 } 5325 5326 return (intptr_t)klass()->constant_encoding(); 5327 } 5328 //------------------------------dump2------------------------------------------ 5329 // Dump Klass Type 5330 #ifndef PRODUCT 5331 void TypeKlassPtr::dump2( Dict & d, uint depth, outputStream *st ) const { 5332 switch( _ptr ) { 5333 case Constant: 5334 st->print("precise "); 5335 case NotNull: 5336 { 5337 const char *name = klass()->name()->as_utf8(); 5338 if( name ) { 5339 st->print("klass %s: " INTPTR_FORMAT, name, p2i(klass())); 5340 } else { 5341 ShouldNotReachHere(); 5342 } 5343 } 5344 case BotPTR: 5345 if( !WizardMode && !Verbose && !_klass_is_exact ) break; 5346 case TopPTR: 5347 case AnyNull: 5348 st->print(":%s", ptr_msg[_ptr]); 5349 if( _klass_is_exact ) st->print(":exact"); 5350 break; 5351 } 5352 5353 if( _offset ) { // Dump offset, if any 5354 if( _offset == OffsetBot ) { st->print("+any"); } 5355 else if( _offset == OffsetTop ) { st->print("+unknown"); } 5356 else { st->print("+%d", _offset); } 5357 } 5358 5359 st->print(" *"); 5360 } 5361 #endif 5362 5363 5364 5365 //============================================================================= 5366 // Convenience common pre-built types. 5367 5368 //------------------------------make------------------------------------------- 5369 const TypeFunc *TypeFunc::make( const TypeTuple *domain, const TypeTuple *range ) { 5370 return (TypeFunc*)(new TypeFunc(domain,range))->hashcons(); 5371 } 5372 5373 //------------------------------make------------------------------------------- 5374 const TypeFunc *TypeFunc::make(ciMethod* method) { 5375 Compile* C = Compile::current(); 5376 const TypeFunc* tf = C->last_tf(method); // check cache 5377 if (tf != NULL) return tf; // The hit rate here is almost 50%. 5378 const TypeTuple *domain; 5379 if (method->is_static()) { 5380 domain = TypeTuple::make_domain(NULL, method->signature()); 5381 } else { 5382 domain = TypeTuple::make_domain(method->holder(), method->signature()); 5383 } 5384 const TypeTuple *range = TypeTuple::make_range(method->signature()); 5385 tf = TypeFunc::make(domain, range); 5386 C->set_last_tf(method, tf); // fill cache 5387 return tf; 5388 } 5389 5390 //------------------------------meet------------------------------------------- 5391 // Compute the MEET of two types. It returns a new Type object. 5392 const Type *TypeFunc::xmeet( const Type *t ) const { 5393 // Perform a fast test for common case; meeting the same types together. 5394 if( this == t ) return this; // Meeting same type-rep? 5395 5396 // Current "this->_base" is Func 5397 switch (t->base()) { // switch on original type 5398 5399 case Bottom: // Ye Olde Default 5400 return t; 5401 5402 default: // All else is a mistake 5403 typerr(t); 5404 5405 case Top: 5406 break; 5407 } 5408 return this; // Return the double constant 5409 } 5410 5411 //------------------------------xdual------------------------------------------ 5412 // Dual: compute field-by-field dual 5413 const Type *TypeFunc::xdual() const { 5414 return this; 5415 } 5416 5417 //------------------------------eq--------------------------------------------- 5418 // Structural equality check for Type representations 5419 bool TypeFunc::eq( const Type *t ) const { 5420 const TypeFunc *a = (const TypeFunc*)t; 5421 return _domain == a->_domain && 5422 _range == a->_range; 5423 } 5424 5425 //------------------------------hash------------------------------------------- 5426 // Type-specific hashing function. 5427 int TypeFunc::hash(void) const { 5428 return (intptr_t)_domain + (intptr_t)_range; 5429 } 5430 5431 //------------------------------dump2------------------------------------------ 5432 // Dump Function Type 5433 #ifndef PRODUCT 5434 void TypeFunc::dump2( Dict &d, uint depth, outputStream *st ) const { 5435 if( _range->cnt() <= Parms ) 5436 st->print("void"); 5437 else { 5438 uint i; 5439 for (i = Parms; i < _range->cnt()-1; i++) { 5440 _range->field_at(i)->dump2(d,depth,st); 5441 st->print("/"); 5442 } 5443 _range->field_at(i)->dump2(d,depth,st); 5444 } 5445 st->print(" "); 5446 st->print("( "); 5447 if( !depth || d[this] ) { // Check for recursive dump 5448 st->print("...)"); 5449 return; 5450 } 5451 d.Insert((void*)this,(void*)this); // Stop recursion 5452 if (Parms < _domain->cnt()) 5453 _domain->field_at(Parms)->dump2(d,depth-1,st); 5454 for (uint i = Parms+1; i < _domain->cnt(); i++) { 5455 st->print(", "); 5456 _domain->field_at(i)->dump2(d,depth-1,st); 5457 } 5458 st->print(" )"); 5459 } 5460 #endif 5461 5462 //------------------------------singleton-------------------------------------- 5463 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple 5464 // constants (Ldi nodes). Singletons are integer, float or double constants 5465 // or a single symbol. 5466 bool TypeFunc::singleton(void) const { 5467 return false; // Never a singleton 5468 } 5469 5470 bool TypeFunc::empty(void) const { 5471 return false; // Never empty 5472 } 5473 5474 5475 BasicType TypeFunc::return_type() const{ 5476 if (range()->cnt() == TypeFunc::Parms) { 5477 return T_VOID; 5478 } 5479 return range()->field_at(TypeFunc::Parms)->basic_type(); 5480 }