1 /*
   2  * Copyright (c) 2000, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package jdk.internal.misc;
  27 
  28 import jdk.internal.HotSpotIntrinsicCandidate;
  29 import jdk.internal.vm.annotation.ForceInline;
  30 
  31 import java.lang.reflect.Field;
  32 import java.security.ProtectionDomain;
  33 
  34 
  35 /**
  36  * A collection of methods for performing low-level, unsafe operations.
  37  * Although the class and all methods are public, use of this class is
  38  * limited because only trusted code can obtain instances of it.
  39  *
  40  * <em>Note:</em> It is the resposibility of the caller to make sure
  41  * arguments are checked before methods of this class are
  42  * called. While some rudimentary checks are performed on the input,
  43  * the checks are best effort and when performance is an overriding
  44  * priority, as when methods of this class are optimized by the
  45  * runtime compiler, some or all checks (if any) may be elided. Hence,
  46  * the caller must not rely on the checks and corresponding
  47  * exceptions!
  48  *
  49  * @author John R. Rose
  50  * @see #getUnsafe
  51  */
  52 
  53 public final class Unsafe {
  54 
  55     private static native void registerNatives();
  56     static {
  57         registerNatives();
  58     }
  59 
  60     private Unsafe() {}
  61 
  62     private static final Unsafe theUnsafe = new Unsafe();
  63 
  64     /**
  65      * Provides the caller with the capability of performing unsafe
  66      * operations.
  67      *
  68      * <p>The returned {@code Unsafe} object should be carefully guarded
  69      * by the caller, since it can be used to read and write data at arbitrary
  70      * memory addresses.  It must never be passed to untrusted code.
  71      *
  72      * <p>Most methods in this class are very low-level, and correspond to a
  73      * small number of hardware instructions (on typical machines).  Compilers
  74      * are encouraged to optimize these methods accordingly.
  75      *
  76      * <p>Here is a suggested idiom for using unsafe operations:
  77      *
  78      * <pre> {@code
  79      * class MyTrustedClass {
  80      *   private static final Unsafe unsafe = Unsafe.getUnsafe();
  81      *   ...
  82      *   private long myCountAddress = ...;
  83      *   public int getCount() { return unsafe.getByte(myCountAddress); }
  84      * }}</pre>
  85      *
  86      * (It may assist compilers to make the local variable {@code final}.)
  87      */
  88     public static Unsafe getUnsafe() {
  89         return theUnsafe;
  90     }
  91 
  92     /// peek and poke operations
  93     /// (compilers should optimize these to memory ops)
  94 
  95     // These work on object fields in the Java heap.
  96     // They will not work on elements of packed arrays.
  97 
  98     /**
  99      * Fetches a value from a given Java variable.
 100      * More specifically, fetches a field or array element within the given
 101      * object {@code o} at the given offset, or (if {@code o} is null)
 102      * from the memory address whose numerical value is the given offset.
 103      * <p>
 104      * The results are undefined unless one of the following cases is true:
 105      * <ul>
 106      * <li>The offset was obtained from {@link #objectFieldOffset} on
 107      * the {@link java.lang.reflect.Field} of some Java field and the object
 108      * referred to by {@code o} is of a class compatible with that
 109      * field's class.
 110      *
 111      * <li>The offset and object reference {@code o} (either null or
 112      * non-null) were both obtained via {@link #staticFieldOffset}
 113      * and {@link #staticFieldBase} (respectively) from the
 114      * reflective {@link Field} representation of some Java field.
 115      *
 116      * <li>The object referred to by {@code o} is an array, and the offset
 117      * is an integer of the form {@code B+N*S}, where {@code N} is
 118      * a valid index into the array, and {@code B} and {@code S} are
 119      * the values obtained by {@link #arrayBaseOffset} and {@link
 120      * #arrayIndexScale} (respectively) from the array's class.  The value
 121      * referred to is the {@code N}<em>th</em> element of the array.
 122      *
 123      * </ul>
 124      * <p>
 125      * If one of the above cases is true, the call references a specific Java
 126      * variable (field or array element).  However, the results are undefined
 127      * if that variable is not in fact of the type returned by this method.
 128      * <p>
 129      * This method refers to a variable by means of two parameters, and so
 130      * it provides (in effect) a <em>double-register</em> addressing mode
 131      * for Java variables.  When the object reference is null, this method
 132      * uses its offset as an absolute address.  This is similar in operation
 133      * to methods such as {@link #getInt(long)}, which provide (in effect) a
 134      * <em>single-register</em> addressing mode for non-Java variables.
 135      * However, because Java variables may have a different layout in memory
 136      * from non-Java variables, programmers should not assume that these
 137      * two addressing modes are ever equivalent.  Also, programmers should
 138      * remember that offsets from the double-register addressing mode cannot
 139      * be portably confused with longs used in the single-register addressing
 140      * mode.
 141      *
 142      * @param o Java heap object in which the variable resides, if any, else
 143      *        null
 144      * @param offset indication of where the variable resides in a Java heap
 145      *        object, if any, else a memory address locating the variable
 146      *        statically
 147      * @return the value fetched from the indicated Java variable
 148      * @throws RuntimeException No defined exceptions are thrown, not even
 149      *         {@link NullPointerException}
 150      */
 151     @HotSpotIntrinsicCandidate
 152     public native int getInt(Object o, long offset);
 153 
 154     /**
 155      * Stores a value into a given Java variable.
 156      * <p>
 157      * The first two parameters are interpreted exactly as with
 158      * {@link #getInt(Object, long)} to refer to a specific
 159      * Java variable (field or array element).  The given value
 160      * is stored into that variable.
 161      * <p>
 162      * The variable must be of the same type as the method
 163      * parameter {@code x}.
 164      *
 165      * @param o Java heap object in which the variable resides, if any, else
 166      *        null
 167      * @param offset indication of where the variable resides in a Java heap
 168      *        object, if any, else a memory address locating the variable
 169      *        statically
 170      * @param x the value to store into the indicated Java variable
 171      * @throws RuntimeException No defined exceptions are thrown, not even
 172      *         {@link NullPointerException}
 173      */
 174     @HotSpotIntrinsicCandidate
 175     public native void putInt(Object o, long offset, int x);
 176 
 177     /**
 178      * Fetches a reference value from a given Java variable.
 179      * @see #getInt(Object, long)
 180      */
 181     @HotSpotIntrinsicCandidate
 182     public native Object getObject(Object o, long offset);
 183 
 184     /**
 185      * Stores a reference value into a given Java variable.
 186      * <p>
 187      * Unless the reference {@code x} being stored is either null
 188      * or matches the field type, the results are undefined.
 189      * If the reference {@code o} is non-null, card marks or
 190      * other store barriers for that object (if the VM requires them)
 191      * are updated.
 192      * @see #putInt(Object, long, int)
 193      */
 194     @HotSpotIntrinsicCandidate
 195     public native void putObject(Object o, long offset, Object x);
 196 
 197     /** @see #getInt(Object, long) */
 198     @HotSpotIntrinsicCandidate
 199     public native boolean getBoolean(Object o, long offset);
 200 
 201     /** @see #putInt(Object, long, int) */
 202     @HotSpotIntrinsicCandidate
 203     public native void    putBoolean(Object o, long offset, boolean x);
 204 
 205     /** @see #getInt(Object, long) */
 206     @HotSpotIntrinsicCandidate
 207     public native byte    getByte(Object o, long offset);
 208 
 209     /** @see #putInt(Object, long, int) */
 210     @HotSpotIntrinsicCandidate
 211     public native void    putByte(Object o, long offset, byte x);
 212 
 213     /** @see #getInt(Object, long) */
 214     @HotSpotIntrinsicCandidate
 215     public native short   getShort(Object o, long offset);
 216 
 217     /** @see #putInt(Object, long, int) */
 218     @HotSpotIntrinsicCandidate
 219     public native void    putShort(Object o, long offset, short x);
 220 
 221     /** @see #getInt(Object, long) */
 222     @HotSpotIntrinsicCandidate
 223     public native char    getChar(Object o, long offset);
 224 
 225     /** @see #putInt(Object, long, int) */
 226     @HotSpotIntrinsicCandidate
 227     public native void    putChar(Object o, long offset, char x);
 228 
 229     /** @see #getInt(Object, long) */
 230     @HotSpotIntrinsicCandidate
 231     public native long    getLong(Object o, long offset);
 232 
 233     /** @see #putInt(Object, long, int) */
 234     @HotSpotIntrinsicCandidate
 235     public native void    putLong(Object o, long offset, long x);
 236 
 237     /** @see #getInt(Object, long) */
 238     @HotSpotIntrinsicCandidate
 239     public native float   getFloat(Object o, long offset);
 240 
 241     /** @see #putInt(Object, long, int) */
 242     @HotSpotIntrinsicCandidate
 243     public native void    putFloat(Object o, long offset, float x);
 244 
 245     /** @see #getInt(Object, long) */
 246     @HotSpotIntrinsicCandidate
 247     public native double  getDouble(Object o, long offset);
 248 
 249     /** @see #putInt(Object, long, int) */
 250     @HotSpotIntrinsicCandidate
 251     public native void    putDouble(Object o, long offset, double x);
 252 
 253     /**
 254      * Fetches a native pointer from a given memory address.  If the address is
 255      * zero, or does not point into a block obtained from {@link
 256      * #allocateMemory}, the results are undefined.
 257      *
 258      * <p>If the native pointer is less than 64 bits wide, it is extended as
 259      * an unsigned number to a Java long.  The pointer may be indexed by any
 260      * given byte offset, simply by adding that offset (as a simple integer) to
 261      * the long representing the pointer.  The number of bytes actually read
 262      * from the target address may be determined by consulting {@link
 263      * #addressSize}.
 264      *
 265      * @see #allocateMemory
 266      * @see #getInt(Object, long)
 267      */
 268     @ForceInline
 269     public long getAddress(Object o, long offset) {
 270         if (ADDRESS_SIZE == 4) {
 271             return Integer.toUnsignedLong(getInt(o, offset));
 272         } else {
 273             return getLong(o, offset);
 274         }
 275     }
 276 
 277     /**
 278      * Stores a native pointer into a given memory address.  If the address is
 279      * zero, or does not point into a block obtained from {@link
 280      * #allocateMemory}, the results are undefined.
 281      *
 282      * <p>The number of bytes actually written at the target address may be
 283      * determined by consulting {@link #addressSize}.
 284      *
 285      * @see #allocateMemory
 286      * @see #putInt(Object, long, int)
 287      */
 288     @ForceInline
 289     public void putAddress(Object o, long offset, long x) {
 290         if (ADDRESS_SIZE == 4) {
 291             putInt(o, offset, (int)x);
 292         } else {
 293             putLong(o, offset, x);
 294         }
 295     }
 296 
 297     // These read VM internal data.
 298 
 299     /**
 300      * Fetches an uncompressed reference value from a given native variable
 301      * ignoring the VM's compressed references mode.
 302      *
 303      * @param address a memory address locating the variable
 304      * @return the value fetched from the indicated native variable
 305      */
 306     public native Object getUncompressedObject(long address);
 307 
 308     // These work on values in the C heap.
 309 
 310     /**
 311      * Fetches a value from a given memory address.  If the address is zero, or
 312      * does not point into a block obtained from {@link #allocateMemory}, the
 313      * results are undefined.
 314      *
 315      * @see #allocateMemory
 316      */
 317     @ForceInline
 318     public byte getByte(long address) {
 319         return getByte(null, address);
 320     }
 321 
 322     /**
 323      * Stores a value into a given memory address.  If the address is zero, or
 324      * does not point into a block obtained from {@link #allocateMemory}, the
 325      * results are undefined.
 326      *
 327      * @see #getByte(long)
 328      */
 329     @ForceInline
 330     public void putByte(long address, byte x) {
 331         putByte(null, address, x);
 332     }
 333 
 334     /** @see #getByte(long) */
 335     @ForceInline
 336     public short getShort(long address) {
 337         return getShort(null, address);
 338     }
 339 
 340     /** @see #putByte(long, byte) */
 341     @ForceInline
 342     public void putShort(long address, short x) {
 343         putShort(null, address, x);
 344     }
 345 
 346     /** @see #getByte(long) */
 347     @ForceInline
 348     public char getChar(long address) {
 349         return getChar(null, address);
 350     }
 351 
 352     /** @see #putByte(long, byte) */
 353     @ForceInline
 354     public void putChar(long address, char x) {
 355         putChar(null, address, x);
 356     }
 357 
 358     /** @see #getByte(long) */
 359     @ForceInline
 360     public int getInt(long address) {
 361         return getInt(null, address);
 362     }
 363 
 364     /** @see #putByte(long, byte) */
 365     @ForceInline
 366     public void putInt(long address, int x) {
 367         putInt(null, address, x);
 368     }
 369 
 370     /** @see #getByte(long) */
 371     @ForceInline
 372     public long getLong(long address) {
 373         return getLong(null, address);
 374     }
 375 
 376     /** @see #putByte(long, byte) */
 377     @ForceInline
 378     public void putLong(long address, long x) {
 379         putLong(null, address, x);
 380     }
 381 
 382     /** @see #getByte(long) */
 383     @ForceInline
 384     public float getFloat(long address) {
 385         return getFloat(null, address);
 386     }
 387 
 388     /** @see #putByte(long, byte) */
 389     @ForceInline
 390     public void putFloat(long address, float x) {
 391         putFloat(null, address, x);
 392     }
 393 
 394     /** @see #getByte(long) */
 395     @ForceInline
 396     public double getDouble(long address) {
 397         return getDouble(null, address);
 398     }
 399 
 400     /** @see #putByte(long, byte) */
 401     @ForceInline
 402     public void putDouble(long address, double x) {
 403         putDouble(null, address, x);
 404     }
 405 
 406     /** @see #getAddress(Object, long) */
 407     @ForceInline
 408     public long getAddress(long address) {
 409         return getAddress(null, address);
 410     }
 411 
 412     /** @see #putAddress(Object, long, long) */
 413     @ForceInline
 414     public void putAddress(long address, long x) {
 415         putAddress(null, address, x);
 416     }
 417 
 418 
 419 
 420     /// helper methods for validating various types of objects/values
 421 
 422     /**
 423      * Create an exception reflecting that some of the input was invalid
 424      *
 425      * <em>Note:</em> It is the resposibility of the caller to make
 426      * sure arguments are checked before the methods are called. While
 427      * some rudimentary checks are performed on the input, the checks
 428      * are best effort and when performance is an overriding priority,
 429      * as when methods of this class are optimized by the runtime
 430      * compiler, some or all checks (if any) may be elided. Hence, the
 431      * caller must not rely on the checks and corresponding
 432      * exceptions!
 433      *
 434      * @return an exception object
 435      */
 436     private RuntimeException invalidInput() {
 437         return new IllegalArgumentException();
 438     }
 439 
 440     /**
 441      * Check if a value is 32-bit clean (32 MSB are all zero)
 442      *
 443      * @param value the 64-bit value to check
 444      *
 445      * @return true if the value is 32-bit clean
 446      */
 447     private boolean is32BitClean(long value) {
 448         return value >>> 32 == 0;
 449     }
 450 
 451     /**
 452      * Check the validity of a size (the equivalent of a size_t)
 453      *
 454      * @throws RuntimeException if the size is invalid
 455      *         (<em>Note:</em> after optimization, invalid inputs may
 456      *         go undetected, which will lead to unpredictable
 457      *         behavior)
 458      */
 459     private void checkSize(long size) {
 460         if (ADDRESS_SIZE == 4) {
 461             // Note: this will also check for negative sizes
 462             if (!is32BitClean(size)) {
 463                 throw invalidInput();
 464             }
 465         } else if (size < 0) {
 466             throw invalidInput();
 467         }
 468     }
 469 
 470     /**
 471      * Check the validity of a native address (the equivalent of void*)
 472      *
 473      * @throws RuntimeException if the address is invalid
 474      *         (<em>Note:</em> after optimization, invalid inputs may
 475      *         go undetected, which will lead to unpredictable
 476      *         behavior)
 477      */
 478     private void checkNativeAddress(long address) {
 479         if (ADDRESS_SIZE == 4) {
 480             // Accept both zero and sign extended pointers. A valid
 481             // pointer will, after the +1 below, either have produced
 482             // the value 0x0 or 0x1. Masking off the low bit allows
 483             // for testing against 0.
 484             if ((((address >> 32) + 1) & ~1) != 0) {
 485                 throw invalidInput();
 486             }
 487         }
 488     }
 489 
 490     /**
 491      * Check the validity of an offset, relative to a base object
 492      *
 493      * @param o the base object
 494      * @param offset the offset to check
 495      *
 496      * @throws RuntimeException if the size is invalid
 497      *         (<em>Note:</em> after optimization, invalid inputs may
 498      *         go undetected, which will lead to unpredictable
 499      *         behavior)
 500      */
 501     private void checkOffset(Object o, long offset) {
 502         if (ADDRESS_SIZE == 4) {
 503             // Note: this will also check for negative offsets
 504             if (!is32BitClean(offset)) {
 505                 throw invalidInput();
 506             }
 507         } else if (offset < 0) {
 508             throw invalidInput();
 509         }
 510     }
 511 
 512     /**
 513      * Check the validity of a double-register pointer
 514      *
 515      * Note: This code deliberately does *not* check for NPE for (at
 516      * least) three reasons:
 517      *
 518      * 1) NPE is not just NULL/0 - there is a range of values all
 519      * resulting in an NPE, which is not trivial to check for
 520      *
 521      * 2) It is the responsibility of the callers of Unsafe methods
 522      * to verify the input, so throwing an exception here is not really
 523      * useful - passing in a NULL pointer is a critical error and the
 524      * must not expect an exception to be thrown anyway.
 525      *
 526      * 3) the actual operations will detect NULL pointers anyway by
 527      * means of traps and signals (like SIGSEGV).
 528      *
 529      * @param o Java heap object, or null
 530      * @param offset indication of where the variable resides in a Java heap
 531      *        object, if any, else a memory address locating the variable
 532      *        statically
 533      *
 534      * @throws RuntimeException if the pointer is invalid
 535      *         (<em>Note:</em> after optimization, invalid inputs may
 536      *         go undetected, which will lead to unpredictable
 537      *         behavior)
 538      */
 539     private void checkPointer(Object o, long offset) {
 540         if (o == null) {
 541             checkNativeAddress(offset);
 542         } else {
 543             checkOffset(o, offset);
 544         }
 545     }
 546 
 547     /**
 548      * Check if a type is a primitive array type
 549      *
 550      * @param c the type to check
 551      *
 552      * @return true if the type is a primitive array type
 553      */
 554     private void checkPrimitiveArray(Class<?> c) {
 555         Class<?> componentType = c.getComponentType();
 556         if (componentType == null || !componentType.isPrimitive()) {
 557             throw invalidInput();
 558         }
 559     }
 560 
 561     /**
 562      * Check that a pointer is a valid primitive array type pointer
 563      *
 564      * Note: pointers off-heap are considered to be primitive arrays
 565      *
 566      * @throws RuntimeException if the pointer is invalid
 567      *         (<em>Note:</em> after optimization, invalid inputs may
 568      *         go undetected, which will lead to unpredictable
 569      *         behavior)
 570      */
 571     private void checkPrimitivePointer(Object o, long offset) {
 572         checkPointer(o, offset);
 573 
 574         if (o != null) {
 575             // If on heap, it it must be a primitive array
 576             checkPrimitiveArray(o.getClass());
 577         }
 578     }
 579 
 580 
 581     /// wrappers for malloc, realloc, free:
 582 
 583     /**
 584      * Allocates a new block of native memory, of the given size in bytes.  The
 585      * contents of the memory are uninitialized; they will generally be
 586      * garbage.  The resulting native pointer will never be zero, and will be
 587      * aligned for all value types.  Dispose of this memory by calling {@link
 588      * #freeMemory}, or resize it with {@link #reallocateMemory}.
 589      *
 590      * <em>Note:</em> It is the resposibility of the caller to make
 591      * sure arguments are checked before the methods are called. While
 592      * some rudimentary checks are performed on the input, the checks
 593      * are best effort and when performance is an overriding priority,
 594      * as when methods of this class are optimized by the runtime
 595      * compiler, some or all checks (if any) may be elided. Hence, the
 596      * caller must not rely on the checks and corresponding
 597      * exceptions!
 598      *
 599      * @throws RuntimeException if the size is negative or too large
 600      *         for the native size_t type
 601      *
 602      * @throws OutOfMemoryError if the allocation is refused by the system
 603      *
 604      * @see #getByte(long)
 605      * @see #putByte(long, byte)
 606      */
 607     public long allocateMemory(long bytes) {
 608         allocateMemoryChecks(bytes);
 609 
 610         if (bytes == 0) {
 611             return 0;
 612         }
 613 
 614         long p = allocateMemory0(bytes);
 615         if (p == 0) {
 616             throw new OutOfMemoryError();
 617         }
 618 
 619         return p;
 620     }
 621 
 622     /**
 623      * Validate the arguments to allocateMemory
 624      *
 625      * @throws RuntimeException if the arguments are invalid
 626      *         (<em>Note:</em> after optimization, invalid inputs may
 627      *         go undetected, which will lead to unpredictable
 628      *         behavior)
 629      */
 630     private void allocateMemoryChecks(long bytes) {
 631         checkSize(bytes);
 632     }
 633 
 634     /**
 635      * Resizes a new block of native memory, to the given size in bytes.  The
 636      * contents of the new block past the size of the old block are
 637      * uninitialized; they will generally be garbage.  The resulting native
 638      * pointer will be zero if and only if the requested size is zero.  The
 639      * resulting native pointer will be aligned for all value types.  Dispose
 640      * of this memory by calling {@link #freeMemory}, or resize it with {@link
 641      * #reallocateMemory}.  The address passed to this method may be null, in
 642      * which case an allocation will be performed.
 643      *
 644      * <em>Note:</em> It is the resposibility of the caller to make
 645      * sure arguments are checked before the methods are called. While
 646      * some rudimentary checks are performed on the input, the checks
 647      * are best effort and when performance is an overriding priority,
 648      * as when methods of this class are optimized by the runtime
 649      * compiler, some or all checks (if any) may be elided. Hence, the
 650      * caller must not rely on the checks and corresponding
 651      * exceptions!
 652      *
 653      * @throws RuntimeException if the size is negative or too large
 654      *         for the native size_t type
 655      *
 656      * @throws OutOfMemoryError if the allocation is refused by the system
 657      *
 658      * @see #allocateMemory
 659      */
 660     public long reallocateMemory(long address, long bytes) {
 661         reallocateMemoryChecks(address, bytes);
 662 
 663         if (bytes == 0) {
 664             freeMemory(address);
 665             return 0;
 666         }
 667 
 668         long p = (address == 0) ? allocateMemory0(bytes) : reallocateMemory0(address, bytes);
 669         if (p == 0) {
 670             throw new OutOfMemoryError();
 671         }
 672 
 673         return p;
 674     }
 675 
 676     /**
 677      * Validate the arguments to reallocateMemory
 678      *
 679      * @throws RuntimeException if the arguments are invalid
 680      *         (<em>Note:</em> after optimization, invalid inputs may
 681      *         go undetected, which will lead to unpredictable
 682      *         behavior)
 683      */
 684     private void reallocateMemoryChecks(long address, long bytes) {
 685         checkPointer(null, address);
 686         checkSize(bytes);
 687     }
 688 
 689     /**
 690      * Sets all bytes in a given block of memory to a fixed value
 691      * (usually zero).
 692      *
 693      * <p>This method determines a block's base address by means of two parameters,
 694      * and so it provides (in effect) a <em>double-register</em> addressing mode,
 695      * as discussed in {@link #getInt(Object,long)}.  When the object reference is null,
 696      * the offset supplies an absolute base address.
 697      *
 698      * <p>The stores are in coherent (atomic) units of a size determined
 699      * by the address and length parameters.  If the effective address and
 700      * length are all even modulo 8, the stores take place in 'long' units.
 701      * If the effective address and length are (resp.) even modulo 4 or 2,
 702      * the stores take place in units of 'int' or 'short'.
 703      *
 704      * <em>Note:</em> It is the resposibility of the caller to make
 705      * sure arguments are checked before the methods are called. While
 706      * some rudimentary checks are performed on the input, the checks
 707      * are best effort and when performance is an overriding priority,
 708      * as when methods of this class are optimized by the runtime
 709      * compiler, some or all checks (if any) may be elided. Hence, the
 710      * caller must not rely on the checks and corresponding
 711      * exceptions!
 712      *
 713      * @throws RuntimeException if any of the arguments is invalid
 714      *
 715      * @since 1.7
 716      */
 717     public void setMemory(Object o, long offset, long bytes, byte value) {
 718         setMemoryChecks(o, offset, bytes, value);
 719 
 720         if (bytes == 0) {
 721             return;
 722         }
 723 
 724         setMemory0(o, offset, bytes, value);
 725     }
 726 
 727     /**
 728      * Sets all bytes in a given block of memory to a fixed value
 729      * (usually zero).  This provides a <em>single-register</em> addressing mode,
 730      * as discussed in {@link #getInt(Object,long)}.
 731      *
 732      * <p>Equivalent to {@code setMemory(null, address, bytes, value)}.
 733      */
 734     public void setMemory(long address, long bytes, byte value) {
 735         setMemory(null, address, bytes, value);
 736     }
 737 
 738     /**
 739      * Validate the arguments to setMemory
 740      *
 741      * @throws RuntimeException if the arguments are invalid
 742      *         (<em>Note:</em> after optimization, invalid inputs may
 743      *         go undetected, which will lead to unpredictable
 744      *         behavior)
 745      */
 746     private void setMemoryChecks(Object o, long offset, long bytes, byte value) {
 747         checkPrimitivePointer(o, offset);
 748         checkSize(bytes);
 749     }
 750 
 751     /**
 752      * Sets all bytes in a given block of memory to a copy of another
 753      * block.
 754      *
 755      * <p>This method determines each block's base address by means of two parameters,
 756      * and so it provides (in effect) a <em>double-register</em> addressing mode,
 757      * as discussed in {@link #getInt(Object,long)}.  When the object reference is null,
 758      * the offset supplies an absolute base address.
 759      *
 760      * <p>The transfers are in coherent (atomic) units of a size determined
 761      * by the address and length parameters.  If the effective addresses and
 762      * length are all even modulo 8, the transfer takes place in 'long' units.
 763      * If the effective addresses and length are (resp.) even modulo 4 or 2,
 764      * the transfer takes place in units of 'int' or 'short'.
 765      *
 766      * <em>Note:</em> It is the resposibility of the caller to make
 767      * sure arguments are checked before the methods are called. While
 768      * some rudimentary checks are performed on the input, the checks
 769      * are best effort and when performance is an overriding priority,
 770      * as when methods of this class are optimized by the runtime
 771      * compiler, some or all checks (if any) may be elided. Hence, the
 772      * caller must not rely on the checks and corresponding
 773      * exceptions!
 774      *
 775      * @throws RuntimeException if any of the arguments is invalid
 776      *
 777      * @since 1.7
 778      */
 779     public void copyMemory(Object srcBase, long srcOffset,
 780                            Object destBase, long destOffset,
 781                            long bytes) {
 782         copyMemoryChecks(srcBase, srcOffset, destBase, destOffset, bytes);
 783 
 784         if (bytes == 0) {
 785             return;
 786         }
 787 
 788         copyMemory0(srcBase, srcOffset, destBase, destOffset, bytes);
 789     }
 790 
 791     /**
 792      * Sets all bytes in a given block of memory to a copy of another
 793      * block.  This provides a <em>single-register</em> addressing mode,
 794      * as discussed in {@link #getInt(Object,long)}.
 795      *
 796      * Equivalent to {@code copyMemory(null, srcAddress, null, destAddress, bytes)}.
 797      */
 798     public void copyMemory(long srcAddress, long destAddress, long bytes) {
 799         copyMemory(null, srcAddress, null, destAddress, bytes);
 800     }
 801 
 802     /**
 803      * Validate the arguments to copyMemory
 804      *
 805      * @throws RuntimeException if any of the arguments is invalid
 806      *         (<em>Note:</em> after optimization, invalid inputs may
 807      *         go undetected, which will lead to unpredictable
 808      *         behavior)
 809      */
 810     private void copyMemoryChecks(Object srcBase, long srcOffset,
 811                                   Object destBase, long destOffset,
 812                                   long bytes) {
 813         checkSize(bytes);
 814         checkPrimitivePointer(srcBase, srcOffset);
 815         checkPrimitivePointer(destBase, destOffset);
 816     }
 817 
 818     /**
 819      * Copies all elements from one block of memory to another block,
 820      * *unconditionally* byte swapping the elements on the fly.
 821      *
 822      * <p>This method determines each block's base address by means of two parameters,
 823      * and so it provides (in effect) a <em>double-register</em> addressing mode,
 824      * as discussed in {@link #getInt(Object,long)}.  When the object reference is null,
 825      * the offset supplies an absolute base address.
 826      *
 827      * <em>Note:</em> It is the resposibility of the caller to make
 828      * sure arguments are checked before the methods are called. While
 829      * some rudimentary checks are performed on the input, the checks
 830      * are best effort and when performance is an overriding priority,
 831      * as when methods of this class are optimized by the runtime
 832      * compiler, some or all checks (if any) may be elided. Hence, the
 833      * caller must not rely on the checks and corresponding
 834      * exceptions!
 835      *
 836      * @throws RuntimeException if any of the arguments is invalid
 837      *
 838      * @since 9
 839      */
 840     public void copySwapMemory(Object srcBase, long srcOffset,
 841                                Object destBase, long destOffset,
 842                                long bytes, long elemSize) {
 843         copySwapMemoryChecks(srcBase, srcOffset, destBase, destOffset, bytes, elemSize);
 844 
 845         if (bytes == 0) {
 846             return;
 847         }
 848 
 849         copySwapMemory0(srcBase, srcOffset, destBase, destOffset, bytes, elemSize);
 850     }
 851 
 852     private void copySwapMemoryChecks(Object srcBase, long srcOffset,
 853                                       Object destBase, long destOffset,
 854                                       long bytes, long elemSize) {
 855         checkSize(bytes);
 856 
 857         if (elemSize != 2 && elemSize != 4 && elemSize != 8) {
 858             throw invalidInput();
 859         }
 860         if (bytes % elemSize != 0) {
 861             throw invalidInput();
 862         }
 863 
 864         checkPrimitivePointer(srcBase, srcOffset);
 865         checkPrimitivePointer(destBase, destOffset);
 866     }
 867 
 868    /**
 869      * Copies all elements from one block of memory to another block, byte swapping the
 870      * elements on the fly.
 871      *
 872      * This provides a <em>single-register</em> addressing mode, as
 873      * discussed in {@link #getInt(Object,long)}.
 874      *
 875      * Equivalent to {@code copySwapMemory(null, srcAddress, null, destAddress, bytes, elemSize)}.
 876      */
 877     public void copySwapMemory(long srcAddress, long destAddress, long bytes, long elemSize) {
 878         copySwapMemory(null, srcAddress, null, destAddress, bytes, elemSize);
 879     }
 880 
 881     /**
 882      * Disposes of a block of native memory, as obtained from {@link
 883      * #allocateMemory} or {@link #reallocateMemory}.  The address passed to
 884      * this method may be null, in which case no action is taken.
 885      *
 886      * <em>Note:</em> It is the resposibility of the caller to make
 887      * sure arguments are checked before the methods are called. While
 888      * some rudimentary checks are performed on the input, the checks
 889      * are best effort and when performance is an overriding priority,
 890      * as when methods of this class are optimized by the runtime
 891      * compiler, some or all checks (if any) may be elided. Hence, the
 892      * caller must not rely on the checks and corresponding
 893      * exceptions!
 894      *
 895      * @throws RuntimeException if any of the arguments is invalid
 896      *
 897      * @see #allocateMemory
 898      */
 899     public void freeMemory(long address) {
 900         freeMemoryChecks(address);
 901 
 902         if (address == 0) {
 903             return;
 904         }
 905 
 906         freeMemory0(address);
 907     }
 908 
 909     /**
 910      * Validate the arguments to freeMemory
 911      *
 912      * @throws RuntimeException if the arguments are invalid
 913      *         (<em>Note:</em> after optimization, invalid inputs may
 914      *         go undetected, which will lead to unpredictable
 915      *         behavior)
 916      */
 917     private void freeMemoryChecks(long address) {
 918         checkPointer(null, address);
 919     }
 920 
 921     /// random queries
 922 
 923     /**
 924      * This constant differs from all results that will ever be returned from
 925      * {@link #staticFieldOffset}, {@link #objectFieldOffset},
 926      * or {@link #arrayBaseOffset}.
 927      */
 928     public static final int INVALID_FIELD_OFFSET = -1;
 929 
 930     /**
 931      * Reports the location of a given field in the storage allocation of its
 932      * class.  Do not expect to perform any sort of arithmetic on this offset;
 933      * it is just a cookie which is passed to the unsafe heap memory accessors.
 934      *
 935      * <p>Any given field will always have the same offset and base, and no
 936      * two distinct fields of the same class will ever have the same offset
 937      * and base.
 938      *
 939      * <p>As of 1.4.1, offsets for fields are represented as long values,
 940      * although the Sun JVM does not use the most significant 32 bits.
 941      * However, JVM implementations which store static fields at absolute
 942      * addresses can use long offsets and null base pointers to express
 943      * the field locations in a form usable by {@link #getInt(Object,long)}.
 944      * Therefore, code which will be ported to such JVMs on 64-bit platforms
 945      * must preserve all bits of static field offsets.
 946      * @see #getInt(Object, long)
 947      */
 948     public long objectFieldOffset(Field f) {
 949         if (f == null) {
 950             throw new NullPointerException();
 951         }
 952 
 953         return objectFieldOffset0(f);
 954     }
 955 
 956     /**
 957      * Reports the location of a given static field, in conjunction with {@link
 958      * #staticFieldBase}.
 959      * <p>Do not expect to perform any sort of arithmetic on this offset;
 960      * it is just a cookie which is passed to the unsafe heap memory accessors.
 961      *
 962      * <p>Any given field will always have the same offset, and no two distinct
 963      * fields of the same class will ever have the same offset.
 964      *
 965      * <p>As of 1.4.1, offsets for fields are represented as long values,
 966      * although the Sun JVM does not use the most significant 32 bits.
 967      * It is hard to imagine a JVM technology which needs more than
 968      * a few bits to encode an offset within a non-array object,
 969      * However, for consistency with other methods in this class,
 970      * this method reports its result as a long value.
 971      * @see #getInt(Object, long)
 972      */
 973     public long staticFieldOffset(Field f) {
 974         if (f == null) {
 975             throw new NullPointerException();
 976         }
 977 
 978         return staticFieldOffset0(f);
 979     }
 980 
 981     /**
 982      * Reports the location of a given static field, in conjunction with {@link
 983      * #staticFieldOffset}.
 984      * <p>Fetch the base "Object", if any, with which static fields of the
 985      * given class can be accessed via methods like {@link #getInt(Object,
 986      * long)}.  This value may be null.  This value may refer to an object
 987      * which is a "cookie", not guaranteed to be a real Object, and it should
 988      * not be used in any way except as argument to the get and put routines in
 989      * this class.
 990      */
 991     public Object staticFieldBase(Field f) {
 992         if (f == null) {
 993             throw new NullPointerException();
 994         }
 995 
 996         return staticFieldBase0(f);
 997     }
 998 
 999     /**
1000      * Detects if the given class may need to be initialized. This is often
1001      * needed in conjunction with obtaining the static field base of a
1002      * class.
1003      * @return false only if a call to {@code ensureClassInitialized} would have no effect
1004      */
1005     public boolean shouldBeInitialized(Class<?> c) {
1006         if (c == null) {
1007             throw new NullPointerException();
1008         }
1009 
1010         return shouldBeInitialized0(c);
1011     }
1012 
1013     /**
1014      * Ensures the given class has been initialized. This is often
1015      * needed in conjunction with obtaining the static field base of a
1016      * class.
1017      */
1018     public void ensureClassInitialized(Class<?> c) {
1019         if (c == null) {
1020             throw new NullPointerException();
1021         }
1022 
1023         ensureClassInitialized0(c);
1024     }
1025 
1026     /**
1027      * Reports the offset of the first element in the storage allocation of a
1028      * given array class.  If {@link #arrayIndexScale} returns a non-zero value
1029      * for the same class, you may use that scale factor, together with this
1030      * base offset, to form new offsets to access elements of arrays of the
1031      * given class.
1032      *
1033      * @see #getInt(Object, long)
1034      * @see #putInt(Object, long, int)
1035      */
1036     public int arrayBaseOffset(Class<?> arrayClass) {
1037         if (arrayClass == null) {
1038             throw new NullPointerException();
1039         }
1040 
1041         return arrayBaseOffset0(arrayClass);
1042     }
1043 
1044 
1045     /** The value of {@code arrayBaseOffset(boolean[].class)} */
1046     public static final int ARRAY_BOOLEAN_BASE_OFFSET
1047             = theUnsafe.arrayBaseOffset(boolean[].class);
1048 
1049     /** The value of {@code arrayBaseOffset(byte[].class)} */
1050     public static final int ARRAY_BYTE_BASE_OFFSET
1051             = theUnsafe.arrayBaseOffset(byte[].class);
1052 
1053     /** The value of {@code arrayBaseOffset(short[].class)} */
1054     public static final int ARRAY_SHORT_BASE_OFFSET
1055             = theUnsafe.arrayBaseOffset(short[].class);
1056 
1057     /** The value of {@code arrayBaseOffset(char[].class)} */
1058     public static final int ARRAY_CHAR_BASE_OFFSET
1059             = theUnsafe.arrayBaseOffset(char[].class);
1060 
1061     /** The value of {@code arrayBaseOffset(int[].class)} */
1062     public static final int ARRAY_INT_BASE_OFFSET
1063             = theUnsafe.arrayBaseOffset(int[].class);
1064 
1065     /** The value of {@code arrayBaseOffset(long[].class)} */
1066     public static final int ARRAY_LONG_BASE_OFFSET
1067             = theUnsafe.arrayBaseOffset(long[].class);
1068 
1069     /** The value of {@code arrayBaseOffset(float[].class)} */
1070     public static final int ARRAY_FLOAT_BASE_OFFSET
1071             = theUnsafe.arrayBaseOffset(float[].class);
1072 
1073     /** The value of {@code arrayBaseOffset(double[].class)} */
1074     public static final int ARRAY_DOUBLE_BASE_OFFSET
1075             = theUnsafe.arrayBaseOffset(double[].class);
1076 
1077     /** The value of {@code arrayBaseOffset(Object[].class)} */
1078     public static final int ARRAY_OBJECT_BASE_OFFSET
1079             = theUnsafe.arrayBaseOffset(Object[].class);
1080 
1081     /**
1082      * Reports the scale factor for addressing elements in the storage
1083      * allocation of a given array class.  However, arrays of "narrow" types
1084      * will generally not work properly with accessors like {@link
1085      * #getByte(Object, long)}, so the scale factor for such classes is reported
1086      * as zero.
1087      *
1088      * @see #arrayBaseOffset
1089      * @see #getInt(Object, long)
1090      * @see #putInt(Object, long, int)
1091      */
1092     public int arrayIndexScale(Class<?> arrayClass) {
1093         if (arrayClass == null) {
1094             throw new NullPointerException();
1095         }
1096 
1097         return arrayIndexScale0(arrayClass);
1098     }
1099 
1100 
1101     /** The value of {@code arrayIndexScale(boolean[].class)} */
1102     public static final int ARRAY_BOOLEAN_INDEX_SCALE
1103             = theUnsafe.arrayIndexScale(boolean[].class);
1104 
1105     /** The value of {@code arrayIndexScale(byte[].class)} */
1106     public static final int ARRAY_BYTE_INDEX_SCALE
1107             = theUnsafe.arrayIndexScale(byte[].class);
1108 
1109     /** The value of {@code arrayIndexScale(short[].class)} */
1110     public static final int ARRAY_SHORT_INDEX_SCALE
1111             = theUnsafe.arrayIndexScale(short[].class);
1112 
1113     /** The value of {@code arrayIndexScale(char[].class)} */
1114     public static final int ARRAY_CHAR_INDEX_SCALE
1115             = theUnsafe.arrayIndexScale(char[].class);
1116 
1117     /** The value of {@code arrayIndexScale(int[].class)} */
1118     public static final int ARRAY_INT_INDEX_SCALE
1119             = theUnsafe.arrayIndexScale(int[].class);
1120 
1121     /** The value of {@code arrayIndexScale(long[].class)} */
1122     public static final int ARRAY_LONG_INDEX_SCALE
1123             = theUnsafe.arrayIndexScale(long[].class);
1124 
1125     /** The value of {@code arrayIndexScale(float[].class)} */
1126     public static final int ARRAY_FLOAT_INDEX_SCALE
1127             = theUnsafe.arrayIndexScale(float[].class);
1128 
1129     /** The value of {@code arrayIndexScale(double[].class)} */
1130     public static final int ARRAY_DOUBLE_INDEX_SCALE
1131             = theUnsafe.arrayIndexScale(double[].class);
1132 
1133     /** The value of {@code arrayIndexScale(Object[].class)} */
1134     public static final int ARRAY_OBJECT_INDEX_SCALE
1135             = theUnsafe.arrayIndexScale(Object[].class);
1136 
1137     /**
1138      * Reports the size in bytes of a native pointer, as stored via {@link
1139      * #putAddress}.  This value will be either 4 or 8.  Note that the sizes of
1140      * other primitive types (as stored in native memory blocks) is determined
1141      * fully by their information content.
1142      */
1143     public int addressSize() {
1144         return ADDRESS_SIZE;
1145     }
1146 
1147     /** The value of {@code addressSize()} */
1148     public static final int ADDRESS_SIZE = theUnsafe.addressSize0();
1149 
1150     /**
1151      * Reports the size in bytes of a native memory page (whatever that is).
1152      * This value will always be a power of two.
1153      */
1154     public native int pageSize();
1155 
1156 
1157     /// random trusted operations from JNI:
1158 
1159     /**
1160      * Tells the VM to define a class, without security checks.  By default, the
1161      * class loader and protection domain come from the caller's class.
1162      */
1163     public Class<?> defineClass(String name, byte[] b, int off, int len,
1164                                 ClassLoader loader,
1165                                 ProtectionDomain protectionDomain) {
1166         if (b == null) {
1167             throw new NullPointerException();
1168         }
1169         if (len < 0) {
1170             throw new ArrayIndexOutOfBoundsException();
1171         }
1172 
1173         return defineClass0(name, b, off, len, loader, protectionDomain);
1174     }
1175 
1176     public native Class<?> defineClass0(String name, byte[] b, int off, int len,
1177                                         ClassLoader loader,
1178                                         ProtectionDomain protectionDomain);
1179 
1180     /**
1181      * Defines a class but does not make it known to the class loader or system dictionary.
1182      * <p>
1183      * For each CP entry, the corresponding CP patch must either be null or have
1184      * the a format that matches its tag:
1185      * <ul>
1186      * <li>Integer, Long, Float, Double: the corresponding wrapper object type from java.lang
1187      * <li>Utf8: a string (must have suitable syntax if used as signature or name)
1188      * <li>Class: any java.lang.Class object
1189      * <li>String: any object (not just a java.lang.String)
1190      * <li>InterfaceMethodRef: (NYI) a method handle to invoke on that call site's arguments
1191      * </ul>
1192      * @param hostClass context for linkage, access control, protection domain, and class loader
1193      * @param data      bytes of a class file
1194      * @param cpPatches where non-null entries exist, they replace corresponding CP entries in data
1195      */
1196     public Class<?> defineAnonymousClass(Class<?> hostClass, byte[] data, Object[] cpPatches) {
1197         if (hostClass == null || data == null) {
1198             throw new NullPointerException();
1199         }
1200 
1201         return defineAnonymousClass0(hostClass, data, cpPatches);
1202     }
1203 
1204     /**
1205      * Allocates an instance but does not run any constructor.
1206      * Initializes the class if it has not yet been.
1207      */
1208     @HotSpotIntrinsicCandidate
1209     public native Object allocateInstance(Class<?> cls)
1210         throws InstantiationException;
1211 
1212     /**
1213      * Allocates an array of a given type, but does not do zeroing.
1214      * <p>
1215      * This method should only be used in the very rare cases where a high-performance code
1216      * overwrites the destination array completely, and compilers cannot assist in zeroing elimination.
1217      * In an overwhelming majority of cases, a normal Java allocation should be used instead.
1218      * <p>
1219      * Users of this method are <b>required</b> to overwrite the initial (garbage) array contents
1220      * before allowing untrusted code, or code in other threads, to observe the reference
1221      * to the newly allocated array. In addition, the publication of the array reference must be
1222      * safe according to the Java Memory Model requirements.
1223      * <p>
1224      * The safest approach to deal with an uninitialized array is to keep the reference to it in local
1225      * variable at least until the initialization is complete, and then publish it <b>once</b>, either
1226      * by writing it to a <em>volatile</em> field, or storing it into a <em>final</em> field in constructor,
1227      * or issuing a {@link #storeFence} before publishing the reference.
1228      * <p>
1229      * @implnote This method can only allocate primitive arrays, to avoid garbage reference
1230      * elements that could break heap integrity.
1231      *
1232      * @param componentType array component type to allocate
1233      * @param length array size to allocate
1234      * @throws IllegalArgumentException if component type is null, or not a primitive class;
1235      *                                  or the length is negative
1236      */
1237     public Object allocateUninitializedArray(Class<?> componentType, int length) {
1238        if (componentType == null) {
1239            throw new IllegalArgumentException("Component type is null");
1240        }
1241        if (!componentType.isPrimitive()) {
1242            throw new IllegalArgumentException("Component type is not primitive");
1243        }
1244        if (length < 0) {
1245            throw new IllegalArgumentException("Negative length");
1246        }
1247        return allocateUninitializedArray0(componentType, length);
1248     }
1249 
1250     @HotSpotIntrinsicCandidate
1251     private Object allocateUninitializedArray0(Class<?> componentType, int length) {
1252        // These fallbacks provide zeroed arrays, but intrinsic is not required to
1253        // return the zeroed arrays.
1254        if (componentType == byte.class)    return new byte[length];
1255        if (componentType == boolean.class) return new boolean[length];
1256        if (componentType == short.class)   return new short[length];
1257        if (componentType == char.class)    return new char[length];
1258        if (componentType == int.class)     return new int[length];
1259        if (componentType == float.class)   return new float[length];
1260        if (componentType == long.class)    return new long[length];
1261        if (componentType == double.class)  return new double[length];
1262        return null;
1263     }
1264 
1265     /** Throws the exception without telling the verifier. */
1266     public native void throwException(Throwable ee);
1267 
1268     /**
1269      * Atomically updates Java variable to {@code x} if it is currently
1270      * holding {@code expected}.
1271      *
1272      * <p>This operation has memory semantics of a {@code volatile} read
1273      * and write.  Corresponds to C11 atomic_compare_exchange_strong.
1274      *
1275      * @return {@code true} if successful
1276      */
1277     @HotSpotIntrinsicCandidate
1278     public final native boolean compareAndSwapObject(Object o, long offset,
1279                                                      Object expected,
1280                                                      Object x);
1281 
1282     @HotSpotIntrinsicCandidate
1283     public final native Object compareAndExchangeObjectVolatile(Object o, long offset,
1284                                                                 Object expected,
1285                                                                 Object x);
1286 
1287     @HotSpotIntrinsicCandidate
1288     public final Object compareAndExchangeObjectAcquire(Object o, long offset,
1289                                                                Object expected,
1290                                                                Object x) {
1291         return compareAndExchangeObjectVolatile(o, offset, expected, x);
1292     }
1293 
1294     @HotSpotIntrinsicCandidate
1295     public final Object compareAndExchangeObjectRelease(Object o, long offset,
1296                                                                Object expected,
1297                                                                Object x) {
1298         return compareAndExchangeObjectVolatile(o, offset, expected, x);
1299     }
1300 
1301     @HotSpotIntrinsicCandidate
1302     public final boolean weakCompareAndSwapObject(Object o, long offset,
1303                                                          Object expected,
1304                                                          Object x) {
1305         return compareAndSwapObject(o, offset, expected, x);
1306     }
1307 
1308     @HotSpotIntrinsicCandidate
1309     public final boolean weakCompareAndSwapObjectAcquire(Object o, long offset,
1310                                                                 Object expected,
1311                                                                 Object x) {
1312         return compareAndSwapObject(o, offset, expected, x);
1313     }
1314 
1315     @HotSpotIntrinsicCandidate
1316     public final boolean weakCompareAndSwapObjectRelease(Object o, long offset,
1317                                                                 Object expected,
1318                                                                 Object x) {
1319         return compareAndSwapObject(o, offset, expected, x);
1320     }
1321 
1322     @HotSpotIntrinsicCandidate
1323     public final boolean weakCompareAndSwapObjectVolatile(Object o, long offset,
1324                                                                 Object expected,
1325                                                                 Object x) {
1326         return compareAndSwapObject(o, offset, expected, x);
1327     }
1328 
1329     /**
1330      * Atomically updates Java variable to {@code x} if it is currently
1331      * holding {@code expected}.
1332      *
1333      * <p>This operation has memory semantics of a {@code volatile} read
1334      * and write.  Corresponds to C11 atomic_compare_exchange_strong.
1335      *
1336      * @return {@code true} if successful
1337      */
1338     @HotSpotIntrinsicCandidate
1339     public final native boolean compareAndSwapInt(Object o, long offset,
1340                                                   int expected,
1341                                                   int x);
1342 
1343     @HotSpotIntrinsicCandidate
1344     public final native int compareAndExchangeIntVolatile(Object o, long offset,
1345                                                           int expected,
1346                                                           int x);
1347 
1348     @HotSpotIntrinsicCandidate
1349     public final int compareAndExchangeIntAcquire(Object o, long offset,
1350                                                          int expected,
1351                                                          int x) {
1352         return compareAndExchangeIntVolatile(o, offset, expected, x);
1353     }
1354 
1355     @HotSpotIntrinsicCandidate
1356     public final int compareAndExchangeIntRelease(Object o, long offset,
1357                                                          int expected,
1358                                                          int x) {
1359         return compareAndExchangeIntVolatile(o, offset, expected, x);
1360     }
1361 
1362     @HotSpotIntrinsicCandidate
1363     public final boolean weakCompareAndSwapInt(Object o, long offset,
1364                                                       int expected,
1365                                                       int x) {
1366         return compareAndSwapInt(o, offset, expected, x);
1367     }
1368 
1369     @HotSpotIntrinsicCandidate
1370     public final boolean weakCompareAndSwapIntAcquire(Object o, long offset,
1371                                                              int expected,
1372                                                              int x) {
1373         return compareAndSwapInt(o, offset, expected, x);
1374     }
1375 
1376     @HotSpotIntrinsicCandidate
1377     public final boolean weakCompareAndSwapIntRelease(Object o, long offset,
1378                                                              int expected,
1379                                                              int x) {
1380         return compareAndSwapInt(o, offset, expected, x);
1381     }
1382 
1383     @HotSpotIntrinsicCandidate
1384     public final boolean weakCompareAndSwapIntVolatile(Object o, long offset,
1385                                                              int expected,
1386                                                              int x) {
1387         return compareAndSwapInt(o, offset, expected, x);
1388     }
1389 
1390     @HotSpotIntrinsicCandidate
1391     public final byte compareAndExchangeByteVolatile(Object o, long offset,
1392                                                      byte expected,
1393                                                      byte x) {
1394         long wordOffset = offset & ~3;
1395         int shift = (int) (offset & 3) << 3;
1396         if (BE) {
1397             shift = 24 - shift;
1398         }
1399         int mask           = 0xFF << shift;
1400         int maskedExpected = (expected & 0xFF) << shift;
1401         int maskedX        = (x & 0xFF) << shift;
1402         int fullWord;
1403         do {
1404             fullWord = getIntVolatile(o, wordOffset);
1405             if ((fullWord & mask) != maskedExpected)
1406                 return (byte) ((fullWord & mask) >> shift);
1407         } while (!weakCompareAndSwapIntVolatile(o, wordOffset,
1408                                                 fullWord, (fullWord & ~mask) | maskedX));
1409         return expected;
1410     }
1411 
1412     @HotSpotIntrinsicCandidate
1413     public final boolean compareAndSwapByte(Object o, long offset,
1414                                             byte expected,
1415                                             byte x) {
1416         return compareAndExchangeByteVolatile(o, offset, expected, x) == expected;
1417     }
1418 
1419     @HotSpotIntrinsicCandidate
1420     public final boolean weakCompareAndSwapByteVolatile(Object o, long offset,
1421                                                         byte expected,
1422                                                         byte x) {
1423         return compareAndSwapByte(o, offset, expected, x);
1424     }
1425 
1426     @HotSpotIntrinsicCandidate
1427     public final boolean weakCompareAndSwapByteAcquire(Object o, long offset,
1428                                                        byte expected,
1429                                                        byte x) {
1430         return weakCompareAndSwapByteVolatile(o, offset, expected, x);
1431     }
1432 
1433     @HotSpotIntrinsicCandidate
1434     public final boolean weakCompareAndSwapByteRelease(Object o, long offset,
1435                                                        byte expected,
1436                                                        byte x) {
1437         return weakCompareAndSwapByteVolatile(o, offset, expected, x);
1438     }
1439 
1440     @HotSpotIntrinsicCandidate
1441     public final boolean weakCompareAndSwapByte(Object o, long offset,
1442                                                         byte expected,
1443                                                         byte x) {
1444         return weakCompareAndSwapByteVolatile(o, offset, expected, x);
1445     }
1446 
1447     @HotSpotIntrinsicCandidate
1448     public final byte compareAndExchangeByteAcquire(Object o, long offset,
1449                                                     byte expected,
1450                                                     byte x) {
1451         return compareAndExchangeByteVolatile(o, offset, expected, x);
1452     }
1453 
1454     @HotSpotIntrinsicCandidate
1455     public final byte compareAndExchangeByteRelease(Object o, long offset,
1456                                                     byte expected,
1457                                                     byte x) {
1458         return compareAndExchangeByteVolatile(o, offset, expected, x);
1459     }
1460 
1461     @HotSpotIntrinsicCandidate
1462     public final short compareAndExchangeShortVolatile(Object o, long offset,
1463                                              short expected,
1464                                              short x) {
1465         if ((offset & 3) == 3) {
1466             throw new IllegalArgumentException("Update spans the word, not supported");
1467         }
1468         long wordOffset = offset & ~3;
1469         int shift = (int) (offset & 3) << 3;
1470         if (BE) {
1471             shift = 16 - shift;
1472         }
1473         int mask           = 0xFFFF << shift;
1474         int maskedExpected = (expected & 0xFFFF) << shift;
1475         int maskedX        = (x & 0xFFFF) << shift;
1476         int fullWord;
1477         do {
1478             fullWord = getIntVolatile(o, wordOffset);
1479             if ((fullWord & mask) != maskedExpected) {
1480                 return (short) ((fullWord & mask) >> shift);
1481             }
1482         } while (!weakCompareAndSwapIntVolatile(o, wordOffset,
1483                                                 fullWord, (fullWord & ~mask) | maskedX));
1484         return expected;
1485     }
1486 
1487     @HotSpotIntrinsicCandidate
1488     public final boolean compareAndSwapShort(Object o, long offset,
1489                                              short expected,
1490                                              short x) {
1491         return compareAndExchangeShortVolatile(o, offset, expected, x) == expected;
1492     }
1493 
1494     @HotSpotIntrinsicCandidate
1495     public final boolean weakCompareAndSwapShortVolatile(Object o, long offset,
1496                                                          short expected,
1497                                                          short x) {
1498         return compareAndSwapShort(o, offset, expected, x);
1499     }
1500 
1501     @HotSpotIntrinsicCandidate
1502     public final boolean weakCompareAndSwapShortAcquire(Object o, long offset,
1503                                                         short expected,
1504                                                         short x) {
1505         return weakCompareAndSwapShortVolatile(o, offset, expected, x);
1506     }
1507 
1508     @HotSpotIntrinsicCandidate
1509     public final boolean weakCompareAndSwapShortRelease(Object o, long offset,
1510                                                         short expected,
1511                                                         short x) {
1512         return weakCompareAndSwapShortVolatile(o, offset, expected, x);
1513     }
1514 
1515     @HotSpotIntrinsicCandidate
1516     public final boolean weakCompareAndSwapShort(Object o, long offset,
1517                                                  short expected,
1518                                                  short x) {
1519         return weakCompareAndSwapShortVolatile(o, offset, expected, x);
1520     }
1521 
1522 
1523     @HotSpotIntrinsicCandidate
1524     public final short compareAndExchangeShortAcquire(Object o, long offset,
1525                                                      short expected,
1526                                                      short x) {
1527         return compareAndExchangeShortVolatile(o, offset, expected, x);
1528     }
1529 
1530     @HotSpotIntrinsicCandidate
1531     public final short compareAndExchangeShortRelease(Object o, long offset,
1532                                                     short expected,
1533                                                     short x) {
1534         return compareAndExchangeShortVolatile(o, offset, expected, x);
1535     }
1536 
1537     @ForceInline
1538     private char s2c(short s) {
1539         return (char) s;
1540     }
1541 
1542     @ForceInline
1543     private short c2s(char s) {
1544         return (short) s;
1545     }
1546 
1547     @ForceInline
1548     public final boolean compareAndSwapChar(Object o, long offset,
1549                                             char expected,
1550                                             char x) {
1551         return compareAndSwapShort(o, offset, c2s(expected), c2s(x));
1552     }
1553 
1554     @ForceInline
1555     public final char compareAndExchangeCharVolatile(Object o, long offset,
1556                                             char expected,
1557                                             char x) {
1558         return s2c(compareAndExchangeShortVolatile(o, offset, c2s(expected), c2s(x)));
1559     }
1560 
1561     @ForceInline
1562     public final char compareAndExchangeCharAcquire(Object o, long offset,
1563                                             char expected,
1564                                             char x) {
1565         return s2c(compareAndExchangeShortAcquire(o, offset, c2s(expected), c2s(x)));
1566     }
1567 
1568     @ForceInline
1569     public final char compareAndExchangeCharRelease(Object o, long offset,
1570                                             char expected,
1571                                             char x) {
1572         return s2c(compareAndExchangeShortRelease(o, offset, c2s(expected), c2s(x)));
1573     }
1574 
1575     @ForceInline
1576     public final boolean weakCompareAndSwapCharVolatile(Object o, long offset,
1577                                             char expected,
1578                                             char x) {
1579         return weakCompareAndSwapShortVolatile(o, offset, c2s(expected), c2s(x));
1580     }
1581 
1582     @ForceInline
1583     public final boolean weakCompareAndSwapCharAcquire(Object o, long offset,
1584                                             char expected,
1585                                             char x) {
1586         return weakCompareAndSwapShortAcquire(o, offset, c2s(expected), c2s(x));
1587     }
1588 
1589     @ForceInline
1590     public final boolean weakCompareAndSwapCharRelease(Object o, long offset,
1591                                             char expected,
1592                                             char x) {
1593         return weakCompareAndSwapShortRelease(o, offset, c2s(expected), c2s(x));
1594     }
1595 
1596     @ForceInline
1597     public final boolean weakCompareAndSwapChar(Object o, long offset,
1598                                             char expected,
1599                                             char x) {
1600         return weakCompareAndSwapShort(o, offset, c2s(expected), c2s(x));
1601     }
1602 
1603     @ForceInline
1604     private boolean byte2bool(byte b) {
1605         return b > 0;
1606     }
1607 
1608     @ForceInline
1609     private byte bool2byte(boolean b) {
1610         return b ? (byte)1 : (byte)0;
1611     }
1612 
1613     @ForceInline
1614     public final boolean compareAndSwapBoolean(Object o, long offset,
1615                                                boolean expected,
1616                                                boolean x) {
1617         return compareAndSwapByte(o, offset, bool2byte(expected), bool2byte(x));
1618     }
1619 
1620     @ForceInline
1621     public final boolean compareAndExchangeBooleanVolatile(Object o, long offset,
1622                                                         boolean expected,
1623                                                         boolean x) {
1624         return byte2bool(compareAndExchangeByteVolatile(o, offset, bool2byte(expected), bool2byte(x)));
1625     }
1626 
1627     @ForceInline
1628     public final boolean compareAndExchangeBooleanAcquire(Object o, long offset,
1629                                                     boolean expected,
1630                                                     boolean x) {
1631         return byte2bool(compareAndExchangeByteAcquire(o, offset, bool2byte(expected), bool2byte(x)));
1632     }
1633 
1634     @ForceInline
1635     public final boolean compareAndExchangeBooleanRelease(Object o, long offset,
1636                                                        boolean expected,
1637                                                        boolean x) {
1638         return byte2bool(compareAndExchangeByteRelease(o, offset, bool2byte(expected), bool2byte(x)));
1639     }
1640 
1641     @ForceInline
1642     public final boolean weakCompareAndSwapBooleanVolatile(Object o, long offset,
1643                                                            boolean expected,
1644                                                            boolean x) {
1645         return weakCompareAndSwapByteVolatile(o, offset, bool2byte(expected), bool2byte(x));
1646     }
1647 
1648     @ForceInline
1649     public final boolean weakCompareAndSwapBooleanAcquire(Object o, long offset,
1650                                                           boolean expected,
1651                                                           boolean x) {
1652         return weakCompareAndSwapByteAcquire(o, offset, bool2byte(expected), bool2byte(x));
1653     }
1654 
1655     @ForceInline
1656     public final boolean weakCompareAndSwapBooleanRelease(Object o, long offset,
1657                                                           boolean expected,
1658                                                           boolean x) {
1659         return weakCompareAndSwapByteRelease(o, offset, bool2byte(expected), bool2byte(x));
1660     }
1661 
1662     @ForceInline
1663     public final boolean weakCompareAndSwapBoolean(Object o, long offset,
1664                                                    boolean expected,
1665                                                    boolean x) {
1666         return weakCompareAndSwapByte(o, offset, bool2byte(expected), bool2byte(x));
1667     }
1668 
1669     /**
1670      * Atomically updates Java variable to {@code x} if it is currently
1671      * holding {@code expected}.
1672      *
1673      * <p>This operation has memory semantics of a {@code volatile} read
1674      * and write.  Corresponds to C11 atomic_compare_exchange_strong.
1675      *
1676      * @return {@code true} if successful
1677      */
1678     @ForceInline
1679     public final boolean compareAndSwapFloat(Object o, long offset,
1680                                              float expected,
1681                                              float x) {
1682         return compareAndSwapInt(o, offset,
1683                                  Float.floatToRawIntBits(expected),
1684                                  Float.floatToRawIntBits(x));
1685     }
1686 
1687     @ForceInline
1688     public final float compareAndExchangeFloatVolatile(Object o, long offset,
1689                                                        float expected,
1690                                                        float x) {
1691         int w = compareAndExchangeIntVolatile(o, offset,
1692                                               Float.floatToRawIntBits(expected),
1693                                               Float.floatToRawIntBits(x));
1694         return Float.intBitsToFloat(w);
1695     }
1696 
1697     @ForceInline
1698     public final float compareAndExchangeFloatAcquire(Object o, long offset,
1699                                                   float expected,
1700                                                   float x) {
1701         int w = compareAndExchangeIntAcquire(o, offset,
1702                                              Float.floatToRawIntBits(expected),
1703                                              Float.floatToRawIntBits(x));
1704         return Float.intBitsToFloat(w);
1705     }
1706 
1707     @ForceInline
1708     public final float compareAndExchangeFloatRelease(Object o, long offset,
1709                                                   float expected,
1710                                                   float x) {
1711         int w = compareAndExchangeIntRelease(o, offset,
1712                                              Float.floatToRawIntBits(expected),
1713                                              Float.floatToRawIntBits(x));
1714         return Float.intBitsToFloat(w);
1715     }
1716 
1717     @ForceInline
1718     public final boolean weakCompareAndSwapFloat(Object o, long offset,
1719                                                float expected,
1720                                                float x) {
1721         return weakCompareAndSwapInt(o, offset,
1722                                      Float.floatToRawIntBits(expected),
1723                                      Float.floatToRawIntBits(x));
1724     }
1725 
1726     @ForceInline
1727     public final boolean weakCompareAndSwapFloatAcquire(Object o, long offset,
1728                                                       float expected,
1729                                                       float x) {
1730         return weakCompareAndSwapIntAcquire(o, offset,
1731                                             Float.floatToRawIntBits(expected),
1732                                             Float.floatToRawIntBits(x));
1733     }
1734 
1735     @ForceInline
1736     public final boolean weakCompareAndSwapFloatRelease(Object o, long offset,
1737                                                       float expected,
1738                                                       float x) {
1739         return weakCompareAndSwapIntRelease(o, offset,
1740                                             Float.floatToRawIntBits(expected),
1741                                             Float.floatToRawIntBits(x));
1742     }
1743 
1744     @ForceInline
1745     public final boolean weakCompareAndSwapFloatVolatile(Object o, long offset,
1746                                                        float expected,
1747                                                        float x) {
1748         return weakCompareAndSwapIntVolatile(o, offset,
1749                                              Float.floatToRawIntBits(expected),
1750                                              Float.floatToRawIntBits(x));
1751     }
1752 
1753     /**
1754      * Atomically updates Java variable to {@code x} if it is currently
1755      * holding {@code expected}.
1756      *
1757      * <p>This operation has memory semantics of a {@code volatile} read
1758      * and write.  Corresponds to C11 atomic_compare_exchange_strong.
1759      *
1760      * @return {@code true} if successful
1761      */
1762     @ForceInline
1763     public final boolean compareAndSwapDouble(Object o, long offset,
1764                                               double expected,
1765                                               double x) {
1766         return compareAndSwapLong(o, offset,
1767                                   Double.doubleToRawLongBits(expected),
1768                                   Double.doubleToRawLongBits(x));
1769     }
1770 
1771     @ForceInline
1772     public final double compareAndExchangeDoubleVolatile(Object o, long offset,
1773                                                          double expected,
1774                                                          double x) {
1775         long w = compareAndExchangeLongVolatile(o, offset,
1776                                                 Double.doubleToRawLongBits(expected),
1777                                                 Double.doubleToRawLongBits(x));
1778         return Double.longBitsToDouble(w);
1779     }
1780 
1781     @ForceInline
1782     public final double compareAndExchangeDoubleAcquire(Object o, long offset,
1783                                                         double expected,
1784                                                         double x) {
1785         long w = compareAndExchangeLongAcquire(o, offset,
1786                                                Double.doubleToRawLongBits(expected),
1787                                                Double.doubleToRawLongBits(x));
1788         return Double.longBitsToDouble(w);
1789     }
1790 
1791     @ForceInline
1792     public final double compareAndExchangeDoubleRelease(Object o, long offset,
1793                                                         double expected,
1794                                                         double x) {
1795         long w = compareAndExchangeLongRelease(o, offset,
1796                                                Double.doubleToRawLongBits(expected),
1797                                                Double.doubleToRawLongBits(x));
1798         return Double.longBitsToDouble(w);
1799     }
1800 
1801     @ForceInline
1802     public final boolean weakCompareAndSwapDouble(Object o, long offset,
1803                                                   double expected,
1804                                                   double x) {
1805         return weakCompareAndSwapLong(o, offset,
1806                                      Double.doubleToRawLongBits(expected),
1807                                      Double.doubleToRawLongBits(x));
1808     }
1809 
1810     @ForceInline
1811     public final boolean weakCompareAndSwapDoubleAcquire(Object o, long offset,
1812                                                          double expected,
1813                                                          double x) {
1814         return weakCompareAndSwapLongAcquire(o, offset,
1815                                              Double.doubleToRawLongBits(expected),
1816                                              Double.doubleToRawLongBits(x));
1817     }
1818 
1819     @ForceInline
1820     public final boolean weakCompareAndSwapDoubleRelease(Object o, long offset,
1821                                                          double expected,
1822                                                          double x) {
1823         return weakCompareAndSwapLongRelease(o, offset,
1824                                              Double.doubleToRawLongBits(expected),
1825                                              Double.doubleToRawLongBits(x));
1826     }
1827 
1828     @ForceInline
1829     public final boolean weakCompareAndSwapDoubleVolatile(Object o, long offset,
1830                                                           double expected,
1831                                                           double x) {
1832         return weakCompareAndSwapLongVolatile(o, offset,
1833                                               Double.doubleToRawLongBits(expected),
1834                                               Double.doubleToRawLongBits(x));
1835     }
1836 
1837     /**
1838      * Atomically updates Java variable to {@code x} if it is currently
1839      * holding {@code expected}.
1840      *
1841      * <p>This operation has memory semantics of a {@code volatile} read
1842      * and write.  Corresponds to C11 atomic_compare_exchange_strong.
1843      *
1844      * @return {@code true} if successful
1845      */
1846     @HotSpotIntrinsicCandidate
1847     public final native boolean compareAndSwapLong(Object o, long offset,
1848                                                    long expected,
1849                                                    long x);
1850 
1851     @HotSpotIntrinsicCandidate
1852     public final native long compareAndExchangeLongVolatile(Object o, long offset,
1853                                                             long expected,
1854                                                             long x);
1855 
1856     @HotSpotIntrinsicCandidate
1857     public final long compareAndExchangeLongAcquire(Object o, long offset,
1858                                                            long expected,
1859                                                            long x) {
1860         return compareAndExchangeLongVolatile(o, offset, expected, x);
1861     }
1862 
1863     @HotSpotIntrinsicCandidate
1864     public final long compareAndExchangeLongRelease(Object o, long offset,
1865                                                            long expected,
1866                                                            long x) {
1867         return compareAndExchangeLongVolatile(o, offset, expected, x);
1868     }
1869 
1870     @HotSpotIntrinsicCandidate
1871     public final boolean weakCompareAndSwapLong(Object o, long offset,
1872                                                        long expected,
1873                                                        long x) {
1874         return compareAndSwapLong(o, offset, expected, x);
1875     }
1876 
1877     @HotSpotIntrinsicCandidate
1878     public final boolean weakCompareAndSwapLongAcquire(Object o, long offset,
1879                                                               long expected,
1880                                                               long x) {
1881         return compareAndSwapLong(o, offset, expected, x);
1882     }
1883 
1884     @HotSpotIntrinsicCandidate
1885     public final boolean weakCompareAndSwapLongRelease(Object o, long offset,
1886                                                               long expected,
1887                                                               long x) {
1888         return compareAndSwapLong(o, offset, expected, x);
1889     }
1890 
1891     @HotSpotIntrinsicCandidate
1892     public final boolean weakCompareAndSwapLongVolatile(Object o, long offset,
1893                                                               long expected,
1894                                                               long x) {
1895         return compareAndSwapLong(o, offset, expected, x);
1896     }
1897 
1898     /**
1899      * Fetches a reference value from a given Java variable, with volatile
1900      * load semantics. Otherwise identical to {@link #getObject(Object, long)}
1901      */
1902     @HotSpotIntrinsicCandidate
1903     public native Object getObjectVolatile(Object o, long offset);
1904 
1905     /**
1906      * Stores a reference value into a given Java variable, with
1907      * volatile store semantics. Otherwise identical to {@link #putObject(Object, long, Object)}
1908      */
1909     @HotSpotIntrinsicCandidate
1910     public native void    putObjectVolatile(Object o, long offset, Object x);
1911 
1912     /** Volatile version of {@link #getInt(Object, long)}  */
1913     @HotSpotIntrinsicCandidate
1914     public native int     getIntVolatile(Object o, long offset);
1915 
1916     /** Volatile version of {@link #putInt(Object, long, int)}  */
1917     @HotSpotIntrinsicCandidate
1918     public native void    putIntVolatile(Object o, long offset, int x);
1919 
1920     /** Volatile version of {@link #getBoolean(Object, long)}  */
1921     @HotSpotIntrinsicCandidate
1922     public native boolean getBooleanVolatile(Object o, long offset);
1923 
1924     /** Volatile version of {@link #putBoolean(Object, long, boolean)}  */
1925     @HotSpotIntrinsicCandidate
1926     public native void    putBooleanVolatile(Object o, long offset, boolean x);
1927 
1928     /** Volatile version of {@link #getByte(Object, long)}  */
1929     @HotSpotIntrinsicCandidate
1930     public native byte    getByteVolatile(Object o, long offset);
1931 
1932     /** Volatile version of {@link #putByte(Object, long, byte)}  */
1933     @HotSpotIntrinsicCandidate
1934     public native void    putByteVolatile(Object o, long offset, byte x);
1935 
1936     /** Volatile version of {@link #getShort(Object, long)}  */
1937     @HotSpotIntrinsicCandidate
1938     public native short   getShortVolatile(Object o, long offset);
1939 
1940     /** Volatile version of {@link #putShort(Object, long, short)}  */
1941     @HotSpotIntrinsicCandidate
1942     public native void    putShortVolatile(Object o, long offset, short x);
1943 
1944     /** Volatile version of {@link #getChar(Object, long)}  */
1945     @HotSpotIntrinsicCandidate
1946     public native char    getCharVolatile(Object o, long offset);
1947 
1948     /** Volatile version of {@link #putChar(Object, long, char)}  */
1949     @HotSpotIntrinsicCandidate
1950     public native void    putCharVolatile(Object o, long offset, char x);
1951 
1952     /** Volatile version of {@link #getLong(Object, long)}  */
1953     @HotSpotIntrinsicCandidate
1954     public native long    getLongVolatile(Object o, long offset);
1955 
1956     /** Volatile version of {@link #putLong(Object, long, long)}  */
1957     @HotSpotIntrinsicCandidate
1958     public native void    putLongVolatile(Object o, long offset, long x);
1959 
1960     /** Volatile version of {@link #getFloat(Object, long)}  */
1961     @HotSpotIntrinsicCandidate
1962     public native float   getFloatVolatile(Object o, long offset);
1963 
1964     /** Volatile version of {@link #putFloat(Object, long, float)}  */
1965     @HotSpotIntrinsicCandidate
1966     public native void    putFloatVolatile(Object o, long offset, float x);
1967 
1968     /** Volatile version of {@link #getDouble(Object, long)}  */
1969     @HotSpotIntrinsicCandidate
1970     public native double  getDoubleVolatile(Object o, long offset);
1971 
1972     /** Volatile version of {@link #putDouble(Object, long, double)}  */
1973     @HotSpotIntrinsicCandidate
1974     public native void    putDoubleVolatile(Object o, long offset, double x);
1975 
1976 
1977 
1978     /** Acquire version of {@link #getObjectVolatile(Object, long)} */
1979     @HotSpotIntrinsicCandidate
1980     public final Object getObjectAcquire(Object o, long offset) {
1981         return getObjectVolatile(o, offset);
1982     }
1983 
1984     /** Acquire version of {@link #getBooleanVolatile(Object, long)} */
1985     @HotSpotIntrinsicCandidate
1986     public final boolean getBooleanAcquire(Object o, long offset) {
1987         return getBooleanVolatile(o, offset);
1988     }
1989 
1990     /** Acquire version of {@link #getByteVolatile(Object, long)} */
1991     @HotSpotIntrinsicCandidate
1992     public final byte getByteAcquire(Object o, long offset) {
1993         return getByteVolatile(o, offset);
1994     }
1995 
1996     /** Acquire version of {@link #getShortVolatile(Object, long)} */
1997     @HotSpotIntrinsicCandidate
1998     public final short getShortAcquire(Object o, long offset) {
1999         return getShortVolatile(o, offset);
2000     }
2001 
2002     /** Acquire version of {@link #getCharVolatile(Object, long)} */
2003     @HotSpotIntrinsicCandidate
2004     public final char getCharAcquire(Object o, long offset) {
2005         return getCharVolatile(o, offset);
2006     }
2007 
2008     /** Acquire version of {@link #getIntVolatile(Object, long)} */
2009     @HotSpotIntrinsicCandidate
2010     public final int getIntAcquire(Object o, long offset) {
2011         return getIntVolatile(o, offset);
2012     }
2013 
2014     /** Acquire version of {@link #getFloatVolatile(Object, long)} */
2015     @HotSpotIntrinsicCandidate
2016     public final float getFloatAcquire(Object o, long offset) {
2017         return getFloatVolatile(o, offset);
2018     }
2019 
2020     /** Acquire version of {@link #getLongVolatile(Object, long)} */
2021     @HotSpotIntrinsicCandidate
2022     public final long getLongAcquire(Object o, long offset) {
2023         return getLongVolatile(o, offset);
2024     }
2025 
2026     /** Acquire version of {@link #getDoubleVolatile(Object, long)} */
2027     @HotSpotIntrinsicCandidate
2028     public final double getDoubleAcquire(Object o, long offset) {
2029         return getDoubleVolatile(o, offset);
2030     }
2031 
2032     /*
2033       * Versions of {@link #putObjectVolatile(Object, long, Object)}
2034       * that do not guarantee immediate visibility of the store to
2035       * other threads. This method is generally only useful if the
2036       * underlying field is a Java volatile (or if an array cell, one
2037       * that is otherwise only accessed using volatile accesses).
2038       *
2039       * Corresponds to C11 atomic_store_explicit(..., memory_order_release).
2040       */
2041 
2042     /** Release version of {@link #putObjectVolatile(Object, long, Object)} */
2043     @HotSpotIntrinsicCandidate
2044     public final void putObjectRelease(Object o, long offset, Object x) {
2045         putObjectVolatile(o, offset, x);
2046     }
2047 
2048     /** Release version of {@link #putBooleanVolatile(Object, long, boolean)} */
2049     @HotSpotIntrinsicCandidate
2050     public final void putBooleanRelease(Object o, long offset, boolean x) {
2051         putBooleanVolatile(o, offset, x);
2052     }
2053 
2054     /** Release version of {@link #putByteVolatile(Object, long, byte)} */
2055     @HotSpotIntrinsicCandidate
2056     public final void putByteRelease(Object o, long offset, byte x) {
2057         putByteVolatile(o, offset, x);
2058     }
2059 
2060     /** Release version of {@link #putShortVolatile(Object, long, short)} */
2061     @HotSpotIntrinsicCandidate
2062     public final void putShortRelease(Object o, long offset, short x) {
2063         putShortVolatile(o, offset, x);
2064     }
2065 
2066     /** Release version of {@link #putCharVolatile(Object, long, char)} */
2067     @HotSpotIntrinsicCandidate
2068     public final void putCharRelease(Object o, long offset, char x) {
2069         putCharVolatile(o, offset, x);
2070     }
2071 
2072     /** Release version of {@link #putIntVolatile(Object, long, int)} */
2073     @HotSpotIntrinsicCandidate
2074     public final void putIntRelease(Object o, long offset, int x) {
2075         putIntVolatile(o, offset, x);
2076     }
2077 
2078     /** Release version of {@link #putFloatVolatile(Object, long, float)} */
2079     @HotSpotIntrinsicCandidate
2080     public final void putFloatRelease(Object o, long offset, float x) {
2081         putFloatVolatile(o, offset, x);
2082     }
2083 
2084     /** Release version of {@link #putLongVolatile(Object, long, long)} */
2085     @HotSpotIntrinsicCandidate
2086     public final void putLongRelease(Object o, long offset, long x) {
2087         putLongVolatile(o, offset, x);
2088     }
2089 
2090     /** Release version of {@link #putDoubleVolatile(Object, long, double)} */
2091     @HotSpotIntrinsicCandidate
2092     public final void putDoubleRelease(Object o, long offset, double x) {
2093         putDoubleVolatile(o, offset, x);
2094     }
2095 
2096     // ------------------------------ Opaque --------------------------------------
2097 
2098     /** Opaque version of {@link #getObjectVolatile(Object, long)} */
2099     @HotSpotIntrinsicCandidate
2100     public final Object getObjectOpaque(Object o, long offset) {
2101         return getObjectVolatile(o, offset);
2102     }
2103 
2104     /** Opaque version of {@link #getBooleanVolatile(Object, long)} */
2105     @HotSpotIntrinsicCandidate
2106     public final boolean getBooleanOpaque(Object o, long offset) {
2107         return getBooleanVolatile(o, offset);
2108     }
2109 
2110     /** Opaque version of {@link #getByteVolatile(Object, long)} */
2111     @HotSpotIntrinsicCandidate
2112     public final byte getByteOpaque(Object o, long offset) {
2113         return getByteVolatile(o, offset);
2114     }
2115 
2116     /** Opaque version of {@link #getShortVolatile(Object, long)} */
2117     @HotSpotIntrinsicCandidate
2118     public final short getShortOpaque(Object o, long offset) {
2119         return getShortVolatile(o, offset);
2120     }
2121 
2122     /** Opaque version of {@link #getCharVolatile(Object, long)} */
2123     @HotSpotIntrinsicCandidate
2124     public final char getCharOpaque(Object o, long offset) {
2125         return getCharVolatile(o, offset);
2126     }
2127 
2128     /** Opaque version of {@link #getIntVolatile(Object, long)} */
2129     @HotSpotIntrinsicCandidate
2130     public final int getIntOpaque(Object o, long offset) {
2131         return getIntVolatile(o, offset);
2132     }
2133 
2134     /** Opaque version of {@link #getFloatVolatile(Object, long)} */
2135     @HotSpotIntrinsicCandidate
2136     public final float getFloatOpaque(Object o, long offset) {
2137         return getFloatVolatile(o, offset);
2138     }
2139 
2140     /** Opaque version of {@link #getLongVolatile(Object, long)} */
2141     @HotSpotIntrinsicCandidate
2142     public final long getLongOpaque(Object o, long offset) {
2143         return getLongVolatile(o, offset);
2144     }
2145 
2146     /** Opaque version of {@link #getDoubleVolatile(Object, long)} */
2147     @HotSpotIntrinsicCandidate
2148     public final double getDoubleOpaque(Object o, long offset) {
2149         return getDoubleVolatile(o, offset);
2150     }
2151 
2152     /** Opaque version of {@link #putObjectVolatile(Object, long, Object)} */
2153     @HotSpotIntrinsicCandidate
2154     public final void putObjectOpaque(Object o, long offset, Object x) {
2155         putObjectVolatile(o, offset, x);
2156     }
2157 
2158     /** Opaque version of {@link #putBooleanVolatile(Object, long, boolean)} */
2159     @HotSpotIntrinsicCandidate
2160     public final void putBooleanOpaque(Object o, long offset, boolean x) {
2161         putBooleanVolatile(o, offset, x);
2162     }
2163 
2164     /** Opaque version of {@link #putByteVolatile(Object, long, byte)} */
2165     @HotSpotIntrinsicCandidate
2166     public final void putByteOpaque(Object o, long offset, byte x) {
2167         putByteVolatile(o, offset, x);
2168     }
2169 
2170     /** Opaque version of {@link #putShortVolatile(Object, long, short)} */
2171     @HotSpotIntrinsicCandidate
2172     public final void putShortOpaque(Object o, long offset, short x) {
2173         putShortVolatile(o, offset, x);
2174     }
2175 
2176     /** Opaque version of {@link #putCharVolatile(Object, long, char)} */
2177     @HotSpotIntrinsicCandidate
2178     public final void putCharOpaque(Object o, long offset, char x) {
2179         putCharVolatile(o, offset, x);
2180     }
2181 
2182     /** Opaque version of {@link #putIntVolatile(Object, long, int)} */
2183     @HotSpotIntrinsicCandidate
2184     public final void putIntOpaque(Object o, long offset, int x) {
2185         putIntVolatile(o, offset, x);
2186     }
2187 
2188     /** Opaque version of {@link #putFloatVolatile(Object, long, float)} */
2189     @HotSpotIntrinsicCandidate
2190     public final void putFloatOpaque(Object o, long offset, float x) {
2191         putFloatVolatile(o, offset, x);
2192     }
2193 
2194     /** Opaque version of {@link #putLongVolatile(Object, long, long)} */
2195     @HotSpotIntrinsicCandidate
2196     public final void putLongOpaque(Object o, long offset, long x) {
2197         putLongVolatile(o, offset, x);
2198     }
2199 
2200     /** Opaque version of {@link #putDoubleVolatile(Object, long, double)} */
2201     @HotSpotIntrinsicCandidate
2202     public final void putDoubleOpaque(Object o, long offset, double x) {
2203         putDoubleVolatile(o, offset, x);
2204     }
2205 
2206     /**
2207      * Unblocks the given thread blocked on {@code park}, or, if it is
2208      * not blocked, causes the subsequent call to {@code park} not to
2209      * block.  Note: this operation is "unsafe" solely because the
2210      * caller must somehow ensure that the thread has not been
2211      * destroyed. Nothing special is usually required to ensure this
2212      * when called from Java (in which there will ordinarily be a live
2213      * reference to the thread) but this is not nearly-automatically
2214      * so when calling from native code.
2215      *
2216      * @param thread the thread to unpark.
2217      */
2218     @HotSpotIntrinsicCandidate
2219     public native void unpark(Object thread);
2220 
2221     /**
2222      * Blocks current thread, returning when a balancing
2223      * {@code unpark} occurs, or a balancing {@code unpark} has
2224      * already occurred, or the thread is interrupted, or, if not
2225      * absolute and time is not zero, the given time nanoseconds have
2226      * elapsed, or if absolute, the given deadline in milliseconds
2227      * since Epoch has passed, or spuriously (i.e., returning for no
2228      * "reason"). Note: This operation is in the Unsafe class only
2229      * because {@code unpark} is, so it would be strange to place it
2230      * elsewhere.
2231      */
2232     @HotSpotIntrinsicCandidate
2233     public native void park(boolean isAbsolute, long time);
2234 
2235     /**
2236      * Gets the load average in the system run queue assigned
2237      * to the available processors averaged over various periods of time.
2238      * This method retrieves the given {@code nelem} samples and
2239      * assigns to the elements of the given {@code loadavg} array.
2240      * The system imposes a maximum of 3 samples, representing
2241      * averages over the last 1,  5,  and  15 minutes, respectively.
2242      *
2243      * @param loadavg an array of double of size nelems
2244      * @param nelems the number of samples to be retrieved and
2245      *        must be 1 to 3.
2246      *
2247      * @return the number of samples actually retrieved; or -1
2248      *         if the load average is unobtainable.
2249      */
2250     public int getLoadAverage(double[] loadavg, int nelems) {
2251         if (nelems < 0 || nelems > 3 || nelems > loadavg.length) {
2252             throw new ArrayIndexOutOfBoundsException();
2253         }
2254 
2255         return getLoadAverage0(loadavg, nelems);
2256     }
2257 
2258     // The following contain CAS-based Java implementations used on
2259     // platforms not supporting native instructions
2260 
2261     /**
2262      * Atomically adds the given value to the current value of a field
2263      * or array element within the given object {@code o}
2264      * at the given {@code offset}.
2265      *
2266      * @param o object/array to update the field/element in
2267      * @param offset field/element offset
2268      * @param delta the value to add
2269      * @return the previous value
2270      * @since 1.8
2271      */
2272     @HotSpotIntrinsicCandidate
2273     public final int getAndAddInt(Object o, long offset, int delta) {
2274         int v;
2275         do {
2276             v = getIntVolatile(o, offset);
2277         } while (!weakCompareAndSwapIntVolatile(o, offset, v, v + delta));
2278         return v;
2279     }
2280 
2281     /**
2282      * Atomically adds the given value to the current value of a field
2283      * or array element within the given object {@code o}
2284      * at the given {@code offset}.
2285      *
2286      * @param o object/array to update the field/element in
2287      * @param offset field/element offset
2288      * @param delta the value to add
2289      * @return the previous value
2290      * @since 1.8
2291      */
2292     @HotSpotIntrinsicCandidate
2293     public final long getAndAddLong(Object o, long offset, long delta) {
2294         long v;
2295         do {
2296             v = getLongVolatile(o, offset);
2297         } while (!weakCompareAndSwapLongVolatile(o, offset, v, v + delta));
2298         return v;
2299     }
2300 
2301     @HotSpotIntrinsicCandidate
2302     public final byte getAndAddByte(Object o, long offset, byte delta) {
2303         byte v;
2304         do {
2305             v = getByteVolatile(o, offset);
2306         } while (!weakCompareAndSwapByteVolatile(o, offset, v, (byte) (v + delta)));
2307         return v;
2308     }
2309 
2310     @HotSpotIntrinsicCandidate
2311     public final short getAndAddShort(Object o, long offset, short delta) {
2312         short v;
2313         do {
2314             v = getShortVolatile(o, offset);
2315         } while (!weakCompareAndSwapShortVolatile(o, offset, v, (short) (v + delta)));
2316         return v;
2317     }
2318 
2319     @ForceInline
2320     public final char getAndAddChar(Object o, long offset, char delta) {
2321         return (char) getAndAddShort(o, offset, (short) delta);
2322     }
2323 
2324     @ForceInline
2325     public final float getAndAddFloat(Object o, long offset, float delta) {
2326         int expectedBits;
2327         float v;
2328         do {
2329             // Load and CAS with the raw bits to avoid issues with NaNs and
2330             // possible bit conversion from signaling NaNs to quiet NaNs that
2331             // may result in the loop not terminating.
2332             expectedBits = getIntVolatile(o, offset);
2333             v = Float.intBitsToFloat(expectedBits);
2334         } while (!weakCompareAndSwapIntVolatile(o, offset,
2335                                                 expectedBits, Float.floatToRawIntBits(v + delta)));
2336         return v;
2337     }
2338 
2339     @ForceInline
2340     public final double getAndAddDouble(Object o, long offset, double delta) {
2341         long expectedBits;
2342         double v;
2343         do {
2344             // Load and CAS with the raw bits to avoid issues with NaNs and
2345             // possible bit conversion from signaling NaNs to quiet NaNs that
2346             // may result in the loop not terminating.
2347             expectedBits = getLongVolatile(o, offset);
2348             v = Double.longBitsToDouble(expectedBits);
2349         } while (!weakCompareAndSwapLongVolatile(o, offset,
2350                                                  expectedBits, Double.doubleToRawLongBits(v + delta)));
2351         return v;
2352     }
2353 
2354     /**
2355      * Atomically exchanges the given value with the current value of
2356      * a field or array element within the given object {@code o}
2357      * at the given {@code offset}.
2358      *
2359      * @param o object/array to update the field/element in
2360      * @param offset field/element offset
2361      * @param newValue new value
2362      * @return the previous value
2363      * @since 1.8
2364      */
2365     @HotSpotIntrinsicCandidate
2366     public final int getAndSetInt(Object o, long offset, int newValue) {
2367         int v;
2368         do {
2369             v = getIntVolatile(o, offset);
2370         } while (!weakCompareAndSwapIntVolatile(o, offset, v, newValue));
2371         return v;
2372     }
2373 
2374     /**
2375      * Atomically exchanges the given value with the current value of
2376      * a field or array element within the given object {@code o}
2377      * at the given {@code offset}.
2378      *
2379      * @param o object/array to update the field/element in
2380      * @param offset field/element offset
2381      * @param newValue new value
2382      * @return the previous value
2383      * @since 1.8
2384      */
2385     @HotSpotIntrinsicCandidate
2386     public final long getAndSetLong(Object o, long offset, long newValue) {
2387         long v;
2388         do {
2389             v = getLongVolatile(o, offset);
2390         } while (!weakCompareAndSwapLongVolatile(o, offset, v, newValue));
2391         return v;
2392     }
2393 
2394     /**
2395      * Atomically exchanges the given reference value with the current
2396      * reference value of a field or array element within the given
2397      * object {@code o} at the given {@code offset}.
2398      *
2399      * @param o object/array to update the field/element in
2400      * @param offset field/element offset
2401      * @param newValue new value
2402      * @return the previous value
2403      * @since 1.8
2404      */
2405     @HotSpotIntrinsicCandidate
2406     public final Object getAndSetObject(Object o, long offset, Object newValue) {
2407         Object v;
2408         do {
2409             v = getObjectVolatile(o, offset);
2410         } while (!weakCompareAndSwapObjectVolatile(o, offset, v, newValue));
2411         return v;
2412     }
2413 
2414     @HotSpotIntrinsicCandidate
2415     public final byte getAndSetByte(Object o, long offset, byte newValue) {
2416         byte v;
2417         do {
2418             v = getByteVolatile(o, offset);
2419         } while (!weakCompareAndSwapByteVolatile(o, offset, v, newValue));
2420         return v;
2421     }
2422 
2423     @ForceInline
2424     public final boolean getAndSetBoolean(Object o, long offset, boolean newValue) {
2425         return byte2bool(getAndSetByte(o, offset, bool2byte(newValue)));
2426     }
2427 
2428     @HotSpotIntrinsicCandidate
2429     public final short getAndSetShort(Object o, long offset, short newValue) {
2430         short v;
2431         do {
2432             v = getShortVolatile(o, offset);
2433         } while (!weakCompareAndSwapShortVolatile(o, offset, v, newValue));
2434         return v;
2435     }
2436 
2437     @ForceInline
2438     public final char getAndSetChar(Object o, long offset, char newValue) {
2439         return s2c(getAndSetShort(o, offset, c2s(newValue)));
2440     }
2441 
2442     @ForceInline
2443     public final float getAndSetFloat(Object o, long offset, float newValue) {
2444         int v = getAndSetInt(o, offset, Float.floatToRawIntBits(newValue));
2445         return Float.intBitsToFloat(v);
2446     }
2447 
2448     @ForceInline
2449     public final double getAndSetDouble(Object o, long offset, double newValue) {
2450         long v = getAndSetLong(o, offset, Double.doubleToRawLongBits(newValue));
2451         return Double.longBitsToDouble(v);
2452     }
2453 
2454     /**
2455      * Ensures that loads before the fence will not be reordered with loads and
2456      * stores after the fence; a "LoadLoad plus LoadStore barrier".
2457      *
2458      * Corresponds to C11 atomic_thread_fence(memory_order_acquire)
2459      * (an "acquire fence").
2460      *
2461      * A pure LoadLoad fence is not provided, since the addition of LoadStore
2462      * is almost always desired, and most current hardware instructions that
2463      * provide a LoadLoad barrier also provide a LoadStore barrier for free.
2464      * @since 1.8
2465      */
2466     @HotSpotIntrinsicCandidate
2467     public native void loadFence();
2468 
2469     /**
2470      * Ensures that loads and stores before the fence will not be reordered with
2471      * stores after the fence; a "StoreStore plus LoadStore barrier".
2472      *
2473      * Corresponds to C11 atomic_thread_fence(memory_order_release)
2474      * (a "release fence").
2475      *
2476      * A pure StoreStore fence is not provided, since the addition of LoadStore
2477      * is almost always desired, and most current hardware instructions that
2478      * provide a StoreStore barrier also provide a LoadStore barrier for free.
2479      * @since 1.8
2480      */
2481     @HotSpotIntrinsicCandidate
2482     public native void storeFence();
2483 
2484     /**
2485      * Ensures that loads and stores before the fence will not be reordered
2486      * with loads and stores after the fence.  Implies the effects of both
2487      * loadFence() and storeFence(), and in addition, the effect of a StoreLoad
2488      * barrier.
2489      *
2490      * Corresponds to C11 atomic_thread_fence(memory_order_seq_cst).
2491      * @since 1.8
2492      */
2493     @HotSpotIntrinsicCandidate
2494     public native void fullFence();
2495 
2496     /**
2497      * Ensures that loads before the fence will not be reordered with
2498      * loads after the fence.
2499      */
2500     public final void loadLoadFence() {
2501         loadFence();
2502     }
2503 
2504     /**
2505      * Ensures that stores before the fence will not be reordered with
2506      * stores after the fence.
2507      */
2508     public final void storeStoreFence() {
2509         storeFence();
2510     }
2511 
2512 
2513     /**
2514      * Throws IllegalAccessError; for use by the VM for access control
2515      * error support.
2516      * @since 1.8
2517      */
2518     private static void throwIllegalAccessError() {
2519         throw new IllegalAccessError();
2520     }
2521 
2522     /**
2523      * @return Returns true if the native byte ordering of this
2524      * platform is big-endian, false if it is little-endian.
2525      */
2526     public final boolean isBigEndian() { return BE; }
2527 
2528     /**
2529      * @return Returns true if this platform is capable of performing
2530      * accesses at addresses which are not aligned for the type of the
2531      * primitive type being accessed, false otherwise.
2532      */
2533     public final boolean unalignedAccess() { return unalignedAccess; }
2534 
2535     /**
2536      * Fetches a value at some byte offset into a given Java object.
2537      * More specifically, fetches a value within the given object
2538      * <code>o</code> at the given offset, or (if <code>o</code> is
2539      * null) from the memory address whose numerical value is the
2540      * given offset.  <p>
2541      *
2542      * The specification of this method is the same as {@link
2543      * #getLong(Object, long)} except that the offset does not need to
2544      * have been obtained from {@link #objectFieldOffset} on the
2545      * {@link java.lang.reflect.Field} of some Java field.  The value
2546      * in memory is raw data, and need not correspond to any Java
2547      * variable.  Unless <code>o</code> is null, the value accessed
2548      * must be entirely within the allocated object.  The endianness
2549      * of the value in memory is the endianness of the native platform.
2550      *
2551      * <p> The read will be atomic with respect to the largest power
2552      * of two that divides the GCD of the offset and the storage size.
2553      * For example, getLongUnaligned will make atomic reads of 2-, 4-,
2554      * or 8-byte storage units if the offset is zero mod 2, 4, or 8,
2555      * respectively.  There are no other guarantees of atomicity.
2556      * <p>
2557      * 8-byte atomicity is only guaranteed on platforms on which
2558      * support atomic accesses to longs.
2559      *
2560      * @param o Java heap object in which the value resides, if any, else
2561      *        null
2562      * @param offset The offset in bytes from the start of the object
2563      * @return the value fetched from the indicated object
2564      * @throws RuntimeException No defined exceptions are thrown, not even
2565      *         {@link NullPointerException}
2566      * @since 9
2567      */
2568     @HotSpotIntrinsicCandidate
2569     public final long getLongUnaligned(Object o, long offset) {
2570         if ((offset & 7) == 0) {
2571             return getLong(o, offset);
2572         } else if ((offset & 3) == 0) {
2573             return makeLong(getInt(o, offset),
2574                             getInt(o, offset + 4));
2575         } else if ((offset & 1) == 0) {
2576             return makeLong(getShort(o, offset),
2577                             getShort(o, offset + 2),
2578                             getShort(o, offset + 4),
2579                             getShort(o, offset + 6));
2580         } else {
2581             return makeLong(getByte(o, offset),
2582                             getByte(o, offset + 1),
2583                             getByte(o, offset + 2),
2584                             getByte(o, offset + 3),
2585                             getByte(o, offset + 4),
2586                             getByte(o, offset + 5),
2587                             getByte(o, offset + 6),
2588                             getByte(o, offset + 7));
2589         }
2590     }
2591     /**
2592      * As {@link #getLongUnaligned(Object, long)} but with an
2593      * additional argument which specifies the endianness of the value
2594      * as stored in memory.
2595      *
2596      * @param o Java heap object in which the variable resides
2597      * @param offset The offset in bytes from the start of the object
2598      * @param bigEndian The endianness of the value
2599      * @return the value fetched from the indicated object
2600      * @since 9
2601      */
2602     public final long getLongUnaligned(Object o, long offset, boolean bigEndian) {
2603         return convEndian(bigEndian, getLongUnaligned(o, offset));
2604     }
2605 
2606     /** @see #getLongUnaligned(Object, long) */
2607     @HotSpotIntrinsicCandidate
2608     public final int getIntUnaligned(Object o, long offset) {
2609         if ((offset & 3) == 0) {
2610             return getInt(o, offset);
2611         } else if ((offset & 1) == 0) {
2612             return makeInt(getShort(o, offset),
2613                            getShort(o, offset + 2));
2614         } else {
2615             return makeInt(getByte(o, offset),
2616                            getByte(o, offset + 1),
2617                            getByte(o, offset + 2),
2618                            getByte(o, offset + 3));
2619         }
2620     }
2621     /** @see #getLongUnaligned(Object, long, boolean) */
2622     public final int getIntUnaligned(Object o, long offset, boolean bigEndian) {
2623         return convEndian(bigEndian, getIntUnaligned(o, offset));
2624     }
2625 
2626     /** @see #getLongUnaligned(Object, long) */
2627     @HotSpotIntrinsicCandidate
2628     public final short getShortUnaligned(Object o, long offset) {
2629         if ((offset & 1) == 0) {
2630             return getShort(o, offset);
2631         } else {
2632             return makeShort(getByte(o, offset),
2633                              getByte(o, offset + 1));
2634         }
2635     }
2636     /** @see #getLongUnaligned(Object, long, boolean) */
2637     public final short getShortUnaligned(Object o, long offset, boolean bigEndian) {
2638         return convEndian(bigEndian, getShortUnaligned(o, offset));
2639     }
2640 
2641     /** @see #getLongUnaligned(Object, long) */
2642     @HotSpotIntrinsicCandidate
2643     public final char getCharUnaligned(Object o, long offset) {
2644         if ((offset & 1) == 0) {
2645             return getChar(o, offset);
2646         } else {
2647             return (char)makeShort(getByte(o, offset),
2648                                    getByte(o, offset + 1));
2649         }
2650     }
2651 
2652     /** @see #getLongUnaligned(Object, long, boolean) */
2653     public final char getCharUnaligned(Object o, long offset, boolean bigEndian) {
2654         return convEndian(bigEndian, getCharUnaligned(o, offset));
2655     }
2656 
2657     /**
2658      * Stores a value at some byte offset into a given Java object.
2659      * <p>
2660      * The specification of this method is the same as {@link
2661      * #getLong(Object, long)} except that the offset does not need to
2662      * have been obtained from {@link #objectFieldOffset} on the
2663      * {@link java.lang.reflect.Field} of some Java field.  The value
2664      * in memory is raw data, and need not correspond to any Java
2665      * variable.  The endianness of the value in memory is the
2666      * endianness of the native platform.
2667      * <p>
2668      * The write will be atomic with respect to the largest power of
2669      * two that divides the GCD of the offset and the storage size.
2670      * For example, putLongUnaligned will make atomic writes of 2-, 4-,
2671      * or 8-byte storage units if the offset is zero mod 2, 4, or 8,
2672      * respectively.  There are no other guarantees of atomicity.
2673      * <p>
2674      * 8-byte atomicity is only guaranteed on platforms on which
2675      * support atomic accesses to longs.
2676      *
2677      * @param o Java heap object in which the value resides, if any, else
2678      *        null
2679      * @param offset The offset in bytes from the start of the object
2680      * @param x the value to store
2681      * @throws RuntimeException No defined exceptions are thrown, not even
2682      *         {@link NullPointerException}
2683      * @since 9
2684      */
2685     @HotSpotIntrinsicCandidate
2686     public final void putLongUnaligned(Object o, long offset, long x) {
2687         if ((offset & 7) == 0) {
2688             putLong(o, offset, x);
2689         } else if ((offset & 3) == 0) {
2690             putLongParts(o, offset,
2691                          (int)(x >> 0),
2692                          (int)(x >>> 32));
2693         } else if ((offset & 1) == 0) {
2694             putLongParts(o, offset,
2695                          (short)(x >>> 0),
2696                          (short)(x >>> 16),
2697                          (short)(x >>> 32),
2698                          (short)(x >>> 48));
2699         } else {
2700             putLongParts(o, offset,
2701                          (byte)(x >>> 0),
2702                          (byte)(x >>> 8),
2703                          (byte)(x >>> 16),
2704                          (byte)(x >>> 24),
2705                          (byte)(x >>> 32),
2706                          (byte)(x >>> 40),
2707                          (byte)(x >>> 48),
2708                          (byte)(x >>> 56));
2709         }
2710     }
2711 
2712     /**
2713      * As {@link #putLongUnaligned(Object, long, long)} but with an additional
2714      * argument which specifies the endianness of the value as stored in memory.
2715      * @param o Java heap object in which the value resides
2716      * @param offset The offset in bytes from the start of the object
2717      * @param x the value to store
2718      * @param bigEndian The endianness of the value
2719      * @throws RuntimeException No defined exceptions are thrown, not even
2720      *         {@link NullPointerException}
2721      * @since 9
2722      */
2723     public final void putLongUnaligned(Object o, long offset, long x, boolean bigEndian) {
2724         putLongUnaligned(o, offset, convEndian(bigEndian, x));
2725     }
2726 
2727     /** @see #putLongUnaligned(Object, long, long) */
2728     @HotSpotIntrinsicCandidate
2729     public final void putIntUnaligned(Object o, long offset, int x) {
2730         if ((offset & 3) == 0) {
2731             putInt(o, offset, x);
2732         } else if ((offset & 1) == 0) {
2733             putIntParts(o, offset,
2734                         (short)(x >> 0),
2735                         (short)(x >>> 16));
2736         } else {
2737             putIntParts(o, offset,
2738                         (byte)(x >>> 0),
2739                         (byte)(x >>> 8),
2740                         (byte)(x >>> 16),
2741                         (byte)(x >>> 24));
2742         }
2743     }
2744     /** @see #putLongUnaligned(Object, long, long, boolean) */
2745     public final void putIntUnaligned(Object o, long offset, int x, boolean bigEndian) {
2746         putIntUnaligned(o, offset, convEndian(bigEndian, x));
2747     }
2748 
2749     /** @see #putLongUnaligned(Object, long, long) */
2750     @HotSpotIntrinsicCandidate
2751     public final void putShortUnaligned(Object o, long offset, short x) {
2752         if ((offset & 1) == 0) {
2753             putShort(o, offset, x);
2754         } else {
2755             putShortParts(o, offset,
2756                           (byte)(x >>> 0),
2757                           (byte)(x >>> 8));
2758         }
2759     }
2760     /** @see #putLongUnaligned(Object, long, long, boolean) */
2761     public final void putShortUnaligned(Object o, long offset, short x, boolean bigEndian) {
2762         putShortUnaligned(o, offset, convEndian(bigEndian, x));
2763     }
2764 
2765     /** @see #putLongUnaligned(Object, long, long) */
2766     @HotSpotIntrinsicCandidate
2767     public final void putCharUnaligned(Object o, long offset, char x) {
2768         putShortUnaligned(o, offset, (short)x);
2769     }
2770     /** @see #putLongUnaligned(Object, long, long, boolean) */
2771     public final void putCharUnaligned(Object o, long offset, char x, boolean bigEndian) {
2772         putCharUnaligned(o, offset, convEndian(bigEndian, x));
2773     }
2774 
2775     // JVM interface methods
2776     // BE is true iff the native endianness of this platform is big.
2777     private static final boolean BE = theUnsafe.isBigEndian0();
2778 
2779     // unalignedAccess is true iff this platform can perform unaligned accesses.
2780     private static final boolean unalignedAccess = theUnsafe.unalignedAccess0();
2781 
2782     private static int pickPos(int top, int pos) { return BE ? top - pos : pos; }
2783 
2784     // These methods construct integers from bytes.  The byte ordering
2785     // is the native endianness of this platform.
2786     private static long makeLong(byte i0, byte i1, byte i2, byte i3, byte i4, byte i5, byte i6, byte i7) {
2787         return ((toUnsignedLong(i0) << pickPos(56, 0))
2788               | (toUnsignedLong(i1) << pickPos(56, 8))
2789               | (toUnsignedLong(i2) << pickPos(56, 16))
2790               | (toUnsignedLong(i3) << pickPos(56, 24))
2791               | (toUnsignedLong(i4) << pickPos(56, 32))
2792               | (toUnsignedLong(i5) << pickPos(56, 40))
2793               | (toUnsignedLong(i6) << pickPos(56, 48))
2794               | (toUnsignedLong(i7) << pickPos(56, 56)));
2795     }
2796     private static long makeLong(short i0, short i1, short i2, short i3) {
2797         return ((toUnsignedLong(i0) << pickPos(48, 0))
2798               | (toUnsignedLong(i1) << pickPos(48, 16))
2799               | (toUnsignedLong(i2) << pickPos(48, 32))
2800               | (toUnsignedLong(i3) << pickPos(48, 48)));
2801     }
2802     private static long makeLong(int i0, int i1) {
2803         return (toUnsignedLong(i0) << pickPos(32, 0))
2804              | (toUnsignedLong(i1) << pickPos(32, 32));
2805     }
2806     private static int makeInt(short i0, short i1) {
2807         return (toUnsignedInt(i0) << pickPos(16, 0))
2808              | (toUnsignedInt(i1) << pickPos(16, 16));
2809     }
2810     private static int makeInt(byte i0, byte i1, byte i2, byte i3) {
2811         return ((toUnsignedInt(i0) << pickPos(24, 0))
2812               | (toUnsignedInt(i1) << pickPos(24, 8))
2813               | (toUnsignedInt(i2) << pickPos(24, 16))
2814               | (toUnsignedInt(i3) << pickPos(24, 24)));
2815     }
2816     private static short makeShort(byte i0, byte i1) {
2817         return (short)((toUnsignedInt(i0) << pickPos(8, 0))
2818                      | (toUnsignedInt(i1) << pickPos(8, 8)));
2819     }
2820 
2821     private static byte  pick(byte  le, byte  be) { return BE ? be : le; }
2822     private static short pick(short le, short be) { return BE ? be : le; }
2823     private static int   pick(int   le, int   be) { return BE ? be : le; }
2824 
2825     // These methods write integers to memory from smaller parts
2826     // provided by their caller.  The ordering in which these parts
2827     // are written is the native endianness of this platform.
2828     private void putLongParts(Object o, long offset, byte i0, byte i1, byte i2, byte i3, byte i4, byte i5, byte i6, byte i7) {
2829         putByte(o, offset + 0, pick(i0, i7));
2830         putByte(o, offset + 1, pick(i1, i6));
2831         putByte(o, offset + 2, pick(i2, i5));
2832         putByte(o, offset + 3, pick(i3, i4));
2833         putByte(o, offset + 4, pick(i4, i3));
2834         putByte(o, offset + 5, pick(i5, i2));
2835         putByte(o, offset + 6, pick(i6, i1));
2836         putByte(o, offset + 7, pick(i7, i0));
2837     }
2838     private void putLongParts(Object o, long offset, short i0, short i1, short i2, short i3) {
2839         putShort(o, offset + 0, pick(i0, i3));
2840         putShort(o, offset + 2, pick(i1, i2));
2841         putShort(o, offset + 4, pick(i2, i1));
2842         putShort(o, offset + 6, pick(i3, i0));
2843     }
2844     private void putLongParts(Object o, long offset, int i0, int i1) {
2845         putInt(o, offset + 0, pick(i0, i1));
2846         putInt(o, offset + 4, pick(i1, i0));
2847     }
2848     private void putIntParts(Object o, long offset, short i0, short i1) {
2849         putShort(o, offset + 0, pick(i0, i1));
2850         putShort(o, offset + 2, pick(i1, i0));
2851     }
2852     private void putIntParts(Object o, long offset, byte i0, byte i1, byte i2, byte i3) {
2853         putByte(o, offset + 0, pick(i0, i3));
2854         putByte(o, offset + 1, pick(i1, i2));
2855         putByte(o, offset + 2, pick(i2, i1));
2856         putByte(o, offset + 3, pick(i3, i0));
2857     }
2858     private void putShortParts(Object o, long offset, byte i0, byte i1) {
2859         putByte(o, offset + 0, pick(i0, i1));
2860         putByte(o, offset + 1, pick(i1, i0));
2861     }
2862 
2863     // Zero-extend an integer
2864     private static int toUnsignedInt(byte n)    { return n & 0xff; }
2865     private static int toUnsignedInt(short n)   { return n & 0xffff; }
2866     private static long toUnsignedLong(byte n)  { return n & 0xffl; }
2867     private static long toUnsignedLong(short n) { return n & 0xffffl; }
2868     private static long toUnsignedLong(int n)   { return n & 0xffffffffl; }
2869 
2870     // Maybe byte-reverse an integer
2871     private static char convEndian(boolean big, char n)   { return big == BE ? n : Character.reverseBytes(n); }
2872     private static short convEndian(boolean big, short n) { return big == BE ? n : Short.reverseBytes(n)    ; }
2873     private static int convEndian(boolean big, int n)     { return big == BE ? n : Integer.reverseBytes(n)  ; }
2874     private static long convEndian(boolean big, long n)   { return big == BE ? n : Long.reverseBytes(n)     ; }
2875 
2876 
2877 
2878     private native long allocateMemory0(long bytes);
2879     private native long reallocateMemory0(long address, long bytes);
2880     private native void freeMemory0(long address);
2881     private native void setMemory0(Object o, long offset, long bytes, byte value);
2882     @HotSpotIntrinsicCandidate
2883     private native void copyMemory0(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes);
2884     private native void copySwapMemory0(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes, long elemSize);
2885     private native long objectFieldOffset0(Field f);
2886     private native long staticFieldOffset0(Field f);
2887     private native Object staticFieldBase0(Field f);
2888     private native boolean shouldBeInitialized0(Class<?> c);
2889     private native void ensureClassInitialized0(Class<?> c);
2890     private native int arrayBaseOffset0(Class<?> arrayClass);
2891     private native int arrayIndexScale0(Class<?> arrayClass);
2892     private native int addressSize0();
2893     private native Class<?> defineAnonymousClass0(Class<?> hostClass, byte[] data, Object[] cpPatches);
2894     private native int getLoadAverage0(double[] loadavg, int nelems);
2895     private native boolean unalignedAccess0();
2896     private native boolean isBigEndian0();
2897 }