1 /*
   2  * Copyright (c) 2000, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package jdk.internal.misc;
  27 
  28 import jdk.internal.HotSpotIntrinsicCandidate;
  29 import jdk.internal.vm.annotation.ForceInline;
  30 
  31 import java.lang.reflect.Field;
  32 import java.security.ProtectionDomain;
  33 
  34 
  35 /**
  36  * A collection of methods for performing low-level, unsafe operations.
  37  * Although the class and all methods are public, use of this class is
  38  * limited because only trusted code can obtain instances of it.
  39  *
  40  * <em>Note:</em> It is the resposibility of the caller to make sure
  41  * arguments are checked before methods of this class are
  42  * called. While some rudimentary checks are performed on the input,
  43  * the checks are best effort and when performance is an overriding
  44  * priority, as when methods of this class are optimized by the
  45  * runtime compiler, some or all checks (if any) may be elided. Hence,
  46  * the caller must not rely on the checks and corresponding
  47  * exceptions!
  48  *
  49  * @author John R. Rose
  50  * @see #getUnsafe
  51  */
  52 
  53 public final class Unsafe {
  54 
  55     private static native void registerNatives();
  56     static {
  57         registerNatives();
  58     }
  59 
  60     private Unsafe() {}
  61 
  62     private static final Unsafe theUnsafe = new Unsafe();
  63 
  64     /**
  65      * Provides the caller with the capability of performing unsafe
  66      * operations.
  67      *
  68      * <p>The returned {@code Unsafe} object should be carefully guarded
  69      * by the caller, since it can be used to read and write data at arbitrary
  70      * memory addresses.  It must never be passed to untrusted code.
  71      *
  72      * <p>Most methods in this class are very low-level, and correspond to a
  73      * small number of hardware instructions (on typical machines).  Compilers
  74      * are encouraged to optimize these methods accordingly.
  75      *
  76      * <p>Here is a suggested idiom for using unsafe operations:
  77      *
  78      * <pre> {@code
  79      * class MyTrustedClass {
  80      *   private static final Unsafe unsafe = Unsafe.getUnsafe();
  81      *   ...
  82      *   private long myCountAddress = ...;
  83      *   public int getCount() { return unsafe.getByte(myCountAddress); }
  84      * }}</pre>
  85      *
  86      * (It may assist compilers to make the local variable {@code final}.)
  87      */
  88     public static Unsafe getUnsafe() {
  89         return theUnsafe;
  90     }
  91 
  92     /// peek and poke operations
  93     /// (compilers should optimize these to memory ops)
  94 
  95     // These work on object fields in the Java heap.
  96     // They will not work on elements of packed arrays.
  97 
  98     /**
  99      * Fetches a value from a given Java variable.
 100      * More specifically, fetches a field or array element within the given
 101      * object {@code o} at the given offset, or (if {@code o} is null)
 102      * from the memory address whose numerical value is the given offset.
 103      * <p>
 104      * The results are undefined unless one of the following cases is true:
 105      * <ul>
 106      * <li>The offset was obtained from {@link #objectFieldOffset} on
 107      * the {@link java.lang.reflect.Field} of some Java field and the object
 108      * referred to by {@code o} is of a class compatible with that
 109      * field's class.
 110      *
 111      * <li>The offset and object reference {@code o} (either null or
 112      * non-null) were both obtained via {@link #staticFieldOffset}
 113      * and {@link #staticFieldBase} (respectively) from the
 114      * reflective {@link Field} representation of some Java field.
 115      *
 116      * <li>The object referred to by {@code o} is an array, and the offset
 117      * is an integer of the form {@code B+N*S}, where {@code N} is
 118      * a valid index into the array, and {@code B} and {@code S} are
 119      * the values obtained by {@link #arrayBaseOffset} and {@link
 120      * #arrayIndexScale} (respectively) from the array's class.  The value
 121      * referred to is the {@code N}<em>th</em> element of the array.
 122      *
 123      * </ul>
 124      * <p>
 125      * If one of the above cases is true, the call references a specific Java
 126      * variable (field or array element).  However, the results are undefined
 127      * if that variable is not in fact of the type returned by this method.
 128      * <p>
 129      * This method refers to a variable by means of two parameters, and so
 130      * it provides (in effect) a <em>double-register</em> addressing mode
 131      * for Java variables.  When the object reference is null, this method
 132      * uses its offset as an absolute address.  This is similar in operation
 133      * to methods such as {@link #getInt(long)}, which provide (in effect) a
 134      * <em>single-register</em> addressing mode for non-Java variables.
 135      * However, because Java variables may have a different layout in memory
 136      * from non-Java variables, programmers should not assume that these
 137      * two addressing modes are ever equivalent.  Also, programmers should
 138      * remember that offsets from the double-register addressing mode cannot
 139      * be portably confused with longs used in the single-register addressing
 140      * mode.
 141      *
 142      * @param o Java heap object in which the variable resides, if any, else
 143      *        null
 144      * @param offset indication of where the variable resides in a Java heap
 145      *        object, if any, else a memory address locating the variable
 146      *        statically
 147      * @return the value fetched from the indicated Java variable
 148      * @throws RuntimeException No defined exceptions are thrown, not even
 149      *         {@link NullPointerException}
 150      */
 151     @HotSpotIntrinsicCandidate
 152     public native int getInt(Object o, long offset);
 153 
 154     /**
 155      * Stores a value into a given Java variable.
 156      * <p>
 157      * The first two parameters are interpreted exactly as with
 158      * {@link #getInt(Object, long)} to refer to a specific
 159      * Java variable (field or array element).  The given value
 160      * is stored into that variable.
 161      * <p>
 162      * The variable must be of the same type as the method
 163      * parameter {@code x}.
 164      *
 165      * @param o Java heap object in which the variable resides, if any, else
 166      *        null
 167      * @param offset indication of where the variable resides in a Java heap
 168      *        object, if any, else a memory address locating the variable
 169      *        statically
 170      * @param x the value to store into the indicated Java variable
 171      * @throws RuntimeException No defined exceptions are thrown, not even
 172      *         {@link NullPointerException}
 173      */
 174     @HotSpotIntrinsicCandidate
 175     public native void putInt(Object o, long offset, int x);
 176 
 177     /**
 178      * Fetches a reference value from a given Java variable.
 179      * @see #getInt(Object, long)
 180      */
 181     @HotSpotIntrinsicCandidate
 182     public native Object getObject(Object o, long offset);
 183 
 184     /**
 185      * Stores a reference value into a given Java variable.
 186      * <p>
 187      * Unless the reference {@code x} being stored is either null
 188      * or matches the field type, the results are undefined.
 189      * If the reference {@code o} is non-null, card marks or
 190      * other store barriers for that object (if the VM requires them)
 191      * are updated.
 192      * @see #putInt(Object, long, int)
 193      */
 194     @HotSpotIntrinsicCandidate
 195     public native void putObject(Object o, long offset, Object x);
 196 
 197     /** @see #getInt(Object, long) */
 198     @HotSpotIntrinsicCandidate
 199     public native boolean getBoolean(Object o, long offset);
 200 
 201     /** @see #putInt(Object, long, int) */
 202     @HotSpotIntrinsicCandidate
 203     public native void    putBoolean(Object o, long offset, boolean x);
 204 
 205     /** @see #getInt(Object, long) */
 206     @HotSpotIntrinsicCandidate
 207     public native byte    getByte(Object o, long offset);
 208 
 209     /** @see #putInt(Object, long, int) */
 210     @HotSpotIntrinsicCandidate
 211     public native void    putByte(Object o, long offset, byte x);
 212 
 213     /** @see #getInt(Object, long) */
 214     @HotSpotIntrinsicCandidate
 215     public native short   getShort(Object o, long offset);
 216 
 217     /** @see #putInt(Object, long, int) */
 218     @HotSpotIntrinsicCandidate
 219     public native void    putShort(Object o, long offset, short x);
 220 
 221     /** @see #getInt(Object, long) */
 222     @HotSpotIntrinsicCandidate
 223     public native char    getChar(Object o, long offset);
 224 
 225     /** @see #putInt(Object, long, int) */
 226     @HotSpotIntrinsicCandidate
 227     public native void    putChar(Object o, long offset, char x);
 228 
 229     /** @see #getInt(Object, long) */
 230     @HotSpotIntrinsicCandidate
 231     public native long    getLong(Object o, long offset);
 232 
 233     /** @see #putInt(Object, long, int) */
 234     @HotSpotIntrinsicCandidate
 235     public native void    putLong(Object o, long offset, long x);
 236 
 237     /** @see #getInt(Object, long) */
 238     @HotSpotIntrinsicCandidate
 239     public native float   getFloat(Object o, long offset);
 240 
 241     /** @see #putInt(Object, long, int) */
 242     @HotSpotIntrinsicCandidate
 243     public native void    putFloat(Object o, long offset, float x);
 244 
 245     /** @see #getInt(Object, long) */
 246     @HotSpotIntrinsicCandidate
 247     public native double  getDouble(Object o, long offset);
 248 
 249     /** @see #putInt(Object, long, int) */
 250     @HotSpotIntrinsicCandidate
 251     public native void    putDouble(Object o, long offset, double x);
 252 
 253     /**
 254      * Fetches a native pointer from a given memory address.  If the address is
 255      * zero, or does not point into a block obtained from {@link
 256      * #allocateMemory}, the results are undefined.
 257      *
 258      * <p>If the native pointer is less than 64 bits wide, it is extended as
 259      * an unsigned number to a Java long.  The pointer may be indexed by any
 260      * given byte offset, simply by adding that offset (as a simple integer) to
 261      * the long representing the pointer.  The number of bytes actually read
 262      * from the target address may be determined by consulting {@link
 263      * #addressSize}.
 264      *
 265      * @see #allocateMemory
 266      * @see #getInt(Object, long)
 267      */
 268     @ForceInline
 269     public long getAddress(Object o, long offset) {
 270         if (ADDRESS_SIZE == 4) {
 271             return Integer.toUnsignedLong(getInt(o, offset));
 272         } else {
 273             return getLong(o, offset);
 274         }
 275     }
 276 
 277     /**
 278      * Stores a native pointer into a given memory address.  If the address is
 279      * zero, or does not point into a block obtained from {@link
 280      * #allocateMemory}, the results are undefined.
 281      *
 282      * <p>The number of bytes actually written at the target address may be
 283      * determined by consulting {@link #addressSize}.
 284      *
 285      * @see #allocateMemory
 286      * @see #putInt(Object, long, int)
 287      */
 288     @ForceInline
 289     public void putAddress(Object o, long offset, long x) {
 290         if (ADDRESS_SIZE == 4) {
 291             putInt(o, offset, (int)x);
 292         } else {
 293             putLong(o, offset, x);
 294         }
 295     }
 296 
 297     // These read VM internal data.
 298 
 299     /**
 300      * Fetches an uncompressed reference value from a given native variable
 301      * ignoring the VM's compressed references mode.
 302      *
 303      * @param address a memory address locating the variable
 304      * @return the value fetched from the indicated native variable
 305      */
 306     public native Object getUncompressedObject(long address);
 307 
 308     // These work on values in the C heap.
 309 
 310     /**
 311      * Fetches a value from a given memory address.  If the address is zero, or
 312      * does not point into a block obtained from {@link #allocateMemory}, the
 313      * results are undefined.
 314      *
 315      * @see #allocateMemory
 316      */
 317     @ForceInline
 318     public byte getByte(long address) {
 319         return getByte(null, address);
 320     }
 321 
 322     /**
 323      * Stores a value into a given memory address.  If the address is zero, or
 324      * does not point into a block obtained from {@link #allocateMemory}, the
 325      * results are undefined.
 326      *
 327      * @see #getByte(long)
 328      */
 329     @ForceInline
 330     public void putByte(long address, byte x) {
 331         putByte(null, address, x);
 332     }
 333 
 334     /** @see #getByte(long) */
 335     @ForceInline
 336     public short getShort(long address) {
 337         return getShort(null, address);
 338     }
 339 
 340     /** @see #putByte(long, byte) */
 341     @ForceInline
 342     public void putShort(long address, short x) {
 343         putShort(null, address, x);
 344     }
 345 
 346     /** @see #getByte(long) */
 347     @ForceInline
 348     public char getChar(long address) {
 349         return getChar(null, address);
 350     }
 351 
 352     /** @see #putByte(long, byte) */
 353     @ForceInline
 354     public void putChar(long address, char x) {
 355         putChar(null, address, x);
 356     }
 357 
 358     /** @see #getByte(long) */
 359     @ForceInline
 360     public int getInt(long address) {
 361         return getInt(null, address);
 362     }
 363 
 364     /** @see #putByte(long, byte) */
 365     @ForceInline
 366     public void putInt(long address, int x) {
 367         putInt(null, address, x);
 368     }
 369 
 370     /** @see #getByte(long) */
 371     @ForceInline
 372     public long getLong(long address) {
 373         return getLong(null, address);
 374     }
 375 
 376     /** @see #putByte(long, byte) */
 377     @ForceInline
 378     public void putLong(long address, long x) {
 379         putLong(null, address, x);
 380     }
 381 
 382     /** @see #getByte(long) */
 383     @ForceInline
 384     public float getFloat(long address) {
 385         return getFloat(null, address);
 386     }
 387 
 388     /** @see #putByte(long, byte) */
 389     @ForceInline
 390     public void putFloat(long address, float x) {
 391         putFloat(null, address, x);
 392     }
 393 
 394     /** @see #getByte(long) */
 395     @ForceInline
 396     public double getDouble(long address) {
 397         return getDouble(null, address);
 398     }
 399 
 400     /** @see #putByte(long, byte) */
 401     @ForceInline
 402     public void putDouble(long address, double x) {
 403         putDouble(null, address, x);
 404     }
 405 
 406     /** @see #getAddress(Object, long) */
 407     @ForceInline
 408     public long getAddress(long address) {
 409         return getAddress(null, address);
 410     }
 411 
 412     /** @see #putAddress(Object, long, long) */
 413     @ForceInline
 414     public void putAddress(long address, long x) {
 415         putAddress(null, address, x);
 416     }
 417 
 418 
 419 
 420     /// helper methods for validating various types of objects/values
 421 
 422     /**
 423      * Create an exception reflecting that some of the input was invalid
 424      *
 425      * <em>Note:</em> It is the resposibility of the caller to make
 426      * sure arguments are checked before the methods are called. While
 427      * some rudimentary checks are performed on the input, the checks
 428      * are best effort and when performance is an overriding priority,
 429      * as when methods of this class are optimized by the runtime
 430      * compiler, some or all checks (if any) may be elided. Hence, the
 431      * caller must not rely on the checks and corresponding
 432      * exceptions!
 433      *
 434      * @return an exception object
 435      */
 436     private RuntimeException invalidInput() {
 437         return new IllegalArgumentException();
 438     }
 439 
 440     /**
 441      * Check if a value is 32-bit clean (32 MSB are all zero)
 442      *
 443      * @param value the 64-bit value to check
 444      *
 445      * @return true if the value is 32-bit clean
 446      */
 447     private boolean is32BitClean(long value) {
 448         return value >>> 32 == 0;
 449     }
 450 
 451     /**
 452      * Check the validity of a size (the equivalent of a size_t)
 453      *
 454      * @throws RuntimeException if the size is invalid
 455      *         (<em>Note:</em> after optimization, invalid inputs may
 456      *         go undetected, which will lead to unpredictable
 457      *         behavior)
 458      */
 459     private void checkSize(long size) {
 460         if (ADDRESS_SIZE == 4) {
 461             // Note: this will also check for negative sizes
 462             if (!is32BitClean(size)) {
 463                 throw invalidInput();
 464             }
 465         } else if (size < 0) {
 466             throw invalidInput();
 467         }
 468     }
 469 
 470     /**
 471      * Check the validity of a native address (the equivalent of void*)
 472      *
 473      * @throws RuntimeException if the address is invalid
 474      *         (<em>Note:</em> after optimization, invalid inputs may
 475      *         go undetected, which will lead to unpredictable
 476      *         behavior)
 477      */
 478     private void checkNativeAddress(long address) {
 479         if (ADDRESS_SIZE == 4) {
 480             // Accept both zero and sign extended pointers. A valid
 481             // pointer will, after the +1 below, either have produced
 482             // the value 0x0 or 0x1. Masking off the low bit allows
 483             // for testing against 0.
 484             if ((((address >> 32) + 1) & ~1) != 0) {
 485                 throw invalidInput();
 486             }
 487         }
 488     }
 489 
 490     /**
 491      * Check the validity of an offset, relative to a base object
 492      *
 493      * @param o the base object
 494      * @param offset the offset to check
 495      *
 496      * @throws RuntimeException if the size is invalid
 497      *         (<em>Note:</em> after optimization, invalid inputs may
 498      *         go undetected, which will lead to unpredictable
 499      *         behavior)
 500      */
 501     private void checkOffset(Object o, long offset) {
 502         if (ADDRESS_SIZE == 4) {
 503             // Note: this will also check for negative offsets
 504             if (!is32BitClean(offset)) {
 505                 throw invalidInput();
 506             }
 507         } else if (offset < 0) {
 508             throw invalidInput();
 509         }
 510     }
 511 
 512     /**
 513      * Check the validity of a double-register pointer
 514      *
 515      * Note: This code deliberately does *not* check for NPE for (at
 516      * least) three reasons:
 517      *
 518      * 1) NPE is not just NULL/0 - there is a range of values all
 519      * resulting in an NPE, which is not trivial to check for
 520      *
 521      * 2) It is the responsibility of the callers of Unsafe methods
 522      * to verify the input, so throwing an exception here is not really
 523      * useful - passing in a NULL pointer is a critical error and the
 524      * must not expect an exception to be thrown anyway.
 525      *
 526      * 3) the actual operations will detect NULL pointers anyway by
 527      * means of traps and signals (like SIGSEGV).
 528      *
 529      * @param o Java heap object, or null
 530      * @param offset indication of where the variable resides in a Java heap
 531      *        object, if any, else a memory address locating the variable
 532      *        statically
 533      *
 534      * @throws RuntimeException if the pointer is invalid
 535      *         (<em>Note:</em> after optimization, invalid inputs may
 536      *         go undetected, which will lead to unpredictable
 537      *         behavior)
 538      */
 539     private void checkPointer(Object o, long offset) {
 540         if (o == null) {
 541             checkNativeAddress(offset);
 542         } else {
 543             checkOffset(o, offset);
 544         }
 545     }
 546 
 547     /**
 548      * Check if a type is a primitive array type
 549      *
 550      * @param c the type to check
 551      *
 552      * @return true if the type is a primitive array type
 553      */
 554     private void checkPrimitiveArray(Class<?> c) {
 555         Class<?> componentType = c.getComponentType();
 556         if (componentType == null || !componentType.isPrimitive()) {
 557             throw invalidInput();
 558         }
 559     }
 560 
 561     /**
 562      * Check that a pointer is a valid primitive array type pointer
 563      *
 564      * Note: pointers off-heap are considered to be primitive arrays
 565      *
 566      * @throws RuntimeException if the pointer is invalid
 567      *         (<em>Note:</em> after optimization, invalid inputs may
 568      *         go undetected, which will lead to unpredictable
 569      *         behavior)
 570      */
 571     private void checkPrimitivePointer(Object o, long offset) {
 572         checkPointer(o, offset);
 573 
 574         if (o != null) {
 575             // If on heap, it it must be a primitive array
 576             checkPrimitiveArray(o.getClass());
 577         }
 578     }
 579 
 580 
 581     /// wrappers for malloc, realloc, free:
 582 
 583     /**
 584      * Allocates a new block of native memory, of the given size in bytes.  The
 585      * contents of the memory are uninitialized; they will generally be
 586      * garbage.  The resulting native pointer will never be zero, and will be
 587      * aligned for all value types.  Dispose of this memory by calling {@link
 588      * #freeMemory}, or resize it with {@link #reallocateMemory}.
 589      *
 590      * <em>Note:</em> It is the resposibility of the caller to make
 591      * sure arguments are checked before the methods are called. While
 592      * some rudimentary checks are performed on the input, the checks
 593      * are best effort and when performance is an overriding priority,
 594      * as when methods of this class are optimized by the runtime
 595      * compiler, some or all checks (if any) may be elided. Hence, the
 596      * caller must not rely on the checks and corresponding
 597      * exceptions!
 598      *
 599      * @throws RuntimeException if the size is negative or too large
 600      *         for the native size_t type
 601      *
 602      * @throws OutOfMemoryError if the allocation is refused by the system
 603      *
 604      * @see #getByte(long)
 605      * @see #putByte(long, byte)
 606      */
 607     public long allocateMemory(long bytes) {
 608         allocateMemoryChecks(bytes);
 609 
 610         if (bytes == 0) {
 611             return 0;
 612         }
 613 
 614         long p = allocateMemory0(bytes);
 615         if (p == 0) {
 616             throw new OutOfMemoryError();
 617         }
 618 
 619         return p;
 620     }
 621 
 622     /**
 623      * Validate the arguments to allocateMemory
 624      *
 625      * @throws RuntimeException if the arguments are invalid
 626      *         (<em>Note:</em> after optimization, invalid inputs may
 627      *         go undetected, which will lead to unpredictable
 628      *         behavior)
 629      */
 630     private void allocateMemoryChecks(long bytes) {
 631         checkSize(bytes);
 632     }
 633 
 634     /**
 635      * Resizes a new block of native memory, to the given size in bytes.  The
 636      * contents of the new block past the size of the old block are
 637      * uninitialized; they will generally be garbage.  The resulting native
 638      * pointer will be zero if and only if the requested size is zero.  The
 639      * resulting native pointer will be aligned for all value types.  Dispose
 640      * of this memory by calling {@link #freeMemory}, or resize it with {@link
 641      * #reallocateMemory}.  The address passed to this method may be null, in
 642      * which case an allocation will be performed.
 643      *
 644      * <em>Note:</em> It is the resposibility of the caller to make
 645      * sure arguments are checked before the methods are called. While
 646      * some rudimentary checks are performed on the input, the checks
 647      * are best effort and when performance is an overriding priority,
 648      * as when methods of this class are optimized by the runtime
 649      * compiler, some or all checks (if any) may be elided. Hence, the
 650      * caller must not rely on the checks and corresponding
 651      * exceptions!
 652      *
 653      * @throws RuntimeException if the size is negative or too large
 654      *         for the native size_t type
 655      *
 656      * @throws OutOfMemoryError if the allocation is refused by the system
 657      *
 658      * @see #allocateMemory
 659      */
 660     public long reallocateMemory(long address, long bytes) {
 661         reallocateMemoryChecks(address, bytes);
 662 
 663         if (bytes == 0) {
 664             freeMemory(address);
 665             return 0;
 666         }
 667 
 668         long p = (address == 0) ? allocateMemory0(bytes) : reallocateMemory0(address, bytes);
 669         if (p == 0) {
 670             throw new OutOfMemoryError();
 671         }
 672 
 673         return p;
 674     }
 675 
 676     /**
 677      * Validate the arguments to reallocateMemory
 678      *
 679      * @throws RuntimeException if the arguments are invalid
 680      *         (<em>Note:</em> after optimization, invalid inputs may
 681      *         go undetected, which will lead to unpredictable
 682      *         behavior)
 683      */
 684     private void reallocateMemoryChecks(long address, long bytes) {
 685         checkPointer(null, address);
 686         checkSize(bytes);
 687     }
 688 
 689     /**
 690      * Sets all bytes in a given block of memory to a fixed value
 691      * (usually zero).
 692      *
 693      * <p>This method determines a block's base address by means of two parameters,
 694      * and so it provides (in effect) a <em>double-register</em> addressing mode,
 695      * as discussed in {@link #getInt(Object,long)}.  When the object reference is null,
 696      * the offset supplies an absolute base address.
 697      *
 698      * <p>The stores are in coherent (atomic) units of a size determined
 699      * by the address and length parameters.  If the effective address and
 700      * length are all even modulo 8, the stores take place in 'long' units.
 701      * If the effective address and length are (resp.) even modulo 4 or 2,
 702      * the stores take place in units of 'int' or 'short'.
 703      *
 704      * <em>Note:</em> It is the resposibility of the caller to make
 705      * sure arguments are checked before the methods are called. While
 706      * some rudimentary checks are performed on the input, the checks
 707      * are best effort and when performance is an overriding priority,
 708      * as when methods of this class are optimized by the runtime
 709      * compiler, some or all checks (if any) may be elided. Hence, the
 710      * caller must not rely on the checks and corresponding
 711      * exceptions!
 712      *
 713      * @throws RuntimeException if any of the arguments is invalid
 714      *
 715      * @since 1.7
 716      */
 717     public void setMemory(Object o, long offset, long bytes, byte value) {
 718         setMemoryChecks(o, offset, bytes, value);
 719 
 720         if (bytes == 0) {
 721             return;
 722         }
 723 
 724         setMemory0(o, offset, bytes, value);
 725     }
 726 
 727     /**
 728      * Sets all bytes in a given block of memory to a fixed value
 729      * (usually zero).  This provides a <em>single-register</em> addressing mode,
 730      * as discussed in {@link #getInt(Object,long)}.
 731      *
 732      * <p>Equivalent to {@code setMemory(null, address, bytes, value)}.
 733      */
 734     public void setMemory(long address, long bytes, byte value) {
 735         setMemory(null, address, bytes, value);
 736     }
 737 
 738     /**
 739      * Validate the arguments to setMemory
 740      *
 741      * @throws RuntimeException if the arguments are invalid
 742      *         (<em>Note:</em> after optimization, invalid inputs may
 743      *         go undetected, which will lead to unpredictable
 744      *         behavior)
 745      */
 746     private void setMemoryChecks(Object o, long offset, long bytes, byte value) {
 747         checkPrimitivePointer(o, offset);
 748         checkSize(bytes);
 749     }
 750 
 751     /**
 752      * Sets all bytes in a given block of memory to a copy of another
 753      * block.
 754      *
 755      * <p>This method determines each block's base address by means of two parameters,
 756      * and so it provides (in effect) a <em>double-register</em> addressing mode,
 757      * as discussed in {@link #getInt(Object,long)}.  When the object reference is null,
 758      * the offset supplies an absolute base address.
 759      *
 760      * <p>The transfers are in coherent (atomic) units of a size determined
 761      * by the address and length parameters.  If the effective addresses and
 762      * length are all even modulo 8, the transfer takes place in 'long' units.
 763      * If the effective addresses and length are (resp.) even modulo 4 or 2,
 764      * the transfer takes place in units of 'int' or 'short'.
 765      *
 766      * <em>Note:</em> It is the resposibility of the caller to make
 767      * sure arguments are checked before the methods are called. While
 768      * some rudimentary checks are performed on the input, the checks
 769      * are best effort and when performance is an overriding priority,
 770      * as when methods of this class are optimized by the runtime
 771      * compiler, some or all checks (if any) may be elided. Hence, the
 772      * caller must not rely on the checks and corresponding
 773      * exceptions!
 774      *
 775      * @throws RuntimeException if any of the arguments is invalid
 776      *
 777      * @since 1.7
 778      */
 779     public void copyMemory(Object srcBase, long srcOffset,
 780                            Object destBase, long destOffset,
 781                            long bytes) {
 782         copyMemoryChecks(srcBase, srcOffset, destBase, destOffset, bytes);
 783 
 784         if (bytes == 0) {
 785             return;
 786         }
 787 
 788         copyMemory0(srcBase, srcOffset, destBase, destOffset, bytes);
 789     }
 790 
 791     /**
 792      * Sets all bytes in a given block of memory to a copy of another
 793      * block.  This provides a <em>single-register</em> addressing mode,
 794      * as discussed in {@link #getInt(Object,long)}.
 795      *
 796      * Equivalent to {@code copyMemory(null, srcAddress, null, destAddress, bytes)}.
 797      */
 798     public void copyMemory(long srcAddress, long destAddress, long bytes) {
 799         copyMemory(null, srcAddress, null, destAddress, bytes);
 800     }
 801 
 802     /**
 803      * Validate the arguments to copyMemory
 804      *
 805      * @throws RuntimeException if any of the arguments is invalid
 806      *         (<em>Note:</em> after optimization, invalid inputs may
 807      *         go undetected, which will lead to unpredictable
 808      *         behavior)
 809      */
 810     private void copyMemoryChecks(Object srcBase, long srcOffset,
 811                                   Object destBase, long destOffset,
 812                                   long bytes) {
 813         checkSize(bytes);
 814         checkPrimitivePointer(srcBase, srcOffset);
 815         checkPrimitivePointer(destBase, destOffset);
 816     }
 817 
 818     /**
 819      * Copies all elements from one block of memory to another block,
 820      * *unconditionally* byte swapping the elements on the fly.
 821      *
 822      * <p>This method determines each block's base address by means of two parameters,
 823      * and so it provides (in effect) a <em>double-register</em> addressing mode,
 824      * as discussed in {@link #getInt(Object,long)}.  When the object reference is null,
 825      * the offset supplies an absolute base address.
 826      *
 827      * <em>Note:</em> It is the resposibility of the caller to make
 828      * sure arguments are checked before the methods are called. While
 829      * some rudimentary checks are performed on the input, the checks
 830      * are best effort and when performance is an overriding priority,
 831      * as when methods of this class are optimized by the runtime
 832      * compiler, some or all checks (if any) may be elided. Hence, the
 833      * caller must not rely on the checks and corresponding
 834      * exceptions!
 835      *
 836      * @throws RuntimeException if any of the arguments is invalid
 837      *
 838      * @since 9
 839      */
 840     public void copySwapMemory(Object srcBase, long srcOffset,
 841                                Object destBase, long destOffset,
 842                                long bytes, long elemSize) {
 843         copySwapMemoryChecks(srcBase, srcOffset, destBase, destOffset, bytes, elemSize);
 844 
 845         if (bytes == 0) {
 846             return;
 847         }
 848 
 849         copySwapMemory0(srcBase, srcOffset, destBase, destOffset, bytes, elemSize);
 850     }
 851 
 852     private void copySwapMemoryChecks(Object srcBase, long srcOffset,
 853                                       Object destBase, long destOffset,
 854                                       long bytes, long elemSize) {
 855         checkSize(bytes);
 856 
 857         if (elemSize != 2 && elemSize != 4 && elemSize != 8) {
 858             throw invalidInput();
 859         }
 860         if (bytes % elemSize != 0) {
 861             throw invalidInput();
 862         }
 863 
 864         checkPrimitivePointer(srcBase, srcOffset);
 865         checkPrimitivePointer(destBase, destOffset);
 866     }
 867 
 868    /**
 869      * Copies all elements from one block of memory to another block, byte swapping the
 870      * elements on the fly.
 871      *
 872      * This provides a <em>single-register</em> addressing mode, as
 873      * discussed in {@link #getInt(Object,long)}.
 874      *
 875      * Equivalent to {@code copySwapMemory(null, srcAddress, null, destAddress, bytes, elemSize)}.
 876      */
 877     public void copySwapMemory(long srcAddress, long destAddress, long bytes, long elemSize) {
 878         copySwapMemory(null, srcAddress, null, destAddress, bytes, elemSize);
 879     }
 880 
 881     /**
 882      * Disposes of a block of native memory, as obtained from {@link
 883      * #allocateMemory} or {@link #reallocateMemory}.  The address passed to
 884      * this method may be null, in which case no action is taken.
 885      *
 886      * <em>Note:</em> It is the resposibility of the caller to make
 887      * sure arguments are checked before the methods are called. While
 888      * some rudimentary checks are performed on the input, the checks
 889      * are best effort and when performance is an overriding priority,
 890      * as when methods of this class are optimized by the runtime
 891      * compiler, some or all checks (if any) may be elided. Hence, the
 892      * caller must not rely on the checks and corresponding
 893      * exceptions!
 894      *
 895      * @throws RuntimeException if any of the arguments is invalid
 896      *
 897      * @see #allocateMemory
 898      */
 899     public void freeMemory(long address) {
 900         freeMemoryChecks(address);
 901 
 902         if (address == 0) {
 903             return;
 904         }
 905 
 906         freeMemory0(address);
 907     }
 908 
 909     /**
 910      * Validate the arguments to freeMemory
 911      *
 912      * @throws RuntimeException if the arguments are invalid
 913      *         (<em>Note:</em> after optimization, invalid inputs may
 914      *         go undetected, which will lead to unpredictable
 915      *         behavior)
 916      */
 917     private void freeMemoryChecks(long address) {
 918         checkPointer(null, address);
 919     }
 920 
 921     /// random queries
 922 
 923     /**
 924      * This constant differs from all results that will ever be returned from
 925      * {@link #staticFieldOffset}, {@link #objectFieldOffset},
 926      * or {@link #arrayBaseOffset}.
 927      */
 928     public static final int INVALID_FIELD_OFFSET = -1;
 929 
 930     /**
 931      * Reports the location of a given field in the storage allocation of its
 932      * class.  Do not expect to perform any sort of arithmetic on this offset;
 933      * it is just a cookie which is passed to the unsafe heap memory accessors.
 934      *
 935      * <p>Any given field will always have the same offset and base, and no
 936      * two distinct fields of the same class will ever have the same offset
 937      * and base.
 938      *
 939      * <p>As of 1.4.1, offsets for fields are represented as long values,
 940      * although the Sun JVM does not use the most significant 32 bits.
 941      * However, JVM implementations which store static fields at absolute
 942      * addresses can use long offsets and null base pointers to express
 943      * the field locations in a form usable by {@link #getInt(Object,long)}.
 944      * Therefore, code which will be ported to such JVMs on 64-bit platforms
 945      * must preserve all bits of static field offsets.
 946      * @see #getInt(Object, long)
 947      */
 948     public long objectFieldOffset(Field f) {
 949         if (f == null) {
 950             throw new NullPointerException();
 951         }
 952 
 953         return objectFieldOffset0(f);
 954     }
 955 
 956     /**
 957      * Reports the location of a given static field, in conjunction with {@link
 958      * #staticFieldBase}.
 959      * <p>Do not expect to perform any sort of arithmetic on this offset;
 960      * it is just a cookie which is passed to the unsafe heap memory accessors.
 961      *
 962      * <p>Any given field will always have the same offset, and no two distinct
 963      * fields of the same class will ever have the same offset.
 964      *
 965      * <p>As of 1.4.1, offsets for fields are represented as long values,
 966      * although the Sun JVM does not use the most significant 32 bits.
 967      * It is hard to imagine a JVM technology which needs more than
 968      * a few bits to encode an offset within a non-array object,
 969      * However, for consistency with other methods in this class,
 970      * this method reports its result as a long value.
 971      * @see #getInt(Object, long)
 972      */
 973     public long staticFieldOffset(Field f) {
 974         if (f == null) {
 975             throw new NullPointerException();
 976         }
 977 
 978         return staticFieldOffset0(f);
 979     }
 980 
 981     /**
 982      * Reports the location of a given static field, in conjunction with {@link
 983      * #staticFieldOffset}.
 984      * <p>Fetch the base "Object", if any, with which static fields of the
 985      * given class can be accessed via methods like {@link #getInt(Object,
 986      * long)}.  This value may be null.  This value may refer to an object
 987      * which is a "cookie", not guaranteed to be a real Object, and it should
 988      * not be used in any way except as argument to the get and put routines in
 989      * this class.
 990      */
 991     public Object staticFieldBase(Field f) {
 992         if (f == null) {
 993             throw new NullPointerException();
 994         }
 995 
 996         return staticFieldBase0(f);
 997     }
 998 
 999     /**
1000      * Detects if the given class may need to be initialized. This is often
1001      * needed in conjunction with obtaining the static field base of a
1002      * class.
1003      * @return false only if a call to {@code ensureClassInitialized} would have no effect
1004      */
1005     public boolean shouldBeInitialized(Class<?> c) {
1006         if (c == null) {
1007             throw new NullPointerException();
1008         }
1009 
1010         return shouldBeInitialized0(c);
1011     }
1012 
1013     /**
1014      * Ensures the given class has been initialized. This is often
1015      * needed in conjunction with obtaining the static field base of a
1016      * class.
1017      */
1018     public void ensureClassInitialized(Class<?> c) {
1019         if (c == null) {
1020             throw new NullPointerException();
1021         }
1022 
1023         ensureClassInitialized0(c);
1024     }
1025 
1026     /**
1027      * Reports the offset of the first element in the storage allocation of a
1028      * given array class.  If {@link #arrayIndexScale} returns a non-zero value
1029      * for the same class, you may use that scale factor, together with this
1030      * base offset, to form new offsets to access elements of arrays of the
1031      * given class.
1032      *
1033      * @see #getInt(Object, long)
1034      * @see #putInt(Object, long, int)
1035      */
1036     public int arrayBaseOffset(Class<?> arrayClass) {
1037         if (arrayClass == null) {
1038             throw new NullPointerException();
1039         }
1040 
1041         return arrayBaseOffset0(arrayClass);
1042     }
1043 
1044 
1045     /** The value of {@code arrayBaseOffset(boolean[].class)} */
1046     public static final int ARRAY_BOOLEAN_BASE_OFFSET
1047             = theUnsafe.arrayBaseOffset(boolean[].class);
1048 
1049     /** The value of {@code arrayBaseOffset(byte[].class)} */
1050     public static final int ARRAY_BYTE_BASE_OFFSET
1051             = theUnsafe.arrayBaseOffset(byte[].class);
1052 
1053     /** The value of {@code arrayBaseOffset(short[].class)} */
1054     public static final int ARRAY_SHORT_BASE_OFFSET
1055             = theUnsafe.arrayBaseOffset(short[].class);
1056 
1057     /** The value of {@code arrayBaseOffset(char[].class)} */
1058     public static final int ARRAY_CHAR_BASE_OFFSET
1059             = theUnsafe.arrayBaseOffset(char[].class);
1060 
1061     /** The value of {@code arrayBaseOffset(int[].class)} */
1062     public static final int ARRAY_INT_BASE_OFFSET
1063             = theUnsafe.arrayBaseOffset(int[].class);
1064 
1065     /** The value of {@code arrayBaseOffset(long[].class)} */
1066     public static final int ARRAY_LONG_BASE_OFFSET
1067             = theUnsafe.arrayBaseOffset(long[].class);
1068 
1069     /** The value of {@code arrayBaseOffset(float[].class)} */
1070     public static final int ARRAY_FLOAT_BASE_OFFSET
1071             = theUnsafe.arrayBaseOffset(float[].class);
1072 
1073     /** The value of {@code arrayBaseOffset(double[].class)} */
1074     public static final int ARRAY_DOUBLE_BASE_OFFSET
1075             = theUnsafe.arrayBaseOffset(double[].class);
1076 
1077     /** The value of {@code arrayBaseOffset(Object[].class)} */
1078     public static final int ARRAY_OBJECT_BASE_OFFSET
1079             = theUnsafe.arrayBaseOffset(Object[].class);
1080 
1081     /**
1082      * Reports the scale factor for addressing elements in the storage
1083      * allocation of a given array class.  However, arrays of "narrow" types
1084      * will generally not work properly with accessors like {@link
1085      * #getByte(Object, long)}, so the scale factor for such classes is reported
1086      * as zero.
1087      *
1088      * @see #arrayBaseOffset
1089      * @see #getInt(Object, long)
1090      * @see #putInt(Object, long, int)
1091      */
1092     public int arrayIndexScale(Class<?> arrayClass) {
1093         if (arrayClass == null) {
1094             throw new NullPointerException();
1095         }
1096 
1097         return arrayIndexScale0(arrayClass);
1098     }
1099 
1100 
1101     /** The value of {@code arrayIndexScale(boolean[].class)} */
1102     public static final int ARRAY_BOOLEAN_INDEX_SCALE
1103             = theUnsafe.arrayIndexScale(boolean[].class);
1104 
1105     /** The value of {@code arrayIndexScale(byte[].class)} */
1106     public static final int ARRAY_BYTE_INDEX_SCALE
1107             = theUnsafe.arrayIndexScale(byte[].class);
1108 
1109     /** The value of {@code arrayIndexScale(short[].class)} */
1110     public static final int ARRAY_SHORT_INDEX_SCALE
1111             = theUnsafe.arrayIndexScale(short[].class);
1112 
1113     /** The value of {@code arrayIndexScale(char[].class)} */
1114     public static final int ARRAY_CHAR_INDEX_SCALE
1115             = theUnsafe.arrayIndexScale(char[].class);
1116 
1117     /** The value of {@code arrayIndexScale(int[].class)} */
1118     public static final int ARRAY_INT_INDEX_SCALE
1119             = theUnsafe.arrayIndexScale(int[].class);
1120 
1121     /** The value of {@code arrayIndexScale(long[].class)} */
1122     public static final int ARRAY_LONG_INDEX_SCALE
1123             = theUnsafe.arrayIndexScale(long[].class);
1124 
1125     /** The value of {@code arrayIndexScale(float[].class)} */
1126     public static final int ARRAY_FLOAT_INDEX_SCALE
1127             = theUnsafe.arrayIndexScale(float[].class);
1128 
1129     /** The value of {@code arrayIndexScale(double[].class)} */
1130     public static final int ARRAY_DOUBLE_INDEX_SCALE
1131             = theUnsafe.arrayIndexScale(double[].class);
1132 
1133     /** The value of {@code arrayIndexScale(Object[].class)} */
1134     public static final int ARRAY_OBJECT_INDEX_SCALE
1135             = theUnsafe.arrayIndexScale(Object[].class);
1136 
1137     /**
1138      * Reports the size in bytes of a native pointer, as stored via {@link
1139      * #putAddress}.  This value will be either 4 or 8.  Note that the sizes of
1140      * other primitive types (as stored in native memory blocks) is determined
1141      * fully by their information content.
1142      */
1143     public int addressSize() {
1144         return ADDRESS_SIZE;
1145     }
1146 
1147     /** The value of {@code addressSize()} */
1148     public static final int ADDRESS_SIZE = theUnsafe.addressSize0();
1149 
1150     /**
1151      * Reports the size in bytes of a native memory page (whatever that is).
1152      * This value will always be a power of two.
1153      */
1154     public native int pageSize();
1155 
1156 
1157     /// random trusted operations from JNI:
1158 
1159     /**
1160      * Tells the VM to define a class, without security checks.  By default, the
1161      * class loader and protection domain come from the caller's class.
1162      */
1163     public Class<?> defineClass(String name, byte[] b, int off, int len,
1164                                 ClassLoader loader,
1165                                 ProtectionDomain protectionDomain) {
1166         if (b == null) {
1167             throw new NullPointerException();
1168         }
1169         if (len < 0) {
1170             throw new ArrayIndexOutOfBoundsException();
1171         }
1172 
1173         return defineClass0(name, b, off, len, loader, protectionDomain);
1174     }
1175 
1176     public native Class<?> defineClass0(String name, byte[] b, int off, int len,
1177                                         ClassLoader loader,
1178                                         ProtectionDomain protectionDomain);
1179 
1180     /**
1181      * Defines a class but does not make it known to the class loader or system dictionary.
1182      * <p>
1183      * For each CP entry, the corresponding CP patch must either be null or have
1184      * the a format that matches its tag:
1185      * <ul>
1186      * <li>Integer, Long, Float, Double: the corresponding wrapper object type from java.lang
1187      * <li>Utf8: a string (must have suitable syntax if used as signature or name)
1188      * <li>Class: any java.lang.Class object
1189      * <li>String: any object (not just a java.lang.String)
1190      * <li>InterfaceMethodRef: (NYI) a method handle to invoke on that call site's arguments
1191      * </ul>
1192      * @param hostClass context for linkage, access control, protection domain, and class loader
1193      * @param data      bytes of a class file
1194      * @param cpPatches where non-null entries exist, they replace corresponding CP entries in data
1195      */
1196     public Class<?> defineAnonymousClass(Class<?> hostClass, byte[] data, Object[] cpPatches) {
1197         if (hostClass == null || data == null) {
1198             throw new NullPointerException();
1199         }
1200 
1201         return defineAnonymousClass0(hostClass, data, cpPatches);
1202     }
1203 
1204     /**
1205      * Allocates an instance but does not run any constructor.
1206      * Initializes the class if it has not yet been.
1207      */
1208     @HotSpotIntrinsicCandidate
1209     public native Object allocateInstance(Class<?> cls)
1210         throws InstantiationException;
1211 
1212     /**
1213      * Allocates an array of a given type, but does not do zeroing.
1214      * <p>
1215      * This method should only be used in the very rare cases where a high-performance code
1216      * overwrites the destination array completely, and compilers cannot assist in zeroing elimination.
1217      * In an overwhelming majority of cases, a normal Java allocation should be used instead.
1218      * <p>
1219      * Users of this method are <b>required</b> to overwrite the initial (garbage) array contents
1220      * before allowing untrusted code, or code in other threads, to observe the reference
1221      * to the newly allocated array. In addition, the publication of the array reference must be
1222      * safe according to the Java Memory Model requirements.
1223      * <p>
1224      * The safest approach to deal with an uninitialized array is to keep the reference to it in local
1225      * variable at least until the initialization is complete, and then publish it <b>once</b>, either
1226      * by writing it to a <em>volatile</em> field, or storing it into a <em>final</em> field in constructor,
1227      * or issuing a {@link #storeFence} before publishing the reference.
1228      * <p>
1229      * @implnote This method can only allocate primitive arrays, to avoid garbage reference
1230      * elements that could break heap integrity.
1231      *
1232      * @param componentType array component type to allocate
1233      * @param length array size to allocate
1234      * @throws IllegalArgumentException if component type is null, or not a primitive class;
1235      *                                  or the length is negative
1236      */
1237     public Object allocateUninitializedArray(Class<?> componentType, int length) {
1238        if (componentType == null) {
1239            throw new IllegalArgumentException("Component type is null");
1240        }
1241        if (!componentType.isPrimitive()) {
1242            throw new IllegalArgumentException("Component type is not primitive");
1243        }
1244        if (length < 0) {
1245            throw new IllegalArgumentException("Negative length");
1246        }
1247        return allocateUninitializedArray0(componentType, length);
1248     }
1249 
1250     @HotSpotIntrinsicCandidate
1251     private Object allocateUninitializedArray0(Class<?> componentType, int length) {
1252        // These fallbacks provide zeroed arrays, but intrinsic is not required to
1253        // return the zeroed arrays.
1254        if (componentType == byte.class)    return new byte[length];
1255        if (componentType == boolean.class) return new boolean[length];
1256        if (componentType == short.class)   return new short[length];
1257        if (componentType == char.class)    return new char[length];
1258        if (componentType == int.class)     return new int[length];
1259        if (componentType == float.class)   return new float[length];
1260        if (componentType == long.class)    return new long[length];
1261        if (componentType == double.class)  return new double[length];
1262        return null;
1263     }
1264 
1265     /** Throws the exception without telling the verifier. */
1266     public native void throwException(Throwable ee);
1267 
1268     /**
1269      * Atomically updates Java variable to {@code x} if it is currently
1270      * holding {@code expected}.
1271      *
1272      * <p>This operation has memory semantics of a {@code volatile} read
1273      * and write.  Corresponds to C11 atomic_compare_exchange_strong.
1274      *
1275      * @return {@code true} if successful
1276      */
1277     @HotSpotIntrinsicCandidate
1278     public final native boolean compareAndSwapObject(Object o, long offset,
1279                                                      Object expected,
1280                                                      Object x);
1281 
1282     @HotSpotIntrinsicCandidate
1283     public final native Object compareAndExchangeObjectVolatile(Object o, long offset,
1284                                                                 Object expected,
1285                                                                 Object x);
1286 
1287     @HotSpotIntrinsicCandidate
1288     public final Object compareAndExchangeObjectAcquire(Object o, long offset,
1289                                                                Object expected,
1290                                                                Object x) {
1291         return compareAndExchangeObjectVolatile(o, offset, expected, x);
1292     }
1293 
1294     @HotSpotIntrinsicCandidate
1295     public final Object compareAndExchangeObjectRelease(Object o, long offset,
1296                                                                Object expected,
1297                                                                Object x) {
1298         return compareAndExchangeObjectVolatile(o, offset, expected, x);
1299     }
1300 
1301     @HotSpotIntrinsicCandidate
1302     public final boolean weakCompareAndSwapObject(Object o, long offset,
1303                                                          Object expected,
1304                                                          Object x) {
1305         return compareAndSwapObject(o, offset, expected, x);
1306     }
1307 
1308     @HotSpotIntrinsicCandidate
1309     public final boolean weakCompareAndSwapObjectAcquire(Object o, long offset,
1310                                                                 Object expected,
1311                                                                 Object x) {
1312         return compareAndSwapObject(o, offset, expected, x);
1313     }
1314 
1315     @HotSpotIntrinsicCandidate
1316     public final boolean weakCompareAndSwapObjectRelease(Object o, long offset,
1317                                                                 Object expected,
1318                                                                 Object x) {
1319         return compareAndSwapObject(o, offset, expected, x);
1320     }
1321 
1322     @HotSpotIntrinsicCandidate
1323     public final boolean weakCompareAndSwapObjectVolatile(Object o, long offset,
1324                                                                 Object expected,
1325                                                                 Object x) {
1326         return compareAndSwapObject(o, offset, expected, x);
1327     }
1328 
1329     /**
1330      * Atomically updates Java variable to {@code x} if it is currently
1331      * holding {@code expected}.
1332      *
1333      * <p>This operation has memory semantics of a {@code volatile} read
1334      * and write.  Corresponds to C11 atomic_compare_exchange_strong.
1335      *
1336      * @return {@code true} if successful
1337      */
1338     @HotSpotIntrinsicCandidate
1339     public final native boolean compareAndSwapInt(Object o, long offset,
1340                                                   int expected,
1341                                                   int x);
1342 
1343     @HotSpotIntrinsicCandidate
1344     public final native int compareAndExchangeIntVolatile(Object o, long offset,
1345                                                           int expected,
1346                                                           int x);
1347 
1348     @HotSpotIntrinsicCandidate
1349     public final int compareAndExchangeIntAcquire(Object o, long offset,
1350                                                          int expected,
1351                                                          int x) {
1352         return compareAndExchangeIntVolatile(o, offset, expected, x);
1353     }
1354 
1355     @HotSpotIntrinsicCandidate
1356     public final int compareAndExchangeIntRelease(Object o, long offset,
1357                                                          int expected,
1358                                                          int x) {
1359         return compareAndExchangeIntVolatile(o, offset, expected, x);
1360     }
1361 
1362     @HotSpotIntrinsicCandidate
1363     public final boolean weakCompareAndSwapInt(Object o, long offset,
1364                                                       int expected,
1365                                                       int x) {
1366         return compareAndSwapInt(o, offset, expected, x);
1367     }
1368 
1369     @HotSpotIntrinsicCandidate
1370     public final boolean weakCompareAndSwapIntAcquire(Object o, long offset,
1371                                                              int expected,
1372                                                              int x) {
1373         return compareAndSwapInt(o, offset, expected, x);
1374     }
1375 
1376     @HotSpotIntrinsicCandidate
1377     public final boolean weakCompareAndSwapIntRelease(Object o, long offset,
1378                                                              int expected,
1379                                                              int x) {
1380         return compareAndSwapInt(o, offset, expected, x);
1381     }
1382 
1383     @HotSpotIntrinsicCandidate
1384     public final boolean weakCompareAndSwapIntVolatile(Object o, long offset,
1385                                                              int expected,
1386                                                              int x) {
1387         return compareAndSwapInt(o, offset, expected, x);
1388     }
1389 
1390     @HotSpotIntrinsicCandidate
1391     public final byte compareAndExchangeByteVolatile(Object o, long offset,
1392                                                      byte expected,
1393                                                      byte x) {
1394         long wordOffset = offset & ~3;
1395         int shift = (int) (offset & 3) << 3;
1396         if (BE) {
1397             shift = 24 - shift;
1398         }
1399         int mask           = 0xFF << shift;
1400         int maskedExpected = (expected & 0xFF) << shift;
1401         int maskedX        = (x & 0xFF) << shift;
1402         int fullWord;
1403         do {
1404             fullWord = getIntVolatile(o, wordOffset);
1405             if ((fullWord & mask) != maskedExpected)
1406                 return (byte) ((fullWord & mask) >> shift);
1407         } while (!weakCompareAndSwapIntVolatile(o, wordOffset,
1408                                                 fullWord, (fullWord & ~mask) | maskedX));
1409         return expected;
1410     }
1411 
1412     @HotSpotIntrinsicCandidate
1413     public final boolean compareAndSwapByte(Object o, long offset,
1414                                             byte expected,
1415                                             byte x) {
1416         return compareAndExchangeByteVolatile(o, offset, expected, x) == expected;
1417     }
1418 
1419     @HotSpotIntrinsicCandidate
1420     public final boolean weakCompareAndSwapByteVolatile(Object o, long offset,
1421                                                         byte expected,
1422                                                         byte x) {
1423         return compareAndSwapByte(o, offset, expected, x);
1424     }
1425 
1426     @HotSpotIntrinsicCandidate
1427     public final boolean weakCompareAndSwapByteAcquire(Object o, long offset,
1428                                                        byte expected,
1429                                                        byte x) {
1430         return weakCompareAndSwapByteVolatile(o, offset, expected, x);
1431     }
1432 
1433     @HotSpotIntrinsicCandidate
1434     public final boolean weakCompareAndSwapByteRelease(Object o, long offset,
1435                                                        byte expected,
1436                                                        byte x) {
1437         return weakCompareAndSwapByteVolatile(o, offset, expected, x);
1438     }
1439 
1440     @HotSpotIntrinsicCandidate
1441     public final boolean weakCompareAndSwapByte(Object o, long offset,
1442                                                         byte expected,
1443                                                         byte x) {
1444         return weakCompareAndSwapByteVolatile(o, offset, expected, x);
1445     }
1446 
1447     @HotSpotIntrinsicCandidate
1448     public final byte compareAndExchangeByteAcquire(Object o, long offset,
1449                                                     byte expected,
1450                                                     byte x) {
1451         return compareAndExchangeByteVolatile(o, offset, expected, x);
1452     }
1453 
1454     @HotSpotIntrinsicCandidate
1455     public final byte compareAndExchangeByteRelease(Object o, long offset,
1456                                                     byte expected,
1457                                                     byte x) {
1458         return compareAndExchangeByteVolatile(o, offset, expected, x);
1459     }
1460 
1461     @HotSpotIntrinsicCandidate
1462     public final short compareAndExchangeShortVolatile(Object o, long offset,
1463                                              short expected,
1464                                              short x) {
1465         if ((offset & 3) == 3) {
1466             throw new IllegalArgumentException("Update spans the word, not supported");
1467         }
1468         long wordOffset = offset & ~3;
1469         int shift = (int) (offset & 3) << 3;
1470         if (BE) {
1471             shift = 16 - shift;
1472         }
1473         int mask           = 0xFFFF << shift;
1474         int maskedExpected = (expected & 0xFFFF) << shift;
1475         int maskedX        = (x & 0xFFFF) << shift;
1476         int fullWord;
1477         do {
1478             fullWord = getIntVolatile(o, wordOffset);
1479             if ((fullWord & mask) != maskedExpected) {
1480                 return (short) ((fullWord & mask) >> shift);
1481             }
1482         } while (!weakCompareAndSwapIntVolatile(o, wordOffset,
1483                                                 fullWord, (fullWord & ~mask) | maskedX));
1484         return expected;
1485     }
1486 
1487     @HotSpotIntrinsicCandidate
1488     public final boolean compareAndSwapShort(Object o, long offset,
1489                                              short expected,
1490                                              short x) {
1491         return compareAndExchangeShortVolatile(o, offset, expected, x) == expected;
1492     }
1493 
1494     @HotSpotIntrinsicCandidate
1495     public final boolean weakCompareAndSwapShortVolatile(Object o, long offset,
1496                                                          short expected,
1497                                                          short x) {
1498         return compareAndSwapShort(o, offset, expected, x);
1499     }
1500 
1501     @HotSpotIntrinsicCandidate
1502     public final boolean weakCompareAndSwapShortAcquire(Object o, long offset,
1503                                                         short expected,
1504                                                         short x) {
1505         return weakCompareAndSwapShortVolatile(o, offset, expected, x);
1506     }
1507 
1508     @HotSpotIntrinsicCandidate
1509     public final boolean weakCompareAndSwapShortRelease(Object o, long offset,
1510                                                         short expected,
1511                                                         short x) {
1512         return weakCompareAndSwapShortVolatile(o, offset, expected, x);
1513     }
1514 
1515     @HotSpotIntrinsicCandidate
1516     public final boolean weakCompareAndSwapShort(Object o, long offset,
1517                                                  short expected,
1518                                                  short x) {
1519         return weakCompareAndSwapShortVolatile(o, offset, expected, x);
1520     }
1521 
1522 
1523     @HotSpotIntrinsicCandidate
1524     public final short compareAndExchangeShortAcquire(Object o, long offset,
1525                                                      short expected,
1526                                                      short x) {
1527         return compareAndExchangeShortVolatile(o, offset, expected, x);
1528     }
1529 
1530     @HotSpotIntrinsicCandidate
1531     public final short compareAndExchangeShortRelease(Object o, long offset,
1532                                                     short expected,
1533                                                     short x) {
1534         return compareAndExchangeShortVolatile(o, offset, expected, x);
1535     }
1536 
1537     @ForceInline
1538     private char s2c(short s) {
1539         return (char) s;
1540     }
1541 
1542     @ForceInline
1543     private short c2s(char s) {
1544         return (short) s;
1545     }
1546 
1547     @ForceInline
1548     public final boolean compareAndSwapChar(Object o, long offset,
1549                                             char expected,
1550                                             char x) {
1551         return compareAndSwapShort(o, offset, c2s(expected), c2s(x));
1552     }
1553 
1554     @ForceInline
1555     public final char compareAndExchangeCharVolatile(Object o, long offset,
1556                                             char expected,
1557                                             char x) {
1558         return s2c(compareAndExchangeShortVolatile(o, offset, c2s(expected), c2s(x)));
1559     }
1560 
1561     @ForceInline
1562     public final char compareAndExchangeCharAcquire(Object o, long offset,
1563                                             char expected,
1564                                             char x) {
1565         return s2c(compareAndExchangeShortAcquire(o, offset, c2s(expected), c2s(x)));
1566     }
1567 
1568     @ForceInline
1569     public final char compareAndExchangeCharRelease(Object o, long offset,
1570                                             char expected,
1571                                             char x) {
1572         return s2c(compareAndExchangeShortRelease(o, offset, c2s(expected), c2s(x)));
1573     }
1574 
1575     @ForceInline
1576     public final boolean weakCompareAndSwapCharVolatile(Object o, long offset,
1577                                             char expected,
1578                                             char x) {
1579         return weakCompareAndSwapShortVolatile(o, offset, c2s(expected), c2s(x));
1580     }
1581 
1582     @ForceInline
1583     public final boolean weakCompareAndSwapCharAcquire(Object o, long offset,
1584                                             char expected,
1585                                             char x) {
1586         return weakCompareAndSwapShortAcquire(o, offset, c2s(expected), c2s(x));
1587     }
1588 
1589     @ForceInline
1590     public final boolean weakCompareAndSwapCharRelease(Object o, long offset,
1591                                             char expected,
1592                                             char x) {
1593         return weakCompareAndSwapShortRelease(o, offset, c2s(expected), c2s(x));
1594     }
1595 
1596     @ForceInline
1597     public final boolean weakCompareAndSwapChar(Object o, long offset,
1598                                             char expected,
1599                                             char x) {
1600         return weakCompareAndSwapShort(o, offset, c2s(expected), c2s(x));
1601     }
1602 
1603     /**
1604      * The JVM converts ints to booleans using two different
1605      * conventions, byte testing against zero and truncation to
1606      * least-significant bit.
1607      * 
1608      * <p>The JNI documents specify that, at least for returning
1609      * values from native methods, a Java boolean value is converted
1610      * to the value-set 0..1 by first truncating to a byte (0..255 or
1611      * maybe -128..127) and then testing against zero. Thus, Java
1612      * booleans in non-Java data structures are by convention
1613      * represented as 8-bit containers containing either zero (for
1614      * false) or any non-zero value (for true).
1615      *
1616      * <p>Java booleans in the heap are also stored in bytes, but are
1617      * strongly normalized to the value-set 0..1 (i.e., they are
1618      * truncated to the least-significant bit).
1619      *
1620      * <p>The main reason for having different conventions for
1621      * conversion is performance: Truncation to the least-significant
1622      * bit can be usually implemented with fewer (machine)
1623      * instructions than byte testing against zero.
1624      *
1625      * <p>A number of Unsafe methods load boolean values from the heap
1626      * as bytes. Unsafe converts those values according to the JNI
1627      * rules (i.e, using the "testing against zero" convention). The
1628      * method {@code byte2bool} implements that conversion.
1629      *
1630      * @param b the byte to be converted to boolean
1631      * @return the result of the conversion
1632      */
1633     @ForceInline
1634     private boolean byte2bool(byte b) {
1635         return b != 0;
1636     }
1637 
1638     /**
1639      * Convert a boolean value to a byte. The return value is strongly
1640      * normalized to the value-set 0..1 (i.e., the value is truncated
1641      * to the least-significant bit). See {@link #byte2bool(byte)} for
1642      * more details on conversion conventions.
1643      *
1644      * @param b the boolean to be converted to byte (and then normalized)
1645      * @return the result of the conversion
1646      */
1647     @ForceInline
1648     private byte bool2byte(boolean b) {
1649         return b ? (byte)1 : (byte)0;
1650     }
1651 
1652     @ForceInline
1653     public final boolean compareAndSwapBoolean(Object o, long offset,
1654                                                boolean expected,
1655                                                boolean x) {
1656         return compareAndSwapByte(o, offset, bool2byte(expected), bool2byte(x));
1657     }
1658 
1659     @ForceInline
1660     public final boolean compareAndExchangeBooleanVolatile(Object o, long offset,
1661                                                         boolean expected,
1662                                                         boolean x) {
1663         return byte2bool(compareAndExchangeByteVolatile(o, offset, bool2byte(expected), bool2byte(x)));
1664     }
1665 
1666     @ForceInline
1667     public final boolean compareAndExchangeBooleanAcquire(Object o, long offset,
1668                                                     boolean expected,
1669                                                     boolean x) {
1670         return byte2bool(compareAndExchangeByteAcquire(o, offset, bool2byte(expected), bool2byte(x)));
1671     }
1672 
1673     @ForceInline
1674     public final boolean compareAndExchangeBooleanRelease(Object o, long offset,
1675                                                        boolean expected,
1676                                                        boolean x) {
1677         return byte2bool(compareAndExchangeByteRelease(o, offset, bool2byte(expected), bool2byte(x)));
1678     }
1679 
1680     @ForceInline
1681     public final boolean weakCompareAndSwapBooleanVolatile(Object o, long offset,
1682                                                            boolean expected,
1683                                                            boolean x) {
1684         return weakCompareAndSwapByteVolatile(o, offset, bool2byte(expected), bool2byte(x));
1685     }
1686 
1687     @ForceInline
1688     public final boolean weakCompareAndSwapBooleanAcquire(Object o, long offset,
1689                                                           boolean expected,
1690                                                           boolean x) {
1691         return weakCompareAndSwapByteAcquire(o, offset, bool2byte(expected), bool2byte(x));
1692     }
1693 
1694     @ForceInline
1695     public final boolean weakCompareAndSwapBooleanRelease(Object o, long offset,
1696                                                           boolean expected,
1697                                                           boolean x) {
1698         return weakCompareAndSwapByteRelease(o, offset, bool2byte(expected), bool2byte(x));
1699     }
1700 
1701     @ForceInline
1702     public final boolean weakCompareAndSwapBoolean(Object o, long offset,
1703                                                    boolean expected,
1704                                                    boolean x) {
1705         return weakCompareAndSwapByte(o, offset, bool2byte(expected), bool2byte(x));
1706     }
1707 
1708     /**
1709      * Atomically updates Java variable to {@code x} if it is currently
1710      * holding {@code expected}.
1711      *
1712      * <p>This operation has memory semantics of a {@code volatile} read
1713      * and write.  Corresponds to C11 atomic_compare_exchange_strong.
1714      *
1715      * @return {@code true} if successful
1716      */
1717     @ForceInline
1718     public final boolean compareAndSwapFloat(Object o, long offset,
1719                                              float expected,
1720                                              float x) {
1721         return compareAndSwapInt(o, offset,
1722                                  Float.floatToRawIntBits(expected),
1723                                  Float.floatToRawIntBits(x));
1724     }
1725 
1726     @ForceInline
1727     public final float compareAndExchangeFloatVolatile(Object o, long offset,
1728                                                        float expected,
1729                                                        float x) {
1730         int w = compareAndExchangeIntVolatile(o, offset,
1731                                               Float.floatToRawIntBits(expected),
1732                                               Float.floatToRawIntBits(x));
1733         return Float.intBitsToFloat(w);
1734     }
1735 
1736     @ForceInline
1737     public final float compareAndExchangeFloatAcquire(Object o, long offset,
1738                                                   float expected,
1739                                                   float x) {
1740         int w = compareAndExchangeIntAcquire(o, offset,
1741                                              Float.floatToRawIntBits(expected),
1742                                              Float.floatToRawIntBits(x));
1743         return Float.intBitsToFloat(w);
1744     }
1745 
1746     @ForceInline
1747     public final float compareAndExchangeFloatRelease(Object o, long offset,
1748                                                   float expected,
1749                                                   float x) {
1750         int w = compareAndExchangeIntRelease(o, offset,
1751                                              Float.floatToRawIntBits(expected),
1752                                              Float.floatToRawIntBits(x));
1753         return Float.intBitsToFloat(w);
1754     }
1755 
1756     @ForceInline
1757     public final boolean weakCompareAndSwapFloat(Object o, long offset,
1758                                                float expected,
1759                                                float x) {
1760         return weakCompareAndSwapInt(o, offset,
1761                                      Float.floatToRawIntBits(expected),
1762                                      Float.floatToRawIntBits(x));
1763     }
1764 
1765     @ForceInline
1766     public final boolean weakCompareAndSwapFloatAcquire(Object o, long offset,
1767                                                       float expected,
1768                                                       float x) {
1769         return weakCompareAndSwapIntAcquire(o, offset,
1770                                             Float.floatToRawIntBits(expected),
1771                                             Float.floatToRawIntBits(x));
1772     }
1773 
1774     @ForceInline
1775     public final boolean weakCompareAndSwapFloatRelease(Object o, long offset,
1776                                                       float expected,
1777                                                       float x) {
1778         return weakCompareAndSwapIntRelease(o, offset,
1779                                             Float.floatToRawIntBits(expected),
1780                                             Float.floatToRawIntBits(x));
1781     }
1782 
1783     @ForceInline
1784     public final boolean weakCompareAndSwapFloatVolatile(Object o, long offset,
1785                                                        float expected,
1786                                                        float x) {
1787         return weakCompareAndSwapIntVolatile(o, offset,
1788                                              Float.floatToRawIntBits(expected),
1789                                              Float.floatToRawIntBits(x));
1790     }
1791 
1792     /**
1793      * Atomically updates Java variable to {@code x} if it is currently
1794      * holding {@code expected}.
1795      *
1796      * <p>This operation has memory semantics of a {@code volatile} read
1797      * and write.  Corresponds to C11 atomic_compare_exchange_strong.
1798      *
1799      * @return {@code true} if successful
1800      */
1801     @ForceInline
1802     public final boolean compareAndSwapDouble(Object o, long offset,
1803                                               double expected,
1804                                               double x) {
1805         return compareAndSwapLong(o, offset,
1806                                   Double.doubleToRawLongBits(expected),
1807                                   Double.doubleToRawLongBits(x));
1808     }
1809 
1810     @ForceInline
1811     public final double compareAndExchangeDoubleVolatile(Object o, long offset,
1812                                                          double expected,
1813                                                          double x) {
1814         long w = compareAndExchangeLongVolatile(o, offset,
1815                                                 Double.doubleToRawLongBits(expected),
1816                                                 Double.doubleToRawLongBits(x));
1817         return Double.longBitsToDouble(w);
1818     }
1819 
1820     @ForceInline
1821     public final double compareAndExchangeDoubleAcquire(Object o, long offset,
1822                                                         double expected,
1823                                                         double x) {
1824         long w = compareAndExchangeLongAcquire(o, offset,
1825                                                Double.doubleToRawLongBits(expected),
1826                                                Double.doubleToRawLongBits(x));
1827         return Double.longBitsToDouble(w);
1828     }
1829 
1830     @ForceInline
1831     public final double compareAndExchangeDoubleRelease(Object o, long offset,
1832                                                         double expected,
1833                                                         double x) {
1834         long w = compareAndExchangeLongRelease(o, offset,
1835                                                Double.doubleToRawLongBits(expected),
1836                                                Double.doubleToRawLongBits(x));
1837         return Double.longBitsToDouble(w);
1838     }
1839 
1840     @ForceInline
1841     public final boolean weakCompareAndSwapDouble(Object o, long offset,
1842                                                   double expected,
1843                                                   double x) {
1844         return weakCompareAndSwapLong(o, offset,
1845                                      Double.doubleToRawLongBits(expected),
1846                                      Double.doubleToRawLongBits(x));
1847     }
1848 
1849     @ForceInline
1850     public final boolean weakCompareAndSwapDoubleAcquire(Object o, long offset,
1851                                                          double expected,
1852                                                          double x) {
1853         return weakCompareAndSwapLongAcquire(o, offset,
1854                                              Double.doubleToRawLongBits(expected),
1855                                              Double.doubleToRawLongBits(x));
1856     }
1857 
1858     @ForceInline
1859     public final boolean weakCompareAndSwapDoubleRelease(Object o, long offset,
1860                                                          double expected,
1861                                                          double x) {
1862         return weakCompareAndSwapLongRelease(o, offset,
1863                                              Double.doubleToRawLongBits(expected),
1864                                              Double.doubleToRawLongBits(x));
1865     }
1866 
1867     @ForceInline
1868     public final boolean weakCompareAndSwapDoubleVolatile(Object o, long offset,
1869                                                           double expected,
1870                                                           double x) {
1871         return weakCompareAndSwapLongVolatile(o, offset,
1872                                               Double.doubleToRawLongBits(expected),
1873                                               Double.doubleToRawLongBits(x));
1874     }
1875 
1876     /**
1877      * Atomically updates Java variable to {@code x} if it is currently
1878      * holding {@code expected}.
1879      *
1880      * <p>This operation has memory semantics of a {@code volatile} read
1881      * and write.  Corresponds to C11 atomic_compare_exchange_strong.
1882      *
1883      * @return {@code true} if successful
1884      */
1885     @HotSpotIntrinsicCandidate
1886     public final native boolean compareAndSwapLong(Object o, long offset,
1887                                                    long expected,
1888                                                    long x);
1889 
1890     @HotSpotIntrinsicCandidate
1891     public final native long compareAndExchangeLongVolatile(Object o, long offset,
1892                                                             long expected,
1893                                                             long x);
1894 
1895     @HotSpotIntrinsicCandidate
1896     public final long compareAndExchangeLongAcquire(Object o, long offset,
1897                                                            long expected,
1898                                                            long x) {
1899         return compareAndExchangeLongVolatile(o, offset, expected, x);
1900     }
1901 
1902     @HotSpotIntrinsicCandidate
1903     public final long compareAndExchangeLongRelease(Object o, long offset,
1904                                                            long expected,
1905                                                            long x) {
1906         return compareAndExchangeLongVolatile(o, offset, expected, x);
1907     }
1908 
1909     @HotSpotIntrinsicCandidate
1910     public final boolean weakCompareAndSwapLong(Object o, long offset,
1911                                                        long expected,
1912                                                        long x) {
1913         return compareAndSwapLong(o, offset, expected, x);
1914     }
1915 
1916     @HotSpotIntrinsicCandidate
1917     public final boolean weakCompareAndSwapLongAcquire(Object o, long offset,
1918                                                               long expected,
1919                                                               long x) {
1920         return compareAndSwapLong(o, offset, expected, x);
1921     }
1922 
1923     @HotSpotIntrinsicCandidate
1924     public final boolean weakCompareAndSwapLongRelease(Object o, long offset,
1925                                                               long expected,
1926                                                               long x) {
1927         return compareAndSwapLong(o, offset, expected, x);
1928     }
1929 
1930     @HotSpotIntrinsicCandidate
1931     public final boolean weakCompareAndSwapLongVolatile(Object o, long offset,
1932                                                               long expected,
1933                                                               long x) {
1934         return compareAndSwapLong(o, offset, expected, x);
1935     }
1936 
1937     /**
1938      * Fetches a reference value from a given Java variable, with volatile
1939      * load semantics. Otherwise identical to {@link #getObject(Object, long)}
1940      */
1941     @HotSpotIntrinsicCandidate
1942     public native Object getObjectVolatile(Object o, long offset);
1943 
1944     /**
1945      * Stores a reference value into a given Java variable, with
1946      * volatile store semantics. Otherwise identical to {@link #putObject(Object, long, Object)}
1947      */
1948     @HotSpotIntrinsicCandidate
1949     public native void    putObjectVolatile(Object o, long offset, Object x);
1950 
1951     /** Volatile version of {@link #getInt(Object, long)}  */
1952     @HotSpotIntrinsicCandidate
1953     public native int     getIntVolatile(Object o, long offset);
1954 
1955     /** Volatile version of {@link #putInt(Object, long, int)}  */
1956     @HotSpotIntrinsicCandidate
1957     public native void    putIntVolatile(Object o, long offset, int x);
1958 
1959     /** Volatile version of {@link #getBoolean(Object, long)}  */
1960     @HotSpotIntrinsicCandidate
1961     public native boolean getBooleanVolatile(Object o, long offset);
1962 
1963     /** Volatile version of {@link #putBoolean(Object, long, boolean)}  */
1964     @HotSpotIntrinsicCandidate
1965     public native void    putBooleanVolatile(Object o, long offset, boolean x);
1966 
1967     /** Volatile version of {@link #getByte(Object, long)}  */
1968     @HotSpotIntrinsicCandidate
1969     public native byte    getByteVolatile(Object o, long offset);
1970 
1971     /** Volatile version of {@link #putByte(Object, long, byte)}  */
1972     @HotSpotIntrinsicCandidate
1973     public native void    putByteVolatile(Object o, long offset, byte x);
1974 
1975     /** Volatile version of {@link #getShort(Object, long)}  */
1976     @HotSpotIntrinsicCandidate
1977     public native short   getShortVolatile(Object o, long offset);
1978 
1979     /** Volatile version of {@link #putShort(Object, long, short)}  */
1980     @HotSpotIntrinsicCandidate
1981     public native void    putShortVolatile(Object o, long offset, short x);
1982 
1983     /** Volatile version of {@link #getChar(Object, long)}  */
1984     @HotSpotIntrinsicCandidate
1985     public native char    getCharVolatile(Object o, long offset);
1986 
1987     /** Volatile version of {@link #putChar(Object, long, char)}  */
1988     @HotSpotIntrinsicCandidate
1989     public native void    putCharVolatile(Object o, long offset, char x);
1990 
1991     /** Volatile version of {@link #getLong(Object, long)}  */
1992     @HotSpotIntrinsicCandidate
1993     public native long    getLongVolatile(Object o, long offset);
1994 
1995     /** Volatile version of {@link #putLong(Object, long, long)}  */
1996     @HotSpotIntrinsicCandidate
1997     public native void    putLongVolatile(Object o, long offset, long x);
1998 
1999     /** Volatile version of {@link #getFloat(Object, long)}  */
2000     @HotSpotIntrinsicCandidate
2001     public native float   getFloatVolatile(Object o, long offset);
2002 
2003     /** Volatile version of {@link #putFloat(Object, long, float)}  */
2004     @HotSpotIntrinsicCandidate
2005     public native void    putFloatVolatile(Object o, long offset, float x);
2006 
2007     /** Volatile version of {@link #getDouble(Object, long)}  */
2008     @HotSpotIntrinsicCandidate
2009     public native double  getDoubleVolatile(Object o, long offset);
2010 
2011     /** Volatile version of {@link #putDouble(Object, long, double)}  */
2012     @HotSpotIntrinsicCandidate
2013     public native void    putDoubleVolatile(Object o, long offset, double x);
2014 
2015 
2016 
2017     /** Acquire version of {@link #getObjectVolatile(Object, long)} */
2018     @HotSpotIntrinsicCandidate
2019     public final Object getObjectAcquire(Object o, long offset) {
2020         return getObjectVolatile(o, offset);
2021     }
2022 
2023     /** Acquire version of {@link #getBooleanVolatile(Object, long)} */
2024     @HotSpotIntrinsicCandidate
2025     public final boolean getBooleanAcquire(Object o, long offset) {
2026         return getBooleanVolatile(o, offset);
2027     }
2028 
2029     /** Acquire version of {@link #getByteVolatile(Object, long)} */
2030     @HotSpotIntrinsicCandidate
2031     public final byte getByteAcquire(Object o, long offset) {
2032         return getByteVolatile(o, offset);
2033     }
2034 
2035     /** Acquire version of {@link #getShortVolatile(Object, long)} */
2036     @HotSpotIntrinsicCandidate
2037     public final short getShortAcquire(Object o, long offset) {
2038         return getShortVolatile(o, offset);
2039     }
2040 
2041     /** Acquire version of {@link #getCharVolatile(Object, long)} */
2042     @HotSpotIntrinsicCandidate
2043     public final char getCharAcquire(Object o, long offset) {
2044         return getCharVolatile(o, offset);
2045     }
2046 
2047     /** Acquire version of {@link #getIntVolatile(Object, long)} */
2048     @HotSpotIntrinsicCandidate
2049     public final int getIntAcquire(Object o, long offset) {
2050         return getIntVolatile(o, offset);
2051     }
2052 
2053     /** Acquire version of {@link #getFloatVolatile(Object, long)} */
2054     @HotSpotIntrinsicCandidate
2055     public final float getFloatAcquire(Object o, long offset) {
2056         return getFloatVolatile(o, offset);
2057     }
2058 
2059     /** Acquire version of {@link #getLongVolatile(Object, long)} */
2060     @HotSpotIntrinsicCandidate
2061     public final long getLongAcquire(Object o, long offset) {
2062         return getLongVolatile(o, offset);
2063     }
2064 
2065     /** Acquire version of {@link #getDoubleVolatile(Object, long)} */
2066     @HotSpotIntrinsicCandidate
2067     public final double getDoubleAcquire(Object o, long offset) {
2068         return getDoubleVolatile(o, offset);
2069     }
2070 
2071     /*
2072       * Versions of {@link #putObjectVolatile(Object, long, Object)}
2073       * that do not guarantee immediate visibility of the store to
2074       * other threads. This method is generally only useful if the
2075       * underlying field is a Java volatile (or if an array cell, one
2076       * that is otherwise only accessed using volatile accesses).
2077       *
2078       * Corresponds to C11 atomic_store_explicit(..., memory_order_release).
2079       */
2080 
2081     /** Release version of {@link #putObjectVolatile(Object, long, Object)} */
2082     @HotSpotIntrinsicCandidate
2083     public final void putObjectRelease(Object o, long offset, Object x) {
2084         putObjectVolatile(o, offset, x);
2085     }
2086 
2087     /** Release version of {@link #putBooleanVolatile(Object, long, boolean)} */
2088     @HotSpotIntrinsicCandidate
2089     public final void putBooleanRelease(Object o, long offset, boolean x) {
2090         putBooleanVolatile(o, offset, x);
2091     }
2092 
2093     /** Release version of {@link #putByteVolatile(Object, long, byte)} */
2094     @HotSpotIntrinsicCandidate
2095     public final void putByteRelease(Object o, long offset, byte x) {
2096         putByteVolatile(o, offset, x);
2097     }
2098 
2099     /** Release version of {@link #putShortVolatile(Object, long, short)} */
2100     @HotSpotIntrinsicCandidate
2101     public final void putShortRelease(Object o, long offset, short x) {
2102         putShortVolatile(o, offset, x);
2103     }
2104 
2105     /** Release version of {@link #putCharVolatile(Object, long, char)} */
2106     @HotSpotIntrinsicCandidate
2107     public final void putCharRelease(Object o, long offset, char x) {
2108         putCharVolatile(o, offset, x);
2109     }
2110 
2111     /** Release version of {@link #putIntVolatile(Object, long, int)} */
2112     @HotSpotIntrinsicCandidate
2113     public final void putIntRelease(Object o, long offset, int x) {
2114         putIntVolatile(o, offset, x);
2115     }
2116 
2117     /** Release version of {@link #putFloatVolatile(Object, long, float)} */
2118     @HotSpotIntrinsicCandidate
2119     public final void putFloatRelease(Object o, long offset, float x) {
2120         putFloatVolatile(o, offset, x);
2121     }
2122 
2123     /** Release version of {@link #putLongVolatile(Object, long, long)} */
2124     @HotSpotIntrinsicCandidate
2125     public final void putLongRelease(Object o, long offset, long x) {
2126         putLongVolatile(o, offset, x);
2127     }
2128 
2129     /** Release version of {@link #putDoubleVolatile(Object, long, double)} */
2130     @HotSpotIntrinsicCandidate
2131     public final void putDoubleRelease(Object o, long offset, double x) {
2132         putDoubleVolatile(o, offset, x);
2133     }
2134 
2135     // ------------------------------ Opaque --------------------------------------
2136 
2137     /** Opaque version of {@link #getObjectVolatile(Object, long)} */
2138     @HotSpotIntrinsicCandidate
2139     public final Object getObjectOpaque(Object o, long offset) {
2140         return getObjectVolatile(o, offset);
2141     }
2142 
2143     /** Opaque version of {@link #getBooleanVolatile(Object, long)} */
2144     @HotSpotIntrinsicCandidate
2145     public final boolean getBooleanOpaque(Object o, long offset) {
2146         return getBooleanVolatile(o, offset);
2147     }
2148 
2149     /** Opaque version of {@link #getByteVolatile(Object, long)} */
2150     @HotSpotIntrinsicCandidate
2151     public final byte getByteOpaque(Object o, long offset) {
2152         return getByteVolatile(o, offset);
2153     }
2154 
2155     /** Opaque version of {@link #getShortVolatile(Object, long)} */
2156     @HotSpotIntrinsicCandidate
2157     public final short getShortOpaque(Object o, long offset) {
2158         return getShortVolatile(o, offset);
2159     }
2160 
2161     /** Opaque version of {@link #getCharVolatile(Object, long)} */
2162     @HotSpotIntrinsicCandidate
2163     public final char getCharOpaque(Object o, long offset) {
2164         return getCharVolatile(o, offset);
2165     }
2166 
2167     /** Opaque version of {@link #getIntVolatile(Object, long)} */
2168     @HotSpotIntrinsicCandidate
2169     public final int getIntOpaque(Object o, long offset) {
2170         return getIntVolatile(o, offset);
2171     }
2172 
2173     /** Opaque version of {@link #getFloatVolatile(Object, long)} */
2174     @HotSpotIntrinsicCandidate
2175     public final float getFloatOpaque(Object o, long offset) {
2176         return getFloatVolatile(o, offset);
2177     }
2178 
2179     /** Opaque version of {@link #getLongVolatile(Object, long)} */
2180     @HotSpotIntrinsicCandidate
2181     public final long getLongOpaque(Object o, long offset) {
2182         return getLongVolatile(o, offset);
2183     }
2184 
2185     /** Opaque version of {@link #getDoubleVolatile(Object, long)} */
2186     @HotSpotIntrinsicCandidate
2187     public final double getDoubleOpaque(Object o, long offset) {
2188         return getDoubleVolatile(o, offset);
2189     }
2190 
2191     /** Opaque version of {@link #putObjectVolatile(Object, long, Object)} */
2192     @HotSpotIntrinsicCandidate
2193     public final void putObjectOpaque(Object o, long offset, Object x) {
2194         putObjectVolatile(o, offset, x);
2195     }
2196 
2197     /** Opaque version of {@link #putBooleanVolatile(Object, long, boolean)} */
2198     @HotSpotIntrinsicCandidate
2199     public final void putBooleanOpaque(Object o, long offset, boolean x) {
2200         putBooleanVolatile(o, offset, x);
2201     }
2202 
2203     /** Opaque version of {@link #putByteVolatile(Object, long, byte)} */
2204     @HotSpotIntrinsicCandidate
2205     public final void putByteOpaque(Object o, long offset, byte x) {
2206         putByteVolatile(o, offset, x);
2207     }
2208 
2209     /** Opaque version of {@link #putShortVolatile(Object, long, short)} */
2210     @HotSpotIntrinsicCandidate
2211     public final void putShortOpaque(Object o, long offset, short x) {
2212         putShortVolatile(o, offset, x);
2213     }
2214 
2215     /** Opaque version of {@link #putCharVolatile(Object, long, char)} */
2216     @HotSpotIntrinsicCandidate
2217     public final void putCharOpaque(Object o, long offset, char x) {
2218         putCharVolatile(o, offset, x);
2219     }
2220 
2221     /** Opaque version of {@link #putIntVolatile(Object, long, int)} */
2222     @HotSpotIntrinsicCandidate
2223     public final void putIntOpaque(Object o, long offset, int x) {
2224         putIntVolatile(o, offset, x);
2225     }
2226 
2227     /** Opaque version of {@link #putFloatVolatile(Object, long, float)} */
2228     @HotSpotIntrinsicCandidate
2229     public final void putFloatOpaque(Object o, long offset, float x) {
2230         putFloatVolatile(o, offset, x);
2231     }
2232 
2233     /** Opaque version of {@link #putLongVolatile(Object, long, long)} */
2234     @HotSpotIntrinsicCandidate
2235     public final void putLongOpaque(Object o, long offset, long x) {
2236         putLongVolatile(o, offset, x);
2237     }
2238 
2239     /** Opaque version of {@link #putDoubleVolatile(Object, long, double)} */
2240     @HotSpotIntrinsicCandidate
2241     public final void putDoubleOpaque(Object o, long offset, double x) {
2242         putDoubleVolatile(o, offset, x);
2243     }
2244 
2245     /**
2246      * Unblocks the given thread blocked on {@code park}, or, if it is
2247      * not blocked, causes the subsequent call to {@code park} not to
2248      * block.  Note: this operation is "unsafe" solely because the
2249      * caller must somehow ensure that the thread has not been
2250      * destroyed. Nothing special is usually required to ensure this
2251      * when called from Java (in which there will ordinarily be a live
2252      * reference to the thread) but this is not nearly-automatically
2253      * so when calling from native code.
2254      *
2255      * @param thread the thread to unpark.
2256      */
2257     @HotSpotIntrinsicCandidate
2258     public native void unpark(Object thread);
2259 
2260     /**
2261      * Blocks current thread, returning when a balancing
2262      * {@code unpark} occurs, or a balancing {@code unpark} has
2263      * already occurred, or the thread is interrupted, or, if not
2264      * absolute and time is not zero, the given time nanoseconds have
2265      * elapsed, or if absolute, the given deadline in milliseconds
2266      * since Epoch has passed, or spuriously (i.e., returning for no
2267      * "reason"). Note: This operation is in the Unsafe class only
2268      * because {@code unpark} is, so it would be strange to place it
2269      * elsewhere.
2270      */
2271     @HotSpotIntrinsicCandidate
2272     public native void park(boolean isAbsolute, long time);
2273 
2274     /**
2275      * Gets the load average in the system run queue assigned
2276      * to the available processors averaged over various periods of time.
2277      * This method retrieves the given {@code nelem} samples and
2278      * assigns to the elements of the given {@code loadavg} array.
2279      * The system imposes a maximum of 3 samples, representing
2280      * averages over the last 1,  5,  and  15 minutes, respectively.
2281      *
2282      * @param loadavg an array of double of size nelems
2283      * @param nelems the number of samples to be retrieved and
2284      *        must be 1 to 3.
2285      *
2286      * @return the number of samples actually retrieved; or -1
2287      *         if the load average is unobtainable.
2288      */
2289     public int getLoadAverage(double[] loadavg, int nelems) {
2290         if (nelems < 0 || nelems > 3 || nelems > loadavg.length) {
2291             throw new ArrayIndexOutOfBoundsException();
2292         }
2293 
2294         return getLoadAverage0(loadavg, nelems);
2295     }
2296 
2297     // The following contain CAS-based Java implementations used on
2298     // platforms not supporting native instructions
2299 
2300     /**
2301      * Atomically adds the given value to the current value of a field
2302      * or array element within the given object {@code o}
2303      * at the given {@code offset}.
2304      *
2305      * @param o object/array to update the field/element in
2306      * @param offset field/element offset
2307      * @param delta the value to add
2308      * @return the previous value
2309      * @since 1.8
2310      */
2311     @HotSpotIntrinsicCandidate
2312     public final int getAndAddInt(Object o, long offset, int delta) {
2313         int v;
2314         do {
2315             v = getIntVolatile(o, offset);
2316         } while (!weakCompareAndSwapIntVolatile(o, offset, v, v + delta));
2317         return v;
2318     }
2319 
2320     /**
2321      * Atomically adds the given value to the current value of a field
2322      * or array element within the given object {@code o}
2323      * at the given {@code offset}.
2324      *
2325      * @param o object/array to update the field/element in
2326      * @param offset field/element offset
2327      * @param delta the value to add
2328      * @return the previous value
2329      * @since 1.8
2330      */
2331     @HotSpotIntrinsicCandidate
2332     public final long getAndAddLong(Object o, long offset, long delta) {
2333         long v;
2334         do {
2335             v = getLongVolatile(o, offset);
2336         } while (!weakCompareAndSwapLongVolatile(o, offset, v, v + delta));
2337         return v;
2338     }
2339 
2340     @HotSpotIntrinsicCandidate
2341     public final byte getAndAddByte(Object o, long offset, byte delta) {
2342         byte v;
2343         do {
2344             v = getByteVolatile(o, offset);
2345         } while (!weakCompareAndSwapByteVolatile(o, offset, v, (byte) (v + delta)));
2346         return v;
2347     }
2348 
2349     @HotSpotIntrinsicCandidate
2350     public final short getAndAddShort(Object o, long offset, short delta) {
2351         short v;
2352         do {
2353             v = getShortVolatile(o, offset);
2354         } while (!weakCompareAndSwapShortVolatile(o, offset, v, (short) (v + delta)));
2355         return v;
2356     }
2357 
2358     @ForceInline
2359     public final char getAndAddChar(Object o, long offset, char delta) {
2360         return (char) getAndAddShort(o, offset, (short) delta);
2361     }
2362 
2363     @ForceInline
2364     public final float getAndAddFloat(Object o, long offset, float delta) {
2365         int expectedBits;
2366         float v;
2367         do {
2368             // Load and CAS with the raw bits to avoid issues with NaNs and
2369             // possible bit conversion from signaling NaNs to quiet NaNs that
2370             // may result in the loop not terminating.
2371             expectedBits = getIntVolatile(o, offset);
2372             v = Float.intBitsToFloat(expectedBits);
2373         } while (!weakCompareAndSwapIntVolatile(o, offset,
2374                                                 expectedBits, Float.floatToRawIntBits(v + delta)));
2375         return v;
2376     }
2377 
2378     @ForceInline
2379     public final double getAndAddDouble(Object o, long offset, double delta) {
2380         long expectedBits;
2381         double v;
2382         do {
2383             // Load and CAS with the raw bits to avoid issues with NaNs and
2384             // possible bit conversion from signaling NaNs to quiet NaNs that
2385             // may result in the loop not terminating.
2386             expectedBits = getLongVolatile(o, offset);
2387             v = Double.longBitsToDouble(expectedBits);
2388         } while (!weakCompareAndSwapLongVolatile(o, offset,
2389                                                  expectedBits, Double.doubleToRawLongBits(v + delta)));
2390         return v;
2391     }
2392 
2393     /**
2394      * Atomically exchanges the given value with the current value of
2395      * a field or array element within the given object {@code o}
2396      * at the given {@code offset}.
2397      *
2398      * @param o object/array to update the field/element in
2399      * @param offset field/element offset
2400      * @param newValue new value
2401      * @return the previous value
2402      * @since 1.8
2403      */
2404     @HotSpotIntrinsicCandidate
2405     public final int getAndSetInt(Object o, long offset, int newValue) {
2406         int v;
2407         do {
2408             v = getIntVolatile(o, offset);
2409         } while (!weakCompareAndSwapIntVolatile(o, offset, v, newValue));
2410         return v;
2411     }
2412 
2413     /**
2414      * Atomically exchanges the given value with the current value of
2415      * a field or array element within the given object {@code o}
2416      * at the given {@code offset}.
2417      *
2418      * @param o object/array to update the field/element in
2419      * @param offset field/element offset
2420      * @param newValue new value
2421      * @return the previous value
2422      * @since 1.8
2423      */
2424     @HotSpotIntrinsicCandidate
2425     public final long getAndSetLong(Object o, long offset, long newValue) {
2426         long v;
2427         do {
2428             v = getLongVolatile(o, offset);
2429         } while (!weakCompareAndSwapLongVolatile(o, offset, v, newValue));
2430         return v;
2431     }
2432 
2433     /**
2434      * Atomically exchanges the given reference value with the current
2435      * reference value of a field or array element within the given
2436      * object {@code o} at the given {@code offset}.
2437      *
2438      * @param o object/array to update the field/element in
2439      * @param offset field/element offset
2440      * @param newValue new value
2441      * @return the previous value
2442      * @since 1.8
2443      */
2444     @HotSpotIntrinsicCandidate
2445     public final Object getAndSetObject(Object o, long offset, Object newValue) {
2446         Object v;
2447         do {
2448             v = getObjectVolatile(o, offset);
2449         } while (!weakCompareAndSwapObjectVolatile(o, offset, v, newValue));
2450         return v;
2451     }
2452 
2453     @HotSpotIntrinsicCandidate
2454     public final byte getAndSetByte(Object o, long offset, byte newValue) {
2455         byte v;
2456         do {
2457             v = getByteVolatile(o, offset);
2458         } while (!weakCompareAndSwapByteVolatile(o, offset, v, newValue));
2459         return v;
2460     }
2461 
2462     @ForceInline
2463     public final boolean getAndSetBoolean(Object o, long offset, boolean newValue) {
2464         return byte2bool(getAndSetByte(o, offset, bool2byte(newValue)));
2465     }
2466 
2467     @HotSpotIntrinsicCandidate
2468     public final short getAndSetShort(Object o, long offset, short newValue) {
2469         short v;
2470         do {
2471             v = getShortVolatile(o, offset);
2472         } while (!weakCompareAndSwapShortVolatile(o, offset, v, newValue));
2473         return v;
2474     }
2475 
2476     @ForceInline
2477     public final char getAndSetChar(Object o, long offset, char newValue) {
2478         return s2c(getAndSetShort(o, offset, c2s(newValue)));
2479     }
2480 
2481     @ForceInline
2482     public final float getAndSetFloat(Object o, long offset, float newValue) {
2483         int v = getAndSetInt(o, offset, Float.floatToRawIntBits(newValue));
2484         return Float.intBitsToFloat(v);
2485     }
2486 
2487     @ForceInline
2488     public final double getAndSetDouble(Object o, long offset, double newValue) {
2489         long v = getAndSetLong(o, offset, Double.doubleToRawLongBits(newValue));
2490         return Double.longBitsToDouble(v);
2491     }
2492 
2493     /**
2494      * Ensures that loads before the fence will not be reordered with loads and
2495      * stores after the fence; a "LoadLoad plus LoadStore barrier".
2496      *
2497      * Corresponds to C11 atomic_thread_fence(memory_order_acquire)
2498      * (an "acquire fence").
2499      *
2500      * A pure LoadLoad fence is not provided, since the addition of LoadStore
2501      * is almost always desired, and most current hardware instructions that
2502      * provide a LoadLoad barrier also provide a LoadStore barrier for free.
2503      * @since 1.8
2504      */
2505     @HotSpotIntrinsicCandidate
2506     public native void loadFence();
2507 
2508     /**
2509      * Ensures that loads and stores before the fence will not be reordered with
2510      * stores after the fence; a "StoreStore plus LoadStore barrier".
2511      *
2512      * Corresponds to C11 atomic_thread_fence(memory_order_release)
2513      * (a "release fence").
2514      *
2515      * A pure StoreStore fence is not provided, since the addition of LoadStore
2516      * is almost always desired, and most current hardware instructions that
2517      * provide a StoreStore barrier also provide a LoadStore barrier for free.
2518      * @since 1.8
2519      */
2520     @HotSpotIntrinsicCandidate
2521     public native void storeFence();
2522 
2523     /**
2524      * Ensures that loads and stores before the fence will not be reordered
2525      * with loads and stores after the fence.  Implies the effects of both
2526      * loadFence() and storeFence(), and in addition, the effect of a StoreLoad
2527      * barrier.
2528      *
2529      * Corresponds to C11 atomic_thread_fence(memory_order_seq_cst).
2530      * @since 1.8
2531      */
2532     @HotSpotIntrinsicCandidate
2533     public native void fullFence();
2534 
2535     /**
2536      * Ensures that loads before the fence will not be reordered with
2537      * loads after the fence.
2538      */
2539     public final void loadLoadFence() {
2540         loadFence();
2541     }
2542 
2543     /**
2544      * Ensures that stores before the fence will not be reordered with
2545      * stores after the fence.
2546      */
2547     public final void storeStoreFence() {
2548         storeFence();
2549     }
2550 
2551 
2552     /**
2553      * Throws IllegalAccessError; for use by the VM for access control
2554      * error support.
2555      * @since 1.8
2556      */
2557     private static void throwIllegalAccessError() {
2558         throw new IllegalAccessError();
2559     }
2560 
2561     /**
2562      * @return Returns true if the native byte ordering of this
2563      * platform is big-endian, false if it is little-endian.
2564      */
2565     public final boolean isBigEndian() { return BE; }
2566 
2567     /**
2568      * @return Returns true if this platform is capable of performing
2569      * accesses at addresses which are not aligned for the type of the
2570      * primitive type being accessed, false otherwise.
2571      */
2572     public final boolean unalignedAccess() { return unalignedAccess; }
2573 
2574     /**
2575      * Fetches a value at some byte offset into a given Java object.
2576      * More specifically, fetches a value within the given object
2577      * <code>o</code> at the given offset, or (if <code>o</code> is
2578      * null) from the memory address whose numerical value is the
2579      * given offset.  <p>
2580      *
2581      * The specification of this method is the same as {@link
2582      * #getLong(Object, long)} except that the offset does not need to
2583      * have been obtained from {@link #objectFieldOffset} on the
2584      * {@link java.lang.reflect.Field} of some Java field.  The value
2585      * in memory is raw data, and need not correspond to any Java
2586      * variable.  Unless <code>o</code> is null, the value accessed
2587      * must be entirely within the allocated object.  The endianness
2588      * of the value in memory is the endianness of the native platform.
2589      *
2590      * <p> The read will be atomic with respect to the largest power
2591      * of two that divides the GCD of the offset and the storage size.
2592      * For example, getLongUnaligned will make atomic reads of 2-, 4-,
2593      * or 8-byte storage units if the offset is zero mod 2, 4, or 8,
2594      * respectively.  There are no other guarantees of atomicity.
2595      * <p>
2596      * 8-byte atomicity is only guaranteed on platforms on which
2597      * support atomic accesses to longs.
2598      *
2599      * @param o Java heap object in which the value resides, if any, else
2600      *        null
2601      * @param offset The offset in bytes from the start of the object
2602      * @return the value fetched from the indicated object
2603      * @throws RuntimeException No defined exceptions are thrown, not even
2604      *         {@link NullPointerException}
2605      * @since 9
2606      */
2607     @HotSpotIntrinsicCandidate
2608     public final long getLongUnaligned(Object o, long offset) {
2609         if ((offset & 7) == 0) {
2610             return getLong(o, offset);
2611         } else if ((offset & 3) == 0) {
2612             return makeLong(getInt(o, offset),
2613                             getInt(o, offset + 4));
2614         } else if ((offset & 1) == 0) {
2615             return makeLong(getShort(o, offset),
2616                             getShort(o, offset + 2),
2617                             getShort(o, offset + 4),
2618                             getShort(o, offset + 6));
2619         } else {
2620             return makeLong(getByte(o, offset),
2621                             getByte(o, offset + 1),
2622                             getByte(o, offset + 2),
2623                             getByte(o, offset + 3),
2624                             getByte(o, offset + 4),
2625                             getByte(o, offset + 5),
2626                             getByte(o, offset + 6),
2627                             getByte(o, offset + 7));
2628         }
2629     }
2630     /**
2631      * As {@link #getLongUnaligned(Object, long)} but with an
2632      * additional argument which specifies the endianness of the value
2633      * as stored in memory.
2634      *
2635      * @param o Java heap object in which the variable resides
2636      * @param offset The offset in bytes from the start of the object
2637      * @param bigEndian The endianness of the value
2638      * @return the value fetched from the indicated object
2639      * @since 9
2640      */
2641     public final long getLongUnaligned(Object o, long offset, boolean bigEndian) {
2642         return convEndian(bigEndian, getLongUnaligned(o, offset));
2643     }
2644 
2645     /** @see #getLongUnaligned(Object, long) */
2646     @HotSpotIntrinsicCandidate
2647     public final int getIntUnaligned(Object o, long offset) {
2648         if ((offset & 3) == 0) {
2649             return getInt(o, offset);
2650         } else if ((offset & 1) == 0) {
2651             return makeInt(getShort(o, offset),
2652                            getShort(o, offset + 2));
2653         } else {
2654             return makeInt(getByte(o, offset),
2655                            getByte(o, offset + 1),
2656                            getByte(o, offset + 2),
2657                            getByte(o, offset + 3));
2658         }
2659     }
2660     /** @see #getLongUnaligned(Object, long, boolean) */
2661     public final int getIntUnaligned(Object o, long offset, boolean bigEndian) {
2662         return convEndian(bigEndian, getIntUnaligned(o, offset));
2663     }
2664 
2665     /** @see #getLongUnaligned(Object, long) */
2666     @HotSpotIntrinsicCandidate
2667     public final short getShortUnaligned(Object o, long offset) {
2668         if ((offset & 1) == 0) {
2669             return getShort(o, offset);
2670         } else {
2671             return makeShort(getByte(o, offset),
2672                              getByte(o, offset + 1));
2673         }
2674     }
2675     /** @see #getLongUnaligned(Object, long, boolean) */
2676     public final short getShortUnaligned(Object o, long offset, boolean bigEndian) {
2677         return convEndian(bigEndian, getShortUnaligned(o, offset));
2678     }
2679 
2680     /** @see #getLongUnaligned(Object, long) */
2681     @HotSpotIntrinsicCandidate
2682     public final char getCharUnaligned(Object o, long offset) {
2683         if ((offset & 1) == 0) {
2684             return getChar(o, offset);
2685         } else {
2686             return (char)makeShort(getByte(o, offset),
2687                                    getByte(o, offset + 1));
2688         }
2689     }
2690 
2691     /** @see #getLongUnaligned(Object, long, boolean) */
2692     public final char getCharUnaligned(Object o, long offset, boolean bigEndian) {
2693         return convEndian(bigEndian, getCharUnaligned(o, offset));
2694     }
2695 
2696     /**
2697      * Stores a value at some byte offset into a given Java object.
2698      * <p>
2699      * The specification of this method is the same as {@link
2700      * #getLong(Object, long)} except that the offset does not need to
2701      * have been obtained from {@link #objectFieldOffset} on the
2702      * {@link java.lang.reflect.Field} of some Java field.  The value
2703      * in memory is raw data, and need not correspond to any Java
2704      * variable.  The endianness of the value in memory is the
2705      * endianness of the native platform.
2706      * <p>
2707      * The write will be atomic with respect to the largest power of
2708      * two that divides the GCD of the offset and the storage size.
2709      * For example, putLongUnaligned will make atomic writes of 2-, 4-,
2710      * or 8-byte storage units if the offset is zero mod 2, 4, or 8,
2711      * respectively.  There are no other guarantees of atomicity.
2712      * <p>
2713      * 8-byte atomicity is only guaranteed on platforms on which
2714      * support atomic accesses to longs.
2715      *
2716      * @param o Java heap object in which the value resides, if any, else
2717      *        null
2718      * @param offset The offset in bytes from the start of the object
2719      * @param x the value to store
2720      * @throws RuntimeException No defined exceptions are thrown, not even
2721      *         {@link NullPointerException}
2722      * @since 9
2723      */
2724     @HotSpotIntrinsicCandidate
2725     public final void putLongUnaligned(Object o, long offset, long x) {
2726         if ((offset & 7) == 0) {
2727             putLong(o, offset, x);
2728         } else if ((offset & 3) == 0) {
2729             putLongParts(o, offset,
2730                          (int)(x >> 0),
2731                          (int)(x >>> 32));
2732         } else if ((offset & 1) == 0) {
2733             putLongParts(o, offset,
2734                          (short)(x >>> 0),
2735                          (short)(x >>> 16),
2736                          (short)(x >>> 32),
2737                          (short)(x >>> 48));
2738         } else {
2739             putLongParts(o, offset,
2740                          (byte)(x >>> 0),
2741                          (byte)(x >>> 8),
2742                          (byte)(x >>> 16),
2743                          (byte)(x >>> 24),
2744                          (byte)(x >>> 32),
2745                          (byte)(x >>> 40),
2746                          (byte)(x >>> 48),
2747                          (byte)(x >>> 56));
2748         }
2749     }
2750 
2751     /**
2752      * As {@link #putLongUnaligned(Object, long, long)} but with an additional
2753      * argument which specifies the endianness of the value as stored in memory.
2754      * @param o Java heap object in which the value resides
2755      * @param offset The offset in bytes from the start of the object
2756      * @param x the value to store
2757      * @param bigEndian The endianness of the value
2758      * @throws RuntimeException No defined exceptions are thrown, not even
2759      *         {@link NullPointerException}
2760      * @since 9
2761      */
2762     public final void putLongUnaligned(Object o, long offset, long x, boolean bigEndian) {
2763         putLongUnaligned(o, offset, convEndian(bigEndian, x));
2764     }
2765 
2766     /** @see #putLongUnaligned(Object, long, long) */
2767     @HotSpotIntrinsicCandidate
2768     public final void putIntUnaligned(Object o, long offset, int x) {
2769         if ((offset & 3) == 0) {
2770             putInt(o, offset, x);
2771         } else if ((offset & 1) == 0) {
2772             putIntParts(o, offset,
2773                         (short)(x >> 0),
2774                         (short)(x >>> 16));
2775         } else {
2776             putIntParts(o, offset,
2777                         (byte)(x >>> 0),
2778                         (byte)(x >>> 8),
2779                         (byte)(x >>> 16),
2780                         (byte)(x >>> 24));
2781         }
2782     }
2783     /** @see #putLongUnaligned(Object, long, long, boolean) */
2784     public final void putIntUnaligned(Object o, long offset, int x, boolean bigEndian) {
2785         putIntUnaligned(o, offset, convEndian(bigEndian, x));
2786     }
2787 
2788     /** @see #putLongUnaligned(Object, long, long) */
2789     @HotSpotIntrinsicCandidate
2790     public final void putShortUnaligned(Object o, long offset, short x) {
2791         if ((offset & 1) == 0) {
2792             putShort(o, offset, x);
2793         } else {
2794             putShortParts(o, offset,
2795                           (byte)(x >>> 0),
2796                           (byte)(x >>> 8));
2797         }
2798     }
2799     /** @see #putLongUnaligned(Object, long, long, boolean) */
2800     public final void putShortUnaligned(Object o, long offset, short x, boolean bigEndian) {
2801         putShortUnaligned(o, offset, convEndian(bigEndian, x));
2802     }
2803 
2804     /** @see #putLongUnaligned(Object, long, long) */
2805     @HotSpotIntrinsicCandidate
2806     public final void putCharUnaligned(Object o, long offset, char x) {
2807         putShortUnaligned(o, offset, (short)x);
2808     }
2809     /** @see #putLongUnaligned(Object, long, long, boolean) */
2810     public final void putCharUnaligned(Object o, long offset, char x, boolean bigEndian) {
2811         putCharUnaligned(o, offset, convEndian(bigEndian, x));
2812     }
2813 
2814     // JVM interface methods
2815     // BE is true iff the native endianness of this platform is big.
2816     private static final boolean BE = theUnsafe.isBigEndian0();
2817 
2818     // unalignedAccess is true iff this platform can perform unaligned accesses.
2819     private static final boolean unalignedAccess = theUnsafe.unalignedAccess0();
2820 
2821     private static int pickPos(int top, int pos) { return BE ? top - pos : pos; }
2822 
2823     // These methods construct integers from bytes.  The byte ordering
2824     // is the native endianness of this platform.
2825     private static long makeLong(byte i0, byte i1, byte i2, byte i3, byte i4, byte i5, byte i6, byte i7) {
2826         return ((toUnsignedLong(i0) << pickPos(56, 0))
2827               | (toUnsignedLong(i1) << pickPos(56, 8))
2828               | (toUnsignedLong(i2) << pickPos(56, 16))
2829               | (toUnsignedLong(i3) << pickPos(56, 24))
2830               | (toUnsignedLong(i4) << pickPos(56, 32))
2831               | (toUnsignedLong(i5) << pickPos(56, 40))
2832               | (toUnsignedLong(i6) << pickPos(56, 48))
2833               | (toUnsignedLong(i7) << pickPos(56, 56)));
2834     }
2835     private static long makeLong(short i0, short i1, short i2, short i3) {
2836         return ((toUnsignedLong(i0) << pickPos(48, 0))
2837               | (toUnsignedLong(i1) << pickPos(48, 16))
2838               | (toUnsignedLong(i2) << pickPos(48, 32))
2839               | (toUnsignedLong(i3) << pickPos(48, 48)));
2840     }
2841     private static long makeLong(int i0, int i1) {
2842         return (toUnsignedLong(i0) << pickPos(32, 0))
2843              | (toUnsignedLong(i1) << pickPos(32, 32));
2844     }
2845     private static int makeInt(short i0, short i1) {
2846         return (toUnsignedInt(i0) << pickPos(16, 0))
2847              | (toUnsignedInt(i1) << pickPos(16, 16));
2848     }
2849     private static int makeInt(byte i0, byte i1, byte i2, byte i3) {
2850         return ((toUnsignedInt(i0) << pickPos(24, 0))
2851               | (toUnsignedInt(i1) << pickPos(24, 8))
2852               | (toUnsignedInt(i2) << pickPos(24, 16))
2853               | (toUnsignedInt(i3) << pickPos(24, 24)));
2854     }
2855     private static short makeShort(byte i0, byte i1) {
2856         return (short)((toUnsignedInt(i0) << pickPos(8, 0))
2857                      | (toUnsignedInt(i1) << pickPos(8, 8)));
2858     }
2859 
2860     private static byte  pick(byte  le, byte  be) { return BE ? be : le; }
2861     private static short pick(short le, short be) { return BE ? be : le; }
2862     private static int   pick(int   le, int   be) { return BE ? be : le; }
2863 
2864     // These methods write integers to memory from smaller parts
2865     // provided by their caller.  The ordering in which these parts
2866     // are written is the native endianness of this platform.
2867     private void putLongParts(Object o, long offset, byte i0, byte i1, byte i2, byte i3, byte i4, byte i5, byte i6, byte i7) {
2868         putByte(o, offset + 0, pick(i0, i7));
2869         putByte(o, offset + 1, pick(i1, i6));
2870         putByte(o, offset + 2, pick(i2, i5));
2871         putByte(o, offset + 3, pick(i3, i4));
2872         putByte(o, offset + 4, pick(i4, i3));
2873         putByte(o, offset + 5, pick(i5, i2));
2874         putByte(o, offset + 6, pick(i6, i1));
2875         putByte(o, offset + 7, pick(i7, i0));
2876     }
2877     private void putLongParts(Object o, long offset, short i0, short i1, short i2, short i3) {
2878         putShort(o, offset + 0, pick(i0, i3));
2879         putShort(o, offset + 2, pick(i1, i2));
2880         putShort(o, offset + 4, pick(i2, i1));
2881         putShort(o, offset + 6, pick(i3, i0));
2882     }
2883     private void putLongParts(Object o, long offset, int i0, int i1) {
2884         putInt(o, offset + 0, pick(i0, i1));
2885         putInt(o, offset + 4, pick(i1, i0));
2886     }
2887     private void putIntParts(Object o, long offset, short i0, short i1) {
2888         putShort(o, offset + 0, pick(i0, i1));
2889         putShort(o, offset + 2, pick(i1, i0));
2890     }
2891     private void putIntParts(Object o, long offset, byte i0, byte i1, byte i2, byte i3) {
2892         putByte(o, offset + 0, pick(i0, i3));
2893         putByte(o, offset + 1, pick(i1, i2));
2894         putByte(o, offset + 2, pick(i2, i1));
2895         putByte(o, offset + 3, pick(i3, i0));
2896     }
2897     private void putShortParts(Object o, long offset, byte i0, byte i1) {
2898         putByte(o, offset + 0, pick(i0, i1));
2899         putByte(o, offset + 1, pick(i1, i0));
2900     }
2901 
2902     // Zero-extend an integer
2903     private static int toUnsignedInt(byte n)    { return n & 0xff; }
2904     private static int toUnsignedInt(short n)   { return n & 0xffff; }
2905     private static long toUnsignedLong(byte n)  { return n & 0xffl; }
2906     private static long toUnsignedLong(short n) { return n & 0xffffl; }
2907     private static long toUnsignedLong(int n)   { return n & 0xffffffffl; }
2908 
2909     // Maybe byte-reverse an integer
2910     private static char convEndian(boolean big, char n)   { return big == BE ? n : Character.reverseBytes(n); }
2911     private static short convEndian(boolean big, short n) { return big == BE ? n : Short.reverseBytes(n)    ; }
2912     private static int convEndian(boolean big, int n)     { return big == BE ? n : Integer.reverseBytes(n)  ; }
2913     private static long convEndian(boolean big, long n)   { return big == BE ? n : Long.reverseBytes(n)     ; }
2914 
2915 
2916 
2917     private native long allocateMemory0(long bytes);
2918     private native long reallocateMemory0(long address, long bytes);
2919     private native void freeMemory0(long address);
2920     private native void setMemory0(Object o, long offset, long bytes, byte value);
2921     @HotSpotIntrinsicCandidate
2922     private native void copyMemory0(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes);
2923     private native void copySwapMemory0(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes, long elemSize);
2924     private native long objectFieldOffset0(Field f);
2925     private native long staticFieldOffset0(Field f);
2926     private native Object staticFieldBase0(Field f);
2927     private native boolean shouldBeInitialized0(Class<?> c);
2928     private native void ensureClassInitialized0(Class<?> c);
2929     private native int arrayBaseOffset0(Class<?> arrayClass);
2930     private native int arrayIndexScale0(Class<?> arrayClass);
2931     private native int addressSize0();
2932     private native Class<?> defineAnonymousClass0(Class<?> hostClass, byte[] data, Object[] cpPatches);
2933     private native int getLoadAverage0(double[] loadavg, int nelems);
2934     private native boolean unalignedAccess0();
2935     private native boolean isBigEndian0();
2936 }