1 /* 2 * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "asm/macroAssembler.hpp" 27 #include "interpreter/interpreter.hpp" 28 #include "interpreter/interpreterRuntime.hpp" 29 #include "interpreter/interp_masm.hpp" 30 #include "interpreter/templateTable.hpp" 31 #include "memory/universe.inline.hpp" 32 #include "oops/methodData.hpp" 33 #include "oops/objArrayKlass.hpp" 34 #include "oops/oop.inline.hpp" 35 #include "prims/methodHandles.hpp" 36 #include "runtime/sharedRuntime.hpp" 37 #include "runtime/stubRoutines.hpp" 38 #include "runtime/synchronizer.hpp" 39 #include "utilities/macros.hpp" 40 41 #define __ _masm-> 42 43 // Global Register Names 44 static const Register rbcp = LP64_ONLY(r13) NOT_LP64(rsi); 45 static const Register rlocals = LP64_ONLY(r14) NOT_LP64(rdi); 46 47 // Platform-dependent initialization 48 void TemplateTable::pd_initialize() { 49 // No x86 specific initialization 50 } 51 52 // Address Computation: local variables 53 static inline Address iaddress(int n) { 54 return Address(rlocals, Interpreter::local_offset_in_bytes(n)); 55 } 56 57 static inline Address laddress(int n) { 58 return iaddress(n + 1); 59 } 60 61 #ifndef _LP64 62 static inline Address haddress(int n) { 63 return iaddress(n + 0); 64 } 65 #endif 66 67 static inline Address faddress(int n) { 68 return iaddress(n); 69 } 70 71 static inline Address daddress(int n) { 72 return laddress(n); 73 } 74 75 static inline Address aaddress(int n) { 76 return iaddress(n); 77 } 78 79 static inline Address iaddress(Register r) { 80 return Address(rlocals, r, Address::times_ptr); 81 } 82 83 static inline Address laddress(Register r) { 84 return Address(rlocals, r, Address::times_ptr, Interpreter::local_offset_in_bytes(1)); 85 } 86 87 #ifndef _LP64 88 static inline Address haddress(Register r) { 89 return Address(rlocals, r, Interpreter::stackElementScale(), Interpreter::local_offset_in_bytes(0)); 90 } 91 #endif 92 93 static inline Address faddress(Register r) { 94 return iaddress(r); 95 } 96 97 static inline Address daddress(Register r) { 98 return laddress(r); 99 } 100 101 static inline Address aaddress(Register r) { 102 return iaddress(r); 103 } 104 105 106 // expression stack 107 // (Note: Must not use symmetric equivalents at_rsp_m1/2 since they store 108 // data beyond the rsp which is potentially unsafe in an MT environment; 109 // an interrupt may overwrite that data.) 110 static inline Address at_rsp () { 111 return Address(rsp, 0); 112 } 113 114 // At top of Java expression stack which may be different than esp(). It 115 // isn't for category 1 objects. 116 static inline Address at_tos () { 117 return Address(rsp, Interpreter::expr_offset_in_bytes(0)); 118 } 119 120 static inline Address at_tos_p1() { 121 return Address(rsp, Interpreter::expr_offset_in_bytes(1)); 122 } 123 124 static inline Address at_tos_p2() { 125 return Address(rsp, Interpreter::expr_offset_in_bytes(2)); 126 } 127 128 // Condition conversion 129 static Assembler::Condition j_not(TemplateTable::Condition cc) { 130 switch (cc) { 131 case TemplateTable::equal : return Assembler::notEqual; 132 case TemplateTable::not_equal : return Assembler::equal; 133 case TemplateTable::less : return Assembler::greaterEqual; 134 case TemplateTable::less_equal : return Assembler::greater; 135 case TemplateTable::greater : return Assembler::lessEqual; 136 case TemplateTable::greater_equal: return Assembler::less; 137 } 138 ShouldNotReachHere(); 139 return Assembler::zero; 140 } 141 142 143 144 // Miscelaneous helper routines 145 // Store an oop (or NULL) at the address described by obj. 146 // If val == noreg this means store a NULL 147 148 149 static void do_oop_store(InterpreterMacroAssembler* _masm, 150 Address obj, 151 Register val, 152 BarrierSet::Name barrier, 153 bool precise) { 154 assert(val == noreg || val == rax, "parameter is just for looks"); 155 switch (barrier) { 156 #if INCLUDE_ALL_GCS 157 case BarrierSet::G1SATBCTLogging: 158 { 159 // flatten object address if needed 160 // We do it regardless of precise because we need the registers 161 if (obj.index() == noreg && obj.disp() == 0) { 162 if (obj.base() != rdx) { 163 __ movptr(rdx, obj.base()); 164 } 165 } else { 166 __ lea(rdx, obj); 167 } 168 169 Register rtmp = LP64_ONLY(r8) NOT_LP64(rsi); 170 Register rthread = LP64_ONLY(r15_thread) NOT_LP64(rcx); 171 172 NOT_LP64(__ get_thread(rcx)); 173 NOT_LP64(__ save_bcp()); 174 175 __ g1_write_barrier_pre(rdx /* obj */, 176 rbx /* pre_val */, 177 rthread /* thread */, 178 rtmp /* tmp */, 179 val != noreg /* tosca_live */, 180 false /* expand_call */); 181 if (val == noreg) { 182 __ store_heap_oop_null(Address(rdx, 0)); 183 } else { 184 // G1 barrier needs uncompressed oop for region cross check. 185 Register new_val = val; 186 if (UseCompressedOops) { 187 new_val = rbx; 188 __ movptr(new_val, val); 189 } 190 __ store_heap_oop(Address(rdx, 0), val); 191 __ g1_write_barrier_post(rdx /* store_adr */, 192 new_val /* new_val */, 193 rthread /* thread */, 194 rtmp /* tmp */, 195 rbx /* tmp2 */); 196 } 197 NOT_LP64( __ restore_bcp()); 198 } 199 break; 200 #endif // INCLUDE_ALL_GCS 201 case BarrierSet::CardTableForRS: 202 case BarrierSet::CardTableExtension: 203 { 204 if (val == noreg) { 205 __ store_heap_oop_null(obj); 206 } else { 207 __ store_heap_oop(obj, val); 208 // flatten object address if needed 209 if (!precise || (obj.index() == noreg && obj.disp() == 0)) { 210 __ store_check(obj.base()); 211 } else { 212 __ lea(rdx, obj); 213 __ store_check(rdx); 214 } 215 } 216 } 217 break; 218 case BarrierSet::ModRef: 219 if (val == noreg) { 220 __ store_heap_oop_null(obj); 221 } else { 222 __ store_heap_oop(obj, val); 223 } 224 break; 225 default : 226 ShouldNotReachHere(); 227 228 } 229 } 230 231 Address TemplateTable::at_bcp(int offset) { 232 assert(_desc->uses_bcp(), "inconsistent uses_bcp information"); 233 return Address(rbcp, offset); 234 } 235 236 237 void TemplateTable::patch_bytecode(Bytecodes::Code bc, Register bc_reg, 238 Register temp_reg, bool load_bc_into_bc_reg/*=true*/, 239 int byte_no) { 240 if (!RewriteBytecodes) return; 241 Label L_patch_done; 242 243 switch (bc) { 244 case Bytecodes::_fast_aputfield: 245 case Bytecodes::_fast_qputfield: 246 case Bytecodes::_fast_bputfield: 247 case Bytecodes::_fast_cputfield: 248 case Bytecodes::_fast_dputfield: 249 case Bytecodes::_fast_fputfield: 250 case Bytecodes::_fast_iputfield: 251 case Bytecodes::_fast_lputfield: 252 case Bytecodes::_fast_sputfield: 253 { 254 // We skip bytecode quickening for putfield instructions when 255 // the put_code written to the constant pool cache is zero. 256 // This is required so that every execution of this instruction 257 // calls out to InterpreterRuntime::resolve_get_put to do 258 // additional, required work. 259 assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range"); 260 assert(load_bc_into_bc_reg, "we use bc_reg as temp"); 261 __ get_cache_and_index_and_bytecode_at_bcp(temp_reg, bc_reg, temp_reg, byte_no, 1); 262 __ movl(bc_reg, bc); 263 __ cmpl(temp_reg, (int) 0); 264 __ jcc(Assembler::zero, L_patch_done); // don't patch 265 } 266 break; 267 default: 268 assert(byte_no == -1, "sanity"); 269 // the pair bytecodes have already done the load. 270 if (load_bc_into_bc_reg) { 271 __ movl(bc_reg, bc); 272 } 273 } 274 275 if (JvmtiExport::can_post_breakpoint()) { 276 Label L_fast_patch; 277 // if a breakpoint is present we can't rewrite the stream directly 278 __ movzbl(temp_reg, at_bcp(0)); 279 __ cmpl(temp_reg, Bytecodes::_breakpoint); 280 __ jcc(Assembler::notEqual, L_fast_patch); 281 __ get_method(temp_reg); 282 // Let breakpoint table handling rewrite to quicker bytecode 283 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::set_original_bytecode_at), temp_reg, rbcp, bc_reg); 284 #ifndef ASSERT 285 __ jmpb(L_patch_done); 286 #else 287 __ jmp(L_patch_done); 288 #endif 289 __ bind(L_fast_patch); 290 } 291 292 #ifdef ASSERT 293 Label L_okay; 294 __ load_unsigned_byte(temp_reg, at_bcp(0)); 295 __ cmpl(temp_reg, (int) Bytecodes::java_code(bc)); 296 __ jcc(Assembler::equal, L_okay); 297 __ cmpl(temp_reg, bc_reg); 298 __ jcc(Assembler::equal, L_okay); 299 __ stop("patching the wrong bytecode"); 300 __ bind(L_okay); 301 #endif 302 303 // patch bytecode 304 __ movb(at_bcp(0), bc_reg); 305 __ bind(L_patch_done); 306 } 307 // Individual instructions 308 309 310 void TemplateTable::nop() { 311 transition(vtos, vtos); 312 // nothing to do 313 } 314 315 void TemplateTable::shouldnotreachhere() { 316 transition(vtos, vtos); 317 __ stop("shouldnotreachhere bytecode"); 318 } 319 320 void TemplateTable::aconst_null() { 321 transition(vtos, atos); 322 __ xorl(rax, rax); 323 } 324 325 void TemplateTable::iconst(int value) { 326 transition(vtos, itos); 327 if (value == 0) { 328 __ xorl(rax, rax); 329 } else { 330 __ movl(rax, value); 331 } 332 } 333 334 void TemplateTable::lconst(int value) { 335 transition(vtos, ltos); 336 if (value == 0) { 337 __ xorl(rax, rax); 338 } else { 339 __ movl(rax, value); 340 } 341 #ifndef _LP64 342 assert(value >= 0, "check this code"); 343 __ xorptr(rdx, rdx); 344 #endif 345 } 346 347 348 349 void TemplateTable::fconst(int value) { 350 transition(vtos, ftos); 351 if (UseSSE >= 1) { 352 static float one = 1.0f, two = 2.0f; 353 switch (value) { 354 case 0: 355 __ xorps(xmm0, xmm0); 356 break; 357 case 1: 358 __ movflt(xmm0, ExternalAddress((address) &one)); 359 break; 360 case 2: 361 __ movflt(xmm0, ExternalAddress((address) &two)); 362 break; 363 default: 364 ShouldNotReachHere(); 365 break; 366 } 367 } else { 368 #ifdef _LP64 369 ShouldNotReachHere(); 370 #else 371 if (value == 0) { __ fldz(); 372 } else if (value == 1) { __ fld1(); 373 } else if (value == 2) { __ fld1(); __ fld1(); __ faddp(); // should do a better solution here 374 } else { ShouldNotReachHere(); 375 } 376 #endif // _LP64 377 } 378 } 379 380 void TemplateTable::dconst(int value) { 381 transition(vtos, dtos); 382 if (UseSSE >= 2) { 383 static double one = 1.0; 384 switch (value) { 385 case 0: 386 __ xorpd(xmm0, xmm0); 387 break; 388 case 1: 389 __ movdbl(xmm0, ExternalAddress((address) &one)); 390 break; 391 default: 392 ShouldNotReachHere(); 393 break; 394 } 395 } else { 396 #ifdef _LP64 397 ShouldNotReachHere(); 398 #else 399 if (value == 0) { __ fldz(); 400 } else if (value == 1) { __ fld1(); 401 } else { ShouldNotReachHere(); 402 } 403 #endif 404 } 405 } 406 407 void TemplateTable::bipush() { 408 transition(vtos, itos); 409 __ load_signed_byte(rax, at_bcp(1)); 410 } 411 412 void TemplateTable::sipush() { 413 transition(vtos, itos); 414 __ load_unsigned_short(rax, at_bcp(1)); 415 __ bswapl(rax); 416 __ sarl(rax, 16); 417 } 418 419 void TemplateTable::ldc(bool wide) { 420 transition(vtos, vtos); 421 Register rarg = NOT_LP64(rcx) LP64_ONLY(c_rarg1); 422 Label call_ldc, notFloat, notClass, Done; 423 424 if (wide) { 425 __ get_unsigned_2_byte_index_at_bcp(rbx, 1); 426 } else { 427 __ load_unsigned_byte(rbx, at_bcp(1)); 428 } 429 430 __ get_cpool_and_tags(rcx, rax); 431 const int base_offset = ConstantPool::header_size() * wordSize; 432 const int tags_offset = Array<u1>::base_offset_in_bytes(); 433 434 // get type 435 __ movzbl(rdx, Address(rax, rbx, Address::times_1, tags_offset)); 436 437 // unresolved class - get the resolved class 438 __ cmpl(rdx, JVM_CONSTANT_UnresolvedClass); 439 __ jccb(Assembler::equal, call_ldc); 440 441 // unresolved class in error state - call into runtime to throw the error 442 // from the first resolution attempt 443 __ cmpl(rdx, JVM_CONSTANT_UnresolvedClassInError); 444 __ jccb(Assembler::equal, call_ldc); 445 446 // resolved class - need to call vm to get java mirror of the class 447 __ cmpl(rdx, JVM_CONSTANT_Class); 448 __ jcc(Assembler::notEqual, notClass); 449 450 __ bind(call_ldc); 451 452 __ movl(rarg, wide); 453 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), rarg); 454 455 __ push(atos); 456 __ jmp(Done); 457 458 __ bind(notClass); 459 __ cmpl(rdx, JVM_CONSTANT_Float); 460 __ jccb(Assembler::notEqual, notFloat); 461 462 // ftos 463 __ load_float(Address(rcx, rbx, Address::times_ptr, base_offset)); 464 __ push(ftos); 465 __ jmp(Done); 466 467 __ bind(notFloat); 468 #ifdef ASSERT 469 { 470 Label L; 471 __ cmpl(rdx, JVM_CONSTANT_Integer); 472 __ jcc(Assembler::equal, L); 473 // String and Object are rewritten to fast_aldc 474 __ stop("unexpected tag type in ldc"); 475 __ bind(L); 476 } 477 #endif 478 // itos JVM_CONSTANT_Integer only 479 __ movl(rax, Address(rcx, rbx, Address::times_ptr, base_offset)); 480 __ push(itos); 481 __ bind(Done); 482 } 483 484 // Fast path for caching oop constants. 485 void TemplateTable::fast_aldc(bool wide) { 486 transition(vtos, atos); 487 488 Register result = rax; 489 Register tmp = rdx; 490 int index_size = wide ? sizeof(u2) : sizeof(u1); 491 492 Label resolved; 493 494 // We are resolved if the resolved reference cache entry contains a 495 // non-null object (String, MethodType, etc.) 496 assert_different_registers(result, tmp); 497 __ get_cache_index_at_bcp(tmp, 1, index_size); 498 __ load_resolved_reference_at_index(result, tmp); 499 __ testl(result, result); 500 __ jcc(Assembler::notZero, resolved); 501 502 address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc); 503 504 // first time invocation - must resolve first 505 __ movl(tmp, (int)bytecode()); 506 __ call_VM(result, entry, tmp); 507 508 __ bind(resolved); 509 510 if (VerifyOops) { 511 __ verify_oop(result); 512 } 513 } 514 515 void TemplateTable::ldc2_w() { 516 transition(vtos, vtos); 517 Label Long, Done; 518 __ get_unsigned_2_byte_index_at_bcp(rbx, 1); 519 520 __ get_cpool_and_tags(rcx, rax); 521 const int base_offset = ConstantPool::header_size() * wordSize; 522 const int tags_offset = Array<u1>::base_offset_in_bytes(); 523 524 // get type 525 __ cmpb(Address(rax, rbx, Address::times_1, tags_offset), 526 JVM_CONSTANT_Double); 527 __ jccb(Assembler::notEqual, Long); 528 529 // dtos 530 __ load_double(Address(rcx, rbx, Address::times_ptr, base_offset)); 531 __ push(dtos); 532 533 __ jmpb(Done); 534 __ bind(Long); 535 536 // ltos 537 __ movptr(rax, Address(rcx, rbx, Address::times_ptr, base_offset + 0 * wordSize)); 538 NOT_LP64(__ movptr(rdx, Address(rcx, rbx, Address::times_ptr, base_offset + 1 * wordSize))); 539 __ push(ltos); 540 541 __ bind(Done); 542 } 543 544 void TemplateTable::locals_index(Register reg, int offset) { 545 __ load_unsigned_byte(reg, at_bcp(offset)); 546 __ negptr(reg); 547 } 548 549 void TemplateTable::iload() { 550 iload_internal(); 551 } 552 553 void TemplateTable::nofast_iload() { 554 iload_internal(may_not_rewrite); 555 } 556 557 void TemplateTable::iload_internal(RewriteControl rc) { 558 transition(vtos, itos); 559 if (RewriteFrequentPairs && rc == may_rewrite) { 560 Label rewrite, done; 561 const Register bc = LP64_ONLY(c_rarg3) NOT_LP64(rcx); 562 LP64_ONLY(assert(rbx != bc, "register damaged")); 563 564 // get next byte 565 __ load_unsigned_byte(rbx, 566 at_bcp(Bytecodes::length_for(Bytecodes::_iload))); 567 // if _iload, wait to rewrite to iload2. We only want to rewrite the 568 // last two iloads in a pair. Comparing against fast_iload means that 569 // the next bytecode is neither an iload or a caload, and therefore 570 // an iload pair. 571 __ cmpl(rbx, Bytecodes::_iload); 572 __ jcc(Assembler::equal, done); 573 574 __ cmpl(rbx, Bytecodes::_fast_iload); 575 __ movl(bc, Bytecodes::_fast_iload2); 576 577 __ jccb(Assembler::equal, rewrite); 578 579 // if _caload, rewrite to fast_icaload 580 __ cmpl(rbx, Bytecodes::_caload); 581 __ movl(bc, Bytecodes::_fast_icaload); 582 __ jccb(Assembler::equal, rewrite); 583 584 // rewrite so iload doesn't check again. 585 __ movl(bc, Bytecodes::_fast_iload); 586 587 // rewrite 588 // bc: fast bytecode 589 __ bind(rewrite); 590 patch_bytecode(Bytecodes::_iload, bc, rbx, false); 591 __ bind(done); 592 } 593 594 // Get the local value into tos 595 locals_index(rbx); 596 __ movl(rax, iaddress(rbx)); 597 } 598 599 void TemplateTable::fast_iload2() { 600 transition(vtos, itos); 601 locals_index(rbx); 602 __ movl(rax, iaddress(rbx)); 603 __ push(itos); 604 locals_index(rbx, 3); 605 __ movl(rax, iaddress(rbx)); 606 } 607 608 void TemplateTable::fast_iload() { 609 transition(vtos, itos); 610 locals_index(rbx); 611 __ movl(rax, iaddress(rbx)); 612 } 613 614 void TemplateTable::lload() { 615 transition(vtos, ltos); 616 locals_index(rbx); 617 __ movptr(rax, laddress(rbx)); 618 NOT_LP64(__ movl(rdx, haddress(rbx))); 619 } 620 621 void TemplateTable::fload() { 622 transition(vtos, ftos); 623 locals_index(rbx); 624 __ load_float(faddress(rbx)); 625 } 626 627 void TemplateTable::dload() { 628 transition(vtos, dtos); 629 locals_index(rbx); 630 __ load_double(daddress(rbx)); 631 } 632 633 void TemplateTable::aload() { 634 transition(vtos, atos); 635 locals_index(rbx); 636 __ movptr(rax, aaddress(rbx)); 637 } 638 639 void TemplateTable::vload() { 640 transition(vtos, qtos); 641 locals_index(rbx); 642 __ movptr(rax, aaddress(rbx)); 643 } 644 645 void TemplateTable::locals_index_wide(Register reg) { 646 __ load_unsigned_short(reg, at_bcp(2)); 647 __ bswapl(reg); 648 __ shrl(reg, 16); 649 __ negptr(reg); 650 } 651 652 void TemplateTable::wide_iload() { 653 transition(vtos, itos); 654 locals_index_wide(rbx); 655 __ movl(rax, iaddress(rbx)); 656 } 657 658 void TemplateTable::wide_lload() { 659 transition(vtos, ltos); 660 locals_index_wide(rbx); 661 __ movptr(rax, laddress(rbx)); 662 NOT_LP64(__ movl(rdx, haddress(rbx))); 663 } 664 665 void TemplateTable::wide_fload() { 666 transition(vtos, ftos); 667 locals_index_wide(rbx); 668 __ load_float(faddress(rbx)); 669 } 670 671 void TemplateTable::wide_dload() { 672 transition(vtos, dtos); 673 locals_index_wide(rbx); 674 __ load_double(daddress(rbx)); 675 } 676 677 void TemplateTable::wide_aload() { 678 transition(vtos, atos); 679 locals_index_wide(rbx); 680 __ movptr(rax, aaddress(rbx)); 681 } 682 683 void TemplateTable::wide_vload() { 684 transition(vtos, qtos); 685 locals_index_wide(rbx); 686 __ movptr(rax, aaddress(rbx)); 687 } 688 689 void TemplateTable::index_check(Register array, Register index) { 690 // Pop ptr into array 691 __ pop_ptr(array); 692 index_check_without_pop(array, index); 693 } 694 695 void TemplateTable::index_check_without_pop(Register array, Register index) { 696 // destroys rbx 697 // check array 698 __ null_check(array, arrayOopDesc::length_offset_in_bytes()); 699 // sign extend index for use by indexed load 700 __ movl2ptr(index, index); 701 // check index 702 __ cmpl(index, Address(array, arrayOopDesc::length_offset_in_bytes())); 703 if (index != rbx) { 704 // ??? convention: move aberrant index into rbx for exception message 705 assert(rbx != array, "different registers"); 706 __ movl(rbx, index); 707 } 708 __ jump_cc(Assembler::aboveEqual, 709 ExternalAddress(Interpreter::_throw_ArrayIndexOutOfBoundsException_entry)); 710 } 711 712 713 void TemplateTable::iaload() { 714 transition(itos, itos); 715 // rax: index 716 // rdx: array 717 index_check(rdx, rax); // kills rbx 718 __ movl(rax, Address(rdx, rax, 719 Address::times_4, 720 arrayOopDesc::base_offset_in_bytes(T_INT))); 721 } 722 723 void TemplateTable::laload() { 724 transition(itos, ltos); 725 // rax: index 726 // rdx: array 727 index_check(rdx, rax); // kills rbx 728 NOT_LP64(__ mov(rbx, rax)); 729 // rbx,: index 730 __ movptr(rax, Address(rdx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_LONG) + 0 * wordSize)); 731 NOT_LP64(__ movl(rdx, Address(rdx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_LONG) + 1 * wordSize))); 732 } 733 734 735 736 void TemplateTable::faload() { 737 transition(itos, ftos); 738 // rax: index 739 // rdx: array 740 index_check(rdx, rax); // kills rbx 741 __ load_float(Address(rdx, rax, 742 Address::times_4, 743 arrayOopDesc::base_offset_in_bytes(T_FLOAT))); 744 } 745 746 void TemplateTable::daload() { 747 transition(itos, dtos); 748 // rax: index 749 // rdx: array 750 index_check(rdx, rax); // kills rbx 751 __ load_double(Address(rdx, rax, 752 Address::times_8, 753 arrayOopDesc::base_offset_in_bytes(T_DOUBLE))); 754 } 755 756 void TemplateTable::aaload() { 757 transition(itos, atos); 758 // rax: index 759 // rdx: array 760 index_check(rdx, rax); // kills rbx 761 __ load_heap_oop(rax, Address(rdx, rax, 762 UseCompressedOops ? Address::times_4 : Address::times_ptr, 763 arrayOopDesc::base_offset_in_bytes(T_OBJECT))); 764 } 765 766 void TemplateTable::vaload() { 767 transition(itos, qtos); 768 769 Register array = rcx; 770 Register index = rax; 771 772 index_check(array, index); // kills rbx, pops array 773 774 __ call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::value_array_load) , array, index); 775 } 776 777 void TemplateTable::baload() { 778 transition(itos, itos); 779 // rax: index 780 // rdx: array 781 index_check(rdx, rax); // kills rbx 782 __ load_signed_byte(rax, Address(rdx, rax, Address::times_1, arrayOopDesc::base_offset_in_bytes(T_BYTE))); 783 } 784 785 void TemplateTable::caload() { 786 transition(itos, itos); 787 // rax: index 788 // rdx: array 789 index_check(rdx, rax); // kills rbx 790 __ load_unsigned_short(rax, Address(rdx, rax, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR))); 791 } 792 793 // iload followed by caload frequent pair 794 void TemplateTable::fast_icaload() { 795 transition(vtos, itos); 796 // load index out of locals 797 locals_index(rbx); 798 __ movl(rax, iaddress(rbx)); 799 800 // rax: index 801 // rdx: array 802 index_check(rdx, rax); // kills rbx 803 __ load_unsigned_short(rax, 804 Address(rdx, rax, 805 Address::times_2, 806 arrayOopDesc::base_offset_in_bytes(T_CHAR))); 807 } 808 809 810 void TemplateTable::saload() { 811 transition(itos, itos); 812 // rax: index 813 // rdx: array 814 index_check(rdx, rax); // kills rbx 815 __ load_signed_short(rax, Address(rdx, rax, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_SHORT))); 816 } 817 818 void TemplateTable::iload(int n) { 819 transition(vtos, itos); 820 __ movl(rax, iaddress(n)); 821 } 822 823 void TemplateTable::lload(int n) { 824 transition(vtos, ltos); 825 __ movptr(rax, laddress(n)); 826 NOT_LP64(__ movptr(rdx, haddress(n))); 827 } 828 829 void TemplateTable::fload(int n) { 830 transition(vtos, ftos); 831 __ load_float(faddress(n)); 832 } 833 834 void TemplateTable::dload(int n) { 835 transition(vtos, dtos); 836 __ load_double(daddress(n)); 837 } 838 839 void TemplateTable::aload(int n) { 840 transition(vtos, atos); 841 __ movptr(rax, aaddress(n)); 842 } 843 844 void TemplateTable::aload_0() { 845 aload_0_internal(); 846 } 847 848 void TemplateTable::nofast_aload_0() { 849 aload_0_internal(may_not_rewrite); 850 } 851 852 void TemplateTable::aload_0_internal(RewriteControl rc) { 853 transition(vtos, atos); 854 // According to bytecode histograms, the pairs: 855 // 856 // _aload_0, _fast_igetfield 857 // _aload_0, _fast_agetfield 858 // _aload_0, _fast_fgetfield 859 // 860 // occur frequently. If RewriteFrequentPairs is set, the (slow) 861 // _aload_0 bytecode checks if the next bytecode is either 862 // _fast_igetfield, _fast_agetfield or _fast_fgetfield and then 863 // rewrites the current bytecode into a pair bytecode; otherwise it 864 // rewrites the current bytecode into _fast_aload_0 that doesn't do 865 // the pair check anymore. 866 // 867 // Note: If the next bytecode is _getfield, the rewrite must be 868 // delayed, otherwise we may miss an opportunity for a pair. 869 // 870 // Also rewrite frequent pairs 871 // aload_0, aload_1 872 // aload_0, iload_1 873 // These bytecodes with a small amount of code are most profitable 874 // to rewrite 875 if (RewriteFrequentPairs && rc == may_rewrite) { 876 Label rewrite, done; 877 878 const Register bc = LP64_ONLY(c_rarg3) NOT_LP64(rcx); 879 LP64_ONLY(assert(rbx != bc, "register damaged")); 880 881 // get next byte 882 __ load_unsigned_byte(rbx, at_bcp(Bytecodes::length_for(Bytecodes::_aload_0))); 883 884 // do actual aload_0 885 aload(0); 886 887 // if _getfield then wait with rewrite 888 __ cmpl(rbx, Bytecodes::_getfield); 889 __ jcc(Assembler::equal, done); 890 891 // if _igetfield then reqrite to _fast_iaccess_0 892 assert(Bytecodes::java_code(Bytecodes::_fast_iaccess_0) == Bytecodes::_aload_0, "fix bytecode definition"); 893 __ cmpl(rbx, Bytecodes::_fast_igetfield); 894 __ movl(bc, Bytecodes::_fast_iaccess_0); 895 __ jccb(Assembler::equal, rewrite); 896 897 // if _agetfield then reqrite to _fast_aaccess_0 898 assert(Bytecodes::java_code(Bytecodes::_fast_aaccess_0) == Bytecodes::_aload_0, "fix bytecode definition"); 899 __ cmpl(rbx, Bytecodes::_fast_agetfield); 900 __ movl(bc, Bytecodes::_fast_aaccess_0); 901 __ jccb(Assembler::equal, rewrite); 902 903 // if _fgetfield then reqrite to _fast_faccess_0 904 assert(Bytecodes::java_code(Bytecodes::_fast_faccess_0) == Bytecodes::_aload_0, "fix bytecode definition"); 905 __ cmpl(rbx, Bytecodes::_fast_fgetfield); 906 __ movl(bc, Bytecodes::_fast_faccess_0); 907 __ jccb(Assembler::equal, rewrite); 908 909 // else rewrite to _fast_aload0 910 assert(Bytecodes::java_code(Bytecodes::_fast_aload_0) == Bytecodes::_aload_0, "fix bytecode definition"); 911 __ movl(bc, Bytecodes::_fast_aload_0); 912 913 // rewrite 914 // bc: fast bytecode 915 __ bind(rewrite); 916 patch_bytecode(Bytecodes::_aload_0, bc, rbx, false); 917 918 __ bind(done); 919 } else { 920 aload(0); 921 } 922 } 923 924 void TemplateTable::istore() { 925 transition(itos, vtos); 926 locals_index(rbx); 927 __ movl(iaddress(rbx), rax); 928 } 929 930 931 void TemplateTable::lstore() { 932 transition(ltos, vtos); 933 locals_index(rbx); 934 __ movptr(laddress(rbx), rax); 935 NOT_LP64(__ movptr(haddress(rbx), rdx)); 936 } 937 938 void TemplateTable::fstore() { 939 transition(ftos, vtos); 940 locals_index(rbx); 941 __ store_float(faddress(rbx)); 942 } 943 944 void TemplateTable::dstore() { 945 transition(dtos, vtos); 946 locals_index(rbx); 947 __ store_double(daddress(rbx)); 948 } 949 950 void TemplateTable::astore() { 951 transition(vtos, vtos); 952 __ pop_ptr(rax); 953 locals_index(rbx); 954 __ movptr(aaddress(rbx), rax); 955 } 956 957 void TemplateTable::vstore() { 958 transition(vtos, vtos); 959 __ pop_ptr(rax); 960 locals_index(rbx); 961 __ movptr(aaddress(rbx), rax); 962 } 963 964 void TemplateTable::wide_istore() { 965 transition(vtos, vtos); 966 __ pop_i(); 967 locals_index_wide(rbx); 968 __ movl(iaddress(rbx), rax); 969 } 970 971 void TemplateTable::wide_lstore() { 972 transition(vtos, vtos); 973 NOT_LP64(__ pop_l(rax, rdx)); 974 LP64_ONLY(__ pop_l()); 975 locals_index_wide(rbx); 976 __ movptr(laddress(rbx), rax); 977 NOT_LP64(__ movl(haddress(rbx), rdx)); 978 } 979 980 void TemplateTable::wide_fstore() { 981 #ifdef _LP64 982 transition(vtos, vtos); 983 __ pop_f(xmm0); 984 locals_index_wide(rbx); 985 __ movflt(faddress(rbx), xmm0); 986 #else 987 wide_istore(); 988 #endif 989 } 990 991 void TemplateTable::wide_dstore() { 992 #ifdef _LP64 993 transition(vtos, vtos); 994 __ pop_d(xmm0); 995 locals_index_wide(rbx); 996 __ movdbl(daddress(rbx), xmm0); 997 #else 998 wide_lstore(); 999 #endif 1000 } 1001 1002 void TemplateTable::wide_astore() { 1003 transition(vtos, vtos); 1004 __ pop_ptr(rax); 1005 locals_index_wide(rbx); 1006 __ movptr(aaddress(rbx), rax); 1007 } 1008 1009 void TemplateTable::wide_vstore() { 1010 transition(vtos, vtos); 1011 __ pop_ptr(rax); 1012 locals_index_wide(rbx); 1013 __ movptr(aaddress(rbx), rax); 1014 } 1015 1016 void TemplateTable::iastore() { 1017 transition(itos, vtos); 1018 __ pop_i(rbx); 1019 // rax: value 1020 // rbx: index 1021 // rdx: array 1022 index_check(rdx, rbx); // prefer index in rbx 1023 __ movl(Address(rdx, rbx, 1024 Address::times_4, 1025 arrayOopDesc::base_offset_in_bytes(T_INT)), 1026 rax); 1027 } 1028 1029 void TemplateTable::lastore() { 1030 transition(ltos, vtos); 1031 __ pop_i(rbx); 1032 // rax,: low(value) 1033 // rcx: array 1034 // rdx: high(value) 1035 index_check(rcx, rbx); // prefer index in rbx, 1036 // rbx,: index 1037 __ movptr(Address(rcx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_LONG) + 0 * wordSize), rax); 1038 NOT_LP64(__ movl(Address(rcx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_LONG) + 1 * wordSize), rdx)); 1039 } 1040 1041 1042 void TemplateTable::fastore() { 1043 transition(ftos, vtos); 1044 __ pop_i(rbx); 1045 // value is in UseSSE >= 1 ? xmm0 : ST(0) 1046 // rbx: index 1047 // rdx: array 1048 index_check(rdx, rbx); // prefer index in rbx 1049 __ store_float(Address(rdx, rbx, Address::times_4, arrayOopDesc::base_offset_in_bytes(T_FLOAT))); 1050 } 1051 1052 void TemplateTable::dastore() { 1053 transition(dtos, vtos); 1054 __ pop_i(rbx); 1055 // value is in UseSSE >= 2 ? xmm0 : ST(0) 1056 // rbx: index 1057 // rdx: array 1058 index_check(rdx, rbx); // prefer index in rbx 1059 __ store_double(Address(rdx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_DOUBLE))); 1060 } 1061 1062 void TemplateTable::aastore() { 1063 Label is_null, ok_is_subtype, done; 1064 transition(vtos, vtos); 1065 // stack: ..., array, index, value 1066 __ movptr(rax, at_tos()); // value 1067 __ movl(rcx, at_tos_p1()); // index 1068 __ movptr(rdx, at_tos_p2()); // array 1069 1070 Address element_address(rdx, rcx, 1071 UseCompressedOops? Address::times_4 : Address::times_ptr, 1072 arrayOopDesc::base_offset_in_bytes(T_OBJECT)); 1073 1074 index_check_without_pop(rdx, rcx); // kills rbx 1075 __ testptr(rax, rax); 1076 __ jcc(Assembler::zero, is_null); 1077 1078 // Move subklass into rbx 1079 __ load_klass(rbx, rax); 1080 // Move superklass into rax 1081 __ load_klass(rax, rdx); 1082 __ movptr(rax, Address(rax, 1083 ObjArrayKlass::element_klass_offset())); 1084 // Compress array + index*oopSize + 12 into a single register. Frees rcx. 1085 __ lea(rdx, element_address); 1086 1087 // Generate subtype check. Blows rcx, rdi 1088 // Superklass in rax. Subklass in rbx. 1089 __ gen_subtype_check(rbx, ok_is_subtype); 1090 1091 // Come here on failure 1092 // object is at TOS 1093 __ jump(ExternalAddress(Interpreter::_throw_ArrayStoreException_entry)); 1094 1095 // Come here on success 1096 __ bind(ok_is_subtype); 1097 1098 // Get the value we will store 1099 __ movptr(rax, at_tos()); 1100 // Now store using the appropriate barrier 1101 do_oop_store(_masm, Address(rdx, 0), rax, _bs->kind(), true); 1102 __ jmp(done); 1103 1104 // Have a NULL in rax, rdx=array, ecx=index. Store NULL at ary[idx] 1105 __ bind(is_null); 1106 __ profile_null_seen(rbx); 1107 1108 // Store a NULL 1109 do_oop_store(_masm, element_address, noreg, _bs->kind(), true); 1110 1111 // Pop stack arguments 1112 __ bind(done); 1113 __ addptr(rsp, 3 * Interpreter::stackElementSize); 1114 } 1115 1116 void TemplateTable::vastore() { 1117 transition(vtos, vtos); 1118 1119 Register value = rcx; 1120 Register index = rbx; 1121 Register array = rax; 1122 1123 // stack: ..., array, index, value 1124 __ pop_ptr(value); 1125 __ pop_i(index); 1126 __ pop_ptr(array); 1127 1128 index_check_without_pop(array, index); 1129 1130 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::value_array_store), array, index, value); 1131 } 1132 1133 void TemplateTable::bastore() { 1134 transition(itos, vtos); 1135 __ pop_i(rbx); 1136 // rax: value 1137 // rbx: index 1138 // rdx: array 1139 index_check(rdx, rbx); // prefer index in rbx 1140 __ movb(Address(rdx, rbx, 1141 Address::times_1, 1142 arrayOopDesc::base_offset_in_bytes(T_BYTE)), 1143 rax); 1144 } 1145 1146 void TemplateTable::castore() { 1147 transition(itos, vtos); 1148 __ pop_i(rbx); 1149 // rax: value 1150 // rbx: index 1151 // rdx: array 1152 index_check(rdx, rbx); // prefer index in rbx 1153 __ movw(Address(rdx, rbx, 1154 Address::times_2, 1155 arrayOopDesc::base_offset_in_bytes(T_CHAR)), 1156 rax); 1157 } 1158 1159 1160 void TemplateTable::sastore() { 1161 castore(); 1162 } 1163 1164 void TemplateTable::istore(int n) { 1165 transition(itos, vtos); 1166 __ movl(iaddress(n), rax); 1167 } 1168 1169 void TemplateTable::lstore(int n) { 1170 transition(ltos, vtos); 1171 __ movptr(laddress(n), rax); 1172 NOT_LP64(__ movptr(haddress(n), rdx)); 1173 } 1174 1175 void TemplateTable::fstore(int n) { 1176 transition(ftos, vtos); 1177 __ store_float(faddress(n)); 1178 } 1179 1180 void TemplateTable::dstore(int n) { 1181 transition(dtos, vtos); 1182 __ store_double(daddress(n)); 1183 } 1184 1185 1186 void TemplateTable::astore(int n) { 1187 transition(vtos, vtos); 1188 __ pop_ptr(rax); 1189 __ movptr(aaddress(n), rax); 1190 } 1191 1192 void TemplateTable::pop() { 1193 transition(vtos, vtos); 1194 __ addptr(rsp, Interpreter::stackElementSize); 1195 } 1196 1197 void TemplateTable::pop2() { 1198 transition(vtos, vtos); 1199 __ addptr(rsp, 2 * Interpreter::stackElementSize); 1200 } 1201 1202 1203 void TemplateTable::dup() { 1204 transition(vtos, vtos); 1205 __ load_ptr(0, rax); 1206 __ push_ptr(rax); 1207 // stack: ..., a, a 1208 } 1209 1210 void TemplateTable::dup_x1() { 1211 transition(vtos, vtos); 1212 // stack: ..., a, b 1213 __ load_ptr( 0, rax); // load b 1214 __ load_ptr( 1, rcx); // load a 1215 __ store_ptr(1, rax); // store b 1216 __ store_ptr(0, rcx); // store a 1217 __ push_ptr(rax); // push b 1218 // stack: ..., b, a, b 1219 } 1220 1221 void TemplateTable::dup_x2() { 1222 transition(vtos, vtos); 1223 // stack: ..., a, b, c 1224 __ load_ptr( 0, rax); // load c 1225 __ load_ptr( 2, rcx); // load a 1226 __ store_ptr(2, rax); // store c in a 1227 __ push_ptr(rax); // push c 1228 // stack: ..., c, b, c, c 1229 __ load_ptr( 2, rax); // load b 1230 __ store_ptr(2, rcx); // store a in b 1231 // stack: ..., c, a, c, c 1232 __ store_ptr(1, rax); // store b in c 1233 // stack: ..., c, a, b, c 1234 } 1235 1236 void TemplateTable::dup2() { 1237 transition(vtos, vtos); 1238 // stack: ..., a, b 1239 __ load_ptr(1, rax); // load a 1240 __ push_ptr(rax); // push a 1241 __ load_ptr(1, rax); // load b 1242 __ push_ptr(rax); // push b 1243 // stack: ..., a, b, a, b 1244 } 1245 1246 1247 void TemplateTable::dup2_x1() { 1248 transition(vtos, vtos); 1249 // stack: ..., a, b, c 1250 __ load_ptr( 0, rcx); // load c 1251 __ load_ptr( 1, rax); // load b 1252 __ push_ptr(rax); // push b 1253 __ push_ptr(rcx); // push c 1254 // stack: ..., a, b, c, b, c 1255 __ store_ptr(3, rcx); // store c in b 1256 // stack: ..., a, c, c, b, c 1257 __ load_ptr( 4, rcx); // load a 1258 __ store_ptr(2, rcx); // store a in 2nd c 1259 // stack: ..., a, c, a, b, c 1260 __ store_ptr(4, rax); // store b in a 1261 // stack: ..., b, c, a, b, c 1262 } 1263 1264 void TemplateTable::dup2_x2() { 1265 transition(vtos, vtos); 1266 // stack: ..., a, b, c, d 1267 __ load_ptr( 0, rcx); // load d 1268 __ load_ptr( 1, rax); // load c 1269 __ push_ptr(rax); // push c 1270 __ push_ptr(rcx); // push d 1271 // stack: ..., a, b, c, d, c, d 1272 __ load_ptr( 4, rax); // load b 1273 __ store_ptr(2, rax); // store b in d 1274 __ store_ptr(4, rcx); // store d in b 1275 // stack: ..., a, d, c, b, c, d 1276 __ load_ptr( 5, rcx); // load a 1277 __ load_ptr( 3, rax); // load c 1278 __ store_ptr(3, rcx); // store a in c 1279 __ store_ptr(5, rax); // store c in a 1280 // stack: ..., c, d, a, b, c, d 1281 } 1282 1283 void TemplateTable::swap() { 1284 transition(vtos, vtos); 1285 // stack: ..., a, b 1286 __ load_ptr( 1, rcx); // load a 1287 __ load_ptr( 0, rax); // load b 1288 __ store_ptr(0, rcx); // store a in b 1289 __ store_ptr(1, rax); // store b in a 1290 // stack: ..., b, a 1291 } 1292 1293 void TemplateTable::iop2(Operation op) { 1294 transition(itos, itos); 1295 switch (op) { 1296 case add : __ pop_i(rdx); __ addl (rax, rdx); break; 1297 case sub : __ movl(rdx, rax); __ pop_i(rax); __ subl (rax, rdx); break; 1298 case mul : __ pop_i(rdx); __ imull(rax, rdx); break; 1299 case _and : __ pop_i(rdx); __ andl (rax, rdx); break; 1300 case _or : __ pop_i(rdx); __ orl (rax, rdx); break; 1301 case _xor : __ pop_i(rdx); __ xorl (rax, rdx); break; 1302 case shl : __ movl(rcx, rax); __ pop_i(rax); __ shll (rax); break; 1303 case shr : __ movl(rcx, rax); __ pop_i(rax); __ sarl (rax); break; 1304 case ushr : __ movl(rcx, rax); __ pop_i(rax); __ shrl (rax); break; 1305 default : ShouldNotReachHere(); 1306 } 1307 } 1308 1309 void TemplateTable::lop2(Operation op) { 1310 transition(ltos, ltos); 1311 #ifdef _LP64 1312 switch (op) { 1313 case add : __ pop_l(rdx); __ addptr(rax, rdx); break; 1314 case sub : __ mov(rdx, rax); __ pop_l(rax); __ subptr(rax, rdx); break; 1315 case _and : __ pop_l(rdx); __ andptr(rax, rdx); break; 1316 case _or : __ pop_l(rdx); __ orptr (rax, rdx); break; 1317 case _xor : __ pop_l(rdx); __ xorptr(rax, rdx); break; 1318 default : ShouldNotReachHere(); 1319 } 1320 #else 1321 __ pop_l(rbx, rcx); 1322 switch (op) { 1323 case add : __ addl(rax, rbx); __ adcl(rdx, rcx); break; 1324 case sub : __ subl(rbx, rax); __ sbbl(rcx, rdx); 1325 __ mov (rax, rbx); __ mov (rdx, rcx); break; 1326 case _and : __ andl(rax, rbx); __ andl(rdx, rcx); break; 1327 case _or : __ orl (rax, rbx); __ orl (rdx, rcx); break; 1328 case _xor : __ xorl(rax, rbx); __ xorl(rdx, rcx); break; 1329 default : ShouldNotReachHere(); 1330 } 1331 #endif 1332 } 1333 1334 void TemplateTable::idiv() { 1335 transition(itos, itos); 1336 __ movl(rcx, rax); 1337 __ pop_i(rax); 1338 // Note: could xor rax and ecx and compare with (-1 ^ min_int). If 1339 // they are not equal, one could do a normal division (no correction 1340 // needed), which may speed up this implementation for the common case. 1341 // (see also JVM spec., p.243 & p.271) 1342 __ corrected_idivl(rcx); 1343 } 1344 1345 void TemplateTable::irem() { 1346 transition(itos, itos); 1347 __ movl(rcx, rax); 1348 __ pop_i(rax); 1349 // Note: could xor rax and ecx and compare with (-1 ^ min_int). If 1350 // they are not equal, one could do a normal division (no correction 1351 // needed), which may speed up this implementation for the common case. 1352 // (see also JVM spec., p.243 & p.271) 1353 __ corrected_idivl(rcx); 1354 __ movl(rax, rdx); 1355 } 1356 1357 void TemplateTable::lmul() { 1358 transition(ltos, ltos); 1359 #ifdef _LP64 1360 __ pop_l(rdx); 1361 __ imulq(rax, rdx); 1362 #else 1363 __ pop_l(rbx, rcx); 1364 __ push(rcx); __ push(rbx); 1365 __ push(rdx); __ push(rax); 1366 __ lmul(2 * wordSize, 0); 1367 __ addptr(rsp, 4 * wordSize); // take off temporaries 1368 #endif 1369 } 1370 1371 void TemplateTable::ldiv() { 1372 transition(ltos, ltos); 1373 #ifdef _LP64 1374 __ mov(rcx, rax); 1375 __ pop_l(rax); 1376 // generate explicit div0 check 1377 __ testq(rcx, rcx); 1378 __ jump_cc(Assembler::zero, 1379 ExternalAddress(Interpreter::_throw_ArithmeticException_entry)); 1380 // Note: could xor rax and rcx and compare with (-1 ^ min_int). If 1381 // they are not equal, one could do a normal division (no correction 1382 // needed), which may speed up this implementation for the common case. 1383 // (see also JVM spec., p.243 & p.271) 1384 __ corrected_idivq(rcx); // kills rbx 1385 #else 1386 __ pop_l(rbx, rcx); 1387 __ push(rcx); __ push(rbx); 1388 __ push(rdx); __ push(rax); 1389 // check if y = 0 1390 __ orl(rax, rdx); 1391 __ jump_cc(Assembler::zero, 1392 ExternalAddress(Interpreter::_throw_ArithmeticException_entry)); 1393 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::ldiv)); 1394 __ addptr(rsp, 4 * wordSize); // take off temporaries 1395 #endif 1396 } 1397 1398 void TemplateTable::lrem() { 1399 transition(ltos, ltos); 1400 #ifdef _LP64 1401 __ mov(rcx, rax); 1402 __ pop_l(rax); 1403 __ testq(rcx, rcx); 1404 __ jump_cc(Assembler::zero, 1405 ExternalAddress(Interpreter::_throw_ArithmeticException_entry)); 1406 // Note: could xor rax and rcx and compare with (-1 ^ min_int). If 1407 // they are not equal, one could do a normal division (no correction 1408 // needed), which may speed up this implementation for the common case. 1409 // (see also JVM spec., p.243 & p.271) 1410 __ corrected_idivq(rcx); // kills rbx 1411 __ mov(rax, rdx); 1412 #else 1413 __ pop_l(rbx, rcx); 1414 __ push(rcx); __ push(rbx); 1415 __ push(rdx); __ push(rax); 1416 // check if y = 0 1417 __ orl(rax, rdx); 1418 __ jump_cc(Assembler::zero, 1419 ExternalAddress(Interpreter::_throw_ArithmeticException_entry)); 1420 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::lrem)); 1421 __ addptr(rsp, 4 * wordSize); 1422 #endif 1423 } 1424 1425 void TemplateTable::lshl() { 1426 transition(itos, ltos); 1427 __ movl(rcx, rax); // get shift count 1428 #ifdef _LP64 1429 __ pop_l(rax); // get shift value 1430 __ shlq(rax); 1431 #else 1432 __ pop_l(rax, rdx); // get shift value 1433 __ lshl(rdx, rax); 1434 #endif 1435 } 1436 1437 void TemplateTable::lshr() { 1438 #ifdef _LP64 1439 transition(itos, ltos); 1440 __ movl(rcx, rax); // get shift count 1441 __ pop_l(rax); // get shift value 1442 __ sarq(rax); 1443 #else 1444 transition(itos, ltos); 1445 __ mov(rcx, rax); // get shift count 1446 __ pop_l(rax, rdx); // get shift value 1447 __ lshr(rdx, rax, true); 1448 #endif 1449 } 1450 1451 void TemplateTable::lushr() { 1452 transition(itos, ltos); 1453 #ifdef _LP64 1454 __ movl(rcx, rax); // get shift count 1455 __ pop_l(rax); // get shift value 1456 __ shrq(rax); 1457 #else 1458 __ mov(rcx, rax); // get shift count 1459 __ pop_l(rax, rdx); // get shift value 1460 __ lshr(rdx, rax); 1461 #endif 1462 } 1463 1464 void TemplateTable::fop2(Operation op) { 1465 transition(ftos, ftos); 1466 1467 if (UseSSE >= 1) { 1468 switch (op) { 1469 case add: 1470 __ addss(xmm0, at_rsp()); 1471 __ addptr(rsp, Interpreter::stackElementSize); 1472 break; 1473 case sub: 1474 __ movflt(xmm1, xmm0); 1475 __ pop_f(xmm0); 1476 __ subss(xmm0, xmm1); 1477 break; 1478 case mul: 1479 __ mulss(xmm0, at_rsp()); 1480 __ addptr(rsp, Interpreter::stackElementSize); 1481 break; 1482 case div: 1483 __ movflt(xmm1, xmm0); 1484 __ pop_f(xmm0); 1485 __ divss(xmm0, xmm1); 1486 break; 1487 case rem: 1488 // On x86_64 platforms the SharedRuntime::frem method is called to perform the 1489 // modulo operation. The frem method calls the function 1490 // double fmod(double x, double y) in math.h. The documentation of fmod states: 1491 // "If x or y is a NaN, a NaN is returned." without specifying what type of NaN 1492 // (signalling or quiet) is returned. 1493 // 1494 // On x86_32 platforms the FPU is used to perform the modulo operation. The 1495 // reason is that on 32-bit Windows the sign of modulo operations diverges from 1496 // what is considered the standard (e.g., -0.0f % -3.14f is 0.0f (and not -0.0f). 1497 // The fprem instruction used on x86_32 is functionally equivalent to 1498 // SharedRuntime::frem in that it returns a NaN. 1499 #ifdef _LP64 1500 __ movflt(xmm1, xmm0); 1501 __ pop_f(xmm0); 1502 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::frem), 2); 1503 #else 1504 __ push_f(xmm0); 1505 __ pop_f(); 1506 __ fld_s(at_rsp()); 1507 __ fremr(rax); 1508 __ f2ieee(); 1509 __ pop(rax); // pop second operand off the stack 1510 __ push_f(); 1511 __ pop_f(xmm0); 1512 #endif 1513 break; 1514 default: 1515 ShouldNotReachHere(); 1516 break; 1517 } 1518 } else { 1519 #ifdef _LP64 1520 ShouldNotReachHere(); 1521 #else 1522 switch (op) { 1523 case add: __ fadd_s (at_rsp()); break; 1524 case sub: __ fsubr_s(at_rsp()); break; 1525 case mul: __ fmul_s (at_rsp()); break; 1526 case div: __ fdivr_s(at_rsp()); break; 1527 case rem: __ fld_s (at_rsp()); __ fremr(rax); break; 1528 default : ShouldNotReachHere(); 1529 } 1530 __ f2ieee(); 1531 __ pop(rax); // pop second operand off the stack 1532 #endif // _LP64 1533 } 1534 } 1535 1536 void TemplateTable::dop2(Operation op) { 1537 transition(dtos, dtos); 1538 if (UseSSE >= 2) { 1539 switch (op) { 1540 case add: 1541 __ addsd(xmm0, at_rsp()); 1542 __ addptr(rsp, 2 * Interpreter::stackElementSize); 1543 break; 1544 case sub: 1545 __ movdbl(xmm1, xmm0); 1546 __ pop_d(xmm0); 1547 __ subsd(xmm0, xmm1); 1548 break; 1549 case mul: 1550 __ mulsd(xmm0, at_rsp()); 1551 __ addptr(rsp, 2 * Interpreter::stackElementSize); 1552 break; 1553 case div: 1554 __ movdbl(xmm1, xmm0); 1555 __ pop_d(xmm0); 1556 __ divsd(xmm0, xmm1); 1557 break; 1558 case rem: 1559 // Similar to fop2(), the modulo operation is performed using the 1560 // SharedRuntime::drem method (on x86_64 platforms) or using the 1561 // FPU (on x86_32 platforms) for the same reasons as mentioned in fop2(). 1562 #ifdef _LP64 1563 __ movdbl(xmm1, xmm0); 1564 __ pop_d(xmm0); 1565 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::drem), 2); 1566 #else 1567 __ push_d(xmm0); 1568 __ pop_d(); 1569 __ fld_d(at_rsp()); 1570 __ fremr(rax); 1571 __ d2ieee(); 1572 __ pop(rax); 1573 __ pop(rdx); 1574 __ push_d(); 1575 __ pop_d(xmm0); 1576 #endif 1577 break; 1578 default: 1579 ShouldNotReachHere(); 1580 break; 1581 } 1582 } else { 1583 #ifdef _LP64 1584 ShouldNotReachHere(); 1585 #else 1586 switch (op) { 1587 case add: __ fadd_d (at_rsp()); break; 1588 case sub: __ fsubr_d(at_rsp()); break; 1589 case mul: { 1590 Label L_strict; 1591 Label L_join; 1592 const Address access_flags (rcx, Method::access_flags_offset()); 1593 __ get_method(rcx); 1594 __ movl(rcx, access_flags); 1595 __ testl(rcx, JVM_ACC_STRICT); 1596 __ jccb(Assembler::notZero, L_strict); 1597 __ fmul_d (at_rsp()); 1598 __ jmpb(L_join); 1599 __ bind(L_strict); 1600 __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias1())); 1601 __ fmulp(); 1602 __ fmul_d (at_rsp()); 1603 __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias2())); 1604 __ fmulp(); 1605 __ bind(L_join); 1606 break; 1607 } 1608 case div: { 1609 Label L_strict; 1610 Label L_join; 1611 const Address access_flags (rcx, Method::access_flags_offset()); 1612 __ get_method(rcx); 1613 __ movl(rcx, access_flags); 1614 __ testl(rcx, JVM_ACC_STRICT); 1615 __ jccb(Assembler::notZero, L_strict); 1616 __ fdivr_d(at_rsp()); 1617 __ jmp(L_join); 1618 __ bind(L_strict); 1619 __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias1())); 1620 __ fmul_d (at_rsp()); 1621 __ fdivrp(); 1622 __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias2())); 1623 __ fmulp(); 1624 __ bind(L_join); 1625 break; 1626 } 1627 case rem: __ fld_d (at_rsp()); __ fremr(rax); break; 1628 default : ShouldNotReachHere(); 1629 } 1630 __ d2ieee(); 1631 // Pop double precision number from rsp. 1632 __ pop(rax); 1633 __ pop(rdx); 1634 #endif 1635 } 1636 } 1637 1638 void TemplateTable::ineg() { 1639 transition(itos, itos); 1640 __ negl(rax); 1641 } 1642 1643 void TemplateTable::lneg() { 1644 transition(ltos, ltos); 1645 LP64_ONLY(__ negq(rax)); 1646 NOT_LP64(__ lneg(rdx, rax)); 1647 } 1648 1649 // Note: 'double' and 'long long' have 32-bits alignment on x86. 1650 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) { 1651 // Use the expression (adr)&(~0xF) to provide 128-bits aligned address 1652 // of 128-bits operands for SSE instructions. 1653 jlong *operand = (jlong*)(((intptr_t)adr)&((intptr_t)(~0xF))); 1654 // Store the value to a 128-bits operand. 1655 operand[0] = lo; 1656 operand[1] = hi; 1657 return operand; 1658 } 1659 1660 // Buffer for 128-bits masks used by SSE instructions. 1661 static jlong float_signflip_pool[2*2]; 1662 static jlong double_signflip_pool[2*2]; 1663 1664 void TemplateTable::fneg() { 1665 transition(ftos, ftos); 1666 if (UseSSE >= 1) { 1667 static jlong *float_signflip = double_quadword(&float_signflip_pool[1], CONST64(0x8000000080000000), CONST64(0x8000000080000000)); 1668 __ xorps(xmm0, ExternalAddress((address) float_signflip)); 1669 } else { 1670 LP64_ONLY(ShouldNotReachHere()); 1671 NOT_LP64(__ fchs()); 1672 } 1673 } 1674 1675 void TemplateTable::dneg() { 1676 transition(dtos, dtos); 1677 if (UseSSE >= 2) { 1678 static jlong *double_signflip = 1679 double_quadword(&double_signflip_pool[1], CONST64(0x8000000000000000), CONST64(0x8000000000000000)); 1680 __ xorpd(xmm0, ExternalAddress((address) double_signflip)); 1681 } else { 1682 #ifdef _LP64 1683 ShouldNotReachHere(); 1684 #else 1685 __ fchs(); 1686 #endif 1687 } 1688 } 1689 1690 void TemplateTable::iinc() { 1691 transition(vtos, vtos); 1692 __ load_signed_byte(rdx, at_bcp(2)); // get constant 1693 locals_index(rbx); 1694 __ addl(iaddress(rbx), rdx); 1695 } 1696 1697 void TemplateTable::wide_iinc() { 1698 transition(vtos, vtos); 1699 __ movl(rdx, at_bcp(4)); // get constant 1700 locals_index_wide(rbx); 1701 __ bswapl(rdx); // swap bytes & sign-extend constant 1702 __ sarl(rdx, 16); 1703 __ addl(iaddress(rbx), rdx); 1704 // Note: should probably use only one movl to get both 1705 // the index and the constant -> fix this 1706 } 1707 1708 void TemplateTable::convert() { 1709 #ifdef _LP64 1710 // Checking 1711 #ifdef ASSERT 1712 { 1713 TosState tos_in = ilgl; 1714 TosState tos_out = ilgl; 1715 switch (bytecode()) { 1716 case Bytecodes::_i2l: // fall through 1717 case Bytecodes::_i2f: // fall through 1718 case Bytecodes::_i2d: // fall through 1719 case Bytecodes::_i2b: // fall through 1720 case Bytecodes::_i2c: // fall through 1721 case Bytecodes::_i2s: tos_in = itos; break; 1722 case Bytecodes::_l2i: // fall through 1723 case Bytecodes::_l2f: // fall through 1724 case Bytecodes::_l2d: tos_in = ltos; break; 1725 case Bytecodes::_f2i: // fall through 1726 case Bytecodes::_f2l: // fall through 1727 case Bytecodes::_f2d: tos_in = ftos; break; 1728 case Bytecodes::_d2i: // fall through 1729 case Bytecodes::_d2l: // fall through 1730 case Bytecodes::_d2f: tos_in = dtos; break; 1731 default : ShouldNotReachHere(); 1732 } 1733 switch (bytecode()) { 1734 case Bytecodes::_l2i: // fall through 1735 case Bytecodes::_f2i: // fall through 1736 case Bytecodes::_d2i: // fall through 1737 case Bytecodes::_i2b: // fall through 1738 case Bytecodes::_i2c: // fall through 1739 case Bytecodes::_i2s: tos_out = itos; break; 1740 case Bytecodes::_i2l: // fall through 1741 case Bytecodes::_f2l: // fall through 1742 case Bytecodes::_d2l: tos_out = ltos; break; 1743 case Bytecodes::_i2f: // fall through 1744 case Bytecodes::_l2f: // fall through 1745 case Bytecodes::_d2f: tos_out = ftos; break; 1746 case Bytecodes::_i2d: // fall through 1747 case Bytecodes::_l2d: // fall through 1748 case Bytecodes::_f2d: tos_out = dtos; break; 1749 default : ShouldNotReachHere(); 1750 } 1751 transition(tos_in, tos_out); 1752 } 1753 #endif // ASSERT 1754 1755 static const int64_t is_nan = 0x8000000000000000L; 1756 1757 // Conversion 1758 switch (bytecode()) { 1759 case Bytecodes::_i2l: 1760 __ movslq(rax, rax); 1761 break; 1762 case Bytecodes::_i2f: 1763 __ cvtsi2ssl(xmm0, rax); 1764 break; 1765 case Bytecodes::_i2d: 1766 __ cvtsi2sdl(xmm0, rax); 1767 break; 1768 case Bytecodes::_i2b: 1769 __ movsbl(rax, rax); 1770 break; 1771 case Bytecodes::_i2c: 1772 __ movzwl(rax, rax); 1773 break; 1774 case Bytecodes::_i2s: 1775 __ movswl(rax, rax); 1776 break; 1777 case Bytecodes::_l2i: 1778 __ movl(rax, rax); 1779 break; 1780 case Bytecodes::_l2f: 1781 __ cvtsi2ssq(xmm0, rax); 1782 break; 1783 case Bytecodes::_l2d: 1784 __ cvtsi2sdq(xmm0, rax); 1785 break; 1786 case Bytecodes::_f2i: 1787 { 1788 Label L; 1789 __ cvttss2sil(rax, xmm0); 1790 __ cmpl(rax, 0x80000000); // NaN or overflow/underflow? 1791 __ jcc(Assembler::notEqual, L); 1792 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2i), 1); 1793 __ bind(L); 1794 } 1795 break; 1796 case Bytecodes::_f2l: 1797 { 1798 Label L; 1799 __ cvttss2siq(rax, xmm0); 1800 // NaN or overflow/underflow? 1801 __ cmp64(rax, ExternalAddress((address) &is_nan)); 1802 __ jcc(Assembler::notEqual, L); 1803 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2l), 1); 1804 __ bind(L); 1805 } 1806 break; 1807 case Bytecodes::_f2d: 1808 __ cvtss2sd(xmm0, xmm0); 1809 break; 1810 case Bytecodes::_d2i: 1811 { 1812 Label L; 1813 __ cvttsd2sil(rax, xmm0); 1814 __ cmpl(rax, 0x80000000); // NaN or overflow/underflow? 1815 __ jcc(Assembler::notEqual, L); 1816 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2i), 1); 1817 __ bind(L); 1818 } 1819 break; 1820 case Bytecodes::_d2l: 1821 { 1822 Label L; 1823 __ cvttsd2siq(rax, xmm0); 1824 // NaN or overflow/underflow? 1825 __ cmp64(rax, ExternalAddress((address) &is_nan)); 1826 __ jcc(Assembler::notEqual, L); 1827 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2l), 1); 1828 __ bind(L); 1829 } 1830 break; 1831 case Bytecodes::_d2f: 1832 __ cvtsd2ss(xmm0, xmm0); 1833 break; 1834 default: 1835 ShouldNotReachHere(); 1836 } 1837 #else 1838 // Checking 1839 #ifdef ASSERT 1840 { TosState tos_in = ilgl; 1841 TosState tos_out = ilgl; 1842 switch (bytecode()) { 1843 case Bytecodes::_i2l: // fall through 1844 case Bytecodes::_i2f: // fall through 1845 case Bytecodes::_i2d: // fall through 1846 case Bytecodes::_i2b: // fall through 1847 case Bytecodes::_i2c: // fall through 1848 case Bytecodes::_i2s: tos_in = itos; break; 1849 case Bytecodes::_l2i: // fall through 1850 case Bytecodes::_l2f: // fall through 1851 case Bytecodes::_l2d: tos_in = ltos; break; 1852 case Bytecodes::_f2i: // fall through 1853 case Bytecodes::_f2l: // fall through 1854 case Bytecodes::_f2d: tos_in = ftos; break; 1855 case Bytecodes::_d2i: // fall through 1856 case Bytecodes::_d2l: // fall through 1857 case Bytecodes::_d2f: tos_in = dtos; break; 1858 default : ShouldNotReachHere(); 1859 } 1860 switch (bytecode()) { 1861 case Bytecodes::_l2i: // fall through 1862 case Bytecodes::_f2i: // fall through 1863 case Bytecodes::_d2i: // fall through 1864 case Bytecodes::_i2b: // fall through 1865 case Bytecodes::_i2c: // fall through 1866 case Bytecodes::_i2s: tos_out = itos; break; 1867 case Bytecodes::_i2l: // fall through 1868 case Bytecodes::_f2l: // fall through 1869 case Bytecodes::_d2l: tos_out = ltos; break; 1870 case Bytecodes::_i2f: // fall through 1871 case Bytecodes::_l2f: // fall through 1872 case Bytecodes::_d2f: tos_out = ftos; break; 1873 case Bytecodes::_i2d: // fall through 1874 case Bytecodes::_l2d: // fall through 1875 case Bytecodes::_f2d: tos_out = dtos; break; 1876 default : ShouldNotReachHere(); 1877 } 1878 transition(tos_in, tos_out); 1879 } 1880 #endif // ASSERT 1881 1882 // Conversion 1883 // (Note: use push(rcx)/pop(rcx) for 1/2-word stack-ptr manipulation) 1884 switch (bytecode()) { 1885 case Bytecodes::_i2l: 1886 __ extend_sign(rdx, rax); 1887 break; 1888 case Bytecodes::_i2f: 1889 if (UseSSE >= 1) { 1890 __ cvtsi2ssl(xmm0, rax); 1891 } else { 1892 __ push(rax); // store int on tos 1893 __ fild_s(at_rsp()); // load int to ST0 1894 __ f2ieee(); // truncate to float size 1895 __ pop(rcx); // adjust rsp 1896 } 1897 break; 1898 case Bytecodes::_i2d: 1899 if (UseSSE >= 2) { 1900 __ cvtsi2sdl(xmm0, rax); 1901 } else { 1902 __ push(rax); // add one slot for d2ieee() 1903 __ push(rax); // store int on tos 1904 __ fild_s(at_rsp()); // load int to ST0 1905 __ d2ieee(); // truncate to double size 1906 __ pop(rcx); // adjust rsp 1907 __ pop(rcx); 1908 } 1909 break; 1910 case Bytecodes::_i2b: 1911 __ shll(rax, 24); // truncate upper 24 bits 1912 __ sarl(rax, 24); // and sign-extend byte 1913 LP64_ONLY(__ movsbl(rax, rax)); 1914 break; 1915 case Bytecodes::_i2c: 1916 __ andl(rax, 0xFFFF); // truncate upper 16 bits 1917 LP64_ONLY(__ movzwl(rax, rax)); 1918 break; 1919 case Bytecodes::_i2s: 1920 __ shll(rax, 16); // truncate upper 16 bits 1921 __ sarl(rax, 16); // and sign-extend short 1922 LP64_ONLY(__ movswl(rax, rax)); 1923 break; 1924 case Bytecodes::_l2i: 1925 /* nothing to do */ 1926 break; 1927 case Bytecodes::_l2f: 1928 // On 64-bit platforms, the cvtsi2ssq instruction is used to convert 1929 // 64-bit long values to floats. On 32-bit platforms it is not possible 1930 // to use that instruction with 64-bit operands, therefore the FPU is 1931 // used to perform the conversion. 1932 __ push(rdx); // store long on tos 1933 __ push(rax); 1934 __ fild_d(at_rsp()); // load long to ST0 1935 __ f2ieee(); // truncate to float size 1936 __ pop(rcx); // adjust rsp 1937 __ pop(rcx); 1938 if (UseSSE >= 1) { 1939 __ push_f(); 1940 __ pop_f(xmm0); 1941 } 1942 break; 1943 case Bytecodes::_l2d: 1944 // On 32-bit platforms the FPU is used for conversion because on 1945 // 32-bit platforms it is not not possible to use the cvtsi2sdq 1946 // instruction with 64-bit operands. 1947 __ push(rdx); // store long on tos 1948 __ push(rax); 1949 __ fild_d(at_rsp()); // load long to ST0 1950 __ d2ieee(); // truncate to double size 1951 __ pop(rcx); // adjust rsp 1952 __ pop(rcx); 1953 if (UseSSE >= 2) { 1954 __ push_d(); 1955 __ pop_d(xmm0); 1956 } 1957 break; 1958 case Bytecodes::_f2i: 1959 // SharedRuntime::f2i does not differentiate between sNaNs and qNaNs 1960 // as it returns 0 for any NaN. 1961 if (UseSSE >= 1) { 1962 __ push_f(xmm0); 1963 } else { 1964 __ push(rcx); // reserve space for argument 1965 __ fstp_s(at_rsp()); // pass float argument on stack 1966 } 1967 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2i), 1); 1968 break; 1969 case Bytecodes::_f2l: 1970 // SharedRuntime::f2l does not differentiate between sNaNs and qNaNs 1971 // as it returns 0 for any NaN. 1972 if (UseSSE >= 1) { 1973 __ push_f(xmm0); 1974 } else { 1975 __ push(rcx); // reserve space for argument 1976 __ fstp_s(at_rsp()); // pass float argument on stack 1977 } 1978 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2l), 1); 1979 break; 1980 case Bytecodes::_f2d: 1981 if (UseSSE < 1) { 1982 /* nothing to do */ 1983 } else if (UseSSE == 1) { 1984 __ push_f(xmm0); 1985 __ pop_f(); 1986 } else { // UseSSE >= 2 1987 __ cvtss2sd(xmm0, xmm0); 1988 } 1989 break; 1990 case Bytecodes::_d2i: 1991 if (UseSSE >= 2) { 1992 __ push_d(xmm0); 1993 } else { 1994 __ push(rcx); // reserve space for argument 1995 __ push(rcx); 1996 __ fstp_d(at_rsp()); // pass double argument on stack 1997 } 1998 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2i), 2); 1999 break; 2000 case Bytecodes::_d2l: 2001 if (UseSSE >= 2) { 2002 __ push_d(xmm0); 2003 } else { 2004 __ push(rcx); // reserve space for argument 2005 __ push(rcx); 2006 __ fstp_d(at_rsp()); // pass double argument on stack 2007 } 2008 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2l), 2); 2009 break; 2010 case Bytecodes::_d2f: 2011 if (UseSSE <= 1) { 2012 __ push(rcx); // reserve space for f2ieee() 2013 __ f2ieee(); // truncate to float size 2014 __ pop(rcx); // adjust rsp 2015 if (UseSSE == 1) { 2016 // The cvtsd2ss instruction is not available if UseSSE==1, therefore 2017 // the conversion is performed using the FPU in this case. 2018 __ push_f(); 2019 __ pop_f(xmm0); 2020 } 2021 } else { // UseSSE >= 2 2022 __ cvtsd2ss(xmm0, xmm0); 2023 } 2024 break; 2025 default : 2026 ShouldNotReachHere(); 2027 } 2028 #endif 2029 } 2030 2031 void TemplateTable::lcmp() { 2032 transition(ltos, itos); 2033 #ifdef _LP64 2034 Label done; 2035 __ pop_l(rdx); 2036 __ cmpq(rdx, rax); 2037 __ movl(rax, -1); 2038 __ jccb(Assembler::less, done); 2039 __ setb(Assembler::notEqual, rax); 2040 __ movzbl(rax, rax); 2041 __ bind(done); 2042 #else 2043 2044 // y = rdx:rax 2045 __ pop_l(rbx, rcx); // get x = rcx:rbx 2046 __ lcmp2int(rcx, rbx, rdx, rax);// rcx := cmp(x, y) 2047 __ mov(rax, rcx); 2048 #endif 2049 } 2050 2051 void TemplateTable::float_cmp(bool is_float, int unordered_result) { 2052 if ((is_float && UseSSE >= 1) || 2053 (!is_float && UseSSE >= 2)) { 2054 Label done; 2055 if (is_float) { 2056 // XXX get rid of pop here, use ... reg, mem32 2057 __ pop_f(xmm1); 2058 __ ucomiss(xmm1, xmm0); 2059 } else { 2060 // XXX get rid of pop here, use ... reg, mem64 2061 __ pop_d(xmm1); 2062 __ ucomisd(xmm1, xmm0); 2063 } 2064 if (unordered_result < 0) { 2065 __ movl(rax, -1); 2066 __ jccb(Assembler::parity, done); 2067 __ jccb(Assembler::below, done); 2068 __ setb(Assembler::notEqual, rdx); 2069 __ movzbl(rax, rdx); 2070 } else { 2071 __ movl(rax, 1); 2072 __ jccb(Assembler::parity, done); 2073 __ jccb(Assembler::above, done); 2074 __ movl(rax, 0); 2075 __ jccb(Assembler::equal, done); 2076 __ decrementl(rax); 2077 } 2078 __ bind(done); 2079 } else { 2080 #ifdef _LP64 2081 ShouldNotReachHere(); 2082 #else 2083 if (is_float) { 2084 __ fld_s(at_rsp()); 2085 } else { 2086 __ fld_d(at_rsp()); 2087 __ pop(rdx); 2088 } 2089 __ pop(rcx); 2090 __ fcmp2int(rax, unordered_result < 0); 2091 #endif // _LP64 2092 } 2093 } 2094 2095 void TemplateTable::branch(bool is_jsr, bool is_wide) { 2096 __ get_method(rcx); // rcx holds method 2097 __ profile_taken_branch(rax, rbx); // rax holds updated MDP, rbx 2098 // holds bumped taken count 2099 2100 const ByteSize be_offset = MethodCounters::backedge_counter_offset() + 2101 InvocationCounter::counter_offset(); 2102 const ByteSize inv_offset = MethodCounters::invocation_counter_offset() + 2103 InvocationCounter::counter_offset(); 2104 2105 // Load up edx with the branch displacement 2106 if (is_wide) { 2107 __ movl(rdx, at_bcp(1)); 2108 } else { 2109 __ load_signed_short(rdx, at_bcp(1)); 2110 } 2111 __ bswapl(rdx); 2112 2113 if (!is_wide) { 2114 __ sarl(rdx, 16); 2115 } 2116 LP64_ONLY(__ movl2ptr(rdx, rdx)); 2117 2118 // Handle all the JSR stuff here, then exit. 2119 // It's much shorter and cleaner than intermingling with the non-JSR 2120 // normal-branch stuff occurring below. 2121 if (is_jsr) { 2122 // Pre-load the next target bytecode into rbx 2123 __ load_unsigned_byte(rbx, Address(rbcp, rdx, Address::times_1, 0)); 2124 2125 // compute return address as bci in rax 2126 __ lea(rax, at_bcp((is_wide ? 5 : 3) - 2127 in_bytes(ConstMethod::codes_offset()))); 2128 __ subptr(rax, Address(rcx, Method::const_offset())); 2129 // Adjust the bcp in r13 by the displacement in rdx 2130 __ addptr(rbcp, rdx); 2131 // jsr returns atos that is not an oop 2132 __ push_i(rax); 2133 __ dispatch_only(vtos); 2134 return; 2135 } 2136 2137 // Normal (non-jsr) branch handling 2138 2139 // Adjust the bcp in r13 by the displacement in rdx 2140 __ addptr(rbcp, rdx); 2141 2142 assert(UseLoopCounter || !UseOnStackReplacement, 2143 "on-stack-replacement requires loop counters"); 2144 Label backedge_counter_overflow; 2145 Label profile_method; 2146 Label dispatch; 2147 if (UseLoopCounter) { 2148 // increment backedge counter for backward branches 2149 // rax: MDO 2150 // rbx: MDO bumped taken-count 2151 // rcx: method 2152 // rdx: target offset 2153 // r13: target bcp 2154 // r14: locals pointer 2155 __ testl(rdx, rdx); // check if forward or backward branch 2156 __ jcc(Assembler::positive, dispatch); // count only if backward branch 2157 2158 // check if MethodCounters exists 2159 Label has_counters; 2160 __ movptr(rax, Address(rcx, Method::method_counters_offset())); 2161 __ testptr(rax, rax); 2162 __ jcc(Assembler::notZero, has_counters); 2163 __ push(rdx); 2164 __ push(rcx); 2165 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::build_method_counters), 2166 rcx); 2167 __ pop(rcx); 2168 __ pop(rdx); 2169 __ movptr(rax, Address(rcx, Method::method_counters_offset())); 2170 __ testptr(rax, rax); 2171 __ jcc(Assembler::zero, dispatch); 2172 __ bind(has_counters); 2173 2174 if (TieredCompilation) { 2175 Label no_mdo; 2176 int increment = InvocationCounter::count_increment; 2177 if (ProfileInterpreter) { 2178 // Are we profiling? 2179 __ movptr(rbx, Address(rcx, in_bytes(Method::method_data_offset()))); 2180 __ testptr(rbx, rbx); 2181 __ jccb(Assembler::zero, no_mdo); 2182 // Increment the MDO backedge counter 2183 const Address mdo_backedge_counter(rbx, in_bytes(MethodData::backedge_counter_offset()) + 2184 in_bytes(InvocationCounter::counter_offset())); 2185 const Address mask(rbx, in_bytes(MethodData::backedge_mask_offset())); 2186 __ increment_mask_and_jump(mdo_backedge_counter, increment, mask, 2187 rax, false, Assembler::zero, &backedge_counter_overflow); 2188 __ jmp(dispatch); 2189 } 2190 __ bind(no_mdo); 2191 // Increment backedge counter in MethodCounters* 2192 __ movptr(rcx, Address(rcx, Method::method_counters_offset())); 2193 const Address mask(rcx, in_bytes(MethodCounters::backedge_mask_offset())); 2194 __ increment_mask_and_jump(Address(rcx, be_offset), increment, mask, 2195 rax, false, Assembler::zero, &backedge_counter_overflow); 2196 } else { // not TieredCompilation 2197 // increment counter 2198 __ movptr(rcx, Address(rcx, Method::method_counters_offset())); 2199 __ movl(rax, Address(rcx, be_offset)); // load backedge counter 2200 __ incrementl(rax, InvocationCounter::count_increment); // increment counter 2201 __ movl(Address(rcx, be_offset), rax); // store counter 2202 2203 __ movl(rax, Address(rcx, inv_offset)); // load invocation counter 2204 2205 __ andl(rax, InvocationCounter::count_mask_value); // and the status bits 2206 __ addl(rax, Address(rcx, be_offset)); // add both counters 2207 2208 if (ProfileInterpreter) { 2209 // Test to see if we should create a method data oop 2210 __ cmp32(rax, Address(rcx, in_bytes(MethodCounters::interpreter_profile_limit_offset()))); 2211 __ jcc(Assembler::less, dispatch); 2212 2213 // if no method data exists, go to profile method 2214 __ test_method_data_pointer(rax, profile_method); 2215 2216 if (UseOnStackReplacement) { 2217 // check for overflow against rbx which is the MDO taken count 2218 __ cmp32(rbx, Address(rcx, in_bytes(MethodCounters::interpreter_backward_branch_limit_offset()))); 2219 __ jcc(Assembler::below, dispatch); 2220 2221 // When ProfileInterpreter is on, the backedge_count comes 2222 // from the MethodData*, which value does not get reset on 2223 // the call to frequency_counter_overflow(). To avoid 2224 // excessive calls to the overflow routine while the method is 2225 // being compiled, add a second test to make sure the overflow 2226 // function is called only once every overflow_frequency. 2227 const int overflow_frequency = 1024; 2228 __ andl(rbx, overflow_frequency - 1); 2229 __ jcc(Assembler::zero, backedge_counter_overflow); 2230 2231 } 2232 } else { 2233 if (UseOnStackReplacement) { 2234 // check for overflow against rax, which is the sum of the 2235 // counters 2236 __ cmp32(rax, Address(rcx, in_bytes(MethodCounters::interpreter_backward_branch_limit_offset()))); 2237 __ jcc(Assembler::aboveEqual, backedge_counter_overflow); 2238 2239 } 2240 } 2241 } 2242 __ bind(dispatch); 2243 } 2244 2245 // Pre-load the next target bytecode into rbx 2246 __ load_unsigned_byte(rbx, Address(rbcp, 0)); 2247 2248 // continue with the bytecode @ target 2249 // rax: return bci for jsr's, unused otherwise 2250 // rbx: target bytecode 2251 // r13: target bcp 2252 __ dispatch_only(vtos); 2253 2254 if (UseLoopCounter) { 2255 if (ProfileInterpreter) { 2256 // Out-of-line code to allocate method data oop. 2257 __ bind(profile_method); 2258 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method)); 2259 __ load_unsigned_byte(rbx, Address(rbcp, 0)); // restore target bytecode 2260 __ set_method_data_pointer_for_bcp(); 2261 __ jmp(dispatch); 2262 } 2263 2264 if (UseOnStackReplacement) { 2265 // invocation counter overflow 2266 __ bind(backedge_counter_overflow); 2267 __ negptr(rdx); 2268 __ addptr(rdx, rbcp); // branch bcp 2269 // IcoResult frequency_counter_overflow([JavaThread*], address branch_bcp) 2270 __ call_VM(noreg, 2271 CAST_FROM_FN_PTR(address, 2272 InterpreterRuntime::frequency_counter_overflow), 2273 rdx); 2274 __ load_unsigned_byte(rbx, Address(rbcp, 0)); // restore target bytecode 2275 2276 // rax: osr nmethod (osr ok) or NULL (osr not possible) 2277 // rbx: target bytecode 2278 // rdx: scratch 2279 // r14: locals pointer 2280 // r13: bcp 2281 __ testptr(rax, rax); // test result 2282 __ jcc(Assembler::zero, dispatch); // no osr if null 2283 // nmethod may have been invalidated (VM may block upon call_VM return) 2284 __ cmpb(Address(rax, nmethod::state_offset()), nmethod::in_use); 2285 __ jcc(Assembler::notEqual, dispatch); 2286 2287 // We have the address of an on stack replacement routine in rax 2288 // We need to prepare to execute the OSR method. First we must 2289 // migrate the locals and monitors off of the stack. 2290 2291 LP64_ONLY(__ mov(r13, rax)); // save the nmethod 2292 NOT_LP64(__ mov(rbx, rax)); // save the nmethod 2293 NOT_LP64(__ get_thread(rcx)); 2294 2295 call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin)); 2296 2297 // rax is OSR buffer, move it to expected parameter location 2298 LP64_ONLY(__ mov(j_rarg0, rax)); 2299 NOT_LP64(__ mov(rcx, rax)); 2300 // We use j_rarg definitions here so that registers don't conflict as parameter 2301 // registers change across platforms as we are in the midst of a calling 2302 // sequence to the OSR nmethod and we don't want collision. These are NOT parameters. 2303 2304 const Register retaddr = LP64_ONLY(j_rarg2) NOT_LP64(rdi); 2305 const Register sender_sp = LP64_ONLY(j_rarg1) NOT_LP64(rdx); 2306 2307 2308 // pop the interpreter frame 2309 __ movptr(sender_sp, Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize)); // get sender sp 2310 __ leave(); // remove frame anchor 2311 __ pop(retaddr); // get return address 2312 __ mov(rsp, sender_sp); // set sp to sender sp 2313 // Ensure compiled code always sees stack at proper alignment 2314 __ andptr(rsp, -(StackAlignmentInBytes)); 2315 2316 // unlike x86 we need no specialized return from compiled code 2317 // to the interpreter or the call stub. 2318 2319 // push the return address 2320 __ push(retaddr); 2321 2322 // and begin the OSR nmethod 2323 LP64_ONLY(__ jmp(Address(r13, nmethod::osr_entry_point_offset()))); 2324 NOT_LP64(__ jmp(Address(rbx, nmethod::osr_entry_point_offset()))); 2325 } 2326 } 2327 } 2328 2329 void TemplateTable::if_0cmp(Condition cc) { 2330 transition(itos, vtos); 2331 // assume branch is more often taken than not (loops use backward branches) 2332 Label not_taken; 2333 __ testl(rax, rax); 2334 __ jcc(j_not(cc), not_taken); 2335 branch(false, false); 2336 __ bind(not_taken); 2337 __ profile_not_taken_branch(rax); 2338 } 2339 2340 void TemplateTable::if_icmp(Condition cc) { 2341 transition(itos, vtos); 2342 // assume branch is more often taken than not (loops use backward branches) 2343 Label not_taken; 2344 __ pop_i(rdx); 2345 __ cmpl(rdx, rax); 2346 __ jcc(j_not(cc), not_taken); 2347 branch(false, false); 2348 __ bind(not_taken); 2349 __ profile_not_taken_branch(rax); 2350 } 2351 2352 void TemplateTable::if_nullcmp(Condition cc) { 2353 transition(atos, vtos); 2354 // assume branch is more often taken than not (loops use backward branches) 2355 Label not_taken; 2356 __ testptr(rax, rax); 2357 __ jcc(j_not(cc), not_taken); 2358 branch(false, false); 2359 __ bind(not_taken); 2360 __ profile_not_taken_branch(rax); 2361 } 2362 2363 void TemplateTable::if_acmp(Condition cc) { 2364 transition(atos, vtos); 2365 // assume branch is more often taken than not (loops use backward branches) 2366 Label not_taken; 2367 __ pop_ptr(rdx); 2368 __ cmpptr(rdx, rax); 2369 __ jcc(j_not(cc), not_taken); 2370 branch(false, false); 2371 __ bind(not_taken); 2372 __ profile_not_taken_branch(rax); 2373 } 2374 2375 void TemplateTable::ret() { 2376 transition(vtos, vtos); 2377 locals_index(rbx); 2378 LP64_ONLY(__ movslq(rbx, iaddress(rbx))); // get return bci, compute return bcp 2379 NOT_LP64(__ movptr(rbx, iaddress(rbx))); 2380 __ profile_ret(rbx, rcx); 2381 __ get_method(rax); 2382 __ movptr(rbcp, Address(rax, Method::const_offset())); 2383 __ lea(rbcp, Address(rbcp, rbx, Address::times_1, 2384 ConstMethod::codes_offset())); 2385 __ dispatch_next(vtos); 2386 } 2387 2388 void TemplateTable::wide_ret() { 2389 transition(vtos, vtos); 2390 locals_index_wide(rbx); 2391 __ movptr(rbx, aaddress(rbx)); // get return bci, compute return bcp 2392 __ profile_ret(rbx, rcx); 2393 __ get_method(rax); 2394 __ movptr(rbcp, Address(rax, Method::const_offset())); 2395 __ lea(rbcp, Address(rbcp, rbx, Address::times_1, ConstMethod::codes_offset())); 2396 __ dispatch_next(vtos); 2397 } 2398 2399 void TemplateTable::tableswitch() { 2400 Label default_case, continue_execution; 2401 transition(itos, vtos); 2402 2403 // align r13/rsi 2404 __ lea(rbx, at_bcp(BytesPerInt)); 2405 __ andptr(rbx, -BytesPerInt); 2406 // load lo & hi 2407 __ movl(rcx, Address(rbx, BytesPerInt)); 2408 __ movl(rdx, Address(rbx, 2 * BytesPerInt)); 2409 __ bswapl(rcx); 2410 __ bswapl(rdx); 2411 // check against lo & hi 2412 __ cmpl(rax, rcx); 2413 __ jcc(Assembler::less, default_case); 2414 __ cmpl(rax, rdx); 2415 __ jcc(Assembler::greater, default_case); 2416 // lookup dispatch offset 2417 __ subl(rax, rcx); 2418 __ movl(rdx, Address(rbx, rax, Address::times_4, 3 * BytesPerInt)); 2419 __ profile_switch_case(rax, rbx, rcx); 2420 // continue execution 2421 __ bind(continue_execution); 2422 __ bswapl(rdx); 2423 LP64_ONLY(__ movl2ptr(rdx, rdx)); 2424 __ load_unsigned_byte(rbx, Address(rbcp, rdx, Address::times_1)); 2425 __ addptr(rbcp, rdx); 2426 __ dispatch_only(vtos); 2427 // handle default 2428 __ bind(default_case); 2429 __ profile_switch_default(rax); 2430 __ movl(rdx, Address(rbx, 0)); 2431 __ jmp(continue_execution); 2432 } 2433 2434 void TemplateTable::lookupswitch() { 2435 transition(itos, itos); 2436 __ stop("lookupswitch bytecode should have been rewritten"); 2437 } 2438 2439 void TemplateTable::fast_linearswitch() { 2440 transition(itos, vtos); 2441 Label loop_entry, loop, found, continue_execution; 2442 // bswap rax so we can avoid bswapping the table entries 2443 __ bswapl(rax); 2444 // align r13 2445 __ lea(rbx, at_bcp(BytesPerInt)); // btw: should be able to get rid of 2446 // this instruction (change offsets 2447 // below) 2448 __ andptr(rbx, -BytesPerInt); 2449 // set counter 2450 __ movl(rcx, Address(rbx, BytesPerInt)); 2451 __ bswapl(rcx); 2452 __ jmpb(loop_entry); 2453 // table search 2454 __ bind(loop); 2455 __ cmpl(rax, Address(rbx, rcx, Address::times_8, 2 * BytesPerInt)); 2456 __ jcc(Assembler::equal, found); 2457 __ bind(loop_entry); 2458 __ decrementl(rcx); 2459 __ jcc(Assembler::greaterEqual, loop); 2460 // default case 2461 __ profile_switch_default(rax); 2462 __ movl(rdx, Address(rbx, 0)); 2463 __ jmp(continue_execution); 2464 // entry found -> get offset 2465 __ bind(found); 2466 __ movl(rdx, Address(rbx, rcx, Address::times_8, 3 * BytesPerInt)); 2467 __ profile_switch_case(rcx, rax, rbx); 2468 // continue execution 2469 __ bind(continue_execution); 2470 __ bswapl(rdx); 2471 __ movl2ptr(rdx, rdx); 2472 __ load_unsigned_byte(rbx, Address(rbcp, rdx, Address::times_1)); 2473 __ addptr(rbcp, rdx); 2474 __ dispatch_only(vtos); 2475 } 2476 2477 void TemplateTable::fast_binaryswitch() { 2478 transition(itos, vtos); 2479 // Implementation using the following core algorithm: 2480 // 2481 // int binary_search(int key, LookupswitchPair* array, int n) { 2482 // // Binary search according to "Methodik des Programmierens" by 2483 // // Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley Germany 1985. 2484 // int i = 0; 2485 // int j = n; 2486 // while (i+1 < j) { 2487 // // invariant P: 0 <= i < j <= n and (a[i] <= key < a[j] or Q) 2488 // // with Q: for all i: 0 <= i < n: key < a[i] 2489 // // where a stands for the array and assuming that the (inexisting) 2490 // // element a[n] is infinitely big. 2491 // int h = (i + j) >> 1; 2492 // // i < h < j 2493 // if (key < array[h].fast_match()) { 2494 // j = h; 2495 // } else { 2496 // i = h; 2497 // } 2498 // } 2499 // // R: a[i] <= key < a[i+1] or Q 2500 // // (i.e., if key is within array, i is the correct index) 2501 // return i; 2502 // } 2503 2504 // Register allocation 2505 const Register key = rax; // already set (tosca) 2506 const Register array = rbx; 2507 const Register i = rcx; 2508 const Register j = rdx; 2509 const Register h = rdi; 2510 const Register temp = rsi; 2511 2512 // Find array start 2513 NOT_LP64(__ save_bcp()); 2514 2515 __ lea(array, at_bcp(3 * BytesPerInt)); // btw: should be able to 2516 // get rid of this 2517 // instruction (change 2518 // offsets below) 2519 __ andptr(array, -BytesPerInt); 2520 2521 // Initialize i & j 2522 __ xorl(i, i); // i = 0; 2523 __ movl(j, Address(array, -BytesPerInt)); // j = length(array); 2524 2525 // Convert j into native byteordering 2526 __ bswapl(j); 2527 2528 // And start 2529 Label entry; 2530 __ jmp(entry); 2531 2532 // binary search loop 2533 { 2534 Label loop; 2535 __ bind(loop); 2536 // int h = (i + j) >> 1; 2537 __ leal(h, Address(i, j, Address::times_1)); // h = i + j; 2538 __ sarl(h, 1); // h = (i + j) >> 1; 2539 // if (key < array[h].fast_match()) { 2540 // j = h; 2541 // } else { 2542 // i = h; 2543 // } 2544 // Convert array[h].match to native byte-ordering before compare 2545 __ movl(temp, Address(array, h, Address::times_8)); 2546 __ bswapl(temp); 2547 __ cmpl(key, temp); 2548 // j = h if (key < array[h].fast_match()) 2549 __ cmov32(Assembler::less, j, h); 2550 // i = h if (key >= array[h].fast_match()) 2551 __ cmov32(Assembler::greaterEqual, i, h); 2552 // while (i+1 < j) 2553 __ bind(entry); 2554 __ leal(h, Address(i, 1)); // i+1 2555 __ cmpl(h, j); // i+1 < j 2556 __ jcc(Assembler::less, loop); 2557 } 2558 2559 // end of binary search, result index is i (must check again!) 2560 Label default_case; 2561 // Convert array[i].match to native byte-ordering before compare 2562 __ movl(temp, Address(array, i, Address::times_8)); 2563 __ bswapl(temp); 2564 __ cmpl(key, temp); 2565 __ jcc(Assembler::notEqual, default_case); 2566 2567 // entry found -> j = offset 2568 __ movl(j , Address(array, i, Address::times_8, BytesPerInt)); 2569 __ profile_switch_case(i, key, array); 2570 __ bswapl(j); 2571 LP64_ONLY(__ movslq(j, j)); 2572 2573 NOT_LP64(__ restore_bcp()); 2574 NOT_LP64(__ restore_locals()); // restore rdi 2575 2576 __ load_unsigned_byte(rbx, Address(rbcp, j, Address::times_1)); 2577 __ addptr(rbcp, j); 2578 __ dispatch_only(vtos); 2579 2580 // default case -> j = default offset 2581 __ bind(default_case); 2582 __ profile_switch_default(i); 2583 __ movl(j, Address(array, -2 * BytesPerInt)); 2584 __ bswapl(j); 2585 LP64_ONLY(__ movslq(j, j)); 2586 2587 NOT_LP64(__ restore_bcp()); 2588 NOT_LP64(__ restore_locals()); 2589 2590 __ load_unsigned_byte(rbx, Address(rbcp, j, Address::times_1)); 2591 __ addptr(rbcp, j); 2592 __ dispatch_only(vtos); 2593 } 2594 2595 void TemplateTable::_return(TosState state) { 2596 transition(state, state); 2597 2598 Register robj = LP64_ONLY(c_rarg1) NOT_LP64(rax); 2599 2600 assert(_desc->calls_vm(), 2601 "inconsistent calls_vm information"); // call in remove_activation 2602 2603 if (_desc->bytecode() == Bytecodes::_return_register_finalizer) { 2604 assert(state == vtos, "only valid state"); 2605 __ movptr(robj, aaddress(0)); 2606 __ load_klass(rdi, robj); 2607 __ movl(rdi, Address(rdi, Klass::access_flags_offset())); 2608 __ testl(rdi, JVM_ACC_HAS_FINALIZER); 2609 Label skip_register_finalizer; 2610 __ jcc(Assembler::zero, skip_register_finalizer); 2611 2612 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), robj); 2613 2614 __ bind(skip_register_finalizer); 2615 } 2616 2617 __ remove_activation(state, rbcp); 2618 __ jmp(rbcp); 2619 } 2620 2621 // ---------------------------------------------------------------------------- 2622 // Volatile variables demand their effects be made known to all CPU's 2623 // in order. Store buffers on most chips allow reads & writes to 2624 // reorder; the JMM's ReadAfterWrite.java test fails in -Xint mode 2625 // without some kind of memory barrier (i.e., it's not sufficient that 2626 // the interpreter does not reorder volatile references, the hardware 2627 // also must not reorder them). 2628 // 2629 // According to the new Java Memory Model (JMM): 2630 // (1) All volatiles are serialized wrt to each other. ALSO reads & 2631 // writes act as aquire & release, so: 2632 // (2) A read cannot let unrelated NON-volatile memory refs that 2633 // happen after the read float up to before the read. It's OK for 2634 // non-volatile memory refs that happen before the volatile read to 2635 // float down below it. 2636 // (3) Similar a volatile write cannot let unrelated NON-volatile 2637 // memory refs that happen BEFORE the write float down to after the 2638 // write. It's OK for non-volatile memory refs that happen after the 2639 // volatile write to float up before it. 2640 // 2641 // We only put in barriers around volatile refs (they are expensive), 2642 // not _between_ memory refs (that would require us to track the 2643 // flavor of the previous memory refs). Requirements (2) and (3) 2644 // require some barriers before volatile stores and after volatile 2645 // loads. These nearly cover requirement (1) but miss the 2646 // volatile-store-volatile-load case. This final case is placed after 2647 // volatile-stores although it could just as well go before 2648 // volatile-loads. 2649 2650 void TemplateTable::volatile_barrier(Assembler::Membar_mask_bits order_constraint ) { 2651 // Helper function to insert a is-volatile test and memory barrier 2652 if(!os::is_MP()) return; // Not needed on single CPU 2653 __ membar(order_constraint); 2654 } 2655 2656 void TemplateTable::resolve_cache_and_index(int byte_no, 2657 Register Rcache, 2658 Register index, 2659 size_t index_size) { 2660 const Register temp = rbx; 2661 assert_different_registers(Rcache, index, temp); 2662 2663 Label resolved; 2664 2665 Bytecodes::Code code = bytecode(); 2666 switch (code) { 2667 case Bytecodes::_nofast_getfield: code = Bytecodes::_getfield; break; 2668 case Bytecodes::_nofast_putfield: code = Bytecodes::_putfield; break; 2669 } 2670 2671 assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range"); 2672 __ get_cache_and_index_and_bytecode_at_bcp(Rcache, index, temp, byte_no, 1, index_size); 2673 __ cmpl(temp, code); // have we resolved this bytecode? 2674 __ jcc(Assembler::equal, resolved); 2675 2676 // resolve first time through 2677 address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_from_cache); 2678 __ movl(temp, code); 2679 __ call_VM(noreg, entry, temp); 2680 // Update registers with resolved info 2681 __ get_cache_and_index_at_bcp(Rcache, index, 1, index_size); 2682 __ bind(resolved); 2683 } 2684 2685 // The cache and index registers must be set before call 2686 void TemplateTable::load_field_cp_cache_entry(Register obj, 2687 Register cache, 2688 Register index, 2689 Register off, 2690 Register flags, 2691 bool is_static = false) { 2692 assert_different_registers(cache, index, flags, off); 2693 2694 ByteSize cp_base_offset = ConstantPoolCache::base_offset(); 2695 // Field offset 2696 __ movptr(off, Address(cache, index, Address::times_ptr, 2697 in_bytes(cp_base_offset + 2698 ConstantPoolCacheEntry::f2_offset()))); 2699 // Flags 2700 __ movl(flags, Address(cache, index, Address::times_ptr, 2701 in_bytes(cp_base_offset + 2702 ConstantPoolCacheEntry::flags_offset()))); 2703 2704 // klass overwrite register 2705 if (is_static) { 2706 __ movptr(obj, Address(cache, index, Address::times_ptr, 2707 in_bytes(cp_base_offset + 2708 ConstantPoolCacheEntry::f1_offset()))); 2709 const int mirror_offset = in_bytes(Klass::java_mirror_offset()); 2710 __ movptr(obj, Address(obj, mirror_offset)); 2711 } 2712 } 2713 2714 void TemplateTable::load_invoke_cp_cache_entry(int byte_no, 2715 Register method, 2716 Register itable_index, 2717 Register flags, 2718 bool is_invokevirtual, 2719 bool is_invokevfinal, /*unused*/ 2720 bool is_invokedynamic) { 2721 // setup registers 2722 const Register cache = rcx; 2723 const Register index = rdx; 2724 assert_different_registers(method, flags); 2725 assert_different_registers(method, cache, index); 2726 assert_different_registers(itable_index, flags); 2727 assert_different_registers(itable_index, cache, index); 2728 // determine constant pool cache field offsets 2729 assert(is_invokevirtual == (byte_no == f2_byte), "is_invokevirtual flag redundant"); 2730 const int method_offset = in_bytes( 2731 ConstantPoolCache::base_offset() + 2732 ((byte_no == f2_byte) 2733 ? ConstantPoolCacheEntry::f2_offset() 2734 : ConstantPoolCacheEntry::f1_offset())); 2735 const int flags_offset = in_bytes(ConstantPoolCache::base_offset() + 2736 ConstantPoolCacheEntry::flags_offset()); 2737 // access constant pool cache fields 2738 const int index_offset = in_bytes(ConstantPoolCache::base_offset() + 2739 ConstantPoolCacheEntry::f2_offset()); 2740 2741 size_t index_size = (is_invokedynamic ? sizeof(u4) : sizeof(u2)); 2742 resolve_cache_and_index(byte_no, cache, index, index_size); 2743 __ movptr(method, Address(cache, index, Address::times_ptr, method_offset)); 2744 2745 if (itable_index != noreg) { 2746 // pick up itable or appendix index from f2 also: 2747 __ movptr(itable_index, Address(cache, index, Address::times_ptr, index_offset)); 2748 } 2749 __ movl(flags, Address(cache, index, Address::times_ptr, flags_offset)); 2750 } 2751 2752 // The registers cache and index expected to be set before call. 2753 // Correct values of the cache and index registers are preserved. 2754 void TemplateTable::jvmti_post_field_access(Register cache, 2755 Register index, 2756 bool is_static, 2757 bool has_tos) { 2758 if (JvmtiExport::can_post_field_access()) { 2759 // Check to see if a field access watch has been set before we take 2760 // the time to call into the VM. 2761 Label L1; 2762 assert_different_registers(cache, index, rax); 2763 __ mov32(rax, ExternalAddress((address) JvmtiExport::get_field_access_count_addr())); 2764 __ testl(rax,rax); 2765 __ jcc(Assembler::zero, L1); 2766 2767 // cache entry pointer 2768 __ addptr(cache, in_bytes(ConstantPoolCache::base_offset())); 2769 __ shll(index, LogBytesPerWord); 2770 __ addptr(cache, index); 2771 if (is_static) { 2772 __ xorptr(rax, rax); // NULL object reference 2773 } else { 2774 __ pop(atos); // Get the object 2775 __ verify_oop(rax); 2776 __ push(atos); // Restore stack state 2777 } 2778 // rax,: object pointer or NULL 2779 // cache: cache entry pointer 2780 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access), 2781 rax, cache); 2782 __ get_cache_and_index_at_bcp(cache, index, 1); 2783 __ bind(L1); 2784 } 2785 } 2786 2787 void TemplateTable::pop_and_check_object(Register r) { 2788 __ pop_ptr(r); 2789 __ null_check(r); // for field access must check obj. 2790 __ verify_oop(r); 2791 } 2792 2793 void TemplateTable::getfield_or_static(int byte_no, bool is_static, RewriteControl rc, bool is_vgetfield) { 2794 transition(vtos, vtos); 2795 2796 const Register cache = rcx; 2797 const Register index = rdx; 2798 const Register obj = LP64_ONLY(c_rarg3) NOT_LP64(rcx); 2799 const Register off = rbx; 2800 const Register flags = rax; 2801 const Register bc = LP64_ONLY(c_rarg3) NOT_LP64(rcx); // uses same reg as obj, so don't mix them 2802 2803 resolve_cache_and_index(byte_no, cache, index, sizeof(u2)); 2804 jvmti_post_field_access(cache, index, is_static, false); 2805 load_field_cp_cache_entry(obj, cache, index, off, flags, is_static); 2806 2807 Label Done; 2808 2809 const Address field(obj, off, Address::times_1, 0*wordSize); 2810 NOT_LP64(const Address hi(obj, off, Address::times_1, 1*wordSize)); 2811 2812 Label notByte, notInt, notShort, notChar, notLong, notFloat, notObj, notValueType, notDouble; 2813 2814 __ shrl(flags, ConstantPoolCacheEntry::tos_state_shift); 2815 // Make sure we don't need to mask edx after the above shift 2816 assert(btos == 0, "change code, btos != 0"); 2817 2818 __ andl(flags, ConstantPoolCacheEntry::tos_state_mask); 2819 2820 __ jcc(Assembler::notZero, notByte); 2821 // btos 2822 if (!is_static) pop_and_check_object(obj); 2823 __ load_signed_byte(rax, field); 2824 __ push(btos); 2825 // Rewrite bytecode to be faster 2826 if (!is_static && rc == may_rewrite) { 2827 patch_bytecode(Bytecodes::_fast_bgetfield, bc, rbx); 2828 } 2829 __ jmp(Done); 2830 2831 __ bind(notByte); 2832 2833 __ cmpl(flags, qtos); 2834 __ jcc(Assembler::notEqual, notValueType); 2835 // qtos 2836 if (is_static) { 2837 __ load_heap_oop(rax, field); 2838 __ push(qtos); 2839 // if (!is_static && !is_vgetfield) { 2840 // patch_bytecode(Bytecodes::_fast_qgetfield, bc, rbx); 2841 // } 2842 } else { 2843 2844 // cp cache entry pointer 2845 __ addptr(cache, in_bytes(ConstantPoolCache::base_offset())); 2846 __ shll(index, LogBytesPerWord); 2847 __ addptr(cache, index); 2848 2849 pop_and_check_object(rax); // not using obj because it contains cp cache entry 2850 2851 // rax,: object pointer or NULL 2852 // cache: cp cache entry pointer 2853 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::qgetfield), 2854 rax, cache); 2855 __ verify_oop(rax); 2856 __ push(qtos); 2857 // Bytecode rewrite? 2858 2859 } 2860 __ jmp(Done); 2861 2862 __ bind(notValueType); 2863 2864 if (!is_static) pop_and_check_object(obj); 2865 2866 __ cmpl(flags, atos); 2867 __ jcc(Assembler::notEqual, notObj); 2868 // atos 2869 __ load_heap_oop(rax, field); 2870 __ push(atos); 2871 if (!is_static && rc == may_rewrite) { 2872 patch_bytecode(Bytecodes::_fast_agetfield, bc, rbx); 2873 } 2874 __ jmp(Done); 2875 2876 __ bind(notObj); 2877 __ cmpl(flags, itos); 2878 __ jcc(Assembler::notEqual, notInt); 2879 // itos 2880 __ movl(rax, field); 2881 __ push(itos); 2882 // Rewrite bytecode to be faster 2883 if (!is_static && rc == may_rewrite) { 2884 patch_bytecode(Bytecodes::_fast_igetfield, bc, rbx); 2885 } 2886 __ jmp(Done); 2887 2888 __ bind(notInt); 2889 __ cmpl(flags, ctos); 2890 __ jcc(Assembler::notEqual, notChar); 2891 // ctos 2892 __ load_unsigned_short(rax, field); 2893 __ push(ctos); 2894 // Rewrite bytecode to be faster 2895 if (!is_static && rc == may_rewrite) { 2896 patch_bytecode(Bytecodes::_fast_cgetfield, bc, rbx); 2897 } 2898 __ jmp(Done); 2899 2900 __ bind(notChar); 2901 __ cmpl(flags, stos); 2902 __ jcc(Assembler::notEqual, notShort); 2903 // stos 2904 __ load_signed_short(rax, field); 2905 __ push(stos); 2906 // Rewrite bytecode to be faster 2907 if (!is_static && rc == may_rewrite) { 2908 patch_bytecode(Bytecodes::_fast_sgetfield, bc, rbx); 2909 } 2910 __ jmp(Done); 2911 2912 __ bind(notShort); 2913 __ cmpl(flags, ltos); 2914 __ jcc(Assembler::notEqual, notLong); 2915 // ltos 2916 2917 #ifndef _LP64 2918 // Generate code as if volatile. There just aren't enough registers to 2919 // save that information and this code is faster than the test. 2920 __ fild_d(field); // Must load atomically 2921 __ subptr(rsp,2*wordSize); // Make space for store 2922 __ fistp_d(Address(rsp,0)); 2923 __ pop(rax); 2924 __ pop(rdx); 2925 #else 2926 __ movq(rax, field); 2927 #endif 2928 2929 __ push(ltos); 2930 // Rewrite bytecode to be faster 2931 LP64_ONLY(if (!is_static && rc == may_rewrite) patch_bytecode(Bytecodes::_fast_lgetfield, bc, rbx)); 2932 __ jmp(Done); 2933 2934 __ bind(notLong); 2935 __ cmpl(flags, ftos); 2936 __ jcc(Assembler::notEqual, notFloat); 2937 // ftos 2938 2939 __ load_float(field); 2940 __ push(ftos); 2941 // Rewrite bytecode to be faster 2942 if (!is_static && rc == may_rewrite) { 2943 patch_bytecode(Bytecodes::_fast_fgetfield, bc, rbx); 2944 } 2945 __ jmp(Done); 2946 2947 __ bind(notFloat); 2948 #ifdef ASSERT 2949 __ cmpl(flags, dtos); 2950 __ jcc(Assembler::notEqual, notDouble); 2951 #endif 2952 // dtos 2953 __ load_double(field); 2954 __ push(dtos); 2955 // Rewrite bytecode to be faster 2956 if (!is_static && rc == may_rewrite) { 2957 patch_bytecode(Bytecodes::_fast_dgetfield, bc, rbx); 2958 } 2959 #ifdef ASSERT 2960 __ jmp(Done); 2961 2962 2963 __ bind(notDouble); 2964 __ stop("Bad state"); 2965 #endif 2966 2967 __ bind(Done); 2968 // [jk] not needed currently 2969 // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadLoad | 2970 // Assembler::LoadStore)); 2971 } 2972 2973 void TemplateTable::getfield(int byte_no) { 2974 getfield_or_static(byte_no, false); 2975 } 2976 2977 void TemplateTable::nofast_getfield(int byte_no) { 2978 getfield_or_static(byte_no, false, may_not_rewrite); 2979 } 2980 2981 void TemplateTable::getstatic(int byte_no) { 2982 getfield_or_static(byte_no, true); 2983 } 2984 2985 void TemplateTable::vgetfield(int byte_no) { 2986 // Value types are currently implemented as Java instances, let's try to 2987 // re-use the getfield code. This choice has to be revisited once value types 2988 // are implemented differently (either with immediate value or specific 2989 // storage. Note that the getfield() code rewrites the getfield bytecode 2990 // but current patching code cannot be applied to vgetfield. 2991 getfield_or_static(byte_no, false, may_not_rewrite, true); 2992 } 2993 2994 // The registers cache and index expected to be set before call. 2995 // The function may destroy various registers, just not the cache and index registers. 2996 void TemplateTable::jvmti_post_field_mod(Register cache, Register index, bool is_static) { 2997 2998 const Register robj = LP64_ONLY(c_rarg2) NOT_LP64(rax); 2999 const Register RBX = LP64_ONLY(c_rarg1) NOT_LP64(rbx); 3000 const Register RCX = LP64_ONLY(c_rarg3) NOT_LP64(rcx); 3001 const Register RDX = LP64_ONLY(rscratch1) NOT_LP64(rdx); 3002 3003 ByteSize cp_base_offset = ConstantPoolCache::base_offset(); 3004 3005 if (JvmtiExport::can_post_field_modification()) { 3006 // Check to see if a field modification watch has been set before 3007 // we take the time to call into the VM. 3008 Label L1; 3009 assert_different_registers(cache, index, rax); 3010 __ mov32(rax, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr())); 3011 __ testl(rax, rax); 3012 __ jcc(Assembler::zero, L1); 3013 3014 __ get_cache_and_index_at_bcp(robj, RDX, 1); 3015 3016 3017 if (is_static) { 3018 // Life is simple. Null out the object pointer. 3019 __ xorl(RBX, RBX); 3020 3021 } else { 3022 // Life is harder. The stack holds the value on top, followed by 3023 // the object. We don't know the size of the value, though; it 3024 // could be one or two words depending on its type. As a result, 3025 // we must find the type to determine where the object is. 3026 #ifndef _LP64 3027 Label two_word, valsize_known; 3028 #endif 3029 __ movl(RCX, Address(robj, RDX, 3030 Address::times_ptr, 3031 in_bytes(cp_base_offset + 3032 ConstantPoolCacheEntry::flags_offset()))); 3033 NOT_LP64(__ mov(rbx, rsp)); 3034 __ shrl(RCX, ConstantPoolCacheEntry::tos_state_shift); 3035 3036 // Make sure we don't need to mask rcx after the above shift 3037 ConstantPoolCacheEntry::verify_tos_state_shift(); 3038 #ifdef _LP64 3039 __ movptr(c_rarg1, at_tos_p1()); // initially assume a one word jvalue 3040 __ cmpl(c_rarg3, ltos); 3041 __ cmovptr(Assembler::equal, 3042 c_rarg1, at_tos_p2()); // ltos (two word jvalue) 3043 __ cmpl(c_rarg3, dtos); 3044 __ cmovptr(Assembler::equal, 3045 c_rarg1, at_tos_p2()); // dtos (two word jvalue) 3046 #else 3047 __ cmpl(rcx, ltos); 3048 __ jccb(Assembler::equal, two_word); 3049 __ cmpl(rcx, dtos); 3050 __ jccb(Assembler::equal, two_word); 3051 __ addptr(rbx, Interpreter::expr_offset_in_bytes(1)); // one word jvalue (not ltos, dtos) 3052 __ jmpb(valsize_known); 3053 3054 __ bind(two_word); 3055 __ addptr(rbx, Interpreter::expr_offset_in_bytes(2)); // two words jvalue 3056 3057 __ bind(valsize_known); 3058 // setup object pointer 3059 __ movptr(rbx, Address(rbx, 0)); 3060 #endif 3061 } 3062 // cache entry pointer 3063 __ addptr(robj, in_bytes(cp_base_offset)); 3064 __ shll(RDX, LogBytesPerWord); 3065 __ addptr(robj, RDX); 3066 // object (tos) 3067 __ mov(RCX, rsp); 3068 // c_rarg1: object pointer set up above (NULL if static) 3069 // c_rarg2: cache entry pointer 3070 // c_rarg3: jvalue object on the stack 3071 __ call_VM(noreg, 3072 CAST_FROM_FN_PTR(address, 3073 InterpreterRuntime::post_field_modification), 3074 RBX, robj, RCX); 3075 __ get_cache_and_index_at_bcp(cache, index, 1); 3076 __ bind(L1); 3077 } 3078 } 3079 3080 void TemplateTable::putfield_or_static(int byte_no, bool is_static, RewriteControl rc) { 3081 transition(vtos, vtos); 3082 3083 const Register cache = rcx; 3084 const Register index = rdx; 3085 const Register obj = rcx; 3086 const Register off = rbx; 3087 const Register flags = rax; 3088 const Register bc = LP64_ONLY(c_rarg3) NOT_LP64(rcx); 3089 3090 resolve_cache_and_index(byte_no, cache, index, sizeof(u2)); 3091 jvmti_post_field_mod(cache, index, is_static); 3092 load_field_cp_cache_entry(obj, cache, index, off, flags, is_static); 3093 3094 if (!is_static) { 3095 // cache entry pointer for qtos case 3096 __ addptr(cache, in_bytes(ConstantPoolCache::base_offset())); 3097 __ shll(index, LogBytesPerWord); 3098 __ addptr(cache, index); 3099 } 3100 3101 // [jk] not needed currently 3102 // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadStore | 3103 // Assembler::StoreStore)); 3104 3105 Label notVolatile, Done; 3106 __ movl(rdx, flags); 3107 __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift); 3108 __ andl(rdx, 0x1); 3109 3110 // field addresses 3111 const Address field(obj, off, Address::times_1, 0*wordSize); 3112 NOT_LP64( const Address hi(obj, off, Address::times_1, 1*wordSize);) 3113 3114 Label notByte, notInt, notShort, notChar, 3115 notLong, notFloat, notObj, notValueType, notDouble; 3116 3117 __ shrl(flags, ConstantPoolCacheEntry::tos_state_shift); 3118 3119 assert(btos == 0, "change code, btos != 0"); 3120 __ andl(flags, ConstantPoolCacheEntry::tos_state_mask); 3121 __ jcc(Assembler::notZero, notByte); 3122 3123 // btos 3124 { 3125 __ pop(btos); 3126 if (!is_static) pop_and_check_object(obj); 3127 __ movb(field, rax); 3128 if (!is_static && rc == may_rewrite) { 3129 patch_bytecode(Bytecodes::_fast_bputfield, bc, rbx, true, byte_no); 3130 } 3131 __ jmp(Done); 3132 } 3133 3134 __ bind(notByte); 3135 __ cmpl(flags, atos); 3136 __ jcc(Assembler::notEqual, notObj); 3137 3138 // atos 3139 { 3140 __ pop(atos); 3141 if (!is_static) pop_and_check_object(obj); 3142 // Store into the field 3143 do_oop_store(_masm, field, rax, _bs->kind(), false); 3144 if (!is_static && rc == may_rewrite) { 3145 patch_bytecode(Bytecodes::_fast_aputfield, bc, rbx, true, byte_no); 3146 } 3147 __ jmp(Done); 3148 } 3149 3150 __ bind(notObj); 3151 __ cmpl(flags, qtos); 3152 __ jcc(Assembler::notEqual, notValueType); 3153 3154 // qtos 3155 { 3156 __ pop(qtos); // => rax == value 3157 if (!is_static) { 3158 // value types in non-static fields are embedded 3159 // is cache still in rcx ? 3160 pop_and_check_object(rbx); 3161 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::qputfield), 3162 rbx, rax, cache); 3163 __ jmp(notVolatile); // value types are never volatile 3164 } else { 3165 // Store into the static field 3166 // Value types in static fields are currently handled with oops 3167 do_oop_store(_masm, field, rax, _bs->kind(), false); 3168 } 3169 __ jmp(Done); 3170 } 3171 3172 __ bind(notValueType); 3173 __ cmpl(flags, itos); 3174 __ jcc(Assembler::notEqual, notInt); 3175 3176 // itos 3177 { 3178 __ pop(itos); 3179 if (!is_static) pop_and_check_object(obj); 3180 __ movl(field, rax); 3181 if (!is_static && rc == may_rewrite) { 3182 patch_bytecode(Bytecodes::_fast_iputfield, bc, rbx, true, byte_no); 3183 } 3184 __ jmp(Done); 3185 } 3186 3187 __ bind(notInt); 3188 __ cmpl(flags, ctos); 3189 __ jcc(Assembler::notEqual, notChar); 3190 3191 // ctos 3192 { 3193 __ pop(ctos); 3194 if (!is_static) pop_and_check_object(obj); 3195 __ movw(field, rax); 3196 if (!is_static && rc == may_rewrite) { 3197 patch_bytecode(Bytecodes::_fast_cputfield, bc, rbx, true, byte_no); 3198 } 3199 __ jmp(Done); 3200 } 3201 3202 __ bind(notChar); 3203 __ cmpl(flags, stos); 3204 __ jcc(Assembler::notEqual, notShort); 3205 3206 // stos 3207 { 3208 __ pop(stos); 3209 if (!is_static) pop_and_check_object(obj); 3210 __ movw(field, rax); 3211 if (!is_static && rc == may_rewrite) { 3212 patch_bytecode(Bytecodes::_fast_sputfield, bc, rbx, true, byte_no); 3213 } 3214 __ jmp(Done); 3215 } 3216 3217 __ bind(notShort); 3218 __ cmpl(flags, ltos); 3219 __ jcc(Assembler::notEqual, notLong); 3220 3221 // ltos 3222 #ifdef _LP64 3223 { 3224 __ pop(ltos); 3225 if (!is_static) pop_and_check_object(obj); 3226 __ movq(field, rax); 3227 if (!is_static && rc == may_rewrite) { 3228 patch_bytecode(Bytecodes::_fast_lputfield, bc, rbx, true, byte_no); 3229 } 3230 __ jmp(Done); 3231 } 3232 #else 3233 { 3234 Label notVolatileLong; 3235 __ testl(rdx, rdx); 3236 __ jcc(Assembler::zero, notVolatileLong); 3237 3238 __ pop(ltos); // overwrites rdx, do this after testing volatile. 3239 if (!is_static) pop_and_check_object(obj); 3240 3241 // Replace with real volatile test 3242 __ push(rdx); 3243 __ push(rax); // Must update atomically with FIST 3244 __ fild_d(Address(rsp,0)); // So load into FPU register 3245 __ fistp_d(field); // and put into memory atomically 3246 __ addptr(rsp, 2*wordSize); 3247 // volatile_barrier(); 3248 volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad | 3249 Assembler::StoreStore)); 3250 // Don't rewrite volatile version 3251 __ jmp(notVolatile); 3252 3253 __ bind(notVolatileLong); 3254 3255 __ pop(ltos); // overwrites rdx 3256 if (!is_static) pop_and_check_object(obj); 3257 __ movptr(hi, rdx); 3258 __ movptr(field, rax); 3259 // Don't rewrite to _fast_lputfield for potential volatile case. 3260 __ jmp(notVolatile); 3261 } 3262 #endif // _LP64 3263 3264 __ bind(notLong); 3265 __ cmpl(flags, ftos); 3266 __ jcc(Assembler::notEqual, notFloat); 3267 3268 // ftos 3269 { 3270 __ pop(ftos); 3271 if (!is_static) pop_and_check_object(obj); 3272 __ store_float(field); 3273 if (!is_static && rc == may_rewrite) { 3274 patch_bytecode(Bytecodes::_fast_fputfield, bc, rbx, true, byte_no); 3275 } 3276 __ jmp(Done); 3277 } 3278 3279 __ bind(notFloat); 3280 #ifdef ASSERT 3281 __ cmpl(flags, dtos); 3282 __ jcc(Assembler::notEqual, notDouble); 3283 #endif 3284 3285 // dtos 3286 { 3287 __ pop(dtos); 3288 if (!is_static) pop_and_check_object(obj); 3289 __ store_double(field); 3290 if (!is_static && rc == may_rewrite) { 3291 patch_bytecode(Bytecodes::_fast_dputfield, bc, rbx, true, byte_no); 3292 } 3293 } 3294 3295 #ifdef ASSERT 3296 __ jmp(Done); 3297 3298 __ bind(notDouble); 3299 __ stop("Bad state"); 3300 #endif 3301 3302 __ bind(Done); 3303 3304 // Check for volatile store 3305 __ testl(rdx, rdx); 3306 __ jcc(Assembler::zero, notVolatile); 3307 volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad | 3308 Assembler::StoreStore)); 3309 __ bind(notVolatile); 3310 } 3311 3312 void TemplateTable::putfield(int byte_no) { 3313 putfield_or_static(byte_no, false); 3314 } 3315 3316 void TemplateTable::nofast_putfield(int byte_no) { 3317 putfield_or_static(byte_no, false, may_not_rewrite); 3318 } 3319 3320 void TemplateTable::putstatic(int byte_no) { 3321 putfield_or_static(byte_no, true); 3322 } 3323 3324 void TemplateTable::jvmti_post_fast_field_mod() { 3325 3326 const Register scratch = LP64_ONLY(c_rarg3) NOT_LP64(rcx); 3327 3328 if (JvmtiExport::can_post_field_modification()) { 3329 // Check to see if a field modification watch has been set before 3330 // we take the time to call into the VM. 3331 Label L2; 3332 __ mov32(scratch, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr())); 3333 __ testl(scratch, scratch); 3334 __ jcc(Assembler::zero, L2); 3335 __ pop_ptr(rbx); // copy the object pointer from tos 3336 __ verify_oop(rbx); 3337 __ push_ptr(rbx); // put the object pointer back on tos 3338 // Save tos values before call_VM() clobbers them. Since we have 3339 // to do it for every data type, we use the saved values as the 3340 // jvalue object. 3341 switch (bytecode()) { // load values into the jvalue object 3342 case Bytecodes::_fast_qputfield: // fall through (value types in object are currently oops) 3343 case Bytecodes::_fast_aputfield: __ push_ptr(rax); break; 3344 case Bytecodes::_fast_bputfield: // fall through 3345 case Bytecodes::_fast_sputfield: // fall through 3346 case Bytecodes::_fast_cputfield: // fall through 3347 case Bytecodes::_fast_iputfield: __ push_i(rax); break; 3348 case Bytecodes::_fast_dputfield: __ push(dtos); break; 3349 case Bytecodes::_fast_fputfield: __ push(ftos); break; 3350 case Bytecodes::_fast_lputfield: __ push_l(rax); break; 3351 3352 default: 3353 ShouldNotReachHere(); 3354 } 3355 __ mov(scratch, rsp); // points to jvalue on the stack 3356 // access constant pool cache entry 3357 LP64_ONLY(__ get_cache_entry_pointer_at_bcp(c_rarg2, rax, 1)); 3358 NOT_LP64(__ get_cache_entry_pointer_at_bcp(rax, rdx, 1)); 3359 __ verify_oop(rbx); 3360 // rbx: object pointer copied above 3361 // c_rarg2: cache entry pointer 3362 // c_rarg3: jvalue object on the stack 3363 LP64_ONLY(__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification), rbx, c_rarg2, c_rarg3)); 3364 NOT_LP64(__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification), rbx, rax, rcx)); 3365 3366 switch (bytecode()) { // restore tos values 3367 case Bytecodes::_fast_aputfield: __ pop_ptr(rax); break; 3368 case Bytecodes::_fast_bputfield: // fall through 3369 case Bytecodes::_fast_sputfield: // fall through 3370 case Bytecodes::_fast_cputfield: // fall through 3371 case Bytecodes::_fast_iputfield: __ pop_i(rax); break; 3372 case Bytecodes::_fast_dputfield: __ pop(dtos); break; 3373 case Bytecodes::_fast_fputfield: __ pop(ftos); break; 3374 case Bytecodes::_fast_lputfield: __ pop_l(rax); break; 3375 } 3376 __ bind(L2); 3377 } 3378 } 3379 3380 void TemplateTable::fast_storefield(TosState state) { 3381 transition(state, vtos); 3382 3383 ByteSize base = ConstantPoolCache::base_offset(); 3384 3385 jvmti_post_fast_field_mod(); 3386 3387 // access constant pool cache 3388 __ get_cache_and_index_at_bcp(rcx, rbx, 1); 3389 3390 // test for volatile with rdx but rdx is tos register for lputfield. 3391 __ movl(rdx, Address(rcx, rbx, Address::times_ptr, 3392 in_bytes(base + 3393 ConstantPoolCacheEntry::flags_offset()))); 3394 3395 // replace index with field offset from cache entry 3396 __ movptr(rbx, Address(rcx, rbx, Address::times_ptr, 3397 in_bytes(base + ConstantPoolCacheEntry::f2_offset()))); 3398 3399 // [jk] not needed currently 3400 // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadStore | 3401 // Assembler::StoreStore)); 3402 3403 Label notVolatile; 3404 __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift); 3405 __ andl(rdx, 0x1); 3406 3407 // Get object from stack 3408 pop_and_check_object(rcx); 3409 3410 // field address 3411 const Address field(rcx, rbx, Address::times_1); 3412 3413 // access field 3414 switch (bytecode()) { 3415 // Value types are currently handled with oops 3416 case Bytecodes::_fast_qputfield: // Fallthrough 3417 case Bytecodes::_fast_aputfield: 3418 do_oop_store(_masm, field, rax, _bs->kind(), false); 3419 break; 3420 case Bytecodes::_fast_lputfield: 3421 #ifdef _LP64 3422 __ movq(field, rax); 3423 #else 3424 __ stop("should not be rewritten"); 3425 #endif 3426 break; 3427 case Bytecodes::_fast_iputfield: 3428 __ movl(field, rax); 3429 break; 3430 case Bytecodes::_fast_bputfield: 3431 __ movb(field, rax); 3432 break; 3433 case Bytecodes::_fast_sputfield: 3434 // fall through 3435 case Bytecodes::_fast_cputfield: 3436 __ movw(field, rax); 3437 break; 3438 case Bytecodes::_fast_fputfield: 3439 __ store_float(field); 3440 break; 3441 case Bytecodes::_fast_dputfield: 3442 __ store_double(field); 3443 break; 3444 default: 3445 ShouldNotReachHere(); 3446 } 3447 3448 // Check for volatile store 3449 __ testl(rdx, rdx); 3450 __ jcc(Assembler::zero, notVolatile); 3451 volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad | 3452 Assembler::StoreStore)); 3453 __ bind(notVolatile); 3454 } 3455 3456 void TemplateTable::fast_accessfield(TosState state) { 3457 transition(atos, state); 3458 3459 // Do the JVMTI work here to avoid disturbing the register state below 3460 if (JvmtiExport::can_post_field_access()) { 3461 // Check to see if a field access watch has been set before we 3462 // take the time to call into the VM. 3463 Label L1; 3464 __ mov32(rcx, ExternalAddress((address) JvmtiExport::get_field_access_count_addr())); 3465 __ testl(rcx, rcx); 3466 __ jcc(Assembler::zero, L1); 3467 // access constant pool cache entry 3468 LP64_ONLY(__ get_cache_entry_pointer_at_bcp(c_rarg2, rcx, 1)); 3469 NOT_LP64(__ get_cache_entry_pointer_at_bcp(rcx, rdx, 1)); 3470 __ verify_oop(rax); 3471 __ push_ptr(rax); // save object pointer before call_VM() clobbers it 3472 LP64_ONLY(__ mov(c_rarg1, rax)); 3473 // c_rarg1: object pointer copied above 3474 // c_rarg2: cache entry pointer 3475 LP64_ONLY(__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access), c_rarg1, c_rarg2)); 3476 NOT_LP64(__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access), rax, rcx)); 3477 __ pop_ptr(rax); // restore object pointer 3478 __ bind(L1); 3479 } 3480 3481 // access constant pool cache 3482 __ get_cache_and_index_at_bcp(rcx, rbx, 1); 3483 // replace index with field offset from cache entry 3484 // [jk] not needed currently 3485 // if (os::is_MP()) { 3486 // __ movl(rdx, Address(rcx, rbx, Address::times_8, 3487 // in_bytes(ConstantPoolCache::base_offset() + 3488 // ConstantPoolCacheEntry::flags_offset()))); 3489 // __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift); 3490 // __ andl(rdx, 0x1); 3491 // } 3492 __ movptr(rbx, Address(rcx, rbx, Address::times_ptr, 3493 in_bytes(ConstantPoolCache::base_offset() + 3494 ConstantPoolCacheEntry::f2_offset()))); 3495 3496 // rax: object 3497 __ verify_oop(rax); 3498 __ null_check(rax); 3499 Address field(rax, rbx, Address::times_1); 3500 3501 // access field 3502 switch (bytecode()) { 3503 // Value types are currently implemented with oops 3504 case Bytecodes::_fast_qgetfield: // Fallthrough 3505 case Bytecodes::_fast_agetfield: 3506 __ load_heap_oop(rax, field); 3507 __ verify_oop(rax); 3508 break; 3509 case Bytecodes::_fast_lgetfield: 3510 #ifdef _LP64 3511 __ movq(rax, field); 3512 #else 3513 __ stop("should not be rewritten"); 3514 #endif 3515 break; 3516 case Bytecodes::_fast_igetfield: 3517 __ movl(rax, field); 3518 break; 3519 case Bytecodes::_fast_bgetfield: 3520 __ movsbl(rax, field); 3521 break; 3522 case Bytecodes::_fast_sgetfield: 3523 __ load_signed_short(rax, field); 3524 break; 3525 case Bytecodes::_fast_cgetfield: 3526 __ load_unsigned_short(rax, field); 3527 break; 3528 case Bytecodes::_fast_fgetfield: 3529 __ load_float(field); 3530 break; 3531 case Bytecodes::_fast_dgetfield: 3532 __ load_double(field); 3533 break; 3534 default: 3535 ShouldNotReachHere(); 3536 } 3537 // [jk] not needed currently 3538 // if (os::is_MP()) { 3539 // Label notVolatile; 3540 // __ testl(rdx, rdx); 3541 // __ jcc(Assembler::zero, notVolatile); 3542 // __ membar(Assembler::LoadLoad); 3543 // __ bind(notVolatile); 3544 //}; 3545 } 3546 3547 void TemplateTable::fast_xaccess(TosState state) { 3548 transition(vtos, state); 3549 3550 // get receiver 3551 __ movptr(rax, aaddress(0)); 3552 // access constant pool cache 3553 __ get_cache_and_index_at_bcp(rcx, rdx, 2); 3554 __ movptr(rbx, 3555 Address(rcx, rdx, Address::times_ptr, 3556 in_bytes(ConstantPoolCache::base_offset() + 3557 ConstantPoolCacheEntry::f2_offset()))); 3558 // make sure exception is reported in correct bcp range (getfield is 3559 // next instruction) 3560 __ increment(rbcp); 3561 __ null_check(rax); 3562 const Address field = Address(rax, rbx, Address::times_1, 0*wordSize); 3563 switch (state) { 3564 case itos: 3565 __ movl(rax, field); 3566 break; 3567 case atos: 3568 __ load_heap_oop(rax, field); 3569 __ verify_oop(rax); 3570 break; 3571 case ftos: 3572 __ load_float(field); 3573 break; 3574 default: 3575 ShouldNotReachHere(); 3576 } 3577 3578 // [jk] not needed currently 3579 // if (os::is_MP()) { 3580 // Label notVolatile; 3581 // __ movl(rdx, Address(rcx, rdx, Address::times_8, 3582 // in_bytes(ConstantPoolCache::base_offset() + 3583 // ConstantPoolCacheEntry::flags_offset()))); 3584 // __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift); 3585 // __ testl(rdx, 0x1); 3586 // __ jcc(Assembler::zero, notVolatile); 3587 // __ membar(Assembler::LoadLoad); 3588 // __ bind(notVolatile); 3589 // } 3590 3591 __ decrement(rbcp); 3592 } 3593 3594 //----------------------------------------------------------------------------- 3595 // Calls 3596 3597 void TemplateTable::count_calls(Register method, Register temp) { 3598 // implemented elsewhere 3599 ShouldNotReachHere(); 3600 } 3601 3602 void TemplateTable::prepare_invoke(int byte_no, 3603 Register method, // linked method (or i-klass) 3604 Register index, // itable index, MethodType, etc. 3605 Register recv, // if caller wants to see it 3606 Register flags // if caller wants to test it 3607 ) { 3608 // determine flags 3609 const Bytecodes::Code code = bytecode(); 3610 const bool is_invokeinterface = code == Bytecodes::_invokeinterface; 3611 const bool is_invokedynamic = code == Bytecodes::_invokedynamic; 3612 const bool is_invokehandle = code == Bytecodes::_invokehandle; 3613 const bool is_invokevirtual = code == Bytecodes::_invokevirtual; 3614 const bool is_invokedirect = code == Bytecodes::_invokedirect; 3615 const bool is_invokespecial = code == Bytecodes::_invokespecial; 3616 const bool load_receiver = (recv != noreg); 3617 const bool save_flags = (flags != noreg); 3618 assert(load_receiver == (code != Bytecodes::_invokestatic && code != Bytecodes::_invokedynamic), ""); 3619 assert(save_flags == (is_invokeinterface || is_invokevirtual || is_invokedirect), "need flags for vfinal"); 3620 assert(flags == noreg || flags == rdx, ""); 3621 assert(recv == noreg || recv == rcx, ""); 3622 3623 // setup registers & access constant pool cache 3624 if (recv == noreg) recv = rcx; 3625 if (flags == noreg) flags = rdx; 3626 assert_different_registers(method, index, recv, flags); 3627 3628 // save 'interpreter return address' 3629 __ save_bcp(); 3630 3631 load_invoke_cp_cache_entry(byte_no, method, index, flags, 3632 is_invokevirtual || is_invokedirect, 3633 false, is_invokedynamic); 3634 3635 // maybe push appendix to arguments (just before return address) 3636 if (is_invokedynamic || is_invokehandle) { 3637 Label L_no_push; 3638 __ testl(flags, (1 << ConstantPoolCacheEntry::has_appendix_shift)); 3639 __ jcc(Assembler::zero, L_no_push); 3640 // Push the appendix as a trailing parameter. 3641 // This must be done before we get the receiver, 3642 // since the parameter_size includes it. 3643 __ push(rbx); 3644 __ mov(rbx, index); 3645 assert(ConstantPoolCacheEntry::_indy_resolved_references_appendix_offset == 0, "appendix expected at index+0"); 3646 __ load_resolved_reference_at_index(index, rbx); 3647 __ pop(rbx); 3648 __ push(index); // push appendix (MethodType, CallSite, etc.) 3649 __ bind(L_no_push); 3650 } 3651 3652 // load receiver if needed (after appendix is pushed so parameter size is correct) 3653 // Note: no return address pushed yet 3654 if (load_receiver) { 3655 __ movl(recv, flags); 3656 __ andl(recv, ConstantPoolCacheEntry::parameter_size_mask); 3657 const int no_return_pc_pushed_yet = -1; // argument slot correction before we push return address 3658 const int receiver_is_at_end = -1; // back off one slot to get receiver 3659 Address recv_addr = __ argument_address(recv, no_return_pc_pushed_yet + receiver_is_at_end); 3660 __ movptr(recv, recv_addr); 3661 __ verify_oop(recv); 3662 } 3663 3664 if (save_flags) { 3665 __ movl(rbcp, flags); 3666 } 3667 3668 // compute return type 3669 __ shrl(flags, ConstantPoolCacheEntry::tos_state_shift); 3670 // Make sure we don't need to mask flags after the above shift 3671 ConstantPoolCacheEntry::verify_tos_state_shift(); 3672 // load return address 3673 { 3674 const address table_addr = (address) Interpreter::invoke_return_entry_table_for(code); 3675 ExternalAddress table(table_addr); 3676 LP64_ONLY(__ lea(rscratch1, table)); 3677 LP64_ONLY(__ movptr(flags, Address(rscratch1, flags, Address::times_ptr))); 3678 NOT_LP64(__ movptr(flags, ArrayAddress(table, Address(noreg, flags, Address::times_ptr)))); 3679 } 3680 3681 // push return address 3682 __ push(flags); 3683 3684 // Restore flags value from the constant pool cache, and restore rsi 3685 // for later null checks. r13 is the bytecode pointer 3686 if (save_flags) { 3687 __ movl(flags, rbcp); 3688 __ restore_bcp(); 3689 } 3690 } 3691 3692 void TemplateTable::invokevirtual_helper(Register index, 3693 Register recv, 3694 Register flags) { 3695 // Uses temporary registers rax, rdx 3696 assert_different_registers(index, recv, rax, rdx); 3697 assert(index == rbx, ""); 3698 assert(recv == rcx, ""); 3699 3700 // Test for an invoke of a final method 3701 Label notFinal; 3702 __ movl(rax, flags); 3703 __ andl(rax, (1 << ConstantPoolCacheEntry::is_vfinal_shift)); 3704 __ jcc(Assembler::zero, notFinal); 3705 3706 const Register method = index; // method must be rbx 3707 assert(method == rbx, 3708 "Method* must be rbx for interpreter calling convention"); 3709 3710 // do the call - the index is actually the method to call 3711 // that is, f2 is a vtable index if !is_vfinal, else f2 is a Method* 3712 3713 // It's final, need a null check here! 3714 __ null_check(recv); 3715 3716 // profile this call 3717 __ profile_final_call(rax); 3718 __ profile_arguments_type(rax, method, rbcp, true); 3719 3720 __ jump_from_interpreted(method, rax); 3721 3722 __ bind(notFinal); 3723 3724 // get receiver klass 3725 __ null_check(recv, oopDesc::klass_offset_in_bytes()); 3726 __ load_klass(rax, recv); 3727 3728 // profile this call 3729 __ profile_virtual_call(rax, rlocals, rdx); 3730 // get target Method* & entry point 3731 __ lookup_virtual_method(rax, index, method); 3732 __ profile_called_method(method, rdx, rbcp); 3733 3734 __ profile_arguments_type(rdx, method, rbcp, true); 3735 __ jump_from_interpreted(method, rdx); 3736 } 3737 3738 void TemplateTable::invokevirtual(int byte_no) { 3739 transition(vtos, vtos); 3740 assert(byte_no == f2_byte, "use this argument"); 3741 prepare_invoke(byte_no, 3742 rbx, // method or vtable index 3743 noreg, // unused itable index 3744 rcx, rdx); // recv, flags 3745 3746 // rbx: index 3747 // rcx: receiver 3748 // rdx: flags 3749 3750 invokevirtual_helper(rbx, rcx, rdx); 3751 } 3752 3753 /* 3754 * The invokedirect bytecode is implemented as an invokevirtual bytecode: 3755 * The implementation blindly uses resolve_invokevirtual() and assumes 3756 * that a final call will be picked at the end. (Currently unsure about interfaces, 3757 * default methods, and about where "Value.equals(QValue;)Z" should live.) 3758 */ 3759 void TemplateTable::invokedirect(int byte_no) { 3760 transition(vtos, vtos); 3761 assert(byte_no == f2_byte, "use this argument"); 3762 prepare_invoke(byte_no, 3763 rbx, // method (and not vtable index, as the method to be invoked should be final) 3764 noreg, 3765 rcx, rdx); // recv, flags 3766 3767 // Check if the method is final 3768 Label notFinal; 3769 __ movl(rax, rdx); 3770 __ andl(rax, (1 << ConstantPoolCacheEntry::is_vfinal_shift)); 3771 __ jcc(Assembler::zero, notFinal); 3772 3773 __ verify_oop(rcx); 3774 __ null_check(rcx); 3775 __ profile_final_call(rax); 3776 __ profile_arguments_type(rax, rbx, rbcp, true); 3777 __ jump_from_interpreted(rbx, rax); 3778 3779 __ bind(notFinal); 3780 __ stop("Interpreter observed a non-final method as a target of an invokedirect instruction"); 3781 } 3782 3783 void TemplateTable::invokespecial(int byte_no) { 3784 transition(vtos, vtos); 3785 assert(byte_no == f1_byte, "use this argument"); 3786 prepare_invoke(byte_no, rbx, noreg, // get f1 Method* 3787 rcx); // get receiver also for null check 3788 __ verify_oop(rcx); 3789 __ null_check(rcx); 3790 // do the call 3791 __ profile_call(rax); 3792 __ profile_arguments_type(rax, rbx, rbcp, false); 3793 __ jump_from_interpreted(rbx, rax); 3794 } 3795 3796 void TemplateTable::invokestatic(int byte_no) { 3797 transition(vtos, vtos); 3798 assert(byte_no == f1_byte, "use this argument"); 3799 prepare_invoke(byte_no, rbx); // get f1 Method* 3800 // do the call 3801 __ profile_call(rax); 3802 __ profile_arguments_type(rax, rbx, rbcp, false); 3803 __ jump_from_interpreted(rbx, rax); 3804 } 3805 3806 3807 void TemplateTable::fast_invokevfinal(int byte_no) { 3808 transition(vtos, vtos); 3809 assert(byte_no == f2_byte, "use this argument"); 3810 __ stop("fast_invokevfinal not used on x86"); 3811 } 3812 3813 3814 void TemplateTable::invokeinterface(int byte_no) { 3815 transition(vtos, vtos); 3816 assert(byte_no == f1_byte, "use this argument"); 3817 prepare_invoke(byte_no, rax, rbx, // get f1 Klass*, f2 itable index 3818 rcx, rdx); // recv, flags 3819 3820 // rax: interface klass (from f1) 3821 // rbx: itable index (from f2) 3822 // rcx: receiver 3823 // rdx: flags 3824 3825 // Special case of invokeinterface called for virtual method of 3826 // java.lang.Object. See cpCacheOop.cpp for details. 3827 // This code isn't produced by javac, but could be produced by 3828 // another compliant java compiler. 3829 Label notMethod; 3830 __ movl(rlocals, rdx); 3831 __ andl(rlocals, (1 << ConstantPoolCacheEntry::is_forced_virtual_shift)); 3832 3833 __ jcc(Assembler::zero, notMethod); 3834 3835 invokevirtual_helper(rbx, rcx, rdx); 3836 __ bind(notMethod); 3837 3838 // Get receiver klass into rdx - also a null check 3839 __ restore_locals(); // restore r14 3840 __ null_check(rcx, oopDesc::klass_offset_in_bytes()); 3841 __ load_klass(rdx, rcx); 3842 3843 // profile this call 3844 __ profile_virtual_call(rdx, rbcp, rlocals); 3845 3846 Label no_such_interface, no_such_method; 3847 3848 __ lookup_interface_method(// inputs: rec. class, interface, itable index 3849 rdx, rax, rbx, 3850 // outputs: method, scan temp. reg 3851 rbx, rbcp, 3852 no_such_interface); 3853 3854 // rbx: Method* to call 3855 // rcx: receiver 3856 // Check for abstract method error 3857 // Note: This should be done more efficiently via a throw_abstract_method_error 3858 // interpreter entry point and a conditional jump to it in case of a null 3859 // method. 3860 __ testptr(rbx, rbx); 3861 __ jcc(Assembler::zero, no_such_method); 3862 3863 __ profile_called_method(rbx, rbcp, rdx); 3864 __ profile_arguments_type(rdx, rbx, rbcp, true); 3865 3866 // do the call 3867 // rcx: receiver 3868 // rbx,: Method* 3869 __ jump_from_interpreted(rbx, rdx); 3870 __ should_not_reach_here(); 3871 3872 // exception handling code follows... 3873 // note: must restore interpreter registers to canonical 3874 // state for exception handling to work correctly! 3875 3876 __ bind(no_such_method); 3877 // throw exception 3878 __ pop(rbx); // pop return address (pushed by prepare_invoke) 3879 __ restore_bcp(); // rbcp must be correct for exception handler (was destroyed) 3880 __ restore_locals(); // make sure locals pointer is correct as well (was destroyed) 3881 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodError)); 3882 // the call_VM checks for exception, so we should never return here. 3883 __ should_not_reach_here(); 3884 3885 __ bind(no_such_interface); 3886 // throw exception 3887 __ pop(rbx); // pop return address (pushed by prepare_invoke) 3888 __ restore_bcp(); // rbcp must be correct for exception handler (was destroyed) 3889 __ restore_locals(); // make sure locals pointer is correct as well (was destroyed) 3890 __ call_VM(noreg, CAST_FROM_FN_PTR(address, 3891 InterpreterRuntime::throw_IncompatibleClassChangeError)); 3892 // the call_VM checks for exception, so we should never return here. 3893 __ should_not_reach_here(); 3894 } 3895 3896 void TemplateTable::invokehandle(int byte_no) { 3897 transition(vtos, vtos); 3898 assert(byte_no == f1_byte, "use this argument"); 3899 const Register rbx_method = rbx; 3900 const Register rax_mtype = rax; 3901 const Register rcx_recv = rcx; 3902 const Register rdx_flags = rdx; 3903 3904 prepare_invoke(byte_no, rbx_method, rax_mtype, rcx_recv); 3905 __ verify_method_ptr(rbx_method); 3906 __ verify_oop(rcx_recv); 3907 __ null_check(rcx_recv); 3908 3909 // rax: MethodType object (from cpool->resolved_references[f1], if necessary) 3910 // rbx: MH.invokeExact_MT method (from f2) 3911 3912 // Note: rax_mtype is already pushed (if necessary) by prepare_invoke 3913 3914 // FIXME: profile the LambdaForm also 3915 __ profile_final_call(rax); 3916 __ profile_arguments_type(rdx, rbx_method, rbcp, true); 3917 3918 __ jump_from_interpreted(rbx_method, rdx); 3919 } 3920 3921 void TemplateTable::invokedynamic(int byte_no) { 3922 transition(vtos, vtos); 3923 assert(byte_no == f1_byte, "use this argument"); 3924 3925 const Register rbx_method = rbx; 3926 const Register rax_callsite = rax; 3927 3928 prepare_invoke(byte_no, rbx_method, rax_callsite); 3929 3930 // rax: CallSite object (from cpool->resolved_references[f1]) 3931 // rbx: MH.linkToCallSite method (from f2) 3932 3933 // Note: rax_callsite is already pushed by prepare_invoke 3934 3935 // %%% should make a type profile for any invokedynamic that takes a ref argument 3936 // profile this call 3937 __ profile_call(rbcp); 3938 __ profile_arguments_type(rdx, rbx_method, rbcp, false); 3939 3940 __ verify_oop(rax_callsite); 3941 3942 __ jump_from_interpreted(rbx_method, rdx); 3943 } 3944 3945 //----------------------------------------------------------------------------- 3946 // Allocation 3947 3948 void TemplateTable::_new() { 3949 transition(vtos, atos); 3950 __ get_unsigned_2_byte_index_at_bcp(rdx, 1); 3951 Label slow_case; 3952 Label slow_case_no_pop; 3953 Label done; 3954 Label initialize_header; 3955 Label initialize_object; // including clearing the fields 3956 Label allocate_shared; 3957 3958 __ get_cpool_and_tags(rcx, rax); 3959 3960 // Make sure the class we're about to instantiate has been resolved. 3961 // This is done before loading InstanceKlass to be consistent with the order 3962 // how Constant Pool is updated (see ConstantPool::klass_at_put) 3963 const int tags_offset = Array<u1>::base_offset_in_bytes(); 3964 __ cmpb(Address(rax, rdx, Address::times_1, tags_offset), JVM_CONSTANT_Class); 3965 __ jcc(Assembler::notEqual, slow_case_no_pop); 3966 3967 // get InstanceKlass 3968 __ movptr(rcx, Address(rcx, rdx, Address::times_ptr, sizeof(ConstantPool))); 3969 __ push(rcx); // save the contexts of klass for initializing the header 3970 3971 // make sure klass is initialized & doesn't have finalizer 3972 // make sure klass is fully initialized 3973 __ cmpb(Address(rcx, InstanceKlass::init_state_offset()), InstanceKlass::fully_initialized); 3974 __ jcc(Assembler::notEqual, slow_case); 3975 3976 // get instance_size in InstanceKlass (scaled to a count of bytes) 3977 __ movl(rdx, Address(rcx, Klass::layout_helper_offset())); 3978 // test to see if it has a finalizer or is malformed in some way 3979 __ testl(rdx, Klass::_lh_instance_slow_path_bit); 3980 __ jcc(Assembler::notZero, slow_case); 3981 3982 // 3983 // Allocate the instance 3984 // 1) Try to allocate in the TLAB 3985 // 2) if fail and the object is large allocate in the shared Eden 3986 // 3) if the above fails (or is not applicable), go to a slow case 3987 // (creates a new TLAB, etc.) 3988 3989 const bool allow_shared_alloc = 3990 Universe::heap()->supports_inline_contig_alloc(); 3991 3992 const Register thread = LP64_ONLY(r15_thread) NOT_LP64(rcx); 3993 #ifndef _LP64 3994 if (UseTLAB || allow_shared_alloc) { 3995 __ get_thread(thread); 3996 } 3997 #endif // _LP64 3998 3999 if (UseTLAB) { 4000 __ movptr(rax, Address(thread, in_bytes(JavaThread::tlab_top_offset()))); 4001 __ lea(rbx, Address(rax, rdx, Address::times_1)); 4002 __ cmpptr(rbx, Address(thread, in_bytes(JavaThread::tlab_end_offset()))); 4003 __ jcc(Assembler::above, allow_shared_alloc ? allocate_shared : slow_case); 4004 __ movptr(Address(thread, in_bytes(JavaThread::tlab_top_offset())), rbx); 4005 if (ZeroTLAB) { 4006 // the fields have been already cleared 4007 __ jmp(initialize_header); 4008 } else { 4009 // initialize both the header and fields 4010 __ jmp(initialize_object); 4011 } 4012 } 4013 4014 // Allocation in the shared Eden, if allowed. 4015 // 4016 // rdx: instance size in bytes 4017 if (allow_shared_alloc) { 4018 __ bind(allocate_shared); 4019 4020 ExternalAddress heap_top((address)Universe::heap()->top_addr()); 4021 ExternalAddress heap_end((address)Universe::heap()->end_addr()); 4022 4023 Label retry; 4024 __ bind(retry); 4025 __ movptr(rax, heap_top); 4026 __ lea(rbx, Address(rax, rdx, Address::times_1)); 4027 __ cmpptr(rbx, heap_end); 4028 __ jcc(Assembler::above, slow_case); 4029 4030 // Compare rax, with the top addr, and if still equal, store the new 4031 // top addr in rbx, at the address of the top addr pointer. Sets ZF if was 4032 // equal, and clears it otherwise. Use lock prefix for atomicity on MPs. 4033 // 4034 // rax,: object begin 4035 // rbx,: object end 4036 // rdx: instance size in bytes 4037 __ locked_cmpxchgptr(rbx, heap_top); 4038 4039 // if someone beat us on the allocation, try again, otherwise continue 4040 __ jcc(Assembler::notEqual, retry); 4041 4042 __ incr_allocated_bytes(thread, rdx, 0); 4043 } 4044 4045 if (UseTLAB || Universe::heap()->supports_inline_contig_alloc()) { 4046 // The object is initialized before the header. If the object size is 4047 // zero, go directly to the header initialization. 4048 __ bind(initialize_object); 4049 __ decrement(rdx, sizeof(oopDesc)); 4050 __ jcc(Assembler::zero, initialize_header); 4051 4052 // Initialize topmost object field, divide rdx by 8, check if odd and 4053 // test if zero. 4054 __ xorl(rcx, rcx); // use zero reg to clear memory (shorter code) 4055 __ shrl(rdx, LogBytesPerLong); // divide by 2*oopSize and set carry flag if odd 4056 4057 // rdx must have been multiple of 8 4058 #ifdef ASSERT 4059 // make sure rdx was multiple of 8 4060 Label L; 4061 // Ignore partial flag stall after shrl() since it is debug VM 4062 __ jccb(Assembler::carryClear, L); 4063 __ stop("object size is not multiple of 2 - adjust this code"); 4064 __ bind(L); 4065 // rdx must be > 0, no extra check needed here 4066 #endif 4067 4068 // initialize remaining object fields: rdx was a multiple of 8 4069 { Label loop; 4070 __ bind(loop); 4071 __ movptr(Address(rax, rdx, Address::times_8, sizeof(oopDesc) - 1*oopSize), rcx); 4072 NOT_LP64(__ movptr(Address(rax, rdx, Address::times_8, sizeof(oopDesc) - 2*oopSize), rcx)); 4073 __ decrement(rdx); 4074 __ jcc(Assembler::notZero, loop); 4075 } 4076 4077 // initialize object header only. 4078 __ bind(initialize_header); 4079 if (UseBiasedLocking) { 4080 __ pop(rcx); // get saved klass back in the register. 4081 __ movptr(rbx, Address(rcx, Klass::prototype_header_offset())); 4082 __ movptr(Address(rax, oopDesc::mark_offset_in_bytes ()), rbx); 4083 } else { 4084 __ movptr(Address(rax, oopDesc::mark_offset_in_bytes ()), 4085 (intptr_t)markOopDesc::prototype()); // header 4086 __ pop(rcx); // get saved klass back in the register. 4087 } 4088 #ifdef _LP64 4089 __ xorl(rsi, rsi); // use zero reg to clear memory (shorter code) 4090 __ store_klass_gap(rax, rsi); // zero klass gap for compressed oops 4091 #endif 4092 __ store_klass(rax, rcx); // klass 4093 4094 { 4095 SkipIfEqual skip_if(_masm, &DTraceAllocProbes, 0); 4096 // Trigger dtrace event for fastpath 4097 __ push(atos); 4098 __ call_VM_leaf( 4099 CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc), rax); 4100 __ pop(atos); 4101 } 4102 4103 __ jmp(done); 4104 } 4105 4106 // slow case 4107 __ bind(slow_case); 4108 __ pop(rcx); // restore stack pointer to what it was when we came in. 4109 __ bind(slow_case_no_pop); 4110 4111 Register rarg1 = LP64_ONLY(c_rarg1) NOT_LP64(rax); 4112 Register rarg2 = LP64_ONLY(c_rarg2) NOT_LP64(rdx); 4113 4114 __ get_constant_pool(rarg1); 4115 __ get_unsigned_2_byte_index_at_bcp(rarg2, 1); 4116 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), rarg1, rarg2); 4117 __ verify_oop(rax); 4118 4119 // continue 4120 __ bind(done); 4121 } 4122 4123 void TemplateTable::_vnew() { 4124 transition(vtos, qtos); 4125 4126 Register rarg1 = LP64_ONLY(c_rarg1) NOT_LP64(rcx); 4127 Register rarg2 = LP64_ONLY(c_rarg2) NOT_LP64(rdx); 4128 Register rarg3 = LP64_ONLY(c_rarg3) NOT_LP64(rbx); 4129 4130 __ get_unsigned_2_byte_index_at_bcp(rarg2, 1); 4131 __ get_constant_pool(rarg1); 4132 __ movptr(rarg3, rsp); 4133 4134 call_VM(rbx, CAST_FROM_FN_PTR(address, InterpreterRuntime::_vnew), 4135 rarg1, rarg2, rarg3); 4136 // new value type is returned in rbx 4137 // value factory argument size is returned in rax 4138 __ verify_oop(rbx); 4139 __ addptr(rsp, rax); 4140 __ movptr(rax, rbx); 4141 4142 } 4143 4144 void TemplateTable::newarray() { 4145 transition(itos, atos); 4146 Register rarg1 = LP64_ONLY(c_rarg1) NOT_LP64(rdx); 4147 __ load_unsigned_byte(rarg1, at_bcp(1)); 4148 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray), 4149 rarg1, rax); 4150 } 4151 4152 void TemplateTable::anewarray() { 4153 transition(itos, atos); 4154 4155 Register rarg1 = LP64_ONLY(c_rarg1) NOT_LP64(rcx); 4156 Register rarg2 = LP64_ONLY(c_rarg2) NOT_LP64(rdx); 4157 4158 __ get_unsigned_2_byte_index_at_bcp(rarg2, 1); 4159 __ get_constant_pool(rarg1); 4160 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray), 4161 rarg1, rarg2, rax); 4162 } 4163 4164 void TemplateTable::vnewarray() { 4165 transition(itos, atos); 4166 4167 Register rarg1 = LP64_ONLY(c_rarg1) NOT_LP64(rcx); 4168 Register rarg2 = LP64_ONLY(c_rarg2) NOT_LP64(rdx); 4169 4170 __ get_unsigned_2_byte_index_at_bcp(rarg2, 1); 4171 __ get_constant_pool(rarg1); 4172 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::vnewarray), 4173 rarg1, rarg2, rax); 4174 } 4175 4176 void TemplateTable::arraylength() { 4177 transition(atos, itos); 4178 __ null_check(rax, arrayOopDesc::length_offset_in_bytes()); 4179 __ movl(rax, Address(rax, arrayOopDesc::length_offset_in_bytes())); 4180 } 4181 4182 void TemplateTable::checkcast() { 4183 transition(atos, atos); 4184 Label done, is_null, ok_is_subtype, quicked, resolved; 4185 __ testptr(rax, rax); // object is in rax 4186 __ jcc(Assembler::zero, is_null); 4187 4188 // Get cpool & tags index 4189 __ get_cpool_and_tags(rcx, rdx); // rcx=cpool, rdx=tags array 4190 __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // rbx=index 4191 // See if bytecode has already been quicked 4192 __ cmpb(Address(rdx, rbx, 4193 Address::times_1, 4194 Array<u1>::base_offset_in_bytes()), 4195 JVM_CONSTANT_Class); 4196 __ jcc(Assembler::equal, quicked); 4197 __ push(atos); // save receiver for result, and for GC 4198 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc)); 4199 4200 // vm_result_2 has metadata result 4201 #ifndef _LP64 4202 // borrow rdi from locals 4203 __ get_thread(rdi); 4204 __ get_vm_result_2(rax, rdi); 4205 __ restore_locals(); 4206 #else 4207 __ get_vm_result_2(rax, r15_thread); 4208 #endif 4209 4210 __ pop_ptr(rdx); // restore receiver 4211 __ jmpb(resolved); 4212 4213 // Get superklass in rax and subklass in rbx 4214 __ bind(quicked); 4215 __ mov(rdx, rax); // Save object in rdx; rax needed for subtype check 4216 __ movptr(rax, Address(rcx, rbx, 4217 Address::times_ptr, sizeof(ConstantPool))); 4218 4219 __ bind(resolved); 4220 __ load_klass(rbx, rdx); 4221 4222 // Generate subtype check. Blows rcx, rdi. Object in rdx. 4223 // Superklass in rax. Subklass in rbx. 4224 __ gen_subtype_check(rbx, ok_is_subtype); 4225 4226 // Come here on failure 4227 __ push_ptr(rdx); 4228 // object is at TOS 4229 __ jump(ExternalAddress(Interpreter::_throw_ClassCastException_entry)); 4230 4231 // Come here on success 4232 __ bind(ok_is_subtype); 4233 __ mov(rax, rdx); // Restore object in rdx 4234 4235 // Collect counts on whether this check-cast sees NULLs a lot or not. 4236 if (ProfileInterpreter) { 4237 __ jmp(done); 4238 __ bind(is_null); 4239 __ profile_null_seen(rcx); 4240 } else { 4241 __ bind(is_null); // same as 'done' 4242 } 4243 __ bind(done); 4244 } 4245 4246 void TemplateTable::instanceof() { 4247 transition(atos, itos); 4248 Label done, is_null, ok_is_subtype, quicked, resolved; 4249 __ testptr(rax, rax); 4250 __ jcc(Assembler::zero, is_null); 4251 4252 // Get cpool & tags index 4253 __ get_cpool_and_tags(rcx, rdx); // rcx=cpool, rdx=tags array 4254 __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // rbx=index 4255 // See if bytecode has already been quicked 4256 __ cmpb(Address(rdx, rbx, 4257 Address::times_1, 4258 Array<u1>::base_offset_in_bytes()), 4259 JVM_CONSTANT_Class); 4260 __ jcc(Assembler::equal, quicked); 4261 4262 __ push(atos); // save receiver for result, and for GC 4263 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc)); 4264 // vm_result_2 has metadata result 4265 4266 #ifndef _LP64 4267 // borrow rdi from locals 4268 __ get_thread(rdi); 4269 __ get_vm_result_2(rax, rdi); 4270 __ restore_locals(); 4271 #else 4272 __ get_vm_result_2(rax, r15_thread); 4273 #endif 4274 4275 __ pop_ptr(rdx); // restore receiver 4276 __ verify_oop(rdx); 4277 __ load_klass(rdx, rdx); 4278 __ jmpb(resolved); 4279 4280 // Get superklass in rax and subklass in rdx 4281 __ bind(quicked); 4282 __ load_klass(rdx, rax); 4283 __ movptr(rax, Address(rcx, rbx, 4284 Address::times_ptr, sizeof(ConstantPool))); 4285 4286 __ bind(resolved); 4287 4288 // Generate subtype check. Blows rcx, rdi 4289 // Superklass in rax. Subklass in rdx. 4290 __ gen_subtype_check(rdx, ok_is_subtype); 4291 4292 // Come here on failure 4293 __ xorl(rax, rax); 4294 __ jmpb(done); 4295 // Come here on success 4296 __ bind(ok_is_subtype); 4297 __ movl(rax, 1); 4298 4299 // Collect counts on whether this test sees NULLs a lot or not. 4300 if (ProfileInterpreter) { 4301 __ jmp(done); 4302 __ bind(is_null); 4303 __ profile_null_seen(rcx); 4304 } else { 4305 __ bind(is_null); // same as 'done' 4306 } 4307 __ bind(done); 4308 // rax = 0: obj == NULL or obj is not an instanceof the specified klass 4309 // rax = 1: obj != NULL and obj is an instanceof the specified klass 4310 } 4311 4312 4313 //---------------------------------------------------------------------------------------------------- 4314 // Breakpoints 4315 void TemplateTable::_breakpoint() { 4316 // Note: We get here even if we are single stepping.. 4317 // jbug insists on setting breakpoints at every bytecode 4318 // even if we are in single step mode. 4319 4320 transition(vtos, vtos); 4321 4322 Register rarg = LP64_ONLY(c_rarg1) NOT_LP64(rcx); 4323 4324 // get the unpatched byte code 4325 __ get_method(rarg); 4326 __ call_VM(noreg, 4327 CAST_FROM_FN_PTR(address, 4328 InterpreterRuntime::get_original_bytecode_at), 4329 rarg, rbcp); 4330 __ mov(rbx, rax); // why? 4331 4332 // post the breakpoint event 4333 __ get_method(rarg); 4334 __ call_VM(noreg, 4335 CAST_FROM_FN_PTR(address, InterpreterRuntime::_breakpoint), 4336 rarg, rbcp); 4337 4338 // complete the execution of original bytecode 4339 __ dispatch_only_normal(vtos); 4340 } 4341 4342 //----------------------------------------------------------------------------- 4343 // Exceptions 4344 4345 void TemplateTable::athrow() { 4346 transition(atos, vtos); 4347 __ null_check(rax); 4348 __ jump(ExternalAddress(Interpreter::throw_exception_entry())); 4349 } 4350 4351 //----------------------------------------------------------------------------- 4352 // Synchronization 4353 // 4354 // Note: monitorenter & exit are symmetric routines; which is reflected 4355 // in the assembly code structure as well 4356 // 4357 // Stack layout: 4358 // 4359 // [expressions ] <--- rsp = expression stack top 4360 // .. 4361 // [expressions ] 4362 // [monitor entry] <--- monitor block top = expression stack bot 4363 // .. 4364 // [monitor entry] 4365 // [frame data ] <--- monitor block bot 4366 // ... 4367 // [saved rbp ] <--- rbp 4368 void TemplateTable::monitorenter() { 4369 transition(atos, vtos); 4370 4371 // check for NULL object 4372 __ null_check(rax); 4373 4374 const Address monitor_block_top( 4375 rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize); 4376 const Address monitor_block_bot( 4377 rbp, frame::interpreter_frame_initial_sp_offset * wordSize); 4378 const int entry_size = frame::interpreter_frame_monitor_size() * wordSize; 4379 4380 Label allocated; 4381 4382 Register rtop = LP64_ONLY(c_rarg3) NOT_LP64(rcx); 4383 Register rbot = LP64_ONLY(c_rarg2) NOT_LP64(rbx); 4384 Register rmon = LP64_ONLY(c_rarg1) NOT_LP64(rdx); 4385 4386 // initialize entry pointer 4387 __ xorl(rmon, rmon); // points to free slot or NULL 4388 4389 // find a free slot in the monitor block (result in rmon) 4390 { 4391 Label entry, loop, exit; 4392 __ movptr(rtop, monitor_block_top); // points to current entry, 4393 // starting with top-most entry 4394 __ lea(rbot, monitor_block_bot); // points to word before bottom 4395 // of monitor block 4396 __ jmpb(entry); 4397 4398 __ bind(loop); 4399 // check if current entry is used 4400 __ cmpptr(Address(rtop, BasicObjectLock::obj_offset_in_bytes()), (int32_t) NULL_WORD); 4401 // if not used then remember entry in rmon 4402 __ cmovptr(Assembler::equal, rmon, rtop); // cmov => cmovptr 4403 // check if current entry is for same object 4404 __ cmpptr(rax, Address(rtop, BasicObjectLock::obj_offset_in_bytes())); 4405 // if same object then stop searching 4406 __ jccb(Assembler::equal, exit); 4407 // otherwise advance to next entry 4408 __ addptr(rtop, entry_size); 4409 __ bind(entry); 4410 // check if bottom reached 4411 __ cmpptr(rtop, rbot); 4412 // if not at bottom then check this entry 4413 __ jcc(Assembler::notEqual, loop); 4414 __ bind(exit); 4415 } 4416 4417 __ testptr(rmon, rmon); // check if a slot has been found 4418 __ jcc(Assembler::notZero, allocated); // if found, continue with that one 4419 4420 // allocate one if there's no free slot 4421 { 4422 Label entry, loop; 4423 // 1. compute new pointers // rsp: old expression stack top 4424 __ movptr(rmon, monitor_block_bot); // rmon: old expression stack bottom 4425 __ subptr(rsp, entry_size); // move expression stack top 4426 __ subptr(rmon, entry_size); // move expression stack bottom 4427 __ mov(rtop, rsp); // set start value for copy loop 4428 __ movptr(monitor_block_bot, rmon); // set new monitor block bottom 4429 __ jmp(entry); 4430 // 2. move expression stack contents 4431 __ bind(loop); 4432 __ movptr(rbot, Address(rtop, entry_size)); // load expression stack 4433 // word from old location 4434 __ movptr(Address(rtop, 0), rbot); // and store it at new location 4435 __ addptr(rtop, wordSize); // advance to next word 4436 __ bind(entry); 4437 __ cmpptr(rtop, rmon); // check if bottom reached 4438 __ jcc(Assembler::notEqual, loop); // if not at bottom then 4439 // copy next word 4440 } 4441 4442 // call run-time routine 4443 // rmon: points to monitor entry 4444 __ bind(allocated); 4445 4446 // Increment bcp to point to the next bytecode, so exception 4447 // handling for async. exceptions work correctly. 4448 // The object has already been poped from the stack, so the 4449 // expression stack looks correct. 4450 __ increment(rbcp); 4451 4452 // store object 4453 __ movptr(Address(rmon, BasicObjectLock::obj_offset_in_bytes()), rax); 4454 __ lock_object(rmon); 4455 4456 // check to make sure this monitor doesn't cause stack overflow after locking 4457 __ save_bcp(); // in case of exception 4458 __ generate_stack_overflow_check(0); 4459 4460 // The bcp has already been incremented. Just need to dispatch to 4461 // next instruction. 4462 __ dispatch_next(vtos); 4463 } 4464 4465 void TemplateTable::monitorexit() { 4466 transition(atos, vtos); 4467 4468 // check for NULL object 4469 __ null_check(rax); 4470 4471 const Address monitor_block_top( 4472 rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize); 4473 const Address monitor_block_bot( 4474 rbp, frame::interpreter_frame_initial_sp_offset * wordSize); 4475 const int entry_size = frame::interpreter_frame_monitor_size() * wordSize; 4476 4477 Register rtop = LP64_ONLY(c_rarg1) NOT_LP64(rdx); 4478 Register rbot = LP64_ONLY(c_rarg2) NOT_LP64(rbx); 4479 4480 Label found; 4481 4482 // find matching slot 4483 { 4484 Label entry, loop; 4485 __ movptr(rtop, monitor_block_top); // points to current entry, 4486 // starting with top-most entry 4487 __ lea(rbot, monitor_block_bot); // points to word before bottom 4488 // of monitor block 4489 __ jmpb(entry); 4490 4491 __ bind(loop); 4492 // check if current entry is for same object 4493 __ cmpptr(rax, Address(rtop, BasicObjectLock::obj_offset_in_bytes())); 4494 // if same object then stop searching 4495 __ jcc(Assembler::equal, found); 4496 // otherwise advance to next entry 4497 __ addptr(rtop, entry_size); 4498 __ bind(entry); 4499 // check if bottom reached 4500 __ cmpptr(rtop, rbot); 4501 // if not at bottom then check this entry 4502 __ jcc(Assembler::notEqual, loop); 4503 } 4504 4505 // error handling. Unlocking was not block-structured 4506 __ call_VM(noreg, CAST_FROM_FN_PTR(address, 4507 InterpreterRuntime::throw_illegal_monitor_state_exception)); 4508 __ should_not_reach_here(); 4509 4510 // call run-time routine 4511 __ bind(found); 4512 __ push_ptr(rax); // make sure object is on stack (contract with oopMaps) 4513 __ unlock_object(rtop); 4514 __ pop_ptr(rax); // discard object 4515 } 4516 4517 // Wide instructions 4518 void TemplateTable::wide() { 4519 transition(vtos, vtos); 4520 __ load_unsigned_byte(rbx, at_bcp(1)); 4521 ExternalAddress wtable((address)Interpreter::_wentry_point); 4522 __ jump(ArrayAddress(wtable, Address(noreg, rbx, Address::times_ptr))); 4523 // Note: the rbcp increment step is part of the individual wide bytecode implementations 4524 } 4525 4526 // Multi arrays 4527 void TemplateTable::multianewarray() { 4528 transition(vtos, atos); 4529 4530 Register rarg = LP64_ONLY(c_rarg1) NOT_LP64(rax); 4531 __ load_unsigned_byte(rax, at_bcp(3)); // get number of dimensions 4532 // last dim is on top of stack; we want address of first one: 4533 // first_addr = last_addr + (ndims - 1) * stackElementSize - 1*wordsize 4534 // the latter wordSize to point to the beginning of the array. 4535 __ lea(rarg, Address(rsp, rax, Interpreter::stackElementScale(), -wordSize)); 4536 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::multianewarray), rarg); 4537 __ load_unsigned_byte(rbx, at_bcp(3)); 4538 __ lea(rsp, Address(rsp, rbx, Interpreter::stackElementScale())); // get rid of counts 4539 }