1 /* 2 * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "compiler/compileLog.hpp" 27 #include "interpreter/linkResolver.hpp" 28 #include "oops/method.hpp" 29 #include "opto/addnode.hpp" 30 #include "opto/c2compiler.hpp" 31 #include "opto/castnode.hpp" 32 #include "opto/idealGraphPrinter.hpp" 33 #include "opto/locknode.hpp" 34 #include "opto/memnode.hpp" 35 #include "opto/opaquenode.hpp" 36 #include "opto/parse.hpp" 37 #include "opto/rootnode.hpp" 38 #include "opto/runtime.hpp" 39 #include "opto/valuetypenode.hpp" 40 #include "runtime/arguments.hpp" 41 #include "runtime/handles.inline.hpp" 42 #include "runtime/sharedRuntime.hpp" 43 #include "utilities/copy.hpp" 44 45 // Static array so we can figure out which bytecodes stop us from compiling 46 // the most. Some of the non-static variables are needed in bytecodeInfo.cpp 47 // and eventually should be encapsulated in a proper class (gri 8/18/98). 48 49 #ifndef PRODUCT 50 int nodes_created = 0; 51 int methods_parsed = 0; 52 int methods_seen = 0; 53 int blocks_parsed = 0; 54 int blocks_seen = 0; 55 56 int explicit_null_checks_inserted = 0; 57 int explicit_null_checks_elided = 0; 58 int all_null_checks_found = 0; 59 int implicit_null_checks = 0; 60 61 bool Parse::BytecodeParseHistogram::_initialized = false; 62 uint Parse::BytecodeParseHistogram::_bytecodes_parsed [Bytecodes::number_of_codes]; 63 uint Parse::BytecodeParseHistogram::_nodes_constructed[Bytecodes::number_of_codes]; 64 uint Parse::BytecodeParseHistogram::_nodes_transformed[Bytecodes::number_of_codes]; 65 uint Parse::BytecodeParseHistogram::_new_values [Bytecodes::number_of_codes]; 66 67 //------------------------------print_statistics------------------------------- 68 void Parse::print_statistics() { 69 tty->print_cr("--- Compiler Statistics ---"); 70 tty->print("Methods seen: %d Methods parsed: %d", methods_seen, methods_parsed); 71 tty->print(" Nodes created: %d", nodes_created); 72 tty->cr(); 73 if (methods_seen != methods_parsed) { 74 tty->print_cr("Reasons for parse failures (NOT cumulative):"); 75 } 76 tty->print_cr("Blocks parsed: %d Blocks seen: %d", blocks_parsed, blocks_seen); 77 78 if (explicit_null_checks_inserted) { 79 tty->print_cr("%d original NULL checks - %d elided (%2d%%); optimizer leaves %d,", 80 explicit_null_checks_inserted, explicit_null_checks_elided, 81 (100*explicit_null_checks_elided)/explicit_null_checks_inserted, 82 all_null_checks_found); 83 } 84 if (all_null_checks_found) { 85 tty->print_cr("%d made implicit (%2d%%)", implicit_null_checks, 86 (100*implicit_null_checks)/all_null_checks_found); 87 } 88 if (SharedRuntime::_implicit_null_throws) { 89 tty->print_cr("%d implicit null exceptions at runtime", 90 SharedRuntime::_implicit_null_throws); 91 } 92 93 if (PrintParseStatistics && BytecodeParseHistogram::initialized()) { 94 BytecodeParseHistogram::print(); 95 } 96 } 97 #endif 98 99 //------------------------------ON STACK REPLACEMENT--------------------------- 100 101 // Construct a node which can be used to get incoming state for 102 // on stack replacement. 103 Node *Parse::fetch_interpreter_state(int index, 104 BasicType bt, 105 Node *local_addrs, 106 Node *local_addrs_base) { 107 Node *mem = memory(Compile::AliasIdxRaw); 108 Node *adr = basic_plus_adr( local_addrs_base, local_addrs, -index*wordSize ); 109 Node *ctl = control(); 110 111 // Very similar to LoadNode::make, except we handle un-aligned longs and 112 // doubles on Sparc. Intel can handle them just fine directly. 113 Node *l = NULL; 114 switch (bt) { // Signature is flattened 115 case T_INT: l = new LoadINode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeInt::INT, MemNode::unordered); break; 116 case T_FLOAT: l = new LoadFNode(ctl, mem, adr, TypeRawPtr::BOTTOM, Type::FLOAT, MemNode::unordered); break; 117 case T_ADDRESS: l = new LoadPNode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM, MemNode::unordered); break; 118 case T_OBJECT: l = new LoadPNode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeInstPtr::BOTTOM, MemNode::unordered); break; 119 case T_LONG: 120 case T_DOUBLE: { 121 // Since arguments are in reverse order, the argument address 'adr' 122 // refers to the back half of the long/double. Recompute adr. 123 adr = basic_plus_adr(local_addrs_base, local_addrs, -(index+1)*wordSize); 124 if (Matcher::misaligned_doubles_ok) { 125 l = (bt == T_DOUBLE) 126 ? (Node*)new LoadDNode(ctl, mem, adr, TypeRawPtr::BOTTOM, Type::DOUBLE, MemNode::unordered) 127 : (Node*)new LoadLNode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeLong::LONG, MemNode::unordered); 128 } else { 129 l = (bt == T_DOUBLE) 130 ? (Node*)new LoadD_unalignedNode(ctl, mem, adr, TypeRawPtr::BOTTOM, MemNode::unordered) 131 : (Node*)new LoadL_unalignedNode(ctl, mem, adr, TypeRawPtr::BOTTOM, MemNode::unordered); 132 } 133 break; 134 } 135 default: ShouldNotReachHere(); 136 } 137 return _gvn.transform(l); 138 } 139 140 // Helper routine to prevent the interpreter from handing 141 // unexpected typestate to an OSR method. 142 // The Node l is a value newly dug out of the interpreter frame. 143 // The type is the type predicted by ciTypeFlow. Note that it is 144 // not a general type, but can only come from Type::get_typeflow_type. 145 // The safepoint is a map which will feed an uncommon trap. 146 Node* Parse::check_interpreter_type(Node* l, const Type* type, 147 SafePointNode* &bad_type_exit) { 148 149 const TypeOopPtr* tp = type->isa_oopptr(); 150 151 // TypeFlow may assert null-ness if a type appears unloaded. 152 if (type == TypePtr::NULL_PTR || 153 (tp != NULL && !tp->klass()->is_loaded())) { 154 // Value must be null, not a real oop. 155 Node* chk = _gvn.transform( new CmpPNode(l, null()) ); 156 Node* tst = _gvn.transform( new BoolNode(chk, BoolTest::eq) ); 157 IfNode* iff = create_and_map_if(control(), tst, PROB_MAX, COUNT_UNKNOWN); 158 set_control(_gvn.transform( new IfTrueNode(iff) )); 159 Node* bad_type = _gvn.transform( new IfFalseNode(iff) ); 160 bad_type_exit->control()->add_req(bad_type); 161 l = null(); 162 } 163 164 // Typeflow can also cut off paths from the CFG, based on 165 // types which appear unloaded, or call sites which appear unlinked. 166 // When paths are cut off, values at later merge points can rise 167 // toward more specific classes. Make sure these specific classes 168 // are still in effect. 169 if (tp != NULL && tp->klass() != C->env()->Object_klass()) { 170 // TypeFlow asserted a specific object type. Value must have that type. 171 Node* bad_type_ctrl = NULL; 172 l = gen_checkcast(l, makecon(TypeKlassPtr::make(tp->klass())), &bad_type_ctrl); 173 bad_type_exit->control()->add_req(bad_type_ctrl); 174 } 175 176 BasicType bt_l = _gvn.type(l)->basic_type(); 177 BasicType bt_t = type->basic_type(); 178 assert(_gvn.type(l)->higher_equal(type), "must constrain OSR typestate"); 179 return l; 180 } 181 182 // Helper routine which sets up elements of the initial parser map when 183 // performing a parse for on stack replacement. Add values into map. 184 // The only parameter contains the address of a interpreter arguments. 185 void Parse::load_interpreter_state(Node* osr_buf) { 186 int index; 187 int max_locals = jvms()->loc_size(); 188 int max_stack = jvms()->stk_size(); 189 190 191 // Mismatch between method and jvms can occur since map briefly held 192 // an OSR entry state (which takes up one RawPtr word). 193 assert(max_locals == method()->max_locals(), "sanity"); 194 assert(max_stack >= method()->max_stack(), "sanity"); 195 assert((int)jvms()->endoff() == TypeFunc::Parms + max_locals + max_stack, "sanity"); 196 assert((int)jvms()->endoff() == (int)map()->req(), "sanity"); 197 198 // Find the start block. 199 Block* osr_block = start_block(); 200 assert(osr_block->start() == osr_bci(), "sanity"); 201 202 // Set initial BCI. 203 set_parse_bci(osr_block->start()); 204 205 // Set initial stack depth. 206 set_sp(osr_block->start_sp()); 207 208 // Check bailouts. We currently do not perform on stack replacement 209 // of loops in catch blocks or loops which branch with a non-empty stack. 210 if (sp() != 0) { 211 C->record_method_not_compilable("OSR starts with non-empty stack"); 212 return; 213 } 214 // Do not OSR inside finally clauses: 215 if (osr_block->has_trap_at(osr_block->start())) { 216 C->record_method_not_compilable("OSR starts with an immediate trap"); 217 return; 218 } 219 220 // Commute monitors from interpreter frame to compiler frame. 221 assert(jvms()->monitor_depth() == 0, "should be no active locks at beginning of osr"); 222 int mcnt = osr_block->flow()->monitor_count(); 223 Node *monitors_addr = basic_plus_adr(osr_buf, osr_buf, (max_locals+mcnt*2-1)*wordSize); 224 for (index = 0; index < mcnt; index++) { 225 // Make a BoxLockNode for the monitor. 226 Node *box = _gvn.transform(new BoxLockNode(next_monitor())); 227 228 229 // Displaced headers and locked objects are interleaved in the 230 // temp OSR buffer. We only copy the locked objects out here. 231 // Fetch the locked object from the OSR temp buffer and copy to our fastlock node. 232 Node *lock_object = fetch_interpreter_state(index*2, T_OBJECT, monitors_addr, osr_buf); 233 // Try and copy the displaced header to the BoxNode 234 Node *displaced_hdr = fetch_interpreter_state((index*2) + 1, T_ADDRESS, monitors_addr, osr_buf); 235 236 237 store_to_memory(control(), box, displaced_hdr, T_ADDRESS, Compile::AliasIdxRaw, MemNode::unordered); 238 239 // Build a bogus FastLockNode (no code will be generated) and push the 240 // monitor into our debug info. 241 const FastLockNode *flock = _gvn.transform(new FastLockNode( 0, lock_object, box ))->as_FastLock(); 242 map()->push_monitor(flock); 243 244 // If the lock is our method synchronization lock, tuck it away in 245 // _sync_lock for return and rethrow exit paths. 246 if (index == 0 && method()->is_synchronized()) { 247 _synch_lock = flock; 248 } 249 } 250 251 // Use the raw liveness computation to make sure that unexpected 252 // values don't propagate into the OSR frame. 253 MethodLivenessResult live_locals = method()->liveness_at_bci(osr_bci()); 254 if (!live_locals.is_valid()) { 255 // Degenerate or breakpointed method. 256 C->record_method_not_compilable("OSR in empty or breakpointed method"); 257 return; 258 } 259 260 // Extract the needed locals from the interpreter frame. 261 Node *locals_addr = basic_plus_adr(osr_buf, osr_buf, (max_locals-1)*wordSize); 262 263 // find all the locals that the interpreter thinks contain live oops 264 const BitMap live_oops = method()->live_local_oops_at_bci(osr_bci()); 265 for (index = 0; index < max_locals; index++) { 266 267 if (!live_locals.at(index)) { 268 continue; 269 } 270 271 const Type *type = osr_block->local_type_at(index); 272 273 if (type->isa_oopptr() != NULL) { 274 275 // 6403625: Verify that the interpreter oopMap thinks that the oop is live 276 // else we might load a stale oop if the MethodLiveness disagrees with the 277 // result of the interpreter. If the interpreter says it is dead we agree 278 // by making the value go to top. 279 // 280 281 if (!live_oops.at(index)) { 282 if (C->log() != NULL) { 283 C->log()->elem("OSR_mismatch local_index='%d'",index); 284 } 285 set_local(index, null()); 286 // and ignore it for the loads 287 continue; 288 } 289 } 290 291 // Filter out TOP, HALF, and BOTTOM. (Cf. ensure_phi.) 292 if (type == Type::TOP || type == Type::HALF) { 293 continue; 294 } 295 // If the type falls to bottom, then this must be a local that 296 // is mixing ints and oops or some such. Forcing it to top 297 // makes it go dead. 298 if (type == Type::BOTTOM) { 299 continue; 300 } 301 // Construct code to access the appropriate local. 302 BasicType bt = type->basic_type(); 303 if (type == TypePtr::NULL_PTR) { 304 // Ptr types are mixed together with T_ADDRESS but NULL is 305 // really for T_OBJECT types so correct it. 306 bt = T_OBJECT; 307 } 308 Node *value = fetch_interpreter_state(index, bt, locals_addr, osr_buf); 309 set_local(index, value); 310 } 311 312 // Extract the needed stack entries from the interpreter frame. 313 for (index = 0; index < sp(); index++) { 314 const Type *type = osr_block->stack_type_at(index); 315 if (type != Type::TOP) { 316 // Currently the compiler bails out when attempting to on stack replace 317 // at a bci with a non-empty stack. We should not reach here. 318 ShouldNotReachHere(); 319 } 320 } 321 322 // End the OSR migration 323 make_runtime_call(RC_LEAF, OptoRuntime::osr_end_Type(), 324 CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end), 325 "OSR_migration_end", TypeRawPtr::BOTTOM, 326 osr_buf); 327 328 // Now that the interpreter state is loaded, make sure it will match 329 // at execution time what the compiler is expecting now: 330 SafePointNode* bad_type_exit = clone_map(); 331 bad_type_exit->set_control(new RegionNode(1)); 332 333 assert(osr_block->flow()->jsrs()->size() == 0, "should be no jsrs live at osr point"); 334 for (index = 0; index < max_locals; index++) { 335 if (stopped()) break; 336 Node* l = local(index); 337 if (l->is_top()) continue; // nothing here 338 const Type *type = osr_block->local_type_at(index); 339 if (type->isa_oopptr() != NULL) { 340 if (!live_oops.at(index)) { 341 // skip type check for dead oops 342 continue; 343 } 344 } 345 if (osr_block->flow()->local_type_at(index)->is_return_address()) { 346 // In our current system it's illegal for jsr addresses to be 347 // live into an OSR entry point because the compiler performs 348 // inlining of jsrs. ciTypeFlow has a bailout that detect this 349 // case and aborts the compile if addresses are live into an OSR 350 // entry point. Because of that we can assume that any address 351 // locals at the OSR entry point are dead. Method liveness 352 // isn't precise enought to figure out that they are dead in all 353 // cases so simply skip checking address locals all 354 // together. Any type check is guaranteed to fail since the 355 // interpreter type is the result of a load which might have any 356 // value and the expected type is a constant. 357 continue; 358 } 359 set_local(index, check_interpreter_type(l, type, bad_type_exit)); 360 } 361 362 for (index = 0; index < sp(); index++) { 363 if (stopped()) break; 364 Node* l = stack(index); 365 if (l->is_top()) continue; // nothing here 366 const Type *type = osr_block->stack_type_at(index); 367 set_stack(index, check_interpreter_type(l, type, bad_type_exit)); 368 } 369 370 if (bad_type_exit->control()->req() > 1) { 371 // Build an uncommon trap here, if any inputs can be unexpected. 372 bad_type_exit->set_control(_gvn.transform( bad_type_exit->control() )); 373 record_for_igvn(bad_type_exit->control()); 374 SafePointNode* types_are_good = map(); 375 set_map(bad_type_exit); 376 // The unexpected type happens because a new edge is active 377 // in the CFG, which typeflow had previously ignored. 378 // E.g., Object x = coldAtFirst() && notReached()? "str": new Integer(123). 379 // This x will be typed as Integer if notReached is not yet linked. 380 // It could also happen due to a problem in ciTypeFlow analysis. 381 uncommon_trap(Deoptimization::Reason_constraint, 382 Deoptimization::Action_reinterpret); 383 set_map(types_are_good); 384 } 385 } 386 387 //------------------------------Parse------------------------------------------ 388 // Main parser constructor. 389 Parse::Parse(JVMState* caller, ciMethod* parse_method, float expected_uses) 390 : _exits(caller) 391 { 392 // Init some variables 393 _caller = caller; 394 _method = parse_method; 395 _expected_uses = expected_uses; 396 _depth = 1 + (caller->has_method() ? caller->depth() : 0); 397 _wrote_final = false; 398 _wrote_volatile = false; 399 _wrote_stable = false; 400 _wrote_fields = false; 401 _alloc_with_final = NULL; 402 _entry_bci = InvocationEntryBci; 403 _tf = NULL; 404 _block = NULL; 405 _first_return = true; 406 _replaced_nodes_for_exceptions = false; 407 _new_idx = C->unique(); 408 debug_only(_block_count = -1); 409 debug_only(_blocks = (Block*)-1); 410 #ifndef PRODUCT 411 if (PrintCompilation || PrintOpto) { 412 // Make sure I have an inline tree, so I can print messages about it. 413 JVMState* ilt_caller = is_osr_parse() ? caller->caller() : caller; 414 InlineTree::find_subtree_from_root(C->ilt(), ilt_caller, parse_method); 415 } 416 _max_switch_depth = 0; 417 _est_switch_depth = 0; 418 #endif 419 420 if (parse_method->has_reserved_stack_access()) { 421 C->set_has_reserved_stack_access(true); 422 } 423 424 _tf = TypeFunc::make(method()); 425 _iter.reset_to_method(method()); 426 _flow = method()->get_flow_analysis(); 427 if (_flow->failing()) { 428 C->record_method_not_compilable_all_tiers(_flow->failure_reason()); 429 } 430 431 #ifndef PRODUCT 432 if (_flow->has_irreducible_entry()) { 433 C->set_parsed_irreducible_loop(true); 434 } 435 #endif 436 437 if (_expected_uses <= 0) { 438 _prof_factor = 1; 439 } else { 440 float prof_total = parse_method->interpreter_invocation_count(); 441 if (prof_total <= _expected_uses) { 442 _prof_factor = 1; 443 } else { 444 _prof_factor = _expected_uses / prof_total; 445 } 446 } 447 448 CompileLog* log = C->log(); 449 if (log != NULL) { 450 log->begin_head("parse method='%d' uses='%f'", 451 log->identify(parse_method), expected_uses); 452 if (depth() == 1 && C->is_osr_compilation()) { 453 log->print(" osr_bci='%d'", C->entry_bci()); 454 } 455 log->stamp(); 456 log->end_head(); 457 } 458 459 // Accumulate deoptimization counts. 460 // (The range_check and store_check counts are checked elsewhere.) 461 ciMethodData* md = method()->method_data(); 462 for (uint reason = 0; reason < md->trap_reason_limit(); reason++) { 463 uint md_count = md->trap_count(reason); 464 if (md_count != 0) { 465 if (md_count == md->trap_count_limit()) 466 md_count += md->overflow_trap_count(); 467 uint total_count = C->trap_count(reason); 468 uint old_count = total_count; 469 total_count += md_count; 470 // Saturate the add if it overflows. 471 if (total_count < old_count || total_count < md_count) 472 total_count = (uint)-1; 473 C->set_trap_count(reason, total_count); 474 if (log != NULL) 475 log->elem("observe trap='%s' count='%d' total='%d'", 476 Deoptimization::trap_reason_name(reason), 477 md_count, total_count); 478 } 479 } 480 // Accumulate total sum of decompilations, also. 481 C->set_decompile_count(C->decompile_count() + md->decompile_count()); 482 483 _count_invocations = C->do_count_invocations(); 484 _method_data_update = C->do_method_data_update(); 485 486 if (log != NULL && method()->has_exception_handlers()) { 487 log->elem("observe that='has_exception_handlers'"); 488 } 489 490 assert(method()->can_be_compiled(), "Can not parse this method, cutout earlier"); 491 assert(method()->has_balanced_monitors(), "Can not parse unbalanced monitors, cutout earlier"); 492 493 // Always register dependence if JVMTI is enabled, because 494 // either breakpoint setting or hotswapping of methods may 495 // cause deoptimization. 496 if (C->env()->jvmti_can_hotswap_or_post_breakpoint()) { 497 C->dependencies()->assert_evol_method(method()); 498 } 499 500 NOT_PRODUCT(methods_seen++); 501 502 // Do some special top-level things. 503 if (depth() == 1 && C->is_osr_compilation()) { 504 _entry_bci = C->entry_bci(); 505 _flow = method()->get_osr_flow_analysis(osr_bci()); 506 if (_flow->failing()) { 507 C->record_method_not_compilable(_flow->failure_reason()); 508 #ifndef PRODUCT 509 if (PrintOpto && (Verbose || WizardMode)) { 510 tty->print_cr("OSR @%d type flow bailout: %s", _entry_bci, _flow->failure_reason()); 511 if (Verbose) { 512 method()->print(); 513 method()->print_codes(); 514 _flow->print(); 515 } 516 } 517 #endif 518 } 519 _tf = C->tf(); // the OSR entry type is different 520 } 521 522 #ifdef ASSERT 523 if (depth() == 1) { 524 assert(C->is_osr_compilation() == this->is_osr_parse(), "OSR in sync"); 525 if (C->tf() != tf()) { 526 MutexLockerEx ml(Compile_lock, Mutex::_no_safepoint_check_flag); 527 assert(C->env()->system_dictionary_modification_counter_changed(), 528 "Must invalidate if TypeFuncs differ"); 529 } 530 } else { 531 assert(!this->is_osr_parse(), "no recursive OSR"); 532 } 533 #endif 534 535 #ifndef PRODUCT 536 methods_parsed++; 537 // add method size here to guarantee that inlined methods are added too 538 if (CITime) 539 _total_bytes_compiled += method()->code_size(); 540 541 show_parse_info(); 542 #endif 543 544 if (failing()) { 545 if (log) log->done("parse"); 546 return; 547 } 548 549 gvn().set_type(root(), root()->bottom_type()); 550 gvn().transform(top()); 551 552 // Import the results of the ciTypeFlow. 553 init_blocks(); 554 555 // Merge point for all normal exits 556 build_exits(); 557 558 // Setup the initial JVM state map. 559 SafePointNode* entry_map = create_entry_map(); 560 561 // Check for bailouts during map initialization 562 if (failing() || entry_map == NULL) { 563 if (log) log->done("parse"); 564 return; 565 } 566 567 Node_Notes* caller_nn = C->default_node_notes(); 568 // Collect debug info for inlined calls unless -XX:-DebugInlinedCalls. 569 if (DebugInlinedCalls || depth() == 1) { 570 C->set_default_node_notes(make_node_notes(caller_nn)); 571 } 572 573 if (is_osr_parse()) { 574 Node* osr_buf = entry_map->in(TypeFunc::Parms+0); 575 entry_map->set_req(TypeFunc::Parms+0, top()); 576 set_map(entry_map); 577 load_interpreter_state(osr_buf); 578 } else { 579 set_map(entry_map); 580 do_method_entry(); 581 if (depth() == 1 && C->age_code()) { 582 decrement_age(); 583 } 584 } 585 586 if (depth() == 1 && !failing()) { 587 // Add check to deoptimize the nmethod if RTM state was changed 588 rtm_deopt(); 589 } 590 591 // Check for bailouts during method entry or RTM state check setup. 592 if (failing()) { 593 if (log) log->done("parse"); 594 C->set_default_node_notes(caller_nn); 595 return; 596 } 597 598 entry_map = map(); // capture any changes performed by method setup code 599 assert(jvms()->endoff() == map()->req(), "map matches JVMS layout"); 600 601 // We begin parsing as if we have just encountered a jump to the 602 // method entry. 603 Block* entry_block = start_block(); 604 assert(entry_block->start() == (is_osr_parse() ? osr_bci() : 0), ""); 605 set_map_clone(entry_map); 606 merge_common(entry_block, entry_block->next_path_num()); 607 608 #ifndef PRODUCT 609 BytecodeParseHistogram *parse_histogram_obj = new (C->env()->arena()) BytecodeParseHistogram(this, C); 610 set_parse_histogram( parse_histogram_obj ); 611 #endif 612 613 // Parse all the basic blocks. 614 do_all_blocks(); 615 616 C->set_default_node_notes(caller_nn); 617 618 // Check for bailouts during conversion to graph 619 if (failing()) { 620 if (log) log->done("parse"); 621 return; 622 } 623 624 // Fix up all exiting control flow. 625 set_map(entry_map); 626 do_exits(); 627 628 if (log) log->done("parse nodes='%d' live='%d' memory='" SIZE_FORMAT "'", 629 C->unique(), C->live_nodes(), C->node_arena()->used()); 630 } 631 632 //---------------------------do_all_blocks------------------------------------- 633 void Parse::do_all_blocks() { 634 bool has_irreducible = flow()->has_irreducible_entry(); 635 636 // Walk over all blocks in Reverse Post-Order. 637 while (true) { 638 bool progress = false; 639 for (int rpo = 0; rpo < block_count(); rpo++) { 640 Block* block = rpo_at(rpo); 641 642 if (block->is_parsed()) continue; 643 644 if (!block->is_merged()) { 645 // Dead block, no state reaches this block 646 continue; 647 } 648 649 // Prepare to parse this block. 650 load_state_from(block); 651 652 if (stopped()) { 653 // Block is dead. 654 continue; 655 } 656 657 NOT_PRODUCT(blocks_parsed++); 658 659 progress = true; 660 if (block->is_loop_head() || block->is_handler() || has_irreducible && !block->is_ready()) { 661 // Not all preds have been parsed. We must build phis everywhere. 662 // (Note that dead locals do not get phis built, ever.) 663 ensure_phis_everywhere(); 664 665 if (block->is_SEL_head() && 666 (UseLoopPredicate || LoopLimitCheck)) { 667 // Add predicate to single entry (not irreducible) loop head. 668 assert(!block->has_merged_backedge(), "only entry paths should be merged for now"); 669 // Need correct bci for predicate. 670 // It is fine to set it here since do_one_block() will set it anyway. 671 set_parse_bci(block->start()); 672 add_predicate(); 673 // With value type support, uncommon traps added for loop predicates have to 674 // allocate all local value types which may throw exceptions. Handle them here. 675 do_exceptions(); 676 677 // Add new region for back branches. 678 int edges = block->pred_count() - block->preds_parsed() + 1; // +1 for original region 679 RegionNode *r = new RegionNode(edges+1); 680 _gvn.set_type(r, Type::CONTROL); 681 record_for_igvn(r); 682 r->init_req(edges, control()); 683 set_control(r); 684 // Add new phis. 685 ensure_phis_everywhere(); 686 } 687 688 // Leave behind an undisturbed copy of the map, for future merges. 689 set_map(clone_map()); 690 } 691 692 if (control()->is_Region() && !block->is_loop_head() && !has_irreducible && !block->is_handler()) { 693 // In the absence of irreducible loops, the Region and Phis 694 // associated with a merge that doesn't involve a backedge can 695 // be simplified now since the RPO parsing order guarantees 696 // that any path which was supposed to reach here has already 697 // been parsed or must be dead. 698 Node* c = control(); 699 Node* result = _gvn.transform_no_reclaim(control()); 700 if (c != result && TraceOptoParse) { 701 tty->print_cr("Block #%d replace %d with %d", block->rpo(), c->_idx, result->_idx); 702 } 703 if (result != top()) { 704 record_for_igvn(result); 705 } 706 } 707 708 // Parse the block. 709 do_one_block(); 710 711 // Check for bailouts. 712 if (failing()) return; 713 } 714 715 // with irreducible loops multiple passes might be necessary to parse everything 716 if (!has_irreducible || !progress) { 717 break; 718 } 719 } 720 721 #ifndef PRODUCT 722 blocks_seen += block_count(); 723 724 // Make sure there are no half-processed blocks remaining. 725 // Every remaining unprocessed block is dead and may be ignored now. 726 for (int rpo = 0; rpo < block_count(); rpo++) { 727 Block* block = rpo_at(rpo); 728 if (!block->is_parsed()) { 729 if (TraceOptoParse) { 730 tty->print_cr("Skipped dead block %d at bci:%d", rpo, block->start()); 731 } 732 assert(!block->is_merged(), "no half-processed blocks"); 733 } 734 } 735 #endif 736 } 737 738 //-------------------------------build_exits---------------------------------- 739 // Build normal and exceptional exit merge points. 740 void Parse::build_exits() { 741 // make a clone of caller to prevent sharing of side-effects 742 _exits.set_map(_exits.clone_map()); 743 _exits.clean_stack(_exits.sp()); 744 _exits.sync_jvms(); 745 746 RegionNode* region = new RegionNode(1); 747 record_for_igvn(region); 748 gvn().set_type_bottom(region); 749 _exits.set_control(region); 750 751 // Note: iophi and memphi are not transformed until do_exits. 752 Node* iophi = new PhiNode(region, Type::ABIO); 753 Node* memphi = new PhiNode(region, Type::MEMORY, TypePtr::BOTTOM); 754 gvn().set_type_bottom(iophi); 755 gvn().set_type_bottom(memphi); 756 _exits.set_i_o(iophi); 757 _exits.set_all_memory(memphi); 758 759 // Add a return value to the exit state. (Do not push it yet.) 760 if (tf()->range()->cnt() > TypeFunc::Parms) { 761 const Type* ret_type = tf()->range()->field_at(TypeFunc::Parms); 762 // Don't "bind" an unloaded return klass to the ret_phi. If the klass 763 // becomes loaded during the subsequent parsing, the loaded and unloaded 764 // types will not join when we transform and push in do_exits(). 765 const TypeOopPtr* ret_oop_type = ret_type->isa_oopptr(); 766 if (ret_oop_type && !ret_oop_type->klass()->is_loaded()) { 767 ret_type = TypeOopPtr::BOTTOM; 768 } 769 if (_caller->has_method() && ret_type->isa_valuetypeptr()) { 770 // When inlining, return value type as ValueTypeNode not as oop 771 ret_type = ret_type->is_valuetypeptr()->value_type(); 772 } 773 int ret_size = type2size[ret_type->basic_type()]; 774 Node* ret_phi = new PhiNode(region, ret_type); 775 gvn().set_type_bottom(ret_phi); 776 _exits.ensure_stack(ret_size); 777 assert((int)(tf()->range()->cnt() - TypeFunc::Parms) == ret_size, "good tf range"); 778 assert(method()->return_type()->size() == ret_size, "tf agrees w/ method"); 779 _exits.set_argument(0, ret_phi); // here is where the parser finds it 780 // Note: ret_phi is not yet pushed, until do_exits. 781 } 782 } 783 784 785 //----------------------------build_start_state------------------------------- 786 // Construct a state which contains only the incoming arguments from an 787 // unknown caller. The method & bci will be NULL & InvocationEntryBci. 788 JVMState* Compile::build_start_state(StartNode* start, const TypeFunc* tf) { 789 int arg_size = tf->domain()->cnt(); 790 int max_size = MAX2(arg_size, (int)tf->range()->cnt()); 791 JVMState* jvms = new (this) JVMState(max_size - TypeFunc::Parms); 792 SafePointNode* map = new SafePointNode(max_size, NULL); 793 record_for_igvn(map); 794 assert(arg_size == TypeFunc::Parms + (is_osr_compilation() ? 1 : method()->arg_size()), "correct arg_size"); 795 Node_Notes* old_nn = default_node_notes(); 796 if (old_nn != NULL && has_method()) { 797 Node_Notes* entry_nn = old_nn->clone(this); 798 JVMState* entry_jvms = new(this) JVMState(method(), old_nn->jvms()); 799 entry_jvms->set_offsets(0); 800 entry_jvms->set_bci(entry_bci()); 801 entry_nn->set_jvms(entry_jvms); 802 set_default_node_notes(entry_nn); 803 } 804 uint i; 805 for (i = 0; i < (uint)arg_size; i++) { 806 PhaseGVN& gvn = *initial_gvn(); 807 Node* parm = gvn.transform(new ParmNode(start, i)); 808 // Check if parameter is a value type pointer 809 if (gvn.type(parm)->isa_valuetypeptr()) { 810 // Create ValueTypeNode from the oop and replace the parameter 811 parm = ValueTypeNode::make(gvn, map->memory(), parm); 812 } 813 map->init_req(i, parm); 814 // Record all these guys for later GVN. 815 record_for_igvn(parm); 816 } 817 for (; i < map->req(); i++) { 818 map->init_req(i, top()); 819 } 820 assert(jvms->argoff() == TypeFunc::Parms, "parser gets arguments here"); 821 set_default_node_notes(old_nn); 822 map->set_jvms(jvms); 823 jvms->set_map(map); 824 return jvms; 825 } 826 827 //-----------------------------make_node_notes--------------------------------- 828 Node_Notes* Parse::make_node_notes(Node_Notes* caller_nn) { 829 if (caller_nn == NULL) return NULL; 830 Node_Notes* nn = caller_nn->clone(C); 831 JVMState* caller_jvms = nn->jvms(); 832 JVMState* jvms = new (C) JVMState(method(), caller_jvms); 833 jvms->set_offsets(0); 834 jvms->set_bci(_entry_bci); 835 nn->set_jvms(jvms); 836 return nn; 837 } 838 839 840 //--------------------------return_values-------------------------------------- 841 void Compile::return_values(JVMState* jvms) { 842 GraphKit kit(jvms); 843 Node* ret = new ReturnNode(TypeFunc::Parms, 844 kit.control(), 845 kit.i_o(), 846 kit.reset_memory(), 847 kit.frameptr(), 848 kit.returnadr()); 849 // Add zero or 1 return values 850 int ret_size = tf()->range()->cnt() - TypeFunc::Parms; 851 if (ret_size > 0) { 852 kit.inc_sp(-ret_size); // pop the return value(s) 853 kit.sync_jvms(); 854 ret->add_req(kit.argument(0)); 855 // Note: The second dummy edge is not needed by a ReturnNode. 856 } 857 // bind it to root 858 root()->add_req(ret); 859 record_for_igvn(ret); 860 initial_gvn()->transform_no_reclaim(ret); 861 } 862 863 //------------------------rethrow_exceptions----------------------------------- 864 // Bind all exception states in the list into a single RethrowNode. 865 void Compile::rethrow_exceptions(JVMState* jvms) { 866 GraphKit kit(jvms); 867 if (!kit.has_exceptions()) return; // nothing to generate 868 // Load my combined exception state into the kit, with all phis transformed: 869 SafePointNode* ex_map = kit.combine_and_pop_all_exception_states(); 870 Node* ex_oop = kit.use_exception_state(ex_map); 871 RethrowNode* exit = new RethrowNode(kit.control(), 872 kit.i_o(), kit.reset_memory(), 873 kit.frameptr(), kit.returnadr(), 874 // like a return but with exception input 875 ex_oop); 876 // bind to root 877 root()->add_req(exit); 878 record_for_igvn(exit); 879 initial_gvn()->transform_no_reclaim(exit); 880 } 881 882 //---------------------------do_exceptions------------------------------------- 883 // Process exceptions arising from the current bytecode. 884 // Send caught exceptions to the proper handler within this method. 885 // Unhandled exceptions feed into _exit. 886 void Parse::do_exceptions() { 887 if (!has_exceptions()) return; 888 889 if (failing()) { 890 // Pop them all off and throw them away. 891 while (pop_exception_state() != NULL) ; 892 return; 893 } 894 895 PreserveJVMState pjvms(this, false); 896 897 SafePointNode* ex_map; 898 while ((ex_map = pop_exception_state()) != NULL) { 899 if (!method()->has_exception_handlers()) { 900 // Common case: Transfer control outward. 901 // Doing it this early allows the exceptions to common up 902 // even between adjacent method calls. 903 throw_to_exit(ex_map); 904 } else { 905 // Have to look at the exception first. 906 assert(stopped(), "catch_inline_exceptions trashes the map"); 907 catch_inline_exceptions(ex_map); 908 stop_and_kill_map(); // we used up this exception state; kill it 909 } 910 } 911 912 // We now return to our regularly scheduled program: 913 } 914 915 //---------------------------throw_to_exit------------------------------------- 916 // Merge the given map into an exception exit from this method. 917 // The exception exit will handle any unlocking of receiver. 918 // The ex_oop must be saved within the ex_map, unlike merge_exception. 919 void Parse::throw_to_exit(SafePointNode* ex_map) { 920 // Pop the JVMS to (a copy of) the caller. 921 GraphKit caller; 922 caller.set_map_clone(_caller->map()); 923 caller.set_bci(_caller->bci()); 924 caller.set_sp(_caller->sp()); 925 // Copy out the standard machine state: 926 for (uint i = 0; i < TypeFunc::Parms; i++) { 927 caller.map()->set_req(i, ex_map->in(i)); 928 } 929 if (ex_map->has_replaced_nodes()) { 930 _replaced_nodes_for_exceptions = true; 931 } 932 caller.map()->transfer_replaced_nodes_from(ex_map, _new_idx); 933 // ...and the exception: 934 Node* ex_oop = saved_ex_oop(ex_map); 935 SafePointNode* caller_ex_map = caller.make_exception_state(ex_oop); 936 // Finally, collect the new exception state in my exits: 937 _exits.add_exception_state(caller_ex_map); 938 } 939 940 //------------------------------do_exits--------------------------------------- 941 void Parse::do_exits() { 942 set_parse_bci(InvocationEntryBci); 943 944 // Now peephole on the return bits 945 Node* region = _exits.control(); 946 _exits.set_control(gvn().transform(region)); 947 948 Node* iophi = _exits.i_o(); 949 _exits.set_i_o(gvn().transform(iophi)); 950 951 // Figure out if we need to emit the trailing barrier. The barrier is only 952 // needed in the constructors, and only in three cases: 953 // 954 // 1. The constructor wrote a final. The effects of all initializations 955 // must be committed to memory before any code after the constructor 956 // publishes the reference to the newly constructed object. Rather 957 // than wait for the publication, we simply block the writes here. 958 // Rather than put a barrier on only those writes which are required 959 // to complete, we force all writes to complete. 960 // 961 // 2. On PPC64, also add MemBarRelease for constructors which write 962 // volatile fields. As support_IRIW_for_not_multiple_copy_atomic_cpu 963 // is set on PPC64, no sync instruction is issued after volatile 964 // stores. We want to guarantee the same behavior as on platforms 965 // with total store order, although this is not required by the Java 966 // memory model. So as with finals, we add a barrier here. 967 // 968 // 3. Experimental VM option is used to force the barrier if any field 969 // was written out in the constructor. 970 // 971 // "All bets are off" unless the first publication occurs after a 972 // normal return from the constructor. We do not attempt to detect 973 // such unusual early publications. But no barrier is needed on 974 // exceptional returns, since they cannot publish normally. 975 // 976 if (method()->is_initializer() && 977 (wrote_final() || 978 PPC64_ONLY(wrote_volatile() ||) 979 (AlwaysSafeConstructors && wrote_fields()))) { 980 _exits.insert_mem_bar(Op_MemBarRelease, alloc_with_final()); 981 982 // If Memory barrier is created for final fields write 983 // and allocation node does not escape the initialize method, 984 // then barrier introduced by allocation node can be removed. 985 if (DoEscapeAnalysis && alloc_with_final()) { 986 AllocateNode *alloc = AllocateNode::Ideal_allocation(alloc_with_final(), &_gvn); 987 alloc->compute_MemBar_redundancy(method()); 988 } 989 if (PrintOpto && (Verbose || WizardMode)) { 990 method()->print_name(); 991 tty->print_cr(" writes finals and needs a memory barrier"); 992 } 993 } 994 995 // Any method can write a @Stable field; insert memory barriers 996 // after those also. Can't bind predecessor allocation node (if any) 997 // with barrier because allocation doesn't always dominate 998 // MemBarRelease. 999 if (wrote_stable()) { 1000 _exits.insert_mem_bar(Op_MemBarRelease); 1001 if (PrintOpto && (Verbose || WizardMode)) { 1002 method()->print_name(); 1003 tty->print_cr(" writes @Stable and needs a memory barrier"); 1004 } 1005 } 1006 1007 for (MergeMemStream mms(_exits.merged_memory()); mms.next_non_empty(); ) { 1008 // transform each slice of the original memphi: 1009 mms.set_memory(_gvn.transform(mms.memory())); 1010 } 1011 1012 if (tf()->range()->cnt() > TypeFunc::Parms) { 1013 const Type* ret_type = tf()->range()->field_at(TypeFunc::Parms); 1014 Node* ret_phi = _gvn.transform( _exits.argument(0) ); 1015 if (!_exits.control()->is_top() && _gvn.type(ret_phi)->empty()) { 1016 // In case of concurrent class loading, the type we set for the 1017 // ret_phi in build_exits() may have been too optimistic and the 1018 // ret_phi may be top now. 1019 // Otherwise, we've encountered an error and have to mark the method as 1020 // not compilable. Just using an assertion instead would be dangerous 1021 // as this could lead to an infinite compile loop in non-debug builds. 1022 { 1023 MutexLockerEx ml(Compile_lock, Mutex::_no_safepoint_check_flag); 1024 if (C->env()->system_dictionary_modification_counter_changed()) { 1025 C->record_failure(C2Compiler::retry_class_loading_during_parsing()); 1026 } else { 1027 C->record_method_not_compilable("Can't determine return type."); 1028 } 1029 } 1030 return; 1031 } 1032 if (_caller->has_method() && ret_type->isa_valuetypeptr()) { 1033 // Inlined methods return a ValueTypeNode 1034 _exits.push_node(T_VALUETYPE, ret_phi); 1035 } else { 1036 _exits.push_node(ret_type->basic_type(), ret_phi); 1037 } 1038 } 1039 1040 // Note: Logic for creating and optimizing the ReturnNode is in Compile. 1041 1042 // Unlock along the exceptional paths. 1043 // This is done late so that we can common up equivalent exceptions 1044 // (e.g., null checks) arising from multiple points within this method. 1045 // See GraphKit::add_exception_state, which performs the commoning. 1046 bool do_synch = method()->is_synchronized() && GenerateSynchronizationCode; 1047 1048 // record exit from a method if compiled while Dtrace is turned on. 1049 if (do_synch || C->env()->dtrace_method_probes() || _replaced_nodes_for_exceptions) { 1050 // First move the exception list out of _exits: 1051 GraphKit kit(_exits.transfer_exceptions_into_jvms()); 1052 SafePointNode* normal_map = kit.map(); // keep this guy safe 1053 // Now re-collect the exceptions into _exits: 1054 SafePointNode* ex_map; 1055 while ((ex_map = kit.pop_exception_state()) != NULL) { 1056 Node* ex_oop = kit.use_exception_state(ex_map); 1057 // Force the exiting JVM state to have this method at InvocationEntryBci. 1058 // The exiting JVM state is otherwise a copy of the calling JVMS. 1059 JVMState* caller = kit.jvms(); 1060 JVMState* ex_jvms = caller->clone_shallow(C); 1061 ex_jvms->set_map(kit.clone_map()); 1062 ex_jvms->map()->set_jvms(ex_jvms); 1063 ex_jvms->set_bci( InvocationEntryBci); 1064 kit.set_jvms(ex_jvms); 1065 if (do_synch) { 1066 // Add on the synchronized-method box/object combo 1067 kit.map()->push_monitor(_synch_lock); 1068 // Unlock! 1069 kit.shared_unlock(_synch_lock->box_node(), _synch_lock->obj_node()); 1070 } 1071 if (C->env()->dtrace_method_probes()) { 1072 kit.make_dtrace_method_exit(method()); 1073 } 1074 if (_replaced_nodes_for_exceptions) { 1075 kit.map()->apply_replaced_nodes(); 1076 } 1077 // Done with exception-path processing. 1078 ex_map = kit.make_exception_state(ex_oop); 1079 assert(ex_jvms->same_calls_as(ex_map->jvms()), "sanity"); 1080 // Pop the last vestige of this method: 1081 ex_map->set_jvms(caller->clone_shallow(C)); 1082 ex_map->jvms()->set_map(ex_map); 1083 _exits.push_exception_state(ex_map); 1084 } 1085 assert(_exits.map() == normal_map, "keep the same return state"); 1086 } 1087 1088 { 1089 // Capture very early exceptions (receiver null checks) from caller JVMS 1090 GraphKit caller(_caller); 1091 SafePointNode* ex_map; 1092 while ((ex_map = caller.pop_exception_state()) != NULL) { 1093 _exits.add_exception_state(ex_map); 1094 } 1095 } 1096 _exits.map()->apply_replaced_nodes(); 1097 } 1098 1099 //-----------------------------create_entry_map------------------------------- 1100 // Initialize our parser map to contain the types at method entry. 1101 // For OSR, the map contains a single RawPtr parameter. 1102 // Initial monitor locking for sync. methods is performed by do_method_entry. 1103 SafePointNode* Parse::create_entry_map() { 1104 // Check for really stupid bail-out cases. 1105 uint len = TypeFunc::Parms + method()->max_locals() + method()->max_stack(); 1106 if (len >= 32760) { 1107 C->record_method_not_compilable_all_tiers("too many local variables"); 1108 return NULL; 1109 } 1110 1111 // clear current replaced nodes that are of no use from here on (map was cloned in build_exits). 1112 _caller->map()->delete_replaced_nodes(); 1113 1114 // If this is an inlined method, we may have to do a receiver null check. 1115 if (_caller->has_method() && is_normal_parse() && !method()->is_static()) { 1116 GraphKit kit(_caller); 1117 if (!kit.argument(0)->is_ValueType()) { 1118 kit.null_check_receiver_before_call(method()); 1119 } 1120 _caller = kit.transfer_exceptions_into_jvms(); 1121 if (kit.stopped()) { 1122 _exits.add_exception_states_from(_caller); 1123 _exits.set_jvms(_caller); 1124 return NULL; 1125 } 1126 } 1127 1128 assert(method() != NULL, "parser must have a method"); 1129 1130 // Create an initial safepoint to hold JVM state during parsing 1131 JVMState* jvms = new (C) JVMState(method(), _caller->has_method() ? _caller : NULL); 1132 set_map(new SafePointNode(len, jvms)); 1133 jvms->set_map(map()); 1134 record_for_igvn(map()); 1135 assert(jvms->endoff() == len, "correct jvms sizing"); 1136 1137 SafePointNode* inmap = _caller->map(); 1138 assert(inmap != NULL, "must have inmap"); 1139 // In case of null check on receiver above 1140 map()->transfer_replaced_nodes_from(inmap, _new_idx); 1141 1142 uint i; 1143 1144 // Pass thru the predefined input parameters. 1145 for (i = 0; i < TypeFunc::Parms; i++) { 1146 map()->init_req(i, inmap->in(i)); 1147 } 1148 1149 if (depth() == 1) { 1150 assert(map()->memory()->Opcode() == Op_Parm, ""); 1151 // Insert the memory aliasing node 1152 set_all_memory(reset_memory()); 1153 } 1154 assert(merged_memory(), ""); 1155 1156 // Now add the locals which are initially bound to arguments: 1157 uint arg_size = tf()->domain()->cnt(); 1158 ensure_stack(arg_size - TypeFunc::Parms); // OSR methods have funny args 1159 for (i = TypeFunc::Parms; i < arg_size; i++) { 1160 map()->init_req(i, inmap->argument(_caller, i - TypeFunc::Parms)); 1161 } 1162 1163 // Clear out the rest of the map (locals and stack) 1164 for (i = arg_size; i < len; i++) { 1165 map()->init_req(i, top()); 1166 } 1167 1168 SafePointNode* entry_map = stop(); 1169 return entry_map; 1170 } 1171 1172 //-----------------------------do_method_entry-------------------------------- 1173 // Emit any code needed in the pseudo-block before BCI zero. 1174 // The main thing to do is lock the receiver of a synchronized method. 1175 void Parse::do_method_entry() { 1176 set_parse_bci(InvocationEntryBci); // Pseudo-BCP 1177 set_sp(0); // Java Stack Pointer 1178 1179 NOT_PRODUCT( count_compiled_calls(true/*at_method_entry*/, false/*is_inline*/); ) 1180 1181 if (C->env()->dtrace_method_probes()) { 1182 make_dtrace_method_entry(method()); 1183 } 1184 1185 // If the method is synchronized, we need to construct a lock node, attach 1186 // it to the Start node, and pin it there. 1187 if (method()->is_synchronized()) { 1188 // Insert a FastLockNode right after the Start which takes as arguments 1189 // the current thread pointer, the "this" pointer & the address of the 1190 // stack slot pair used for the lock. The "this" pointer is a projection 1191 // off the start node, but the locking spot has to be constructed by 1192 // creating a ConLNode of 0, and boxing it with a BoxLockNode. The BoxLockNode 1193 // becomes the second argument to the FastLockNode call. The 1194 // FastLockNode becomes the new control parent to pin it to the start. 1195 1196 // Setup Object Pointer 1197 Node *lock_obj = NULL; 1198 if(method()->is_static()) { 1199 ciInstance* mirror = _method->holder()->java_mirror(); 1200 const TypeInstPtr *t_lock = TypeInstPtr::make(mirror); 1201 lock_obj = makecon(t_lock); 1202 } else { // Else pass the "this" pointer, 1203 lock_obj = local(0); // which is Parm0 from StartNode 1204 } 1205 // Clear out dead values from the debug info. 1206 kill_dead_locals(); 1207 // Build the FastLockNode 1208 _synch_lock = shared_lock(lock_obj); 1209 } 1210 1211 // Feed profiling data for parameters to the type system so it can 1212 // propagate it as speculative types 1213 record_profiled_parameters_for_speculation(); 1214 1215 if (depth() == 1) { 1216 increment_and_test_invocation_counter(Tier2CompileThreshold); 1217 } 1218 } 1219 1220 //------------------------------init_blocks------------------------------------ 1221 // Initialize our parser map to contain the types/monitors at method entry. 1222 void Parse::init_blocks() { 1223 // Create the blocks. 1224 _block_count = flow()->block_count(); 1225 _blocks = NEW_RESOURCE_ARRAY(Block, _block_count); 1226 Copy::zero_to_bytes(_blocks, sizeof(Block)*_block_count); 1227 1228 int rpo; 1229 1230 // Initialize the structs. 1231 for (rpo = 0; rpo < block_count(); rpo++) { 1232 Block* block = rpo_at(rpo); 1233 block->init_node(this, rpo); 1234 } 1235 1236 // Collect predecessor and successor information. 1237 for (rpo = 0; rpo < block_count(); rpo++) { 1238 Block* block = rpo_at(rpo); 1239 block->init_graph(this); 1240 } 1241 } 1242 1243 //-------------------------------init_node------------------------------------- 1244 void Parse::Block::init_node(Parse* outer, int rpo) { 1245 _flow = outer->flow()->rpo_at(rpo); 1246 _pred_count = 0; 1247 _preds_parsed = 0; 1248 _count = 0; 1249 assert(pred_count() == 0 && preds_parsed() == 0, "sanity"); 1250 assert(!(is_merged() || is_parsed() || is_handler() || has_merged_backedge()), "sanity"); 1251 assert(_live_locals.size() == 0, "sanity"); 1252 1253 // entry point has additional predecessor 1254 if (flow()->is_start()) _pred_count++; 1255 assert(flow()->is_start() == (this == outer->start_block()), ""); 1256 } 1257 1258 //-------------------------------init_graph------------------------------------ 1259 void Parse::Block::init_graph(Parse* outer) { 1260 // Create the successor list for this parser block. 1261 GrowableArray<ciTypeFlow::Block*>* tfs = flow()->successors(); 1262 GrowableArray<ciTypeFlow::Block*>* tfe = flow()->exceptions(); 1263 int ns = tfs->length(); 1264 int ne = tfe->length(); 1265 _num_successors = ns; 1266 _all_successors = ns+ne; 1267 _successors = (ns+ne == 0) ? NULL : NEW_RESOURCE_ARRAY(Block*, ns+ne); 1268 int p = 0; 1269 for (int i = 0; i < ns+ne; i++) { 1270 ciTypeFlow::Block* tf2 = (i < ns) ? tfs->at(i) : tfe->at(i-ns); 1271 Block* block2 = outer->rpo_at(tf2->rpo()); 1272 _successors[i] = block2; 1273 1274 // Accumulate pred info for the other block, too. 1275 if (i < ns) { 1276 block2->_pred_count++; 1277 } else { 1278 block2->_is_handler = true; 1279 } 1280 1281 #ifdef ASSERT 1282 // A block's successors must be distinguishable by BCI. 1283 // That is, no bytecode is allowed to branch to two different 1284 // clones of the same code location. 1285 for (int j = 0; j < i; j++) { 1286 Block* block1 = _successors[j]; 1287 if (block1 == block2) continue; // duplicates are OK 1288 assert(block1->start() != block2->start(), "successors have unique bcis"); 1289 } 1290 #endif 1291 } 1292 1293 // Note: We never call next_path_num along exception paths, so they 1294 // never get processed as "ready". Also, the input phis of exception 1295 // handlers get specially processed, so that 1296 } 1297 1298 //---------------------------successor_for_bci--------------------------------- 1299 Parse::Block* Parse::Block::successor_for_bci(int bci) { 1300 for (int i = 0; i < all_successors(); i++) { 1301 Block* block2 = successor_at(i); 1302 if (block2->start() == bci) return block2; 1303 } 1304 // We can actually reach here if ciTypeFlow traps out a block 1305 // due to an unloaded class, and concurrently with compilation the 1306 // class is then loaded, so that a later phase of the parser is 1307 // able to see more of the bytecode CFG. Or, the flow pass and 1308 // the parser can have a minor difference of opinion about executability 1309 // of bytecodes. For example, "obj.field = null" is executable even 1310 // if the field's type is an unloaded class; the flow pass used to 1311 // make a trap for such code. 1312 return NULL; 1313 } 1314 1315 1316 //-----------------------------stack_type_at----------------------------------- 1317 const Type* Parse::Block::stack_type_at(int i) const { 1318 return get_type(flow()->stack_type_at(i)); 1319 } 1320 1321 1322 //-----------------------------local_type_at----------------------------------- 1323 const Type* Parse::Block::local_type_at(int i) const { 1324 // Make dead locals fall to bottom. 1325 if (_live_locals.size() == 0) { 1326 MethodLivenessResult live_locals = flow()->outer()->method()->liveness_at_bci(start()); 1327 // This bitmap can be zero length if we saw a breakpoint. 1328 // In such cases, pretend they are all live. 1329 ((Block*)this)->_live_locals = live_locals; 1330 } 1331 if (_live_locals.size() > 0 && !_live_locals.at(i)) 1332 return Type::BOTTOM; 1333 1334 return get_type(flow()->local_type_at(i)); 1335 } 1336 1337 1338 #ifndef PRODUCT 1339 1340 //----------------------------name_for_bc-------------------------------------- 1341 // helper method for BytecodeParseHistogram 1342 static const char* name_for_bc(int i) { 1343 return Bytecodes::is_defined(i) ? Bytecodes::name(Bytecodes::cast(i)) : "xxxunusedxxx"; 1344 } 1345 1346 //----------------------------BytecodeParseHistogram------------------------------------ 1347 Parse::BytecodeParseHistogram::BytecodeParseHistogram(Parse *p, Compile *c) { 1348 _parser = p; 1349 _compiler = c; 1350 if( ! _initialized ) { _initialized = true; reset(); } 1351 } 1352 1353 //----------------------------current_count------------------------------------ 1354 int Parse::BytecodeParseHistogram::current_count(BPHType bph_type) { 1355 switch( bph_type ) { 1356 case BPH_transforms: { return _parser->gvn().made_progress(); } 1357 case BPH_values: { return _parser->gvn().made_new_values(); } 1358 default: { ShouldNotReachHere(); return 0; } 1359 } 1360 } 1361 1362 //----------------------------initialized-------------------------------------- 1363 bool Parse::BytecodeParseHistogram::initialized() { return _initialized; } 1364 1365 //----------------------------reset-------------------------------------------- 1366 void Parse::BytecodeParseHistogram::reset() { 1367 int i = Bytecodes::number_of_codes; 1368 while (i-- > 0) { _bytecodes_parsed[i] = 0; _nodes_constructed[i] = 0; _nodes_transformed[i] = 0; _new_values[i] = 0; } 1369 } 1370 1371 //----------------------------set_initial_state-------------------------------- 1372 // Record info when starting to parse one bytecode 1373 void Parse::BytecodeParseHistogram::set_initial_state( Bytecodes::Code bc ) { 1374 if( PrintParseStatistics && !_parser->is_osr_parse() ) { 1375 _initial_bytecode = bc; 1376 _initial_node_count = _compiler->unique(); 1377 _initial_transforms = current_count(BPH_transforms); 1378 _initial_values = current_count(BPH_values); 1379 } 1380 } 1381 1382 //----------------------------record_change-------------------------------- 1383 // Record results of parsing one bytecode 1384 void Parse::BytecodeParseHistogram::record_change() { 1385 if( PrintParseStatistics && !_parser->is_osr_parse() ) { 1386 ++_bytecodes_parsed[_initial_bytecode]; 1387 _nodes_constructed [_initial_bytecode] += (_compiler->unique() - _initial_node_count); 1388 _nodes_transformed [_initial_bytecode] += (current_count(BPH_transforms) - _initial_transforms); 1389 _new_values [_initial_bytecode] += (current_count(BPH_values) - _initial_values); 1390 } 1391 } 1392 1393 1394 //----------------------------print-------------------------------------------- 1395 void Parse::BytecodeParseHistogram::print(float cutoff) { 1396 ResourceMark rm; 1397 // print profile 1398 int total = 0; 1399 int i = 0; 1400 for( i = 0; i < Bytecodes::number_of_codes; ++i ) { total += _bytecodes_parsed[i]; } 1401 int abs_sum = 0; 1402 tty->cr(); //0123456789012345678901234567890123456789012345678901234567890123456789 1403 tty->print_cr("Histogram of %d parsed bytecodes:", total); 1404 if( total == 0 ) { return; } 1405 tty->cr(); 1406 tty->print_cr("absolute: count of compiled bytecodes of this type"); 1407 tty->print_cr("relative: percentage contribution to compiled nodes"); 1408 tty->print_cr("nodes : Average number of nodes constructed per bytecode"); 1409 tty->print_cr("rnodes : Significance towards total nodes constructed, (nodes*relative)"); 1410 tty->print_cr("transforms: Average amount of tranform progress per bytecode compiled"); 1411 tty->print_cr("values : Average number of node values improved per bytecode"); 1412 tty->print_cr("name : Bytecode name"); 1413 tty->cr(); 1414 tty->print_cr(" absolute relative nodes rnodes transforms values name"); 1415 tty->print_cr("----------------------------------------------------------------------"); 1416 while (--i > 0) { 1417 int abs = _bytecodes_parsed[i]; 1418 float rel = abs * 100.0F / total; 1419 float nodes = _bytecodes_parsed[i] == 0 ? 0 : (1.0F * _nodes_constructed[i])/_bytecodes_parsed[i]; 1420 float rnodes = _bytecodes_parsed[i] == 0 ? 0 : rel * nodes; 1421 float xforms = _bytecodes_parsed[i] == 0 ? 0 : (1.0F * _nodes_transformed[i])/_bytecodes_parsed[i]; 1422 float values = _bytecodes_parsed[i] == 0 ? 0 : (1.0F * _new_values [i])/_bytecodes_parsed[i]; 1423 if (cutoff <= rel) { 1424 tty->print_cr("%10d %7.2f%% %6.1f %6.2f %6.1f %6.1f %s", abs, rel, nodes, rnodes, xforms, values, name_for_bc(i)); 1425 abs_sum += abs; 1426 } 1427 } 1428 tty->print_cr("----------------------------------------------------------------------"); 1429 float rel_sum = abs_sum * 100.0F / total; 1430 tty->print_cr("%10d %7.2f%% (cutoff = %.2f%%)", abs_sum, rel_sum, cutoff); 1431 tty->print_cr("----------------------------------------------------------------------"); 1432 tty->cr(); 1433 } 1434 #endif 1435 1436 //----------------------------load_state_from---------------------------------- 1437 // Load block/map/sp. But not do not touch iter/bci. 1438 void Parse::load_state_from(Block* block) { 1439 set_block(block); 1440 // load the block's JVM state: 1441 set_map(block->start_map()); 1442 set_sp( block->start_sp()); 1443 } 1444 1445 1446 //-----------------------------record_state------------------------------------ 1447 void Parse::Block::record_state(Parse* p) { 1448 assert(!is_merged(), "can only record state once, on 1st inflow"); 1449 assert(start_sp() == p->sp(), "stack pointer must agree with ciTypeFlow"); 1450 set_start_map(p->stop()); 1451 } 1452 1453 1454 //------------------------------do_one_block----------------------------------- 1455 void Parse::do_one_block() { 1456 if (TraceOptoParse) { 1457 Block *b = block(); 1458 int ns = b->num_successors(); 1459 int nt = b->all_successors(); 1460 1461 tty->print("Parsing block #%d at bci [%d,%d), successors: ", 1462 block()->rpo(), block()->start(), block()->limit()); 1463 for (int i = 0; i < nt; i++) { 1464 tty->print((( i < ns) ? " %d" : " %d(e)"), b->successor_at(i)->rpo()); 1465 } 1466 if (b->is_loop_head()) tty->print(" lphd"); 1467 tty->cr(); 1468 } 1469 1470 assert(block()->is_merged(), "must be merged before being parsed"); 1471 block()->mark_parsed(); 1472 1473 // Set iterator to start of block. 1474 iter().reset_to_bci(block()->start()); 1475 1476 CompileLog* log = C->log(); 1477 1478 // Parse bytecodes 1479 while (!stopped() && !failing()) { 1480 iter().next(); 1481 1482 // Learn the current bci from the iterator: 1483 set_parse_bci(iter().cur_bci()); 1484 1485 if (bci() == block()->limit()) { 1486 // Do not walk into the next block until directed by do_all_blocks. 1487 merge(bci()); 1488 break; 1489 } 1490 assert(bci() < block()->limit(), "bci still in block"); 1491 1492 if (log != NULL) { 1493 // Output an optional context marker, to help place actions 1494 // that occur during parsing of this BC. If there is no log 1495 // output until the next context string, this context string 1496 // will be silently ignored. 1497 log->set_context("bc code='%d' bci='%d'", (int)bc(), bci()); 1498 } 1499 1500 if (block()->has_trap_at(bci())) { 1501 // We must respect the flow pass's traps, because it will refuse 1502 // to produce successors for trapping blocks. 1503 int trap_index = block()->flow()->trap_index(); 1504 assert(trap_index != 0, "trap index must be valid"); 1505 uncommon_trap(trap_index); 1506 break; 1507 } 1508 1509 NOT_PRODUCT( parse_histogram()->set_initial_state(bc()); ); 1510 1511 #ifdef ASSERT 1512 int pre_bc_sp = sp(); 1513 int inputs, depth; 1514 bool have_se = !stopped() && compute_stack_effects(inputs, depth); 1515 assert(!have_se || pre_bc_sp >= inputs, "have enough stack to execute this BC: pre_bc_sp=%d, inputs=%d", pre_bc_sp, inputs); 1516 #endif //ASSERT 1517 1518 do_one_bytecode(); 1519 1520 assert(!have_se || stopped() || failing() || (sp() - pre_bc_sp) == depth, 1521 "incorrect depth prediction: sp=%d, pre_bc_sp=%d, depth=%d", sp(), pre_bc_sp, depth); 1522 1523 do_exceptions(); 1524 1525 NOT_PRODUCT( parse_histogram()->record_change(); ); 1526 1527 if (log != NULL) 1528 log->clear_context(); // skip marker if nothing was printed 1529 1530 // Fall into next bytecode. Each bytecode normally has 1 sequential 1531 // successor which is typically made ready by visiting this bytecode. 1532 // If the successor has several predecessors, then it is a merge 1533 // point, starts a new basic block, and is handled like other basic blocks. 1534 } 1535 } 1536 1537 1538 //------------------------------merge------------------------------------------ 1539 void Parse::set_parse_bci(int bci) { 1540 set_bci(bci); 1541 Node_Notes* nn = C->default_node_notes(); 1542 if (nn == NULL) return; 1543 1544 // Collect debug info for inlined calls unless -XX:-DebugInlinedCalls. 1545 if (!DebugInlinedCalls && depth() > 1) { 1546 return; 1547 } 1548 1549 // Update the JVMS annotation, if present. 1550 JVMState* jvms = nn->jvms(); 1551 if (jvms != NULL && jvms->bci() != bci) { 1552 // Update the JVMS. 1553 jvms = jvms->clone_shallow(C); 1554 jvms->set_bci(bci); 1555 nn->set_jvms(jvms); 1556 } 1557 } 1558 1559 //------------------------------merge------------------------------------------ 1560 // Merge the current mapping into the basic block starting at bci 1561 void Parse::merge(int target_bci) { 1562 Block* target = successor_for_bci(target_bci); 1563 if (target == NULL) { handle_missing_successor(target_bci); return; } 1564 assert(!target->is_ready(), "our arrival must be expected"); 1565 int pnum = target->next_path_num(); 1566 merge_common(target, pnum); 1567 } 1568 1569 //-------------------------merge_new_path-------------------------------------- 1570 // Merge the current mapping into the basic block, using a new path 1571 void Parse::merge_new_path(int target_bci) { 1572 Block* target = successor_for_bci(target_bci); 1573 if (target == NULL) { handle_missing_successor(target_bci); return; } 1574 assert(!target->is_ready(), "new path into frozen graph"); 1575 int pnum = target->add_new_path(); 1576 merge_common(target, pnum); 1577 } 1578 1579 //-------------------------merge_exception------------------------------------- 1580 // Merge the current mapping into the basic block starting at bci 1581 // The ex_oop must be pushed on the stack, unlike throw_to_exit. 1582 void Parse::merge_exception(int target_bci) { 1583 assert(sp() == 1, "must have only the throw exception on the stack"); 1584 Block* target = successor_for_bci(target_bci); 1585 if (target == NULL) { handle_missing_successor(target_bci); return; } 1586 assert(target->is_handler(), "exceptions are handled by special blocks"); 1587 int pnum = target->add_new_path(); 1588 merge_common(target, pnum); 1589 } 1590 1591 //--------------------handle_missing_successor--------------------------------- 1592 void Parse::handle_missing_successor(int target_bci) { 1593 #ifndef PRODUCT 1594 Block* b = block(); 1595 int trap_bci = b->flow()->has_trap()? b->flow()->trap_bci(): -1; 1596 tty->print_cr("### Missing successor at bci:%d for block #%d (trap_bci:%d)", target_bci, b->rpo(), trap_bci); 1597 #endif 1598 ShouldNotReachHere(); 1599 } 1600 1601 //--------------------------merge_common--------------------------------------- 1602 void Parse::merge_common(Parse::Block* target, int pnum) { 1603 if (TraceOptoParse) { 1604 tty->print("Merging state at block #%d bci:%d", target->rpo(), target->start()); 1605 } 1606 1607 // Zap extra stack slots to top 1608 assert(sp() == target->start_sp(), ""); 1609 clean_stack(sp()); 1610 1611 if (!target->is_merged()) { // No prior mapping at this bci 1612 if (TraceOptoParse) { tty->print(" with empty state"); } 1613 1614 // If this path is dead, do not bother capturing it as a merge. 1615 // It is "as if" we had 1 fewer predecessors from the beginning. 1616 if (stopped()) { 1617 if (TraceOptoParse) tty->print_cr(", but path is dead and doesn't count"); 1618 return; 1619 } 1620 1621 // Make a region if we know there are multiple or unpredictable inputs. 1622 // (Also, if this is a plain fall-through, we might see another region, 1623 // which must not be allowed into this block's map.) 1624 if (pnum > PhiNode::Input // Known multiple inputs. 1625 || target->is_handler() // These have unpredictable inputs. 1626 || target->is_loop_head() // Known multiple inputs 1627 || control()->is_Region()) { // We must hide this guy. 1628 1629 int current_bci = bci(); 1630 set_parse_bci(target->start()); // Set target bci 1631 if (target->is_SEL_head()) { 1632 DEBUG_ONLY( target->mark_merged_backedge(block()); ) 1633 if (target->start() == 0) { 1634 // Add loop predicate for the special case when 1635 // there are backbranches to the method entry. 1636 add_predicate(); 1637 } 1638 } 1639 // Add a Region to start the new basic block. Phis will be added 1640 // later lazily. 1641 int edges = target->pred_count(); 1642 if (edges < pnum) edges = pnum; // might be a new path! 1643 RegionNode *r = new RegionNode(edges+1); 1644 gvn().set_type(r, Type::CONTROL); 1645 record_for_igvn(r); 1646 // zap all inputs to NULL for debugging (done in Node(uint) constructor) 1647 // for (int j = 1; j < edges+1; j++) { r->init_req(j, NULL); } 1648 r->init_req(pnum, control()); 1649 set_control(r); 1650 set_parse_bci(current_bci); // Restore bci 1651 } 1652 1653 // Convert the existing Parser mapping into a mapping at this bci. 1654 store_state_to(target); 1655 assert(target->is_merged(), "do not come here twice"); 1656 1657 } else { // Prior mapping at this bci 1658 if (TraceOptoParse) { tty->print(" with previous state"); } 1659 #ifdef ASSERT 1660 if (target->is_SEL_head()) { 1661 target->mark_merged_backedge(block()); 1662 } 1663 #endif 1664 // We must not manufacture more phis if the target is already parsed. 1665 bool nophi = target->is_parsed(); 1666 1667 SafePointNode* newin = map();// Hang on to incoming mapping 1668 Block* save_block = block(); // Hang on to incoming block; 1669 load_state_from(target); // Get prior mapping 1670 1671 assert(newin->jvms()->locoff() == jvms()->locoff(), "JVMS layouts agree"); 1672 assert(newin->jvms()->stkoff() == jvms()->stkoff(), "JVMS layouts agree"); 1673 assert(newin->jvms()->monoff() == jvms()->monoff(), "JVMS layouts agree"); 1674 assert(newin->jvms()->endoff() == jvms()->endoff(), "JVMS layouts agree"); 1675 1676 // Iterate over my current mapping and the old mapping. 1677 // Where different, insert Phi functions. 1678 // Use any existing Phi functions. 1679 assert(control()->is_Region(), "must be merging to a region"); 1680 RegionNode* r = control()->as_Region(); 1681 1682 // Compute where to merge into 1683 // Merge incoming control path 1684 r->init_req(pnum, newin->control()); 1685 1686 if (pnum == 1) { // Last merge for this Region? 1687 if (!block()->flow()->is_irreducible_entry()) { 1688 Node* result = _gvn.transform_no_reclaim(r); 1689 if (r != result && TraceOptoParse) { 1690 tty->print_cr("Block #%d replace %d with %d", block()->rpo(), r->_idx, result->_idx); 1691 } 1692 } 1693 record_for_igvn(r); 1694 } 1695 1696 // Update all the non-control inputs to map: 1697 assert(TypeFunc::Parms == newin->jvms()->locoff(), "parser map should contain only youngest jvms"); 1698 bool check_elide_phi = target->is_SEL_backedge(save_block); 1699 for (uint j = 1; j < newin->req(); j++) { 1700 Node* m = map()->in(j); // Current state of target. 1701 Node* n = newin->in(j); // Incoming change to target state. 1702 PhiNode* phi; 1703 if (m->is_Phi() && m->as_Phi()->region() == r) 1704 phi = m->as_Phi(); 1705 else 1706 phi = NULL; 1707 if (m != n) { // Different; must merge 1708 switch (j) { 1709 // Frame pointer and Return Address never changes 1710 case TypeFunc::FramePtr:// Drop m, use the original value 1711 case TypeFunc::ReturnAdr: 1712 break; 1713 case TypeFunc::Memory: // Merge inputs to the MergeMem node 1714 assert(phi == NULL, "the merge contains phis, not vice versa"); 1715 merge_memory_edges(n->as_MergeMem(), pnum, nophi); 1716 continue; 1717 default: // All normal stuff 1718 if (phi == NULL) { 1719 const JVMState* jvms = map()->jvms(); 1720 if (EliminateNestedLocks && 1721 jvms->is_mon(j) && jvms->is_monitor_box(j)) { 1722 // BoxLock nodes are not commoning. 1723 // Use old BoxLock node as merged box. 1724 assert(newin->jvms()->is_monitor_box(j), "sanity"); 1725 // This assert also tests that nodes are BoxLock. 1726 assert(BoxLockNode::same_slot(n, m), "sanity"); 1727 C->gvn_replace_by(n, m); 1728 } else if (!check_elide_phi || !target->can_elide_SEL_phi(j)) { 1729 phi = ensure_phi(j, nophi); 1730 } 1731 } 1732 break; 1733 } 1734 } 1735 // At this point, n might be top if: 1736 // - there is no phi (because TypeFlow detected a conflict), or 1737 // - the corresponding control edges is top (a dead incoming path) 1738 // It is a bug if we create a phi which sees a garbage value on a live path. 1739 1740 // Merging two value types? 1741 if (n->isa_ValueType() && m != n) { 1742 assert(phi == NULL, "Value types should not have Phis"); 1743 // Reload current state because it may have been updated by ensure_phi 1744 m = map()->in(j); 1745 ValueTypeNode* vtm = m->as_ValueType(); // Current value type 1746 ValueTypeNode* vtn = n->as_ValueType(); // Incoming value type 1747 if (TraceOptoParse) { 1748 tty->print_cr("Merging value types"); 1749 #ifdef ASSERT 1750 tty->print_cr("Current:"); 1751 vtm->dump(1); 1752 tty->print_cr("Incoming:"); 1753 vtn->dump(1); 1754 #endif 1755 } 1756 // Merge oop inputs 1757 phi = vtm->get_oop()->as_Phi(); 1758 phi->set_req(pnum, vtn->get_oop()); 1759 if (pnum == PhiNode::Input) { 1760 // Last merge 1761 vtm->set_oop(_gvn.transform_no_reclaim(phi)); 1762 record_for_igvn(phi); 1763 } 1764 // Merge field values 1765 for (uint index = 0; index < vtm->field_count(); ++index) { 1766 phi = vtm->get_field_value(index)->as_Phi(); 1767 phi->set_req(pnum, vtn->get_field_value(index)); 1768 if (pnum == PhiNode::Input) { 1769 // Last merge 1770 vtm->set_field_value(index, _gvn.transform_no_reclaim(phi)); 1771 record_for_igvn(phi); 1772 } 1773 } 1774 } else if (phi != NULL) { 1775 assert(n != top() || r->in(pnum) == top(), "live value must not be garbage"); 1776 assert(phi->region() == r, ""); 1777 phi->set_req(pnum, n); // Then add 'n' to the merge 1778 if (pnum == PhiNode::Input) { 1779 // Last merge for this Phi. 1780 // So far, Phis have had a reasonable type from ciTypeFlow. 1781 // Now _gvn will join that with the meet of current inputs. 1782 // BOTTOM is never permissible here, 'cause pessimistically 1783 // Phis of pointers cannot lose the basic pointer type. 1784 debug_only(const Type* bt1 = phi->bottom_type()); 1785 assert(bt1 != Type::BOTTOM, "should not be building conflict phis"); 1786 map()->set_req(j, _gvn.transform_no_reclaim(phi)); 1787 debug_only(const Type* bt2 = phi->bottom_type()); 1788 assert(bt2->higher_equal_speculative(bt1), "must be consistent with type-flow"); 1789 record_for_igvn(phi); 1790 } 1791 } 1792 } // End of for all values to be merged 1793 1794 if (pnum == PhiNode::Input && 1795 !r->in(0)) { // The occasional useless Region 1796 assert(control() == r, ""); 1797 set_control(r->nonnull_req()); 1798 } 1799 1800 map()->merge_replaced_nodes_with(newin); 1801 1802 // newin has been subsumed into the lazy merge, and is now dead. 1803 set_block(save_block); 1804 1805 stop(); // done with this guy, for now 1806 } 1807 1808 if (TraceOptoParse) { 1809 tty->print_cr(" on path %d", pnum); 1810 } 1811 1812 // Done with this parser state. 1813 assert(stopped(), ""); 1814 } 1815 1816 1817 //--------------------------merge_memory_edges--------------------------------- 1818 void Parse::merge_memory_edges(MergeMemNode* n, int pnum, bool nophi) { 1819 // (nophi means we must not create phis, because we already parsed here) 1820 assert(n != NULL, ""); 1821 // Merge the inputs to the MergeMems 1822 MergeMemNode* m = merged_memory(); 1823 1824 assert(control()->is_Region(), "must be merging to a region"); 1825 RegionNode* r = control()->as_Region(); 1826 1827 PhiNode* base = NULL; 1828 MergeMemNode* remerge = NULL; 1829 for (MergeMemStream mms(m, n); mms.next_non_empty2(); ) { 1830 Node *p = mms.force_memory(); 1831 Node *q = mms.memory2(); 1832 if (mms.is_empty() && nophi) { 1833 // Trouble: No new splits allowed after a loop body is parsed. 1834 // Instead, wire the new split into a MergeMem on the backedge. 1835 // The optimizer will sort it out, slicing the phi. 1836 if (remerge == NULL) { 1837 assert(base != NULL, ""); 1838 assert(base->in(0) != NULL, "should not be xformed away"); 1839 remerge = MergeMemNode::make(base->in(pnum)); 1840 gvn().set_type(remerge, Type::MEMORY); 1841 base->set_req(pnum, remerge); 1842 } 1843 remerge->set_memory_at(mms.alias_idx(), q); 1844 continue; 1845 } 1846 assert(!q->is_MergeMem(), ""); 1847 PhiNode* phi; 1848 if (p != q) { 1849 phi = ensure_memory_phi(mms.alias_idx(), nophi); 1850 } else { 1851 if (p->is_Phi() && p->as_Phi()->region() == r) 1852 phi = p->as_Phi(); 1853 else 1854 phi = NULL; 1855 } 1856 // Insert q into local phi 1857 if (phi != NULL) { 1858 assert(phi->region() == r, ""); 1859 p = phi; 1860 phi->set_req(pnum, q); 1861 if (mms.at_base_memory()) { 1862 base = phi; // delay transforming it 1863 } else if (pnum == 1) { 1864 record_for_igvn(phi); 1865 p = _gvn.transform_no_reclaim(phi); 1866 } 1867 mms.set_memory(p);// store back through the iterator 1868 } 1869 } 1870 // Transform base last, in case we must fiddle with remerging. 1871 if (base != NULL && pnum == 1) { 1872 record_for_igvn(base); 1873 m->set_base_memory( _gvn.transform_no_reclaim(base) ); 1874 } 1875 } 1876 1877 1878 //------------------------ensure_phis_everywhere------------------------------- 1879 void Parse::ensure_phis_everywhere() { 1880 ensure_phi(TypeFunc::I_O); 1881 1882 // Ensure a phi on all currently known memories. 1883 for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) { 1884 ensure_memory_phi(mms.alias_idx()); 1885 debug_only(mms.set_memory()); // keep the iterator happy 1886 } 1887 1888 // Note: This is our only chance to create phis for memory slices. 1889 // If we miss a slice that crops up later, it will have to be 1890 // merged into the base-memory phi that we are building here. 1891 // Later, the optimizer will comb out the knot, and build separate 1892 // phi-loops for each memory slice that matters. 1893 1894 // Monitors must nest nicely and not get confused amongst themselves. 1895 // Phi-ify everything up to the monitors, though. 1896 uint monoff = map()->jvms()->monoff(); 1897 uint nof_monitors = map()->jvms()->nof_monitors(); 1898 1899 assert(TypeFunc::Parms == map()->jvms()->locoff(), "parser map should contain only youngest jvms"); 1900 bool check_elide_phi = block()->is_SEL_head(); 1901 for (uint i = TypeFunc::Parms; i < monoff; i++) { 1902 if (!check_elide_phi || !block()->can_elide_SEL_phi(i)) { 1903 ensure_phi(i); 1904 } 1905 } 1906 1907 // Even monitors need Phis, though they are well-structured. 1908 // This is true for OSR methods, and also for the rare cases where 1909 // a monitor object is the subject of a replace_in_map operation. 1910 // See bugs 4426707 and 5043395. 1911 for (uint m = 0; m < nof_monitors; m++) { 1912 ensure_phi(map()->jvms()->monitor_obj_offset(m)); 1913 } 1914 } 1915 1916 1917 //-----------------------------add_new_path------------------------------------ 1918 // Add a previously unaccounted predecessor to this block. 1919 int Parse::Block::add_new_path() { 1920 // If there is no map, return the lowest unused path number. 1921 if (!is_merged()) return pred_count()+1; // there will be a map shortly 1922 1923 SafePointNode* map = start_map(); 1924 if (!map->control()->is_Region()) 1925 return pred_count()+1; // there may be a region some day 1926 RegionNode* r = map->control()->as_Region(); 1927 1928 // Add new path to the region. 1929 uint pnum = r->req(); 1930 r->add_req(NULL); 1931 1932 for (uint i = 1; i < map->req(); i++) { 1933 Node* n = map->in(i); 1934 if (i == TypeFunc::Memory) { 1935 // Ensure a phi on all currently known memories. 1936 for (MergeMemStream mms(n->as_MergeMem()); mms.next_non_empty(); ) { 1937 Node* phi = mms.memory(); 1938 if (phi->is_Phi() && phi->as_Phi()->region() == r) { 1939 assert(phi->req() == pnum, "must be same size as region"); 1940 phi->add_req(NULL); 1941 } 1942 } 1943 } else { 1944 if (n->is_Phi() && n->as_Phi()->region() == r) { 1945 assert(n->req() == pnum, "must be same size as region"); 1946 n->add_req(NULL); 1947 } 1948 } 1949 } 1950 1951 return pnum; 1952 } 1953 1954 //------------------------------ensure_phi------------------------------------- 1955 // Turn the idx'th entry of the current map into a Phi 1956 PhiNode *Parse::ensure_phi(int idx, bool nocreate) { 1957 SafePointNode* map = this->map(); 1958 Node* region = map->control(); 1959 assert(region->is_Region(), ""); 1960 1961 Node* o = map->in(idx); 1962 assert(o != NULL, ""); 1963 1964 if (o == top()) return NULL; // TOP always merges into TOP 1965 1966 if (o->is_Phi() && o->as_Phi()->region() == region) { 1967 return o->as_Phi(); 1968 } 1969 1970 ValueTypeNode* vt = o->isa_ValueType(); 1971 if (vt != NULL && vt->get_oop()->is_Phi() && vt->get_oop()->as_Phi()->region() == region) { 1972 // ValueTypeNode already has Phi inputs 1973 return NULL; 1974 } 1975 1976 // Now use a Phi here for merging 1977 assert(!nocreate, "Cannot build a phi for a block already parsed."); 1978 const JVMState* jvms = map->jvms(); 1979 const Type* t = NULL; 1980 if (jvms->is_loc(idx)) { 1981 t = block()->local_type_at(idx - jvms->locoff()); 1982 } else if (jvms->is_stk(idx)) { 1983 t = block()->stack_type_at(idx - jvms->stkoff()); 1984 } else if (jvms->is_mon(idx)) { 1985 assert(!jvms->is_monitor_box(idx), "no phis for boxes"); 1986 t = TypeInstPtr::BOTTOM; // this is sufficient for a lock object 1987 } else if ((uint)idx < TypeFunc::Parms) { 1988 t = o->bottom_type(); // Type::RETURN_ADDRESS or such-like. 1989 } else { 1990 assert(false, "no type information for this phi"); 1991 } 1992 1993 // If the type falls to bottom, then this must be a local that 1994 // is mixing ints and oops or some such. Forcing it to top 1995 // makes it go dead. 1996 if (t == Type::BOTTOM) { 1997 map->set_req(idx, top()); 1998 return NULL; 1999 } 2000 2001 // Do not create phis for top either. 2002 // A top on a non-null control flow must be an unused even after the.phi. 2003 if (t == Type::TOP || t == Type::HALF) { 2004 map->set_req(idx, top()); 2005 return NULL; 2006 } 2007 2008 // Value types are merged by merging their field values 2009 if (vt != NULL) { 2010 // Create new ValueTypeNode that represents the merged value type 2011 vt = vt->clone()->as_ValueType(); 2012 2013 // Create a PhiNode for merging the oop 2014 const TypeValueTypePtr* vtptr = TypeValueTypePtr::make(t->is_valuetype()); 2015 PhiNode* oop = PhiNode::make(region, vt->get_oop(), vtptr); 2016 gvn().set_type(oop, vtptr); 2017 vt->set_oop(oop); 2018 2019 // Create a PhiNode for merging each field value 2020 for (uint i = 0; i < vt->field_count(); ++i) { 2021 const Type* field_type = Type::get_const_basic_type(vt->get_field_type(i)); 2022 PhiNode* phi = PhiNode::make(region, vt->get_field_value(i), field_type); 2023 gvn().set_type(phi, field_type); 2024 vt->set_field_value(i, phi); 2025 } 2026 2027 // Update map to use cloned value type 2028 gvn().set_type(vt, t); 2029 map->set_req(idx, vt); 2030 return NULL; 2031 } 2032 2033 PhiNode* phi = PhiNode::make(region, o, t); 2034 gvn().set_type(phi, t); 2035 if (C->do_escape_analysis()) record_for_igvn(phi); 2036 map->set_req(idx, phi); 2037 return phi; 2038 } 2039 2040 //--------------------------ensure_memory_phi---------------------------------- 2041 // Turn the idx'th slice of the current memory into a Phi 2042 PhiNode *Parse::ensure_memory_phi(int idx, bool nocreate) { 2043 MergeMemNode* mem = merged_memory(); 2044 Node* region = control(); 2045 assert(region->is_Region(), ""); 2046 2047 Node *o = (idx == Compile::AliasIdxBot)? mem->base_memory(): mem->memory_at(idx); 2048 assert(o != NULL && o != top(), ""); 2049 2050 PhiNode* phi; 2051 if (o->is_Phi() && o->as_Phi()->region() == region) { 2052 phi = o->as_Phi(); 2053 if (phi == mem->base_memory() && idx >= Compile::AliasIdxRaw) { 2054 // clone the shared base memory phi to make a new memory split 2055 assert(!nocreate, "Cannot build a phi for a block already parsed."); 2056 const Type* t = phi->bottom_type(); 2057 const TypePtr* adr_type = C->get_adr_type(idx); 2058 phi = phi->slice_memory(adr_type); 2059 gvn().set_type(phi, t); 2060 } 2061 return phi; 2062 } 2063 2064 // Now use a Phi here for merging 2065 assert(!nocreate, "Cannot build a phi for a block already parsed."); 2066 const Type* t = o->bottom_type(); 2067 const TypePtr* adr_type = C->get_adr_type(idx); 2068 phi = PhiNode::make(region, o, t, adr_type); 2069 gvn().set_type(phi, t); 2070 if (idx == Compile::AliasIdxBot) 2071 mem->set_base_memory(phi); 2072 else 2073 mem->set_memory_at(idx, phi); 2074 return phi; 2075 } 2076 2077 //------------------------------call_register_finalizer----------------------- 2078 // Check the klass of the receiver and call register_finalizer if the 2079 // class need finalization. 2080 void Parse::call_register_finalizer() { 2081 Node* receiver = local(0); 2082 assert(receiver != NULL && receiver->bottom_type()->isa_instptr() != NULL, 2083 "must have non-null instance type"); 2084 2085 const TypeInstPtr *tinst = receiver->bottom_type()->isa_instptr(); 2086 if (tinst != NULL && tinst->klass()->is_loaded() && !tinst->klass_is_exact()) { 2087 // The type isn't known exactly so see if CHA tells us anything. 2088 ciInstanceKlass* ik = tinst->klass()->as_instance_klass(); 2089 if (!Dependencies::has_finalizable_subclass(ik)) { 2090 // No finalizable subclasses so skip the dynamic check. 2091 C->dependencies()->assert_has_no_finalizable_subclasses(ik); 2092 return; 2093 } 2094 } 2095 2096 // Insert a dynamic test for whether the instance needs 2097 // finalization. In general this will fold up since the concrete 2098 // class is often visible so the access flags are constant. 2099 Node* klass_addr = basic_plus_adr( receiver, receiver, oopDesc::klass_offset_in_bytes() ); 2100 Node* klass = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), klass_addr, TypeInstPtr::KLASS)); 2101 2102 Node* access_flags_addr = basic_plus_adr(klass, klass, in_bytes(Klass::access_flags_offset())); 2103 Node* access_flags = make_load(NULL, access_flags_addr, TypeInt::INT, T_INT, MemNode::unordered); 2104 2105 Node* mask = _gvn.transform(new AndINode(access_flags, intcon(JVM_ACC_HAS_FINALIZER))); 2106 Node* check = _gvn.transform(new CmpINode(mask, intcon(0))); 2107 Node* test = _gvn.transform(new BoolNode(check, BoolTest::ne)); 2108 2109 IfNode* iff = create_and_map_if(control(), test, PROB_MAX, COUNT_UNKNOWN); 2110 2111 RegionNode* result_rgn = new RegionNode(3); 2112 record_for_igvn(result_rgn); 2113 2114 Node *skip_register = _gvn.transform(new IfFalseNode(iff)); 2115 result_rgn->init_req(1, skip_register); 2116 2117 Node *needs_register = _gvn.transform(new IfTrueNode(iff)); 2118 set_control(needs_register); 2119 if (stopped()) { 2120 // There is no slow path. 2121 result_rgn->init_req(2, top()); 2122 } else { 2123 Node *call = make_runtime_call(RC_NO_LEAF, 2124 OptoRuntime::register_finalizer_Type(), 2125 OptoRuntime::register_finalizer_Java(), 2126 NULL, TypePtr::BOTTOM, 2127 receiver); 2128 make_slow_call_ex(call, env()->Throwable_klass(), true); 2129 2130 Node* fast_io = call->in(TypeFunc::I_O); 2131 Node* fast_mem = call->in(TypeFunc::Memory); 2132 // These two phis are pre-filled with copies of of the fast IO and Memory 2133 Node* io_phi = PhiNode::make(result_rgn, fast_io, Type::ABIO); 2134 Node* mem_phi = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM); 2135 2136 result_rgn->init_req(2, control()); 2137 io_phi ->init_req(2, i_o()); 2138 mem_phi ->init_req(2, reset_memory()); 2139 2140 set_all_memory( _gvn.transform(mem_phi) ); 2141 set_i_o( _gvn.transform(io_phi) ); 2142 } 2143 2144 set_control( _gvn.transform(result_rgn) ); 2145 } 2146 2147 // Add check to deoptimize if RTM state is not ProfileRTM 2148 void Parse::rtm_deopt() { 2149 #if INCLUDE_RTM_OPT 2150 if (C->profile_rtm()) { 2151 assert(C->method() != NULL, "only for normal compilations"); 2152 assert(!C->method()->method_data()->is_empty(), "MDO is needed to record RTM state"); 2153 assert(depth() == 1, "generate check only for main compiled method"); 2154 2155 // Set starting bci for uncommon trap. 2156 set_parse_bci(is_osr_parse() ? osr_bci() : 0); 2157 2158 // Load the rtm_state from the MethodData. 2159 const TypePtr* adr_type = TypeMetadataPtr::make(C->method()->method_data()); 2160 Node* mdo = makecon(adr_type); 2161 int offset = MethodData::rtm_state_offset_in_bytes(); 2162 Node* adr_node = basic_plus_adr(mdo, mdo, offset); 2163 Node* rtm_state = make_load(control(), adr_node, TypeInt::INT, T_INT, adr_type, MemNode::unordered); 2164 2165 // Separate Load from Cmp by Opaque. 2166 // In expand_macro_nodes() it will be replaced either 2167 // with this load when there are locks in the code 2168 // or with ProfileRTM (cmp->in(2)) otherwise so that 2169 // the check will fold. 2170 Node* profile_state = makecon(TypeInt::make(ProfileRTM)); 2171 Node* opq = _gvn.transform( new Opaque3Node(C, rtm_state, Opaque3Node::RTM_OPT) ); 2172 Node* chk = _gvn.transform( new CmpINode(opq, profile_state) ); 2173 Node* tst = _gvn.transform( new BoolNode(chk, BoolTest::eq) ); 2174 // Branch to failure if state was changed 2175 { BuildCutout unless(this, tst, PROB_ALWAYS); 2176 uncommon_trap(Deoptimization::Reason_rtm_state_change, 2177 Deoptimization::Action_make_not_entrant); 2178 } 2179 } 2180 #endif 2181 } 2182 2183 void Parse::decrement_age() { 2184 MethodCounters* mc = method()->ensure_method_counters(); 2185 if (mc == NULL) { 2186 C->record_failure("Must have MCs"); 2187 return; 2188 } 2189 assert(!is_osr_parse(), "Not doing this for OSRs"); 2190 2191 // Set starting bci for uncommon trap. 2192 set_parse_bci(0); 2193 2194 const TypePtr* adr_type = TypeRawPtr::make((address)mc); 2195 Node* mc_adr = makecon(adr_type); 2196 Node* cnt_adr = basic_plus_adr(mc_adr, mc_adr, in_bytes(MethodCounters::nmethod_age_offset())); 2197 Node* cnt = make_load(control(), cnt_adr, TypeInt::INT, T_INT, adr_type, MemNode::unordered); 2198 Node* decr = _gvn.transform(new SubINode(cnt, makecon(TypeInt::ONE))); 2199 store_to_memory(control(), cnt_adr, decr, T_INT, adr_type, MemNode::unordered); 2200 Node *chk = _gvn.transform(new CmpINode(decr, makecon(TypeInt::ZERO))); 2201 Node* tst = _gvn.transform(new BoolNode(chk, BoolTest::gt)); 2202 { BuildCutout unless(this, tst, PROB_ALWAYS); 2203 uncommon_trap(Deoptimization::Reason_tenured, 2204 Deoptimization::Action_make_not_entrant); 2205 } 2206 } 2207 2208 //------------------------------return_current--------------------------------- 2209 // Append current _map to _exit_return 2210 void Parse::return_current(Node* value) { 2211 if (value != NULL && value->is_ValueType() && !_caller->has_method()) { 2212 // Returning from root JVMState, make sure value type is allocated 2213 value = value->as_ValueType()->store_to_memory(this); 2214 } 2215 2216 if (RegisterFinalizersAtInit && 2217 method()->intrinsic_id() == vmIntrinsics::_Object_init) { 2218 call_register_finalizer(); 2219 } 2220 2221 // Do not set_parse_bci, so that return goo is credited to the return insn. 2222 set_bci(InvocationEntryBci); 2223 if (method()->is_synchronized() && GenerateSynchronizationCode) { 2224 shared_unlock(_synch_lock->box_node(), _synch_lock->obj_node()); 2225 } 2226 if (C->env()->dtrace_method_probes()) { 2227 make_dtrace_method_exit(method()); 2228 } 2229 SafePointNode* exit_return = _exits.map(); 2230 exit_return->in( TypeFunc::Control )->add_req( control() ); 2231 exit_return->in( TypeFunc::I_O )->add_req( i_o () ); 2232 Node *mem = exit_return->in( TypeFunc::Memory ); 2233 for (MergeMemStream mms(mem->as_MergeMem(), merged_memory()); mms.next_non_empty2(); ) { 2234 if (mms.is_empty()) { 2235 // get a copy of the base memory, and patch just this one input 2236 const TypePtr* adr_type = mms.adr_type(C); 2237 Node* phi = mms.force_memory()->as_Phi()->slice_memory(adr_type); 2238 assert(phi->as_Phi()->region() == mms.base_memory()->in(0), ""); 2239 gvn().set_type_bottom(phi); 2240 phi->del_req(phi->req()-1); // prepare to re-patch 2241 mms.set_memory(phi); 2242 } 2243 mms.memory()->add_req(mms.memory2()); 2244 } 2245 2246 // frame pointer is always same, already captured 2247 if (value != NULL) { 2248 // If returning oops to an interface-return, there is a silent free 2249 // cast from oop to interface allowed by the Verifier. Make it explicit 2250 // here. 2251 Node* phi = _exits.argument(0); 2252 const TypeInstPtr *tr = phi->bottom_type()->isa_instptr(); 2253 if (tr && tr->klass()->is_loaded() && 2254 tr->klass()->is_interface()) { 2255 const TypeInstPtr *tp = value->bottom_type()->isa_instptr(); 2256 if (tp && tp->klass()->is_loaded() && 2257 !tp->klass()->is_interface()) { 2258 // sharpen the type eagerly; this eases certain assert checking 2259 if (tp->higher_equal(TypeInstPtr::NOTNULL)) 2260 tr = tr->join_speculative(TypeInstPtr::NOTNULL)->is_instptr(); 2261 value = _gvn.transform(new CheckCastPPNode(0, value, tr)); 2262 } 2263 } else { 2264 // Also handle returns of oop-arrays to an arrays-of-interface return 2265 const TypeInstPtr* phi_tip; 2266 const TypeInstPtr* val_tip; 2267 Type::get_arrays_base_elements(phi->bottom_type(), value->bottom_type(), &phi_tip, &val_tip); 2268 if (phi_tip != NULL && phi_tip->is_loaded() && phi_tip->klass()->is_interface() && 2269 val_tip != NULL && val_tip->is_loaded() && !val_tip->klass()->is_interface()) { 2270 value = _gvn.transform(new CheckCastPPNode(0, value, phi->bottom_type())); 2271 } 2272 } 2273 phi->add_req(value); 2274 } 2275 2276 if (_first_return) { 2277 _exits.map()->transfer_replaced_nodes_from(map(), _new_idx); 2278 _first_return = false; 2279 } else { 2280 _exits.map()->merge_replaced_nodes_with(map()); 2281 } 2282 2283 stop_and_kill_map(); // This CFG path dies here 2284 } 2285 2286 2287 //------------------------------add_safepoint---------------------------------- 2288 void Parse::add_safepoint() { 2289 // See if we can avoid this safepoint. No need for a SafePoint immediately 2290 // after a Call (except Leaf Call) or another SafePoint. 2291 Node *proj = control(); 2292 bool add_poll_param = SafePointNode::needs_polling_address_input(); 2293 uint parms = add_poll_param ? TypeFunc::Parms+1 : TypeFunc::Parms; 2294 if( proj->is_Proj() ) { 2295 Node *n0 = proj->in(0); 2296 if( n0->is_Catch() ) { 2297 n0 = n0->in(0)->in(0); 2298 assert( n0->is_Call(), "expect a call here" ); 2299 } 2300 if( n0->is_Call() ) { 2301 if( n0->as_Call()->guaranteed_safepoint() ) 2302 return; 2303 } else if( n0->is_SafePoint() && n0->req() >= parms ) { 2304 return; 2305 } 2306 } 2307 2308 // Clear out dead values from the debug info. 2309 kill_dead_locals(); 2310 2311 // Clone the JVM State 2312 SafePointNode *sfpnt = new SafePointNode(parms, NULL); 2313 2314 // Capture memory state BEFORE a SafePoint. Since we can block at a 2315 // SafePoint we need our GC state to be safe; i.e. we need all our current 2316 // write barriers (card marks) to not float down after the SafePoint so we 2317 // must read raw memory. Likewise we need all oop stores to match the card 2318 // marks. If deopt can happen, we need ALL stores (we need the correct JVM 2319 // state on a deopt). 2320 2321 // We do not need to WRITE the memory state after a SafePoint. The control 2322 // edge will keep card-marks and oop-stores from floating up from below a 2323 // SafePoint and our true dependency added here will keep them from floating 2324 // down below a SafePoint. 2325 2326 // Clone the current memory state 2327 Node* mem = MergeMemNode::make(map()->memory()); 2328 2329 mem = _gvn.transform(mem); 2330 2331 // Pass control through the safepoint 2332 sfpnt->init_req(TypeFunc::Control , control()); 2333 // Fix edges normally used by a call 2334 sfpnt->init_req(TypeFunc::I_O , top() ); 2335 sfpnt->init_req(TypeFunc::Memory , mem ); 2336 sfpnt->init_req(TypeFunc::ReturnAdr, top() ); 2337 sfpnt->init_req(TypeFunc::FramePtr , top() ); 2338 2339 // Create a node for the polling address 2340 if( add_poll_param ) { 2341 Node *polladr = ConPNode::make((address)os::get_polling_page()); 2342 sfpnt->init_req(TypeFunc::Parms+0, _gvn.transform(polladr)); 2343 } 2344 2345 // Fix up the JVM State edges 2346 add_safepoint_edges(sfpnt); 2347 Node *transformed_sfpnt = _gvn.transform(sfpnt); 2348 set_control(transformed_sfpnt); 2349 2350 // Provide an edge from root to safepoint. This makes the safepoint 2351 // appear useful until the parse has completed. 2352 if( OptoRemoveUseless && transformed_sfpnt->is_SafePoint() ) { 2353 assert(C->root() != NULL, "Expect parse is still valid"); 2354 C->root()->add_prec(transformed_sfpnt); 2355 } 2356 } 2357 2358 #ifndef PRODUCT 2359 //------------------------show_parse_info-------------------------------------- 2360 void Parse::show_parse_info() { 2361 InlineTree* ilt = NULL; 2362 if (C->ilt() != NULL) { 2363 JVMState* caller_jvms = is_osr_parse() ? caller()->caller() : caller(); 2364 ilt = InlineTree::find_subtree_from_root(C->ilt(), caller_jvms, method()); 2365 } 2366 if (PrintCompilation && Verbose) { 2367 if (depth() == 1) { 2368 if( ilt->count_inlines() ) { 2369 tty->print(" __inlined %d (%d bytes)", ilt->count_inlines(), 2370 ilt->count_inline_bcs()); 2371 tty->cr(); 2372 } 2373 } else { 2374 if (method()->is_synchronized()) tty->print("s"); 2375 if (method()->has_exception_handlers()) tty->print("!"); 2376 // Check this is not the final compiled version 2377 if (C->trap_can_recompile()) { 2378 tty->print("-"); 2379 } else { 2380 tty->print(" "); 2381 } 2382 method()->print_short_name(); 2383 if (is_osr_parse()) { 2384 tty->print(" @ %d", osr_bci()); 2385 } 2386 tty->print(" (%d bytes)",method()->code_size()); 2387 if (ilt->count_inlines()) { 2388 tty->print(" __inlined %d (%d bytes)", ilt->count_inlines(), 2389 ilt->count_inline_bcs()); 2390 } 2391 tty->cr(); 2392 } 2393 } 2394 if (PrintOpto && (depth() == 1 || PrintOptoInlining)) { 2395 // Print that we succeeded; suppress this message on the first osr parse. 2396 2397 if (method()->is_synchronized()) tty->print("s"); 2398 if (method()->has_exception_handlers()) tty->print("!"); 2399 // Check this is not the final compiled version 2400 if (C->trap_can_recompile() && depth() == 1) { 2401 tty->print("-"); 2402 } else { 2403 tty->print(" "); 2404 } 2405 if( depth() != 1 ) { tty->print(" "); } // missing compile count 2406 for (int i = 1; i < depth(); ++i) { tty->print(" "); } 2407 method()->print_short_name(); 2408 if (is_osr_parse()) { 2409 tty->print(" @ %d", osr_bci()); 2410 } 2411 if (ilt->caller_bci() != -1) { 2412 tty->print(" @ %d", ilt->caller_bci()); 2413 } 2414 tty->print(" (%d bytes)",method()->code_size()); 2415 if (ilt->count_inlines()) { 2416 tty->print(" __inlined %d (%d bytes)", ilt->count_inlines(), 2417 ilt->count_inline_bcs()); 2418 } 2419 tty->cr(); 2420 } 2421 } 2422 2423 2424 //------------------------------dump------------------------------------------- 2425 // Dump information associated with the bytecodes of current _method 2426 void Parse::dump() { 2427 if( method() != NULL ) { 2428 // Iterate over bytecodes 2429 ciBytecodeStream iter(method()); 2430 for( Bytecodes::Code bc = iter.next(); bc != ciBytecodeStream::EOBC() ; bc = iter.next() ) { 2431 dump_bci( iter.cur_bci() ); 2432 tty->cr(); 2433 } 2434 } 2435 } 2436 2437 // Dump information associated with a byte code index, 'bci' 2438 void Parse::dump_bci(int bci) { 2439 // Output info on merge-points, cloning, and within _jsr..._ret 2440 // NYI 2441 tty->print(" bci:%d", bci); 2442 } 2443 2444 #endif