1 /*
   2  * Copyright (c) 1999, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "compiler/compileBroker.hpp"
  30 #include "compiler/compileLog.hpp"
  31 #include "memory/resourceArea.hpp"
  32 #include "oops/objArrayKlass.hpp"
  33 #include "opto/addnode.hpp"
  34 #include "opto/arraycopynode.hpp"
  35 #include "opto/c2compiler.hpp"
  36 #include "opto/callGenerator.hpp"
  37 #include "opto/castnode.hpp"
  38 #include "opto/cfgnode.hpp"
  39 #include "opto/convertnode.hpp"
  40 #include "opto/countbitsnode.hpp"
  41 #include "opto/intrinsicnode.hpp"
  42 #include "opto/idealKit.hpp"
  43 #include "opto/mathexactnode.hpp"
  44 #include "opto/movenode.hpp"
  45 #include "opto/mulnode.hpp"
  46 #include "opto/narrowptrnode.hpp"
  47 #include "opto/opaquenode.hpp"
  48 #include "opto/parse.hpp"
  49 #include "opto/runtime.hpp"
  50 #include "opto/subnode.hpp"
  51 #include "prims/nativeLookup.hpp"
  52 #include "prims/unsafe.hpp"
  53 #include "runtime/sharedRuntime.hpp"
  54 #ifdef TRACE_HAVE_INTRINSICS
  55 #include "trace/traceMacros.hpp"
  56 #endif
  57 
  58 class LibraryIntrinsic : public InlineCallGenerator {
  59   // Extend the set of intrinsics known to the runtime:
  60  public:
  61  private:
  62   bool             _is_virtual;
  63   bool             _does_virtual_dispatch;
  64   int8_t           _predicates_count;  // Intrinsic is predicated by several conditions
  65   int8_t           _last_predicate; // Last generated predicate
  66   vmIntrinsics::ID _intrinsic_id;
  67 
  68  public:
  69   LibraryIntrinsic(ciMethod* m, bool is_virtual, int predicates_count, bool does_virtual_dispatch, vmIntrinsics::ID id)
  70     : InlineCallGenerator(m),
  71       _is_virtual(is_virtual),
  72       _does_virtual_dispatch(does_virtual_dispatch),
  73       _predicates_count((int8_t)predicates_count),
  74       _last_predicate((int8_t)-1),
  75       _intrinsic_id(id)
  76   {
  77   }
  78   virtual bool is_intrinsic() const { return true; }
  79   virtual bool is_virtual()   const { return _is_virtual; }
  80   virtual bool is_predicated() const { return _predicates_count > 0; }
  81   virtual int  predicates_count() const { return _predicates_count; }
  82   virtual bool does_virtual_dispatch()   const { return _does_virtual_dispatch; }
  83   virtual JVMState* generate(JVMState* jvms);
  84   virtual Node* generate_predicate(JVMState* jvms, int predicate);
  85   vmIntrinsics::ID intrinsic_id() const { return _intrinsic_id; }
  86 };
  87 
  88 
  89 // Local helper class for LibraryIntrinsic:
  90 class LibraryCallKit : public GraphKit {
  91  private:
  92   LibraryIntrinsic* _intrinsic;     // the library intrinsic being called
  93   Node*             _result;        // the result node, if any
  94   int               _reexecute_sp;  // the stack pointer when bytecode needs to be reexecuted
  95 
  96   const TypeOopPtr* sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type);
  97 
  98  public:
  99   LibraryCallKit(JVMState* jvms, LibraryIntrinsic* intrinsic)
 100     : GraphKit(jvms),
 101       _intrinsic(intrinsic),
 102       _result(NULL)
 103   {
 104     // Check if this is a root compile.  In that case we don't have a caller.
 105     if (!jvms->has_method()) {
 106       _reexecute_sp = sp();
 107     } else {
 108       // Find out how many arguments the interpreter needs when deoptimizing
 109       // and save the stack pointer value so it can used by uncommon_trap.
 110       // We find the argument count by looking at the declared signature.
 111       bool ignored_will_link;
 112       ciSignature* declared_signature = NULL;
 113       ciMethod* ignored_callee = caller()->get_method_at_bci(bci(), ignored_will_link, &declared_signature);
 114       const int nargs = declared_signature->arg_size_for_bc(caller()->java_code_at_bci(bci()));
 115       _reexecute_sp = sp() + nargs;  // "push" arguments back on stack
 116     }
 117   }
 118 
 119   virtual LibraryCallKit* is_LibraryCallKit() const { return (LibraryCallKit*)this; }
 120 
 121   ciMethod*         caller()    const    { return jvms()->method(); }
 122   int               bci()       const    { return jvms()->bci(); }
 123   LibraryIntrinsic* intrinsic() const    { return _intrinsic; }
 124   vmIntrinsics::ID  intrinsic_id() const { return _intrinsic->intrinsic_id(); }
 125   ciMethod*         callee()    const    { return _intrinsic->method(); }
 126 
 127   bool  try_to_inline(int predicate);
 128   Node* try_to_predicate(int predicate);
 129 
 130   void push_result() {
 131     // Push the result onto the stack.
 132     if (!stopped() && result() != NULL) {
 133       BasicType bt = result()->bottom_type()->basic_type();
 134       push_node(bt, result());
 135     }
 136   }
 137 
 138  private:
 139   void fatal_unexpected_iid(vmIntrinsics::ID iid) {
 140     fatal("unexpected intrinsic %d: %s", iid, vmIntrinsics::name_at(iid));
 141   }
 142 
 143   void  set_result(Node* n) { assert(_result == NULL, "only set once"); _result = n; }
 144   void  set_result(RegionNode* region, PhiNode* value);
 145   Node*     result() { return _result; }
 146 
 147   virtual int reexecute_sp() { return _reexecute_sp; }
 148 
 149   // Helper functions to inline natives
 150   Node* generate_guard(Node* test, RegionNode* region, float true_prob);
 151   Node* generate_slow_guard(Node* test, RegionNode* region);
 152   Node* generate_fair_guard(Node* test, RegionNode* region);
 153   Node* generate_negative_guard(Node* index, RegionNode* region,
 154                                 // resulting CastII of index:
 155                                 Node* *pos_index = NULL);
 156   Node* generate_limit_guard(Node* offset, Node* subseq_length,
 157                              Node* array_length,
 158                              RegionNode* region);
 159   void  generate_string_range_check(Node* array, Node* offset,
 160                                     Node* length, bool char_count);
 161   Node* generate_current_thread(Node* &tls_output);
 162   Node* load_mirror_from_klass(Node* klass);
 163   Node* load_klass_from_mirror_common(Node* mirror, bool never_see_null,
 164                                       RegionNode* region, int null_path,
 165                                       int offset);
 166   Node* load_klass_from_mirror(Node* mirror, bool never_see_null,
 167                                RegionNode* region, int null_path) {
 168     int offset = java_lang_Class::klass_offset_in_bytes();
 169     return load_klass_from_mirror_common(mirror, never_see_null,
 170                                          region, null_path,
 171                                          offset);
 172   }
 173   Node* load_array_klass_from_mirror(Node* mirror, bool never_see_null,
 174                                      RegionNode* region, int null_path) {
 175     int offset = java_lang_Class::array_klass_offset_in_bytes();
 176     return load_klass_from_mirror_common(mirror, never_see_null,
 177                                          region, null_path,
 178                                          offset);
 179   }
 180   Node* generate_access_flags_guard(Node* kls,
 181                                     int modifier_mask, int modifier_bits,
 182                                     RegionNode* region);
 183   Node* generate_interface_guard(Node* kls, RegionNode* region);
 184   Node* generate_array_guard(Node* kls, RegionNode* region) {
 185     return generate_array_guard_common(kls, region, false, false);
 186   }
 187   Node* generate_non_array_guard(Node* kls, RegionNode* region) {
 188     return generate_array_guard_common(kls, region, false, true);
 189   }
 190   Node* generate_objArray_guard(Node* kls, RegionNode* region) {
 191     return generate_array_guard_common(kls, region, true, false);
 192   }
 193   Node* generate_non_objArray_guard(Node* kls, RegionNode* region) {
 194     return generate_array_guard_common(kls, region, true, true);
 195   }
 196   Node* generate_array_guard_common(Node* kls, RegionNode* region,
 197                                     bool obj_array, bool not_array);
 198   Node* generate_virtual_guard(Node* obj_klass, RegionNode* slow_region);
 199   CallJavaNode* generate_method_call(vmIntrinsics::ID method_id,
 200                                      bool is_virtual = false, bool is_static = false);
 201   CallJavaNode* generate_method_call_static(vmIntrinsics::ID method_id) {
 202     return generate_method_call(method_id, false, true);
 203   }
 204   CallJavaNode* generate_method_call_virtual(vmIntrinsics::ID method_id) {
 205     return generate_method_call(method_id, true, false);
 206   }
 207   Node * load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, bool is_exact, bool is_static, ciInstanceKlass * fromKls);
 208   Node * field_address_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, bool is_exact, bool is_static, ciInstanceKlass * fromKls);
 209 
 210   Node* make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2, StrIntrinsicNode::ArgEnc ae);
 211   bool inline_string_compareTo(StrIntrinsicNode::ArgEnc ae);
 212   bool inline_string_indexOf(StrIntrinsicNode::ArgEnc ae);
 213   bool inline_string_indexOfI(StrIntrinsicNode::ArgEnc ae);
 214   Node* make_indexOf_node(Node* src_start, Node* src_count, Node* tgt_start, Node* tgt_count,
 215                           RegionNode* region, Node* phi, StrIntrinsicNode::ArgEnc ae);
 216   bool inline_string_indexOfChar();
 217   bool inline_string_equals(StrIntrinsicNode::ArgEnc ae);
 218   bool inline_string_toBytesU();
 219   bool inline_string_getCharsU();
 220   bool inline_string_copy(bool compress);
 221   bool inline_string_char_access(bool is_store);
 222   Node* round_double_node(Node* n);
 223   bool runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName);
 224   bool inline_math_native(vmIntrinsics::ID id);
 225   bool inline_math(vmIntrinsics::ID id);
 226   template <typename OverflowOp>
 227   bool inline_math_overflow(Node* arg1, Node* arg2);
 228   void inline_math_mathExact(Node* math, Node* test);
 229   bool inline_math_addExactI(bool is_increment);
 230   bool inline_math_addExactL(bool is_increment);
 231   bool inline_math_multiplyExactI();
 232   bool inline_math_multiplyExactL();
 233   bool inline_math_negateExactI();
 234   bool inline_math_negateExactL();
 235   bool inline_math_subtractExactI(bool is_decrement);
 236   bool inline_math_subtractExactL(bool is_decrement);
 237   bool inline_min_max(vmIntrinsics::ID id);
 238   bool inline_notify(vmIntrinsics::ID id);
 239   Node* generate_min_max(vmIntrinsics::ID id, Node* x, Node* y);
 240   // This returns Type::AnyPtr, RawPtr, or OopPtr.
 241   int classify_unsafe_addr(Node* &base, Node* &offset);
 242   Node* make_unsafe_address(Node* base, Node* offset);
 243   // Helper for inline_unsafe_access.
 244   // Generates the guards that check whether the result of
 245   // Unsafe.getObject should be recorded in an SATB log buffer.
 246   void insert_pre_barrier(Node* base_oop, Node* offset, Node* pre_val, bool need_mem_bar);
 247 
 248   typedef enum { Relaxed, Opaque, Volatile, Acquire, Release } AccessKind;
 249   bool inline_unsafe_access(bool is_store, BasicType type, AccessKind kind, bool is_unaligned);
 250   static bool klass_needs_init_guard(Node* kls);
 251   bool inline_unsafe_allocate();
 252   bool inline_unsafe_newArray(bool uninitialized);
 253   bool inline_unsafe_copyMemory();
 254   bool inline_native_currentThread();
 255 
 256   bool inline_native_time_funcs(address method, const char* funcName);
 257   bool inline_native_isInterrupted();
 258   bool inline_native_Class_query(vmIntrinsics::ID id);
 259   bool inline_native_subtype_check();
 260   bool inline_native_getLength();
 261   bool inline_array_copyOf(bool is_copyOfRange);
 262   bool inline_array_equals(StrIntrinsicNode::ArgEnc ae);
 263   bool inline_preconditions_checkIndex();
 264   void copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark);
 265   bool inline_native_clone(bool is_virtual);
 266   bool inline_native_Reflection_getCallerClass();
 267   // Helper function for inlining native object hash method
 268   bool inline_native_hashcode(bool is_virtual, bool is_static);
 269   bool inline_native_getClass();
 270 
 271   // Helper functions for inlining arraycopy
 272   bool inline_arraycopy();
 273   AllocateArrayNode* tightly_coupled_allocation(Node* ptr,
 274                                                 RegionNode* slow_region);
 275   JVMState* arraycopy_restore_alloc_state(AllocateArrayNode* alloc, int& saved_reexecute_sp);
 276   void arraycopy_move_allocation_here(AllocateArrayNode* alloc, Node* dest, JVMState* saved_jvms, int saved_reexecute_sp);
 277 
 278   typedef enum { LS_get_add, LS_get_set, LS_cmp_swap, LS_cmp_swap_weak, LS_cmp_exchange } LoadStoreKind;
 279   MemNode::MemOrd access_kind_to_memord_LS(AccessKind access_kind, bool is_store);
 280   MemNode::MemOrd access_kind_to_memord(AccessKind access_kind);
 281   bool inline_unsafe_load_store(BasicType type,  LoadStoreKind kind, AccessKind access_kind);
 282   bool inline_unsafe_fence(vmIntrinsics::ID id);
 283   bool inline_onspinwait();
 284   bool inline_fp_conversions(vmIntrinsics::ID id);
 285   bool inline_number_methods(vmIntrinsics::ID id);
 286   bool inline_reference_get();
 287   bool inline_Class_cast();
 288   bool inline_aescrypt_Block(vmIntrinsics::ID id);
 289   bool inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id);
 290   bool inline_counterMode_AESCrypt(vmIntrinsics::ID id);
 291   Node* inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting);
 292   Node* inline_counterMode_AESCrypt_predicate();
 293   Node* get_key_start_from_aescrypt_object(Node* aescrypt_object);
 294   Node* get_original_key_start_from_aescrypt_object(Node* aescrypt_object);
 295   bool inline_ghash_processBlocks();
 296   bool inline_sha_implCompress(vmIntrinsics::ID id);
 297   bool inline_digestBase_implCompressMB(int predicate);
 298   bool inline_sha_implCompressMB(Node* digestBaseObj, ciInstanceKlass* instklass_SHA,
 299                                  bool long_state, address stubAddr, const char *stubName,
 300                                  Node* src_start, Node* ofs, Node* limit);
 301   Node* get_state_from_sha_object(Node *sha_object);
 302   Node* get_state_from_sha5_object(Node *sha_object);
 303   Node* inline_digestBase_implCompressMB_predicate(int predicate);
 304   bool inline_encodeISOArray();
 305   bool inline_updateCRC32();
 306   bool inline_updateBytesCRC32();
 307   bool inline_updateByteBufferCRC32();
 308   Node* get_table_from_crc32c_class(ciInstanceKlass *crc32c_class);
 309   bool inline_updateBytesCRC32C();
 310   bool inline_updateDirectByteBufferCRC32C();
 311   bool inline_updateBytesAdler32();
 312   bool inline_updateByteBufferAdler32();
 313   bool inline_multiplyToLen();
 314   bool inline_hasNegatives();
 315   bool inline_squareToLen();
 316   bool inline_mulAdd();
 317   bool inline_montgomeryMultiply();
 318   bool inline_montgomerySquare();
 319   bool inline_vectorizedMismatch();
 320 
 321   bool inline_profileBoolean();
 322   bool inline_isCompileConstant();
 323 };
 324 
 325 //---------------------------make_vm_intrinsic----------------------------
 326 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
 327   vmIntrinsics::ID id = m->intrinsic_id();
 328   assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
 329 
 330   if (!m->is_loaded()) {
 331     // Do not attempt to inline unloaded methods.
 332     return NULL;
 333   }
 334 
 335   C2Compiler* compiler = (C2Compiler*)CompileBroker::compiler(CompLevel_full_optimization);
 336   bool is_available = false;
 337 
 338   {
 339     // For calling is_intrinsic_supported and is_intrinsic_disabled_by_flag
 340     // the compiler must transition to '_thread_in_vm' state because both
 341     // methods access VM-internal data.
 342     VM_ENTRY_MARK;
 343     methodHandle mh(THREAD, m->get_Method());
 344     is_available = compiler->is_intrinsic_supported(mh, is_virtual) &&
 345                    !C->directive()->is_intrinsic_disabled(mh) &&
 346                    !vmIntrinsics::is_disabled_by_flags(mh);
 347 
 348   }
 349 
 350   if (is_available) {
 351     assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility");
 352     assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?");
 353     return new LibraryIntrinsic(m, is_virtual,
 354                                 vmIntrinsics::predicates_needed(id),
 355                                 vmIntrinsics::does_virtual_dispatch(id),
 356                                 (vmIntrinsics::ID) id);
 357   } else {
 358     return NULL;
 359   }
 360 }
 361 
 362 //----------------------register_library_intrinsics-----------------------
 363 // Initialize this file's data structures, for each Compile instance.
 364 void Compile::register_library_intrinsics() {
 365   // Nothing to do here.
 366 }
 367 
 368 JVMState* LibraryIntrinsic::generate(JVMState* jvms) {
 369   LibraryCallKit kit(jvms, this);
 370   Compile* C = kit.C;
 371   int nodes = C->unique();
 372 #ifndef PRODUCT
 373   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
 374     char buf[1000];
 375     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 376     tty->print_cr("Intrinsic %s", str);
 377   }
 378 #endif
 379   ciMethod* callee = kit.callee();
 380   const int bci    = kit.bci();
 381 
 382   // Try to inline the intrinsic.
 383   if ((CheckIntrinsics ? callee->intrinsic_candidate() : true) &&
 384       kit.try_to_inline(_last_predicate)) {
 385     if (C->print_intrinsics() || C->print_inlining()) {
 386       C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual)" : "(intrinsic)");
 387     }
 388     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 389     if (C->log()) {
 390       C->log()->elem("intrinsic id='%s'%s nodes='%d'",
 391                      vmIntrinsics::name_at(intrinsic_id()),
 392                      (is_virtual() ? " virtual='1'" : ""),
 393                      C->unique() - nodes);
 394     }
 395     // Push the result from the inlined method onto the stack.
 396     kit.push_result();
 397     C->print_inlining_update(this);
 398     return kit.transfer_exceptions_into_jvms();
 399   }
 400 
 401   // The intrinsic bailed out
 402   if (C->print_intrinsics() || C->print_inlining()) {
 403     if (jvms->has_method()) {
 404       // Not a root compile.
 405       const char* msg;
 406       if (callee->intrinsic_candidate()) {
 407         msg = is_virtual() ? "failed to inline (intrinsic, virtual)" : "failed to inline (intrinsic)";
 408       } else {
 409         msg = is_virtual() ? "failed to inline (intrinsic, virtual), method not annotated"
 410                            : "failed to inline (intrinsic), method not annotated";
 411       }
 412       C->print_inlining(callee, jvms->depth() - 1, bci, msg);
 413     } else {
 414       // Root compile
 415       tty->print("Did not generate intrinsic %s%s at bci:%d in",
 416                vmIntrinsics::name_at(intrinsic_id()),
 417                (is_virtual() ? " (virtual)" : ""), bci);
 418     }
 419   }
 420   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 421   C->print_inlining_update(this);
 422   return NULL;
 423 }
 424 
 425 Node* LibraryIntrinsic::generate_predicate(JVMState* jvms, int predicate) {
 426   LibraryCallKit kit(jvms, this);
 427   Compile* C = kit.C;
 428   int nodes = C->unique();
 429   _last_predicate = predicate;
 430 #ifndef PRODUCT
 431   assert(is_predicated() && predicate < predicates_count(), "sanity");
 432   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
 433     char buf[1000];
 434     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 435     tty->print_cr("Predicate for intrinsic %s", str);
 436   }
 437 #endif
 438   ciMethod* callee = kit.callee();
 439   const int bci    = kit.bci();
 440 
 441   Node* slow_ctl = kit.try_to_predicate(predicate);
 442   if (!kit.failing()) {
 443     if (C->print_intrinsics() || C->print_inlining()) {
 444       C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual, predicate)" : "(intrinsic, predicate)");
 445     }
 446     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 447     if (C->log()) {
 448       C->log()->elem("predicate_intrinsic id='%s'%s nodes='%d'",
 449                      vmIntrinsics::name_at(intrinsic_id()),
 450                      (is_virtual() ? " virtual='1'" : ""),
 451                      C->unique() - nodes);
 452     }
 453     return slow_ctl; // Could be NULL if the check folds.
 454   }
 455 
 456   // The intrinsic bailed out
 457   if (C->print_intrinsics() || C->print_inlining()) {
 458     if (jvms->has_method()) {
 459       // Not a root compile.
 460       const char* msg = "failed to generate predicate for intrinsic";
 461       C->print_inlining(kit.callee(), jvms->depth() - 1, bci, msg);
 462     } else {
 463       // Root compile
 464       C->print_inlining_stream()->print("Did not generate predicate for intrinsic %s%s at bci:%d in",
 465                                         vmIntrinsics::name_at(intrinsic_id()),
 466                                         (is_virtual() ? " (virtual)" : ""), bci);
 467     }
 468   }
 469   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 470   return NULL;
 471 }
 472 
 473 bool LibraryCallKit::try_to_inline(int predicate) {
 474   // Handle symbolic names for otherwise undistinguished boolean switches:
 475   const bool is_store       = true;
 476   const bool is_compress    = true;
 477   const bool is_static      = true;
 478   const bool is_volatile    = true;
 479 
 480   if (!jvms()->has_method()) {
 481     // Root JVMState has a null method.
 482     assert(map()->memory()->Opcode() == Op_Parm, "");
 483     // Insert the memory aliasing node
 484     set_all_memory(reset_memory());
 485   }
 486   assert(merged_memory(), "");
 487 
 488 
 489   switch (intrinsic_id()) {
 490   case vmIntrinsics::_hashCode:                 return inline_native_hashcode(intrinsic()->is_virtual(), !is_static);
 491   case vmIntrinsics::_identityHashCode:         return inline_native_hashcode(/*!virtual*/ false,         is_static);
 492   case vmIntrinsics::_getClass:                 return inline_native_getClass();
 493 
 494   case vmIntrinsics::_dsin:
 495   case vmIntrinsics::_dcos:
 496   case vmIntrinsics::_dtan:
 497   case vmIntrinsics::_dabs:
 498   case vmIntrinsics::_datan2:
 499   case vmIntrinsics::_dsqrt:
 500   case vmIntrinsics::_dexp:
 501   case vmIntrinsics::_dlog:
 502   case vmIntrinsics::_dlog10:
 503   case vmIntrinsics::_dpow:                     return inline_math_native(intrinsic_id());
 504 
 505   case vmIntrinsics::_min:
 506   case vmIntrinsics::_max:                      return inline_min_max(intrinsic_id());
 507 
 508   case vmIntrinsics::_notify:
 509   case vmIntrinsics::_notifyAll:
 510     if (InlineNotify) {
 511       return inline_notify(intrinsic_id());
 512     }
 513     return false;
 514 
 515   case vmIntrinsics::_addExactI:                return inline_math_addExactI(false /* add */);
 516   case vmIntrinsics::_addExactL:                return inline_math_addExactL(false /* add */);
 517   case vmIntrinsics::_decrementExactI:          return inline_math_subtractExactI(true /* decrement */);
 518   case vmIntrinsics::_decrementExactL:          return inline_math_subtractExactL(true /* decrement */);
 519   case vmIntrinsics::_incrementExactI:          return inline_math_addExactI(true /* increment */);
 520   case vmIntrinsics::_incrementExactL:          return inline_math_addExactL(true /* increment */);
 521   case vmIntrinsics::_multiplyExactI:           return inline_math_multiplyExactI();
 522   case vmIntrinsics::_multiplyExactL:           return inline_math_multiplyExactL();
 523   case vmIntrinsics::_negateExactI:             return inline_math_negateExactI();
 524   case vmIntrinsics::_negateExactL:             return inline_math_negateExactL();
 525   case vmIntrinsics::_subtractExactI:           return inline_math_subtractExactI(false /* subtract */);
 526   case vmIntrinsics::_subtractExactL:           return inline_math_subtractExactL(false /* subtract */);
 527 
 528   case vmIntrinsics::_arraycopy:                return inline_arraycopy();
 529 
 530   case vmIntrinsics::_compareToL:               return inline_string_compareTo(StrIntrinsicNode::LL);
 531   case vmIntrinsics::_compareToU:               return inline_string_compareTo(StrIntrinsicNode::UU);
 532   case vmIntrinsics::_compareToLU:              return inline_string_compareTo(StrIntrinsicNode::LU);
 533   case vmIntrinsics::_compareToUL:              return inline_string_compareTo(StrIntrinsicNode::UL);
 534 
 535   case vmIntrinsics::_indexOfL:                 return inline_string_indexOf(StrIntrinsicNode::LL);
 536   case vmIntrinsics::_indexOfU:                 return inline_string_indexOf(StrIntrinsicNode::UU);
 537   case vmIntrinsics::_indexOfUL:                return inline_string_indexOf(StrIntrinsicNode::UL);
 538   case vmIntrinsics::_indexOfIL:                return inline_string_indexOfI(StrIntrinsicNode::LL);
 539   case vmIntrinsics::_indexOfIU:                return inline_string_indexOfI(StrIntrinsicNode::UU);
 540   case vmIntrinsics::_indexOfIUL:               return inline_string_indexOfI(StrIntrinsicNode::UL);
 541   case vmIntrinsics::_indexOfU_char:            return inline_string_indexOfChar();
 542 
 543   case vmIntrinsics::_equalsL:                  return inline_string_equals(StrIntrinsicNode::LL);
 544   case vmIntrinsics::_equalsU:                  return inline_string_equals(StrIntrinsicNode::UU);
 545 
 546   case vmIntrinsics::_toBytesStringU:           return inline_string_toBytesU();
 547   case vmIntrinsics::_getCharsStringU:          return inline_string_getCharsU();
 548   case vmIntrinsics::_getCharStringU:           return inline_string_char_access(!is_store);
 549   case vmIntrinsics::_putCharStringU:           return inline_string_char_access( is_store);
 550 
 551   case vmIntrinsics::_compressStringC:
 552   case vmIntrinsics::_compressStringB:          return inline_string_copy( is_compress);
 553   case vmIntrinsics::_inflateStringC:
 554   case vmIntrinsics::_inflateStringB:           return inline_string_copy(!is_compress);
 555 
 556   case vmIntrinsics::_getObject:                return inline_unsafe_access(!is_store, T_OBJECT,   Relaxed, false);
 557   case vmIntrinsics::_getBoolean:               return inline_unsafe_access(!is_store, T_BOOLEAN,  Relaxed, false);
 558   case vmIntrinsics::_getByte:                  return inline_unsafe_access(!is_store, T_BYTE,     Relaxed, false);
 559   case vmIntrinsics::_getShort:                 return inline_unsafe_access(!is_store, T_SHORT,    Relaxed, false);
 560   case vmIntrinsics::_getChar:                  return inline_unsafe_access(!is_store, T_CHAR,     Relaxed, false);
 561   case vmIntrinsics::_getInt:                   return inline_unsafe_access(!is_store, T_INT,      Relaxed, false);
 562   case vmIntrinsics::_getLong:                  return inline_unsafe_access(!is_store, T_LONG,     Relaxed, false);
 563   case vmIntrinsics::_getFloat:                 return inline_unsafe_access(!is_store, T_FLOAT,    Relaxed, false);
 564   case vmIntrinsics::_getDouble:                return inline_unsafe_access(!is_store, T_DOUBLE,   Relaxed, false);
 565 
 566   case vmIntrinsics::_putObject:                return inline_unsafe_access( is_store, T_OBJECT,   Relaxed, false);
 567   case vmIntrinsics::_putBoolean:               return inline_unsafe_access( is_store, T_BOOLEAN,  Relaxed, false);
 568   case vmIntrinsics::_putByte:                  return inline_unsafe_access( is_store, T_BYTE,     Relaxed, false);
 569   case vmIntrinsics::_putShort:                 return inline_unsafe_access( is_store, T_SHORT,    Relaxed, false);
 570   case vmIntrinsics::_putChar:                  return inline_unsafe_access( is_store, T_CHAR,     Relaxed, false);
 571   case vmIntrinsics::_putInt:                   return inline_unsafe_access( is_store, T_INT,      Relaxed, false);
 572   case vmIntrinsics::_putLong:                  return inline_unsafe_access( is_store, T_LONG,     Relaxed, false);
 573   case vmIntrinsics::_putFloat:                 return inline_unsafe_access( is_store, T_FLOAT,    Relaxed, false);
 574   case vmIntrinsics::_putDouble:                return inline_unsafe_access( is_store, T_DOUBLE,   Relaxed, false);
 575 
 576   case vmIntrinsics::_getObjectVolatile:        return inline_unsafe_access(!is_store, T_OBJECT,   Volatile, false);
 577   case vmIntrinsics::_getBooleanVolatile:       return inline_unsafe_access(!is_store, T_BOOLEAN,  Volatile, false);
 578   case vmIntrinsics::_getByteVolatile:          return inline_unsafe_access(!is_store, T_BYTE,     Volatile, false);
 579   case vmIntrinsics::_getShortVolatile:         return inline_unsafe_access(!is_store, T_SHORT,    Volatile, false);
 580   case vmIntrinsics::_getCharVolatile:          return inline_unsafe_access(!is_store, T_CHAR,     Volatile, false);
 581   case vmIntrinsics::_getIntVolatile:           return inline_unsafe_access(!is_store, T_INT,      Volatile, false);
 582   case vmIntrinsics::_getLongVolatile:          return inline_unsafe_access(!is_store, T_LONG,     Volatile, false);
 583   case vmIntrinsics::_getFloatVolatile:         return inline_unsafe_access(!is_store, T_FLOAT,    Volatile, false);
 584   case vmIntrinsics::_getDoubleVolatile:        return inline_unsafe_access(!is_store, T_DOUBLE,   Volatile, false);
 585 
 586   case vmIntrinsics::_putObjectVolatile:        return inline_unsafe_access( is_store, T_OBJECT,   Volatile, false);
 587   case vmIntrinsics::_putBooleanVolatile:       return inline_unsafe_access( is_store, T_BOOLEAN,  Volatile, false);
 588   case vmIntrinsics::_putByteVolatile:          return inline_unsafe_access( is_store, T_BYTE,     Volatile, false);
 589   case vmIntrinsics::_putShortVolatile:         return inline_unsafe_access( is_store, T_SHORT,    Volatile, false);
 590   case vmIntrinsics::_putCharVolatile:          return inline_unsafe_access( is_store, T_CHAR,     Volatile, false);
 591   case vmIntrinsics::_putIntVolatile:           return inline_unsafe_access( is_store, T_INT,      Volatile, false);
 592   case vmIntrinsics::_putLongVolatile:          return inline_unsafe_access( is_store, T_LONG,     Volatile, false);
 593   case vmIntrinsics::_putFloatVolatile:         return inline_unsafe_access( is_store, T_FLOAT,    Volatile, false);
 594   case vmIntrinsics::_putDoubleVolatile:        return inline_unsafe_access( is_store, T_DOUBLE,   Volatile, false);
 595 
 596   case vmIntrinsics::_getShortUnaligned:        return inline_unsafe_access(!is_store, T_SHORT,    Relaxed, true);
 597   case vmIntrinsics::_getCharUnaligned:         return inline_unsafe_access(!is_store, T_CHAR,     Relaxed, true);
 598   case vmIntrinsics::_getIntUnaligned:          return inline_unsafe_access(!is_store, T_INT,      Relaxed, true);
 599   case vmIntrinsics::_getLongUnaligned:         return inline_unsafe_access(!is_store, T_LONG,     Relaxed, true);
 600 
 601   case vmIntrinsics::_putShortUnaligned:        return inline_unsafe_access( is_store, T_SHORT,    Relaxed, true);
 602   case vmIntrinsics::_putCharUnaligned:         return inline_unsafe_access( is_store, T_CHAR,     Relaxed, true);
 603   case vmIntrinsics::_putIntUnaligned:          return inline_unsafe_access( is_store, T_INT,      Relaxed, true);
 604   case vmIntrinsics::_putLongUnaligned:         return inline_unsafe_access( is_store, T_LONG,     Relaxed, true);
 605 
 606   case vmIntrinsics::_getObjectAcquire:         return inline_unsafe_access(!is_store, T_OBJECT,   Acquire, false);
 607   case vmIntrinsics::_getBooleanAcquire:        return inline_unsafe_access(!is_store, T_BOOLEAN,  Acquire, false);
 608   case vmIntrinsics::_getByteAcquire:           return inline_unsafe_access(!is_store, T_BYTE,     Acquire, false);
 609   case vmIntrinsics::_getShortAcquire:          return inline_unsafe_access(!is_store, T_SHORT,    Acquire, false);
 610   case vmIntrinsics::_getCharAcquire:           return inline_unsafe_access(!is_store, T_CHAR,     Acquire, false);
 611   case vmIntrinsics::_getIntAcquire:            return inline_unsafe_access(!is_store, T_INT,      Acquire, false);
 612   case vmIntrinsics::_getLongAcquire:           return inline_unsafe_access(!is_store, T_LONG,     Acquire, false);
 613   case vmIntrinsics::_getFloatAcquire:          return inline_unsafe_access(!is_store, T_FLOAT,    Acquire, false);
 614   case vmIntrinsics::_getDoubleAcquire:         return inline_unsafe_access(!is_store, T_DOUBLE,   Acquire, false);
 615 
 616   case vmIntrinsics::_putObjectRelease:         return inline_unsafe_access( is_store, T_OBJECT,   Release, false);
 617   case vmIntrinsics::_putBooleanRelease:        return inline_unsafe_access( is_store, T_BOOLEAN,  Release, false);
 618   case vmIntrinsics::_putByteRelease:           return inline_unsafe_access( is_store, T_BYTE,     Release, false);
 619   case vmIntrinsics::_putShortRelease:          return inline_unsafe_access( is_store, T_SHORT,    Release, false);
 620   case vmIntrinsics::_putCharRelease:           return inline_unsafe_access( is_store, T_CHAR,     Release, false);
 621   case vmIntrinsics::_putIntRelease:            return inline_unsafe_access( is_store, T_INT,      Release, false);
 622   case vmIntrinsics::_putLongRelease:           return inline_unsafe_access( is_store, T_LONG,     Release, false);
 623   case vmIntrinsics::_putFloatRelease:          return inline_unsafe_access( is_store, T_FLOAT,    Release, false);
 624   case vmIntrinsics::_putDoubleRelease:         return inline_unsafe_access( is_store, T_DOUBLE,   Release, false);
 625 
 626   case vmIntrinsics::_getObjectOpaque:          return inline_unsafe_access(!is_store, T_OBJECT,   Opaque, false);
 627   case vmIntrinsics::_getBooleanOpaque:         return inline_unsafe_access(!is_store, T_BOOLEAN,  Opaque, false);
 628   case vmIntrinsics::_getByteOpaque:            return inline_unsafe_access(!is_store, T_BYTE,     Opaque, false);
 629   case vmIntrinsics::_getShortOpaque:           return inline_unsafe_access(!is_store, T_SHORT,    Opaque, false);
 630   case vmIntrinsics::_getCharOpaque:            return inline_unsafe_access(!is_store, T_CHAR,     Opaque, false);
 631   case vmIntrinsics::_getIntOpaque:             return inline_unsafe_access(!is_store, T_INT,      Opaque, false);
 632   case vmIntrinsics::_getLongOpaque:            return inline_unsafe_access(!is_store, T_LONG,     Opaque, false);
 633   case vmIntrinsics::_getFloatOpaque:           return inline_unsafe_access(!is_store, T_FLOAT,    Opaque, false);
 634   case vmIntrinsics::_getDoubleOpaque:          return inline_unsafe_access(!is_store, T_DOUBLE,   Opaque, false);
 635 
 636   case vmIntrinsics::_putObjectOpaque:          return inline_unsafe_access( is_store, T_OBJECT,   Opaque, false);
 637   case vmIntrinsics::_putBooleanOpaque:         return inline_unsafe_access( is_store, T_BOOLEAN,  Opaque, false);
 638   case vmIntrinsics::_putByteOpaque:            return inline_unsafe_access( is_store, T_BYTE,     Opaque, false);
 639   case vmIntrinsics::_putShortOpaque:           return inline_unsafe_access( is_store, T_SHORT,    Opaque, false);
 640   case vmIntrinsics::_putCharOpaque:            return inline_unsafe_access( is_store, T_CHAR,     Opaque, false);
 641   case vmIntrinsics::_putIntOpaque:             return inline_unsafe_access( is_store, T_INT,      Opaque, false);
 642   case vmIntrinsics::_putLongOpaque:            return inline_unsafe_access( is_store, T_LONG,     Opaque, false);
 643   case vmIntrinsics::_putFloatOpaque:           return inline_unsafe_access( is_store, T_FLOAT,    Opaque, false);
 644   case vmIntrinsics::_putDoubleOpaque:          return inline_unsafe_access( is_store, T_DOUBLE,   Opaque, false);
 645 
 646   case vmIntrinsics::_compareAndSwapObject:             return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap,      Volatile);
 647   case vmIntrinsics::_compareAndSwapByte:               return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap,      Volatile);
 648   case vmIntrinsics::_compareAndSwapShort:              return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap,      Volatile);
 649   case vmIntrinsics::_compareAndSwapInt:                return inline_unsafe_load_store(T_INT,    LS_cmp_swap,      Volatile);
 650   case vmIntrinsics::_compareAndSwapLong:               return inline_unsafe_load_store(T_LONG,   LS_cmp_swap,      Volatile);
 651 
 652   case vmIntrinsics::_weakCompareAndSwapObject:         return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Relaxed);
 653   case vmIntrinsics::_weakCompareAndSwapObjectAcquire:  return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Acquire);
 654   case vmIntrinsics::_weakCompareAndSwapObjectRelease:  return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Release);
 655   case vmIntrinsics::_weakCompareAndSwapObjectVolatile: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Volatile);
 656   case vmIntrinsics::_weakCompareAndSwapByte:           return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Relaxed);
 657   case vmIntrinsics::_weakCompareAndSwapByteAcquire:    return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Acquire);
 658   case vmIntrinsics::_weakCompareAndSwapByteRelease:    return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Release);
 659   case vmIntrinsics::_weakCompareAndSwapByteVolatile:   return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Volatile);
 660   case vmIntrinsics::_weakCompareAndSwapShort:          return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Relaxed);
 661   case vmIntrinsics::_weakCompareAndSwapShortAcquire:   return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Acquire);
 662   case vmIntrinsics::_weakCompareAndSwapShortRelease:   return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Release);
 663   case vmIntrinsics::_weakCompareAndSwapShortVolatile:  return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Volatile);
 664   case vmIntrinsics::_weakCompareAndSwapInt:            return inline_unsafe_load_store(T_INT,    LS_cmp_swap_weak, Relaxed);
 665   case vmIntrinsics::_weakCompareAndSwapIntAcquire:     return inline_unsafe_load_store(T_INT,    LS_cmp_swap_weak, Acquire);
 666   case vmIntrinsics::_weakCompareAndSwapIntRelease:     return inline_unsafe_load_store(T_INT,    LS_cmp_swap_weak, Release);
 667   case vmIntrinsics::_weakCompareAndSwapIntVolatile:    return inline_unsafe_load_store(T_INT,    LS_cmp_swap_weak, Volatile);
 668   case vmIntrinsics::_weakCompareAndSwapLong:           return inline_unsafe_load_store(T_LONG,   LS_cmp_swap_weak, Relaxed);
 669   case vmIntrinsics::_weakCompareAndSwapLongAcquire:    return inline_unsafe_load_store(T_LONG,   LS_cmp_swap_weak, Acquire);
 670   case vmIntrinsics::_weakCompareAndSwapLongRelease:    return inline_unsafe_load_store(T_LONG,   LS_cmp_swap_weak, Release);
 671   case vmIntrinsics::_weakCompareAndSwapLongVolatile:   return inline_unsafe_load_store(T_LONG,   LS_cmp_swap_weak, Volatile);
 672 
 673   case vmIntrinsics::_compareAndExchangeObjectVolatile: return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange,  Volatile);
 674   case vmIntrinsics::_compareAndExchangeObjectAcquire:  return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange,  Acquire);
 675   case vmIntrinsics::_compareAndExchangeObjectRelease:  return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange,  Release);
 676   case vmIntrinsics::_compareAndExchangeByteVolatile:   return inline_unsafe_load_store(T_BYTE,   LS_cmp_exchange,  Volatile);
 677   case vmIntrinsics::_compareAndExchangeByteAcquire:    return inline_unsafe_load_store(T_BYTE,   LS_cmp_exchange,  Acquire);
 678   case vmIntrinsics::_compareAndExchangeByteRelease:    return inline_unsafe_load_store(T_BYTE,   LS_cmp_exchange,  Release);
 679   case vmIntrinsics::_compareAndExchangeShortVolatile:  return inline_unsafe_load_store(T_SHORT,  LS_cmp_exchange,  Volatile);
 680   case vmIntrinsics::_compareAndExchangeShortAcquire:   return inline_unsafe_load_store(T_SHORT,  LS_cmp_exchange,  Acquire);
 681   case vmIntrinsics::_compareAndExchangeShortRelease:   return inline_unsafe_load_store(T_SHORT,  LS_cmp_exchange,  Release);
 682   case vmIntrinsics::_compareAndExchangeIntVolatile:    return inline_unsafe_load_store(T_INT,    LS_cmp_exchange,  Volatile);
 683   case vmIntrinsics::_compareAndExchangeIntAcquire:     return inline_unsafe_load_store(T_INT,    LS_cmp_exchange,  Acquire);
 684   case vmIntrinsics::_compareAndExchangeIntRelease:     return inline_unsafe_load_store(T_INT,    LS_cmp_exchange,  Release);
 685   case vmIntrinsics::_compareAndExchangeLongVolatile:   return inline_unsafe_load_store(T_LONG,   LS_cmp_exchange,  Volatile);
 686   case vmIntrinsics::_compareAndExchangeLongAcquire:    return inline_unsafe_load_store(T_LONG,   LS_cmp_exchange,  Acquire);
 687   case vmIntrinsics::_compareAndExchangeLongRelease:    return inline_unsafe_load_store(T_LONG,   LS_cmp_exchange,  Release);
 688 
 689   case vmIntrinsics::_getAndAddByte:                    return inline_unsafe_load_store(T_BYTE,   LS_get_add,       Volatile);
 690   case vmIntrinsics::_getAndAddShort:                   return inline_unsafe_load_store(T_SHORT,  LS_get_add,       Volatile);
 691   case vmIntrinsics::_getAndAddInt:                     return inline_unsafe_load_store(T_INT,    LS_get_add,       Volatile);
 692   case vmIntrinsics::_getAndAddLong:                    return inline_unsafe_load_store(T_LONG,   LS_get_add,       Volatile);
 693 
 694   case vmIntrinsics::_getAndSetByte:                    return inline_unsafe_load_store(T_BYTE,   LS_get_set,       Volatile);
 695   case vmIntrinsics::_getAndSetShort:                   return inline_unsafe_load_store(T_SHORT,  LS_get_set,       Volatile);
 696   case vmIntrinsics::_getAndSetInt:                     return inline_unsafe_load_store(T_INT,    LS_get_set,       Volatile);
 697   case vmIntrinsics::_getAndSetLong:                    return inline_unsafe_load_store(T_LONG,   LS_get_set,       Volatile);
 698   case vmIntrinsics::_getAndSetObject:                  return inline_unsafe_load_store(T_OBJECT, LS_get_set,       Volatile);
 699 
 700   case vmIntrinsics::_loadFence:
 701   case vmIntrinsics::_storeFence:
 702   case vmIntrinsics::_fullFence:                return inline_unsafe_fence(intrinsic_id());
 703 
 704   case vmIntrinsics::_onSpinWait:               return inline_onspinwait();
 705 
 706   case vmIntrinsics::_currentThread:            return inline_native_currentThread();
 707   case vmIntrinsics::_isInterrupted:            return inline_native_isInterrupted();
 708 
 709 #ifdef TRACE_HAVE_INTRINSICS
 710   case vmIntrinsics::_counterTime:              return inline_native_time_funcs(CAST_FROM_FN_PTR(address, TRACE_TIME_METHOD), "counterTime");
 711 #endif
 712   case vmIntrinsics::_currentTimeMillis:        return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis");
 713   case vmIntrinsics::_nanoTime:                 return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime");
 714   case vmIntrinsics::_allocateInstance:         return inline_unsafe_allocate();
 715   case vmIntrinsics::_copyMemory:               return inline_unsafe_copyMemory();
 716   case vmIntrinsics::_getLength:                return inline_native_getLength();
 717   case vmIntrinsics::_copyOf:                   return inline_array_copyOf(false);
 718   case vmIntrinsics::_copyOfRange:              return inline_array_copyOf(true);
 719   case vmIntrinsics::_equalsB:                  return inline_array_equals(StrIntrinsicNode::LL);
 720   case vmIntrinsics::_equalsC:                  return inline_array_equals(StrIntrinsicNode::UU);
 721   case vmIntrinsics::_Preconditions_checkIndex: return inline_preconditions_checkIndex();
 722   case vmIntrinsics::_clone:                    return inline_native_clone(intrinsic()->is_virtual());
 723 
 724   case vmIntrinsics::_allocateUninitializedArray: return inline_unsafe_newArray(true);
 725   case vmIntrinsics::_newArray:                   return inline_unsafe_newArray(false);
 726 
 727   case vmIntrinsics::_isAssignableFrom:         return inline_native_subtype_check();
 728 
 729   case vmIntrinsics::_isInstance:
 730   case vmIntrinsics::_getModifiers:
 731   case vmIntrinsics::_isInterface:
 732   case vmIntrinsics::_isArray:
 733   case vmIntrinsics::_isPrimitive:
 734   case vmIntrinsics::_getSuperclass:
 735   case vmIntrinsics::_getClassAccessFlags:      return inline_native_Class_query(intrinsic_id());
 736 
 737   case vmIntrinsics::_floatToRawIntBits:
 738   case vmIntrinsics::_floatToIntBits:
 739   case vmIntrinsics::_intBitsToFloat:
 740   case vmIntrinsics::_doubleToRawLongBits:
 741   case vmIntrinsics::_doubleToLongBits:
 742   case vmIntrinsics::_longBitsToDouble:         return inline_fp_conversions(intrinsic_id());
 743 
 744   case vmIntrinsics::_numberOfLeadingZeros_i:
 745   case vmIntrinsics::_numberOfLeadingZeros_l:
 746   case vmIntrinsics::_numberOfTrailingZeros_i:
 747   case vmIntrinsics::_numberOfTrailingZeros_l:
 748   case vmIntrinsics::_bitCount_i:
 749   case vmIntrinsics::_bitCount_l:
 750   case vmIntrinsics::_reverseBytes_i:
 751   case vmIntrinsics::_reverseBytes_l:
 752   case vmIntrinsics::_reverseBytes_s:
 753   case vmIntrinsics::_reverseBytes_c:           return inline_number_methods(intrinsic_id());
 754 
 755   case vmIntrinsics::_getCallerClass:           return inline_native_Reflection_getCallerClass();
 756 
 757   case vmIntrinsics::_Reference_get:            return inline_reference_get();
 758 
 759   case vmIntrinsics::_Class_cast:               return inline_Class_cast();
 760 
 761   case vmIntrinsics::_aescrypt_encryptBlock:
 762   case vmIntrinsics::_aescrypt_decryptBlock:    return inline_aescrypt_Block(intrinsic_id());
 763 
 764   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 765   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 766     return inline_cipherBlockChaining_AESCrypt(intrinsic_id());
 767 
 768   case vmIntrinsics::_counterMode_AESCrypt:
 769     return inline_counterMode_AESCrypt(intrinsic_id());
 770 
 771   case vmIntrinsics::_sha_implCompress:
 772   case vmIntrinsics::_sha2_implCompress:
 773   case vmIntrinsics::_sha5_implCompress:
 774     return inline_sha_implCompress(intrinsic_id());
 775 
 776   case vmIntrinsics::_digestBase_implCompressMB:
 777     return inline_digestBase_implCompressMB(predicate);
 778 
 779   case vmIntrinsics::_multiplyToLen:
 780     return inline_multiplyToLen();
 781 
 782   case vmIntrinsics::_squareToLen:
 783     return inline_squareToLen();
 784 
 785   case vmIntrinsics::_mulAdd:
 786     return inline_mulAdd();
 787 
 788   case vmIntrinsics::_montgomeryMultiply:
 789     return inline_montgomeryMultiply();
 790   case vmIntrinsics::_montgomerySquare:
 791     return inline_montgomerySquare();
 792 
 793   case vmIntrinsics::_vectorizedMismatch:
 794     return inline_vectorizedMismatch();
 795 
 796   case vmIntrinsics::_ghash_processBlocks:
 797     return inline_ghash_processBlocks();
 798 
 799   case vmIntrinsics::_encodeISOArray:
 800   case vmIntrinsics::_encodeByteISOArray:
 801     return inline_encodeISOArray();
 802 
 803   case vmIntrinsics::_updateCRC32:
 804     return inline_updateCRC32();
 805   case vmIntrinsics::_updateBytesCRC32:
 806     return inline_updateBytesCRC32();
 807   case vmIntrinsics::_updateByteBufferCRC32:
 808     return inline_updateByteBufferCRC32();
 809 
 810   case vmIntrinsics::_updateBytesCRC32C:
 811     return inline_updateBytesCRC32C();
 812   case vmIntrinsics::_updateDirectByteBufferCRC32C:
 813     return inline_updateDirectByteBufferCRC32C();
 814 
 815   case vmIntrinsics::_updateBytesAdler32:
 816     return inline_updateBytesAdler32();
 817   case vmIntrinsics::_updateByteBufferAdler32:
 818     return inline_updateByteBufferAdler32();
 819 
 820   case vmIntrinsics::_profileBoolean:
 821     return inline_profileBoolean();
 822   case vmIntrinsics::_isCompileConstant:
 823     return inline_isCompileConstant();
 824 
 825   case vmIntrinsics::_hasNegatives:
 826     return inline_hasNegatives();
 827 
 828   default:
 829     // If you get here, it may be that someone has added a new intrinsic
 830     // to the list in vmSymbols.hpp without implementing it here.
 831 #ifndef PRODUCT
 832     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 833       tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)",
 834                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
 835     }
 836 #endif
 837     return false;
 838   }
 839 }
 840 
 841 Node* LibraryCallKit::try_to_predicate(int predicate) {
 842   if (!jvms()->has_method()) {
 843     // Root JVMState has a null method.
 844     assert(map()->memory()->Opcode() == Op_Parm, "");
 845     // Insert the memory aliasing node
 846     set_all_memory(reset_memory());
 847   }
 848   assert(merged_memory(), "");
 849 
 850   switch (intrinsic_id()) {
 851   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 852     return inline_cipherBlockChaining_AESCrypt_predicate(false);
 853   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 854     return inline_cipherBlockChaining_AESCrypt_predicate(true);
 855   case vmIntrinsics::_counterMode_AESCrypt:
 856     return inline_counterMode_AESCrypt_predicate();
 857   case vmIntrinsics::_digestBase_implCompressMB:
 858     return inline_digestBase_implCompressMB_predicate(predicate);
 859 
 860   default:
 861     // If you get here, it may be that someone has added a new intrinsic
 862     // to the list in vmSymbols.hpp without implementing it here.
 863 #ifndef PRODUCT
 864     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 865       tty->print_cr("*** Warning: Unimplemented predicate for intrinsic %s(%d)",
 866                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
 867     }
 868 #endif
 869     Node* slow_ctl = control();
 870     set_control(top()); // No fast path instrinsic
 871     return slow_ctl;
 872   }
 873 }
 874 
 875 //------------------------------set_result-------------------------------
 876 // Helper function for finishing intrinsics.
 877 void LibraryCallKit::set_result(RegionNode* region, PhiNode* value) {
 878   record_for_igvn(region);
 879   set_control(_gvn.transform(region));
 880   set_result( _gvn.transform(value));
 881   assert(value->type()->basic_type() == result()->bottom_type()->basic_type(), "sanity");
 882 }
 883 
 884 //------------------------------generate_guard---------------------------
 885 // Helper function for generating guarded fast-slow graph structures.
 886 // The given 'test', if true, guards a slow path.  If the test fails
 887 // then a fast path can be taken.  (We generally hope it fails.)
 888 // In all cases, GraphKit::control() is updated to the fast path.
 889 // The returned value represents the control for the slow path.
 890 // The return value is never 'top'; it is either a valid control
 891 // or NULL if it is obvious that the slow path can never be taken.
 892 // Also, if region and the slow control are not NULL, the slow edge
 893 // is appended to the region.
 894 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) {
 895   if (stopped()) {
 896     // Already short circuited.
 897     return NULL;
 898   }
 899 
 900   // Build an if node and its projections.
 901   // If test is true we take the slow path, which we assume is uncommon.
 902   if (_gvn.type(test) == TypeInt::ZERO) {
 903     // The slow branch is never taken.  No need to build this guard.
 904     return NULL;
 905   }
 906 
 907   IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN);
 908 
 909   Node* if_slow = _gvn.transform(new IfTrueNode(iff));
 910   if (if_slow == top()) {
 911     // The slow branch is never taken.  No need to build this guard.
 912     return NULL;
 913   }
 914 
 915   if (region != NULL)
 916     region->add_req(if_slow);
 917 
 918   Node* if_fast = _gvn.transform(new IfFalseNode(iff));
 919   set_control(if_fast);
 920 
 921   return if_slow;
 922 }
 923 
 924 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) {
 925   return generate_guard(test, region, PROB_UNLIKELY_MAG(3));
 926 }
 927 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) {
 928   return generate_guard(test, region, PROB_FAIR);
 929 }
 930 
 931 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region,
 932                                                      Node* *pos_index) {
 933   if (stopped())
 934     return NULL;                // already stopped
 935   if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
 936     return NULL;                // index is already adequately typed
 937   Node* cmp_lt = _gvn.transform(new CmpINode(index, intcon(0)));
 938   Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt));
 939   Node* is_neg = generate_guard(bol_lt, region, PROB_MIN);
 940   if (is_neg != NULL && pos_index != NULL) {
 941     // Emulate effect of Parse::adjust_map_after_if.
 942     Node* ccast = new CastIINode(index, TypeInt::POS);
 943     ccast->set_req(0, control());
 944     (*pos_index) = _gvn.transform(ccast);
 945   }
 946   return is_neg;
 947 }
 948 
 949 // Make sure that 'position' is a valid limit index, in [0..length].
 950 // There are two equivalent plans for checking this:
 951 //   A. (offset + copyLength)  unsigned<=  arrayLength
 952 //   B. offset  <=  (arrayLength - copyLength)
 953 // We require that all of the values above, except for the sum and
 954 // difference, are already known to be non-negative.
 955 // Plan A is robust in the face of overflow, if offset and copyLength
 956 // are both hugely positive.
 957 //
 958 // Plan B is less direct and intuitive, but it does not overflow at
 959 // all, since the difference of two non-negatives is always
 960 // representable.  Whenever Java methods must perform the equivalent
 961 // check they generally use Plan B instead of Plan A.
 962 // For the moment we use Plan A.
 963 inline Node* LibraryCallKit::generate_limit_guard(Node* offset,
 964                                                   Node* subseq_length,
 965                                                   Node* array_length,
 966                                                   RegionNode* region) {
 967   if (stopped())
 968     return NULL;                // already stopped
 969   bool zero_offset = _gvn.type(offset) == TypeInt::ZERO;
 970   if (zero_offset && subseq_length->eqv_uncast(array_length))
 971     return NULL;                // common case of whole-array copy
 972   Node* last = subseq_length;
 973   if (!zero_offset)             // last += offset
 974     last = _gvn.transform(new AddINode(last, offset));
 975   Node* cmp_lt = _gvn.transform(new CmpUNode(array_length, last));
 976   Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt));
 977   Node* is_over = generate_guard(bol_lt, region, PROB_MIN);
 978   return is_over;
 979 }
 980 
 981 // Emit range checks for the given String.value byte array
 982 void LibraryCallKit::generate_string_range_check(Node* array, Node* offset, Node* count, bool char_count) {
 983   if (stopped()) {
 984     return; // already stopped
 985   }
 986   RegionNode* bailout = new RegionNode(1);
 987   record_for_igvn(bailout);
 988   if (char_count) {
 989     // Convert char count to byte count
 990     count = _gvn.transform(new LShiftINode(count, intcon(1)));
 991   }
 992 
 993   // Offset and count must not be negative
 994   generate_negative_guard(offset, bailout);
 995   generate_negative_guard(count, bailout);
 996   // Offset + count must not exceed length of array
 997   generate_limit_guard(offset, count, load_array_length(array), bailout);
 998 
 999   if (bailout->req() > 1) {
1000     PreserveJVMState pjvms(this);
1001     set_control(_gvn.transform(bailout));
1002     uncommon_trap(Deoptimization::Reason_intrinsic,
1003                   Deoptimization::Action_maybe_recompile);
1004   }
1005 }
1006 
1007 //--------------------------generate_current_thread--------------------
1008 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) {
1009   ciKlass*    thread_klass = env()->Thread_klass();
1010   const Type* thread_type  = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull);
1011   Node* thread = _gvn.transform(new ThreadLocalNode());
1012   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::threadObj_offset()));
1013   Node* threadObj = make_load(NULL, p, thread_type, T_OBJECT, MemNode::unordered);
1014   tls_output = thread;
1015   return threadObj;
1016 }
1017 
1018 
1019 //------------------------------make_string_method_node------------------------
1020 // Helper method for String intrinsic functions. This version is called with
1021 // str1 and str2 pointing to byte[] nodes containing Latin1 or UTF16 encoded
1022 // characters (depending on 'is_byte'). cnt1 and cnt2 are pointing to Int nodes
1023 // containing the lengths of str1 and str2.
1024 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2, StrIntrinsicNode::ArgEnc ae) {
1025   Node* result = NULL;
1026   switch (opcode) {
1027   case Op_StrIndexOf:
1028     result = new StrIndexOfNode(control(), memory(TypeAryPtr::BYTES),
1029                                 str1_start, cnt1, str2_start, cnt2, ae);
1030     break;
1031   case Op_StrComp:
1032     result = new StrCompNode(control(), memory(TypeAryPtr::BYTES),
1033                              str1_start, cnt1, str2_start, cnt2, ae);
1034     break;
1035   case Op_StrEquals:
1036     // We already know that cnt1 == cnt2 here (checked in 'inline_string_equals').
1037     // Use the constant length if there is one because optimized match rule may exist.
1038     result = new StrEqualsNode(control(), memory(TypeAryPtr::BYTES),
1039                                str1_start, str2_start, cnt2->is_Con() ? cnt2 : cnt1, ae);
1040     break;
1041   default:
1042     ShouldNotReachHere();
1043     return NULL;
1044   }
1045 
1046   // All these intrinsics have checks.
1047   C->set_has_split_ifs(true); // Has chance for split-if optimization
1048 
1049   return _gvn.transform(result);
1050 }
1051 
1052 //------------------------------inline_string_compareTo------------------------
1053 bool LibraryCallKit::inline_string_compareTo(StrIntrinsicNode::ArgEnc ae) {
1054   Node* arg1 = argument(0);
1055   Node* arg2 = argument(1);
1056 
1057   // Get start addr and length of first argument
1058   Node* arg1_start  = array_element_address(arg1, intcon(0), T_BYTE);
1059   Node* arg1_cnt    = load_array_length(arg1);
1060 
1061   // Get start addr and length of second argument
1062   Node* arg2_start  = array_element_address(arg2, intcon(0), T_BYTE);
1063   Node* arg2_cnt    = load_array_length(arg2);
1064 
1065   Node* result = make_string_method_node(Op_StrComp, arg1_start, arg1_cnt, arg2_start, arg2_cnt, ae);
1066   set_result(result);
1067   return true;
1068 }
1069 
1070 //------------------------------inline_string_equals------------------------
1071 bool LibraryCallKit::inline_string_equals(StrIntrinsicNode::ArgEnc ae) {
1072   Node* arg1 = argument(0);
1073   Node* arg2 = argument(1);
1074 
1075   // paths (plus control) merge
1076   RegionNode* region = new RegionNode(3);
1077   Node* phi = new PhiNode(region, TypeInt::BOOL);
1078 
1079   if (!stopped()) {
1080     // Get start addr and length of first argument
1081     Node* arg1_start  = array_element_address(arg1, intcon(0), T_BYTE);
1082     Node* arg1_cnt    = load_array_length(arg1);
1083 
1084     // Get start addr and length of second argument
1085     Node* arg2_start  = array_element_address(arg2, intcon(0), T_BYTE);
1086     Node* arg2_cnt    = load_array_length(arg2);
1087 
1088     // Check for arg1_cnt != arg2_cnt
1089     Node* cmp = _gvn.transform(new CmpINode(arg1_cnt, arg2_cnt));
1090     Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
1091     Node* if_ne = generate_slow_guard(bol, NULL);
1092     if (if_ne != NULL) {
1093       phi->init_req(2, intcon(0));
1094       region->init_req(2, if_ne);
1095     }
1096 
1097     // Check for count == 0 is done by assembler code for StrEquals.
1098 
1099     if (!stopped()) {
1100       Node* equals = make_string_method_node(Op_StrEquals, arg1_start, arg1_cnt, arg2_start, arg2_cnt, ae);
1101       phi->init_req(1, equals);
1102       region->init_req(1, control());
1103     }
1104   }
1105 
1106   // post merge
1107   set_control(_gvn.transform(region));
1108   record_for_igvn(region);
1109 
1110   set_result(_gvn.transform(phi));
1111   return true;
1112 }
1113 
1114 //------------------------------inline_array_equals----------------------------
1115 bool LibraryCallKit::inline_array_equals(StrIntrinsicNode::ArgEnc ae) {
1116   assert(ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::LL, "unsupported array types");
1117   Node* arg1 = argument(0);
1118   Node* arg2 = argument(1);
1119 
1120   const TypeAryPtr* mtype = (ae == StrIntrinsicNode::UU) ? TypeAryPtr::CHARS : TypeAryPtr::BYTES;
1121   set_result(_gvn.transform(new AryEqNode(control(), memory(mtype), arg1, arg2, ae)));
1122   return true;
1123 }
1124 
1125 //------------------------------inline_hasNegatives------------------------------
1126 bool LibraryCallKit::inline_hasNegatives() {
1127   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1128     return false;
1129   }
1130 
1131   assert(callee()->signature()->size() == 3, "hasNegatives has 3 parameters");
1132   // no receiver since it is static method
1133   Node* ba         = argument(0);
1134   Node* offset     = argument(1);
1135   Node* len        = argument(2);
1136 
1137   // Range checks
1138   generate_string_range_check(ba, offset, len, false);
1139   if (stopped()) {
1140     return true;
1141   }
1142   Node* ba_start = array_element_address(ba, offset, T_BYTE);
1143   Node* result = new HasNegativesNode(control(), memory(TypeAryPtr::BYTES), ba_start, len);
1144   set_result(_gvn.transform(result));
1145   return true;
1146 }
1147 
1148 bool LibraryCallKit::inline_preconditions_checkIndex() {
1149   Node* index = argument(0);
1150   Node* length = argument(1);
1151   if (too_many_traps(Deoptimization::Reason_intrinsic) || too_many_traps(Deoptimization::Reason_range_check)) {
1152     return false;
1153   }
1154 
1155   Node* len_pos_cmp = _gvn.transform(new CmpINode(length, intcon(0)));
1156   Node* len_pos_bol = _gvn.transform(new BoolNode(len_pos_cmp, BoolTest::ge));
1157 
1158   {
1159     BuildCutout unless(this, len_pos_bol, PROB_MAX);
1160     uncommon_trap(Deoptimization::Reason_intrinsic,
1161                   Deoptimization::Action_make_not_entrant);
1162   }
1163 
1164   if (stopped()) {
1165     return false;
1166   }
1167 
1168   Node* rc_cmp = _gvn.transform(new CmpUNode(index, length));
1169   BoolTest::mask btest = BoolTest::lt;
1170   Node* rc_bool = _gvn.transform(new BoolNode(rc_cmp, btest));
1171   RangeCheckNode* rc = new RangeCheckNode(control(), rc_bool, PROB_MAX, COUNT_UNKNOWN);
1172   _gvn.set_type(rc, rc->Value(&_gvn));
1173   if (!rc_bool->is_Con()) {
1174     record_for_igvn(rc);
1175   }
1176   set_control(_gvn.transform(new IfTrueNode(rc)));
1177   {
1178     PreserveJVMState pjvms(this);
1179     set_control(_gvn.transform(new IfFalseNode(rc)));
1180     uncommon_trap(Deoptimization::Reason_range_check,
1181                   Deoptimization::Action_make_not_entrant);
1182   }
1183 
1184   if (stopped()) {
1185     return false;
1186   }
1187 
1188   Node* result = new CastIINode(index, TypeInt::make(0, _gvn.type(length)->is_int()->_hi, Type::WidenMax));
1189   result->set_req(0, control());
1190   result = _gvn.transform(result);
1191   set_result(result);
1192   replace_in_map(index, result);
1193   return true;
1194 }
1195 
1196 //------------------------------inline_string_indexOf------------------------
1197 bool LibraryCallKit::inline_string_indexOf(StrIntrinsicNode::ArgEnc ae) {
1198   if (!Matcher::match_rule_supported(Op_StrIndexOf)) {
1199     return false;
1200   }
1201   Node* src = argument(0);
1202   Node* tgt = argument(1);
1203 
1204   // Make the merge point
1205   RegionNode* result_rgn = new RegionNode(4);
1206   Node*       result_phi = new PhiNode(result_rgn, TypeInt::INT);
1207 
1208   // Get start addr and length of source string
1209   Node* src_start = array_element_address(src, intcon(0), T_BYTE);
1210   Node* src_count = load_array_length(src);
1211 
1212   // Get start addr and length of substring
1213   Node* tgt_start = array_element_address(tgt, intcon(0), T_BYTE);
1214   Node* tgt_count = load_array_length(tgt);
1215 
1216   if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) {
1217     // Divide src size by 2 if String is UTF16 encoded
1218     src_count = _gvn.transform(new RShiftINode(src_count, intcon(1)));
1219   }
1220   if (ae == StrIntrinsicNode::UU) {
1221     // Divide substring size by 2 if String is UTF16 encoded
1222     tgt_count = _gvn.transform(new RShiftINode(tgt_count, intcon(1)));
1223   }
1224 
1225   Node* result = make_indexOf_node(src_start, src_count, tgt_start, tgt_count, result_rgn, result_phi, ae);
1226   if (result != NULL) {
1227     result_phi->init_req(3, result);
1228     result_rgn->init_req(3, control());
1229   }
1230   set_control(_gvn.transform(result_rgn));
1231   record_for_igvn(result_rgn);
1232   set_result(_gvn.transform(result_phi));
1233 
1234   return true;
1235 }
1236 
1237 //-----------------------------inline_string_indexOf-----------------------
1238 bool LibraryCallKit::inline_string_indexOfI(StrIntrinsicNode::ArgEnc ae) {
1239   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1240     return false;
1241   }
1242   if (!Matcher::match_rule_supported(Op_StrIndexOf)) {
1243     return false;
1244   }
1245   assert(callee()->signature()->size() == 5, "String.indexOf() has 5 arguments");
1246   Node* src         = argument(0); // byte[]
1247   Node* src_count   = argument(1); // char count
1248   Node* tgt         = argument(2); // byte[]
1249   Node* tgt_count   = argument(3); // char count
1250   Node* from_index  = argument(4); // char index
1251 
1252   // Multiply byte array index by 2 if String is UTF16 encoded
1253   Node* src_offset = (ae == StrIntrinsicNode::LL) ? from_index : _gvn.transform(new LShiftINode(from_index, intcon(1)));
1254   src_count = _gvn.transform(new SubINode(src_count, from_index));
1255   Node* src_start = array_element_address(src, src_offset, T_BYTE);
1256   Node* tgt_start = array_element_address(tgt, intcon(0), T_BYTE);
1257 
1258   // Range checks
1259   generate_string_range_check(src, src_offset, src_count, ae != StrIntrinsicNode::LL);
1260   generate_string_range_check(tgt, intcon(0), tgt_count, ae == StrIntrinsicNode::UU);
1261   if (stopped()) {
1262     return true;
1263   }
1264 
1265   RegionNode* region = new RegionNode(5);
1266   Node* phi = new PhiNode(region, TypeInt::INT);
1267 
1268   Node* result = make_indexOf_node(src_start, src_count, tgt_start, tgt_count, region, phi, ae);
1269   if (result != NULL) {
1270     // The result is index relative to from_index if substring was found, -1 otherwise.
1271     // Generate code which will fold into cmove.
1272     Node* cmp = _gvn.transform(new CmpINode(result, intcon(0)));
1273     Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::lt));
1274 
1275     Node* if_lt = generate_slow_guard(bol, NULL);
1276     if (if_lt != NULL) {
1277       // result == -1
1278       phi->init_req(3, result);
1279       region->init_req(3, if_lt);
1280     }
1281     if (!stopped()) {
1282       result = _gvn.transform(new AddINode(result, from_index));
1283       phi->init_req(4, result);
1284       region->init_req(4, control());
1285     }
1286   }
1287 
1288   set_control(_gvn.transform(region));
1289   record_for_igvn(region);
1290   set_result(_gvn.transform(phi));
1291 
1292   return true;
1293 }
1294 
1295 // Create StrIndexOfNode with fast path checks
1296 Node* LibraryCallKit::make_indexOf_node(Node* src_start, Node* src_count, Node* tgt_start, Node* tgt_count,
1297                                         RegionNode* region, Node* phi, StrIntrinsicNode::ArgEnc ae) {
1298   // Check for substr count > string count
1299   Node* cmp = _gvn.transform(new CmpINode(tgt_count, src_count));
1300   Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::gt));
1301   Node* if_gt = generate_slow_guard(bol, NULL);
1302   if (if_gt != NULL) {
1303     phi->init_req(1, intcon(-1));
1304     region->init_req(1, if_gt);
1305   }
1306   if (!stopped()) {
1307     // Check for substr count == 0
1308     cmp = _gvn.transform(new CmpINode(tgt_count, intcon(0)));
1309     bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
1310     Node* if_zero = generate_slow_guard(bol, NULL);
1311     if (if_zero != NULL) {
1312       phi->init_req(2, intcon(0));
1313       region->init_req(2, if_zero);
1314     }
1315   }
1316   if (!stopped()) {
1317     return make_string_method_node(Op_StrIndexOf, src_start, src_count, tgt_start, tgt_count, ae);
1318   }
1319   return NULL;
1320 }
1321 
1322 //-----------------------------inline_string_indexOfChar-----------------------
1323 bool LibraryCallKit::inline_string_indexOfChar() {
1324   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1325     return false;
1326   }
1327   if (!Matcher::match_rule_supported(Op_StrIndexOfChar)) {
1328     return false;
1329   }
1330   assert(callee()->signature()->size() == 4, "String.indexOfChar() has 4 arguments");
1331   Node* src         = argument(0); // byte[]
1332   Node* tgt         = argument(1); // tgt is int ch
1333   Node* from_index  = argument(2);
1334   Node* max         = argument(3);
1335 
1336   Node* src_offset = _gvn.transform(new LShiftINode(from_index, intcon(1)));
1337   Node* src_start = array_element_address(src, src_offset, T_BYTE);
1338   Node* src_count = _gvn.transform(new SubINode(max, from_index));
1339 
1340   // Range checks
1341   generate_string_range_check(src, src_offset, src_count, true);
1342   if (stopped()) {
1343     return true;
1344   }
1345 
1346   RegionNode* region = new RegionNode(3);
1347   Node* phi = new PhiNode(region, TypeInt::INT);
1348 
1349   Node* result = new StrIndexOfCharNode(control(), memory(TypeAryPtr::BYTES), src_start, src_count, tgt, StrIntrinsicNode::none);
1350   C->set_has_split_ifs(true); // Has chance for split-if optimization
1351   _gvn.transform(result);
1352 
1353   Node* cmp = _gvn.transform(new CmpINode(result, intcon(0)));
1354   Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::lt));
1355 
1356   Node* if_lt = generate_slow_guard(bol, NULL);
1357   if (if_lt != NULL) {
1358     // result == -1
1359     phi->init_req(2, result);
1360     region->init_req(2, if_lt);
1361   }
1362   if (!stopped()) {
1363     result = _gvn.transform(new AddINode(result, from_index));
1364     phi->init_req(1, result);
1365     region->init_req(1, control());
1366   }
1367   set_control(_gvn.transform(region));
1368   record_for_igvn(region);
1369   set_result(_gvn.transform(phi));
1370 
1371   return true;
1372 }
1373 //---------------------------inline_string_copy---------------------
1374 // compressIt == true --> generate a compressed copy operation (compress char[]/byte[] to byte[])
1375 //   int StringUTF16.compress(char[] src, int srcOff, byte[] dst, int dstOff, int len)
1376 //   int StringUTF16.compress(byte[] src, int srcOff, byte[] dst, int dstOff, int len)
1377 // compressIt == false --> generate an inflated copy operation (inflate byte[] to char[]/byte[])
1378 //   void StringLatin1.inflate(byte[] src, int srcOff, char[] dst, int dstOff, int len)
1379 //   void StringLatin1.inflate(byte[] src, int srcOff, byte[] dst, int dstOff, int len)
1380 bool LibraryCallKit::inline_string_copy(bool compress) {
1381   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1382     return false;
1383   }
1384   int nargs = 5;  // 2 oops, 3 ints
1385   assert(callee()->signature()->size() == nargs, "string copy has 5 arguments");
1386 
1387   Node* src         = argument(0);
1388   Node* src_offset  = argument(1);
1389   Node* dst         = argument(2);
1390   Node* dst_offset  = argument(3);
1391   Node* length      = argument(4);
1392 
1393   // Check for allocation before we add nodes that would confuse
1394   // tightly_coupled_allocation()
1395   AllocateArrayNode* alloc = tightly_coupled_allocation(dst, NULL);
1396 
1397   // Figure out the size and type of the elements we will be copying.
1398   const Type* src_type = src->Value(&_gvn);
1399   const Type* dst_type = dst->Value(&_gvn);
1400   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
1401   BasicType dst_elem = dst_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
1402   assert((compress && dst_elem == T_BYTE && (src_elem == T_BYTE || src_elem == T_CHAR)) ||
1403          (!compress && src_elem == T_BYTE && (dst_elem == T_BYTE || dst_elem == T_CHAR)),
1404          "Unsupported array types for inline_string_copy");
1405 
1406   // Convert char[] offsets to byte[] offsets
1407   bool convert_src = (compress && src_elem == T_BYTE);
1408   bool convert_dst = (!compress && dst_elem == T_BYTE);
1409   if (convert_src) {
1410     src_offset = _gvn.transform(new LShiftINode(src_offset, intcon(1)));
1411   } else if (convert_dst) {
1412     dst_offset = _gvn.transform(new LShiftINode(dst_offset, intcon(1)));
1413   }
1414 
1415   // Range checks
1416   generate_string_range_check(src, src_offset, length, convert_src);
1417   generate_string_range_check(dst, dst_offset, length, convert_dst);
1418   if (stopped()) {
1419     return true;
1420   }
1421 
1422   Node* src_start = array_element_address(src, src_offset, src_elem);
1423   Node* dst_start = array_element_address(dst, dst_offset, dst_elem);
1424   // 'src_start' points to src array + scaled offset
1425   // 'dst_start' points to dst array + scaled offset
1426   Node* count = NULL;
1427   if (compress) {
1428     count = compress_string(src_start, TypeAryPtr::get_array_body_type(src_elem), dst_start, length);
1429   } else {
1430     inflate_string(src_start, dst_start, TypeAryPtr::get_array_body_type(dst_elem), length);
1431   }
1432 
1433   if (alloc != NULL) {
1434     if (alloc->maybe_set_complete(&_gvn)) {
1435       // "You break it, you buy it."
1436       InitializeNode* init = alloc->initialization();
1437       assert(init->is_complete(), "we just did this");
1438       init->set_complete_with_arraycopy();
1439       assert(dst->is_CheckCastPP(), "sanity");
1440       assert(dst->in(0)->in(0) == init, "dest pinned");
1441     }
1442     // Do not let stores that initialize this object be reordered with
1443     // a subsequent store that would make this object accessible by
1444     // other threads.
1445     // Record what AllocateNode this StoreStore protects so that
1446     // escape analysis can go from the MemBarStoreStoreNode to the
1447     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
1448     // based on the escape status of the AllocateNode.
1449     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
1450   }
1451   if (compress) {
1452     set_result(_gvn.transform(count));
1453   }
1454   return true;
1455 }
1456 
1457 #ifdef _LP64
1458 #define XTOP ,top() /*additional argument*/
1459 #else  //_LP64
1460 #define XTOP        /*no additional argument*/
1461 #endif //_LP64
1462 
1463 //------------------------inline_string_toBytesU--------------------------
1464 // public static byte[] StringUTF16.toBytes(char[] value, int off, int len)
1465 bool LibraryCallKit::inline_string_toBytesU() {
1466   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1467     return false;
1468   }
1469   // Get the arguments.
1470   Node* value     = argument(0);
1471   Node* offset    = argument(1);
1472   Node* length    = argument(2);
1473 
1474   Node* newcopy = NULL;
1475 
1476   // Set the original stack and the reexecute bit for the interpreter to reexecute
1477   // the bytecode that invokes StringUTF16.toBytes() if deoptimization happens.
1478   { PreserveReexecuteState preexecs(this);
1479     jvms()->set_should_reexecute(true);
1480 
1481     // Check if a null path was taken unconditionally.
1482     value = null_check(value);
1483 
1484     RegionNode* bailout = new RegionNode(1);
1485     record_for_igvn(bailout);
1486 
1487     // Range checks
1488     generate_negative_guard(offset, bailout);
1489     generate_negative_guard(length, bailout);
1490     generate_limit_guard(offset, length, load_array_length(value), bailout);
1491     // Make sure that resulting byte[] length does not overflow Integer.MAX_VALUE
1492     generate_limit_guard(length, intcon(0), intcon(max_jint/2), bailout);
1493 
1494     if (bailout->req() > 1) {
1495       PreserveJVMState pjvms(this);
1496       set_control(_gvn.transform(bailout));
1497       uncommon_trap(Deoptimization::Reason_intrinsic,
1498                     Deoptimization::Action_maybe_recompile);
1499     }
1500     if (stopped()) {
1501       return true;
1502     }
1503 
1504     Node* size = _gvn.transform(new LShiftINode(length, intcon(1)));
1505     Node* klass_node = makecon(TypeKlassPtr::make(ciTypeArrayKlass::make(T_BYTE)));
1506     newcopy = new_array(klass_node, size, 0);  // no arguments to push
1507     AllocateArrayNode* alloc = tightly_coupled_allocation(newcopy, NULL);
1508 
1509     // Calculate starting addresses.
1510     Node* src_start = array_element_address(value, offset, T_CHAR);
1511     Node* dst_start = basic_plus_adr(newcopy, arrayOopDesc::base_offset_in_bytes(T_BYTE));
1512 
1513     // Check if src array address is aligned to HeapWordSize (dst is always aligned)
1514     const TypeInt* toffset = gvn().type(offset)->is_int();
1515     bool aligned = toffset->is_con() && ((toffset->get_con() * type2aelembytes(T_CHAR)) % HeapWordSize == 0);
1516 
1517     // Figure out which arraycopy runtime method to call (disjoint, uninitialized).
1518     const char* copyfunc_name = "arraycopy";
1519     address     copyfunc_addr = StubRoutines::select_arraycopy_function(T_CHAR, aligned, true, copyfunc_name, true);
1520     Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
1521                       OptoRuntime::fast_arraycopy_Type(),
1522                       copyfunc_addr, copyfunc_name, TypeRawPtr::BOTTOM,
1523                       src_start, dst_start, ConvI2X(length) XTOP);
1524     // Do not let reads from the cloned object float above the arraycopy.
1525     if (alloc != NULL) {
1526       if (alloc->maybe_set_complete(&_gvn)) {
1527         // "You break it, you buy it."
1528         InitializeNode* init = alloc->initialization();
1529         assert(init->is_complete(), "we just did this");
1530         init->set_complete_with_arraycopy();
1531         assert(newcopy->is_CheckCastPP(), "sanity");
1532         assert(newcopy->in(0)->in(0) == init, "dest pinned");
1533       }
1534       // Do not let stores that initialize this object be reordered with
1535       // a subsequent store that would make this object accessible by
1536       // other threads.
1537       // Record what AllocateNode this StoreStore protects so that
1538       // escape analysis can go from the MemBarStoreStoreNode to the
1539       // AllocateNode and eliminate the MemBarStoreStoreNode if possible
1540       // based on the escape status of the AllocateNode.
1541       insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
1542     } else {
1543       insert_mem_bar(Op_MemBarCPUOrder);
1544     }
1545   } // original reexecute is set back here
1546 
1547   C->set_has_split_ifs(true); // Has chance for split-if optimization
1548   if (!stopped()) {
1549     set_result(newcopy);
1550   }
1551   return true;
1552 }
1553 
1554 //------------------------inline_string_getCharsU--------------------------
1555 // public void StringUTF16.getChars(byte[] src, int srcBegin, int srcEnd, char dst[], int dstBegin)
1556 bool LibraryCallKit::inline_string_getCharsU() {
1557   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1558     return false;
1559   }
1560 
1561   // Get the arguments.
1562   Node* src       = argument(0);
1563   Node* src_begin = argument(1);
1564   Node* src_end   = argument(2); // exclusive offset (i < src_end)
1565   Node* dst       = argument(3);
1566   Node* dst_begin = argument(4);
1567 
1568   // Check for allocation before we add nodes that would confuse
1569   // tightly_coupled_allocation()
1570   AllocateArrayNode* alloc = tightly_coupled_allocation(dst, NULL);
1571 
1572   // Check if a null path was taken unconditionally.
1573   src = null_check(src);
1574   dst = null_check(dst);
1575   if (stopped()) {
1576     return true;
1577   }
1578 
1579   // Get length and convert char[] offset to byte[] offset
1580   Node* length = _gvn.transform(new SubINode(src_end, src_begin));
1581   src_begin = _gvn.transform(new LShiftINode(src_begin, intcon(1)));
1582 
1583   // Range checks
1584   generate_string_range_check(src, src_begin, length, true);
1585   generate_string_range_check(dst, dst_begin, length, false);
1586   if (stopped()) {
1587     return true;
1588   }
1589 
1590   if (!stopped()) {
1591     // Calculate starting addresses.
1592     Node* src_start = array_element_address(src, src_begin, T_BYTE);
1593     Node* dst_start = array_element_address(dst, dst_begin, T_CHAR);
1594 
1595     // Check if array addresses are aligned to HeapWordSize
1596     const TypeInt* tsrc = gvn().type(src_begin)->is_int();
1597     const TypeInt* tdst = gvn().type(dst_begin)->is_int();
1598     bool aligned = tsrc->is_con() && ((tsrc->get_con() * type2aelembytes(T_BYTE)) % HeapWordSize == 0) &&
1599                    tdst->is_con() && ((tdst->get_con() * type2aelembytes(T_CHAR)) % HeapWordSize == 0);
1600 
1601     // Figure out which arraycopy runtime method to call (disjoint, uninitialized).
1602     const char* copyfunc_name = "arraycopy";
1603     address     copyfunc_addr = StubRoutines::select_arraycopy_function(T_CHAR, aligned, true, copyfunc_name, true);
1604     Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
1605                       OptoRuntime::fast_arraycopy_Type(),
1606                       copyfunc_addr, copyfunc_name, TypeRawPtr::BOTTOM,
1607                       src_start, dst_start, ConvI2X(length) XTOP);
1608     // Do not let reads from the cloned object float above the arraycopy.
1609     if (alloc != NULL) {
1610       if (alloc->maybe_set_complete(&_gvn)) {
1611         // "You break it, you buy it."
1612         InitializeNode* init = alloc->initialization();
1613         assert(init->is_complete(), "we just did this");
1614         init->set_complete_with_arraycopy();
1615         assert(dst->is_CheckCastPP(), "sanity");
1616         assert(dst->in(0)->in(0) == init, "dest pinned");
1617       }
1618       // Do not let stores that initialize this object be reordered with
1619       // a subsequent store that would make this object accessible by
1620       // other threads.
1621       // Record what AllocateNode this StoreStore protects so that
1622       // escape analysis can go from the MemBarStoreStoreNode to the
1623       // AllocateNode and eliminate the MemBarStoreStoreNode if possible
1624       // based on the escape status of the AllocateNode.
1625       insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
1626     } else {
1627       insert_mem_bar(Op_MemBarCPUOrder);
1628     }
1629   }
1630 
1631   C->set_has_split_ifs(true); // Has chance for split-if optimization
1632   return true;
1633 }
1634 
1635 //----------------------inline_string_char_access----------------------------
1636 // Store/Load char to/from byte[] array.
1637 // static void StringUTF16.putChar(byte[] val, int index, int c)
1638 // static char StringUTF16.getChar(byte[] val, int index)
1639 bool LibraryCallKit::inline_string_char_access(bool is_store) {
1640   Node* value  = argument(0);
1641   Node* index  = argument(1);
1642   Node* ch = is_store ? argument(2) : NULL;
1643 
1644   // This intrinsic accesses byte[] array as char[] array. Computing the offsets
1645   // correctly requires matched array shapes.
1646   assert (arrayOopDesc::base_offset_in_bytes(T_CHAR) == arrayOopDesc::base_offset_in_bytes(T_BYTE),
1647           "sanity: byte[] and char[] bases agree");
1648   assert (type2aelembytes(T_CHAR) == type2aelembytes(T_BYTE)*2,
1649           "sanity: byte[] and char[] scales agree");
1650 
1651   // Bail when getChar over constants is requested: constant folding would
1652   // reject folding mismatched char access over byte[]. A normal inlining for getChar
1653   // Java method would constant fold nicely instead.
1654   if (!is_store && value->is_Con() && index->is_Con()) {
1655     return false;
1656   }
1657 
1658   Node* adr = array_element_address(value, index, T_CHAR);
1659   if (is_store) {
1660     (void) store_to_memory(control(), adr, ch, T_CHAR, TypeAryPtr::BYTES, MemNode::unordered,
1661                            false, false, true /* mismatched */);
1662   } else {
1663     ch = make_load(control(), adr, TypeInt::CHAR, T_CHAR, TypeAryPtr::BYTES, MemNode::unordered,
1664                    LoadNode::DependsOnlyOnTest, false, false, true /* mismatched */);
1665     set_result(ch);
1666   }
1667   return true;
1668 }
1669 
1670 //--------------------------round_double_node--------------------------------
1671 // Round a double node if necessary.
1672 Node* LibraryCallKit::round_double_node(Node* n) {
1673   if (Matcher::strict_fp_requires_explicit_rounding && UseSSE <= 1)
1674     n = _gvn.transform(new RoundDoubleNode(0, n));
1675   return n;
1676 }
1677 
1678 //------------------------------inline_math-----------------------------------
1679 // public static double Math.abs(double)
1680 // public static double Math.sqrt(double)
1681 // public static double Math.log(double)
1682 // public static double Math.log10(double)
1683 bool LibraryCallKit::inline_math(vmIntrinsics::ID id) {
1684   Node* arg = round_double_node(argument(0));
1685   Node* n = NULL;
1686   switch (id) {
1687   case vmIntrinsics::_dabs:   n = new AbsDNode(                arg);  break;
1688   case vmIntrinsics::_dsqrt:  n = new SqrtDNode(C, control(),  arg);  break;
1689   default:  fatal_unexpected_iid(id);  break;
1690   }
1691   set_result(_gvn.transform(n));
1692   return true;
1693 }
1694 
1695 //------------------------------runtime_math-----------------------------
1696 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) {
1697   assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(),
1698          "must be (DD)D or (D)D type");
1699 
1700   // Inputs
1701   Node* a = round_double_node(argument(0));
1702   Node* b = (call_type == OptoRuntime::Math_DD_D_Type()) ? round_double_node(argument(2)) : NULL;
1703 
1704   const TypePtr* no_memory_effects = NULL;
1705   Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
1706                                  no_memory_effects,
1707                                  a, top(), b, b ? top() : NULL);
1708   Node* value = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+0));
1709 #ifdef ASSERT
1710   Node* value_top = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+1));
1711   assert(value_top == top(), "second value must be top");
1712 #endif
1713 
1714   set_result(value);
1715   return true;
1716 }
1717 
1718 //------------------------------inline_math_native-----------------------------
1719 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) {
1720 #define FN_PTR(f) CAST_FROM_FN_PTR(address, f)
1721   switch (id) {
1722     // These intrinsics are not properly supported on all hardware
1723   case vmIntrinsics::_dsin:
1724     return StubRoutines::dsin() != NULL ?
1725       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dsin(), "dsin") :
1726       runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dsin),   "SIN");
1727   case vmIntrinsics::_dcos:
1728     return StubRoutines::dcos() != NULL ?
1729       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dcos(), "dcos") :
1730       runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dcos),   "COS");
1731   case vmIntrinsics::_dtan:
1732     return StubRoutines::dtan() != NULL ?
1733       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dtan(), "dtan") :
1734       runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dtan), "TAN");
1735   case vmIntrinsics::_dlog:
1736     return StubRoutines::dlog() != NULL ?
1737       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dlog(), "dlog") :
1738       runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog),   "LOG");
1739   case vmIntrinsics::_dlog10:
1740     return StubRoutines::dlog10() != NULL ?
1741       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dlog10(), "dlog10") :
1742       runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog10), "LOG10");
1743 
1744     // These intrinsics are supported on all hardware
1745   case vmIntrinsics::_dsqrt:  return Matcher::match_rule_supported(Op_SqrtD) ? inline_math(id) : false;
1746   case vmIntrinsics::_dabs:   return Matcher::has_match_rule(Op_AbsD)   ? inline_math(id) : false;
1747 
1748   case vmIntrinsics::_dexp:
1749     return StubRoutines::dexp() != NULL ?
1750       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dexp(),  "dexp") :
1751       runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dexp),  "EXP");
1752   case vmIntrinsics::_dpow:
1753     return StubRoutines::dpow() != NULL ?
1754       runtime_math(OptoRuntime::Math_DD_D_Type(), StubRoutines::dpow(), "dpow") :
1755       runtime_math(OptoRuntime::Math_DD_D_Type(), FN_PTR(SharedRuntime::dpow),  "POW");
1756 #undef FN_PTR
1757 
1758    // These intrinsics are not yet correctly implemented
1759   case vmIntrinsics::_datan2:
1760     return false;
1761 
1762   default:
1763     fatal_unexpected_iid(id);
1764     return false;
1765   }
1766 }
1767 
1768 static bool is_simple_name(Node* n) {
1769   return (n->req() == 1         // constant
1770           || (n->is_Type() && n->as_Type()->type()->singleton())
1771           || n->is_Proj()       // parameter or return value
1772           || n->is_Phi()        // local of some sort
1773           );
1774 }
1775 
1776 //----------------------------inline_notify-----------------------------------*
1777 bool LibraryCallKit::inline_notify(vmIntrinsics::ID id) {
1778   const TypeFunc* ftype = OptoRuntime::monitor_notify_Type();
1779   address func;
1780   if (id == vmIntrinsics::_notify) {
1781     func = OptoRuntime::monitor_notify_Java();
1782   } else {
1783     func = OptoRuntime::monitor_notifyAll_Java();
1784   }
1785   Node* call = make_runtime_call(RC_NO_LEAF, ftype, func, NULL, TypeRawPtr::BOTTOM, argument(0));
1786   make_slow_call_ex(call, env()->Throwable_klass(), false);
1787   return true;
1788 }
1789 
1790 
1791 //----------------------------inline_min_max-----------------------------------
1792 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) {
1793   set_result(generate_min_max(id, argument(0), argument(1)));
1794   return true;
1795 }
1796 
1797 void LibraryCallKit::inline_math_mathExact(Node* math, Node *test) {
1798   Node* bol = _gvn.transform( new BoolNode(test, BoolTest::overflow) );
1799   IfNode* check = create_and_map_if(control(), bol, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
1800   Node* fast_path = _gvn.transform( new IfFalseNode(check));
1801   Node* slow_path = _gvn.transform( new IfTrueNode(check) );
1802 
1803   {
1804     PreserveJVMState pjvms(this);
1805     PreserveReexecuteState preexecs(this);
1806     jvms()->set_should_reexecute(true);
1807 
1808     set_control(slow_path);
1809     set_i_o(i_o());
1810 
1811     uncommon_trap(Deoptimization::Reason_intrinsic,
1812                   Deoptimization::Action_none);
1813   }
1814 
1815   set_control(fast_path);
1816   set_result(math);
1817 }
1818 
1819 template <typename OverflowOp>
1820 bool LibraryCallKit::inline_math_overflow(Node* arg1, Node* arg2) {
1821   typedef typename OverflowOp::MathOp MathOp;
1822 
1823   MathOp* mathOp = new MathOp(arg1, arg2);
1824   Node* operation = _gvn.transform( mathOp );
1825   Node* ofcheck = _gvn.transform( new OverflowOp(arg1, arg2) );
1826   inline_math_mathExact(operation, ofcheck);
1827   return true;
1828 }
1829 
1830 bool LibraryCallKit::inline_math_addExactI(bool is_increment) {
1831   return inline_math_overflow<OverflowAddINode>(argument(0), is_increment ? intcon(1) : argument(1));
1832 }
1833 
1834 bool LibraryCallKit::inline_math_addExactL(bool is_increment) {
1835   return inline_math_overflow<OverflowAddLNode>(argument(0), is_increment ? longcon(1) : argument(2));
1836 }
1837 
1838 bool LibraryCallKit::inline_math_subtractExactI(bool is_decrement) {
1839   return inline_math_overflow<OverflowSubINode>(argument(0), is_decrement ? intcon(1) : argument(1));
1840 }
1841 
1842 bool LibraryCallKit::inline_math_subtractExactL(bool is_decrement) {
1843   return inline_math_overflow<OverflowSubLNode>(argument(0), is_decrement ? longcon(1) : argument(2));
1844 }
1845 
1846 bool LibraryCallKit::inline_math_negateExactI() {
1847   return inline_math_overflow<OverflowSubINode>(intcon(0), argument(0));
1848 }
1849 
1850 bool LibraryCallKit::inline_math_negateExactL() {
1851   return inline_math_overflow<OverflowSubLNode>(longcon(0), argument(0));
1852 }
1853 
1854 bool LibraryCallKit::inline_math_multiplyExactI() {
1855   return inline_math_overflow<OverflowMulINode>(argument(0), argument(1));
1856 }
1857 
1858 bool LibraryCallKit::inline_math_multiplyExactL() {
1859   return inline_math_overflow<OverflowMulLNode>(argument(0), argument(2));
1860 }
1861 
1862 Node*
1863 LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) {
1864   // These are the candidate return value:
1865   Node* xvalue = x0;
1866   Node* yvalue = y0;
1867 
1868   if (xvalue == yvalue) {
1869     return xvalue;
1870   }
1871 
1872   bool want_max = (id == vmIntrinsics::_max);
1873 
1874   const TypeInt* txvalue = _gvn.type(xvalue)->isa_int();
1875   const TypeInt* tyvalue = _gvn.type(yvalue)->isa_int();
1876   if (txvalue == NULL || tyvalue == NULL)  return top();
1877   // This is not really necessary, but it is consistent with a
1878   // hypothetical MaxINode::Value method:
1879   int widen = MAX2(txvalue->_widen, tyvalue->_widen);
1880 
1881   // %%% This folding logic should (ideally) be in a different place.
1882   // Some should be inside IfNode, and there to be a more reliable
1883   // transformation of ?: style patterns into cmoves.  We also want
1884   // more powerful optimizations around cmove and min/max.
1885 
1886   // Try to find a dominating comparison of these guys.
1887   // It can simplify the index computation for Arrays.copyOf
1888   // and similar uses of System.arraycopy.
1889   // First, compute the normalized version of CmpI(x, y).
1890   int   cmp_op = Op_CmpI;
1891   Node* xkey = xvalue;
1892   Node* ykey = yvalue;
1893   Node* ideal_cmpxy = _gvn.transform(new CmpINode(xkey, ykey));
1894   if (ideal_cmpxy->is_Cmp()) {
1895     // E.g., if we have CmpI(length - offset, count),
1896     // it might idealize to CmpI(length, count + offset)
1897     cmp_op = ideal_cmpxy->Opcode();
1898     xkey = ideal_cmpxy->in(1);
1899     ykey = ideal_cmpxy->in(2);
1900   }
1901 
1902   // Start by locating any relevant comparisons.
1903   Node* start_from = (xkey->outcnt() < ykey->outcnt()) ? xkey : ykey;
1904   Node* cmpxy = NULL;
1905   Node* cmpyx = NULL;
1906   for (DUIterator_Fast kmax, k = start_from->fast_outs(kmax); k < kmax; k++) {
1907     Node* cmp = start_from->fast_out(k);
1908     if (cmp->outcnt() > 0 &&            // must have prior uses
1909         cmp->in(0) == NULL &&           // must be context-independent
1910         cmp->Opcode() == cmp_op) {      // right kind of compare
1911       if (cmp->in(1) == xkey && cmp->in(2) == ykey)  cmpxy = cmp;
1912       if (cmp->in(1) == ykey && cmp->in(2) == xkey)  cmpyx = cmp;
1913     }
1914   }
1915 
1916   const int NCMPS = 2;
1917   Node* cmps[NCMPS] = { cmpxy, cmpyx };
1918   int cmpn;
1919   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
1920     if (cmps[cmpn] != NULL)  break;     // find a result
1921   }
1922   if (cmpn < NCMPS) {
1923     // Look for a dominating test that tells us the min and max.
1924     int depth = 0;                // Limit search depth for speed
1925     Node* dom = control();
1926     for (; dom != NULL; dom = IfNode::up_one_dom(dom, true)) {
1927       if (++depth >= 100)  break;
1928       Node* ifproj = dom;
1929       if (!ifproj->is_Proj())  continue;
1930       Node* iff = ifproj->in(0);
1931       if (!iff->is_If())  continue;
1932       Node* bol = iff->in(1);
1933       if (!bol->is_Bool())  continue;
1934       Node* cmp = bol->in(1);
1935       if (cmp == NULL)  continue;
1936       for (cmpn = 0; cmpn < NCMPS; cmpn++)
1937         if (cmps[cmpn] == cmp)  break;
1938       if (cmpn == NCMPS)  continue;
1939       BoolTest::mask btest = bol->as_Bool()->_test._test;
1940       if (ifproj->is_IfFalse())  btest = BoolTest(btest).negate();
1941       if (cmp->in(1) == ykey)    btest = BoolTest(btest).commute();
1942       // At this point, we know that 'x btest y' is true.
1943       switch (btest) {
1944       case BoolTest::eq:
1945         // They are proven equal, so we can collapse the min/max.
1946         // Either value is the answer.  Choose the simpler.
1947         if (is_simple_name(yvalue) && !is_simple_name(xvalue))
1948           return yvalue;
1949         return xvalue;
1950       case BoolTest::lt:          // x < y
1951       case BoolTest::le:          // x <= y
1952         return (want_max ? yvalue : xvalue);
1953       case BoolTest::gt:          // x > y
1954       case BoolTest::ge:          // x >= y
1955         return (want_max ? xvalue : yvalue);
1956       }
1957     }
1958   }
1959 
1960   // We failed to find a dominating test.
1961   // Let's pick a test that might GVN with prior tests.
1962   Node*          best_bol   = NULL;
1963   BoolTest::mask best_btest = BoolTest::illegal;
1964   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
1965     Node* cmp = cmps[cmpn];
1966     if (cmp == NULL)  continue;
1967     for (DUIterator_Fast jmax, j = cmp->fast_outs(jmax); j < jmax; j++) {
1968       Node* bol = cmp->fast_out(j);
1969       if (!bol->is_Bool())  continue;
1970       BoolTest::mask btest = bol->as_Bool()->_test._test;
1971       if (btest == BoolTest::eq || btest == BoolTest::ne)  continue;
1972       if (cmp->in(1) == ykey)   btest = BoolTest(btest).commute();
1973       if (bol->outcnt() > (best_bol == NULL ? 0 : best_bol->outcnt())) {
1974         best_bol   = bol->as_Bool();
1975         best_btest = btest;
1976       }
1977     }
1978   }
1979 
1980   Node* answer_if_true  = NULL;
1981   Node* answer_if_false = NULL;
1982   switch (best_btest) {
1983   default:
1984     if (cmpxy == NULL)
1985       cmpxy = ideal_cmpxy;
1986     best_bol = _gvn.transform(new BoolNode(cmpxy, BoolTest::lt));
1987     // and fall through:
1988   case BoolTest::lt:          // x < y
1989   case BoolTest::le:          // x <= y
1990     answer_if_true  = (want_max ? yvalue : xvalue);
1991     answer_if_false = (want_max ? xvalue : yvalue);
1992     break;
1993   case BoolTest::gt:          // x > y
1994   case BoolTest::ge:          // x >= y
1995     answer_if_true  = (want_max ? xvalue : yvalue);
1996     answer_if_false = (want_max ? yvalue : xvalue);
1997     break;
1998   }
1999 
2000   jint hi, lo;
2001   if (want_max) {
2002     // We can sharpen the minimum.
2003     hi = MAX2(txvalue->_hi, tyvalue->_hi);
2004     lo = MAX2(txvalue->_lo, tyvalue->_lo);
2005   } else {
2006     // We can sharpen the maximum.
2007     hi = MIN2(txvalue->_hi, tyvalue->_hi);
2008     lo = MIN2(txvalue->_lo, tyvalue->_lo);
2009   }
2010 
2011   // Use a flow-free graph structure, to avoid creating excess control edges
2012   // which could hinder other optimizations.
2013   // Since Math.min/max is often used with arraycopy, we want
2014   // tightly_coupled_allocation to be able to see beyond min/max expressions.
2015   Node* cmov = CMoveNode::make(NULL, best_bol,
2016                                answer_if_false, answer_if_true,
2017                                TypeInt::make(lo, hi, widen));
2018 
2019   return _gvn.transform(cmov);
2020 
2021   /*
2022   // This is not as desirable as it may seem, since Min and Max
2023   // nodes do not have a full set of optimizations.
2024   // And they would interfere, anyway, with 'if' optimizations
2025   // and with CMoveI canonical forms.
2026   switch (id) {
2027   case vmIntrinsics::_min:
2028     result_val = _gvn.transform(new (C, 3) MinINode(x,y)); break;
2029   case vmIntrinsics::_max:
2030     result_val = _gvn.transform(new (C, 3) MaxINode(x,y)); break;
2031   default:
2032     ShouldNotReachHere();
2033   }
2034   */
2035 }
2036 
2037 inline int
2038 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset) {
2039   const TypePtr* base_type = TypePtr::NULL_PTR;
2040   if (base != NULL)  base_type = _gvn.type(base)->isa_ptr();
2041   if (base_type == NULL) {
2042     // Unknown type.
2043     return Type::AnyPtr;
2044   } else if (base_type == TypePtr::NULL_PTR) {
2045     // Since this is a NULL+long form, we have to switch to a rawptr.
2046     base   = _gvn.transform(new CastX2PNode(offset));
2047     offset = MakeConX(0);
2048     return Type::RawPtr;
2049   } else if (base_type->base() == Type::RawPtr) {
2050     return Type::RawPtr;
2051   } else if (base_type->isa_oopptr()) {
2052     // Base is never null => always a heap address.
2053     if (base_type->ptr() == TypePtr::NotNull) {
2054       return Type::OopPtr;
2055     }
2056     // Offset is small => always a heap address.
2057     const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t();
2058     if (offset_type != NULL &&
2059         base_type->offset() == 0 &&     // (should always be?)
2060         offset_type->_lo >= 0 &&
2061         !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) {
2062       return Type::OopPtr;
2063     }
2064     // Otherwise, it might either be oop+off or NULL+addr.
2065     return Type::AnyPtr;
2066   } else {
2067     // No information:
2068     return Type::AnyPtr;
2069   }
2070 }
2071 
2072 inline Node* LibraryCallKit::make_unsafe_address(Node* base, Node* offset) {
2073   int kind = classify_unsafe_addr(base, offset);
2074   if (kind == Type::RawPtr) {
2075     return basic_plus_adr(top(), base, offset);
2076   } else {
2077     return basic_plus_adr(base, offset);
2078   }
2079 }
2080 
2081 //--------------------------inline_number_methods-----------------------------
2082 // inline int     Integer.numberOfLeadingZeros(int)
2083 // inline int        Long.numberOfLeadingZeros(long)
2084 //
2085 // inline int     Integer.numberOfTrailingZeros(int)
2086 // inline int        Long.numberOfTrailingZeros(long)
2087 //
2088 // inline int     Integer.bitCount(int)
2089 // inline int        Long.bitCount(long)
2090 //
2091 // inline char  Character.reverseBytes(char)
2092 // inline short     Short.reverseBytes(short)
2093 // inline int     Integer.reverseBytes(int)
2094 // inline long       Long.reverseBytes(long)
2095 bool LibraryCallKit::inline_number_methods(vmIntrinsics::ID id) {
2096   Node* arg = argument(0);
2097   Node* n = NULL;
2098   switch (id) {
2099   case vmIntrinsics::_numberOfLeadingZeros_i:   n = new CountLeadingZerosINode( arg);  break;
2100   case vmIntrinsics::_numberOfLeadingZeros_l:   n = new CountLeadingZerosLNode( arg);  break;
2101   case vmIntrinsics::_numberOfTrailingZeros_i:  n = new CountTrailingZerosINode(arg);  break;
2102   case vmIntrinsics::_numberOfTrailingZeros_l:  n = new CountTrailingZerosLNode(arg);  break;
2103   case vmIntrinsics::_bitCount_i:               n = new PopCountINode(          arg);  break;
2104   case vmIntrinsics::_bitCount_l:               n = new PopCountLNode(          arg);  break;
2105   case vmIntrinsics::_reverseBytes_c:           n = new ReverseBytesUSNode(0,   arg);  break;
2106   case vmIntrinsics::_reverseBytes_s:           n = new ReverseBytesSNode( 0,   arg);  break;
2107   case vmIntrinsics::_reverseBytes_i:           n = new ReverseBytesINode( 0,   arg);  break;
2108   case vmIntrinsics::_reverseBytes_l:           n = new ReverseBytesLNode( 0,   arg);  break;
2109   default:  fatal_unexpected_iid(id);  break;
2110   }
2111   set_result(_gvn.transform(n));
2112   return true;
2113 }
2114 
2115 //----------------------------inline_unsafe_access----------------------------
2116 
2117 // Helper that guards and inserts a pre-barrier.
2118 void LibraryCallKit::insert_pre_barrier(Node* base_oop, Node* offset,
2119                                         Node* pre_val, bool need_mem_bar) {
2120   // We could be accessing the referent field of a reference object. If so, when G1
2121   // is enabled, we need to log the value in the referent field in an SATB buffer.
2122   // This routine performs some compile time filters and generates suitable
2123   // runtime filters that guard the pre-barrier code.
2124   // Also add memory barrier for non volatile load from the referent field
2125   // to prevent commoning of loads across safepoint.
2126   if (!UseG1GC && !need_mem_bar)
2127     return;
2128 
2129   // Some compile time checks.
2130 
2131   // If offset is a constant, is it java_lang_ref_Reference::_reference_offset?
2132   const TypeX* otype = offset->find_intptr_t_type();
2133   if (otype != NULL && otype->is_con() &&
2134       otype->get_con() != java_lang_ref_Reference::referent_offset) {
2135     // Constant offset but not the reference_offset so just return
2136     return;
2137   }
2138 
2139   // We only need to generate the runtime guards for instances.
2140   const TypeOopPtr* btype = base_oop->bottom_type()->isa_oopptr();
2141   if (btype != NULL) {
2142     if (btype->isa_aryptr()) {
2143       // Array type so nothing to do
2144       return;
2145     }
2146 
2147     const TypeInstPtr* itype = btype->isa_instptr();
2148     if (itype != NULL) {
2149       // Can the klass of base_oop be statically determined to be
2150       // _not_ a sub-class of Reference and _not_ Object?
2151       ciKlass* klass = itype->klass();
2152       if ( klass->is_loaded() &&
2153           !klass->is_subtype_of(env()->Reference_klass()) &&
2154           !env()->Object_klass()->is_subtype_of(klass)) {
2155         return;
2156       }
2157     }
2158   }
2159 
2160   // The compile time filters did not reject base_oop/offset so
2161   // we need to generate the following runtime filters
2162   //
2163   // if (offset == java_lang_ref_Reference::_reference_offset) {
2164   //   if (instance_of(base, java.lang.ref.Reference)) {
2165   //     pre_barrier(_, pre_val, ...);
2166   //   }
2167   // }
2168 
2169   float likely   = PROB_LIKELY(  0.999);
2170   float unlikely = PROB_UNLIKELY(0.999);
2171 
2172   IdealKit ideal(this);
2173 #define __ ideal.
2174 
2175   Node* referent_off = __ ConX(java_lang_ref_Reference::referent_offset);
2176 
2177   __ if_then(offset, BoolTest::eq, referent_off, unlikely); {
2178       // Update graphKit memory and control from IdealKit.
2179       sync_kit(ideal);
2180 
2181       Node* ref_klass_con = makecon(TypeKlassPtr::make(env()->Reference_klass()));
2182       Node* is_instof = gen_instanceof(base_oop, ref_klass_con);
2183 
2184       // Update IdealKit memory and control from graphKit.
2185       __ sync_kit(this);
2186 
2187       Node* one = __ ConI(1);
2188       // is_instof == 0 if base_oop == NULL
2189       __ if_then(is_instof, BoolTest::eq, one, unlikely); {
2190 
2191         // Update graphKit from IdeakKit.
2192         sync_kit(ideal);
2193 
2194         // Use the pre-barrier to record the value in the referent field
2195         pre_barrier(false /* do_load */,
2196                     __ ctrl(),
2197                     NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
2198                     pre_val /* pre_val */,
2199                     T_OBJECT);
2200         if (need_mem_bar) {
2201           // Add memory barrier to prevent commoning reads from this field
2202           // across safepoint since GC can change its value.
2203           insert_mem_bar(Op_MemBarCPUOrder);
2204         }
2205         // Update IdealKit from graphKit.
2206         __ sync_kit(this);
2207 
2208       } __ end_if(); // _ref_type != ref_none
2209   } __ end_if(); // offset == referent_offset
2210 
2211   // Final sync IdealKit and GraphKit.
2212   final_sync(ideal);
2213 #undef __
2214 }
2215 
2216 
2217 const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type) {
2218   // Attempt to infer a sharper value type from the offset and base type.
2219   ciKlass* sharpened_klass = NULL;
2220 
2221   // See if it is an instance field, with an object type.
2222   if (alias_type->field() != NULL) {
2223     if (alias_type->field()->type()->is_klass()) {
2224       sharpened_klass = alias_type->field()->type()->as_klass();
2225     }
2226   }
2227 
2228   // See if it is a narrow oop array.
2229   if (adr_type->isa_aryptr()) {
2230     if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) {
2231       const TypeOopPtr *elem_type = adr_type->is_aryptr()->elem()->isa_oopptr();
2232       if (elem_type != NULL) {
2233         sharpened_klass = elem_type->klass();
2234       }
2235     }
2236   }
2237 
2238   // The sharpened class might be unloaded if there is no class loader
2239   // contraint in place.
2240   if (sharpened_klass != NULL && sharpened_klass->is_loaded()) {
2241     const TypeOopPtr* tjp = TypeOopPtr::make_from_klass(sharpened_klass);
2242 
2243 #ifndef PRODUCT
2244     if (C->print_intrinsics() || C->print_inlining()) {
2245       tty->print("  from base type:  ");  adr_type->dump(); tty->cr();
2246       tty->print("  sharpened value: ");  tjp->dump();      tty->cr();
2247     }
2248 #endif
2249     // Sharpen the value type.
2250     return tjp;
2251   }
2252   return NULL;
2253 }
2254 
2255 bool LibraryCallKit::inline_unsafe_access(bool is_store, const BasicType type, const AccessKind kind, const bool unaligned) {
2256   if (callee()->is_static())  return false;  // caller must have the capability!
2257   guarantee(!is_store || kind != Acquire, "Acquire accesses can be produced only for loads");
2258   guarantee( is_store || kind != Release, "Release accesses can be produced only for stores");
2259   assert(type != T_OBJECT || !unaligned, "unaligned access not supported with object type");
2260 
2261 #ifndef PRODUCT
2262   {
2263     ResourceMark rm;
2264     // Check the signatures.
2265     ciSignature* sig = callee()->signature();
2266 #ifdef ASSERT
2267     if (!is_store) {
2268       // Object getObject(Object base, int/long offset), etc.
2269       BasicType rtype = sig->return_type()->basic_type();
2270       assert(rtype == type, "getter must return the expected value");
2271       assert(sig->count() == 2, "oop getter has 2 arguments");
2272       assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
2273       assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
2274     } else {
2275       // void putObject(Object base, int/long offset, Object x), etc.
2276       assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
2277       assert(sig->count() == 3, "oop putter has 3 arguments");
2278       assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
2279       assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
2280       BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
2281       assert(vtype == type, "putter must accept the expected value");
2282     }
2283 #endif // ASSERT
2284  }
2285 #endif //PRODUCT
2286 
2287   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2288 
2289   Node* receiver = argument(0);  // type: oop
2290 
2291   // Build address expression.
2292   Node* adr;
2293   Node* heap_base_oop = top();
2294   Node* offset = top();
2295   Node* val;
2296 
2297   // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2298   Node* base = argument(1);  // type: oop
2299   // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2300   offset = argument(2);  // type: long
2301   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2302   // to be plain byte offsets, which are also the same as those accepted
2303   // by oopDesc::field_base.
2304   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2305          "fieldOffset must be byte-scaled");
2306   // 32-bit machines ignore the high half!
2307   offset = ConvL2X(offset);
2308   adr = make_unsafe_address(base, offset);
2309   if (_gvn.type(base)->isa_ptr() != TypePtr::NULL_PTR) {
2310     heap_base_oop = base;
2311   } else if (type == T_OBJECT) {
2312     return false; // off-heap oop accesses are not supported
2313   }
2314 
2315   // Can base be NULL? Otherwise, always on-heap access.
2316   bool can_access_non_heap = TypePtr::NULL_PTR->higher_equal(_gvn.type(heap_base_oop));
2317 
2318   val = is_store ? argument(4) : NULL;
2319 
2320   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2321 
2322   // Try to categorize the address.
2323   Compile::AliasType* alias_type = C->alias_type(adr_type);
2324   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2325 
2326   if (alias_type->adr_type() == TypeInstPtr::KLASS ||
2327       alias_type->adr_type() == TypeAryPtr::RANGE) {
2328     return false; // not supported
2329   }
2330 
2331   bool mismatched = false;
2332   BasicType bt = alias_type->basic_type();
2333   if (bt != T_ILLEGAL) {
2334     assert(alias_type->adr_type()->is_oopptr(), "should be on-heap access");
2335     if (bt == T_BYTE && adr_type->isa_aryptr()) {
2336       // Alias type doesn't differentiate between byte[] and boolean[]).
2337       // Use address type to get the element type.
2338       bt = adr_type->is_aryptr()->elem()->array_element_basic_type();
2339     }
2340     if (bt == T_ARRAY || bt == T_NARROWOOP) {
2341       // accessing an array field with getObject is not a mismatch
2342       bt = T_OBJECT;
2343     }
2344     if ((bt == T_OBJECT) != (type == T_OBJECT)) {
2345       // Don't intrinsify mismatched object accesses
2346       return false;
2347     }
2348     mismatched = (bt != type);
2349   } else if (alias_type->adr_type()->isa_oopptr()) {
2350     mismatched = true; // conservatively mark all "wide" on-heap accesses as mismatched
2351   }
2352 
2353   assert(!mismatched || alias_type->adr_type()->is_oopptr(), "off-heap access can't be mismatched");
2354 
2355   // First guess at the value type.
2356   const Type *value_type = Type::get_const_basic_type(type);
2357 
2358   // We will need memory barriers unless we can determine a unique
2359   // alias category for this reference.  (Note:  If for some reason
2360   // the barriers get omitted and the unsafe reference begins to "pollute"
2361   // the alias analysis of the rest of the graph, either Compile::can_alias
2362   // or Compile::must_alias will throw a diagnostic assert.)
2363   bool need_mem_bar;
2364   switch (kind) {
2365       case Relaxed:
2366           need_mem_bar = mismatched || can_access_non_heap;
2367           break;
2368       case Opaque:
2369           // Opaque uses CPUOrder membars for protection against code movement.
2370       case Acquire:
2371       case Release:
2372       case Volatile:
2373           need_mem_bar = true;
2374           break;
2375       default:
2376           ShouldNotReachHere();
2377   }
2378 
2379   // Some accesses require access atomicity for all types, notably longs and doubles.
2380   // When AlwaysAtomicAccesses is enabled, all accesses are atomic.
2381   bool requires_atomic_access = false;
2382   switch (kind) {
2383       case Relaxed:
2384           requires_atomic_access = AlwaysAtomicAccesses;
2385           break;
2386       case Opaque:
2387           // Opaque accesses are atomic.
2388       case Acquire:
2389       case Release:
2390       case Volatile:
2391           requires_atomic_access = true;
2392           break;
2393       default:
2394           ShouldNotReachHere();
2395   }
2396 
2397   // Figure out the memory ordering.
2398   // Acquire/Release/Volatile accesses require marking the loads/stores with MemOrd
2399   MemNode::MemOrd mo = access_kind_to_memord_LS(kind, is_store);
2400 
2401   // If we are reading the value of the referent field of a Reference
2402   // object (either by using Unsafe directly or through reflection)
2403   // then, if G1 is enabled, we need to record the referent in an
2404   // SATB log buffer using the pre-barrier mechanism.
2405   // Also we need to add memory barrier to prevent commoning reads
2406   // from this field across safepoint since GC can change its value.
2407   bool need_read_barrier = !is_store &&
2408                            offset != top() && heap_base_oop != top();
2409 
2410   if (!is_store && type == T_OBJECT) {
2411     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
2412     if (tjp != NULL) {
2413       value_type = tjp;
2414     }
2415   }
2416 
2417   receiver = null_check(receiver);
2418   if (stopped()) {
2419     return true;
2420   }
2421   // Heap pointers get a null-check from the interpreter,
2422   // as a courtesy.  However, this is not guaranteed by Unsafe,
2423   // and it is not possible to fully distinguish unintended nulls
2424   // from intended ones in this API.
2425 
2426   // We need to emit leading and trailing CPU membars (see below) in
2427   // addition to memory membars for special access modes. This is a little
2428   // too strong, but avoids the need to insert per-alias-type
2429   // volatile membars (for stores; compare Parse::do_put_xxx), which
2430   // we cannot do effectively here because we probably only have a
2431   // rough approximation of type.
2432 
2433   switch(kind) {
2434     case Relaxed:
2435     case Opaque:
2436     case Acquire:
2437       break;
2438     case Release:
2439     case Volatile:
2440       if (is_store) {
2441         insert_mem_bar(Op_MemBarRelease);
2442       } else {
2443         if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
2444           insert_mem_bar(Op_MemBarVolatile);
2445         }
2446       }
2447       break;
2448     default:
2449       ShouldNotReachHere();
2450   }
2451 
2452   // Memory barrier to prevent normal and 'unsafe' accesses from
2453   // bypassing each other.  Happens after null checks, so the
2454   // exception paths do not take memory state from the memory barrier,
2455   // so there's no problems making a strong assert about mixing users
2456   // of safe & unsafe memory.
2457   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
2458 
2459   if (!is_store) {
2460     Node* p = NULL;
2461     // Try to constant fold a load from a constant field
2462     ciField* field = alias_type->field();
2463     if (heap_base_oop != top() && field != NULL && field->is_constant() && !mismatched) {
2464       // final or stable field
2465       p = make_constant_from_field(field, heap_base_oop);
2466     }
2467     if (p == NULL) {
2468       // To be valid, unsafe loads may depend on other conditions than
2469       // the one that guards them: pin the Load node
2470       p = make_load(control(), adr, value_type, type, adr_type, mo, LoadNode::Pinned, requires_atomic_access, unaligned, mismatched);
2471       // load value
2472       switch (type) {
2473       case T_BOOLEAN:
2474       case T_CHAR:
2475       case T_BYTE:
2476       case T_SHORT:
2477       case T_INT:
2478       case T_LONG:
2479       case T_FLOAT:
2480       case T_DOUBLE:
2481         break;
2482       case T_OBJECT:
2483         if (need_read_barrier) {
2484           // We do not require a mem bar inside pre_barrier if need_mem_bar
2485           // is set: the barriers would be emitted by us.
2486           insert_pre_barrier(heap_base_oop, offset, p, !need_mem_bar);
2487         }
2488         break;
2489       case T_ADDRESS:
2490         // Cast to an int type.
2491         p = _gvn.transform(new CastP2XNode(NULL, p));
2492         p = ConvX2UL(p);
2493         break;
2494       default:
2495         fatal("unexpected type %d: %s", type, type2name(type));
2496         break;
2497       }
2498     }
2499     // The load node has the control of the preceding MemBarCPUOrder.  All
2500     // following nodes will have the control of the MemBarCPUOrder inserted at
2501     // the end of this method.  So, pushing the load onto the stack at a later
2502     // point is fine.
2503     set_result(p);
2504   } else {
2505     // place effect of store into memory
2506     switch (type) {
2507     case T_DOUBLE:
2508       val = dstore_rounding(val);
2509       break;
2510     case T_ADDRESS:
2511       // Repackage the long as a pointer.
2512       val = ConvL2X(val);
2513       val = _gvn.transform(new CastX2PNode(val));
2514       break;
2515     }
2516 
2517     if (type == T_OBJECT) {
2518       store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type, mo, mismatched);
2519     } else {
2520       store_to_memory(control(), adr, val, type, adr_type, mo, requires_atomic_access, unaligned, mismatched);
2521     }
2522   }
2523 
2524   switch(kind) {
2525     case Relaxed:
2526     case Opaque:
2527     case Release:
2528       break;
2529     case Acquire:
2530     case Volatile:
2531       if (!is_store) {
2532         insert_mem_bar(Op_MemBarAcquire);
2533       } else {
2534         if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
2535           insert_mem_bar(Op_MemBarVolatile);
2536         }
2537       }
2538       break;
2539     default:
2540       ShouldNotReachHere();
2541   }
2542 
2543   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
2544 
2545   return true;
2546 }
2547 
2548 //----------------------------inline_unsafe_load_store----------------------------
2549 // This method serves a couple of different customers (depending on LoadStoreKind):
2550 //
2551 // LS_cmp_swap:
2552 //
2553 //   boolean compareAndSwapObject(Object o, long offset, Object expected, Object x);
2554 //   boolean compareAndSwapInt(   Object o, long offset, int    expected, int    x);
2555 //   boolean compareAndSwapLong(  Object o, long offset, long   expected, long   x);
2556 //
2557 // LS_cmp_swap_weak:
2558 //
2559 //   boolean weakCompareAndSwapObject(       Object o, long offset, Object expected, Object x);
2560 //   boolean weakCompareAndSwapObjectAcquire(Object o, long offset, Object expected, Object x);
2561 //   boolean weakCompareAndSwapObjectRelease(Object o, long offset, Object expected, Object x);
2562 //
2563 //   boolean weakCompareAndSwapInt(          Object o, long offset, int    expected, int    x);
2564 //   boolean weakCompareAndSwapIntAcquire(   Object o, long offset, int    expected, int    x);
2565 //   boolean weakCompareAndSwapIntRelease(   Object o, long offset, int    expected, int    x);
2566 //
2567 //   boolean weakCompareAndSwapLong(         Object o, long offset, long   expected, long   x);
2568 //   boolean weakCompareAndSwapLongAcquire(  Object o, long offset, long   expected, long   x);
2569 //   boolean weakCompareAndSwapLongRelease(  Object o, long offset, long   expected, long   x);
2570 //
2571 // LS_cmp_exchange:
2572 //
2573 //   Object compareAndExchangeObjectVolatile(Object o, long offset, Object expected, Object x);
2574 //   Object compareAndExchangeObjectAcquire( Object o, long offset, Object expected, Object x);
2575 //   Object compareAndExchangeObjectRelease( Object o, long offset, Object expected, Object x);
2576 //
2577 //   Object compareAndExchangeIntVolatile(   Object o, long offset, Object expected, Object x);
2578 //   Object compareAndExchangeIntAcquire(    Object o, long offset, Object expected, Object x);
2579 //   Object compareAndExchangeIntRelease(    Object o, long offset, Object expected, Object x);
2580 //
2581 //   Object compareAndExchangeLongVolatile(  Object o, long offset, Object expected, Object x);
2582 //   Object compareAndExchangeLongAcquire(   Object o, long offset, Object expected, Object x);
2583 //   Object compareAndExchangeLongRelease(   Object o, long offset, Object expected, Object x);
2584 //
2585 // LS_get_add:
2586 //
2587 //   int  getAndAddInt( Object o, long offset, int  delta)
2588 //   long getAndAddLong(Object o, long offset, long delta)
2589 //
2590 // LS_get_set:
2591 //
2592 //   int    getAndSet(Object o, long offset, int    newValue)
2593 //   long   getAndSet(Object o, long offset, long   newValue)
2594 //   Object getAndSet(Object o, long offset, Object newValue)
2595 //
2596 bool LibraryCallKit::inline_unsafe_load_store(const BasicType type, const LoadStoreKind kind, const AccessKind access_kind) {
2597   // This basic scheme here is the same as inline_unsafe_access, but
2598   // differs in enough details that combining them would make the code
2599   // overly confusing.  (This is a true fact! I originally combined
2600   // them, but even I was confused by it!) As much code/comments as
2601   // possible are retained from inline_unsafe_access though to make
2602   // the correspondences clearer. - dl
2603 
2604   if (callee()->is_static())  return false;  // caller must have the capability!
2605 
2606 #ifndef PRODUCT
2607   BasicType rtype;
2608   {
2609     ResourceMark rm;
2610     // Check the signatures.
2611     ciSignature* sig = callee()->signature();
2612     rtype = sig->return_type()->basic_type();
2613     switch(kind) {
2614       case LS_get_add:
2615       case LS_get_set: {
2616       // Check the signatures.
2617 #ifdef ASSERT
2618       assert(rtype == type, "get and set must return the expected type");
2619       assert(sig->count() == 3, "get and set has 3 arguments");
2620       assert(sig->type_at(0)->basic_type() == T_OBJECT, "get and set base is object");
2621       assert(sig->type_at(1)->basic_type() == T_LONG, "get and set offset is long");
2622       assert(sig->type_at(2)->basic_type() == type, "get and set must take expected type as new value/delta");
2623       assert(access_kind == Volatile, "mo is not passed to intrinsic nodes in current implementation");
2624 #endif // ASSERT
2625         break;
2626       }
2627       case LS_cmp_swap:
2628       case LS_cmp_swap_weak: {
2629       // Check the signatures.
2630 #ifdef ASSERT
2631       assert(rtype == T_BOOLEAN, "CAS must return boolean");
2632       assert(sig->count() == 4, "CAS has 4 arguments");
2633       assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
2634       assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
2635 #endif // ASSERT
2636         break;
2637       }
2638       case LS_cmp_exchange: {
2639       // Check the signatures.
2640 #ifdef ASSERT
2641       assert(rtype == type, "CAS must return the expected type");
2642       assert(sig->count() == 4, "CAS has 4 arguments");
2643       assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
2644       assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
2645 #endif // ASSERT
2646         break;
2647       }
2648       default:
2649         ShouldNotReachHere();
2650     }
2651   }
2652 #endif //PRODUCT
2653 
2654   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2655 
2656   // Get arguments:
2657   Node* receiver = NULL;
2658   Node* base     = NULL;
2659   Node* offset   = NULL;
2660   Node* oldval   = NULL;
2661   Node* newval   = NULL;
2662   switch(kind) {
2663     case LS_cmp_swap:
2664     case LS_cmp_swap_weak:
2665     case LS_cmp_exchange: {
2666       const bool two_slot_type = type2size[type] == 2;
2667       receiver = argument(0);  // type: oop
2668       base     = argument(1);  // type: oop
2669       offset   = argument(2);  // type: long
2670       oldval   = argument(4);  // type: oop, int, or long
2671       newval   = argument(two_slot_type ? 6 : 5);  // type: oop, int, or long
2672       break;
2673     }
2674     case LS_get_add:
2675     case LS_get_set: {
2676       receiver = argument(0);  // type: oop
2677       base     = argument(1);  // type: oop
2678       offset   = argument(2);  // type: long
2679       oldval   = NULL;
2680       newval   = argument(4);  // type: oop, int, or long
2681       break;
2682     }
2683     default:
2684       ShouldNotReachHere();
2685   }
2686 
2687   // Build field offset expression.
2688   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2689   // to be plain byte offsets, which are also the same as those accepted
2690   // by oopDesc::field_base.
2691   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
2692   // 32-bit machines ignore the high half of long offsets
2693   offset = ConvL2X(offset);
2694   Node* adr = make_unsafe_address(base, offset);
2695   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2696 
2697   Compile::AliasType* alias_type = C->alias_type(adr_type);
2698   BasicType bt = alias_type->basic_type();
2699   if (bt != T_ILLEGAL &&
2700       ((bt == T_OBJECT || bt == T_ARRAY) != (type == T_OBJECT))) {
2701     // Don't intrinsify mismatched object accesses.
2702     return false;
2703   }
2704 
2705   // For CAS, unlike inline_unsafe_access, there seems no point in
2706   // trying to refine types. Just use the coarse types here.
2707   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2708   const Type *value_type = Type::get_const_basic_type(type);
2709 
2710   switch (kind) {
2711     case LS_get_set:
2712     case LS_cmp_exchange: {
2713       if (type == T_OBJECT) {
2714         const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
2715         if (tjp != NULL) {
2716           value_type = tjp;
2717         }
2718       }
2719       break;
2720     }
2721     case LS_cmp_swap:
2722     case LS_cmp_swap_weak:
2723     case LS_get_add:
2724       break;
2725     default:
2726       ShouldNotReachHere();
2727   }
2728 
2729   // Null check receiver.
2730   receiver = null_check(receiver);
2731   if (stopped()) {
2732     return true;
2733   }
2734 
2735   int alias_idx = C->get_alias_index(adr_type);
2736 
2737   // Memory-model-wise, a LoadStore acts like a little synchronized
2738   // block, so needs barriers on each side.  These don't translate
2739   // into actual barriers on most machines, but we still need rest of
2740   // compiler to respect ordering.
2741 
2742   switch (access_kind) {
2743     case Relaxed:
2744     case Acquire:
2745       break;
2746     case Release:
2747       insert_mem_bar(Op_MemBarRelease);
2748       break;
2749     case Volatile:
2750       if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
2751         insert_mem_bar(Op_MemBarVolatile);
2752       } else {
2753         insert_mem_bar(Op_MemBarRelease);
2754       }
2755       break;
2756     default:
2757       ShouldNotReachHere();
2758   }
2759   insert_mem_bar(Op_MemBarCPUOrder);
2760 
2761   // Figure out the memory ordering.
2762   MemNode::MemOrd mo = access_kind_to_memord(access_kind);
2763 
2764   // 4984716: MemBars must be inserted before this
2765   //          memory node in order to avoid a false
2766   //          dependency which will confuse the scheduler.
2767   Node *mem = memory(alias_idx);
2768 
2769   // For now, we handle only those cases that actually exist: ints,
2770   // longs, and Object. Adding others should be straightforward.
2771   Node* load_store = NULL;
2772   switch(type) {
2773   case T_BYTE:
2774     switch(kind) {
2775       case LS_get_add:
2776         load_store = _gvn.transform(new GetAndAddBNode(control(), mem, adr, newval, adr_type));
2777         break;
2778       case LS_get_set:
2779         load_store = _gvn.transform(new GetAndSetBNode(control(), mem, adr, newval, adr_type));
2780         break;
2781       case LS_cmp_swap_weak:
2782         load_store = _gvn.transform(new WeakCompareAndSwapBNode(control(), mem, adr, newval, oldval, mo));
2783         break;
2784       case LS_cmp_swap:
2785         load_store = _gvn.transform(new CompareAndSwapBNode(control(), mem, adr, newval, oldval, mo));
2786         break;
2787       case LS_cmp_exchange:
2788         load_store = _gvn.transform(new CompareAndExchangeBNode(control(), mem, adr, newval, oldval, adr_type, mo));
2789         break;
2790       default:
2791         ShouldNotReachHere();
2792     }
2793     break;
2794   case T_SHORT:
2795     switch(kind) {
2796       case LS_get_add:
2797         load_store = _gvn.transform(new GetAndAddSNode(control(), mem, adr, newval, adr_type));
2798         break;
2799       case LS_get_set:
2800         load_store = _gvn.transform(new GetAndSetSNode(control(), mem, adr, newval, adr_type));
2801         break;
2802       case LS_cmp_swap_weak:
2803         load_store = _gvn.transform(new WeakCompareAndSwapSNode(control(), mem, adr, newval, oldval, mo));
2804         break;
2805       case LS_cmp_swap:
2806         load_store = _gvn.transform(new CompareAndSwapSNode(control(), mem, adr, newval, oldval, mo));
2807         break;
2808       case LS_cmp_exchange:
2809         load_store = _gvn.transform(new CompareAndExchangeSNode(control(), mem, adr, newval, oldval, adr_type, mo));
2810         break;
2811       default:
2812         ShouldNotReachHere();
2813     }
2814     break;
2815   case T_INT:
2816     switch(kind) {
2817       case LS_get_add:
2818         load_store = _gvn.transform(new GetAndAddINode(control(), mem, adr, newval, adr_type));
2819         break;
2820       case LS_get_set:
2821         load_store = _gvn.transform(new GetAndSetINode(control(), mem, adr, newval, adr_type));
2822         break;
2823       case LS_cmp_swap_weak:
2824         load_store = _gvn.transform(new WeakCompareAndSwapINode(control(), mem, adr, newval, oldval, mo));
2825         break;
2826       case LS_cmp_swap:
2827         load_store = _gvn.transform(new CompareAndSwapINode(control(), mem, adr, newval, oldval, mo));
2828         break;
2829       case LS_cmp_exchange:
2830         load_store = _gvn.transform(new CompareAndExchangeINode(control(), mem, adr, newval, oldval, adr_type, mo));
2831         break;
2832       default:
2833         ShouldNotReachHere();
2834     }
2835     break;
2836   case T_LONG:
2837     switch(kind) {
2838       case LS_get_add:
2839         load_store = _gvn.transform(new GetAndAddLNode(control(), mem, adr, newval, adr_type));
2840         break;
2841       case LS_get_set:
2842         load_store = _gvn.transform(new GetAndSetLNode(control(), mem, adr, newval, adr_type));
2843         break;
2844       case LS_cmp_swap_weak:
2845         load_store = _gvn.transform(new WeakCompareAndSwapLNode(control(), mem, adr, newval, oldval, mo));
2846         break;
2847       case LS_cmp_swap:
2848         load_store = _gvn.transform(new CompareAndSwapLNode(control(), mem, adr, newval, oldval, mo));
2849         break;
2850       case LS_cmp_exchange:
2851         load_store = _gvn.transform(new CompareAndExchangeLNode(control(), mem, adr, newval, oldval, adr_type, mo));
2852         break;
2853       default:
2854         ShouldNotReachHere();
2855     }
2856     break;
2857   case T_OBJECT:
2858     // Transformation of a value which could be NULL pointer (CastPP #NULL)
2859     // could be delayed during Parse (for example, in adjust_map_after_if()).
2860     // Execute transformation here to avoid barrier generation in such case.
2861     if (_gvn.type(newval) == TypePtr::NULL_PTR)
2862       newval = _gvn.makecon(TypePtr::NULL_PTR);
2863 
2864     // Reference stores need a store barrier.
2865     switch(kind) {
2866       case LS_get_set: {
2867         // If pre-barrier must execute before the oop store, old value will require do_load here.
2868         if (!can_move_pre_barrier()) {
2869           pre_barrier(true /* do_load*/,
2870                       control(), base, adr, alias_idx, newval, value_type->make_oopptr(),
2871                       NULL /* pre_val*/,
2872                       T_OBJECT);
2873         } // Else move pre_barrier to use load_store value, see below.
2874         break;
2875       }
2876       case LS_cmp_swap_weak:
2877       case LS_cmp_swap:
2878       case LS_cmp_exchange: {
2879         // Same as for newval above:
2880         if (_gvn.type(oldval) == TypePtr::NULL_PTR) {
2881           oldval = _gvn.makecon(TypePtr::NULL_PTR);
2882         }
2883         // The only known value which might get overwritten is oldval.
2884         pre_barrier(false /* do_load */,
2885                     control(), NULL, NULL, max_juint, NULL, NULL,
2886                     oldval /* pre_val */,
2887                     T_OBJECT);
2888         break;
2889       }
2890       default:
2891         ShouldNotReachHere();
2892     }
2893 
2894 #ifdef _LP64
2895     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
2896       Node *newval_enc = _gvn.transform(new EncodePNode(newval, newval->bottom_type()->make_narrowoop()));
2897 
2898       switch(kind) {
2899         case LS_get_set:
2900           load_store = _gvn.transform(new GetAndSetNNode(control(), mem, adr, newval_enc, adr_type, value_type->make_narrowoop()));
2901           break;
2902         case LS_cmp_swap_weak: {
2903           Node *oldval_enc = _gvn.transform(new EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
2904           load_store = _gvn.transform(new WeakCompareAndSwapNNode(control(), mem, adr, newval_enc, oldval_enc, mo));
2905           break;
2906         }
2907         case LS_cmp_swap: {
2908           Node *oldval_enc = _gvn.transform(new EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
2909           load_store = _gvn.transform(new CompareAndSwapNNode(control(), mem, adr, newval_enc, oldval_enc, mo));
2910           break;
2911         }
2912         case LS_cmp_exchange: {
2913           Node *oldval_enc = _gvn.transform(new EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
2914           load_store = _gvn.transform(new CompareAndExchangeNNode(control(), mem, adr, newval_enc, oldval_enc, adr_type, value_type->make_narrowoop(), mo));
2915           break;
2916         }
2917         default:
2918           ShouldNotReachHere();
2919       }
2920     } else
2921 #endif
2922     switch (kind) {
2923       case LS_get_set:
2924         load_store = _gvn.transform(new GetAndSetPNode(control(), mem, adr, newval, adr_type, value_type->is_oopptr()));
2925         break;
2926       case LS_cmp_swap_weak:
2927         load_store = _gvn.transform(new WeakCompareAndSwapPNode(control(), mem, adr, newval, oldval, mo));
2928         break;
2929       case LS_cmp_swap:
2930         load_store = _gvn.transform(new CompareAndSwapPNode(control(), mem, adr, newval, oldval, mo));
2931         break;
2932       case LS_cmp_exchange:
2933         load_store = _gvn.transform(new CompareAndExchangePNode(control(), mem, adr, newval, oldval, adr_type, value_type->is_oopptr(), mo));
2934         break;
2935       default:
2936         ShouldNotReachHere();
2937     }
2938 
2939     // Emit the post barrier only when the actual store happened. This makes sense
2940     // to check only for LS_cmp_* that can fail to set the value.
2941     // LS_cmp_exchange does not produce any branches by default, so there is no
2942     // boolean result to piggyback on. TODO: When we merge CompareAndSwap with
2943     // CompareAndExchange and move branches here, it would make sense to conditionalize
2944     // post_barriers for LS_cmp_exchange as well.
2945     //
2946     // CAS success path is marked more likely since we anticipate this is a performance
2947     // critical path, while CAS failure path can use the penalty for going through unlikely
2948     // path as backoff. Which is still better than doing a store barrier there.
2949     switch (kind) {
2950       case LS_get_set:
2951       case LS_cmp_exchange: {
2952         post_barrier(control(), load_store, base, adr, alias_idx, newval, T_OBJECT, true);
2953         break;
2954       }
2955       case LS_cmp_swap_weak:
2956       case LS_cmp_swap: {
2957         IdealKit ideal(this);
2958         ideal.if_then(load_store, BoolTest::ne, ideal.ConI(0), PROB_STATIC_FREQUENT); {
2959           sync_kit(ideal);
2960           post_barrier(ideal.ctrl(), load_store, base, adr, alias_idx, newval, T_OBJECT, true);
2961           ideal.sync_kit(this);
2962         } ideal.end_if();
2963         final_sync(ideal);
2964         break;
2965       }
2966       default:
2967         ShouldNotReachHere();
2968     }
2969     break;
2970   default:
2971     fatal("unexpected type %d: %s", type, type2name(type));
2972     break;
2973   }
2974 
2975   // SCMemProjNodes represent the memory state of a LoadStore. Their
2976   // main role is to prevent LoadStore nodes from being optimized away
2977   // when their results aren't used.
2978   Node* proj = _gvn.transform(new SCMemProjNode(load_store));
2979   set_memory(proj, alias_idx);
2980 
2981   if (type == T_OBJECT && (kind == LS_get_set || kind == LS_cmp_exchange)) {
2982 #ifdef _LP64
2983     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
2984       load_store = _gvn.transform(new DecodeNNode(load_store, load_store->get_ptr_type()));
2985     }
2986 #endif
2987     if (can_move_pre_barrier()) {
2988       // Don't need to load pre_val. The old value is returned by load_store.
2989       // The pre_barrier can execute after the xchg as long as no safepoint
2990       // gets inserted between them.
2991       pre_barrier(false /* do_load */,
2992                   control(), NULL, NULL, max_juint, NULL, NULL,
2993                   load_store /* pre_val */,
2994                   T_OBJECT);
2995     }
2996   }
2997 
2998   // Add the trailing membar surrounding the access
2999   insert_mem_bar(Op_MemBarCPUOrder);
3000 
3001   switch (access_kind) {
3002     case Relaxed:
3003     case Release:
3004       break; // do nothing
3005     case Acquire:
3006     case Volatile:
3007       insert_mem_bar(Op_MemBarAcquire);
3008       // !support_IRIW_for_not_multiple_copy_atomic_cpu handled in platform code
3009       break;
3010     default:
3011       ShouldNotReachHere();
3012   }
3013 
3014   assert(type2size[load_store->bottom_type()->basic_type()] == type2size[rtype], "result type should match");
3015   set_result(load_store);
3016   return true;
3017 }
3018 
3019 MemNode::MemOrd LibraryCallKit::access_kind_to_memord_LS(AccessKind kind, bool is_store) {
3020   MemNode::MemOrd mo = MemNode::unset;
3021   switch(kind) {
3022     case Opaque:
3023     case Relaxed:  mo = MemNode::unordered; break;
3024     case Acquire:  mo = MemNode::acquire;   break;
3025     case Release:  mo = MemNode::release;   break;
3026     case Volatile: mo = is_store ? MemNode::release : MemNode::acquire; break;
3027     default:
3028       ShouldNotReachHere();
3029   }
3030   guarantee(mo != MemNode::unset, "Should select memory ordering");
3031   return mo;
3032 }
3033 
3034 MemNode::MemOrd LibraryCallKit::access_kind_to_memord(AccessKind kind) {
3035   MemNode::MemOrd mo = MemNode::unset;
3036   switch(kind) {
3037     case Opaque:
3038     case Relaxed:  mo = MemNode::unordered; break;
3039     case Acquire:  mo = MemNode::acquire;   break;
3040     case Release:  mo = MemNode::release;   break;
3041     case Volatile: mo = MemNode::seqcst;    break;
3042     default:
3043       ShouldNotReachHere();
3044   }
3045   guarantee(mo != MemNode::unset, "Should select memory ordering");
3046   return mo;
3047 }
3048 
3049 bool LibraryCallKit::inline_unsafe_fence(vmIntrinsics::ID id) {
3050   // Regardless of form, don't allow previous ld/st to move down,
3051   // then issue acquire, release, or volatile mem_bar.
3052   insert_mem_bar(Op_MemBarCPUOrder);
3053   switch(id) {
3054     case vmIntrinsics::_loadFence:
3055       insert_mem_bar(Op_LoadFence);
3056       return true;
3057     case vmIntrinsics::_storeFence:
3058       insert_mem_bar(Op_StoreFence);
3059       return true;
3060     case vmIntrinsics::_fullFence:
3061       insert_mem_bar(Op_MemBarVolatile);
3062       return true;
3063     default:
3064       fatal_unexpected_iid(id);
3065       return false;
3066   }
3067 }
3068 
3069 bool LibraryCallKit::inline_onspinwait() {
3070   insert_mem_bar(Op_OnSpinWait);
3071   return true;
3072 }
3073 
3074 bool LibraryCallKit::klass_needs_init_guard(Node* kls) {
3075   if (!kls->is_Con()) {
3076     return true;
3077   }
3078   const TypeKlassPtr* klsptr = kls->bottom_type()->isa_klassptr();
3079   if (klsptr == NULL) {
3080     return true;
3081   }
3082   ciInstanceKlass* ik = klsptr->klass()->as_instance_klass();
3083   // don't need a guard for a klass that is already initialized
3084   return !ik->is_initialized();
3085 }
3086 
3087 //----------------------------inline_unsafe_allocate---------------------------
3088 // public native Object Unsafe.allocateInstance(Class<?> cls);
3089 bool LibraryCallKit::inline_unsafe_allocate() {
3090   if (callee()->is_static())  return false;  // caller must have the capability!
3091 
3092   null_check_receiver();  // null-check, then ignore
3093   Node* cls = null_check(argument(1));
3094   if (stopped())  return true;
3095 
3096   Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
3097   kls = null_check(kls);
3098   if (stopped())  return true;  // argument was like int.class
3099 
3100   Node* test = NULL;
3101   if (LibraryCallKit::klass_needs_init_guard(kls)) {
3102     // Note:  The argument might still be an illegal value like
3103     // Serializable.class or Object[].class.   The runtime will handle it.
3104     // But we must make an explicit check for initialization.
3105     Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset()));
3106     // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler
3107     // can generate code to load it as unsigned byte.
3108     Node* inst = make_load(NULL, insp, TypeInt::UBYTE, T_BOOLEAN, MemNode::unordered);
3109     Node* bits = intcon(InstanceKlass::fully_initialized);
3110     test = _gvn.transform(new SubINode(inst, bits));
3111     // The 'test' is non-zero if we need to take a slow path.
3112   }
3113 
3114   Node* obj = new_instance(kls, test);
3115   set_result(obj);
3116   return true;
3117 }
3118 
3119 //------------------------inline_native_time_funcs--------------
3120 // inline code for System.currentTimeMillis() and System.nanoTime()
3121 // these have the same type and signature
3122 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) {
3123   const TypeFunc* tf = OptoRuntime::void_long_Type();
3124   const TypePtr* no_memory_effects = NULL;
3125   Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
3126   Node* value = _gvn.transform(new ProjNode(time, TypeFunc::Parms+0));
3127 #ifdef ASSERT
3128   Node* value_top = _gvn.transform(new ProjNode(time, TypeFunc::Parms+1));
3129   assert(value_top == top(), "second value must be top");
3130 #endif
3131   set_result(value);
3132   return true;
3133 }
3134 
3135 //------------------------inline_native_currentThread------------------
3136 bool LibraryCallKit::inline_native_currentThread() {
3137   Node* junk = NULL;
3138   set_result(generate_current_thread(junk));
3139   return true;
3140 }
3141 
3142 //------------------------inline_native_isInterrupted------------------
3143 // private native boolean java.lang.Thread.isInterrupted(boolean ClearInterrupted);
3144 bool LibraryCallKit::inline_native_isInterrupted() {
3145   // Add a fast path to t.isInterrupted(clear_int):
3146   //   (t == Thread.current() &&
3147   //    (!TLS._osthread._interrupted || WINDOWS_ONLY(false) NOT_WINDOWS(!clear_int)))
3148   //   ? TLS._osthread._interrupted : /*slow path:*/ t.isInterrupted(clear_int)
3149   // So, in the common case that the interrupt bit is false,
3150   // we avoid making a call into the VM.  Even if the interrupt bit
3151   // is true, if the clear_int argument is false, we avoid the VM call.
3152   // However, if the receiver is not currentThread, we must call the VM,
3153   // because there must be some locking done around the operation.
3154 
3155   // We only go to the fast case code if we pass two guards.
3156   // Paths which do not pass are accumulated in the slow_region.
3157 
3158   enum {
3159     no_int_result_path   = 1, // t == Thread.current() && !TLS._osthread._interrupted
3160     no_clear_result_path = 2, // t == Thread.current() &&  TLS._osthread._interrupted && !clear_int
3161     slow_result_path     = 3, // slow path: t.isInterrupted(clear_int)
3162     PATH_LIMIT
3163   };
3164 
3165   // Ensure that it's not possible to move the load of TLS._osthread._interrupted flag
3166   // out of the function.
3167   insert_mem_bar(Op_MemBarCPUOrder);
3168 
3169   RegionNode* result_rgn = new RegionNode(PATH_LIMIT);
3170   PhiNode*    result_val = new PhiNode(result_rgn, TypeInt::BOOL);
3171 
3172   RegionNode* slow_region = new RegionNode(1);
3173   record_for_igvn(slow_region);
3174 
3175   // (a) Receiving thread must be the current thread.
3176   Node* rec_thr = argument(0);
3177   Node* tls_ptr = NULL;
3178   Node* cur_thr = generate_current_thread(tls_ptr);
3179   Node* cmp_thr = _gvn.transform(new CmpPNode(cur_thr, rec_thr));
3180   Node* bol_thr = _gvn.transform(new BoolNode(cmp_thr, BoolTest::ne));
3181 
3182   generate_slow_guard(bol_thr, slow_region);
3183 
3184   // (b) Interrupt bit on TLS must be false.
3185   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
3186   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
3187   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::interrupted_offset()));
3188 
3189   // Set the control input on the field _interrupted read to prevent it floating up.
3190   Node* int_bit = make_load(control(), p, TypeInt::BOOL, T_INT, MemNode::unordered);
3191   Node* cmp_bit = _gvn.transform(new CmpINode(int_bit, intcon(0)));
3192   Node* bol_bit = _gvn.transform(new BoolNode(cmp_bit, BoolTest::ne));
3193 
3194   IfNode* iff_bit = create_and_map_if(control(), bol_bit, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
3195 
3196   // First fast path:  if (!TLS._interrupted) return false;
3197   Node* false_bit = _gvn.transform(new IfFalseNode(iff_bit));
3198   result_rgn->init_req(no_int_result_path, false_bit);
3199   result_val->init_req(no_int_result_path, intcon(0));
3200 
3201   // drop through to next case
3202   set_control( _gvn.transform(new IfTrueNode(iff_bit)));
3203 
3204 #ifndef _WINDOWS
3205   // (c) Or, if interrupt bit is set and clear_int is false, use 2nd fast path.
3206   Node* clr_arg = argument(1);
3207   Node* cmp_arg = _gvn.transform(new CmpINode(clr_arg, intcon(0)));
3208   Node* bol_arg = _gvn.transform(new BoolNode(cmp_arg, BoolTest::ne));
3209   IfNode* iff_arg = create_and_map_if(control(), bol_arg, PROB_FAIR, COUNT_UNKNOWN);
3210 
3211   // Second fast path:  ... else if (!clear_int) return true;
3212   Node* false_arg = _gvn.transform(new IfFalseNode(iff_arg));
3213   result_rgn->init_req(no_clear_result_path, false_arg);
3214   result_val->init_req(no_clear_result_path, intcon(1));
3215 
3216   // drop through to next case
3217   set_control( _gvn.transform(new IfTrueNode(iff_arg)));
3218 #else
3219   // To return true on Windows you must read the _interrupted field
3220   // and check the event state i.e. take the slow path.
3221 #endif // _WINDOWS
3222 
3223   // (d) Otherwise, go to the slow path.
3224   slow_region->add_req(control());
3225   set_control( _gvn.transform(slow_region));
3226 
3227   if (stopped()) {
3228     // There is no slow path.
3229     result_rgn->init_req(slow_result_path, top());
3230     result_val->init_req(slow_result_path, top());
3231   } else {
3232     // non-virtual because it is a private non-static
3233     CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_isInterrupted);
3234 
3235     Node* slow_val = set_results_for_java_call(slow_call);
3236     // this->control() comes from set_results_for_java_call
3237 
3238     Node* fast_io  = slow_call->in(TypeFunc::I_O);
3239     Node* fast_mem = slow_call->in(TypeFunc::Memory);
3240 
3241     // These two phis are pre-filled with copies of of the fast IO and Memory
3242     PhiNode* result_mem  = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
3243     PhiNode* result_io   = PhiNode::make(result_rgn, fast_io,  Type::ABIO);
3244 
3245     result_rgn->init_req(slow_result_path, control());
3246     result_io ->init_req(slow_result_path, i_o());
3247     result_mem->init_req(slow_result_path, reset_memory());
3248     result_val->init_req(slow_result_path, slow_val);
3249 
3250     set_all_memory(_gvn.transform(result_mem));
3251     set_i_o(       _gvn.transform(result_io));
3252   }
3253 
3254   C->set_has_split_ifs(true); // Has chance for split-if optimization
3255   set_result(result_rgn, result_val);
3256   return true;
3257 }
3258 
3259 //---------------------------load_mirror_from_klass----------------------------
3260 // Given a klass oop, load its java mirror (a java.lang.Class oop).
3261 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) {
3262   Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset()));
3263   return make_load(NULL, p, TypeInstPtr::MIRROR, T_OBJECT, MemNode::unordered);
3264 }
3265 
3266 //-----------------------load_klass_from_mirror_common-------------------------
3267 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
3268 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
3269 // and branch to the given path on the region.
3270 // If never_see_null, take an uncommon trap on null, so we can optimistically
3271 // compile for the non-null case.
3272 // If the region is NULL, force never_see_null = true.
3273 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
3274                                                     bool never_see_null,
3275                                                     RegionNode* region,
3276                                                     int null_path,
3277                                                     int offset) {
3278   if (region == NULL)  never_see_null = true;
3279   Node* p = basic_plus_adr(mirror, offset);
3280   const TypeKlassPtr*  kls_type = TypeKlassPtr::OBJECT_OR_NULL;
3281   Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type));
3282   Node* null_ctl = top();
3283   kls = null_check_oop(kls, &null_ctl, never_see_null);
3284   if (region != NULL) {
3285     // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).
3286     region->init_req(null_path, null_ctl);
3287   } else {
3288     assert(null_ctl == top(), "no loose ends");
3289   }
3290   return kls;
3291 }
3292 
3293 //--------------------(inline_native_Class_query helpers)---------------------
3294 // Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE_FAST, JVM_ACC_HAS_FINALIZER.
3295 // Fall through if (mods & mask) == bits, take the guard otherwise.
3296 Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
3297   // Branch around if the given klass has the given modifier bit set.
3298   // Like generate_guard, adds a new path onto the region.
3299   Node* modp = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3300   Node* mods = make_load(NULL, modp, TypeInt::INT, T_INT, MemNode::unordered);
3301   Node* mask = intcon(modifier_mask);
3302   Node* bits = intcon(modifier_bits);
3303   Node* mbit = _gvn.transform(new AndINode(mods, mask));
3304   Node* cmp  = _gvn.transform(new CmpINode(mbit, bits));
3305   Node* bol  = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
3306   return generate_fair_guard(bol, region);
3307 }
3308 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
3309   return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region);
3310 }
3311 
3312 //-------------------------inline_native_Class_query-------------------
3313 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
3314   const Type* return_type = TypeInt::BOOL;
3315   Node* prim_return_value = top();  // what happens if it's a primitive class?
3316   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3317   bool expect_prim = false;     // most of these guys expect to work on refs
3318 
3319   enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT };
3320 
3321   Node* mirror = argument(0);
3322   Node* obj    = top();
3323 
3324   switch (id) {
3325   case vmIntrinsics::_isInstance:
3326     // nothing is an instance of a primitive type
3327     prim_return_value = intcon(0);
3328     obj = argument(1);
3329     break;
3330   case vmIntrinsics::_getModifiers:
3331     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3332     assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line");
3333     return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin);
3334     break;
3335   case vmIntrinsics::_isInterface:
3336     prim_return_value = intcon(0);
3337     break;
3338   case vmIntrinsics::_isArray:
3339     prim_return_value = intcon(0);
3340     expect_prim = true;  // cf. ObjectStreamClass.getClassSignature
3341     break;
3342   case vmIntrinsics::_isPrimitive:
3343     prim_return_value = intcon(1);
3344     expect_prim = true;  // obviously
3345     break;
3346   case vmIntrinsics::_getSuperclass:
3347     prim_return_value = null();
3348     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
3349     break;
3350   case vmIntrinsics::_getClassAccessFlags:
3351     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3352     return_type = TypeInt::INT;  // not bool!  6297094
3353     break;
3354   default:
3355     fatal_unexpected_iid(id);
3356     break;
3357   }
3358 
3359   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
3360   if (mirror_con == NULL)  return false;  // cannot happen?
3361 
3362 #ifndef PRODUCT
3363   if (C->print_intrinsics() || C->print_inlining()) {
3364     ciType* k = mirror_con->java_mirror_type();
3365     if (k) {
3366       tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id()));
3367       k->print_name();
3368       tty->cr();
3369     }
3370   }
3371 #endif
3372 
3373   // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive).
3374   RegionNode* region = new RegionNode(PATH_LIMIT);
3375   record_for_igvn(region);
3376   PhiNode* phi = new PhiNode(region, return_type);
3377 
3378   // The mirror will never be null of Reflection.getClassAccessFlags, however
3379   // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE
3380   // if it is. See bug 4774291.
3381 
3382   // For Reflection.getClassAccessFlags(), the null check occurs in
3383   // the wrong place; see inline_unsafe_access(), above, for a similar
3384   // situation.
3385   mirror = null_check(mirror);
3386   // If mirror or obj is dead, only null-path is taken.
3387   if (stopped())  return true;
3388 
3389   if (expect_prim)  never_see_null = false;  // expect nulls (meaning prims)
3390 
3391   // Now load the mirror's klass metaobject, and null-check it.
3392   // Side-effects region with the control path if the klass is null.
3393   Node* kls = load_klass_from_mirror(mirror, never_see_null, region, _prim_path);
3394   // If kls is null, we have a primitive mirror.
3395   phi->init_req(_prim_path, prim_return_value);
3396   if (stopped()) { set_result(region, phi); return true; }
3397   bool safe_for_replace = (region->in(_prim_path) == top());
3398 
3399   Node* p;  // handy temp
3400   Node* null_ctl;
3401 
3402   // Now that we have the non-null klass, we can perform the real query.
3403   // For constant classes, the query will constant-fold in LoadNode::Value.
3404   Node* query_value = top();
3405   switch (id) {
3406   case vmIntrinsics::_isInstance:
3407     // nothing is an instance of a primitive type
3408     query_value = gen_instanceof(obj, kls, safe_for_replace);
3409     break;
3410 
3411   case vmIntrinsics::_getModifiers:
3412     p = basic_plus_adr(kls, in_bytes(Klass::modifier_flags_offset()));
3413     query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered);
3414     break;
3415 
3416   case vmIntrinsics::_isInterface:
3417     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3418     if (generate_interface_guard(kls, region) != NULL)
3419       // A guard was added.  If the guard is taken, it was an interface.
3420       phi->add_req(intcon(1));
3421     // If we fall through, it's a plain class.
3422     query_value = intcon(0);
3423     break;
3424 
3425   case vmIntrinsics::_isArray:
3426     // (To verify this code sequence, check the asserts in JVM_IsArrayClass.)
3427     if (generate_array_guard(kls, region) != NULL)
3428       // A guard was added.  If the guard is taken, it was an array.
3429       phi->add_req(intcon(1));
3430     // If we fall through, it's a plain class.
3431     query_value = intcon(0);
3432     break;
3433 
3434   case vmIntrinsics::_isPrimitive:
3435     query_value = intcon(0); // "normal" path produces false
3436     break;
3437 
3438   case vmIntrinsics::_getSuperclass:
3439     // The rules here are somewhat unfortunate, but we can still do better
3440     // with random logic than with a JNI call.
3441     // Interfaces store null or Object as _super, but must report null.
3442     // Arrays store an intermediate super as _super, but must report Object.
3443     // Other types can report the actual _super.
3444     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3445     if (generate_interface_guard(kls, region) != NULL)
3446       // A guard was added.  If the guard is taken, it was an interface.
3447       phi->add_req(null());
3448     if (generate_array_guard(kls, region) != NULL)
3449       // A guard was added.  If the guard is taken, it was an array.
3450       phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror())));
3451     // If we fall through, it's a plain class.  Get its _super.
3452     p = basic_plus_adr(kls, in_bytes(Klass::super_offset()));
3453     kls = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeKlassPtr::OBJECT_OR_NULL));
3454     null_ctl = top();
3455     kls = null_check_oop(kls, &null_ctl);
3456     if (null_ctl != top()) {
3457       // If the guard is taken, Object.superClass is null (both klass and mirror).
3458       region->add_req(null_ctl);
3459       phi   ->add_req(null());
3460     }
3461     if (!stopped()) {
3462       query_value = load_mirror_from_klass(kls);
3463     }
3464     break;
3465 
3466   case vmIntrinsics::_getClassAccessFlags:
3467     p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3468     query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered);
3469     break;
3470 
3471   default:
3472     fatal_unexpected_iid(id);
3473     break;
3474   }
3475 
3476   // Fall-through is the normal case of a query to a real class.
3477   phi->init_req(1, query_value);
3478   region->init_req(1, control());
3479 
3480   C->set_has_split_ifs(true); // Has chance for split-if optimization
3481   set_result(region, phi);
3482   return true;
3483 }
3484 
3485 //-------------------------inline_Class_cast-------------------
3486 bool LibraryCallKit::inline_Class_cast() {
3487   Node* mirror = argument(0); // Class
3488   Node* obj    = argument(1);
3489   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
3490   if (mirror_con == NULL) {
3491     return false;  // dead path (mirror->is_top()).
3492   }
3493   if (obj == NULL || obj->is_top()) {
3494     return false;  // dead path
3495   }
3496   const TypeOopPtr* tp = _gvn.type(obj)->isa_oopptr();
3497 
3498   // First, see if Class.cast() can be folded statically.
3499   // java_mirror_type() returns non-null for compile-time Class constants.
3500   ciType* tm = mirror_con->java_mirror_type();
3501   if (tm != NULL && tm->is_klass() &&
3502       tp != NULL && tp->klass() != NULL) {
3503     if (!tp->klass()->is_loaded()) {
3504       // Don't use intrinsic when class is not loaded.
3505       return false;
3506     } else {
3507       int static_res = C->static_subtype_check(tm->as_klass(), tp->klass());
3508       if (static_res == Compile::SSC_always_true) {
3509         // isInstance() is true - fold the code.
3510         set_result(obj);
3511         return true;
3512       } else if (static_res == Compile::SSC_always_false) {
3513         // Don't use intrinsic, have to throw ClassCastException.
3514         // If the reference is null, the non-intrinsic bytecode will
3515         // be optimized appropriately.
3516         return false;
3517       }
3518     }
3519   }
3520 
3521   // Bailout intrinsic and do normal inlining if exception path is frequent.
3522   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
3523     return false;
3524   }
3525 
3526   // Generate dynamic checks.
3527   // Class.cast() is java implementation of _checkcast bytecode.
3528   // Do checkcast (Parse::do_checkcast()) optimizations here.
3529 
3530   mirror = null_check(mirror);
3531   // If mirror is dead, only null-path is taken.
3532   if (stopped()) {
3533     return true;
3534   }
3535 
3536   // Not-subtype or the mirror's klass ptr is NULL (in case it is a primitive).
3537   enum { _bad_type_path = 1, _prim_path = 2, PATH_LIMIT };
3538   RegionNode* region = new RegionNode(PATH_LIMIT);
3539   record_for_igvn(region);
3540 
3541   // Now load the mirror's klass metaobject, and null-check it.
3542   // If kls is null, we have a primitive mirror and
3543   // nothing is an instance of a primitive type.
3544   Node* kls = load_klass_from_mirror(mirror, false, region, _prim_path);
3545 
3546   Node* res = top();
3547   if (!stopped()) {
3548     Node* bad_type_ctrl = top();
3549     // Do checkcast optimizations.
3550     res = gen_checkcast(obj, kls, &bad_type_ctrl);
3551     region->init_req(_bad_type_path, bad_type_ctrl);
3552   }
3553   if (region->in(_prim_path) != top() ||
3554       region->in(_bad_type_path) != top()) {
3555     // Let Interpreter throw ClassCastException.
3556     PreserveJVMState pjvms(this);
3557     set_control(_gvn.transform(region));
3558     uncommon_trap(Deoptimization::Reason_intrinsic,
3559                   Deoptimization::Action_maybe_recompile);
3560   }
3561   if (!stopped()) {
3562     set_result(res);
3563   }
3564   return true;
3565 }
3566 
3567 
3568 //--------------------------inline_native_subtype_check------------------------
3569 // This intrinsic takes the JNI calls out of the heart of
3570 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
3571 bool LibraryCallKit::inline_native_subtype_check() {
3572   // Pull both arguments off the stack.
3573   Node* args[2];                // two java.lang.Class mirrors: superc, subc
3574   args[0] = argument(0);
3575   args[1] = argument(1);
3576   Node* klasses[2];             // corresponding Klasses: superk, subk
3577   klasses[0] = klasses[1] = top();
3578 
3579   enum {
3580     // A full decision tree on {superc is prim, subc is prim}:
3581     _prim_0_path = 1,           // {P,N} => false
3582                                 // {P,P} & superc!=subc => false
3583     _prim_same_path,            // {P,P} & superc==subc => true
3584     _prim_1_path,               // {N,P} => false
3585     _ref_subtype_path,          // {N,N} & subtype check wins => true
3586     _both_ref_path,             // {N,N} & subtype check loses => false
3587     PATH_LIMIT
3588   };
3589 
3590   RegionNode* region = new RegionNode(PATH_LIMIT);
3591   Node*       phi    = new PhiNode(region, TypeInt::BOOL);
3592   record_for_igvn(region);
3593 
3594   const TypePtr* adr_type = TypeRawPtr::BOTTOM;   // memory type of loads
3595   const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL;
3596   int class_klass_offset = java_lang_Class::klass_offset_in_bytes();
3597 
3598   // First null-check both mirrors and load each mirror's klass metaobject.
3599   int which_arg;
3600   for (which_arg = 0; which_arg <= 1; which_arg++) {
3601     Node* arg = args[which_arg];
3602     arg = null_check(arg);
3603     if (stopped())  break;
3604     args[which_arg] = arg;
3605 
3606     Node* p = basic_plus_adr(arg, class_klass_offset);
3607     Node* kls = LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, adr_type, kls_type);
3608     klasses[which_arg] = _gvn.transform(kls);
3609   }
3610 
3611   // Having loaded both klasses, test each for null.
3612   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3613   for (which_arg = 0; which_arg <= 1; which_arg++) {
3614     Node* kls = klasses[which_arg];
3615     Node* null_ctl = top();
3616     kls = null_check_oop(kls, &null_ctl, never_see_null);
3617     int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
3618     region->init_req(prim_path, null_ctl);
3619     if (stopped())  break;
3620     klasses[which_arg] = kls;
3621   }
3622 
3623   if (!stopped()) {
3624     // now we have two reference types, in klasses[0..1]
3625     Node* subk   = klasses[1];  // the argument to isAssignableFrom
3626     Node* superk = klasses[0];  // the receiver
3627     region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
3628     // now we have a successful reference subtype check
3629     region->set_req(_ref_subtype_path, control());
3630   }
3631 
3632   // If both operands are primitive (both klasses null), then
3633   // we must return true when they are identical primitives.
3634   // It is convenient to test this after the first null klass check.
3635   set_control(region->in(_prim_0_path)); // go back to first null check
3636   if (!stopped()) {
3637     // Since superc is primitive, make a guard for the superc==subc case.
3638     Node* cmp_eq = _gvn.transform(new CmpPNode(args[0], args[1]));
3639     Node* bol_eq = _gvn.transform(new BoolNode(cmp_eq, BoolTest::eq));
3640     generate_guard(bol_eq, region, PROB_FAIR);
3641     if (region->req() == PATH_LIMIT+1) {
3642       // A guard was added.  If the added guard is taken, superc==subc.
3643       region->swap_edges(PATH_LIMIT, _prim_same_path);
3644       region->del_req(PATH_LIMIT);
3645     }
3646     region->set_req(_prim_0_path, control()); // Not equal after all.
3647   }
3648 
3649   // these are the only paths that produce 'true':
3650   phi->set_req(_prim_same_path,   intcon(1));
3651   phi->set_req(_ref_subtype_path, intcon(1));
3652 
3653   // pull together the cases:
3654   assert(region->req() == PATH_LIMIT, "sane region");
3655   for (uint i = 1; i < region->req(); i++) {
3656     Node* ctl = region->in(i);
3657     if (ctl == NULL || ctl == top()) {
3658       region->set_req(i, top());
3659       phi   ->set_req(i, top());
3660     } else if (phi->in(i) == NULL) {
3661       phi->set_req(i, intcon(0)); // all other paths produce 'false'
3662     }
3663   }
3664 
3665   set_control(_gvn.transform(region));
3666   set_result(_gvn.transform(phi));
3667   return true;
3668 }
3669 
3670 //---------------------generate_array_guard_common------------------------
3671 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
3672                                                   bool obj_array, bool not_array) {
3673 
3674   if (stopped()) {
3675     return NULL;
3676   }
3677 
3678   // If obj_array/non_array==false/false:
3679   // Branch around if the given klass is in fact an array (either obj or prim).
3680   // If obj_array/non_array==false/true:
3681   // Branch around if the given klass is not an array klass of any kind.
3682   // If obj_array/non_array==true/true:
3683   // Branch around if the kls is not an oop array (kls is int[], String, etc.)
3684   // If obj_array/non_array==true/false:
3685   // Branch around if the kls is an oop array (Object[] or subtype)
3686   //
3687   // Like generate_guard, adds a new path onto the region.
3688   jint  layout_con = 0;
3689   Node* layout_val = get_layout_helper(kls, layout_con);
3690   if (layout_val == NULL) {
3691     bool query = (obj_array
3692                   ? Klass::layout_helper_is_objArray(layout_con)
3693                   : Klass::layout_helper_is_array(layout_con));
3694     if (query == not_array) {
3695       return NULL;                       // never a branch
3696     } else {                             // always a branch
3697       Node* always_branch = control();
3698       if (region != NULL)
3699         region->add_req(always_branch);
3700       set_control(top());
3701       return always_branch;
3702     }
3703   }
3704   // Now test the correct condition.
3705   jint  nval = (obj_array
3706                 ? (jint)(Klass::_lh_array_tag_type_value
3707                    <<    Klass::_lh_array_tag_shift)
3708                 : Klass::_lh_neutral_value);
3709   Node* cmp = _gvn.transform(new CmpINode(layout_val, intcon(nval)));
3710   BoolTest::mask btest = BoolTest::lt;  // correct for testing is_[obj]array
3711   // invert the test if we are looking for a non-array
3712   if (not_array)  btest = BoolTest(btest).negate();
3713   Node* bol = _gvn.transform(new BoolNode(cmp, btest));
3714   return generate_fair_guard(bol, region);
3715 }
3716 
3717 
3718 //-----------------------inline_native_newArray--------------------------
3719 // private static native Object java.lang.reflect.newArray(Class<?> componentType, int length);
3720 // private        native Object Unsafe.allocateUninitializedArray0(Class<?> cls, int size);
3721 bool LibraryCallKit::inline_unsafe_newArray(bool uninitialized) {
3722   Node* mirror;
3723   Node* count_val;
3724   if (uninitialized) {
3725     mirror    = argument(1);
3726     count_val = argument(2);
3727   } else {
3728     mirror    = argument(0);
3729     count_val = argument(1);
3730   }
3731 
3732   mirror = null_check(mirror);
3733   // If mirror or obj is dead, only null-path is taken.
3734   if (stopped())  return true;
3735 
3736   enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
3737   RegionNode* result_reg = new RegionNode(PATH_LIMIT);
3738   PhiNode*    result_val = new PhiNode(result_reg, TypeInstPtr::NOTNULL);
3739   PhiNode*    result_io  = new PhiNode(result_reg, Type::ABIO);
3740   PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
3741 
3742   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3743   Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null,
3744                                                   result_reg, _slow_path);
3745   Node* normal_ctl   = control();
3746   Node* no_array_ctl = result_reg->in(_slow_path);
3747 
3748   // Generate code for the slow case.  We make a call to newArray().
3749   set_control(no_array_ctl);
3750   if (!stopped()) {
3751     // Either the input type is void.class, or else the
3752     // array klass has not yet been cached.  Either the
3753     // ensuing call will throw an exception, or else it
3754     // will cache the array klass for next time.
3755     PreserveJVMState pjvms(this);
3756     CallJavaNode* slow_call = generate_method_call_static(vmIntrinsics::_newArray);
3757     Node* slow_result = set_results_for_java_call(slow_call);
3758     // this->control() comes from set_results_for_java_call
3759     result_reg->set_req(_slow_path, control());
3760     result_val->set_req(_slow_path, slow_result);
3761     result_io ->set_req(_slow_path, i_o());
3762     result_mem->set_req(_slow_path, reset_memory());
3763   }
3764 
3765   set_control(normal_ctl);
3766   if (!stopped()) {
3767     // Normal case:  The array type has been cached in the java.lang.Class.
3768     // The following call works fine even if the array type is polymorphic.
3769     // It could be a dynamic mix of int[], boolean[], Object[], etc.
3770     Node* obj = new_array(klass_node, count_val, 0);  // no arguments to push
3771     result_reg->init_req(_normal_path, control());
3772     result_val->init_req(_normal_path, obj);
3773     result_io ->init_req(_normal_path, i_o());
3774     result_mem->init_req(_normal_path, reset_memory());
3775 
3776     if (uninitialized) {
3777       // Mark the allocation so that zeroing is skipped
3778       AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(obj, &_gvn);
3779       alloc->maybe_set_complete(&_gvn);
3780     }
3781   }
3782 
3783   // Return the combined state.
3784   set_i_o(        _gvn.transform(result_io)  );
3785   set_all_memory( _gvn.transform(result_mem));
3786 
3787   C->set_has_split_ifs(true); // Has chance for split-if optimization
3788   set_result(result_reg, result_val);
3789   return true;
3790 }
3791 
3792 //----------------------inline_native_getLength--------------------------
3793 // public static native int java.lang.reflect.Array.getLength(Object array);
3794 bool LibraryCallKit::inline_native_getLength() {
3795   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3796 
3797   Node* array = null_check(argument(0));
3798   // If array is dead, only null-path is taken.
3799   if (stopped())  return true;
3800 
3801   // Deoptimize if it is a non-array.
3802   Node* non_array = generate_non_array_guard(load_object_klass(array), NULL);
3803 
3804   if (non_array != NULL) {
3805     PreserveJVMState pjvms(this);
3806     set_control(non_array);
3807     uncommon_trap(Deoptimization::Reason_intrinsic,
3808                   Deoptimization::Action_maybe_recompile);
3809   }
3810 
3811   // If control is dead, only non-array-path is taken.
3812   if (stopped())  return true;
3813 
3814   // The works fine even if the array type is polymorphic.
3815   // It could be a dynamic mix of int[], boolean[], Object[], etc.
3816   Node* result = load_array_length(array);
3817 
3818   C->set_has_split_ifs(true);  // Has chance for split-if optimization
3819   set_result(result);
3820   return true;
3821 }
3822 
3823 //------------------------inline_array_copyOf----------------------------
3824 // public static <T,U> T[] java.util.Arrays.copyOf(     U[] original, int newLength,         Class<? extends T[]> newType);
3825 // public static <T,U> T[] java.util.Arrays.copyOfRange(U[] original, int from,      int to, Class<? extends T[]> newType);
3826 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) {
3827   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3828 
3829   // Get the arguments.
3830   Node* original          = argument(0);
3831   Node* start             = is_copyOfRange? argument(1): intcon(0);
3832   Node* end               = is_copyOfRange? argument(2): argument(1);
3833   Node* array_type_mirror = is_copyOfRange? argument(3): argument(2);
3834 
3835   Node* newcopy = NULL;
3836 
3837   // Set the original stack and the reexecute bit for the interpreter to reexecute
3838   // the bytecode that invokes Arrays.copyOf if deoptimization happens.
3839   { PreserveReexecuteState preexecs(this);
3840     jvms()->set_should_reexecute(true);
3841 
3842     array_type_mirror = null_check(array_type_mirror);
3843     original          = null_check(original);
3844 
3845     // Check if a null path was taken unconditionally.
3846     if (stopped())  return true;
3847 
3848     Node* orig_length = load_array_length(original);
3849 
3850     Node* klass_node = load_klass_from_mirror(array_type_mirror, false, NULL, 0);
3851     klass_node = null_check(klass_node);
3852 
3853     RegionNode* bailout = new RegionNode(1);
3854     record_for_igvn(bailout);
3855 
3856     // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
3857     // Bail out if that is so.
3858     Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);
3859     if (not_objArray != NULL) {
3860       // Improve the klass node's type from the new optimistic assumption:
3861       ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
3862       const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
3863       Node* cast = new CastPPNode(klass_node, akls);
3864       cast->init_req(0, control());
3865       klass_node = _gvn.transform(cast);
3866     }
3867 
3868     // Bail out if either start or end is negative.
3869     generate_negative_guard(start, bailout, &start);
3870     generate_negative_guard(end,   bailout, &end);
3871 
3872     Node* length = end;
3873     if (_gvn.type(start) != TypeInt::ZERO) {
3874       length = _gvn.transform(new SubINode(end, start));
3875     }
3876 
3877     // Bail out if length is negative.
3878     // Without this the new_array would throw
3879     // NegativeArraySizeException but IllegalArgumentException is what
3880     // should be thrown
3881     generate_negative_guard(length, bailout, &length);
3882 
3883     if (bailout->req() > 1) {
3884       PreserveJVMState pjvms(this);
3885       set_control(_gvn.transform(bailout));
3886       uncommon_trap(Deoptimization::Reason_intrinsic,
3887                     Deoptimization::Action_maybe_recompile);
3888     }
3889 
3890     if (!stopped()) {
3891       // How many elements will we copy from the original?
3892       // The answer is MinI(orig_length - start, length).
3893       Node* orig_tail = _gvn.transform(new SubINode(orig_length, start));
3894       Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length);
3895 
3896       // Generate a direct call to the right arraycopy function(s).
3897       // We know the copy is disjoint but we might not know if the
3898       // oop stores need checking.
3899       // Extreme case:  Arrays.copyOf((Integer[])x, 10, String[].class).
3900       // This will fail a store-check if x contains any non-nulls.
3901 
3902       // ArrayCopyNode:Ideal may transform the ArrayCopyNode to
3903       // loads/stores but it is legal only if we're sure the
3904       // Arrays.copyOf would succeed. So we need all input arguments
3905       // to the copyOf to be validated, including that the copy to the
3906       // new array won't trigger an ArrayStoreException. That subtype
3907       // check can be optimized if we know something on the type of
3908       // the input array from type speculation.
3909       if (_gvn.type(klass_node)->singleton()) {
3910         ciKlass* subk   = _gvn.type(load_object_klass(original))->is_klassptr()->klass();
3911         ciKlass* superk = _gvn.type(klass_node)->is_klassptr()->klass();
3912 
3913         int test = C->static_subtype_check(superk, subk);
3914         if (test != Compile::SSC_always_true && test != Compile::SSC_always_false) {
3915           const TypeOopPtr* t_original = _gvn.type(original)->is_oopptr();
3916           if (t_original->speculative_type() != NULL) {
3917             original = maybe_cast_profiled_obj(original, t_original->speculative_type(), true);
3918           }
3919         }
3920       }
3921 
3922       bool validated = false;
3923       // Reason_class_check rather than Reason_intrinsic because we
3924       // want to intrinsify even if this traps.
3925       if (!too_many_traps(Deoptimization::Reason_class_check)) {
3926         Node* not_subtype_ctrl = gen_subtype_check(load_object_klass(original),
3927                                                    klass_node);
3928 
3929         if (not_subtype_ctrl != top()) {
3930           PreserveJVMState pjvms(this);
3931           set_control(not_subtype_ctrl);
3932           uncommon_trap(Deoptimization::Reason_class_check,
3933                         Deoptimization::Action_make_not_entrant);
3934           assert(stopped(), "Should be stopped");
3935         }
3936         validated = true;
3937       }
3938 
3939       if (!stopped()) {
3940         newcopy = new_array(klass_node, length, 0);  // no arguments to push
3941 
3942         ArrayCopyNode* ac = ArrayCopyNode::make(this, true, original, start, newcopy, intcon(0), moved, true,
3943                                                 load_object_klass(original), klass_node);
3944         if (!is_copyOfRange) {
3945           ac->set_copyof(validated);
3946         } else {
3947           ac->set_copyofrange(validated);
3948         }
3949         Node* n = _gvn.transform(ac);
3950         if (n == ac) {
3951           ac->connect_outputs(this);
3952         } else {
3953           assert(validated, "shouldn't transform if all arguments not validated");
3954           set_all_memory(n);
3955         }
3956       }
3957     }
3958   } // original reexecute is set back here
3959 
3960   C->set_has_split_ifs(true); // Has chance for split-if optimization
3961   if (!stopped()) {
3962     set_result(newcopy);
3963   }
3964   return true;
3965 }
3966 
3967 
3968 //----------------------generate_virtual_guard---------------------------
3969 // Helper for hashCode and clone.  Peeks inside the vtable to avoid a call.
3970 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass,
3971                                              RegionNode* slow_region) {
3972   ciMethod* method = callee();
3973   int vtable_index = method->vtable_index();
3974   assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
3975          "bad index %d", vtable_index);
3976   // Get the Method* out of the appropriate vtable entry.
3977   int entry_offset  = in_bytes(Klass::vtable_start_offset()) +
3978                      vtable_index*vtableEntry::size_in_bytes() +
3979                      vtableEntry::method_offset_in_bytes();
3980   Node* entry_addr  = basic_plus_adr(obj_klass, entry_offset);
3981   Node* target_call = make_load(NULL, entry_addr, TypePtr::NOTNULL, T_ADDRESS, MemNode::unordered);
3982 
3983   // Compare the target method with the expected method (e.g., Object.hashCode).
3984   const TypePtr* native_call_addr = TypeMetadataPtr::make(method);
3985 
3986   Node* native_call = makecon(native_call_addr);
3987   Node* chk_native  = _gvn.transform(new CmpPNode(target_call, native_call));
3988   Node* test_native = _gvn.transform(new BoolNode(chk_native, BoolTest::ne));
3989 
3990   return generate_slow_guard(test_native, slow_region);
3991 }
3992 
3993 //-----------------------generate_method_call----------------------------
3994 // Use generate_method_call to make a slow-call to the real
3995 // method if the fast path fails.  An alternative would be to
3996 // use a stub like OptoRuntime::slow_arraycopy_Java.
3997 // This only works for expanding the current library call,
3998 // not another intrinsic.  (E.g., don't use this for making an
3999 // arraycopy call inside of the copyOf intrinsic.)
4000 CallJavaNode*
4001 LibraryCallKit::generate_method_call(vmIntrinsics::ID method_id, bool is_virtual, bool is_static) {
4002   // When compiling the intrinsic method itself, do not use this technique.
4003   guarantee(callee() != C->method(), "cannot make slow-call to self");
4004 
4005   ciMethod* method = callee();
4006   // ensure the JVMS we have will be correct for this call
4007   guarantee(method_id == method->intrinsic_id(), "must match");
4008 
4009   const TypeFunc* tf = TypeFunc::make(method);
4010   CallJavaNode* slow_call;
4011   if (is_static) {
4012     assert(!is_virtual, "");
4013     slow_call = new CallStaticJavaNode(C, tf,
4014                            SharedRuntime::get_resolve_static_call_stub(),
4015                            method, bci());
4016   } else if (is_virtual) {
4017     null_check_receiver();
4018     int vtable_index = Method::invalid_vtable_index;
4019     if (UseInlineCaches) {
4020       // Suppress the vtable call
4021     } else {
4022       // hashCode and clone are not a miranda methods,
4023       // so the vtable index is fixed.
4024       // No need to use the linkResolver to get it.
4025        vtable_index = method->vtable_index();
4026        assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
4027               "bad index %d", vtable_index);
4028     }
4029     slow_call = new CallDynamicJavaNode(tf,
4030                           SharedRuntime::get_resolve_virtual_call_stub(),
4031                           method, vtable_index, bci());
4032   } else {  // neither virtual nor static:  opt_virtual
4033     null_check_receiver();
4034     slow_call = new CallStaticJavaNode(C, tf,
4035                                 SharedRuntime::get_resolve_opt_virtual_call_stub(),
4036                                 method, bci());
4037     slow_call->set_optimized_virtual(true);
4038   }
4039   set_arguments_for_java_call(slow_call);
4040   set_edges_for_java_call(slow_call);
4041   return slow_call;
4042 }
4043 
4044 
4045 /**
4046  * Build special case code for calls to hashCode on an object. This call may
4047  * be virtual (invokevirtual) or bound (invokespecial). For each case we generate
4048  * slightly different code.
4049  */
4050 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
4051   assert(is_static == callee()->is_static(), "correct intrinsic selection");
4052   assert(!(is_virtual && is_static), "either virtual, special, or static");
4053 
4054   enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
4055 
4056   RegionNode* result_reg = new RegionNode(PATH_LIMIT);
4057   PhiNode*    result_val = new PhiNode(result_reg, TypeInt::INT);
4058   PhiNode*    result_io  = new PhiNode(result_reg, Type::ABIO);
4059   PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
4060   Node* obj = NULL;
4061   if (!is_static) {
4062     // Check for hashing null object
4063     obj = null_check_receiver();
4064     if (stopped())  return true;        // unconditionally null
4065     result_reg->init_req(_null_path, top());
4066     result_val->init_req(_null_path, top());
4067   } else {
4068     // Do a null check, and return zero if null.
4069     // System.identityHashCode(null) == 0
4070     obj = argument(0);
4071     Node* null_ctl = top();
4072     obj = null_check_oop(obj, &null_ctl);
4073     result_reg->init_req(_null_path, null_ctl);
4074     result_val->init_req(_null_path, _gvn.intcon(0));
4075   }
4076 
4077   // Unconditionally null?  Then return right away.
4078   if (stopped()) {
4079     set_control( result_reg->in(_null_path));
4080     if (!stopped())
4081       set_result(result_val->in(_null_path));
4082     return true;
4083   }
4084 
4085   // We only go to the fast case code if we pass a number of guards.  The
4086   // paths which do not pass are accumulated in the slow_region.
4087   RegionNode* slow_region = new RegionNode(1);
4088   record_for_igvn(slow_region);
4089 
4090   // If this is a virtual call, we generate a funny guard.  We pull out
4091   // the vtable entry corresponding to hashCode() from the target object.
4092   // If the target method which we are calling happens to be the native
4093   // Object hashCode() method, we pass the guard.  We do not need this
4094   // guard for non-virtual calls -- the caller is known to be the native
4095   // Object hashCode().
4096   if (is_virtual) {
4097     // After null check, get the object's klass.
4098     Node* obj_klass = load_object_klass(obj);
4099     generate_virtual_guard(obj_klass, slow_region);
4100   }
4101 
4102   // Get the header out of the object, use LoadMarkNode when available
4103   Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
4104   // The control of the load must be NULL. Otherwise, the load can move before
4105   // the null check after castPP removal.
4106   Node* no_ctrl = NULL;
4107   Node* header = make_load(no_ctrl, header_addr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered);
4108 
4109   // Test the header to see if it is unlocked.
4110   Node *lock_mask      = _gvn.MakeConX(markOopDesc::biased_lock_mask_in_place);
4111   Node *lmasked_header = _gvn.transform(new AndXNode(header, lock_mask));
4112   Node *unlocked_val   = _gvn.MakeConX(markOopDesc::unlocked_value);
4113   Node *chk_unlocked   = _gvn.transform(new CmpXNode( lmasked_header, unlocked_val));
4114   Node *test_unlocked  = _gvn.transform(new BoolNode( chk_unlocked, BoolTest::ne));
4115 
4116   generate_slow_guard(test_unlocked, slow_region);
4117 
4118   // Get the hash value and check to see that it has been properly assigned.
4119   // We depend on hash_mask being at most 32 bits and avoid the use of
4120   // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
4121   // vm: see markOop.hpp.
4122   Node *hash_mask      = _gvn.intcon(markOopDesc::hash_mask);
4123   Node *hash_shift     = _gvn.intcon(markOopDesc::hash_shift);
4124   Node *hshifted_header= _gvn.transform(new URShiftXNode(header, hash_shift));
4125   // This hack lets the hash bits live anywhere in the mark object now, as long
4126   // as the shift drops the relevant bits into the low 32 bits.  Note that
4127   // Java spec says that HashCode is an int so there's no point in capturing
4128   // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build).
4129   hshifted_header      = ConvX2I(hshifted_header);
4130   Node *hash_val       = _gvn.transform(new AndINode(hshifted_header, hash_mask));
4131 
4132   Node *no_hash_val    = _gvn.intcon(markOopDesc::no_hash);
4133   Node *chk_assigned   = _gvn.transform(new CmpINode( hash_val, no_hash_val));
4134   Node *test_assigned  = _gvn.transform(new BoolNode( chk_assigned, BoolTest::eq));
4135 
4136   generate_slow_guard(test_assigned, slow_region);
4137 
4138   Node* init_mem = reset_memory();
4139   // fill in the rest of the null path:
4140   result_io ->init_req(_null_path, i_o());
4141   result_mem->init_req(_null_path, init_mem);
4142 
4143   result_val->init_req(_fast_path, hash_val);
4144   result_reg->init_req(_fast_path, control());
4145   result_io ->init_req(_fast_path, i_o());
4146   result_mem->init_req(_fast_path, init_mem);
4147 
4148   // Generate code for the slow case.  We make a call to hashCode().
4149   set_control(_gvn.transform(slow_region));
4150   if (!stopped()) {
4151     // No need for PreserveJVMState, because we're using up the present state.
4152     set_all_memory(init_mem);
4153     vmIntrinsics::ID hashCode_id = is_static ? vmIntrinsics::_identityHashCode : vmIntrinsics::_hashCode;
4154     CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static);
4155     Node* slow_result = set_results_for_java_call(slow_call);
4156     // this->control() comes from set_results_for_java_call
4157     result_reg->init_req(_slow_path, control());
4158     result_val->init_req(_slow_path, slow_result);
4159     result_io  ->set_req(_slow_path, i_o());
4160     result_mem ->set_req(_slow_path, reset_memory());
4161   }
4162 
4163   // Return the combined state.
4164   set_i_o(        _gvn.transform(result_io)  );
4165   set_all_memory( _gvn.transform(result_mem));
4166 
4167   set_result(result_reg, result_val);
4168   return true;
4169 }
4170 
4171 //---------------------------inline_native_getClass----------------------------
4172 // public final native Class<?> java.lang.Object.getClass();
4173 //
4174 // Build special case code for calls to getClass on an object.
4175 bool LibraryCallKit::inline_native_getClass() {
4176   Node* obj = null_check_receiver();
4177   if (stopped())  return true;
4178   set_result(load_mirror_from_klass(load_object_klass(obj)));
4179   return true;
4180 }
4181 
4182 //-----------------inline_native_Reflection_getCallerClass---------------------
4183 // public static native Class<?> sun.reflect.Reflection.getCallerClass();
4184 //
4185 // In the presence of deep enough inlining, getCallerClass() becomes a no-op.
4186 //
4187 // NOTE: This code must perform the same logic as JVM_GetCallerClass
4188 // in that it must skip particular security frames and checks for
4189 // caller sensitive methods.
4190 bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
4191 #ifndef PRODUCT
4192   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4193     tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
4194   }
4195 #endif
4196 
4197   if (!jvms()->has_method()) {
4198 #ifndef PRODUCT
4199     if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4200       tty->print_cr("  Bailing out because intrinsic was inlined at top level");
4201     }
4202 #endif
4203     return false;
4204   }
4205 
4206   // Walk back up the JVM state to find the caller at the required
4207   // depth.
4208   JVMState* caller_jvms = jvms();
4209 
4210   // Cf. JVM_GetCallerClass
4211   // NOTE: Start the loop at depth 1 because the current JVM state does
4212   // not include the Reflection.getCallerClass() frame.
4213   for (int n = 1; caller_jvms != NULL; caller_jvms = caller_jvms->caller(), n++) {
4214     ciMethod* m = caller_jvms->method();
4215     switch (n) {
4216     case 0:
4217       fatal("current JVM state does not include the Reflection.getCallerClass frame");
4218       break;
4219     case 1:
4220       // Frame 0 and 1 must be caller sensitive (see JVM_GetCallerClass).
4221       if (!m->caller_sensitive()) {
4222 #ifndef PRODUCT
4223         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4224           tty->print_cr("  Bailing out: CallerSensitive annotation expected at frame %d", n);
4225         }
4226 #endif
4227         return false;  // bail-out; let JVM_GetCallerClass do the work
4228       }
4229       break;
4230     default:
4231       if (!m->is_ignored_by_security_stack_walk()) {
4232         // We have reached the desired frame; return the holder class.
4233         // Acquire method holder as java.lang.Class and push as constant.
4234         ciInstanceKlass* caller_klass = caller_jvms->method()->holder();
4235         ciInstance* caller_mirror = caller_klass->java_mirror();
4236         set_result(makecon(TypeInstPtr::make(caller_mirror)));
4237 
4238 #ifndef PRODUCT
4239         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4240           tty->print_cr("  Succeeded: caller = %d) %s.%s, JVMS depth = %d", n, caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), jvms()->depth());
4241           tty->print_cr("  JVM state at this point:");
4242           for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
4243             ciMethod* m = jvms()->of_depth(i)->method();
4244             tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
4245           }
4246         }
4247 #endif
4248         return true;
4249       }
4250       break;
4251     }
4252   }
4253 
4254 #ifndef PRODUCT
4255   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4256     tty->print_cr("  Bailing out because caller depth exceeded inlining depth = %d", jvms()->depth());
4257     tty->print_cr("  JVM state at this point:");
4258     for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
4259       ciMethod* m = jvms()->of_depth(i)->method();
4260       tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
4261     }
4262   }
4263 #endif
4264 
4265   return false;  // bail-out; let JVM_GetCallerClass do the work
4266 }
4267 
4268 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) {
4269   Node* arg = argument(0);
4270   Node* result = NULL;
4271 
4272   switch (id) {
4273   case vmIntrinsics::_floatToRawIntBits:    result = new MoveF2INode(arg);  break;
4274   case vmIntrinsics::_intBitsToFloat:       result = new MoveI2FNode(arg);  break;
4275   case vmIntrinsics::_doubleToRawLongBits:  result = new MoveD2LNode(arg);  break;
4276   case vmIntrinsics::_longBitsToDouble:     result = new MoveL2DNode(arg);  break;
4277 
4278   case vmIntrinsics::_doubleToLongBits: {
4279     // two paths (plus control) merge in a wood
4280     RegionNode *r = new RegionNode(3);
4281     Node *phi = new PhiNode(r, TypeLong::LONG);
4282 
4283     Node *cmpisnan = _gvn.transform(new CmpDNode(arg, arg));
4284     // Build the boolean node
4285     Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne));
4286 
4287     // Branch either way.
4288     // NaN case is less traveled, which makes all the difference.
4289     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4290     Node *opt_isnan = _gvn.transform(ifisnan);
4291     assert( opt_isnan->is_If(), "Expect an IfNode");
4292     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4293     Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan));
4294 
4295     set_control(iftrue);
4296 
4297     static const jlong nan_bits = CONST64(0x7ff8000000000000);
4298     Node *slow_result = longcon(nan_bits); // return NaN
4299     phi->init_req(1, _gvn.transform( slow_result ));
4300     r->init_req(1, iftrue);
4301 
4302     // Else fall through
4303     Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan));
4304     set_control(iffalse);
4305 
4306     phi->init_req(2, _gvn.transform(new MoveD2LNode(arg)));
4307     r->init_req(2, iffalse);
4308 
4309     // Post merge
4310     set_control(_gvn.transform(r));
4311     record_for_igvn(r);
4312 
4313     C->set_has_split_ifs(true); // Has chance for split-if optimization
4314     result = phi;
4315     assert(result->bottom_type()->isa_long(), "must be");
4316     break;
4317   }
4318 
4319   case vmIntrinsics::_floatToIntBits: {
4320     // two paths (plus control) merge in a wood
4321     RegionNode *r = new RegionNode(3);
4322     Node *phi = new PhiNode(r, TypeInt::INT);
4323 
4324     Node *cmpisnan = _gvn.transform(new CmpFNode(arg, arg));
4325     // Build the boolean node
4326     Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne));
4327 
4328     // Branch either way.
4329     // NaN case is less traveled, which makes all the difference.
4330     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4331     Node *opt_isnan = _gvn.transform(ifisnan);
4332     assert( opt_isnan->is_If(), "Expect an IfNode");
4333     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4334     Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan));
4335 
4336     set_control(iftrue);
4337 
4338     static const jint nan_bits = 0x7fc00000;
4339     Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN
4340     phi->init_req(1, _gvn.transform( slow_result ));
4341     r->init_req(1, iftrue);
4342 
4343     // Else fall through
4344     Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan));
4345     set_control(iffalse);
4346 
4347     phi->init_req(2, _gvn.transform(new MoveF2INode(arg)));
4348     r->init_req(2, iffalse);
4349 
4350     // Post merge
4351     set_control(_gvn.transform(r));
4352     record_for_igvn(r);
4353 
4354     C->set_has_split_ifs(true); // Has chance for split-if optimization
4355     result = phi;
4356     assert(result->bottom_type()->isa_int(), "must be");
4357     break;
4358   }
4359 
4360   default:
4361     fatal_unexpected_iid(id);
4362     break;
4363   }
4364   set_result(_gvn.transform(result));
4365   return true;
4366 }
4367 
4368 //----------------------inline_unsafe_copyMemory-------------------------
4369 // public native void Unsafe.copyMemory0(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes);
4370 bool LibraryCallKit::inline_unsafe_copyMemory() {
4371   if (callee()->is_static())  return false;  // caller must have the capability!
4372   null_check_receiver();  // null-check receiver
4373   if (stopped())  return true;
4374 
4375   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
4376 
4377   Node* src_ptr =         argument(1);   // type: oop
4378   Node* src_off = ConvL2X(argument(2));  // type: long
4379   Node* dst_ptr =         argument(4);   // type: oop
4380   Node* dst_off = ConvL2X(argument(5));  // type: long
4381   Node* size    = ConvL2X(argument(7));  // type: long
4382 
4383   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
4384          "fieldOffset must be byte-scaled");
4385 
4386   Node* src = make_unsafe_address(src_ptr, src_off);
4387   Node* dst = make_unsafe_address(dst_ptr, dst_off);
4388 
4389   // Conservatively insert a memory barrier on all memory slices.
4390   // Do not let writes of the copy source or destination float below the copy.
4391   insert_mem_bar(Op_MemBarCPUOrder);
4392 
4393   // Call it.  Note that the length argument is not scaled.
4394   make_runtime_call(RC_LEAF|RC_NO_FP,
4395                     OptoRuntime::fast_arraycopy_Type(),
4396                     StubRoutines::unsafe_arraycopy(),
4397                     "unsafe_arraycopy",
4398                     TypeRawPtr::BOTTOM,
4399                     src, dst, size XTOP);
4400 
4401   // Do not let reads of the copy destination float above the copy.
4402   insert_mem_bar(Op_MemBarCPUOrder);
4403 
4404   return true;
4405 }
4406 
4407 //------------------------clone_coping-----------------------------------
4408 // Helper function for inline_native_clone.
4409 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark) {
4410   assert(obj_size != NULL, "");
4411   Node* raw_obj = alloc_obj->in(1);
4412   assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
4413 
4414   AllocateNode* alloc = NULL;
4415   if (ReduceBulkZeroing) {
4416     // We will be completely responsible for initializing this object -
4417     // mark Initialize node as complete.
4418     alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn);
4419     // The object was just allocated - there should be no any stores!
4420     guarantee(alloc != NULL && alloc->maybe_set_complete(&_gvn), "");
4421     // Mark as complete_with_arraycopy so that on AllocateNode
4422     // expansion, we know this AllocateNode is initialized by an array
4423     // copy and a StoreStore barrier exists after the array copy.
4424     alloc->initialization()->set_complete_with_arraycopy();
4425   }
4426 
4427   // Copy the fastest available way.
4428   // TODO: generate fields copies for small objects instead.
4429   Node* src  = obj;
4430   Node* dest = alloc_obj;
4431   Node* size = _gvn.transform(obj_size);
4432 
4433   // Exclude the header but include array length to copy by 8 bytes words.
4434   // Can't use base_offset_in_bytes(bt) since basic type is unknown.
4435   int base_off = is_array ? arrayOopDesc::length_offset_in_bytes() :
4436                             instanceOopDesc::base_offset_in_bytes();
4437   // base_off:
4438   // 8  - 32-bit VM
4439   // 12 - 64-bit VM, compressed klass
4440   // 16 - 64-bit VM, normal klass
4441   if (base_off % BytesPerLong != 0) {
4442     assert(UseCompressedClassPointers, "");
4443     if (is_array) {
4444       // Exclude length to copy by 8 bytes words.
4445       base_off += sizeof(int);
4446     } else {
4447       // Include klass to copy by 8 bytes words.
4448       base_off = instanceOopDesc::klass_offset_in_bytes();
4449     }
4450     assert(base_off % BytesPerLong == 0, "expect 8 bytes alignment");
4451   }
4452   src  = basic_plus_adr(src,  base_off);
4453   dest = basic_plus_adr(dest, base_off);
4454 
4455   // Compute the length also, if needed:
4456   Node* countx = size;
4457   countx = _gvn.transform(new SubXNode(countx, MakeConX(base_off)));
4458   countx = _gvn.transform(new URShiftXNode(countx, intcon(LogBytesPerLong) ));
4459 
4460   const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
4461 
4462   ArrayCopyNode* ac = ArrayCopyNode::make(this, false, src, NULL, dest, NULL, countx, false);
4463   ac->set_clonebasic();
4464   Node* n = _gvn.transform(ac);
4465   if (n == ac) {
4466     set_predefined_output_for_runtime_call(ac, ac->in(TypeFunc::Memory), raw_adr_type);
4467   } else {
4468     set_all_memory(n);
4469   }
4470 
4471   // If necessary, emit some card marks afterwards.  (Non-arrays only.)
4472   if (card_mark) {
4473     assert(!is_array, "");
4474     // Put in store barrier for any and all oops we are sticking
4475     // into this object.  (We could avoid this if we could prove
4476     // that the object type contains no oop fields at all.)
4477     Node* no_particular_value = NULL;
4478     Node* no_particular_field = NULL;
4479     int raw_adr_idx = Compile::AliasIdxRaw;
4480     post_barrier(control(),
4481                  memory(raw_adr_type),
4482                  alloc_obj,
4483                  no_particular_field,
4484                  raw_adr_idx,
4485                  no_particular_value,
4486                  T_OBJECT,
4487                  false);
4488   }
4489 
4490   // Do not let reads from the cloned object float above the arraycopy.
4491   if (alloc != NULL) {
4492     // Do not let stores that initialize this object be reordered with
4493     // a subsequent store that would make this object accessible by
4494     // other threads.
4495     // Record what AllocateNode this StoreStore protects so that
4496     // escape analysis can go from the MemBarStoreStoreNode to the
4497     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
4498     // based on the escape status of the AllocateNode.
4499     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
4500   } else {
4501     insert_mem_bar(Op_MemBarCPUOrder);
4502   }
4503 }
4504 
4505 //------------------------inline_native_clone----------------------------
4506 // protected native Object java.lang.Object.clone();
4507 //
4508 // Here are the simple edge cases:
4509 //  null receiver => normal trap
4510 //  virtual and clone was overridden => slow path to out-of-line clone
4511 //  not cloneable or finalizer => slow path to out-of-line Object.clone
4512 //
4513 // The general case has two steps, allocation and copying.
4514 // Allocation has two cases, and uses GraphKit::new_instance or new_array.
4515 //
4516 // Copying also has two cases, oop arrays and everything else.
4517 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
4518 // Everything else uses the tight inline loop supplied by CopyArrayNode.
4519 //
4520 // These steps fold up nicely if and when the cloned object's klass
4521 // can be sharply typed as an object array, a type array, or an instance.
4522 //
4523 bool LibraryCallKit::inline_native_clone(bool is_virtual) {
4524   PhiNode* result_val;
4525 
4526   // Set the reexecute bit for the interpreter to reexecute
4527   // the bytecode that invokes Object.clone if deoptimization happens.
4528   { PreserveReexecuteState preexecs(this);
4529     jvms()->set_should_reexecute(true);
4530 
4531     Node* obj = null_check_receiver();
4532     if (stopped())  return true;
4533 
4534     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
4535 
4536     // If we are going to clone an instance, we need its exact type to
4537     // know the number and types of fields to convert the clone to
4538     // loads/stores. Maybe a speculative type can help us.
4539     if (!obj_type->klass_is_exact() &&
4540         obj_type->speculative_type() != NULL &&
4541         obj_type->speculative_type()->is_instance_klass()) {
4542       ciInstanceKlass* spec_ik = obj_type->speculative_type()->as_instance_klass();
4543       if (spec_ik->nof_nonstatic_fields() <= ArrayCopyLoadStoreMaxElem &&
4544           !spec_ik->has_injected_fields()) {
4545         ciKlass* k = obj_type->klass();
4546         if (!k->is_instance_klass() ||
4547             k->as_instance_klass()->is_interface() ||
4548             k->as_instance_klass()->has_subklass()) {
4549           obj = maybe_cast_profiled_obj(obj, obj_type->speculative_type(), false);
4550         }
4551       }
4552     }
4553 
4554     Node* obj_klass = load_object_klass(obj);
4555     const TypeKlassPtr* tklass = _gvn.type(obj_klass)->isa_klassptr();
4556     const TypeOopPtr*   toop   = ((tklass != NULL)
4557                                 ? tklass->as_instance_type()
4558                                 : TypeInstPtr::NOTNULL);
4559 
4560     // Conservatively insert a memory barrier on all memory slices.
4561     // Do not let writes into the original float below the clone.
4562     insert_mem_bar(Op_MemBarCPUOrder);
4563 
4564     // paths into result_reg:
4565     enum {
4566       _slow_path = 1,     // out-of-line call to clone method (virtual or not)
4567       _objArray_path,     // plain array allocation, plus arrayof_oop_arraycopy
4568       _array_path,        // plain array allocation, plus arrayof_long_arraycopy
4569       _instance_path,     // plain instance allocation, plus arrayof_long_arraycopy
4570       PATH_LIMIT
4571     };
4572     RegionNode* result_reg = new RegionNode(PATH_LIMIT);
4573     result_val             = new PhiNode(result_reg, TypeInstPtr::NOTNULL);
4574     PhiNode*    result_i_o = new PhiNode(result_reg, Type::ABIO);
4575     PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
4576     record_for_igvn(result_reg);
4577 
4578     const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
4579     int raw_adr_idx = Compile::AliasIdxRaw;
4580 
4581     Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)NULL);
4582     if (array_ctl != NULL) {
4583       // It's an array.
4584       PreserveJVMState pjvms(this);
4585       set_control(array_ctl);
4586       Node* obj_length = load_array_length(obj);
4587       Node* obj_size  = NULL;
4588       Node* alloc_obj = new_array(obj_klass, obj_length, 0, &obj_size);  // no arguments to push
4589 
4590       if (!use_ReduceInitialCardMarks()) {
4591         // If it is an oop array, it requires very special treatment,
4592         // because card marking is required on each card of the array.
4593         Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)NULL);
4594         if (is_obja != NULL) {
4595           PreserveJVMState pjvms2(this);
4596           set_control(is_obja);
4597           // Generate a direct call to the right arraycopy function(s).
4598           Node* alloc = tightly_coupled_allocation(alloc_obj, NULL);
4599           ArrayCopyNode* ac = ArrayCopyNode::make(this, true, obj, intcon(0), alloc_obj, intcon(0), obj_length, alloc != NULL);
4600           ac->set_cloneoop();
4601           Node* n = _gvn.transform(ac);
4602           assert(n == ac, "cannot disappear");
4603           ac->connect_outputs(this);
4604 
4605           result_reg->init_req(_objArray_path, control());
4606           result_val->init_req(_objArray_path, alloc_obj);
4607           result_i_o ->set_req(_objArray_path, i_o());
4608           result_mem ->set_req(_objArray_path, reset_memory());
4609         }
4610       }
4611       // Otherwise, there are no card marks to worry about.
4612       // (We can dispense with card marks if we know the allocation
4613       //  comes out of eden (TLAB)...  In fact, ReduceInitialCardMarks
4614       //  causes the non-eden paths to take compensating steps to
4615       //  simulate a fresh allocation, so that no further
4616       //  card marks are required in compiled code to initialize
4617       //  the object.)
4618 
4619       if (!stopped()) {
4620         copy_to_clone(obj, alloc_obj, obj_size, true, false);
4621 
4622         // Present the results of the copy.
4623         result_reg->init_req(_array_path, control());
4624         result_val->init_req(_array_path, alloc_obj);
4625         result_i_o ->set_req(_array_path, i_o());
4626         result_mem ->set_req(_array_path, reset_memory());
4627       }
4628     }
4629 
4630     // We only go to the instance fast case code if we pass a number of guards.
4631     // The paths which do not pass are accumulated in the slow_region.
4632     RegionNode* slow_region = new RegionNode(1);
4633     record_for_igvn(slow_region);
4634     if (!stopped()) {
4635       // It's an instance (we did array above).  Make the slow-path tests.
4636       // If this is a virtual call, we generate a funny guard.  We grab
4637       // the vtable entry corresponding to clone() from the target object.
4638       // If the target method which we are calling happens to be the
4639       // Object clone() method, we pass the guard.  We do not need this
4640       // guard for non-virtual calls; the caller is known to be the native
4641       // Object clone().
4642       if (is_virtual) {
4643         generate_virtual_guard(obj_klass, slow_region);
4644       }
4645 
4646       // The object must be easily cloneable and must not have a finalizer.
4647       // Both of these conditions may be checked in a single test.
4648       // We could optimize the test further, but we don't care.
4649       generate_access_flags_guard(obj_klass,
4650                                   // Test both conditions:
4651                                   JVM_ACC_IS_CLONEABLE_FAST | JVM_ACC_HAS_FINALIZER,
4652                                   // Must be cloneable but not finalizer:
4653                                   JVM_ACC_IS_CLONEABLE_FAST,
4654                                   slow_region);
4655     }
4656 
4657     if (!stopped()) {
4658       // It's an instance, and it passed the slow-path tests.
4659       PreserveJVMState pjvms(this);
4660       Node* obj_size  = NULL;
4661       // Need to deoptimize on exception from allocation since Object.clone intrinsic
4662       // is reexecuted if deoptimization occurs and there could be problems when merging
4663       // exception state between multiple Object.clone versions (reexecute=true vs reexecute=false).
4664       Node* alloc_obj = new_instance(obj_klass, NULL, &obj_size, /*deoptimize_on_exception=*/true);
4665 
4666       copy_to_clone(obj, alloc_obj, obj_size, false, !use_ReduceInitialCardMarks());
4667 
4668       // Present the results of the slow call.
4669       result_reg->init_req(_instance_path, control());
4670       result_val->init_req(_instance_path, alloc_obj);
4671       result_i_o ->set_req(_instance_path, i_o());
4672       result_mem ->set_req(_instance_path, reset_memory());
4673     }
4674 
4675     // Generate code for the slow case.  We make a call to clone().
4676     set_control(_gvn.transform(slow_region));
4677     if (!stopped()) {
4678       PreserveJVMState pjvms(this);
4679       CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual);
4680       Node* slow_result = set_results_for_java_call(slow_call);
4681       // this->control() comes from set_results_for_java_call
4682       result_reg->init_req(_slow_path, control());
4683       result_val->init_req(_slow_path, slow_result);
4684       result_i_o ->set_req(_slow_path, i_o());
4685       result_mem ->set_req(_slow_path, reset_memory());
4686     }
4687 
4688     // Return the combined state.
4689     set_control(    _gvn.transform(result_reg));
4690     set_i_o(        _gvn.transform(result_i_o));
4691     set_all_memory( _gvn.transform(result_mem));
4692   } // original reexecute is set back here
4693 
4694   set_result(_gvn.transform(result_val));
4695   return true;
4696 }
4697 
4698 // If we have a tighly coupled allocation, the arraycopy may take care
4699 // of the array initialization. If one of the guards we insert between
4700 // the allocation and the arraycopy causes a deoptimization, an
4701 // unitialized array will escape the compiled method. To prevent that
4702 // we set the JVM state for uncommon traps between the allocation and
4703 // the arraycopy to the state before the allocation so, in case of
4704 // deoptimization, we'll reexecute the allocation and the
4705 // initialization.
4706 JVMState* LibraryCallKit::arraycopy_restore_alloc_state(AllocateArrayNode* alloc, int& saved_reexecute_sp) {
4707   if (alloc != NULL) {
4708     ciMethod* trap_method = alloc->jvms()->method();
4709     int trap_bci = alloc->jvms()->bci();
4710 
4711     if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) &
4712           !C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_null_check)) {
4713       // Make sure there's no store between the allocation and the
4714       // arraycopy otherwise visible side effects could be rexecuted
4715       // in case of deoptimization and cause incorrect execution.
4716       bool no_interfering_store = true;
4717       Node* mem = alloc->in(TypeFunc::Memory);
4718       if (mem->is_MergeMem()) {
4719         for (MergeMemStream mms(merged_memory(), mem->as_MergeMem()); mms.next_non_empty2(); ) {
4720           Node* n = mms.memory();
4721           if (n != mms.memory2() && !(n->is_Proj() && n->in(0) == alloc->initialization())) {
4722             assert(n->is_Store(), "what else?");
4723             no_interfering_store = false;
4724             break;
4725           }
4726         }
4727       } else {
4728         for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) {
4729           Node* n = mms.memory();
4730           if (n != mem && !(n->is_Proj() && n->in(0) == alloc->initialization())) {
4731             assert(n->is_Store(), "what else?");
4732             no_interfering_store = false;
4733             break;
4734           }
4735         }
4736       }
4737 
4738       if (no_interfering_store) {
4739         JVMState* old_jvms = alloc->jvms()->clone_shallow(C);
4740         uint size = alloc->req();
4741         SafePointNode* sfpt = new SafePointNode(size, old_jvms);
4742         old_jvms->set_map(sfpt);
4743         for (uint i = 0; i < size; i++) {
4744           sfpt->init_req(i, alloc->in(i));
4745         }
4746         // re-push array length for deoptimization
4747         sfpt->ins_req(old_jvms->stkoff() + old_jvms->sp(), alloc->in(AllocateNode::ALength));
4748         old_jvms->set_sp(old_jvms->sp()+1);
4749         old_jvms->set_monoff(old_jvms->monoff()+1);
4750         old_jvms->set_scloff(old_jvms->scloff()+1);
4751         old_jvms->set_endoff(old_jvms->endoff()+1);
4752         old_jvms->set_should_reexecute(true);
4753 
4754         sfpt->set_i_o(map()->i_o());
4755         sfpt->set_memory(map()->memory());
4756         sfpt->set_control(map()->control());
4757 
4758         JVMState* saved_jvms = jvms();
4759         saved_reexecute_sp = _reexecute_sp;
4760 
4761         set_jvms(sfpt->jvms());
4762         _reexecute_sp = jvms()->sp();
4763 
4764         return saved_jvms;
4765       }
4766     }
4767   }
4768   return NULL;
4769 }
4770 
4771 // In case of a deoptimization, we restart execution at the
4772 // allocation, allocating a new array. We would leave an uninitialized
4773 // array in the heap that GCs wouldn't expect. Move the allocation
4774 // after the traps so we don't allocate the array if we
4775 // deoptimize. This is possible because tightly_coupled_allocation()
4776 // guarantees there's no observer of the allocated array at this point
4777 // and the control flow is simple enough.
4778 void LibraryCallKit::arraycopy_move_allocation_here(AllocateArrayNode* alloc, Node* dest, JVMState* saved_jvms, int saved_reexecute_sp) {
4779   if (saved_jvms != NULL && !stopped()) {
4780     assert(alloc != NULL, "only with a tightly coupled allocation");
4781     // restore JVM state to the state at the arraycopy
4782     saved_jvms->map()->set_control(map()->control());
4783     assert(saved_jvms->map()->memory() == map()->memory(), "memory state changed?");
4784     assert(saved_jvms->map()->i_o() == map()->i_o(), "IO state changed?");
4785     // If we've improved the types of some nodes (null check) while
4786     // emitting the guards, propagate them to the current state
4787     map()->replaced_nodes().apply(saved_jvms->map());
4788     set_jvms(saved_jvms);
4789     _reexecute_sp = saved_reexecute_sp;
4790 
4791     // Remove the allocation from above the guards
4792     CallProjections callprojs;
4793     alloc->extract_projections(&callprojs, true);
4794     InitializeNode* init = alloc->initialization();
4795     Node* alloc_mem = alloc->in(TypeFunc::Memory);
4796     C->gvn_replace_by(callprojs.fallthrough_ioproj, alloc->in(TypeFunc::I_O));
4797     C->gvn_replace_by(init->proj_out(TypeFunc::Memory), alloc_mem);
4798     C->gvn_replace_by(init->proj_out(TypeFunc::Control), alloc->in(0));
4799 
4800     // move the allocation here (after the guards)
4801     _gvn.hash_delete(alloc);
4802     alloc->set_req(TypeFunc::Control, control());
4803     alloc->set_req(TypeFunc::I_O, i_o());
4804     Node *mem = reset_memory();
4805     set_all_memory(mem);
4806     alloc->set_req(TypeFunc::Memory, mem);
4807     set_control(init->proj_out(TypeFunc::Control));
4808     set_i_o(callprojs.fallthrough_ioproj);
4809 
4810     // Update memory as done in GraphKit::set_output_for_allocation()
4811     const TypeInt* length_type = _gvn.find_int_type(alloc->in(AllocateNode::ALength));
4812     const TypeOopPtr* ary_type = _gvn.type(alloc->in(AllocateNode::KlassNode))->is_klassptr()->as_instance_type();
4813     if (ary_type->isa_aryptr() && length_type != NULL) {
4814       ary_type = ary_type->is_aryptr()->cast_to_size(length_type);
4815     }
4816     const TypePtr* telemref = ary_type->add_offset(Type::OffsetBot);
4817     int            elemidx  = C->get_alias_index(telemref);
4818     set_memory(init->proj_out(TypeFunc::Memory), Compile::AliasIdxRaw);
4819     set_memory(init->proj_out(TypeFunc::Memory), elemidx);
4820 
4821     Node* allocx = _gvn.transform(alloc);
4822     assert(allocx == alloc, "where has the allocation gone?");
4823     assert(dest->is_CheckCastPP(), "not an allocation result?");
4824 
4825     _gvn.hash_delete(dest);
4826     dest->set_req(0, control());
4827     Node* destx = _gvn.transform(dest);
4828     assert(destx == dest, "where has the allocation result gone?");
4829   }
4830 }
4831 
4832 
4833 //------------------------------inline_arraycopy-----------------------
4834 // public static native void java.lang.System.arraycopy(Object src,  int  srcPos,
4835 //                                                      Object dest, int destPos,
4836 //                                                      int length);
4837 bool LibraryCallKit::inline_arraycopy() {
4838   // Get the arguments.
4839   Node* src         = argument(0);  // type: oop
4840   Node* src_offset  = argument(1);  // type: int
4841   Node* dest        = argument(2);  // type: oop
4842   Node* dest_offset = argument(3);  // type: int
4843   Node* length      = argument(4);  // type: int
4844 
4845 
4846   // Check for allocation before we add nodes that would confuse
4847   // tightly_coupled_allocation()
4848   AllocateArrayNode* alloc = tightly_coupled_allocation(dest, NULL);
4849 
4850   int saved_reexecute_sp = -1;
4851   JVMState* saved_jvms = arraycopy_restore_alloc_state(alloc, saved_reexecute_sp);
4852   // See arraycopy_restore_alloc_state() comment
4853   // if alloc == NULL we don't have to worry about a tightly coupled allocation so we can emit all needed guards
4854   // if saved_jvms != NULL (then alloc != NULL) then we can handle guards and a tightly coupled allocation
4855   // if saved_jvms == NULL and alloc != NULL, we can’t emit any guards
4856   bool can_emit_guards = (alloc == NULL || saved_jvms != NULL);
4857 
4858   // The following tests must be performed
4859   // (1) src and dest are arrays.
4860   // (2) src and dest arrays must have elements of the same BasicType
4861   // (3) src and dest must not be null.
4862   // (4) src_offset must not be negative.
4863   // (5) dest_offset must not be negative.
4864   // (6) length must not be negative.
4865   // (7) src_offset + length must not exceed length of src.
4866   // (8) dest_offset + length must not exceed length of dest.
4867   // (9) each element of an oop array must be assignable
4868 
4869   // (3) src and dest must not be null.
4870   // always do this here because we need the JVM state for uncommon traps
4871   Node* null_ctl = top();
4872   src  = saved_jvms != NULL ? null_check_oop(src, &null_ctl, true, true) : null_check(src,  T_ARRAY);
4873   assert(null_ctl->is_top(), "no null control here");
4874   dest = null_check(dest, T_ARRAY);
4875 
4876   if (!can_emit_guards) {
4877     // if saved_jvms == NULL and alloc != NULL, we don't emit any
4878     // guards but the arraycopy node could still take advantage of a
4879     // tightly allocated allocation. tightly_coupled_allocation() is
4880     // called again to make sure it takes the null check above into
4881     // account: the null check is mandatory and if it caused an
4882     // uncommon trap to be emitted then the allocation can't be
4883     // considered tightly coupled in this context.
4884     alloc = tightly_coupled_allocation(dest, NULL);
4885   }
4886 
4887   bool validated = false;
4888 
4889   const Type* src_type  = _gvn.type(src);
4890   const Type* dest_type = _gvn.type(dest);
4891   const TypeAryPtr* top_src  = src_type->isa_aryptr();
4892   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
4893 
4894   // Do we have the type of src?
4895   bool has_src = (top_src != NULL && top_src->klass() != NULL);
4896   // Do we have the type of dest?
4897   bool has_dest = (top_dest != NULL && top_dest->klass() != NULL);
4898   // Is the type for src from speculation?
4899   bool src_spec = false;
4900   // Is the type for dest from speculation?
4901   bool dest_spec = false;
4902 
4903   if ((!has_src || !has_dest) && can_emit_guards) {
4904     // We don't have sufficient type information, let's see if
4905     // speculative types can help. We need to have types for both src
4906     // and dest so that it pays off.
4907 
4908     // Do we already have or could we have type information for src
4909     bool could_have_src = has_src;
4910     // Do we already have or could we have type information for dest
4911     bool could_have_dest = has_dest;
4912 
4913     ciKlass* src_k = NULL;
4914     if (!has_src) {
4915       src_k = src_type->speculative_type_not_null();
4916       if (src_k != NULL && src_k->is_array_klass()) {
4917         could_have_src = true;
4918       }
4919     }
4920 
4921     ciKlass* dest_k = NULL;
4922     if (!has_dest) {
4923       dest_k = dest_type->speculative_type_not_null();
4924       if (dest_k != NULL && dest_k->is_array_klass()) {
4925         could_have_dest = true;
4926       }
4927     }
4928 
4929     if (could_have_src && could_have_dest) {
4930       // This is going to pay off so emit the required guards
4931       if (!has_src) {
4932         src = maybe_cast_profiled_obj(src, src_k, true);
4933         src_type  = _gvn.type(src);
4934         top_src  = src_type->isa_aryptr();
4935         has_src = (top_src != NULL && top_src->klass() != NULL);
4936         src_spec = true;
4937       }
4938       if (!has_dest) {
4939         dest = maybe_cast_profiled_obj(dest, dest_k, true);
4940         dest_type  = _gvn.type(dest);
4941         top_dest  = dest_type->isa_aryptr();
4942         has_dest = (top_dest != NULL && top_dest->klass() != NULL);
4943         dest_spec = true;
4944       }
4945     }
4946   }
4947 
4948   if (has_src && has_dest && can_emit_guards) {
4949     BasicType src_elem  = top_src->klass()->as_array_klass()->element_type()->basic_type();
4950     BasicType dest_elem = top_dest->klass()->as_array_klass()->element_type()->basic_type();
4951     if (src_elem  == T_ARRAY)  src_elem  = T_OBJECT;
4952     if (dest_elem == T_ARRAY)  dest_elem = T_OBJECT;
4953 
4954     if (src_elem == dest_elem && src_elem == T_OBJECT) {
4955       // If both arrays are object arrays then having the exact types
4956       // for both will remove the need for a subtype check at runtime
4957       // before the call and may make it possible to pick a faster copy
4958       // routine (without a subtype check on every element)
4959       // Do we have the exact type of src?
4960       bool could_have_src = src_spec;
4961       // Do we have the exact type of dest?
4962       bool could_have_dest = dest_spec;
4963       ciKlass* src_k = top_src->klass();
4964       ciKlass* dest_k = top_dest->klass();
4965       if (!src_spec) {
4966         src_k = src_type->speculative_type_not_null();
4967         if (src_k != NULL && src_k->is_array_klass()) {
4968           could_have_src = true;
4969         }
4970       }
4971       if (!dest_spec) {
4972         dest_k = dest_type->speculative_type_not_null();
4973         if (dest_k != NULL && dest_k->is_array_klass()) {
4974           could_have_dest = true;
4975         }
4976       }
4977       if (could_have_src && could_have_dest) {
4978         // If we can have both exact types, emit the missing guards
4979         if (could_have_src && !src_spec) {
4980           src = maybe_cast_profiled_obj(src, src_k, true);
4981         }
4982         if (could_have_dest && !dest_spec) {
4983           dest = maybe_cast_profiled_obj(dest, dest_k, true);
4984         }
4985       }
4986     }
4987   }
4988 
4989   ciMethod* trap_method = method();
4990   int trap_bci = bci();
4991   if (saved_jvms != NULL) {
4992     trap_method = alloc->jvms()->method();
4993     trap_bci = alloc->jvms()->bci();
4994   }
4995 
4996   if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) &&
4997       can_emit_guards &&
4998       !src->is_top() && !dest->is_top()) {
4999     // validate arguments: enables transformation the ArrayCopyNode
5000     validated = true;
5001 
5002     RegionNode* slow_region = new RegionNode(1);
5003     record_for_igvn(slow_region);
5004 
5005     // (1) src and dest are arrays.
5006     generate_non_array_guard(load_object_klass(src), slow_region);
5007     generate_non_array_guard(load_object_klass(dest), slow_region);
5008 
5009     // (2) src and dest arrays must have elements of the same BasicType
5010     // done at macro expansion or at Ideal transformation time
5011 
5012     // (4) src_offset must not be negative.
5013     generate_negative_guard(src_offset, slow_region);
5014 
5015     // (5) dest_offset must not be negative.
5016     generate_negative_guard(dest_offset, slow_region);
5017 
5018     // (7) src_offset + length must not exceed length of src.
5019     generate_limit_guard(src_offset, length,
5020                          load_array_length(src),
5021                          slow_region);
5022 
5023     // (8) dest_offset + length must not exceed length of dest.
5024     generate_limit_guard(dest_offset, length,
5025                          load_array_length(dest),
5026                          slow_region);
5027 
5028     // (9) each element of an oop array must be assignable
5029     Node* src_klass  = load_object_klass(src);
5030     Node* dest_klass = load_object_klass(dest);
5031     Node* not_subtype_ctrl = gen_subtype_check(src_klass, dest_klass);
5032 
5033     if (not_subtype_ctrl != top()) {
5034       PreserveJVMState pjvms(this);
5035       set_control(not_subtype_ctrl);
5036       uncommon_trap(Deoptimization::Reason_intrinsic,
5037                     Deoptimization::Action_make_not_entrant);
5038       assert(stopped(), "Should be stopped");
5039     }
5040     {
5041       PreserveJVMState pjvms(this);
5042       set_control(_gvn.transform(slow_region));
5043       uncommon_trap(Deoptimization::Reason_intrinsic,
5044                     Deoptimization::Action_make_not_entrant);
5045       assert(stopped(), "Should be stopped");
5046     }
5047   }
5048 
5049   arraycopy_move_allocation_here(alloc, dest, saved_jvms, saved_reexecute_sp);
5050 
5051   if (stopped()) {
5052     return true;
5053   }
5054 
5055   ArrayCopyNode* ac = ArrayCopyNode::make(this, true, src, src_offset, dest, dest_offset, length, alloc != NULL,
5056                                           // Create LoadRange and LoadKlass nodes for use during macro expansion here
5057                                           // so the compiler has a chance to eliminate them: during macro expansion,
5058                                           // we have to set their control (CastPP nodes are eliminated).
5059                                           load_object_klass(src), load_object_klass(dest),
5060                                           load_array_length(src), load_array_length(dest));
5061 
5062   ac->set_arraycopy(validated);
5063 
5064   Node* n = _gvn.transform(ac);
5065   if (n == ac) {
5066     ac->connect_outputs(this);
5067   } else {
5068     assert(validated, "shouldn't transform if all arguments not validated");
5069     set_all_memory(n);
5070   }
5071 
5072   return true;
5073 }
5074 
5075 
5076 // Helper function which determines if an arraycopy immediately follows
5077 // an allocation, with no intervening tests or other escapes for the object.
5078 AllocateArrayNode*
5079 LibraryCallKit::tightly_coupled_allocation(Node* ptr,
5080                                            RegionNode* slow_region) {
5081   if (stopped())             return NULL;  // no fast path
5082   if (C->AliasLevel() == 0)  return NULL;  // no MergeMems around
5083 
5084   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr, &_gvn);
5085   if (alloc == NULL)  return NULL;
5086 
5087   Node* rawmem = memory(Compile::AliasIdxRaw);
5088   // Is the allocation's memory state untouched?
5089   if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) {
5090     // Bail out if there have been raw-memory effects since the allocation.
5091     // (Example:  There might have been a call or safepoint.)
5092     return NULL;
5093   }
5094   rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw);
5095   if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) {
5096     return NULL;
5097   }
5098 
5099   // There must be no unexpected observers of this allocation.
5100   for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) {
5101     Node* obs = ptr->fast_out(i);
5102     if (obs != this->map()) {
5103       return NULL;
5104     }
5105   }
5106 
5107   // This arraycopy must unconditionally follow the allocation of the ptr.
5108   Node* alloc_ctl = ptr->in(0);
5109   assert(just_allocated_object(alloc_ctl) == ptr, "most recent allo");
5110 
5111   Node* ctl = control();
5112   while (ctl != alloc_ctl) {
5113     // There may be guards which feed into the slow_region.
5114     // Any other control flow means that we might not get a chance
5115     // to finish initializing the allocated object.
5116     if ((ctl->is_IfFalse() || ctl->is_IfTrue()) && ctl->in(0)->is_If()) {
5117       IfNode* iff = ctl->in(0)->as_If();
5118       Node* not_ctl = iff->proj_out(1 - ctl->as_Proj()->_con);
5119       assert(not_ctl != NULL && not_ctl != ctl, "found alternate");
5120       if (slow_region != NULL && slow_region->find_edge(not_ctl) >= 1) {
5121         ctl = iff->in(0);       // This test feeds the known slow_region.
5122         continue;
5123       }
5124       // One more try:  Various low-level checks bottom out in
5125       // uncommon traps.  If the debug-info of the trap omits
5126       // any reference to the allocation, as we've already
5127       // observed, then there can be no objection to the trap.
5128       bool found_trap = false;
5129       for (DUIterator_Fast jmax, j = not_ctl->fast_outs(jmax); j < jmax; j++) {
5130         Node* obs = not_ctl->fast_out(j);
5131         if (obs->in(0) == not_ctl && obs->is_Call() &&
5132             (obs->as_Call()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point())) {
5133           found_trap = true; break;
5134         }
5135       }
5136       if (found_trap) {
5137         ctl = iff->in(0);       // This test feeds a harmless uncommon trap.
5138         continue;
5139       }
5140     }
5141     return NULL;
5142   }
5143 
5144   // If we get this far, we have an allocation which immediately
5145   // precedes the arraycopy, and we can take over zeroing the new object.
5146   // The arraycopy will finish the initialization, and provide
5147   // a new control state to which we will anchor the destination pointer.
5148 
5149   return alloc;
5150 }
5151 
5152 //-------------inline_encodeISOArray-----------------------------------
5153 // encode char[] to byte[] in ISO_8859_1
5154 bool LibraryCallKit::inline_encodeISOArray() {
5155   assert(callee()->signature()->size() == 5, "encodeISOArray has 5 parameters");
5156   // no receiver since it is static method
5157   Node *src         = argument(0);
5158   Node *src_offset  = argument(1);
5159   Node *dst         = argument(2);
5160   Node *dst_offset  = argument(3);
5161   Node *length      = argument(4);
5162 
5163   const Type* src_type = src->Value(&_gvn);
5164   const Type* dst_type = dst->Value(&_gvn);
5165   const TypeAryPtr* top_src = src_type->isa_aryptr();
5166   const TypeAryPtr* top_dest = dst_type->isa_aryptr();
5167   if (top_src  == NULL || top_src->klass()  == NULL ||
5168       top_dest == NULL || top_dest->klass() == NULL) {
5169     // failed array check
5170     return false;
5171   }
5172 
5173   // Figure out the size and type of the elements we will be copying.
5174   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5175   BasicType dst_elem = dst_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5176   if (!((src_elem == T_CHAR) || (src_elem== T_BYTE)) || dst_elem != T_BYTE) {
5177     return false;
5178   }
5179 
5180   Node* src_start = array_element_address(src, src_offset, T_CHAR);
5181   Node* dst_start = array_element_address(dst, dst_offset, dst_elem);
5182   // 'src_start' points to src array + scaled offset
5183   // 'dst_start' points to dst array + scaled offset
5184 
5185   const TypeAryPtr* mtype = TypeAryPtr::BYTES;
5186   Node* enc = new EncodeISOArrayNode(control(), memory(mtype), src_start, dst_start, length);
5187   enc = _gvn.transform(enc);
5188   Node* res_mem = _gvn.transform(new SCMemProjNode(enc));
5189   set_memory(res_mem, mtype);
5190   set_result(enc);
5191   return true;
5192 }
5193 
5194 //-------------inline_multiplyToLen-----------------------------------
5195 bool LibraryCallKit::inline_multiplyToLen() {
5196   assert(UseMultiplyToLenIntrinsic, "not implemented on this platform");
5197 
5198   address stubAddr = StubRoutines::multiplyToLen();
5199   if (stubAddr == NULL) {
5200     return false; // Intrinsic's stub is not implemented on this platform
5201   }
5202   const char* stubName = "multiplyToLen";
5203 
5204   assert(callee()->signature()->size() == 5, "multiplyToLen has 5 parameters");
5205 
5206   // no receiver because it is a static method
5207   Node* x    = argument(0);
5208   Node* xlen = argument(1);
5209   Node* y    = argument(2);
5210   Node* ylen = argument(3);
5211   Node* z    = argument(4);
5212 
5213   const Type* x_type = x->Value(&_gvn);
5214   const Type* y_type = y->Value(&_gvn);
5215   const TypeAryPtr* top_x = x_type->isa_aryptr();
5216   const TypeAryPtr* top_y = y_type->isa_aryptr();
5217   if (top_x  == NULL || top_x->klass()  == NULL ||
5218       top_y == NULL || top_y->klass() == NULL) {
5219     // failed array check
5220     return false;
5221   }
5222 
5223   BasicType x_elem = x_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5224   BasicType y_elem = y_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5225   if (x_elem != T_INT || y_elem != T_INT) {
5226     return false;
5227   }
5228 
5229   // Set the original stack and the reexecute bit for the interpreter to reexecute
5230   // the bytecode that invokes BigInteger.multiplyToLen() if deoptimization happens
5231   // on the return from z array allocation in runtime.
5232   { PreserveReexecuteState preexecs(this);
5233     jvms()->set_should_reexecute(true);
5234 
5235     Node* x_start = array_element_address(x, intcon(0), x_elem);
5236     Node* y_start = array_element_address(y, intcon(0), y_elem);
5237     // 'x_start' points to x array + scaled xlen
5238     // 'y_start' points to y array + scaled ylen
5239 
5240     // Allocate the result array
5241     Node* zlen = _gvn.transform(new AddINode(xlen, ylen));
5242     ciKlass* klass = ciTypeArrayKlass::make(T_INT);
5243     Node* klass_node = makecon(TypeKlassPtr::make(klass));
5244 
5245     IdealKit ideal(this);
5246 
5247 #define __ ideal.
5248      Node* one = __ ConI(1);
5249      Node* zero = __ ConI(0);
5250      IdealVariable need_alloc(ideal), z_alloc(ideal);  __ declarations_done();
5251      __ set(need_alloc, zero);
5252      __ set(z_alloc, z);
5253      __ if_then(z, BoolTest::eq, null()); {
5254        __ increment (need_alloc, one);
5255      } __ else_(); {
5256        // Update graphKit memory and control from IdealKit.
5257        sync_kit(ideal);
5258        Node* zlen_arg = load_array_length(z);
5259        // Update IdealKit memory and control from graphKit.
5260        __ sync_kit(this);
5261        __ if_then(zlen_arg, BoolTest::lt, zlen); {
5262          __ increment (need_alloc, one);
5263        } __ end_if();
5264      } __ end_if();
5265 
5266      __ if_then(__ value(need_alloc), BoolTest::ne, zero); {
5267        // Update graphKit memory and control from IdealKit.
5268        sync_kit(ideal);
5269        Node * narr = new_array(klass_node, zlen, 1);
5270        // Update IdealKit memory and control from graphKit.
5271        __ sync_kit(this);
5272        __ set(z_alloc, narr);
5273      } __ end_if();
5274 
5275      sync_kit(ideal);
5276      z = __ value(z_alloc);
5277      // Can't use TypeAryPtr::INTS which uses Bottom offset.
5278      _gvn.set_type(z, TypeOopPtr::make_from_klass(klass));
5279      // Final sync IdealKit and GraphKit.
5280      final_sync(ideal);
5281 #undef __
5282 
5283     Node* z_start = array_element_address(z, intcon(0), T_INT);
5284 
5285     Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
5286                                    OptoRuntime::multiplyToLen_Type(),
5287                                    stubAddr, stubName, TypePtr::BOTTOM,
5288                                    x_start, xlen, y_start, ylen, z_start, zlen);
5289   } // original reexecute is set back here
5290 
5291   C->set_has_split_ifs(true); // Has chance for split-if optimization
5292   set_result(z);
5293   return true;
5294 }
5295 
5296 //-------------inline_squareToLen------------------------------------
5297 bool LibraryCallKit::inline_squareToLen() {
5298   assert(UseSquareToLenIntrinsic, "not implemented on this platform");
5299 
5300   address stubAddr = StubRoutines::squareToLen();
5301   if (stubAddr == NULL) {
5302     return false; // Intrinsic's stub is not implemented on this platform
5303   }
5304   const char* stubName = "squareToLen";
5305 
5306   assert(callee()->signature()->size() == 4, "implSquareToLen has 4 parameters");
5307 
5308   Node* x    = argument(0);
5309   Node* len  = argument(1);
5310   Node* z    = argument(2);
5311   Node* zlen = argument(3);
5312 
5313   const Type* x_type = x->Value(&_gvn);
5314   const Type* z_type = z->Value(&_gvn);
5315   const TypeAryPtr* top_x = x_type->isa_aryptr();
5316   const TypeAryPtr* top_z = z_type->isa_aryptr();
5317   if (top_x  == NULL || top_x->klass()  == NULL ||
5318       top_z  == NULL || top_z->klass()  == NULL) {
5319     // failed array check
5320     return false;
5321   }
5322 
5323   BasicType x_elem = x_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5324   BasicType z_elem = z_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5325   if (x_elem != T_INT || z_elem != T_INT) {
5326     return false;
5327   }
5328 
5329 
5330   Node* x_start = array_element_address(x, intcon(0), x_elem);
5331   Node* z_start = array_element_address(z, intcon(0), z_elem);
5332 
5333   Node*  call = make_runtime_call(RC_LEAF|RC_NO_FP,
5334                                   OptoRuntime::squareToLen_Type(),
5335                                   stubAddr, stubName, TypePtr::BOTTOM,
5336                                   x_start, len, z_start, zlen);
5337 
5338   set_result(z);
5339   return true;
5340 }
5341 
5342 //-------------inline_mulAdd------------------------------------------
5343 bool LibraryCallKit::inline_mulAdd() {
5344   assert(UseMulAddIntrinsic, "not implemented on this platform");
5345 
5346   address stubAddr = StubRoutines::mulAdd();
5347   if (stubAddr == NULL) {
5348     return false; // Intrinsic's stub is not implemented on this platform
5349   }
5350   const char* stubName = "mulAdd";
5351 
5352   assert(callee()->signature()->size() == 5, "mulAdd has 5 parameters");
5353 
5354   Node* out      = argument(0);
5355   Node* in       = argument(1);
5356   Node* offset   = argument(2);
5357   Node* len      = argument(3);
5358   Node* k        = argument(4);
5359 
5360   const Type* out_type = out->Value(&_gvn);
5361   const Type* in_type = in->Value(&_gvn);
5362   const TypeAryPtr* top_out = out_type->isa_aryptr();
5363   const TypeAryPtr* top_in = in_type->isa_aryptr();
5364   if (top_out  == NULL || top_out->klass()  == NULL ||
5365       top_in == NULL || top_in->klass() == NULL) {
5366     // failed array check
5367     return false;
5368   }
5369 
5370   BasicType out_elem = out_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5371   BasicType in_elem = in_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5372   if (out_elem != T_INT || in_elem != T_INT) {
5373     return false;
5374   }
5375 
5376   Node* outlen = load_array_length(out);
5377   Node* new_offset = _gvn.transform(new SubINode(outlen, offset));
5378   Node* out_start = array_element_address(out, intcon(0), out_elem);
5379   Node* in_start = array_element_address(in, intcon(0), in_elem);
5380 
5381   Node*  call = make_runtime_call(RC_LEAF|RC_NO_FP,
5382                                   OptoRuntime::mulAdd_Type(),
5383                                   stubAddr, stubName, TypePtr::BOTTOM,
5384                                   out_start,in_start, new_offset, len, k);
5385   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5386   set_result(result);
5387   return true;
5388 }
5389 
5390 //-------------inline_montgomeryMultiply-----------------------------------
5391 bool LibraryCallKit::inline_montgomeryMultiply() {
5392   address stubAddr = StubRoutines::montgomeryMultiply();
5393   if (stubAddr == NULL) {
5394     return false; // Intrinsic's stub is not implemented on this platform
5395   }
5396 
5397   assert(UseMontgomeryMultiplyIntrinsic, "not implemented on this platform");
5398   const char* stubName = "montgomery_square";
5399 
5400   assert(callee()->signature()->size() == 7, "montgomeryMultiply has 7 parameters");
5401 
5402   Node* a    = argument(0);
5403   Node* b    = argument(1);
5404   Node* n    = argument(2);
5405   Node* len  = argument(3);
5406   Node* inv  = argument(4);
5407   Node* m    = argument(6);
5408 
5409   const Type* a_type = a->Value(&_gvn);
5410   const TypeAryPtr* top_a = a_type->isa_aryptr();
5411   const Type* b_type = b->Value(&_gvn);
5412   const TypeAryPtr* top_b = b_type->isa_aryptr();
5413   const Type* n_type = a->Value(&_gvn);
5414   const TypeAryPtr* top_n = n_type->isa_aryptr();
5415   const Type* m_type = a->Value(&_gvn);
5416   const TypeAryPtr* top_m = m_type->isa_aryptr();
5417   if (top_a  == NULL || top_a->klass()  == NULL ||
5418       top_b == NULL || top_b->klass()  == NULL ||
5419       top_n == NULL || top_n->klass()  == NULL ||
5420       top_m == NULL || top_m->klass()  == NULL) {
5421     // failed array check
5422     return false;
5423   }
5424 
5425   BasicType a_elem = a_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5426   BasicType b_elem = b_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5427   BasicType n_elem = n_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5428   BasicType m_elem = m_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5429   if (a_elem != T_INT || b_elem != T_INT || n_elem != T_INT || m_elem != T_INT) {
5430     return false;
5431   }
5432 
5433   // Make the call
5434   {
5435     Node* a_start = array_element_address(a, intcon(0), a_elem);
5436     Node* b_start = array_element_address(b, intcon(0), b_elem);
5437     Node* n_start = array_element_address(n, intcon(0), n_elem);
5438     Node* m_start = array_element_address(m, intcon(0), m_elem);
5439 
5440     Node* call = make_runtime_call(RC_LEAF,
5441                                    OptoRuntime::montgomeryMultiply_Type(),
5442                                    stubAddr, stubName, TypePtr::BOTTOM,
5443                                    a_start, b_start, n_start, len, inv, top(),
5444                                    m_start);
5445     set_result(m);
5446   }
5447 
5448   return true;
5449 }
5450 
5451 bool LibraryCallKit::inline_montgomerySquare() {
5452   address stubAddr = StubRoutines::montgomerySquare();
5453   if (stubAddr == NULL) {
5454     return false; // Intrinsic's stub is not implemented on this platform
5455   }
5456 
5457   assert(UseMontgomerySquareIntrinsic, "not implemented on this platform");
5458   const char* stubName = "montgomery_square";
5459 
5460   assert(callee()->signature()->size() == 6, "montgomerySquare has 6 parameters");
5461 
5462   Node* a    = argument(0);
5463   Node* n    = argument(1);
5464   Node* len  = argument(2);
5465   Node* inv  = argument(3);
5466   Node* m    = argument(5);
5467 
5468   const Type* a_type = a->Value(&_gvn);
5469   const TypeAryPtr* top_a = a_type->isa_aryptr();
5470   const Type* n_type = a->Value(&_gvn);
5471   const TypeAryPtr* top_n = n_type->isa_aryptr();
5472   const Type* m_type = a->Value(&_gvn);
5473   const TypeAryPtr* top_m = m_type->isa_aryptr();
5474   if (top_a  == NULL || top_a->klass()  == NULL ||
5475       top_n == NULL || top_n->klass()  == NULL ||
5476       top_m == NULL || top_m->klass()  == NULL) {
5477     // failed array check
5478     return false;
5479   }
5480 
5481   BasicType a_elem = a_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5482   BasicType n_elem = n_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5483   BasicType m_elem = m_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5484   if (a_elem != T_INT || n_elem != T_INT || m_elem != T_INT) {
5485     return false;
5486   }
5487 
5488   // Make the call
5489   {
5490     Node* a_start = array_element_address(a, intcon(0), a_elem);
5491     Node* n_start = array_element_address(n, intcon(0), n_elem);
5492     Node* m_start = array_element_address(m, intcon(0), m_elem);
5493 
5494     Node* call = make_runtime_call(RC_LEAF,
5495                                    OptoRuntime::montgomerySquare_Type(),
5496                                    stubAddr, stubName, TypePtr::BOTTOM,
5497                                    a_start, n_start, len, inv, top(),
5498                                    m_start);
5499     set_result(m);
5500   }
5501 
5502   return true;
5503 }
5504 
5505 //-------------inline_vectorizedMismatch------------------------------
5506 bool LibraryCallKit::inline_vectorizedMismatch() {
5507   assert(UseVectorizedMismatchIntrinsic, "not implementated on this platform");
5508 
5509   address stubAddr = StubRoutines::vectorizedMismatch();
5510   if (stubAddr == NULL) {
5511     return false; // Intrinsic's stub is not implemented on this platform
5512   }
5513   const char* stubName = "vectorizedMismatch";
5514   int size_l = callee()->signature()->size();
5515   assert(callee()->signature()->size() == 8, "vectorizedMismatch has 6 parameters");
5516 
5517   Node* obja = argument(0);
5518   Node* aoffset = argument(1);
5519   Node* objb = argument(3);
5520   Node* boffset = argument(4);
5521   Node* length = argument(6);
5522   Node* scale = argument(7);
5523 
5524   const Type* a_type = obja->Value(&_gvn);
5525   const Type* b_type = objb->Value(&_gvn);
5526   const TypeAryPtr* top_a = a_type->isa_aryptr();
5527   const TypeAryPtr* top_b = b_type->isa_aryptr();
5528   if (top_a == NULL || top_a->klass() == NULL ||
5529     top_b == NULL || top_b->klass() == NULL) {
5530     // failed array check
5531     return false;
5532   }
5533 
5534   Node* call;
5535   jvms()->set_should_reexecute(true);
5536 
5537   Node* obja_adr = make_unsafe_address(obja, aoffset);
5538   Node* objb_adr = make_unsafe_address(objb, boffset);
5539 
5540   call = make_runtime_call(RC_LEAF,
5541     OptoRuntime::vectorizedMismatch_Type(),
5542     stubAddr, stubName, TypePtr::BOTTOM,
5543     obja_adr, objb_adr, length, scale);
5544 
5545   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5546   set_result(result);
5547   return true;
5548 }
5549 
5550 /**
5551  * Calculate CRC32 for byte.
5552  * int java.util.zip.CRC32.update(int crc, int b)
5553  */
5554 bool LibraryCallKit::inline_updateCRC32() {
5555   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5556   assert(callee()->signature()->size() == 2, "update has 2 parameters");
5557   // no receiver since it is static method
5558   Node* crc  = argument(0); // type: int
5559   Node* b    = argument(1); // type: int
5560 
5561   /*
5562    *    int c = ~ crc;
5563    *    b = timesXtoThe32[(b ^ c) & 0xFF];
5564    *    b = b ^ (c >>> 8);
5565    *    crc = ~b;
5566    */
5567 
5568   Node* M1 = intcon(-1);
5569   crc = _gvn.transform(new XorINode(crc, M1));
5570   Node* result = _gvn.transform(new XorINode(crc, b));
5571   result = _gvn.transform(new AndINode(result, intcon(0xFF)));
5572 
5573   Node* base = makecon(TypeRawPtr::make(StubRoutines::crc_table_addr()));
5574   Node* offset = _gvn.transform(new LShiftINode(result, intcon(0x2)));
5575   Node* adr = basic_plus_adr(top(), base, ConvI2X(offset));
5576   result = make_load(control(), adr, TypeInt::INT, T_INT, MemNode::unordered);
5577 
5578   crc = _gvn.transform(new URShiftINode(crc, intcon(8)));
5579   result = _gvn.transform(new XorINode(crc, result));
5580   result = _gvn.transform(new XorINode(result, M1));
5581   set_result(result);
5582   return true;
5583 }
5584 
5585 /**
5586  * Calculate CRC32 for byte[] array.
5587  * int java.util.zip.CRC32.updateBytes(int crc, byte[] buf, int off, int len)
5588  */
5589 bool LibraryCallKit::inline_updateBytesCRC32() {
5590   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5591   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
5592   // no receiver since it is static method
5593   Node* crc     = argument(0); // type: int
5594   Node* src     = argument(1); // type: oop
5595   Node* offset  = argument(2); // type: int
5596   Node* length  = argument(3); // type: int
5597 
5598   const Type* src_type = src->Value(&_gvn);
5599   const TypeAryPtr* top_src = src_type->isa_aryptr();
5600   if (top_src  == NULL || top_src->klass()  == NULL) {
5601     // failed array check
5602     return false;
5603   }
5604 
5605   // Figure out the size and type of the elements we will be copying.
5606   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5607   if (src_elem != T_BYTE) {
5608     return false;
5609   }
5610 
5611   // 'src_start' points to src array + scaled offset
5612   Node* src_start = array_element_address(src, offset, src_elem);
5613 
5614   // We assume that range check is done by caller.
5615   // TODO: generate range check (offset+length < src.length) in debug VM.
5616 
5617   // Call the stub.
5618   address stubAddr = StubRoutines::updateBytesCRC32();
5619   const char *stubName = "updateBytesCRC32";
5620 
5621   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
5622                                  stubAddr, stubName, TypePtr::BOTTOM,
5623                                  crc, src_start, length);
5624   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5625   set_result(result);
5626   return true;
5627 }
5628 
5629 /**
5630  * Calculate CRC32 for ByteBuffer.
5631  * int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len)
5632  */
5633 bool LibraryCallKit::inline_updateByteBufferCRC32() {
5634   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5635   assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long");
5636   // no receiver since it is static method
5637   Node* crc     = argument(0); // type: int
5638   Node* src     = argument(1); // type: long
5639   Node* offset  = argument(3); // type: int
5640   Node* length  = argument(4); // type: int
5641 
5642   src = ConvL2X(src);  // adjust Java long to machine word
5643   Node* base = _gvn.transform(new CastX2PNode(src));
5644   offset = ConvI2X(offset);
5645 
5646   // 'src_start' points to src array + scaled offset
5647   Node* src_start = basic_plus_adr(top(), base, offset);
5648 
5649   // Call the stub.
5650   address stubAddr = StubRoutines::updateBytesCRC32();
5651   const char *stubName = "updateBytesCRC32";
5652 
5653   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
5654                                  stubAddr, stubName, TypePtr::BOTTOM,
5655                                  crc, src_start, length);
5656   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5657   set_result(result);
5658   return true;
5659 }
5660 
5661 //------------------------------get_table_from_crc32c_class-----------------------
5662 Node * LibraryCallKit::get_table_from_crc32c_class(ciInstanceKlass *crc32c_class) {
5663   Node* table = load_field_from_object(NULL, "byteTable", "[I", /*is_exact*/ false, /*is_static*/ true, crc32c_class);
5664   assert (table != NULL, "wrong version of java.util.zip.CRC32C");
5665 
5666   return table;
5667 }
5668 
5669 //------------------------------inline_updateBytesCRC32C-----------------------
5670 //
5671 // Calculate CRC32C for byte[] array.
5672 // int java.util.zip.CRC32C.updateBytes(int crc, byte[] buf, int off, int end)
5673 //
5674 bool LibraryCallKit::inline_updateBytesCRC32C() {
5675   assert(UseCRC32CIntrinsics, "need CRC32C instruction support");
5676   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
5677   assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded");
5678   // no receiver since it is a static method
5679   Node* crc     = argument(0); // type: int
5680   Node* src     = argument(1); // type: oop
5681   Node* offset  = argument(2); // type: int
5682   Node* end     = argument(3); // type: int
5683 
5684   Node* length = _gvn.transform(new SubINode(end, offset));
5685 
5686   const Type* src_type = src->Value(&_gvn);
5687   const TypeAryPtr* top_src = src_type->isa_aryptr();
5688   if (top_src  == NULL || top_src->klass()  == NULL) {
5689     // failed array check
5690     return false;
5691   }
5692 
5693   // Figure out the size and type of the elements we will be copying.
5694   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5695   if (src_elem != T_BYTE) {
5696     return false;
5697   }
5698 
5699   // 'src_start' points to src array + scaled offset
5700   Node* src_start = array_element_address(src, offset, src_elem);
5701 
5702   // static final int[] byteTable in class CRC32C
5703   Node* table = get_table_from_crc32c_class(callee()->holder());
5704   Node* table_start = array_element_address(table, intcon(0), T_INT);
5705 
5706   // We assume that range check is done by caller.
5707   // TODO: generate range check (offset+length < src.length) in debug VM.
5708 
5709   // Call the stub.
5710   address stubAddr = StubRoutines::updateBytesCRC32C();
5711   const char *stubName = "updateBytesCRC32C";
5712 
5713   Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(),
5714                                  stubAddr, stubName, TypePtr::BOTTOM,
5715                                  crc, src_start, length, table_start);
5716   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5717   set_result(result);
5718   return true;
5719 }
5720 
5721 //------------------------------inline_updateDirectByteBufferCRC32C-----------------------
5722 //
5723 // Calculate CRC32C for DirectByteBuffer.
5724 // int java.util.zip.CRC32C.updateDirectByteBuffer(int crc, long buf, int off, int end)
5725 //
5726 bool LibraryCallKit::inline_updateDirectByteBufferCRC32C() {
5727   assert(UseCRC32CIntrinsics, "need CRC32C instruction support");
5728   assert(callee()->signature()->size() == 5, "updateDirectByteBuffer has 4 parameters and one is long");
5729   assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded");
5730   // no receiver since it is a static method
5731   Node* crc     = argument(0); // type: int
5732   Node* src     = argument(1); // type: long
5733   Node* offset  = argument(3); // type: int
5734   Node* end     = argument(4); // type: int
5735 
5736   Node* length = _gvn.transform(new SubINode(end, offset));
5737 
5738   src = ConvL2X(src);  // adjust Java long to machine word
5739   Node* base = _gvn.transform(new CastX2PNode(src));
5740   offset = ConvI2X(offset);
5741 
5742   // 'src_start' points to src array + scaled offset
5743   Node* src_start = basic_plus_adr(top(), base, offset);
5744 
5745   // static final int[] byteTable in class CRC32C
5746   Node* table = get_table_from_crc32c_class(callee()->holder());
5747   Node* table_start = array_element_address(table, intcon(0), T_INT);
5748 
5749   // Call the stub.
5750   address stubAddr = StubRoutines::updateBytesCRC32C();
5751   const char *stubName = "updateBytesCRC32C";
5752 
5753   Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(),
5754                                  stubAddr, stubName, TypePtr::BOTTOM,
5755                                  crc, src_start, length, table_start);
5756   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5757   set_result(result);
5758   return true;
5759 }
5760 
5761 //------------------------------inline_updateBytesAdler32----------------------
5762 //
5763 // Calculate Adler32 checksum for byte[] array.
5764 // int java.util.zip.Adler32.updateBytes(int crc, byte[] buf, int off, int len)
5765 //
5766 bool LibraryCallKit::inline_updateBytesAdler32() {
5767   assert(UseAdler32Intrinsics, "Adler32 Instrinsic support need"); // check if we actually need to check this flag or check a different one
5768   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
5769   assert(callee()->holder()->is_loaded(), "Adler32 class must be loaded");
5770   // no receiver since it is static method
5771   Node* crc     = argument(0); // type: int
5772   Node* src     = argument(1); // type: oop
5773   Node* offset  = argument(2); // type: int
5774   Node* length  = argument(3); // type: int
5775 
5776   const Type* src_type = src->Value(&_gvn);
5777   const TypeAryPtr* top_src = src_type->isa_aryptr();
5778   if (top_src  == NULL || top_src->klass()  == NULL) {
5779     // failed array check
5780     return false;
5781   }
5782 
5783   // Figure out the size and type of the elements we will be copying.
5784   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5785   if (src_elem != T_BYTE) {
5786     return false;
5787   }
5788 
5789   // 'src_start' points to src array + scaled offset
5790   Node* src_start = array_element_address(src, offset, src_elem);
5791 
5792   // We assume that range check is done by caller.
5793   // TODO: generate range check (offset+length < src.length) in debug VM.
5794 
5795   // Call the stub.
5796   address stubAddr = StubRoutines::updateBytesAdler32();
5797   const char *stubName = "updateBytesAdler32";
5798 
5799   Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesAdler32_Type(),
5800                                  stubAddr, stubName, TypePtr::BOTTOM,
5801                                  crc, src_start, length);
5802   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5803   set_result(result);
5804   return true;
5805 }
5806 
5807 //------------------------------inline_updateByteBufferAdler32---------------
5808 //
5809 // Calculate Adler32 checksum for DirectByteBuffer.
5810 // int java.util.zip.Adler32.updateByteBuffer(int crc, long buf, int off, int len)
5811 //
5812 bool LibraryCallKit::inline_updateByteBufferAdler32() {
5813   assert(UseAdler32Intrinsics, "Adler32 Instrinsic support need"); // check if we actually need to check this flag or check a different one
5814   assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long");
5815   assert(callee()->holder()->is_loaded(), "Adler32 class must be loaded");
5816   // no receiver since it is static method
5817   Node* crc     = argument(0); // type: int
5818   Node* src     = argument(1); // type: long
5819   Node* offset  = argument(3); // type: int
5820   Node* length  = argument(4); // type: int
5821 
5822   src = ConvL2X(src);  // adjust Java long to machine word
5823   Node* base = _gvn.transform(new CastX2PNode(src));
5824   offset = ConvI2X(offset);
5825 
5826   // 'src_start' points to src array + scaled offset
5827   Node* src_start = basic_plus_adr(top(), base, offset);
5828 
5829   // Call the stub.
5830   address stubAddr = StubRoutines::updateBytesAdler32();
5831   const char *stubName = "updateBytesAdler32";
5832 
5833   Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesAdler32_Type(),
5834                                  stubAddr, stubName, TypePtr::BOTTOM,
5835                                  crc, src_start, length);
5836 
5837   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5838   set_result(result);
5839   return true;
5840 }
5841 
5842 //----------------------------inline_reference_get----------------------------
5843 // public T java.lang.ref.Reference.get();
5844 bool LibraryCallKit::inline_reference_get() {
5845   const int referent_offset = java_lang_ref_Reference::referent_offset;
5846   guarantee(referent_offset > 0, "should have already been set");
5847 
5848   // Get the argument:
5849   Node* reference_obj = null_check_receiver();
5850   if (stopped()) return true;
5851 
5852   Node* adr = basic_plus_adr(reference_obj, reference_obj, referent_offset);
5853 
5854   ciInstanceKlass* klass = env()->Object_klass();
5855   const TypeOopPtr* object_type = TypeOopPtr::make_from_klass(klass);
5856 
5857   Node* no_ctrl = NULL;
5858   Node* result = make_load(no_ctrl, adr, object_type, T_OBJECT, MemNode::unordered);
5859 
5860   // Use the pre-barrier to record the value in the referent field
5861   pre_barrier(false /* do_load */,
5862               control(),
5863               NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
5864               result /* pre_val */,
5865               T_OBJECT);
5866 
5867   // Add memory barrier to prevent commoning reads from this field
5868   // across safepoint since GC can change its value.
5869   insert_mem_bar(Op_MemBarCPUOrder);
5870 
5871   set_result(result);
5872   return true;
5873 }
5874 
5875 
5876 Node * LibraryCallKit::load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString,
5877                                               bool is_exact=true, bool is_static=false,
5878                                               ciInstanceKlass * fromKls=NULL) {
5879   if (fromKls == NULL) {
5880     const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr();
5881     assert(tinst != NULL, "obj is null");
5882     assert(tinst->klass()->is_loaded(), "obj is not loaded");
5883     assert(!is_exact || tinst->klass_is_exact(), "klass not exact");
5884     fromKls = tinst->klass()->as_instance_klass();
5885   } else {
5886     assert(is_static, "only for static field access");
5887   }
5888   ciField* field = fromKls->get_field_by_name(ciSymbol::make(fieldName),
5889                                               ciSymbol::make(fieldTypeString),
5890                                               is_static);
5891 
5892   assert (field != NULL, "undefined field");
5893   if (field == NULL) return (Node *) NULL;
5894 
5895   if (is_static) {
5896     const TypeInstPtr* tip = TypeInstPtr::make(fromKls->java_mirror());
5897     fromObj = makecon(tip);
5898   }
5899 
5900   // Next code  copied from Parse::do_get_xxx():
5901 
5902   // Compute address and memory type.
5903   int offset  = field->offset_in_bytes();
5904   bool is_vol = field->is_volatile();
5905   ciType* field_klass = field->type();
5906   assert(field_klass->is_loaded(), "should be loaded");
5907   const TypePtr* adr_type = C->alias_type(field)->adr_type();
5908   Node *adr = basic_plus_adr(fromObj, fromObj, offset);
5909   BasicType bt = field->layout_type();
5910 
5911   // Build the resultant type of the load
5912   const Type *type;
5913   if (bt == T_OBJECT) {
5914     type = TypeOopPtr::make_from_klass(field_klass->as_klass());
5915   } else {
5916     type = Type::get_const_basic_type(bt);
5917   }
5918 
5919   if (support_IRIW_for_not_multiple_copy_atomic_cpu && is_vol) {
5920     insert_mem_bar(Op_MemBarVolatile);   // StoreLoad barrier
5921   }
5922   // Build the load.
5923   MemNode::MemOrd mo = is_vol ? MemNode::acquire : MemNode::unordered;
5924   Node* loadedField = make_load(NULL, adr, type, bt, adr_type, mo, LoadNode::DependsOnlyOnTest, is_vol);
5925   // If reference is volatile, prevent following memory ops from
5926   // floating up past the volatile read.  Also prevents commoning
5927   // another volatile read.
5928   if (is_vol) {
5929     // Memory barrier includes bogus read of value to force load BEFORE membar
5930     insert_mem_bar(Op_MemBarAcquire, loadedField);
5931   }
5932   return loadedField;
5933 }
5934 
5935 Node * LibraryCallKit::field_address_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString,
5936                                                  bool is_exact = true, bool is_static = false,
5937                                                  ciInstanceKlass * fromKls = NULL) {
5938   if (fromKls == NULL) {
5939     const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr();
5940     assert(tinst != NULL, "obj is null");
5941     assert(tinst->klass()->is_loaded(), "obj is not loaded");
5942     assert(!is_exact || tinst->klass_is_exact(), "klass not exact");
5943     fromKls = tinst->klass()->as_instance_klass();
5944   }
5945   else {
5946     assert(is_static, "only for static field access");
5947   }
5948   ciField* field = fromKls->get_field_by_name(ciSymbol::make(fieldName),
5949     ciSymbol::make(fieldTypeString),
5950     is_static);
5951 
5952   assert(field != NULL, "undefined field");
5953   assert(!field->is_volatile(), "not defined for volatile fields");
5954 
5955   if (is_static) {
5956     const TypeInstPtr* tip = TypeInstPtr::make(fromKls->java_mirror());
5957     fromObj = makecon(tip);
5958   }
5959 
5960   // Next code  copied from Parse::do_get_xxx():
5961 
5962   // Compute address and memory type.
5963   int offset = field->offset_in_bytes();
5964   Node *adr = basic_plus_adr(fromObj, fromObj, offset);
5965 
5966   return adr;
5967 }
5968 
5969 //------------------------------inline_aescrypt_Block-----------------------
5970 bool LibraryCallKit::inline_aescrypt_Block(vmIntrinsics::ID id) {
5971   address stubAddr = NULL;
5972   const char *stubName;
5973   assert(UseAES, "need AES instruction support");
5974 
5975   switch(id) {
5976   case vmIntrinsics::_aescrypt_encryptBlock:
5977     stubAddr = StubRoutines::aescrypt_encryptBlock();
5978     stubName = "aescrypt_encryptBlock";
5979     break;
5980   case vmIntrinsics::_aescrypt_decryptBlock:
5981     stubAddr = StubRoutines::aescrypt_decryptBlock();
5982     stubName = "aescrypt_decryptBlock";
5983     break;
5984   }
5985   if (stubAddr == NULL) return false;
5986 
5987   Node* aescrypt_object = argument(0);
5988   Node* src             = argument(1);
5989   Node* src_offset      = argument(2);
5990   Node* dest            = argument(3);
5991   Node* dest_offset     = argument(4);
5992 
5993   // (1) src and dest are arrays.
5994   const Type* src_type = src->Value(&_gvn);
5995   const Type* dest_type = dest->Value(&_gvn);
5996   const TypeAryPtr* top_src = src_type->isa_aryptr();
5997   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
5998   assert (top_src  != NULL && top_src->klass()  != NULL &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
5999 
6000   // for the quick and dirty code we will skip all the checks.
6001   // we are just trying to get the call to be generated.
6002   Node* src_start  = src;
6003   Node* dest_start = dest;
6004   if (src_offset != NULL || dest_offset != NULL) {
6005     assert(src_offset != NULL && dest_offset != NULL, "");
6006     src_start  = array_element_address(src,  src_offset,  T_BYTE);
6007     dest_start = array_element_address(dest, dest_offset, T_BYTE);
6008   }
6009 
6010   // now need to get the start of its expanded key array
6011   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
6012   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
6013   if (k_start == NULL) return false;
6014 
6015   if (Matcher::pass_original_key_for_aes()) {
6016     // on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to
6017     // compatibility issues between Java key expansion and SPARC crypto instructions
6018     Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object);
6019     if (original_k_start == NULL) return false;
6020 
6021     // Call the stub.
6022     make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
6023                       stubAddr, stubName, TypePtr::BOTTOM,
6024                       src_start, dest_start, k_start, original_k_start);
6025   } else {
6026     // Call the stub.
6027     make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
6028                       stubAddr, stubName, TypePtr::BOTTOM,
6029                       src_start, dest_start, k_start);
6030   }
6031 
6032   return true;
6033 }
6034 
6035 //------------------------------inline_cipherBlockChaining_AESCrypt-----------------------
6036 bool LibraryCallKit::inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id) {
6037   address stubAddr = NULL;
6038   const char *stubName = NULL;
6039 
6040   assert(UseAES, "need AES instruction support");
6041 
6042   switch(id) {
6043   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
6044     stubAddr = StubRoutines::cipherBlockChaining_encryptAESCrypt();
6045     stubName = "cipherBlockChaining_encryptAESCrypt";
6046     break;
6047   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
6048     stubAddr = StubRoutines::cipherBlockChaining_decryptAESCrypt();
6049     stubName = "cipherBlockChaining_decryptAESCrypt";
6050     break;
6051   }
6052   if (stubAddr == NULL) return false;
6053 
6054   Node* cipherBlockChaining_object = argument(0);
6055   Node* src                        = argument(1);
6056   Node* src_offset                 = argument(2);
6057   Node* len                        = argument(3);
6058   Node* dest                       = argument(4);
6059   Node* dest_offset                = argument(5);
6060 
6061   // (1) src and dest are arrays.
6062   const Type* src_type = src->Value(&_gvn);
6063   const Type* dest_type = dest->Value(&_gvn);
6064   const TypeAryPtr* top_src = src_type->isa_aryptr();
6065   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
6066   assert (top_src  != NULL && top_src->klass()  != NULL
6067           &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
6068 
6069   // checks are the responsibility of the caller
6070   Node* src_start  = src;
6071   Node* dest_start = dest;
6072   if (src_offset != NULL || dest_offset != NULL) {
6073     assert(src_offset != NULL && dest_offset != NULL, "");
6074     src_start  = array_element_address(src,  src_offset,  T_BYTE);
6075     dest_start = array_element_address(dest, dest_offset, T_BYTE);
6076   }
6077 
6078   // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
6079   // (because of the predicated logic executed earlier).
6080   // so we cast it here safely.
6081   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
6082 
6083   Node* embeddedCipherObj = load_field_from_object(cipherBlockChaining_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
6084   if (embeddedCipherObj == NULL) return false;
6085 
6086   // cast it to what we know it will be at runtime
6087   const TypeInstPtr* tinst = _gvn.type(cipherBlockChaining_object)->isa_instptr();
6088   assert(tinst != NULL, "CBC obj is null");
6089   assert(tinst->klass()->is_loaded(), "CBC obj is not loaded");
6090   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
6091   assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded");
6092 
6093   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
6094   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
6095   const TypeOopPtr* xtype = aklass->as_instance_type();
6096   Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype);
6097   aescrypt_object = _gvn.transform(aescrypt_object);
6098 
6099   // we need to get the start of the aescrypt_object's expanded key array
6100   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
6101   if (k_start == NULL) return false;
6102 
6103   // similarly, get the start address of the r vector
6104   Node* objRvec = load_field_from_object(cipherBlockChaining_object, "r", "[B", /*is_exact*/ false);
6105   if (objRvec == NULL) return false;
6106   Node* r_start = array_element_address(objRvec, intcon(0), T_BYTE);
6107 
6108   Node* cbcCrypt;
6109   if (Matcher::pass_original_key_for_aes()) {
6110     // on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to
6111     // compatibility issues between Java key expansion and SPARC crypto instructions
6112     Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object);
6113     if (original_k_start == NULL) return false;
6114 
6115     // Call the stub, passing src_start, dest_start, k_start, r_start, src_len and original_k_start
6116     cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
6117                                  OptoRuntime::cipherBlockChaining_aescrypt_Type(),
6118                                  stubAddr, stubName, TypePtr::BOTTOM,
6119                                  src_start, dest_start, k_start, r_start, len, original_k_start);
6120   } else {
6121     // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
6122     cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
6123                                  OptoRuntime::cipherBlockChaining_aescrypt_Type(),
6124                                  stubAddr, stubName, TypePtr::BOTTOM,
6125                                  src_start, dest_start, k_start, r_start, len);
6126   }
6127 
6128   // return cipher length (int)
6129   Node* retvalue = _gvn.transform(new ProjNode(cbcCrypt, TypeFunc::Parms));
6130   set_result(retvalue);
6131   return true;
6132 }
6133 
6134 //------------------------------inline_counterMode_AESCrypt-----------------------
6135 bool LibraryCallKit::inline_counterMode_AESCrypt(vmIntrinsics::ID id) {
6136   assert(UseAES, "need AES instruction support");
6137   if (!UseAESCTRIntrinsics) return false;
6138 
6139   address stubAddr = NULL;
6140   const char *stubName = NULL;
6141   if (id == vmIntrinsics::_counterMode_AESCrypt) {
6142     stubAddr = StubRoutines::counterMode_AESCrypt();
6143     stubName = "counterMode_AESCrypt";
6144   }
6145   if (stubAddr == NULL) return false;
6146 
6147   Node* counterMode_object = argument(0);
6148   Node* src = argument(1);
6149   Node* src_offset = argument(2);
6150   Node* len = argument(3);
6151   Node* dest = argument(4);
6152   Node* dest_offset = argument(5);
6153 
6154   // (1) src and dest are arrays.
6155   const Type* src_type = src->Value(&_gvn);
6156   const Type* dest_type = dest->Value(&_gvn);
6157   const TypeAryPtr* top_src = src_type->isa_aryptr();
6158   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
6159   assert(top_src != NULL && top_src->klass() != NULL &&
6160          top_dest != NULL && top_dest->klass() != NULL, "args are strange");
6161 
6162   // checks are the responsibility of the caller
6163   Node* src_start = src;
6164   Node* dest_start = dest;
6165   if (src_offset != NULL || dest_offset != NULL) {
6166     assert(src_offset != NULL && dest_offset != NULL, "");
6167     src_start = array_element_address(src, src_offset, T_BYTE);
6168     dest_start = array_element_address(dest, dest_offset, T_BYTE);
6169   }
6170 
6171   // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
6172   // (because of the predicated logic executed earlier).
6173   // so we cast it here safely.
6174   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
6175   Node* embeddedCipherObj = load_field_from_object(counterMode_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
6176   if (embeddedCipherObj == NULL) return false;
6177   // cast it to what we know it will be at runtime
6178   const TypeInstPtr* tinst = _gvn.type(counterMode_object)->isa_instptr();
6179   assert(tinst != NULL, "CTR obj is null");
6180   assert(tinst->klass()->is_loaded(), "CTR obj is not loaded");
6181   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
6182   assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded");
6183   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
6184   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
6185   const TypeOopPtr* xtype = aklass->as_instance_type();
6186   Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype);
6187   aescrypt_object = _gvn.transform(aescrypt_object);
6188   // we need to get the start of the aescrypt_object's expanded key array
6189   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
6190   if (k_start == NULL) return false;
6191   // similarly, get the start address of the r vector
6192   Node* obj_counter = load_field_from_object(counterMode_object, "counter", "[B", /*is_exact*/ false);
6193   if (obj_counter == NULL) return false;
6194   Node* cnt_start = array_element_address(obj_counter, intcon(0), T_BYTE);
6195 
6196   Node* saved_encCounter = load_field_from_object(counterMode_object, "encryptedCounter", "[B", /*is_exact*/ false);
6197   if (saved_encCounter == NULL) return false;
6198   Node* saved_encCounter_start = array_element_address(saved_encCounter, intcon(0), T_BYTE);
6199   Node* used = field_address_from_object(counterMode_object, "used", "I", /*is_exact*/ false);
6200 
6201   Node* ctrCrypt;
6202   if (Matcher::pass_original_key_for_aes()) {
6203     // no SPARC version for AES/CTR intrinsics now.
6204     return false;
6205   }
6206   // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
6207   ctrCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
6208                                OptoRuntime::counterMode_aescrypt_Type(),
6209                                stubAddr, stubName, TypePtr::BOTTOM,
6210                                src_start, dest_start, k_start, cnt_start, len, saved_encCounter_start, used);
6211 
6212   // return cipher length (int)
6213   Node* retvalue = _gvn.transform(new ProjNode(ctrCrypt, TypeFunc::Parms));
6214   set_result(retvalue);
6215   return true;
6216 }
6217 
6218 //------------------------------get_key_start_from_aescrypt_object-----------------------
6219 Node * LibraryCallKit::get_key_start_from_aescrypt_object(Node *aescrypt_object) {
6220 #ifdef PPC64
6221   // MixColumns for decryption can be reduced by preprocessing MixColumns with round keys.
6222   // Intel's extention is based on this optimization and AESCrypt generates round keys by preprocessing MixColumns.
6223   // However, ppc64 vncipher processes MixColumns and requires the same round keys with encryption.
6224   // The ppc64 stubs of encryption and decryption use the same round keys (sessionK[0]).
6225   Node* objSessionK = load_field_from_object(aescrypt_object, "sessionK", "[[I", /*is_exact*/ false);
6226   assert (objSessionK != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
6227   if (objSessionK == NULL) {
6228     return (Node *) NULL;
6229   }
6230   Node* objAESCryptKey = load_array_element(control(), objSessionK, intcon(0), TypeAryPtr::OOPS);
6231 #else
6232   Node* objAESCryptKey = load_field_from_object(aescrypt_object, "K", "[I", /*is_exact*/ false);
6233 #endif // PPC64
6234   assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
6235   if (objAESCryptKey == NULL) return (Node *) NULL;
6236 
6237   // now have the array, need to get the start address of the K array
6238   Node* k_start = array_element_address(objAESCryptKey, intcon(0), T_INT);
6239   return k_start;
6240 }
6241 
6242 //------------------------------get_original_key_start_from_aescrypt_object-----------------------
6243 Node * LibraryCallKit::get_original_key_start_from_aescrypt_object(Node *aescrypt_object) {
6244   Node* objAESCryptKey = load_field_from_object(aescrypt_object, "lastKey", "[B", /*is_exact*/ false);
6245   assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
6246   if (objAESCryptKey == NULL) return (Node *) NULL;
6247 
6248   // now have the array, need to get the start address of the lastKey array
6249   Node* original_k_start = array_element_address(objAESCryptKey, intcon(0), T_BYTE);
6250   return original_k_start;
6251 }
6252 
6253 //----------------------------inline_cipherBlockChaining_AESCrypt_predicate----------------------------
6254 // Return node representing slow path of predicate check.
6255 // the pseudo code we want to emulate with this predicate is:
6256 // for encryption:
6257 //    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
6258 // for decryption:
6259 //    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
6260 //    note cipher==plain is more conservative than the original java code but that's OK
6261 //
6262 Node* LibraryCallKit::inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting) {
6263   // The receiver was checked for NULL already.
6264   Node* objCBC = argument(0);
6265 
6266   // Load embeddedCipher field of CipherBlockChaining object.
6267   Node* embeddedCipherObj = load_field_from_object(objCBC, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
6268 
6269   // get AESCrypt klass for instanceOf check
6270   // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
6271   // will have same classloader as CipherBlockChaining object
6272   const TypeInstPtr* tinst = _gvn.type(objCBC)->isa_instptr();
6273   assert(tinst != NULL, "CBCobj is null");
6274   assert(tinst->klass()->is_loaded(), "CBCobj is not loaded");
6275 
6276   // we want to do an instanceof comparison against the AESCrypt class
6277   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
6278   if (!klass_AESCrypt->is_loaded()) {
6279     // if AESCrypt is not even loaded, we never take the intrinsic fast path
6280     Node* ctrl = control();
6281     set_control(top()); // no regular fast path
6282     return ctrl;
6283   }
6284   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
6285 
6286   Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
6287   Node* cmp_instof  = _gvn.transform(new CmpINode(instof, intcon(1)));
6288   Node* bool_instof  = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
6289 
6290   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
6291 
6292   // for encryption, we are done
6293   if (!decrypting)
6294     return instof_false;  // even if it is NULL
6295 
6296   // for decryption, we need to add a further check to avoid
6297   // taking the intrinsic path when cipher and plain are the same
6298   // see the original java code for why.
6299   RegionNode* region = new RegionNode(3);
6300   region->init_req(1, instof_false);
6301   Node* src = argument(1);
6302   Node* dest = argument(4);
6303   Node* cmp_src_dest = _gvn.transform(new CmpPNode(src, dest));
6304   Node* bool_src_dest = _gvn.transform(new BoolNode(cmp_src_dest, BoolTest::eq));
6305   Node* src_dest_conjoint = generate_guard(bool_src_dest, NULL, PROB_MIN);
6306   region->init_req(2, src_dest_conjoint);
6307 
6308   record_for_igvn(region);
6309   return _gvn.transform(region);
6310 }
6311 
6312 //----------------------------inline_counterMode_AESCrypt_predicate----------------------------
6313 // Return node representing slow path of predicate check.
6314 // the pseudo code we want to emulate with this predicate is:
6315 // for encryption:
6316 //    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
6317 // for decryption:
6318 //    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
6319 //    note cipher==plain is more conservative than the original java code but that's OK
6320 //
6321 
6322 Node* LibraryCallKit::inline_counterMode_AESCrypt_predicate() {
6323   // The receiver was checked for NULL already.
6324   Node* objCTR = argument(0);
6325 
6326   // Load embeddedCipher field of CipherBlockChaining object.
6327   Node* embeddedCipherObj = load_field_from_object(objCTR, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
6328 
6329   // get AESCrypt klass for instanceOf check
6330   // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
6331   // will have same classloader as CipherBlockChaining object
6332   const TypeInstPtr* tinst = _gvn.type(objCTR)->isa_instptr();
6333   assert(tinst != NULL, "CTRobj is null");
6334   assert(tinst->klass()->is_loaded(), "CTRobj is not loaded");
6335 
6336   // we want to do an instanceof comparison against the AESCrypt class
6337   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
6338   if (!klass_AESCrypt->is_loaded()) {
6339     // if AESCrypt is not even loaded, we never take the intrinsic fast path
6340     Node* ctrl = control();
6341     set_control(top()); // no regular fast path
6342     return ctrl;
6343   }
6344 
6345   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
6346   Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
6347   Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1)));
6348   Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
6349   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
6350 
6351   return instof_false; // even if it is NULL
6352 }
6353 
6354 //------------------------------inline_ghash_processBlocks
6355 bool LibraryCallKit::inline_ghash_processBlocks() {
6356   address stubAddr;
6357   const char *stubName;
6358   assert(UseGHASHIntrinsics, "need GHASH intrinsics support");
6359 
6360   stubAddr = StubRoutines::ghash_processBlocks();
6361   stubName = "ghash_processBlocks";
6362 
6363   Node* data           = argument(0);
6364   Node* offset         = argument(1);
6365   Node* len            = argument(2);
6366   Node* state          = argument(3);
6367   Node* subkeyH        = argument(4);
6368 
6369   Node* state_start  = array_element_address(state, intcon(0), T_LONG);
6370   assert(state_start, "state is NULL");
6371   Node* subkeyH_start  = array_element_address(subkeyH, intcon(0), T_LONG);
6372   assert(subkeyH_start, "subkeyH is NULL");
6373   Node* data_start  = array_element_address(data, offset, T_BYTE);
6374   assert(data_start, "data is NULL");
6375 
6376   Node* ghash = make_runtime_call(RC_LEAF|RC_NO_FP,
6377                                   OptoRuntime::ghash_processBlocks_Type(),
6378                                   stubAddr, stubName, TypePtr::BOTTOM,
6379                                   state_start, subkeyH_start, data_start, len);
6380   return true;
6381 }
6382 
6383 //------------------------------inline_sha_implCompress-----------------------
6384 //
6385 // Calculate SHA (i.e., SHA-1) for single-block byte[] array.
6386 // void com.sun.security.provider.SHA.implCompress(byte[] buf, int ofs)
6387 //
6388 // Calculate SHA2 (i.e., SHA-244 or SHA-256) for single-block byte[] array.
6389 // void com.sun.security.provider.SHA2.implCompress(byte[] buf, int ofs)
6390 //
6391 // Calculate SHA5 (i.e., SHA-384 or SHA-512) for single-block byte[] array.
6392 // void com.sun.security.provider.SHA5.implCompress(byte[] buf, int ofs)
6393 //
6394 bool LibraryCallKit::inline_sha_implCompress(vmIntrinsics::ID id) {
6395   assert(callee()->signature()->size() == 2, "sha_implCompress has 2 parameters");
6396 
6397   Node* sha_obj = argument(0);
6398   Node* src     = argument(1); // type oop
6399   Node* ofs     = argument(2); // type int
6400 
6401   const Type* src_type = src->Value(&_gvn);
6402   const TypeAryPtr* top_src = src_type->isa_aryptr();
6403   if (top_src  == NULL || top_src->klass()  == NULL) {
6404     // failed array check
6405     return false;
6406   }
6407   // Figure out the size and type of the elements we will be copying.
6408   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
6409   if (src_elem != T_BYTE) {
6410     return false;
6411   }
6412   // 'src_start' points to src array + offset
6413   Node* src_start = array_element_address(src, ofs, src_elem);
6414   Node* state = NULL;
6415   address stubAddr;
6416   const char *stubName;
6417 
6418   switch(id) {
6419   case vmIntrinsics::_sha_implCompress:
6420     assert(UseSHA1Intrinsics, "need SHA1 instruction support");
6421     state = get_state_from_sha_object(sha_obj);
6422     stubAddr = StubRoutines::sha1_implCompress();
6423     stubName = "sha1_implCompress";
6424     break;
6425   case vmIntrinsics::_sha2_implCompress:
6426     assert(UseSHA256Intrinsics, "need SHA256 instruction support");
6427     state = get_state_from_sha_object(sha_obj);
6428     stubAddr = StubRoutines::sha256_implCompress();
6429     stubName = "sha256_implCompress";
6430     break;
6431   case vmIntrinsics::_sha5_implCompress:
6432     assert(UseSHA512Intrinsics, "need SHA512 instruction support");
6433     state = get_state_from_sha5_object(sha_obj);
6434     stubAddr = StubRoutines::sha512_implCompress();
6435     stubName = "sha512_implCompress";
6436     break;
6437   default:
6438     fatal_unexpected_iid(id);
6439     return false;
6440   }
6441   if (state == NULL) return false;
6442 
6443   // Call the stub.
6444   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::sha_implCompress_Type(),
6445                                  stubAddr, stubName, TypePtr::BOTTOM,
6446                                  src_start, state);
6447 
6448   return true;
6449 }
6450 
6451 //------------------------------inline_digestBase_implCompressMB-----------------------
6452 //
6453 // Calculate SHA/SHA2/SHA5 for multi-block byte[] array.
6454 // int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit)
6455 //
6456 bool LibraryCallKit::inline_digestBase_implCompressMB(int predicate) {
6457   assert(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics,
6458          "need SHA1/SHA256/SHA512 instruction support");
6459   assert((uint)predicate < 3, "sanity");
6460   assert(callee()->signature()->size() == 3, "digestBase_implCompressMB has 3 parameters");
6461 
6462   Node* digestBase_obj = argument(0); // The receiver was checked for NULL already.
6463   Node* src            = argument(1); // byte[] array
6464   Node* ofs            = argument(2); // type int
6465   Node* limit          = argument(3); // type int
6466 
6467   const Type* src_type = src->Value(&_gvn);
6468   const TypeAryPtr* top_src = src_type->isa_aryptr();
6469   if (top_src  == NULL || top_src->klass()  == NULL) {
6470     // failed array check
6471     return false;
6472   }
6473   // Figure out the size and type of the elements we will be copying.
6474   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
6475   if (src_elem != T_BYTE) {
6476     return false;
6477   }
6478   // 'src_start' points to src array + offset
6479   Node* src_start = array_element_address(src, ofs, src_elem);
6480 
6481   const char* klass_SHA_name = NULL;
6482   const char* stub_name = NULL;
6483   address     stub_addr = NULL;
6484   bool        long_state = false;
6485 
6486   switch (predicate) {
6487   case 0:
6488     if (UseSHA1Intrinsics) {
6489       klass_SHA_name = "sun/security/provider/SHA";
6490       stub_name = "sha1_implCompressMB";
6491       stub_addr = StubRoutines::sha1_implCompressMB();
6492     }
6493     break;
6494   case 1:
6495     if (UseSHA256Intrinsics) {
6496       klass_SHA_name = "sun/security/provider/SHA2";
6497       stub_name = "sha256_implCompressMB";
6498       stub_addr = StubRoutines::sha256_implCompressMB();
6499     }
6500     break;
6501   case 2:
6502     if (UseSHA512Intrinsics) {
6503       klass_SHA_name = "sun/security/provider/SHA5";
6504       stub_name = "sha512_implCompressMB";
6505       stub_addr = StubRoutines::sha512_implCompressMB();
6506       long_state = true;
6507     }
6508     break;
6509   default:
6510     fatal("unknown SHA intrinsic predicate: %d", predicate);
6511   }
6512   if (klass_SHA_name != NULL) {
6513     // get DigestBase klass to lookup for SHA klass
6514     const TypeInstPtr* tinst = _gvn.type(digestBase_obj)->isa_instptr();
6515     assert(tinst != NULL, "digestBase_obj is not instance???");
6516     assert(tinst->klass()->is_loaded(), "DigestBase is not loaded");
6517 
6518     ciKlass* klass_SHA = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make(klass_SHA_name));
6519     assert(klass_SHA->is_loaded(), "predicate checks that this class is loaded");
6520     ciInstanceKlass* instklass_SHA = klass_SHA->as_instance_klass();
6521     return inline_sha_implCompressMB(digestBase_obj, instklass_SHA, long_state, stub_addr, stub_name, src_start, ofs, limit);
6522   }
6523   return false;
6524 }
6525 //------------------------------inline_sha_implCompressMB-----------------------
6526 bool LibraryCallKit::inline_sha_implCompressMB(Node* digestBase_obj, ciInstanceKlass* instklass_SHA,
6527                                                bool long_state, address stubAddr, const char *stubName,
6528                                                Node* src_start, Node* ofs, Node* limit) {
6529   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_SHA);
6530   const TypeOopPtr* xtype = aklass->as_instance_type();
6531   Node* sha_obj = new CheckCastPPNode(control(), digestBase_obj, xtype);
6532   sha_obj = _gvn.transform(sha_obj);
6533 
6534   Node* state;
6535   if (long_state) {
6536     state = get_state_from_sha5_object(sha_obj);
6537   } else {
6538     state = get_state_from_sha_object(sha_obj);
6539   }
6540   if (state == NULL) return false;
6541 
6542   // Call the stub.
6543   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
6544                                  OptoRuntime::digestBase_implCompressMB_Type(),
6545                                  stubAddr, stubName, TypePtr::BOTTOM,
6546                                  src_start, state, ofs, limit);
6547   // return ofs (int)
6548   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
6549   set_result(result);
6550 
6551   return true;
6552 }
6553 
6554 //------------------------------get_state_from_sha_object-----------------------
6555 Node * LibraryCallKit::get_state_from_sha_object(Node *sha_object) {
6556   Node* sha_state = load_field_from_object(sha_object, "state", "[I", /*is_exact*/ false);
6557   assert (sha_state != NULL, "wrong version of sun.security.provider.SHA/SHA2");
6558   if (sha_state == NULL) return (Node *) NULL;
6559 
6560   // now have the array, need to get the start address of the state array
6561   Node* state = array_element_address(sha_state, intcon(0), T_INT);
6562   return state;
6563 }
6564 
6565 //------------------------------get_state_from_sha5_object-----------------------
6566 Node * LibraryCallKit::get_state_from_sha5_object(Node *sha_object) {
6567   Node* sha_state = load_field_from_object(sha_object, "state", "[J", /*is_exact*/ false);
6568   assert (sha_state != NULL, "wrong version of sun.security.provider.SHA5");
6569   if (sha_state == NULL) return (Node *) NULL;
6570 
6571   // now have the array, need to get the start address of the state array
6572   Node* state = array_element_address(sha_state, intcon(0), T_LONG);
6573   return state;
6574 }
6575 
6576 //----------------------------inline_digestBase_implCompressMB_predicate----------------------------
6577 // Return node representing slow path of predicate check.
6578 // the pseudo code we want to emulate with this predicate is:
6579 //    if (digestBaseObj instanceof SHA/SHA2/SHA5) do_intrinsic, else do_javapath
6580 //
6581 Node* LibraryCallKit::inline_digestBase_implCompressMB_predicate(int predicate) {
6582   assert(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics,
6583          "need SHA1/SHA256/SHA512 instruction support");
6584   assert((uint)predicate < 3, "sanity");
6585 
6586   // The receiver was checked for NULL already.
6587   Node* digestBaseObj = argument(0);
6588 
6589   // get DigestBase klass for instanceOf check
6590   const TypeInstPtr* tinst = _gvn.type(digestBaseObj)->isa_instptr();
6591   assert(tinst != NULL, "digestBaseObj is null");
6592   assert(tinst->klass()->is_loaded(), "DigestBase is not loaded");
6593 
6594   const char* klass_SHA_name = NULL;
6595   switch (predicate) {
6596   case 0:
6597     if (UseSHA1Intrinsics) {
6598       // we want to do an instanceof comparison against the SHA class
6599       klass_SHA_name = "sun/security/provider/SHA";
6600     }
6601     break;
6602   case 1:
6603     if (UseSHA256Intrinsics) {
6604       // we want to do an instanceof comparison against the SHA2 class
6605       klass_SHA_name = "sun/security/provider/SHA2";
6606     }
6607     break;
6608   case 2:
6609     if (UseSHA512Intrinsics) {
6610       // we want to do an instanceof comparison against the SHA5 class
6611       klass_SHA_name = "sun/security/provider/SHA5";
6612     }
6613     break;
6614   default:
6615     fatal("unknown SHA intrinsic predicate: %d", predicate);
6616   }
6617 
6618   ciKlass* klass_SHA = NULL;
6619   if (klass_SHA_name != NULL) {
6620     klass_SHA = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make(klass_SHA_name));
6621   }
6622   if ((klass_SHA == NULL) || !klass_SHA->is_loaded()) {
6623     // if none of SHA/SHA2/SHA5 is loaded, we never take the intrinsic fast path
6624     Node* ctrl = control();
6625     set_control(top()); // no intrinsic path
6626     return ctrl;
6627   }
6628   ciInstanceKlass* instklass_SHA = klass_SHA->as_instance_klass();
6629 
6630   Node* instofSHA = gen_instanceof(digestBaseObj, makecon(TypeKlassPtr::make(instklass_SHA)));
6631   Node* cmp_instof = _gvn.transform(new CmpINode(instofSHA, intcon(1)));
6632   Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
6633   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
6634 
6635   return instof_false;  // even if it is NULL
6636 }
6637 
6638 bool LibraryCallKit::inline_profileBoolean() {
6639   Node* counts = argument(1);
6640   const TypeAryPtr* ary = NULL;
6641   ciArray* aobj = NULL;
6642   if (counts->is_Con()
6643       && (ary = counts->bottom_type()->isa_aryptr()) != NULL
6644       && (aobj = ary->const_oop()->as_array()) != NULL
6645       && (aobj->length() == 2)) {
6646     // Profile is int[2] where [0] and [1] correspond to false and true value occurrences respectively.
6647     jint false_cnt = aobj->element_value(0).as_int();
6648     jint  true_cnt = aobj->element_value(1).as_int();
6649 
6650     if (C->log() != NULL) {
6651       C->log()->elem("observe source='profileBoolean' false='%d' true='%d'",
6652                      false_cnt, true_cnt);
6653     }
6654 
6655     if (false_cnt + true_cnt == 0) {
6656       // According to profile, never executed.
6657       uncommon_trap_exact(Deoptimization::Reason_intrinsic,
6658                           Deoptimization::Action_reinterpret);
6659       return true;
6660     }
6661 
6662     // result is a boolean (0 or 1) and its profile (false_cnt & true_cnt)
6663     // is a number of each value occurrences.
6664     Node* result = argument(0);
6665     if (false_cnt == 0 || true_cnt == 0) {
6666       // According to profile, one value has been never seen.
6667       int expected_val = (false_cnt == 0) ? 1 : 0;
6668 
6669       Node* cmp  = _gvn.transform(new CmpINode(result, intcon(expected_val)));
6670       Node* test = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
6671 
6672       IfNode* check = create_and_map_if(control(), test, PROB_ALWAYS, COUNT_UNKNOWN);
6673       Node* fast_path = _gvn.transform(new IfTrueNode(check));
6674       Node* slow_path = _gvn.transform(new IfFalseNode(check));
6675 
6676       { // Slow path: uncommon trap for never seen value and then reexecute
6677         // MethodHandleImpl::profileBoolean() to bump the count, so JIT knows
6678         // the value has been seen at least once.
6679         PreserveJVMState pjvms(this);
6680         PreserveReexecuteState preexecs(this);
6681         jvms()->set_should_reexecute(true);
6682 
6683         set_control(slow_path);
6684         set_i_o(i_o());
6685 
6686         uncommon_trap_exact(Deoptimization::Reason_intrinsic,
6687                             Deoptimization::Action_reinterpret);
6688       }
6689       // The guard for never seen value enables sharpening of the result and
6690       // returning a constant. It allows to eliminate branches on the same value
6691       // later on.
6692       set_control(fast_path);
6693       result = intcon(expected_val);
6694     }
6695     // Stop profiling.
6696     // MethodHandleImpl::profileBoolean() has profiling logic in its bytecode.
6697     // By replacing method body with profile data (represented as ProfileBooleanNode
6698     // on IR level) we effectively disable profiling.
6699     // It enables full speed execution once optimized code is generated.
6700     Node* profile = _gvn.transform(new ProfileBooleanNode(result, false_cnt, true_cnt));
6701     C->record_for_igvn(profile);
6702     set_result(profile);
6703     return true;
6704   } else {
6705     // Continue profiling.
6706     // Profile data isn't available at the moment. So, execute method's bytecode version.
6707     // Usually, when GWT LambdaForms are profiled it means that a stand-alone nmethod
6708     // is compiled and counters aren't available since corresponding MethodHandle
6709     // isn't a compile-time constant.
6710     return false;
6711   }
6712 }
6713 
6714 bool LibraryCallKit::inline_isCompileConstant() {
6715   Node* n = argument(0);
6716   set_result(n->is_Con() ? intcon(1) : intcon(0));
6717   return true;
6718 }