1 /* 2 * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "compiler/compileLog.hpp" 27 #include "interpreter/linkResolver.hpp" 28 #include "oops/method.hpp" 29 #include "opto/addnode.hpp" 30 #include "opto/c2compiler.hpp" 31 #include "opto/castnode.hpp" 32 #include "opto/idealGraphPrinter.hpp" 33 #include "opto/locknode.hpp" 34 #include "opto/memnode.hpp" 35 #include "opto/opaquenode.hpp" 36 #include "opto/parse.hpp" 37 #include "opto/rootnode.hpp" 38 #include "opto/runtime.hpp" 39 #include "opto/valuetypenode.hpp" 40 #include "runtime/arguments.hpp" 41 #include "runtime/handles.inline.hpp" 42 #include "runtime/sharedRuntime.hpp" 43 #include "utilities/copy.hpp" 44 45 // Static array so we can figure out which bytecodes stop us from compiling 46 // the most. Some of the non-static variables are needed in bytecodeInfo.cpp 47 // and eventually should be encapsulated in a proper class (gri 8/18/98). 48 49 #ifndef PRODUCT 50 int nodes_created = 0; 51 int methods_parsed = 0; 52 int methods_seen = 0; 53 int blocks_parsed = 0; 54 int blocks_seen = 0; 55 56 int explicit_null_checks_inserted = 0; 57 int explicit_null_checks_elided = 0; 58 int all_null_checks_found = 0; 59 int implicit_null_checks = 0; 60 61 bool Parse::BytecodeParseHistogram::_initialized = false; 62 uint Parse::BytecodeParseHistogram::_bytecodes_parsed [Bytecodes::number_of_codes]; 63 uint Parse::BytecodeParseHistogram::_nodes_constructed[Bytecodes::number_of_codes]; 64 uint Parse::BytecodeParseHistogram::_nodes_transformed[Bytecodes::number_of_codes]; 65 uint Parse::BytecodeParseHistogram::_new_values [Bytecodes::number_of_codes]; 66 67 //------------------------------print_statistics------------------------------- 68 void Parse::print_statistics() { 69 tty->print_cr("--- Compiler Statistics ---"); 70 tty->print("Methods seen: %d Methods parsed: %d", methods_seen, methods_parsed); 71 tty->print(" Nodes created: %d", nodes_created); 72 tty->cr(); 73 if (methods_seen != methods_parsed) { 74 tty->print_cr("Reasons for parse failures (NOT cumulative):"); 75 } 76 tty->print_cr("Blocks parsed: %d Blocks seen: %d", blocks_parsed, blocks_seen); 77 78 if (explicit_null_checks_inserted) { 79 tty->print_cr("%d original NULL checks - %d elided (%2d%%); optimizer leaves %d,", 80 explicit_null_checks_inserted, explicit_null_checks_elided, 81 (100*explicit_null_checks_elided)/explicit_null_checks_inserted, 82 all_null_checks_found); 83 } 84 if (all_null_checks_found) { 85 tty->print_cr("%d made implicit (%2d%%)", implicit_null_checks, 86 (100*implicit_null_checks)/all_null_checks_found); 87 } 88 if (SharedRuntime::_implicit_null_throws) { 89 tty->print_cr("%d implicit null exceptions at runtime", 90 SharedRuntime::_implicit_null_throws); 91 } 92 93 if (PrintParseStatistics && BytecodeParseHistogram::initialized()) { 94 BytecodeParseHistogram::print(); 95 } 96 } 97 #endif 98 99 //------------------------------ON STACK REPLACEMENT--------------------------- 100 101 // Construct a node which can be used to get incoming state for 102 // on stack replacement. 103 Node *Parse::fetch_interpreter_state(int index, 104 BasicType bt, 105 Node *local_addrs, 106 Node *local_addrs_base) { 107 Node *mem = memory(Compile::AliasIdxRaw); 108 Node *adr = basic_plus_adr( local_addrs_base, local_addrs, -index*wordSize ); 109 Node *ctl = control(); 110 111 // Very similar to LoadNode::make, except we handle un-aligned longs and 112 // doubles on Sparc. Intel can handle them just fine directly. 113 Node *l = NULL; 114 switch (bt) { // Signature is flattened 115 case T_INT: l = new LoadINode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeInt::INT, MemNode::unordered); break; 116 case T_FLOAT: l = new LoadFNode(ctl, mem, adr, TypeRawPtr::BOTTOM, Type::FLOAT, MemNode::unordered); break; 117 case T_ADDRESS: l = new LoadPNode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM, MemNode::unordered); break; 118 case T_OBJECT: l = new LoadPNode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeInstPtr::BOTTOM, MemNode::unordered); break; 119 case T_LONG: 120 case T_DOUBLE: { 121 // Since arguments are in reverse order, the argument address 'adr' 122 // refers to the back half of the long/double. Recompute adr. 123 adr = basic_plus_adr(local_addrs_base, local_addrs, -(index+1)*wordSize); 124 if (Matcher::misaligned_doubles_ok) { 125 l = (bt == T_DOUBLE) 126 ? (Node*)new LoadDNode(ctl, mem, adr, TypeRawPtr::BOTTOM, Type::DOUBLE, MemNode::unordered) 127 : (Node*)new LoadLNode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeLong::LONG, MemNode::unordered); 128 } else { 129 l = (bt == T_DOUBLE) 130 ? (Node*)new LoadD_unalignedNode(ctl, mem, adr, TypeRawPtr::BOTTOM, MemNode::unordered) 131 : (Node*)new LoadL_unalignedNode(ctl, mem, adr, TypeRawPtr::BOTTOM, MemNode::unordered); 132 } 133 break; 134 } 135 default: ShouldNotReachHere(); 136 } 137 return _gvn.transform(l); 138 } 139 140 // Helper routine to prevent the interpreter from handing 141 // unexpected typestate to an OSR method. 142 // The Node l is a value newly dug out of the interpreter frame. 143 // The type is the type predicted by ciTypeFlow. Note that it is 144 // not a general type, but can only come from Type::get_typeflow_type. 145 // The safepoint is a map which will feed an uncommon trap. 146 Node* Parse::check_interpreter_type(Node* l, const Type* type, 147 SafePointNode* &bad_type_exit) { 148 149 const TypeOopPtr* tp = type->isa_oopptr(); 150 151 // TypeFlow may assert null-ness if a type appears unloaded. 152 if (type == TypePtr::NULL_PTR || 153 (tp != NULL && !tp->klass()->is_loaded())) { 154 // Value must be null, not a real oop. 155 Node* chk = _gvn.transform( new CmpPNode(l, null()) ); 156 Node* tst = _gvn.transform( new BoolNode(chk, BoolTest::eq) ); 157 IfNode* iff = create_and_map_if(control(), tst, PROB_MAX, COUNT_UNKNOWN); 158 set_control(_gvn.transform( new IfTrueNode(iff) )); 159 Node* bad_type = _gvn.transform( new IfFalseNode(iff) ); 160 bad_type_exit->control()->add_req(bad_type); 161 l = null(); 162 } 163 164 // Typeflow can also cut off paths from the CFG, based on 165 // types which appear unloaded, or call sites which appear unlinked. 166 // When paths are cut off, values at later merge points can rise 167 // toward more specific classes. Make sure these specific classes 168 // are still in effect. 169 if (tp != NULL && tp->klass() != C->env()->Object_klass()) { 170 // TypeFlow asserted a specific object type. Value must have that type. 171 Node* bad_type_ctrl = NULL; 172 l = gen_checkcast(l, makecon(TypeKlassPtr::make(tp->klass())), &bad_type_ctrl); 173 bad_type_exit->control()->add_req(bad_type_ctrl); 174 } 175 176 BasicType bt_l = _gvn.type(l)->basic_type(); 177 BasicType bt_t = type->basic_type(); 178 assert(_gvn.type(l)->higher_equal(type), "must constrain OSR typestate"); 179 return l; 180 } 181 182 // Helper routine which sets up elements of the initial parser map when 183 // performing a parse for on stack replacement. Add values into map. 184 // The only parameter contains the address of a interpreter arguments. 185 void Parse::load_interpreter_state(Node* osr_buf) { 186 int index; 187 int max_locals = jvms()->loc_size(); 188 int max_stack = jvms()->stk_size(); 189 190 191 // Mismatch between method and jvms can occur since map briefly held 192 // an OSR entry state (which takes up one RawPtr word). 193 assert(max_locals == method()->max_locals(), "sanity"); 194 assert(max_stack >= method()->max_stack(), "sanity"); 195 assert((int)jvms()->endoff() == TypeFunc::Parms + max_locals + max_stack, "sanity"); 196 assert((int)jvms()->endoff() == (int)map()->req(), "sanity"); 197 198 // Find the start block. 199 Block* osr_block = start_block(); 200 assert(osr_block->start() == osr_bci(), "sanity"); 201 202 // Set initial BCI. 203 set_parse_bci(osr_block->start()); 204 205 // Set initial stack depth. 206 set_sp(osr_block->start_sp()); 207 208 // Check bailouts. We currently do not perform on stack replacement 209 // of loops in catch blocks or loops which branch with a non-empty stack. 210 if (sp() != 0) { 211 C->record_method_not_compilable("OSR starts with non-empty stack"); 212 return; 213 } 214 // Do not OSR inside finally clauses: 215 if (osr_block->has_trap_at(osr_block->start())) { 216 C->record_method_not_compilable("OSR starts with an immediate trap"); 217 return; 218 } 219 220 // Commute monitors from interpreter frame to compiler frame. 221 assert(jvms()->monitor_depth() == 0, "should be no active locks at beginning of osr"); 222 int mcnt = osr_block->flow()->monitor_count(); 223 Node *monitors_addr = basic_plus_adr(osr_buf, osr_buf, (max_locals+mcnt*2-1)*wordSize); 224 for (index = 0; index < mcnt; index++) { 225 // Make a BoxLockNode for the monitor. 226 Node *box = _gvn.transform(new BoxLockNode(next_monitor())); 227 228 229 // Displaced headers and locked objects are interleaved in the 230 // temp OSR buffer. We only copy the locked objects out here. 231 // Fetch the locked object from the OSR temp buffer and copy to our fastlock node. 232 Node *lock_object = fetch_interpreter_state(index*2, T_OBJECT, monitors_addr, osr_buf); 233 // Try and copy the displaced header to the BoxNode 234 Node *displaced_hdr = fetch_interpreter_state((index*2) + 1, T_ADDRESS, monitors_addr, osr_buf); 235 236 237 store_to_memory(control(), box, displaced_hdr, T_ADDRESS, Compile::AliasIdxRaw, MemNode::unordered); 238 239 // Build a bogus FastLockNode (no code will be generated) and push the 240 // monitor into our debug info. 241 const FastLockNode *flock = _gvn.transform(new FastLockNode( 0, lock_object, box ))->as_FastLock(); 242 map()->push_monitor(flock); 243 244 // If the lock is our method synchronization lock, tuck it away in 245 // _sync_lock for return and rethrow exit paths. 246 if (index == 0 && method()->is_synchronized()) { 247 _synch_lock = flock; 248 } 249 } 250 251 // Use the raw liveness computation to make sure that unexpected 252 // values don't propagate into the OSR frame. 253 MethodLivenessResult live_locals = method()->liveness_at_bci(osr_bci()); 254 if (!live_locals.is_valid()) { 255 // Degenerate or breakpointed method. 256 C->record_method_not_compilable("OSR in empty or breakpointed method"); 257 return; 258 } 259 260 // Extract the needed locals from the interpreter frame. 261 Node *locals_addr = basic_plus_adr(osr_buf, osr_buf, (max_locals-1)*wordSize); 262 263 // find all the locals that the interpreter thinks contain live oops 264 const BitMap live_oops = method()->live_local_oops_at_bci(osr_bci()); 265 for (index = 0; index < max_locals; index++) { 266 267 if (!live_locals.at(index)) { 268 continue; 269 } 270 271 const Type *type = osr_block->local_type_at(index); 272 273 if (type->isa_oopptr() != NULL) { 274 275 // 6403625: Verify that the interpreter oopMap thinks that the oop is live 276 // else we might load a stale oop if the MethodLiveness disagrees with the 277 // result of the interpreter. If the interpreter says it is dead we agree 278 // by making the value go to top. 279 // 280 281 if (!live_oops.at(index)) { 282 if (C->log() != NULL) { 283 C->log()->elem("OSR_mismatch local_index='%d'",index); 284 } 285 set_local(index, null()); 286 // and ignore it for the loads 287 continue; 288 } 289 } 290 291 // Filter out TOP, HALF, and BOTTOM. (Cf. ensure_phi.) 292 if (type == Type::TOP || type == Type::HALF) { 293 continue; 294 } 295 // If the type falls to bottom, then this must be a local that 296 // is mixing ints and oops or some such. Forcing it to top 297 // makes it go dead. 298 if (type == Type::BOTTOM) { 299 continue; 300 } 301 // Construct code to access the appropriate local. 302 BasicType bt = type->basic_type(); 303 if (type == TypePtr::NULL_PTR) { 304 // Ptr types are mixed together with T_ADDRESS but NULL is 305 // really for T_OBJECT types so correct it. 306 bt = T_OBJECT; 307 } 308 Node *value = fetch_interpreter_state(index, bt, locals_addr, osr_buf); 309 set_local(index, value); 310 } 311 312 // Extract the needed stack entries from the interpreter frame. 313 for (index = 0; index < sp(); index++) { 314 const Type *type = osr_block->stack_type_at(index); 315 if (type != Type::TOP) { 316 // Currently the compiler bails out when attempting to on stack replace 317 // at a bci with a non-empty stack. We should not reach here. 318 ShouldNotReachHere(); 319 } 320 } 321 322 // End the OSR migration 323 make_runtime_call(RC_LEAF, OptoRuntime::osr_end_Type(), 324 CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end), 325 "OSR_migration_end", TypeRawPtr::BOTTOM, 326 osr_buf); 327 328 // Now that the interpreter state is loaded, make sure it will match 329 // at execution time what the compiler is expecting now: 330 SafePointNode* bad_type_exit = clone_map(); 331 bad_type_exit->set_control(new RegionNode(1)); 332 333 assert(osr_block->flow()->jsrs()->size() == 0, "should be no jsrs live at osr point"); 334 for (index = 0; index < max_locals; index++) { 335 if (stopped()) break; 336 Node* l = local(index); 337 if (l->is_top()) continue; // nothing here 338 const Type *type = osr_block->local_type_at(index); 339 if (type->isa_oopptr() != NULL) { 340 if (!live_oops.at(index)) { 341 // skip type check for dead oops 342 continue; 343 } 344 } 345 if (osr_block->flow()->local_type_at(index)->is_return_address()) { 346 // In our current system it's illegal for jsr addresses to be 347 // live into an OSR entry point because the compiler performs 348 // inlining of jsrs. ciTypeFlow has a bailout that detect this 349 // case and aborts the compile if addresses are live into an OSR 350 // entry point. Because of that we can assume that any address 351 // locals at the OSR entry point are dead. Method liveness 352 // isn't precise enought to figure out that they are dead in all 353 // cases so simply skip checking address locals all 354 // together. Any type check is guaranteed to fail since the 355 // interpreter type is the result of a load which might have any 356 // value and the expected type is a constant. 357 continue; 358 } 359 set_local(index, check_interpreter_type(l, type, bad_type_exit)); 360 } 361 362 for (index = 0; index < sp(); index++) { 363 if (stopped()) break; 364 Node* l = stack(index); 365 if (l->is_top()) continue; // nothing here 366 const Type *type = osr_block->stack_type_at(index); 367 set_stack(index, check_interpreter_type(l, type, bad_type_exit)); 368 } 369 370 if (bad_type_exit->control()->req() > 1) { 371 // Build an uncommon trap here, if any inputs can be unexpected. 372 bad_type_exit->set_control(_gvn.transform( bad_type_exit->control() )); 373 record_for_igvn(bad_type_exit->control()); 374 SafePointNode* types_are_good = map(); 375 set_map(bad_type_exit); 376 // The unexpected type happens because a new edge is active 377 // in the CFG, which typeflow had previously ignored. 378 // E.g., Object x = coldAtFirst() && notReached()? "str": new Integer(123). 379 // This x will be typed as Integer if notReached is not yet linked. 380 // It could also happen due to a problem in ciTypeFlow analysis. 381 uncommon_trap(Deoptimization::Reason_constraint, 382 Deoptimization::Action_reinterpret); 383 set_map(types_are_good); 384 } 385 } 386 387 //------------------------------Parse------------------------------------------ 388 // Main parser constructor. 389 Parse::Parse(JVMState* caller, ciMethod* parse_method, float expected_uses) 390 : _exits(caller) 391 { 392 // Init some variables 393 _caller = caller; 394 _method = parse_method; 395 _expected_uses = expected_uses; 396 _depth = 1 + (caller->has_method() ? caller->depth() : 0); 397 _wrote_final = false; 398 _wrote_volatile = false; 399 _wrote_stable = false; 400 _wrote_fields = false; 401 _alloc_with_final = NULL; 402 _entry_bci = InvocationEntryBci; 403 _tf = NULL; 404 _block = NULL; 405 _first_return = true; 406 _replaced_nodes_for_exceptions = false; 407 _new_idx = C->unique(); 408 debug_only(_block_count = -1); 409 debug_only(_blocks = (Block*)-1); 410 #ifndef PRODUCT 411 if (PrintCompilation || PrintOpto) { 412 // Make sure I have an inline tree, so I can print messages about it. 413 JVMState* ilt_caller = is_osr_parse() ? caller->caller() : caller; 414 InlineTree::find_subtree_from_root(C->ilt(), ilt_caller, parse_method); 415 } 416 _max_switch_depth = 0; 417 _est_switch_depth = 0; 418 #endif 419 420 if (parse_method->has_reserved_stack_access()) { 421 C->set_has_reserved_stack_access(true); 422 } 423 424 _tf = TypeFunc::make(method()); 425 _iter.reset_to_method(method()); 426 _flow = method()->get_flow_analysis(); 427 if (_flow->failing()) { 428 C->record_method_not_compilable_all_tiers(_flow->failure_reason()); 429 } 430 431 #ifndef PRODUCT 432 if (_flow->has_irreducible_entry()) { 433 C->set_parsed_irreducible_loop(true); 434 } 435 #endif 436 437 if (_expected_uses <= 0) { 438 _prof_factor = 1; 439 } else { 440 float prof_total = parse_method->interpreter_invocation_count(); 441 if (prof_total <= _expected_uses) { 442 _prof_factor = 1; 443 } else { 444 _prof_factor = _expected_uses / prof_total; 445 } 446 } 447 448 CompileLog* log = C->log(); 449 if (log != NULL) { 450 log->begin_head("parse method='%d' uses='%f'", 451 log->identify(parse_method), expected_uses); 452 if (depth() == 1 && C->is_osr_compilation()) { 453 log->print(" osr_bci='%d'", C->entry_bci()); 454 } 455 log->stamp(); 456 log->end_head(); 457 } 458 459 // Accumulate deoptimization counts. 460 // (The range_check and store_check counts are checked elsewhere.) 461 ciMethodData* md = method()->method_data(); 462 for (uint reason = 0; reason < md->trap_reason_limit(); reason++) { 463 uint md_count = md->trap_count(reason); 464 if (md_count != 0) { 465 if (md_count == md->trap_count_limit()) 466 md_count += md->overflow_trap_count(); 467 uint total_count = C->trap_count(reason); 468 uint old_count = total_count; 469 total_count += md_count; 470 // Saturate the add if it overflows. 471 if (total_count < old_count || total_count < md_count) 472 total_count = (uint)-1; 473 C->set_trap_count(reason, total_count); 474 if (log != NULL) 475 log->elem("observe trap='%s' count='%d' total='%d'", 476 Deoptimization::trap_reason_name(reason), 477 md_count, total_count); 478 } 479 } 480 // Accumulate total sum of decompilations, also. 481 C->set_decompile_count(C->decompile_count() + md->decompile_count()); 482 483 _count_invocations = C->do_count_invocations(); 484 _method_data_update = C->do_method_data_update(); 485 486 if (log != NULL && method()->has_exception_handlers()) { 487 log->elem("observe that='has_exception_handlers'"); 488 } 489 490 assert(method()->can_be_compiled(), "Can not parse this method, cutout earlier"); 491 assert(method()->has_balanced_monitors(), "Can not parse unbalanced monitors, cutout earlier"); 492 493 // Always register dependence if JVMTI is enabled, because 494 // either breakpoint setting or hotswapping of methods may 495 // cause deoptimization. 496 if (C->env()->jvmti_can_hotswap_or_post_breakpoint()) { 497 C->dependencies()->assert_evol_method(method()); 498 } 499 500 NOT_PRODUCT(methods_seen++); 501 502 // Do some special top-level things. 503 if (depth() == 1 && C->is_osr_compilation()) { 504 _entry_bci = C->entry_bci(); 505 _flow = method()->get_osr_flow_analysis(osr_bci()); 506 if (_flow->failing()) { 507 C->record_method_not_compilable(_flow->failure_reason()); 508 #ifndef PRODUCT 509 if (PrintOpto && (Verbose || WizardMode)) { 510 tty->print_cr("OSR @%d type flow bailout: %s", _entry_bci, _flow->failure_reason()); 511 if (Verbose) { 512 method()->print(); 513 method()->print_codes(); 514 _flow->print(); 515 } 516 } 517 #endif 518 } 519 _tf = C->tf(); // the OSR entry type is different 520 } 521 522 #ifdef ASSERT 523 if (depth() == 1) { 524 assert(C->is_osr_compilation() == this->is_osr_parse(), "OSR in sync"); 525 if (C->tf() != tf()) { 526 MutexLockerEx ml(Compile_lock, Mutex::_no_safepoint_check_flag); 527 assert(C->env()->system_dictionary_modification_counter_changed(), 528 "Must invalidate if TypeFuncs differ"); 529 } 530 } else { 531 assert(!this->is_osr_parse(), "no recursive OSR"); 532 } 533 #endif 534 535 #ifndef PRODUCT 536 methods_parsed++; 537 // add method size here to guarantee that inlined methods are added too 538 if (CITime) 539 _total_bytes_compiled += method()->code_size(); 540 541 show_parse_info(); 542 #endif 543 544 if (failing()) { 545 if (log) log->done("parse"); 546 return; 547 } 548 549 gvn().set_type(root(), root()->bottom_type()); 550 gvn().transform(top()); 551 552 // Import the results of the ciTypeFlow. 553 init_blocks(); 554 555 // Merge point for all normal exits 556 build_exits(); 557 558 // Setup the initial JVM state map. 559 SafePointNode* entry_map = create_entry_map(); 560 561 // Check for bailouts during map initialization 562 if (failing() || entry_map == NULL) { 563 if (log) log->done("parse"); 564 return; 565 } 566 567 Node_Notes* caller_nn = C->default_node_notes(); 568 // Collect debug info for inlined calls unless -XX:-DebugInlinedCalls. 569 if (DebugInlinedCalls || depth() == 1) { 570 C->set_default_node_notes(make_node_notes(caller_nn)); 571 } 572 573 if (is_osr_parse()) { 574 Node* osr_buf = entry_map->in(TypeFunc::Parms+0); 575 entry_map->set_req(TypeFunc::Parms+0, top()); 576 set_map(entry_map); 577 load_interpreter_state(osr_buf); 578 } else { 579 set_map(entry_map); 580 do_method_entry(); 581 if (depth() == 1 && C->age_code()) { 582 decrement_age(); 583 } 584 } 585 586 if (depth() == 1 && !failing()) { 587 // Add check to deoptimize the nmethod if RTM state was changed 588 rtm_deopt(); 589 } 590 591 // Check for bailouts during method entry or RTM state check setup. 592 if (failing()) { 593 if (log) log->done("parse"); 594 C->set_default_node_notes(caller_nn); 595 return; 596 } 597 598 entry_map = map(); // capture any changes performed by method setup code 599 assert(jvms()->endoff() == map()->req(), "map matches JVMS layout"); 600 601 // We begin parsing as if we have just encountered a jump to the 602 // method entry. 603 Block* entry_block = start_block(); 604 assert(entry_block->start() == (is_osr_parse() ? osr_bci() : 0), ""); 605 set_map_clone(entry_map); 606 merge_common(entry_block, entry_block->next_path_num()); 607 608 #ifndef PRODUCT 609 BytecodeParseHistogram *parse_histogram_obj = new (C->env()->arena()) BytecodeParseHistogram(this, C); 610 set_parse_histogram( parse_histogram_obj ); 611 #endif 612 613 // Parse all the basic blocks. 614 do_all_blocks(); 615 616 C->set_default_node_notes(caller_nn); 617 618 // Check for bailouts during conversion to graph 619 if (failing()) { 620 if (log) log->done("parse"); 621 return; 622 } 623 624 // Fix up all exiting control flow. 625 set_map(entry_map); 626 do_exits(); 627 628 if (log) log->done("parse nodes='%d' live='%d' memory='" SIZE_FORMAT "'", 629 C->unique(), C->live_nodes(), C->node_arena()->used()); 630 } 631 632 //---------------------------do_all_blocks------------------------------------- 633 void Parse::do_all_blocks() { 634 bool has_irreducible = flow()->has_irreducible_entry(); 635 636 // Walk over all blocks in Reverse Post-Order. 637 while (true) { 638 bool progress = false; 639 for (int rpo = 0; rpo < block_count(); rpo++) { 640 Block* block = rpo_at(rpo); 641 642 if (block->is_parsed()) continue; 643 644 if (!block->is_merged()) { 645 // Dead block, no state reaches this block 646 continue; 647 } 648 649 // Prepare to parse this block. 650 load_state_from(block); 651 652 if (stopped()) { 653 // Block is dead. 654 continue; 655 } 656 657 NOT_PRODUCT(blocks_parsed++); 658 659 progress = true; 660 if (block->is_loop_head() || block->is_handler() || has_irreducible && !block->is_ready()) { 661 // Not all preds have been parsed. We must build phis everywhere. 662 // (Note that dead locals do not get phis built, ever.) 663 ensure_phis_everywhere(); 664 665 if (block->is_SEL_head() && 666 (UseLoopPredicate || LoopLimitCheck)) { 667 // Add predicate to single entry (not irreducible) loop head. 668 assert(!block->has_merged_backedge(), "only entry paths should be merged for now"); 669 // Need correct bci for predicate. 670 // It is fine to set it here since do_one_block() will set it anyway. 671 set_parse_bci(block->start()); 672 add_predicate(); 673 // With value type support, uncommon traps added for loop predicates have to 674 // allocate all local value types which may throw exceptions. Handle them here. 675 do_exceptions(); 676 677 // Add new region for back branches. 678 int edges = block->pred_count() - block->preds_parsed() + 1; // +1 for original region 679 RegionNode *r = new RegionNode(edges+1); 680 _gvn.set_type(r, Type::CONTROL); 681 record_for_igvn(r); 682 r->init_req(edges, control()); 683 set_control(r); 684 // Add new phis. 685 ensure_phis_everywhere(); 686 } 687 688 // Leave behind an undisturbed copy of the map, for future merges. 689 set_map(clone_map()); 690 } 691 692 if (control()->is_Region() && !block->is_loop_head() && !has_irreducible && !block->is_handler()) { 693 // In the absence of irreducible loops, the Region and Phis 694 // associated with a merge that doesn't involve a backedge can 695 // be simplified now since the RPO parsing order guarantees 696 // that any path which was supposed to reach here has already 697 // been parsed or must be dead. 698 Node* c = control(); 699 Node* result = _gvn.transform_no_reclaim(control()); 700 if (c != result && TraceOptoParse) { 701 tty->print_cr("Block #%d replace %d with %d", block->rpo(), c->_idx, result->_idx); 702 } 703 if (result != top()) { 704 record_for_igvn(result); 705 } 706 } 707 708 // Parse the block. 709 do_one_block(); 710 711 // Check for bailouts. 712 if (failing()) return; 713 } 714 715 // with irreducible loops multiple passes might be necessary to parse everything 716 if (!has_irreducible || !progress) { 717 break; 718 } 719 } 720 721 #ifndef PRODUCT 722 blocks_seen += block_count(); 723 724 // Make sure there are no half-processed blocks remaining. 725 // Every remaining unprocessed block is dead and may be ignored now. 726 for (int rpo = 0; rpo < block_count(); rpo++) { 727 Block* block = rpo_at(rpo); 728 if (!block->is_parsed()) { 729 if (TraceOptoParse) { 730 tty->print_cr("Skipped dead block %d at bci:%d", rpo, block->start()); 731 } 732 assert(!block->is_merged(), "no half-processed blocks"); 733 } 734 } 735 #endif 736 } 737 738 //-------------------------------build_exits---------------------------------- 739 // Build normal and exceptional exit merge points. 740 void Parse::build_exits() { 741 // make a clone of caller to prevent sharing of side-effects 742 _exits.set_map(_exits.clone_map()); 743 _exits.clean_stack(_exits.sp()); 744 _exits.sync_jvms(); 745 746 RegionNode* region = new RegionNode(1); 747 record_for_igvn(region); 748 gvn().set_type_bottom(region); 749 _exits.set_control(region); 750 751 // Note: iophi and memphi are not transformed until do_exits. 752 Node* iophi = new PhiNode(region, Type::ABIO); 753 Node* memphi = new PhiNode(region, Type::MEMORY, TypePtr::BOTTOM); 754 gvn().set_type_bottom(iophi); 755 gvn().set_type_bottom(memphi); 756 _exits.set_i_o(iophi); 757 _exits.set_all_memory(memphi); 758 759 // Add a return value to the exit state. (Do not push it yet.) 760 if (tf()->range()->cnt() > TypeFunc::Parms) { 761 const Type* ret_type = tf()->range()->field_at(TypeFunc::Parms); 762 // Don't "bind" an unloaded return klass to the ret_phi. If the klass 763 // becomes loaded during the subsequent parsing, the loaded and unloaded 764 // types will not join when we transform and push in do_exits(). 765 const TypeOopPtr* ret_oop_type = ret_type->isa_oopptr(); 766 if (ret_oop_type && !ret_oop_type->klass()->is_loaded()) { 767 ret_type = TypeOopPtr::BOTTOM; 768 } 769 if (_caller->has_method() && ret_type->isa_valuetypeptr()) { 770 // When inlining, return value type as ValueTypeNode not as oop 771 ret_type = ret_type->is_valuetypeptr()->value_type(); 772 } 773 int ret_size = type2size[ret_type->basic_type()]; 774 Node* ret_phi = new PhiNode(region, ret_type); 775 gvn().set_type_bottom(ret_phi); 776 _exits.ensure_stack(ret_size); 777 assert((int)(tf()->range()->cnt() - TypeFunc::Parms) == ret_size, "good tf range"); 778 assert(method()->return_type()->size() == ret_size, "tf agrees w/ method"); 779 _exits.set_argument(0, ret_phi); // here is where the parser finds it 780 // Note: ret_phi is not yet pushed, until do_exits. 781 } 782 } 783 784 785 //----------------------------build_start_state------------------------------- 786 // Construct a state which contains only the incoming arguments from an 787 // unknown caller. The method & bci will be NULL & InvocationEntryBci. 788 JVMState* Compile::build_start_state(StartNode* start, const TypeFunc* tf) { 789 int arg_size = tf->domain()->cnt(); 790 int max_size = MAX2(arg_size, (int)tf->range()->cnt()); 791 JVMState* jvms = new (this) JVMState(max_size - TypeFunc::Parms); 792 SafePointNode* map = new SafePointNode(max_size, NULL); 793 record_for_igvn(map); 794 assert(arg_size == TypeFunc::Parms + (is_osr_compilation() ? 1 : method()->arg_size()), "correct arg_size"); 795 Node_Notes* old_nn = default_node_notes(); 796 if (old_nn != NULL && has_method()) { 797 Node_Notes* entry_nn = old_nn->clone(this); 798 JVMState* entry_jvms = new(this) JVMState(method(), old_nn->jvms()); 799 entry_jvms->set_offsets(0); 800 entry_jvms->set_bci(entry_bci()); 801 entry_nn->set_jvms(entry_jvms); 802 set_default_node_notes(entry_nn); 803 } 804 uint i; 805 for (i = 0; i < (uint)arg_size; i++) { 806 PhaseGVN& gvn = *initial_gvn(); 807 Node* parm = gvn.transform(new ParmNode(start, i)); 808 // Check if parameter is a value type pointer 809 if (gvn.type(parm)->isa_valuetypeptr()) { 810 // Create ValueTypeNode from the oop and replace the parameter 811 parm = ValueTypeNode::make(gvn, map->memory(), parm); 812 } 813 map->init_req(i, parm); 814 // Record all these guys for later GVN. 815 record_for_igvn(parm); 816 } 817 for (; i < map->req(); i++) { 818 map->init_req(i, top()); 819 } 820 assert(jvms->argoff() == TypeFunc::Parms, "parser gets arguments here"); 821 set_default_node_notes(old_nn); 822 map->set_jvms(jvms); 823 jvms->set_map(map); 824 return jvms; 825 } 826 827 //-----------------------------make_node_notes--------------------------------- 828 Node_Notes* Parse::make_node_notes(Node_Notes* caller_nn) { 829 if (caller_nn == NULL) return NULL; 830 Node_Notes* nn = caller_nn->clone(C); 831 JVMState* caller_jvms = nn->jvms(); 832 JVMState* jvms = new (C) JVMState(method(), caller_jvms); 833 jvms->set_offsets(0); 834 jvms->set_bci(_entry_bci); 835 nn->set_jvms(jvms); 836 return nn; 837 } 838 839 840 //--------------------------return_values-------------------------------------- 841 void Compile::return_values(JVMState* jvms) { 842 GraphKit kit(jvms); 843 Node* ret = new ReturnNode(TypeFunc::Parms, 844 kit.control(), 845 kit.i_o(), 846 kit.reset_memory(), 847 kit.frameptr(), 848 kit.returnadr()); 849 // Add zero or 1 return values 850 int ret_size = tf()->range()->cnt() - TypeFunc::Parms; 851 if (ret_size > 0) { 852 kit.inc_sp(-ret_size); // pop the return value(s) 853 kit.sync_jvms(); 854 ret->add_req(kit.argument(0)); 855 // Note: The second dummy edge is not needed by a ReturnNode. 856 } 857 // bind it to root 858 root()->add_req(ret); 859 record_for_igvn(ret); 860 initial_gvn()->transform_no_reclaim(ret); 861 } 862 863 //------------------------rethrow_exceptions----------------------------------- 864 // Bind all exception states in the list into a single RethrowNode. 865 void Compile::rethrow_exceptions(JVMState* jvms) { 866 GraphKit kit(jvms); 867 if (!kit.has_exceptions()) return; // nothing to generate 868 // Load my combined exception state into the kit, with all phis transformed: 869 SafePointNode* ex_map = kit.combine_and_pop_all_exception_states(); 870 Node* ex_oop = kit.use_exception_state(ex_map); 871 RethrowNode* exit = new RethrowNode(kit.control(), 872 kit.i_o(), kit.reset_memory(), 873 kit.frameptr(), kit.returnadr(), 874 // like a return but with exception input 875 ex_oop); 876 // bind to root 877 root()->add_req(exit); 878 record_for_igvn(exit); 879 initial_gvn()->transform_no_reclaim(exit); 880 } 881 882 //---------------------------do_exceptions------------------------------------- 883 // Process exceptions arising from the current bytecode. 884 // Send caught exceptions to the proper handler within this method. 885 // Unhandled exceptions feed into _exit. 886 void Parse::do_exceptions() { 887 if (!has_exceptions()) return; 888 889 if (failing()) { 890 // Pop them all off and throw them away. 891 while (pop_exception_state() != NULL) ; 892 return; 893 } 894 895 PreserveJVMState pjvms(this, false); 896 897 SafePointNode* ex_map; 898 while ((ex_map = pop_exception_state()) != NULL) { 899 if (!method()->has_exception_handlers()) { 900 // Common case: Transfer control outward. 901 // Doing it this early allows the exceptions to common up 902 // even between adjacent method calls. 903 throw_to_exit(ex_map); 904 } else { 905 // Have to look at the exception first. 906 assert(stopped(), "catch_inline_exceptions trashes the map"); 907 catch_inline_exceptions(ex_map); 908 stop_and_kill_map(); // we used up this exception state; kill it 909 } 910 } 911 912 // We now return to our regularly scheduled program: 913 } 914 915 //---------------------------throw_to_exit------------------------------------- 916 // Merge the given map into an exception exit from this method. 917 // The exception exit will handle any unlocking of receiver. 918 // The ex_oop must be saved within the ex_map, unlike merge_exception. 919 void Parse::throw_to_exit(SafePointNode* ex_map) { 920 // Pop the JVMS to (a copy of) the caller. 921 GraphKit caller; 922 caller.set_map_clone(_caller->map()); 923 caller.set_bci(_caller->bci()); 924 caller.set_sp(_caller->sp()); 925 // Copy out the standard machine state: 926 for (uint i = 0; i < TypeFunc::Parms; i++) { 927 caller.map()->set_req(i, ex_map->in(i)); 928 } 929 if (ex_map->has_replaced_nodes()) { 930 _replaced_nodes_for_exceptions = true; 931 } 932 caller.map()->transfer_replaced_nodes_from(ex_map, _new_idx); 933 // ...and the exception: 934 Node* ex_oop = saved_ex_oop(ex_map); 935 SafePointNode* caller_ex_map = caller.make_exception_state(ex_oop); 936 // Finally, collect the new exception state in my exits: 937 _exits.add_exception_state(caller_ex_map); 938 } 939 940 //------------------------------do_exits--------------------------------------- 941 void Parse::do_exits() { 942 set_parse_bci(InvocationEntryBci); 943 944 // Now peephole on the return bits 945 Node* region = _exits.control(); 946 _exits.set_control(gvn().transform(region)); 947 948 Node* iophi = _exits.i_o(); 949 _exits.set_i_o(gvn().transform(iophi)); 950 951 // Figure out if we need to emit the trailing barrier. The barrier is only 952 // needed in the constructors, and only in three cases: 953 // 954 // 1. The constructor wrote a final. The effects of all initializations 955 // must be committed to memory before any code after the constructor 956 // publishes the reference to the newly constructed object. Rather 957 // than wait for the publication, we simply block the writes here. 958 // Rather than put a barrier on only those writes which are required 959 // to complete, we force all writes to complete. 960 // 961 // 2. On PPC64, also add MemBarRelease for constructors which write 962 // volatile fields. As support_IRIW_for_not_multiple_copy_atomic_cpu 963 // is set on PPC64, no sync instruction is issued after volatile 964 // stores. We want to guarantee the same behavior as on platforms 965 // with total store order, although this is not required by the Java 966 // memory model. So as with finals, we add a barrier here. 967 // 968 // 3. Experimental VM option is used to force the barrier if any field 969 // was written out in the constructor. 970 // 971 // "All bets are off" unless the first publication occurs after a 972 // normal return from the constructor. We do not attempt to detect 973 // such unusual early publications. But no barrier is needed on 974 // exceptional returns, since they cannot publish normally. 975 // 976 if (method()->is_initializer() && 977 (wrote_final() || 978 PPC64_ONLY(wrote_volatile() ||) 979 (AlwaysSafeConstructors && wrote_fields()))) { 980 _exits.insert_mem_bar(Op_MemBarRelease, alloc_with_final()); 981 982 // If Memory barrier is created for final fields write 983 // and allocation node does not escape the initialize method, 984 // then barrier introduced by allocation node can be removed. 985 if (DoEscapeAnalysis && alloc_with_final()) { 986 AllocateNode *alloc = AllocateNode::Ideal_allocation(alloc_with_final(), &_gvn); 987 alloc->compute_MemBar_redundancy(method()); 988 } 989 if (PrintOpto && (Verbose || WizardMode)) { 990 method()->print_name(); 991 tty->print_cr(" writes finals and needs a memory barrier"); 992 } 993 } 994 995 // Any method can write a @Stable field; insert memory barriers 996 // after those also. Can't bind predecessor allocation node (if any) 997 // with barrier because allocation doesn't always dominate 998 // MemBarRelease. 999 if (wrote_stable()) { 1000 _exits.insert_mem_bar(Op_MemBarRelease); 1001 if (PrintOpto && (Verbose || WizardMode)) { 1002 method()->print_name(); 1003 tty->print_cr(" writes @Stable and needs a memory barrier"); 1004 } 1005 } 1006 1007 for (MergeMemStream mms(_exits.merged_memory()); mms.next_non_empty(); ) { 1008 // transform each slice of the original memphi: 1009 mms.set_memory(_gvn.transform(mms.memory())); 1010 } 1011 1012 if (tf()->range()->cnt() > TypeFunc::Parms) { 1013 const Type* ret_type = tf()->range()->field_at(TypeFunc::Parms); 1014 Node* ret_phi = _gvn.transform( _exits.argument(0) ); 1015 if (!_exits.control()->is_top() && _gvn.type(ret_phi)->empty()) { 1016 // In case of concurrent class loading, the type we set for the 1017 // ret_phi in build_exits() may have been too optimistic and the 1018 // ret_phi may be top now. 1019 // Otherwise, we've encountered an error and have to mark the method as 1020 // not compilable. Just using an assertion instead would be dangerous 1021 // as this could lead to an infinite compile loop in non-debug builds. 1022 { 1023 MutexLockerEx ml(Compile_lock, Mutex::_no_safepoint_check_flag); 1024 if (C->env()->system_dictionary_modification_counter_changed()) { 1025 C->record_failure(C2Compiler::retry_class_loading_during_parsing()); 1026 } else { 1027 C->record_method_not_compilable("Can't determine return type."); 1028 } 1029 } 1030 return; 1031 } 1032 if (_caller->has_method() && ret_type->isa_valuetypeptr()) { 1033 // Inlined methods return a ValueTypeNode 1034 _exits.push_node(T_VALUETYPE, ret_phi); 1035 } else { 1036 _exits.push_node(ret_type->basic_type(), ret_phi); 1037 } 1038 } 1039 1040 // Note: Logic for creating and optimizing the ReturnNode is in Compile. 1041 1042 // Unlock along the exceptional paths. 1043 // This is done late so that we can common up equivalent exceptions 1044 // (e.g., null checks) arising from multiple points within this method. 1045 // See GraphKit::add_exception_state, which performs the commoning. 1046 bool do_synch = method()->is_synchronized() && GenerateSynchronizationCode; 1047 1048 // record exit from a method if compiled while Dtrace is turned on. 1049 if (do_synch || C->env()->dtrace_method_probes() || _replaced_nodes_for_exceptions) { 1050 // First move the exception list out of _exits: 1051 GraphKit kit(_exits.transfer_exceptions_into_jvms()); 1052 SafePointNode* normal_map = kit.map(); // keep this guy safe 1053 // Now re-collect the exceptions into _exits: 1054 SafePointNode* ex_map; 1055 while ((ex_map = kit.pop_exception_state()) != NULL) { 1056 Node* ex_oop = kit.use_exception_state(ex_map); 1057 // Force the exiting JVM state to have this method at InvocationEntryBci. 1058 // The exiting JVM state is otherwise a copy of the calling JVMS. 1059 JVMState* caller = kit.jvms(); 1060 JVMState* ex_jvms = caller->clone_shallow(C); 1061 ex_jvms->set_map(kit.clone_map()); 1062 ex_jvms->map()->set_jvms(ex_jvms); 1063 ex_jvms->set_bci( InvocationEntryBci); 1064 kit.set_jvms(ex_jvms); 1065 if (do_synch) { 1066 // Add on the synchronized-method box/object combo 1067 kit.map()->push_monitor(_synch_lock); 1068 // Unlock! 1069 kit.shared_unlock(_synch_lock->box_node(), _synch_lock->obj_node()); 1070 } 1071 if (C->env()->dtrace_method_probes()) { 1072 kit.make_dtrace_method_exit(method()); 1073 } 1074 if (_replaced_nodes_for_exceptions) { 1075 kit.map()->apply_replaced_nodes(); 1076 } 1077 // Done with exception-path processing. 1078 ex_map = kit.make_exception_state(ex_oop); 1079 assert(ex_jvms->same_calls_as(ex_map->jvms()), "sanity"); 1080 // Pop the last vestige of this method: 1081 ex_map->set_jvms(caller->clone_shallow(C)); 1082 ex_map->jvms()->set_map(ex_map); 1083 _exits.push_exception_state(ex_map); 1084 } 1085 assert(_exits.map() == normal_map, "keep the same return state"); 1086 } 1087 1088 { 1089 // Capture very early exceptions (receiver null checks) from caller JVMS 1090 GraphKit caller(_caller); 1091 SafePointNode* ex_map; 1092 while ((ex_map = caller.pop_exception_state()) != NULL) { 1093 _exits.add_exception_state(ex_map); 1094 } 1095 } 1096 _exits.map()->apply_replaced_nodes(); 1097 } 1098 1099 //-----------------------------create_entry_map------------------------------- 1100 // Initialize our parser map to contain the types at method entry. 1101 // For OSR, the map contains a single RawPtr parameter. 1102 // Initial monitor locking for sync. methods is performed by do_method_entry. 1103 SafePointNode* Parse::create_entry_map() { 1104 // Check for really stupid bail-out cases. 1105 uint len = TypeFunc::Parms + method()->max_locals() + method()->max_stack(); 1106 if (len >= 32760) { 1107 C->record_method_not_compilable_all_tiers("too many local variables"); 1108 return NULL; 1109 } 1110 1111 // clear current replaced nodes that are of no use from here on (map was cloned in build_exits). 1112 _caller->map()->delete_replaced_nodes(); 1113 1114 // If this is an inlined method, we may have to do a receiver null check. 1115 if (_caller->has_method() && is_normal_parse() && !method()->is_static()) { 1116 GraphKit kit(_caller); 1117 if (kit.argument(0)->is_ValueType()) { 1118 ValueTypeNode* vt = kit.argument(0)->as_ValueType(); 1119 vt->store_to_memory(&kit); 1120 } else { 1121 kit.null_check_receiver_before_call(method()); 1122 } 1123 _caller = kit.transfer_exceptions_into_jvms(); 1124 if (kit.stopped()) { 1125 _exits.add_exception_states_from(_caller); 1126 _exits.set_jvms(_caller); 1127 return NULL; 1128 } 1129 } 1130 1131 assert(method() != NULL, "parser must have a method"); 1132 1133 // Create an initial safepoint to hold JVM state during parsing 1134 JVMState* jvms = new (C) JVMState(method(), _caller->has_method() ? _caller : NULL); 1135 set_map(new SafePointNode(len, jvms)); 1136 jvms->set_map(map()); 1137 record_for_igvn(map()); 1138 assert(jvms->endoff() == len, "correct jvms sizing"); 1139 1140 SafePointNode* inmap = _caller->map(); 1141 assert(inmap != NULL, "must have inmap"); 1142 // In case of null check on receiver above 1143 map()->transfer_replaced_nodes_from(inmap, _new_idx); 1144 1145 uint i; 1146 1147 // Pass thru the predefined input parameters. 1148 for (i = 0; i < TypeFunc::Parms; i++) { 1149 map()->init_req(i, inmap->in(i)); 1150 } 1151 1152 if (depth() == 1) { 1153 assert(map()->memory()->Opcode() == Op_Parm, ""); 1154 // Insert the memory aliasing node 1155 set_all_memory(reset_memory()); 1156 } 1157 assert(merged_memory(), ""); 1158 1159 // Now add the locals which are initially bound to arguments: 1160 uint arg_size = tf()->domain()->cnt(); 1161 ensure_stack(arg_size - TypeFunc::Parms); // OSR methods have funny args 1162 for (i = TypeFunc::Parms; i < arg_size; i++) { 1163 map()->init_req(i, inmap->argument(_caller, i - TypeFunc::Parms)); 1164 } 1165 1166 // Clear out the rest of the map (locals and stack) 1167 for (i = arg_size; i < len; i++) { 1168 map()->init_req(i, top()); 1169 } 1170 1171 SafePointNode* entry_map = stop(); 1172 return entry_map; 1173 } 1174 1175 //-----------------------------do_method_entry-------------------------------- 1176 // Emit any code needed in the pseudo-block before BCI zero. 1177 // The main thing to do is lock the receiver of a synchronized method. 1178 void Parse::do_method_entry() { 1179 set_parse_bci(InvocationEntryBci); // Pseudo-BCP 1180 set_sp(0); // Java Stack Pointer 1181 1182 NOT_PRODUCT( count_compiled_calls(true/*at_method_entry*/, false/*is_inline*/); ) 1183 1184 if (C->env()->dtrace_method_probes()) { 1185 make_dtrace_method_entry(method()); 1186 } 1187 1188 // If the method is synchronized, we need to construct a lock node, attach 1189 // it to the Start node, and pin it there. 1190 if (method()->is_synchronized()) { 1191 // Insert a FastLockNode right after the Start which takes as arguments 1192 // the current thread pointer, the "this" pointer & the address of the 1193 // stack slot pair used for the lock. The "this" pointer is a projection 1194 // off the start node, but the locking spot has to be constructed by 1195 // creating a ConLNode of 0, and boxing it with a BoxLockNode. The BoxLockNode 1196 // becomes the second argument to the FastLockNode call. The 1197 // FastLockNode becomes the new control parent to pin it to the start. 1198 1199 // Setup Object Pointer 1200 Node *lock_obj = NULL; 1201 if(method()->is_static()) { 1202 ciInstance* mirror = _method->holder()->java_mirror(); 1203 const TypeInstPtr *t_lock = TypeInstPtr::make(mirror); 1204 lock_obj = makecon(t_lock); 1205 } else { // Else pass the "this" pointer, 1206 lock_obj = local(0); // which is Parm0 from StartNode 1207 } 1208 // Clear out dead values from the debug info. 1209 kill_dead_locals(); 1210 // Build the FastLockNode 1211 _synch_lock = shared_lock(lock_obj); 1212 } 1213 1214 // Feed profiling data for parameters to the type system so it can 1215 // propagate it as speculative types 1216 record_profiled_parameters_for_speculation(); 1217 1218 if (depth() == 1) { 1219 increment_and_test_invocation_counter(Tier2CompileThreshold); 1220 } 1221 } 1222 1223 //------------------------------init_blocks------------------------------------ 1224 // Initialize our parser map to contain the types/monitors at method entry. 1225 void Parse::init_blocks() { 1226 // Create the blocks. 1227 _block_count = flow()->block_count(); 1228 _blocks = NEW_RESOURCE_ARRAY(Block, _block_count); 1229 Copy::zero_to_bytes(_blocks, sizeof(Block)*_block_count); 1230 1231 int rpo; 1232 1233 // Initialize the structs. 1234 for (rpo = 0; rpo < block_count(); rpo++) { 1235 Block* block = rpo_at(rpo); 1236 block->init_node(this, rpo); 1237 } 1238 1239 // Collect predecessor and successor information. 1240 for (rpo = 0; rpo < block_count(); rpo++) { 1241 Block* block = rpo_at(rpo); 1242 block->init_graph(this); 1243 } 1244 } 1245 1246 //-------------------------------init_node------------------------------------- 1247 void Parse::Block::init_node(Parse* outer, int rpo) { 1248 _flow = outer->flow()->rpo_at(rpo); 1249 _pred_count = 0; 1250 _preds_parsed = 0; 1251 _count = 0; 1252 assert(pred_count() == 0 && preds_parsed() == 0, "sanity"); 1253 assert(!(is_merged() || is_parsed() || is_handler() || has_merged_backedge()), "sanity"); 1254 assert(_live_locals.size() == 0, "sanity"); 1255 1256 // entry point has additional predecessor 1257 if (flow()->is_start()) _pred_count++; 1258 assert(flow()->is_start() == (this == outer->start_block()), ""); 1259 } 1260 1261 //-------------------------------init_graph------------------------------------ 1262 void Parse::Block::init_graph(Parse* outer) { 1263 // Create the successor list for this parser block. 1264 GrowableArray<ciTypeFlow::Block*>* tfs = flow()->successors(); 1265 GrowableArray<ciTypeFlow::Block*>* tfe = flow()->exceptions(); 1266 int ns = tfs->length(); 1267 int ne = tfe->length(); 1268 _num_successors = ns; 1269 _all_successors = ns+ne; 1270 _successors = (ns+ne == 0) ? NULL : NEW_RESOURCE_ARRAY(Block*, ns+ne); 1271 int p = 0; 1272 for (int i = 0; i < ns+ne; i++) { 1273 ciTypeFlow::Block* tf2 = (i < ns) ? tfs->at(i) : tfe->at(i-ns); 1274 Block* block2 = outer->rpo_at(tf2->rpo()); 1275 _successors[i] = block2; 1276 1277 // Accumulate pred info for the other block, too. 1278 if (i < ns) { 1279 block2->_pred_count++; 1280 } else { 1281 block2->_is_handler = true; 1282 } 1283 1284 #ifdef ASSERT 1285 // A block's successors must be distinguishable by BCI. 1286 // That is, no bytecode is allowed to branch to two different 1287 // clones of the same code location. 1288 for (int j = 0; j < i; j++) { 1289 Block* block1 = _successors[j]; 1290 if (block1 == block2) continue; // duplicates are OK 1291 assert(block1->start() != block2->start(), "successors have unique bcis"); 1292 } 1293 #endif 1294 } 1295 1296 // Note: We never call next_path_num along exception paths, so they 1297 // never get processed as "ready". Also, the input phis of exception 1298 // handlers get specially processed, so that 1299 } 1300 1301 //---------------------------successor_for_bci--------------------------------- 1302 Parse::Block* Parse::Block::successor_for_bci(int bci) { 1303 for (int i = 0; i < all_successors(); i++) { 1304 Block* block2 = successor_at(i); 1305 if (block2->start() == bci) return block2; 1306 } 1307 // We can actually reach here if ciTypeFlow traps out a block 1308 // due to an unloaded class, and concurrently with compilation the 1309 // class is then loaded, so that a later phase of the parser is 1310 // able to see more of the bytecode CFG. Or, the flow pass and 1311 // the parser can have a minor difference of opinion about executability 1312 // of bytecodes. For example, "obj.field = null" is executable even 1313 // if the field's type is an unloaded class; the flow pass used to 1314 // make a trap for such code. 1315 return NULL; 1316 } 1317 1318 1319 //-----------------------------stack_type_at----------------------------------- 1320 const Type* Parse::Block::stack_type_at(int i) const { 1321 return get_type(flow()->stack_type_at(i)); 1322 } 1323 1324 1325 //-----------------------------local_type_at----------------------------------- 1326 const Type* Parse::Block::local_type_at(int i) const { 1327 // Make dead locals fall to bottom. 1328 if (_live_locals.size() == 0) { 1329 MethodLivenessResult live_locals = flow()->outer()->method()->liveness_at_bci(start()); 1330 // This bitmap can be zero length if we saw a breakpoint. 1331 // In such cases, pretend they are all live. 1332 ((Block*)this)->_live_locals = live_locals; 1333 } 1334 if (_live_locals.size() > 0 && !_live_locals.at(i)) 1335 return Type::BOTTOM; 1336 1337 return get_type(flow()->local_type_at(i)); 1338 } 1339 1340 1341 #ifndef PRODUCT 1342 1343 //----------------------------name_for_bc-------------------------------------- 1344 // helper method for BytecodeParseHistogram 1345 static const char* name_for_bc(int i) { 1346 return Bytecodes::is_defined(i) ? Bytecodes::name(Bytecodes::cast(i)) : "xxxunusedxxx"; 1347 } 1348 1349 //----------------------------BytecodeParseHistogram------------------------------------ 1350 Parse::BytecodeParseHistogram::BytecodeParseHistogram(Parse *p, Compile *c) { 1351 _parser = p; 1352 _compiler = c; 1353 if( ! _initialized ) { _initialized = true; reset(); } 1354 } 1355 1356 //----------------------------current_count------------------------------------ 1357 int Parse::BytecodeParseHistogram::current_count(BPHType bph_type) { 1358 switch( bph_type ) { 1359 case BPH_transforms: { return _parser->gvn().made_progress(); } 1360 case BPH_values: { return _parser->gvn().made_new_values(); } 1361 default: { ShouldNotReachHere(); return 0; } 1362 } 1363 } 1364 1365 //----------------------------initialized-------------------------------------- 1366 bool Parse::BytecodeParseHistogram::initialized() { return _initialized; } 1367 1368 //----------------------------reset-------------------------------------------- 1369 void Parse::BytecodeParseHistogram::reset() { 1370 int i = Bytecodes::number_of_codes; 1371 while (i-- > 0) { _bytecodes_parsed[i] = 0; _nodes_constructed[i] = 0; _nodes_transformed[i] = 0; _new_values[i] = 0; } 1372 } 1373 1374 //----------------------------set_initial_state-------------------------------- 1375 // Record info when starting to parse one bytecode 1376 void Parse::BytecodeParseHistogram::set_initial_state( Bytecodes::Code bc ) { 1377 if( PrintParseStatistics && !_parser->is_osr_parse() ) { 1378 _initial_bytecode = bc; 1379 _initial_node_count = _compiler->unique(); 1380 _initial_transforms = current_count(BPH_transforms); 1381 _initial_values = current_count(BPH_values); 1382 } 1383 } 1384 1385 //----------------------------record_change-------------------------------- 1386 // Record results of parsing one bytecode 1387 void Parse::BytecodeParseHistogram::record_change() { 1388 if( PrintParseStatistics && !_parser->is_osr_parse() ) { 1389 ++_bytecodes_parsed[_initial_bytecode]; 1390 _nodes_constructed [_initial_bytecode] += (_compiler->unique() - _initial_node_count); 1391 _nodes_transformed [_initial_bytecode] += (current_count(BPH_transforms) - _initial_transforms); 1392 _new_values [_initial_bytecode] += (current_count(BPH_values) - _initial_values); 1393 } 1394 } 1395 1396 1397 //----------------------------print-------------------------------------------- 1398 void Parse::BytecodeParseHistogram::print(float cutoff) { 1399 ResourceMark rm; 1400 // print profile 1401 int total = 0; 1402 int i = 0; 1403 for( i = 0; i < Bytecodes::number_of_codes; ++i ) { total += _bytecodes_parsed[i]; } 1404 int abs_sum = 0; 1405 tty->cr(); //0123456789012345678901234567890123456789012345678901234567890123456789 1406 tty->print_cr("Histogram of %d parsed bytecodes:", total); 1407 if( total == 0 ) { return; } 1408 tty->cr(); 1409 tty->print_cr("absolute: count of compiled bytecodes of this type"); 1410 tty->print_cr("relative: percentage contribution to compiled nodes"); 1411 tty->print_cr("nodes : Average number of nodes constructed per bytecode"); 1412 tty->print_cr("rnodes : Significance towards total nodes constructed, (nodes*relative)"); 1413 tty->print_cr("transforms: Average amount of tranform progress per bytecode compiled"); 1414 tty->print_cr("values : Average number of node values improved per bytecode"); 1415 tty->print_cr("name : Bytecode name"); 1416 tty->cr(); 1417 tty->print_cr(" absolute relative nodes rnodes transforms values name"); 1418 tty->print_cr("----------------------------------------------------------------------"); 1419 while (--i > 0) { 1420 int abs = _bytecodes_parsed[i]; 1421 float rel = abs * 100.0F / total; 1422 float nodes = _bytecodes_parsed[i] == 0 ? 0 : (1.0F * _nodes_constructed[i])/_bytecodes_parsed[i]; 1423 float rnodes = _bytecodes_parsed[i] == 0 ? 0 : rel * nodes; 1424 float xforms = _bytecodes_parsed[i] == 0 ? 0 : (1.0F * _nodes_transformed[i])/_bytecodes_parsed[i]; 1425 float values = _bytecodes_parsed[i] == 0 ? 0 : (1.0F * _new_values [i])/_bytecodes_parsed[i]; 1426 if (cutoff <= rel) { 1427 tty->print_cr("%10d %7.2f%% %6.1f %6.2f %6.1f %6.1f %s", abs, rel, nodes, rnodes, xforms, values, name_for_bc(i)); 1428 abs_sum += abs; 1429 } 1430 } 1431 tty->print_cr("----------------------------------------------------------------------"); 1432 float rel_sum = abs_sum * 100.0F / total; 1433 tty->print_cr("%10d %7.2f%% (cutoff = %.2f%%)", abs_sum, rel_sum, cutoff); 1434 tty->print_cr("----------------------------------------------------------------------"); 1435 tty->cr(); 1436 } 1437 #endif 1438 1439 //----------------------------load_state_from---------------------------------- 1440 // Load block/map/sp. But not do not touch iter/bci. 1441 void Parse::load_state_from(Block* block) { 1442 set_block(block); 1443 // load the block's JVM state: 1444 set_map(block->start_map()); 1445 set_sp( block->start_sp()); 1446 } 1447 1448 1449 //-----------------------------record_state------------------------------------ 1450 void Parse::Block::record_state(Parse* p) { 1451 assert(!is_merged(), "can only record state once, on 1st inflow"); 1452 assert(start_sp() == p->sp(), "stack pointer must agree with ciTypeFlow"); 1453 set_start_map(p->stop()); 1454 } 1455 1456 1457 //------------------------------do_one_block----------------------------------- 1458 void Parse::do_one_block() { 1459 if (TraceOptoParse) { 1460 Block *b = block(); 1461 int ns = b->num_successors(); 1462 int nt = b->all_successors(); 1463 1464 tty->print("Parsing block #%d at bci [%d,%d), successors: ", 1465 block()->rpo(), block()->start(), block()->limit()); 1466 for (int i = 0; i < nt; i++) { 1467 tty->print((( i < ns) ? " %d" : " %d(e)"), b->successor_at(i)->rpo()); 1468 } 1469 if (b->is_loop_head()) tty->print(" lphd"); 1470 tty->cr(); 1471 } 1472 1473 assert(block()->is_merged(), "must be merged before being parsed"); 1474 block()->mark_parsed(); 1475 1476 // Set iterator to start of block. 1477 iter().reset_to_bci(block()->start()); 1478 1479 CompileLog* log = C->log(); 1480 1481 // Parse bytecodes 1482 while (!stopped() && !failing()) { 1483 iter().next(); 1484 1485 // Learn the current bci from the iterator: 1486 set_parse_bci(iter().cur_bci()); 1487 1488 if (bci() == block()->limit()) { 1489 // Do not walk into the next block until directed by do_all_blocks. 1490 merge(bci()); 1491 break; 1492 } 1493 assert(bci() < block()->limit(), "bci still in block"); 1494 1495 if (log != NULL) { 1496 // Output an optional context marker, to help place actions 1497 // that occur during parsing of this BC. If there is no log 1498 // output until the next context string, this context string 1499 // will be silently ignored. 1500 log->set_context("bc code='%d' bci='%d'", (int)bc(), bci()); 1501 } 1502 1503 if (block()->has_trap_at(bci())) { 1504 // We must respect the flow pass's traps, because it will refuse 1505 // to produce successors for trapping blocks. 1506 int trap_index = block()->flow()->trap_index(); 1507 assert(trap_index != 0, "trap index must be valid"); 1508 uncommon_trap(trap_index); 1509 break; 1510 } 1511 1512 NOT_PRODUCT( parse_histogram()->set_initial_state(bc()); ); 1513 1514 #ifdef ASSERT 1515 int pre_bc_sp = sp(); 1516 int inputs, depth; 1517 bool have_se = !stopped() && compute_stack_effects(inputs, depth); 1518 assert(!have_se || pre_bc_sp >= inputs, "have enough stack to execute this BC: pre_bc_sp=%d, inputs=%d", pre_bc_sp, inputs); 1519 #endif //ASSERT 1520 1521 do_one_bytecode(); 1522 1523 assert(!have_se || stopped() || failing() || (sp() - pre_bc_sp) == depth, 1524 "incorrect depth prediction: sp=%d, pre_bc_sp=%d, depth=%d", sp(), pre_bc_sp, depth); 1525 1526 do_exceptions(); 1527 1528 NOT_PRODUCT( parse_histogram()->record_change(); ); 1529 1530 if (log != NULL) 1531 log->clear_context(); // skip marker if nothing was printed 1532 1533 // Fall into next bytecode. Each bytecode normally has 1 sequential 1534 // successor which is typically made ready by visiting this bytecode. 1535 // If the successor has several predecessors, then it is a merge 1536 // point, starts a new basic block, and is handled like other basic blocks. 1537 } 1538 } 1539 1540 1541 //------------------------------merge------------------------------------------ 1542 void Parse::set_parse_bci(int bci) { 1543 set_bci(bci); 1544 Node_Notes* nn = C->default_node_notes(); 1545 if (nn == NULL) return; 1546 1547 // Collect debug info for inlined calls unless -XX:-DebugInlinedCalls. 1548 if (!DebugInlinedCalls && depth() > 1) { 1549 return; 1550 } 1551 1552 // Update the JVMS annotation, if present. 1553 JVMState* jvms = nn->jvms(); 1554 if (jvms != NULL && jvms->bci() != bci) { 1555 // Update the JVMS. 1556 jvms = jvms->clone_shallow(C); 1557 jvms->set_bci(bci); 1558 nn->set_jvms(jvms); 1559 } 1560 } 1561 1562 //------------------------------merge------------------------------------------ 1563 // Merge the current mapping into the basic block starting at bci 1564 void Parse::merge(int target_bci) { 1565 Block* target = successor_for_bci(target_bci); 1566 if (target == NULL) { handle_missing_successor(target_bci); return; } 1567 assert(!target->is_ready(), "our arrival must be expected"); 1568 int pnum = target->next_path_num(); 1569 merge_common(target, pnum); 1570 } 1571 1572 //-------------------------merge_new_path-------------------------------------- 1573 // Merge the current mapping into the basic block, using a new path 1574 void Parse::merge_new_path(int target_bci) { 1575 Block* target = successor_for_bci(target_bci); 1576 if (target == NULL) { handle_missing_successor(target_bci); return; } 1577 assert(!target->is_ready(), "new path into frozen graph"); 1578 int pnum = target->add_new_path(); 1579 merge_common(target, pnum); 1580 } 1581 1582 //-------------------------merge_exception------------------------------------- 1583 // Merge the current mapping into the basic block starting at bci 1584 // The ex_oop must be pushed on the stack, unlike throw_to_exit. 1585 void Parse::merge_exception(int target_bci) { 1586 assert(sp() == 1, "must have only the throw exception on the stack"); 1587 Block* target = successor_for_bci(target_bci); 1588 if (target == NULL) { handle_missing_successor(target_bci); return; } 1589 assert(target->is_handler(), "exceptions are handled by special blocks"); 1590 int pnum = target->add_new_path(); 1591 merge_common(target, pnum); 1592 } 1593 1594 //--------------------handle_missing_successor--------------------------------- 1595 void Parse::handle_missing_successor(int target_bci) { 1596 #ifndef PRODUCT 1597 Block* b = block(); 1598 int trap_bci = b->flow()->has_trap()? b->flow()->trap_bci(): -1; 1599 tty->print_cr("### Missing successor at bci:%d for block #%d (trap_bci:%d)", target_bci, b->rpo(), trap_bci); 1600 #endif 1601 ShouldNotReachHere(); 1602 } 1603 1604 //--------------------------merge_common--------------------------------------- 1605 void Parse::merge_common(Parse::Block* target, int pnum) { 1606 if (TraceOptoParse) { 1607 tty->print("Merging state at block #%d bci:%d", target->rpo(), target->start()); 1608 } 1609 1610 // Zap extra stack slots to top 1611 assert(sp() == target->start_sp(), ""); 1612 clean_stack(sp()); 1613 1614 if (!target->is_merged()) { // No prior mapping at this bci 1615 if (TraceOptoParse) { tty->print(" with empty state"); } 1616 1617 // If this path is dead, do not bother capturing it as a merge. 1618 // It is "as if" we had 1 fewer predecessors from the beginning. 1619 if (stopped()) { 1620 if (TraceOptoParse) tty->print_cr(", but path is dead and doesn't count"); 1621 return; 1622 } 1623 1624 // Make a region if we know there are multiple or unpredictable inputs. 1625 // (Also, if this is a plain fall-through, we might see another region, 1626 // which must not be allowed into this block's map.) 1627 if (pnum > PhiNode::Input // Known multiple inputs. 1628 || target->is_handler() // These have unpredictable inputs. 1629 || target->is_loop_head() // Known multiple inputs 1630 || control()->is_Region()) { // We must hide this guy. 1631 1632 int current_bci = bci(); 1633 set_parse_bci(target->start()); // Set target bci 1634 if (target->is_SEL_head()) { 1635 DEBUG_ONLY( target->mark_merged_backedge(block()); ) 1636 if (target->start() == 0) { 1637 // Add loop predicate for the special case when 1638 // there are backbranches to the method entry. 1639 add_predicate(); 1640 } 1641 } 1642 // Add a Region to start the new basic block. Phis will be added 1643 // later lazily. 1644 int edges = target->pred_count(); 1645 if (edges < pnum) edges = pnum; // might be a new path! 1646 RegionNode *r = new RegionNode(edges+1); 1647 gvn().set_type(r, Type::CONTROL); 1648 record_for_igvn(r); 1649 // zap all inputs to NULL for debugging (done in Node(uint) constructor) 1650 // for (int j = 1; j < edges+1; j++) { r->init_req(j, NULL); } 1651 r->init_req(pnum, control()); 1652 set_control(r); 1653 set_parse_bci(current_bci); // Restore bci 1654 } 1655 1656 // Convert the existing Parser mapping into a mapping at this bci. 1657 store_state_to(target); 1658 assert(target->is_merged(), "do not come here twice"); 1659 1660 } else { // Prior mapping at this bci 1661 if (TraceOptoParse) { tty->print(" with previous state"); } 1662 #ifdef ASSERT 1663 if (target->is_SEL_head()) { 1664 target->mark_merged_backedge(block()); 1665 } 1666 #endif 1667 // We must not manufacture more phis if the target is already parsed. 1668 bool nophi = target->is_parsed(); 1669 1670 SafePointNode* newin = map();// Hang on to incoming mapping 1671 Block* save_block = block(); // Hang on to incoming block; 1672 load_state_from(target); // Get prior mapping 1673 1674 assert(newin->jvms()->locoff() == jvms()->locoff(), "JVMS layouts agree"); 1675 assert(newin->jvms()->stkoff() == jvms()->stkoff(), "JVMS layouts agree"); 1676 assert(newin->jvms()->monoff() == jvms()->monoff(), "JVMS layouts agree"); 1677 assert(newin->jvms()->endoff() == jvms()->endoff(), "JVMS layouts agree"); 1678 1679 // Iterate over my current mapping and the old mapping. 1680 // Where different, insert Phi functions. 1681 // Use any existing Phi functions. 1682 assert(control()->is_Region(), "must be merging to a region"); 1683 RegionNode* r = control()->as_Region(); 1684 1685 // Compute where to merge into 1686 // Merge incoming control path 1687 r->init_req(pnum, newin->control()); 1688 1689 if (pnum == 1) { // Last merge for this Region? 1690 if (!block()->flow()->is_irreducible_entry()) { 1691 Node* result = _gvn.transform_no_reclaim(r); 1692 if (r != result && TraceOptoParse) { 1693 tty->print_cr("Block #%d replace %d with %d", block()->rpo(), r->_idx, result->_idx); 1694 } 1695 } 1696 record_for_igvn(r); 1697 } 1698 1699 // Update all the non-control inputs to map: 1700 assert(TypeFunc::Parms == newin->jvms()->locoff(), "parser map should contain only youngest jvms"); 1701 bool check_elide_phi = target->is_SEL_backedge(save_block); 1702 for (uint j = 1; j < newin->req(); j++) { 1703 Node* m = map()->in(j); // Current state of target. 1704 Node* n = newin->in(j); // Incoming change to target state. 1705 PhiNode* phi; 1706 if (m->is_Phi() && m->as_Phi()->region() == r) 1707 phi = m->as_Phi(); 1708 else 1709 phi = NULL; 1710 if (m != n) { // Different; must merge 1711 switch (j) { 1712 // Frame pointer and Return Address never changes 1713 case TypeFunc::FramePtr:// Drop m, use the original value 1714 case TypeFunc::ReturnAdr: 1715 break; 1716 case TypeFunc::Memory: // Merge inputs to the MergeMem node 1717 assert(phi == NULL, "the merge contains phis, not vice versa"); 1718 merge_memory_edges(n->as_MergeMem(), pnum, nophi); 1719 continue; 1720 default: // All normal stuff 1721 if (phi == NULL) { 1722 const JVMState* jvms = map()->jvms(); 1723 if (EliminateNestedLocks && 1724 jvms->is_mon(j) && jvms->is_monitor_box(j)) { 1725 // BoxLock nodes are not commoning. 1726 // Use old BoxLock node as merged box. 1727 assert(newin->jvms()->is_monitor_box(j), "sanity"); 1728 // This assert also tests that nodes are BoxLock. 1729 assert(BoxLockNode::same_slot(n, m), "sanity"); 1730 C->gvn_replace_by(n, m); 1731 } else if (!check_elide_phi || !target->can_elide_SEL_phi(j)) { 1732 phi = ensure_phi(j, nophi); 1733 } 1734 } 1735 break; 1736 } 1737 } 1738 // At this point, n might be top if: 1739 // - there is no phi (because TypeFlow detected a conflict), or 1740 // - the corresponding control edges is top (a dead incoming path) 1741 // It is a bug if we create a phi which sees a garbage value on a live path. 1742 1743 // Merging two value types? 1744 if (n->isa_ValueType() && m != n) { 1745 assert(phi == NULL, "Value types should not have Phis"); 1746 // Reload current state because it may have been updated by ensure_phi 1747 m = map()->in(j); 1748 ValueTypeNode* vtm = m->as_ValueType(); // Current value type 1749 ValueTypeNode* vtn = n->as_ValueType(); // Incoming value type 1750 if (TraceOptoParse) { 1751 tty->print_cr("Merging value types"); 1752 #ifdef ASSERT 1753 tty->print_cr("Current:"); 1754 vtm->dump(1); 1755 tty->print_cr("Incoming:"); 1756 vtn->dump(1); 1757 #endif 1758 } 1759 // Merge oop inputs 1760 phi = vtm->get_oop()->as_Phi(); 1761 phi->set_req(pnum, vtn->get_oop()); 1762 if (pnum == PhiNode::Input) { 1763 // Last merge 1764 vtm->set_oop(_gvn.transform_no_reclaim(phi)); 1765 record_for_igvn(phi); 1766 } 1767 // Merge field values 1768 for (uint index = 0; index < vtm->field_count(); ++index) { 1769 phi = vtm->get_field_value(index)->as_Phi(); 1770 phi->set_req(pnum, vtn->get_field_value(index)); 1771 if (pnum == PhiNode::Input) { 1772 // Last merge 1773 vtm->set_field_value(index, _gvn.transform_no_reclaim(phi)); 1774 record_for_igvn(phi); 1775 } 1776 } 1777 } else if (phi != NULL) { 1778 assert(n != top() || r->in(pnum) == top(), "live value must not be garbage"); 1779 assert(phi->region() == r, ""); 1780 phi->set_req(pnum, n); // Then add 'n' to the merge 1781 if (pnum == PhiNode::Input) { 1782 // Last merge for this Phi. 1783 // So far, Phis have had a reasonable type from ciTypeFlow. 1784 // Now _gvn will join that with the meet of current inputs. 1785 // BOTTOM is never permissible here, 'cause pessimistically 1786 // Phis of pointers cannot lose the basic pointer type. 1787 debug_only(const Type* bt1 = phi->bottom_type()); 1788 assert(bt1 != Type::BOTTOM, "should not be building conflict phis"); 1789 map()->set_req(j, _gvn.transform_no_reclaim(phi)); 1790 debug_only(const Type* bt2 = phi->bottom_type()); 1791 assert(bt2->higher_equal_speculative(bt1), "must be consistent with type-flow"); 1792 record_for_igvn(phi); 1793 } 1794 } 1795 } // End of for all values to be merged 1796 1797 if (pnum == PhiNode::Input && 1798 !r->in(0)) { // The occasional useless Region 1799 assert(control() == r, ""); 1800 set_control(r->nonnull_req()); 1801 } 1802 1803 map()->merge_replaced_nodes_with(newin); 1804 1805 // newin has been subsumed into the lazy merge, and is now dead. 1806 set_block(save_block); 1807 1808 stop(); // done with this guy, for now 1809 } 1810 1811 if (TraceOptoParse) { 1812 tty->print_cr(" on path %d", pnum); 1813 } 1814 1815 // Done with this parser state. 1816 assert(stopped(), ""); 1817 } 1818 1819 1820 //--------------------------merge_memory_edges--------------------------------- 1821 void Parse::merge_memory_edges(MergeMemNode* n, int pnum, bool nophi) { 1822 // (nophi means we must not create phis, because we already parsed here) 1823 assert(n != NULL, ""); 1824 // Merge the inputs to the MergeMems 1825 MergeMemNode* m = merged_memory(); 1826 1827 assert(control()->is_Region(), "must be merging to a region"); 1828 RegionNode* r = control()->as_Region(); 1829 1830 PhiNode* base = NULL; 1831 MergeMemNode* remerge = NULL; 1832 for (MergeMemStream mms(m, n); mms.next_non_empty2(); ) { 1833 Node *p = mms.force_memory(); 1834 Node *q = mms.memory2(); 1835 if (mms.is_empty() && nophi) { 1836 // Trouble: No new splits allowed after a loop body is parsed. 1837 // Instead, wire the new split into a MergeMem on the backedge. 1838 // The optimizer will sort it out, slicing the phi. 1839 if (remerge == NULL) { 1840 assert(base != NULL, ""); 1841 assert(base->in(0) != NULL, "should not be xformed away"); 1842 remerge = MergeMemNode::make(base->in(pnum)); 1843 gvn().set_type(remerge, Type::MEMORY); 1844 base->set_req(pnum, remerge); 1845 } 1846 remerge->set_memory_at(mms.alias_idx(), q); 1847 continue; 1848 } 1849 assert(!q->is_MergeMem(), ""); 1850 PhiNode* phi; 1851 if (p != q) { 1852 phi = ensure_memory_phi(mms.alias_idx(), nophi); 1853 } else { 1854 if (p->is_Phi() && p->as_Phi()->region() == r) 1855 phi = p->as_Phi(); 1856 else 1857 phi = NULL; 1858 } 1859 // Insert q into local phi 1860 if (phi != NULL) { 1861 assert(phi->region() == r, ""); 1862 p = phi; 1863 phi->set_req(pnum, q); 1864 if (mms.at_base_memory()) { 1865 base = phi; // delay transforming it 1866 } else if (pnum == 1) { 1867 record_for_igvn(phi); 1868 p = _gvn.transform_no_reclaim(phi); 1869 } 1870 mms.set_memory(p);// store back through the iterator 1871 } 1872 } 1873 // Transform base last, in case we must fiddle with remerging. 1874 if (base != NULL && pnum == 1) { 1875 record_for_igvn(base); 1876 m->set_base_memory( _gvn.transform_no_reclaim(base) ); 1877 } 1878 } 1879 1880 1881 //------------------------ensure_phis_everywhere------------------------------- 1882 void Parse::ensure_phis_everywhere() { 1883 ensure_phi(TypeFunc::I_O); 1884 1885 // Ensure a phi on all currently known memories. 1886 for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) { 1887 ensure_memory_phi(mms.alias_idx()); 1888 debug_only(mms.set_memory()); // keep the iterator happy 1889 } 1890 1891 // Note: This is our only chance to create phis for memory slices. 1892 // If we miss a slice that crops up later, it will have to be 1893 // merged into the base-memory phi that we are building here. 1894 // Later, the optimizer will comb out the knot, and build separate 1895 // phi-loops for each memory slice that matters. 1896 1897 // Monitors must nest nicely and not get confused amongst themselves. 1898 // Phi-ify everything up to the monitors, though. 1899 uint monoff = map()->jvms()->monoff(); 1900 uint nof_monitors = map()->jvms()->nof_monitors(); 1901 1902 assert(TypeFunc::Parms == map()->jvms()->locoff(), "parser map should contain only youngest jvms"); 1903 bool check_elide_phi = block()->is_SEL_head(); 1904 for (uint i = TypeFunc::Parms; i < monoff; i++) { 1905 if (!check_elide_phi || !block()->can_elide_SEL_phi(i)) { 1906 ensure_phi(i); 1907 } 1908 } 1909 1910 // Even monitors need Phis, though they are well-structured. 1911 // This is true for OSR methods, and also for the rare cases where 1912 // a monitor object is the subject of a replace_in_map operation. 1913 // See bugs 4426707 and 5043395. 1914 for (uint m = 0; m < nof_monitors; m++) { 1915 ensure_phi(map()->jvms()->monitor_obj_offset(m)); 1916 } 1917 } 1918 1919 1920 //-----------------------------add_new_path------------------------------------ 1921 // Add a previously unaccounted predecessor to this block. 1922 int Parse::Block::add_new_path() { 1923 // If there is no map, return the lowest unused path number. 1924 if (!is_merged()) return pred_count()+1; // there will be a map shortly 1925 1926 SafePointNode* map = start_map(); 1927 if (!map->control()->is_Region()) 1928 return pred_count()+1; // there may be a region some day 1929 RegionNode* r = map->control()->as_Region(); 1930 1931 // Add new path to the region. 1932 uint pnum = r->req(); 1933 r->add_req(NULL); 1934 1935 for (uint i = 1; i < map->req(); i++) { 1936 Node* n = map->in(i); 1937 if (i == TypeFunc::Memory) { 1938 // Ensure a phi on all currently known memories. 1939 for (MergeMemStream mms(n->as_MergeMem()); mms.next_non_empty(); ) { 1940 Node* phi = mms.memory(); 1941 if (phi->is_Phi() && phi->as_Phi()->region() == r) { 1942 assert(phi->req() == pnum, "must be same size as region"); 1943 phi->add_req(NULL); 1944 } 1945 } 1946 } else { 1947 if (n->is_Phi() && n->as_Phi()->region() == r) { 1948 assert(n->req() == pnum, "must be same size as region"); 1949 n->add_req(NULL); 1950 } 1951 } 1952 } 1953 1954 return pnum; 1955 } 1956 1957 //------------------------------ensure_phi------------------------------------- 1958 // Turn the idx'th entry of the current map into a Phi 1959 PhiNode *Parse::ensure_phi(int idx, bool nocreate) { 1960 SafePointNode* map = this->map(); 1961 Node* region = map->control(); 1962 assert(region->is_Region(), ""); 1963 1964 Node* o = map->in(idx); 1965 assert(o != NULL, ""); 1966 1967 if (o == top()) return NULL; // TOP always merges into TOP 1968 1969 if (o->is_Phi() && o->as_Phi()->region() == region) { 1970 return o->as_Phi(); 1971 } 1972 1973 ValueTypeNode* vt = o->isa_ValueType(); 1974 if (vt != NULL && vt->get_oop()->is_Phi() && vt->get_oop()->as_Phi()->region() == region) { 1975 // ValueTypeNode already has Phi inputs 1976 return NULL; 1977 } 1978 1979 // Now use a Phi here for merging 1980 assert(!nocreate, "Cannot build a phi for a block already parsed."); 1981 const JVMState* jvms = map->jvms(); 1982 const Type* t = NULL; 1983 if (jvms->is_loc(idx)) { 1984 t = block()->local_type_at(idx - jvms->locoff()); 1985 } else if (jvms->is_stk(idx)) { 1986 t = block()->stack_type_at(idx - jvms->stkoff()); 1987 } else if (jvms->is_mon(idx)) { 1988 assert(!jvms->is_monitor_box(idx), "no phis for boxes"); 1989 t = TypeInstPtr::BOTTOM; // this is sufficient for a lock object 1990 } else if ((uint)idx < TypeFunc::Parms) { 1991 t = o->bottom_type(); // Type::RETURN_ADDRESS or such-like. 1992 } else { 1993 assert(false, "no type information for this phi"); 1994 } 1995 1996 // If the type falls to bottom, then this must be a local that 1997 // is mixing ints and oops or some such. Forcing it to top 1998 // makes it go dead. 1999 if (t == Type::BOTTOM) { 2000 map->set_req(idx, top()); 2001 return NULL; 2002 } 2003 2004 // Do not create phis for top either. 2005 // A top on a non-null control flow must be an unused even after the.phi. 2006 if (t == Type::TOP || t == Type::HALF) { 2007 map->set_req(idx, top()); 2008 return NULL; 2009 } 2010 2011 // Value types are merged by merging their field values 2012 if (vt != NULL) { 2013 // Create new ValueTypeNode that represents the merged value type 2014 vt = vt->clone()->as_ValueType(); 2015 2016 // Create a PhiNode for merging the oop 2017 const TypeValueTypePtr* vtptr = TypeValueTypePtr::make(t->is_valuetype()); 2018 PhiNode* oop = PhiNode::make(region, vt->get_oop(), vtptr); 2019 gvn().set_type(oop, vtptr); 2020 vt->set_oop(oop); 2021 2022 // Create a PhiNode for merging each field value 2023 for (uint i = 0; i < vt->field_count(); ++i) { 2024 const Type* field_type = Type::get_const_basic_type(vt->get_field_type(i)); 2025 PhiNode* phi = PhiNode::make(region, vt->get_field_value(i), field_type); 2026 gvn().set_type(phi, field_type); 2027 vt->set_field_value(i, phi); 2028 } 2029 2030 // Update map to use cloned value type 2031 gvn().set_type(vt, t); 2032 map->set_req(idx, vt); 2033 return NULL; 2034 } 2035 2036 PhiNode* phi = PhiNode::make(region, o, t); 2037 gvn().set_type(phi, t); 2038 if (C->do_escape_analysis()) record_for_igvn(phi); 2039 map->set_req(idx, phi); 2040 return phi; 2041 } 2042 2043 //--------------------------ensure_memory_phi---------------------------------- 2044 // Turn the idx'th slice of the current memory into a Phi 2045 PhiNode *Parse::ensure_memory_phi(int idx, bool nocreate) { 2046 MergeMemNode* mem = merged_memory(); 2047 Node* region = control(); 2048 assert(region->is_Region(), ""); 2049 2050 Node *o = (idx == Compile::AliasIdxBot)? mem->base_memory(): mem->memory_at(idx); 2051 assert(o != NULL && o != top(), ""); 2052 2053 PhiNode* phi; 2054 if (o->is_Phi() && o->as_Phi()->region() == region) { 2055 phi = o->as_Phi(); 2056 if (phi == mem->base_memory() && idx >= Compile::AliasIdxRaw) { 2057 // clone the shared base memory phi to make a new memory split 2058 assert(!nocreate, "Cannot build a phi for a block already parsed."); 2059 const Type* t = phi->bottom_type(); 2060 const TypePtr* adr_type = C->get_adr_type(idx); 2061 phi = phi->slice_memory(adr_type); 2062 gvn().set_type(phi, t); 2063 } 2064 return phi; 2065 } 2066 2067 // Now use a Phi here for merging 2068 assert(!nocreate, "Cannot build a phi for a block already parsed."); 2069 const Type* t = o->bottom_type(); 2070 const TypePtr* adr_type = C->get_adr_type(idx); 2071 phi = PhiNode::make(region, o, t, adr_type); 2072 gvn().set_type(phi, t); 2073 if (idx == Compile::AliasIdxBot) 2074 mem->set_base_memory(phi); 2075 else 2076 mem->set_memory_at(idx, phi); 2077 return phi; 2078 } 2079 2080 //------------------------------call_register_finalizer----------------------- 2081 // Check the klass of the receiver and call register_finalizer if the 2082 // class need finalization. 2083 void Parse::call_register_finalizer() { 2084 Node* receiver = local(0); 2085 assert(receiver != NULL && receiver->bottom_type()->isa_instptr() != NULL, 2086 "must have non-null instance type"); 2087 2088 const TypeInstPtr *tinst = receiver->bottom_type()->isa_instptr(); 2089 if (tinst != NULL && tinst->klass()->is_loaded() && !tinst->klass_is_exact()) { 2090 // The type isn't known exactly so see if CHA tells us anything. 2091 ciInstanceKlass* ik = tinst->klass()->as_instance_klass(); 2092 if (!Dependencies::has_finalizable_subclass(ik)) { 2093 // No finalizable subclasses so skip the dynamic check. 2094 C->dependencies()->assert_has_no_finalizable_subclasses(ik); 2095 return; 2096 } 2097 } 2098 2099 // Insert a dynamic test for whether the instance needs 2100 // finalization. In general this will fold up since the concrete 2101 // class is often visible so the access flags are constant. 2102 Node* klass_addr = basic_plus_adr( receiver, receiver, oopDesc::klass_offset_in_bytes() ); 2103 Node* klass = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), klass_addr, TypeInstPtr::KLASS)); 2104 2105 Node* access_flags_addr = basic_plus_adr(klass, klass, in_bytes(Klass::access_flags_offset())); 2106 Node* access_flags = make_load(NULL, access_flags_addr, TypeInt::INT, T_INT, MemNode::unordered); 2107 2108 Node* mask = _gvn.transform(new AndINode(access_flags, intcon(JVM_ACC_HAS_FINALIZER))); 2109 Node* check = _gvn.transform(new CmpINode(mask, intcon(0))); 2110 Node* test = _gvn.transform(new BoolNode(check, BoolTest::ne)); 2111 2112 IfNode* iff = create_and_map_if(control(), test, PROB_MAX, COUNT_UNKNOWN); 2113 2114 RegionNode* result_rgn = new RegionNode(3); 2115 record_for_igvn(result_rgn); 2116 2117 Node *skip_register = _gvn.transform(new IfFalseNode(iff)); 2118 result_rgn->init_req(1, skip_register); 2119 2120 Node *needs_register = _gvn.transform(new IfTrueNode(iff)); 2121 set_control(needs_register); 2122 if (stopped()) { 2123 // There is no slow path. 2124 result_rgn->init_req(2, top()); 2125 } else { 2126 Node *call = make_runtime_call(RC_NO_LEAF, 2127 OptoRuntime::register_finalizer_Type(), 2128 OptoRuntime::register_finalizer_Java(), 2129 NULL, TypePtr::BOTTOM, 2130 receiver); 2131 make_slow_call_ex(call, env()->Throwable_klass(), true); 2132 2133 Node* fast_io = call->in(TypeFunc::I_O); 2134 Node* fast_mem = call->in(TypeFunc::Memory); 2135 // These two phis are pre-filled with copies of of the fast IO and Memory 2136 Node* io_phi = PhiNode::make(result_rgn, fast_io, Type::ABIO); 2137 Node* mem_phi = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM); 2138 2139 result_rgn->init_req(2, control()); 2140 io_phi ->init_req(2, i_o()); 2141 mem_phi ->init_req(2, reset_memory()); 2142 2143 set_all_memory( _gvn.transform(mem_phi) ); 2144 set_i_o( _gvn.transform(io_phi) ); 2145 } 2146 2147 set_control( _gvn.transform(result_rgn) ); 2148 } 2149 2150 // Add check to deoptimize if RTM state is not ProfileRTM 2151 void Parse::rtm_deopt() { 2152 #if INCLUDE_RTM_OPT 2153 if (C->profile_rtm()) { 2154 assert(C->method() != NULL, "only for normal compilations"); 2155 assert(!C->method()->method_data()->is_empty(), "MDO is needed to record RTM state"); 2156 assert(depth() == 1, "generate check only for main compiled method"); 2157 2158 // Set starting bci for uncommon trap. 2159 set_parse_bci(is_osr_parse() ? osr_bci() : 0); 2160 2161 // Load the rtm_state from the MethodData. 2162 const TypePtr* adr_type = TypeMetadataPtr::make(C->method()->method_data()); 2163 Node* mdo = makecon(adr_type); 2164 int offset = MethodData::rtm_state_offset_in_bytes(); 2165 Node* adr_node = basic_plus_adr(mdo, mdo, offset); 2166 Node* rtm_state = make_load(control(), adr_node, TypeInt::INT, T_INT, adr_type, MemNode::unordered); 2167 2168 // Separate Load from Cmp by Opaque. 2169 // In expand_macro_nodes() it will be replaced either 2170 // with this load when there are locks in the code 2171 // or with ProfileRTM (cmp->in(2)) otherwise so that 2172 // the check will fold. 2173 Node* profile_state = makecon(TypeInt::make(ProfileRTM)); 2174 Node* opq = _gvn.transform( new Opaque3Node(C, rtm_state, Opaque3Node::RTM_OPT) ); 2175 Node* chk = _gvn.transform( new CmpINode(opq, profile_state) ); 2176 Node* tst = _gvn.transform( new BoolNode(chk, BoolTest::eq) ); 2177 // Branch to failure if state was changed 2178 { BuildCutout unless(this, tst, PROB_ALWAYS); 2179 uncommon_trap(Deoptimization::Reason_rtm_state_change, 2180 Deoptimization::Action_make_not_entrant); 2181 } 2182 } 2183 #endif 2184 } 2185 2186 void Parse::decrement_age() { 2187 MethodCounters* mc = method()->ensure_method_counters(); 2188 if (mc == NULL) { 2189 C->record_failure("Must have MCs"); 2190 return; 2191 } 2192 assert(!is_osr_parse(), "Not doing this for OSRs"); 2193 2194 // Set starting bci for uncommon trap. 2195 set_parse_bci(0); 2196 2197 const TypePtr* adr_type = TypeRawPtr::make((address)mc); 2198 Node* mc_adr = makecon(adr_type); 2199 Node* cnt_adr = basic_plus_adr(mc_adr, mc_adr, in_bytes(MethodCounters::nmethod_age_offset())); 2200 Node* cnt = make_load(control(), cnt_adr, TypeInt::INT, T_INT, adr_type, MemNode::unordered); 2201 Node* decr = _gvn.transform(new SubINode(cnt, makecon(TypeInt::ONE))); 2202 store_to_memory(control(), cnt_adr, decr, T_INT, adr_type, MemNode::unordered); 2203 Node *chk = _gvn.transform(new CmpINode(decr, makecon(TypeInt::ZERO))); 2204 Node* tst = _gvn.transform(new BoolNode(chk, BoolTest::gt)); 2205 { BuildCutout unless(this, tst, PROB_ALWAYS); 2206 uncommon_trap(Deoptimization::Reason_tenured, 2207 Deoptimization::Action_make_not_entrant); 2208 } 2209 } 2210 2211 //------------------------------return_current--------------------------------- 2212 // Append current _map to _exit_return 2213 void Parse::return_current(Node* value) { 2214 if (value != NULL && value->is_ValueType() && !_caller->has_method()) { 2215 // Returning from root JVMState, make sure value type is allocated 2216 value = value->as_ValueType()->store_to_memory(this); 2217 } 2218 2219 if (RegisterFinalizersAtInit && 2220 method()->intrinsic_id() == vmIntrinsics::_Object_init) { 2221 call_register_finalizer(); 2222 } 2223 2224 // Do not set_parse_bci, so that return goo is credited to the return insn. 2225 set_bci(InvocationEntryBci); 2226 if (method()->is_synchronized() && GenerateSynchronizationCode) { 2227 shared_unlock(_synch_lock->box_node(), _synch_lock->obj_node()); 2228 } 2229 if (C->env()->dtrace_method_probes()) { 2230 make_dtrace_method_exit(method()); 2231 } 2232 SafePointNode* exit_return = _exits.map(); 2233 exit_return->in( TypeFunc::Control )->add_req( control() ); 2234 exit_return->in( TypeFunc::I_O )->add_req( i_o () ); 2235 Node *mem = exit_return->in( TypeFunc::Memory ); 2236 for (MergeMemStream mms(mem->as_MergeMem(), merged_memory()); mms.next_non_empty2(); ) { 2237 if (mms.is_empty()) { 2238 // get a copy of the base memory, and patch just this one input 2239 const TypePtr* adr_type = mms.adr_type(C); 2240 Node* phi = mms.force_memory()->as_Phi()->slice_memory(adr_type); 2241 assert(phi->as_Phi()->region() == mms.base_memory()->in(0), ""); 2242 gvn().set_type_bottom(phi); 2243 phi->del_req(phi->req()-1); // prepare to re-patch 2244 mms.set_memory(phi); 2245 } 2246 mms.memory()->add_req(mms.memory2()); 2247 } 2248 2249 // frame pointer is always same, already captured 2250 if (value != NULL) { 2251 // If returning oops to an interface-return, there is a silent free 2252 // cast from oop to interface allowed by the Verifier. Make it explicit 2253 // here. 2254 Node* phi = _exits.argument(0); 2255 const TypeInstPtr *tr = phi->bottom_type()->isa_instptr(); 2256 if (tr && tr->klass()->is_loaded() && 2257 tr->klass()->is_interface()) { 2258 const TypeInstPtr *tp = value->bottom_type()->isa_instptr(); 2259 if (tp && tp->klass()->is_loaded() && 2260 !tp->klass()->is_interface()) { 2261 // sharpen the type eagerly; this eases certain assert checking 2262 if (tp->higher_equal(TypeInstPtr::NOTNULL)) 2263 tr = tr->join_speculative(TypeInstPtr::NOTNULL)->is_instptr(); 2264 value = _gvn.transform(new CheckCastPPNode(0, value, tr)); 2265 } 2266 } else { 2267 // Also handle returns of oop-arrays to an arrays-of-interface return 2268 const TypeInstPtr* phi_tip; 2269 const TypeInstPtr* val_tip; 2270 Type::get_arrays_base_elements(phi->bottom_type(), value->bottom_type(), &phi_tip, &val_tip); 2271 if (phi_tip != NULL && phi_tip->is_loaded() && phi_tip->klass()->is_interface() && 2272 val_tip != NULL && val_tip->is_loaded() && !val_tip->klass()->is_interface()) { 2273 value = _gvn.transform(new CheckCastPPNode(0, value, phi->bottom_type())); 2274 } 2275 } 2276 phi->add_req(value); 2277 } 2278 2279 if (_first_return) { 2280 _exits.map()->transfer_replaced_nodes_from(map(), _new_idx); 2281 _first_return = false; 2282 } else { 2283 _exits.map()->merge_replaced_nodes_with(map()); 2284 } 2285 2286 stop_and_kill_map(); // This CFG path dies here 2287 } 2288 2289 2290 //------------------------------add_safepoint---------------------------------- 2291 void Parse::add_safepoint() { 2292 // See if we can avoid this safepoint. No need for a SafePoint immediately 2293 // after a Call (except Leaf Call) or another SafePoint. 2294 Node *proj = control(); 2295 bool add_poll_param = SafePointNode::needs_polling_address_input(); 2296 uint parms = add_poll_param ? TypeFunc::Parms+1 : TypeFunc::Parms; 2297 if( proj->is_Proj() ) { 2298 Node *n0 = proj->in(0); 2299 if( n0->is_Catch() ) { 2300 n0 = n0->in(0)->in(0); 2301 assert( n0->is_Call(), "expect a call here" ); 2302 } 2303 if( n0->is_Call() ) { 2304 if( n0->as_Call()->guaranteed_safepoint() ) 2305 return; 2306 } else if( n0->is_SafePoint() && n0->req() >= parms ) { 2307 return; 2308 } 2309 } 2310 2311 // Clear out dead values from the debug info. 2312 kill_dead_locals(); 2313 2314 // Clone the JVM State 2315 SafePointNode *sfpnt = new SafePointNode(parms, NULL); 2316 2317 // Capture memory state BEFORE a SafePoint. Since we can block at a 2318 // SafePoint we need our GC state to be safe; i.e. we need all our current 2319 // write barriers (card marks) to not float down after the SafePoint so we 2320 // must read raw memory. Likewise we need all oop stores to match the card 2321 // marks. If deopt can happen, we need ALL stores (we need the correct JVM 2322 // state on a deopt). 2323 2324 // We do not need to WRITE the memory state after a SafePoint. The control 2325 // edge will keep card-marks and oop-stores from floating up from below a 2326 // SafePoint and our true dependency added here will keep them from floating 2327 // down below a SafePoint. 2328 2329 // Clone the current memory state 2330 Node* mem = MergeMemNode::make(map()->memory()); 2331 2332 mem = _gvn.transform(mem); 2333 2334 // Pass control through the safepoint 2335 sfpnt->init_req(TypeFunc::Control , control()); 2336 // Fix edges normally used by a call 2337 sfpnt->init_req(TypeFunc::I_O , top() ); 2338 sfpnt->init_req(TypeFunc::Memory , mem ); 2339 sfpnt->init_req(TypeFunc::ReturnAdr, top() ); 2340 sfpnt->init_req(TypeFunc::FramePtr , top() ); 2341 2342 // Create a node for the polling address 2343 if( add_poll_param ) { 2344 Node *polladr = ConPNode::make((address)os::get_polling_page()); 2345 sfpnt->init_req(TypeFunc::Parms+0, _gvn.transform(polladr)); 2346 } 2347 2348 // Fix up the JVM State edges 2349 add_safepoint_edges(sfpnt); 2350 Node *transformed_sfpnt = _gvn.transform(sfpnt); 2351 set_control(transformed_sfpnt); 2352 2353 // Provide an edge from root to safepoint. This makes the safepoint 2354 // appear useful until the parse has completed. 2355 if( OptoRemoveUseless && transformed_sfpnt->is_SafePoint() ) { 2356 assert(C->root() != NULL, "Expect parse is still valid"); 2357 C->root()->add_prec(transformed_sfpnt); 2358 } 2359 } 2360 2361 #ifndef PRODUCT 2362 //------------------------show_parse_info-------------------------------------- 2363 void Parse::show_parse_info() { 2364 InlineTree* ilt = NULL; 2365 if (C->ilt() != NULL) { 2366 JVMState* caller_jvms = is_osr_parse() ? caller()->caller() : caller(); 2367 ilt = InlineTree::find_subtree_from_root(C->ilt(), caller_jvms, method()); 2368 } 2369 if (PrintCompilation && Verbose) { 2370 if (depth() == 1) { 2371 if( ilt->count_inlines() ) { 2372 tty->print(" __inlined %d (%d bytes)", ilt->count_inlines(), 2373 ilt->count_inline_bcs()); 2374 tty->cr(); 2375 } 2376 } else { 2377 if (method()->is_synchronized()) tty->print("s"); 2378 if (method()->has_exception_handlers()) tty->print("!"); 2379 // Check this is not the final compiled version 2380 if (C->trap_can_recompile()) { 2381 tty->print("-"); 2382 } else { 2383 tty->print(" "); 2384 } 2385 method()->print_short_name(); 2386 if (is_osr_parse()) { 2387 tty->print(" @ %d", osr_bci()); 2388 } 2389 tty->print(" (%d bytes)",method()->code_size()); 2390 if (ilt->count_inlines()) { 2391 tty->print(" __inlined %d (%d bytes)", ilt->count_inlines(), 2392 ilt->count_inline_bcs()); 2393 } 2394 tty->cr(); 2395 } 2396 } 2397 if (PrintOpto && (depth() == 1 || PrintOptoInlining)) { 2398 // Print that we succeeded; suppress this message on the first osr parse. 2399 2400 if (method()->is_synchronized()) tty->print("s"); 2401 if (method()->has_exception_handlers()) tty->print("!"); 2402 // Check this is not the final compiled version 2403 if (C->trap_can_recompile() && depth() == 1) { 2404 tty->print("-"); 2405 } else { 2406 tty->print(" "); 2407 } 2408 if( depth() != 1 ) { tty->print(" "); } // missing compile count 2409 for (int i = 1; i < depth(); ++i) { tty->print(" "); } 2410 method()->print_short_name(); 2411 if (is_osr_parse()) { 2412 tty->print(" @ %d", osr_bci()); 2413 } 2414 if (ilt->caller_bci() != -1) { 2415 tty->print(" @ %d", ilt->caller_bci()); 2416 } 2417 tty->print(" (%d bytes)",method()->code_size()); 2418 if (ilt->count_inlines()) { 2419 tty->print(" __inlined %d (%d bytes)", ilt->count_inlines(), 2420 ilt->count_inline_bcs()); 2421 } 2422 tty->cr(); 2423 } 2424 } 2425 2426 2427 //------------------------------dump------------------------------------------- 2428 // Dump information associated with the bytecodes of current _method 2429 void Parse::dump() { 2430 if( method() != NULL ) { 2431 // Iterate over bytecodes 2432 ciBytecodeStream iter(method()); 2433 for( Bytecodes::Code bc = iter.next(); bc != ciBytecodeStream::EOBC() ; bc = iter.next() ) { 2434 dump_bci( iter.cur_bci() ); 2435 tty->cr(); 2436 } 2437 } 2438 } 2439 2440 // Dump information associated with a byte code index, 'bci' 2441 void Parse::dump_bci(int bci) { 2442 // Output info on merge-points, cloning, and within _jsr..._ret 2443 // NYI 2444 tty->print(" bci:%d", bci); 2445 } 2446 2447 #endif