1 /*
   2  * Copyright (c) 1994, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.lang;
  27 
  28 import sun.misc.FloatingDecimal;
  29 import sun.misc.FloatConsts;
  30 import sun.misc.DoubleConsts;
  31 import jdk.internal.HotSpotIntrinsicCandidate;
  32 
  33 /**
  34  * The {@code Float} class wraps a value of primitive type
  35  * {@code float} in an object. An object of type
  36  * {@code Float} contains a single field whose type is
  37  * {@code float}.
  38  *
  39  * <p>In addition, this class provides several methods for converting a
  40  * {@code float} to a {@code String} and a
  41  * {@code String} to a {@code float}, as well as other
  42  * constants and methods useful when dealing with a
  43  * {@code float}.
  44  *
  45  * @author  Lee Boynton
  46  * @author  Arthur van Hoff
  47  * @author  Joseph D. Darcy
  48  * @since 1.0
  49  */
  50 public final class Float extends Number implements Comparable<Float> {
  51     /**
  52      * A constant holding the positive infinity of type
  53      * {@code float}. It is equal to the value returned by
  54      * {@code Float.intBitsToFloat(0x7f800000)}.
  55      */
  56     public static final float POSITIVE_INFINITY = 1.0f / 0.0f;
  57 
  58     /**
  59      * A constant holding the negative infinity of type
  60      * {@code float}. It is equal to the value returned by
  61      * {@code Float.intBitsToFloat(0xff800000)}.
  62      */
  63     public static final float NEGATIVE_INFINITY = -1.0f / 0.0f;
  64 
  65     /**
  66      * A constant holding a Not-a-Number (NaN) value of type
  67      * {@code float}.  It is equivalent to the value returned by
  68      * {@code Float.intBitsToFloat(0x7fc00000)}.
  69      */
  70     public static final float NaN = 0.0f / 0.0f;
  71 
  72     /**
  73      * A constant holding the largest positive finite value of type
  74      * {@code float}, (2-2<sup>-23</sup>)&middot;2<sup>127</sup>.
  75      * It is equal to the hexadecimal floating-point literal
  76      * {@code 0x1.fffffeP+127f} and also equal to
  77      * {@code Float.intBitsToFloat(0x7f7fffff)}.
  78      */
  79     public static final float MAX_VALUE = 0x1.fffffeP+127f; // 3.4028235e+38f
  80 
  81     /**
  82      * A constant holding the smallest positive normal value of type
  83      * {@code float}, 2<sup>-126</sup>.  It is equal to the
  84      * hexadecimal floating-point literal {@code 0x1.0p-126f} and also
  85      * equal to {@code Float.intBitsToFloat(0x00800000)}.
  86      *
  87      * @since 1.6
  88      */
  89     public static final float MIN_NORMAL = 0x1.0p-126f; // 1.17549435E-38f
  90 
  91     /**
  92      * A constant holding the smallest positive nonzero value of type
  93      * {@code float}, 2<sup>-149</sup>. It is equal to the
  94      * hexadecimal floating-point literal {@code 0x0.000002P-126f}
  95      * and also equal to {@code Float.intBitsToFloat(0x1)}.
  96      */
  97     public static final float MIN_VALUE = 0x0.000002P-126f; // 1.4e-45f
  98 
  99     /**
 100      * Maximum exponent a finite {@code float} variable may have.  It
 101      * is equal to the value returned by {@code
 102      * Math.getExponent(Float.MAX_VALUE)}.
 103      *
 104      * @since 1.6
 105      */
 106     public static final int MAX_EXPONENT = 127;
 107 
 108     /**
 109      * Minimum exponent a normalized {@code float} variable may have.
 110      * It is equal to the value returned by {@code
 111      * Math.getExponent(Float.MIN_NORMAL)}.
 112      *
 113      * @since 1.6
 114      */
 115     public static final int MIN_EXPONENT = -126;
 116 
 117     /**
 118      * The number of bits used to represent a {@code float} value.
 119      *
 120      * @since 1.5
 121      */
 122     public static final int SIZE = 32;
 123 
 124     /**
 125      * The number of bytes used to represent a {@code float} value.
 126      *
 127      * @since 1.8
 128      */
 129     public static final int BYTES = SIZE / Byte.SIZE;
 130 
 131     /**
 132      * The {@code Class} instance representing the primitive type
 133      * {@code float}.
 134      *
 135      * @since 1.1
 136      */
 137     @SuppressWarnings("unchecked")
 138     public static final Class<Float> TYPE = (Class<Float>) Class.getPrimitiveClass("float");
 139 
 140     /**
 141      * Returns a string representation of the {@code float}
 142      * argument. All characters mentioned below are ASCII characters.
 143      * <ul>
 144      * <li>If the argument is NaN, the result is the string
 145      * "{@code NaN}".
 146      * <li>Otherwise, the result is a string that represents the sign and
 147      *     magnitude (absolute value) of the argument. If the sign is
 148      *     negative, the first character of the result is
 149      *     '{@code -}' ({@code '\u005Cu002D'}); if the sign is
 150      *     positive, no sign character appears in the result. As for
 151      *     the magnitude <i>m</i>:
 152      * <ul>
 153      * <li>If <i>m</i> is infinity, it is represented by the characters
 154      *     {@code "Infinity"}; thus, positive infinity produces
 155      *     the result {@code "Infinity"} and negative infinity
 156      *     produces the result {@code "-Infinity"}.
 157      * <li>If <i>m</i> is zero, it is represented by the characters
 158      *     {@code "0.0"}; thus, negative zero produces the result
 159      *     {@code "-0.0"} and positive zero produces the result
 160      *     {@code "0.0"}.
 161      * <li> If <i>m</i> is greater than or equal to 10<sup>-3</sup> but
 162      *      less than 10<sup>7</sup>, then it is represented as the
 163      *      integer part of <i>m</i>, in decimal form with no leading
 164      *      zeroes, followed by '{@code .}'
 165      *      ({@code '\u005Cu002E'}), followed by one or more
 166      *      decimal digits representing the fractional part of
 167      *      <i>m</i>.
 168      * <li> If <i>m</i> is less than 10<sup>-3</sup> or greater than or
 169      *      equal to 10<sup>7</sup>, then it is represented in
 170      *      so-called "computerized scientific notation." Let <i>n</i>
 171      *      be the unique integer such that 10<sup><i>n</i> </sup>&le;
 172      *      <i>m</i> {@literal <} 10<sup><i>n</i>+1</sup>; then let <i>a</i>
 173      *      be the mathematically exact quotient of <i>m</i> and
 174      *      10<sup><i>n</i></sup> so that 1 &le; <i>a</i> {@literal <} 10.
 175      *      The magnitude is then represented as the integer part of
 176      *      <i>a</i>, as a single decimal digit, followed by
 177      *      '{@code .}' ({@code '\u005Cu002E'}), followed by
 178      *      decimal digits representing the fractional part of
 179      *      <i>a</i>, followed by the letter '{@code E}'
 180      *      ({@code '\u005Cu0045'}), followed by a representation
 181      *      of <i>n</i> as a decimal integer, as produced by the
 182      *      method {@link java.lang.Integer#toString(int)}.
 183      *
 184      * </ul>
 185      * </ul>
 186      * How many digits must be printed for the fractional part of
 187      * <i>m</i> or <i>a</i>? There must be at least one digit
 188      * to represent the fractional part, and beyond that as many, but
 189      * only as many, more digits as are needed to uniquely distinguish
 190      * the argument value from adjacent values of type
 191      * {@code float}. That is, suppose that <i>x</i> is the
 192      * exact mathematical value represented by the decimal
 193      * representation produced by this method for a finite nonzero
 194      * argument <i>f</i>. Then <i>f</i> must be the {@code float}
 195      * value nearest to <i>x</i>; or, if two {@code float} values are
 196      * equally close to <i>x</i>, then <i>f</i> must be one of
 197      * them and the least significant bit of the significand of
 198      * <i>f</i> must be {@code 0}.
 199      *
 200      * <p>To create localized string representations of a floating-point
 201      * value, use subclasses of {@link java.text.NumberFormat}.
 202      *
 203      * @param   f   the float to be converted.
 204      * @return a string representation of the argument.
 205      */
 206     public static String toString(float f) {
 207         return FloatingDecimal.toJavaFormatString(f);
 208     }
 209 
 210     /**
 211      * Returns a hexadecimal string representation of the
 212      * {@code float} argument. All characters mentioned below are
 213      * ASCII characters.
 214      *
 215      * <ul>
 216      * <li>If the argument is NaN, the result is the string
 217      *     "{@code NaN}".
 218      * <li>Otherwise, the result is a string that represents the sign and
 219      * magnitude (absolute value) of the argument. If the sign is negative,
 220      * the first character of the result is '{@code -}'
 221      * ({@code '\u005Cu002D'}); if the sign is positive, no sign character
 222      * appears in the result. As for the magnitude <i>m</i>:
 223      *
 224      * <ul>
 225      * <li>If <i>m</i> is infinity, it is represented by the string
 226      * {@code "Infinity"}; thus, positive infinity produces the
 227      * result {@code "Infinity"} and negative infinity produces
 228      * the result {@code "-Infinity"}.
 229      *
 230      * <li>If <i>m</i> is zero, it is represented by the string
 231      * {@code "0x0.0p0"}; thus, negative zero produces the result
 232      * {@code "-0x0.0p0"} and positive zero produces the result
 233      * {@code "0x0.0p0"}.
 234      *
 235      * <li>If <i>m</i> is a {@code float} value with a
 236      * normalized representation, substrings are used to represent the
 237      * significand and exponent fields.  The significand is
 238      * represented by the characters {@code "0x1."}
 239      * followed by a lowercase hexadecimal representation of the rest
 240      * of the significand as a fraction.  Trailing zeros in the
 241      * hexadecimal representation are removed unless all the digits
 242      * are zero, in which case a single zero is used. Next, the
 243      * exponent is represented by {@code "p"} followed
 244      * by a decimal string of the unbiased exponent as if produced by
 245      * a call to {@link Integer#toString(int) Integer.toString} on the
 246      * exponent value.
 247      *
 248      * <li>If <i>m</i> is a {@code float} value with a subnormal
 249      * representation, the significand is represented by the
 250      * characters {@code "0x0."} followed by a
 251      * hexadecimal representation of the rest of the significand as a
 252      * fraction.  Trailing zeros in the hexadecimal representation are
 253      * removed. Next, the exponent is represented by
 254      * {@code "p-126"}.  Note that there must be at
 255      * least one nonzero digit in a subnormal significand.
 256      *
 257      * </ul>
 258      *
 259      * </ul>
 260      *
 261      * <table border>
 262      * <caption>Examples</caption>
 263      * <tr><th>Floating-point Value</th><th>Hexadecimal String</th>
 264      * <tr><td>{@code 1.0}</td> <td>{@code 0x1.0p0}</td>
 265      * <tr><td>{@code -1.0}</td>        <td>{@code -0x1.0p0}</td>
 266      * <tr><td>{@code 2.0}</td> <td>{@code 0x1.0p1}</td>
 267      * <tr><td>{@code 3.0}</td> <td>{@code 0x1.8p1}</td>
 268      * <tr><td>{@code 0.5}</td> <td>{@code 0x1.0p-1}</td>
 269      * <tr><td>{@code 0.25}</td>        <td>{@code 0x1.0p-2}</td>
 270      * <tr><td>{@code Float.MAX_VALUE}</td>
 271      *     <td>{@code 0x1.fffffep127}</td>
 272      * <tr><td>{@code Minimum Normal Value}</td>
 273      *     <td>{@code 0x1.0p-126}</td>
 274      * <tr><td>{@code Maximum Subnormal Value}</td>
 275      *     <td>{@code 0x0.fffffep-126}</td>
 276      * <tr><td>{@code Float.MIN_VALUE}</td>
 277      *     <td>{@code 0x0.000002p-126}</td>
 278      * </table>
 279      * @param   f   the {@code float} to be converted.
 280      * @return a hex string representation of the argument.
 281      * @since 1.5
 282      * @author Joseph D. Darcy
 283      */
 284     public static String toHexString(float f) {
 285         if (Math.abs(f) < FloatConsts.MIN_NORMAL
 286             &&  f != 0.0f ) {// float subnormal
 287             // Adjust exponent to create subnormal double, then
 288             // replace subnormal double exponent with subnormal float
 289             // exponent
 290             String s = Double.toHexString(Math.scalb((double)f,
 291                                                      /* -1022+126 */
 292                                                      DoubleConsts.MIN_EXPONENT-
 293                                                      FloatConsts.MIN_EXPONENT));
 294             return s.replaceFirst("p-1022$", "p-126");
 295         }
 296         else // double string will be the same as float string
 297             return Double.toHexString(f);
 298     }
 299 
 300     /**
 301      * Returns a {@code Float} object holding the
 302      * {@code float} value represented by the argument string
 303      * {@code s}.
 304      *
 305      * <p>If {@code s} is {@code null}, then a
 306      * {@code NullPointerException} is thrown.
 307      *
 308      * <p>Leading and trailing whitespace characters in {@code s}
 309      * are ignored.  Whitespace is removed as if by the {@link
 310      * String#trim} method; that is, both ASCII space and control
 311      * characters are removed. The rest of {@code s} should
 312      * constitute a <i>FloatValue</i> as described by the lexical
 313      * syntax rules:
 314      *
 315      * <blockquote>
 316      * <dl>
 317      * <dt><i>FloatValue:</i>
 318      * <dd><i>Sign<sub>opt</sub></i> {@code NaN}
 319      * <dd><i>Sign<sub>opt</sub></i> {@code Infinity}
 320      * <dd><i>Sign<sub>opt</sub> FloatingPointLiteral</i>
 321      * <dd><i>Sign<sub>opt</sub> HexFloatingPointLiteral</i>
 322      * <dd><i>SignedInteger</i>
 323      * </dl>
 324      *
 325      * <dl>
 326      * <dt><i>HexFloatingPointLiteral</i>:
 327      * <dd> <i>HexSignificand BinaryExponent FloatTypeSuffix<sub>opt</sub></i>
 328      * </dl>
 329      *
 330      * <dl>
 331      * <dt><i>HexSignificand:</i>
 332      * <dd><i>HexNumeral</i>
 333      * <dd><i>HexNumeral</i> {@code .}
 334      * <dd>{@code 0x} <i>HexDigits<sub>opt</sub>
 335      *     </i>{@code .}<i> HexDigits</i>
 336      * <dd>{@code 0X}<i> HexDigits<sub>opt</sub>
 337      *     </i>{@code .} <i>HexDigits</i>
 338      * </dl>
 339      *
 340      * <dl>
 341      * <dt><i>BinaryExponent:</i>
 342      * <dd><i>BinaryExponentIndicator SignedInteger</i>
 343      * </dl>
 344      *
 345      * <dl>
 346      * <dt><i>BinaryExponentIndicator:</i>
 347      * <dd>{@code p}
 348      * <dd>{@code P}
 349      * </dl>
 350      *
 351      * </blockquote>
 352      *
 353      * where <i>Sign</i>, <i>FloatingPointLiteral</i>,
 354      * <i>HexNumeral</i>, <i>HexDigits</i>, <i>SignedInteger</i> and
 355      * <i>FloatTypeSuffix</i> are as defined in the lexical structure
 356      * sections of
 357      * <cite>The Java&trade; Language Specification</cite>,
 358      * except that underscores are not accepted between digits.
 359      * If {@code s} does not have the form of
 360      * a <i>FloatValue</i>, then a {@code NumberFormatException}
 361      * is thrown. Otherwise, {@code s} is regarded as
 362      * representing an exact decimal value in the usual
 363      * "computerized scientific notation" or as an exact
 364      * hexadecimal value; this exact numerical value is then
 365      * conceptually converted to an "infinitely precise"
 366      * binary value that is then rounded to type {@code float}
 367      * by the usual round-to-nearest rule of IEEE 754 floating-point
 368      * arithmetic, which includes preserving the sign of a zero
 369      * value.
 370      *
 371      * Note that the round-to-nearest rule also implies overflow and
 372      * underflow behaviour; if the exact value of {@code s} is large
 373      * enough in magnitude (greater than or equal to ({@link
 374      * #MAX_VALUE} + {@link Math#ulp(float) ulp(MAX_VALUE)}/2),
 375      * rounding to {@code float} will result in an infinity and if the
 376      * exact value of {@code s} is small enough in magnitude (less
 377      * than or equal to {@link #MIN_VALUE}/2), rounding to float will
 378      * result in a zero.
 379      *
 380      * Finally, after rounding a {@code Float} object representing
 381      * this {@code float} value is returned.
 382      *
 383      * <p>To interpret localized string representations of a
 384      * floating-point value, use subclasses of {@link
 385      * java.text.NumberFormat}.
 386      *
 387      * <p>Note that trailing format specifiers, specifiers that
 388      * determine the type of a floating-point literal
 389      * ({@code 1.0f} is a {@code float} value;
 390      * {@code 1.0d} is a {@code double} value), do
 391      * <em>not</em> influence the results of this method.  In other
 392      * words, the numerical value of the input string is converted
 393      * directly to the target floating-point type.  In general, the
 394      * two-step sequence of conversions, string to {@code double}
 395      * followed by {@code double} to {@code float}, is
 396      * <em>not</em> equivalent to converting a string directly to
 397      * {@code float}.  For example, if first converted to an
 398      * intermediate {@code double} and then to
 399      * {@code float}, the string<br>
 400      * {@code "1.00000017881393421514957253748434595763683319091796875001d"}<br>
 401      * results in the {@code float} value
 402      * {@code 1.0000002f}; if the string is converted directly to
 403      * {@code float}, <code>1.000000<b>1</b>f</code> results.
 404      *
 405      * <p>To avoid calling this method on an invalid string and having
 406      * a {@code NumberFormatException} be thrown, the documentation
 407      * for {@link Double#valueOf Double.valueOf} lists a regular
 408      * expression which can be used to screen the input.
 409      *
 410      * @param   s   the string to be parsed.
 411      * @return  a {@code Float} object holding the value
 412      *          represented by the {@code String} argument.
 413      * @throws  NumberFormatException  if the string does not contain a
 414      *          parsable number.
 415      */
 416     public static Float valueOf(String s) throws NumberFormatException {
 417         return new Float(parseFloat(s));
 418     }
 419 
 420     /**
 421      * Returns a {@code Float} instance representing the specified
 422      * {@code float} value.
 423      * If a new {@code Float} instance is not required, this method
 424      * should generally be used in preference to the constructor
 425      * {@link #Float(float)}, as this method is likely to yield
 426      * significantly better space and time performance by caching
 427      * frequently requested values.
 428      *
 429      * @param  f a float value.
 430      * @return a {@code Float} instance representing {@code f}.
 431      * @since  1.5
 432      */
 433     @HotSpotIntrinsicCandidate
 434     public static Float valueOf(float f) {
 435         return new Float(f);
 436     }
 437 
 438     /**
 439      * Returns a new {@code float} initialized to the value
 440      * represented by the specified {@code String}, as performed
 441      * by the {@code valueOf} method of class {@code Float}.
 442      *
 443      * @param  s the string to be parsed.
 444      * @return the {@code float} value represented by the string
 445      *         argument.
 446      * @throws NullPointerException  if the string is null
 447      * @throws NumberFormatException if the string does not contain a
 448      *               parsable {@code float}.
 449      * @see    java.lang.Float#valueOf(String)
 450      * @since 1.2
 451      */
 452     public static float parseFloat(String s) throws NumberFormatException {
 453         return FloatingDecimal.parseFloat(s);
 454     }
 455 
 456     /**
 457      * Returns {@code true} if the specified number is a
 458      * Not-a-Number (NaN) value, {@code false} otherwise.
 459      *
 460      * @param   v   the value to be tested.
 461      * @return  {@code true} if the argument is NaN;
 462      *          {@code false} otherwise.
 463      */
 464     public static boolean isNaN(float v) {
 465         return (v != v);
 466     }
 467 
 468     /**
 469      * Returns {@code true} if the specified number is infinitely
 470      * large in magnitude, {@code false} otherwise.
 471      *
 472      * @param   v   the value to be tested.
 473      * @return  {@code true} if the argument is positive infinity or
 474      *          negative infinity; {@code false} otherwise.
 475      */
 476     public static boolean isInfinite(float v) {
 477         return (v == POSITIVE_INFINITY) || (v == NEGATIVE_INFINITY);
 478     }
 479 
 480 
 481     /**
 482      * Returns {@code true} if the argument is a finite floating-point
 483      * value; returns {@code false} otherwise (for NaN and infinity
 484      * arguments).
 485      *
 486      * @param f the {@code float} value to be tested
 487      * @return {@code true} if the argument is a finite
 488      * floating-point value, {@code false} otherwise.
 489      * @since 1.8
 490      */
 491      public static boolean isFinite(float f) {
 492         return Math.abs(f) <= FloatConsts.MAX_VALUE;
 493     }
 494 
 495     /**
 496      * The value of the Float.
 497      *
 498      * @serial
 499      */
 500     private final float value;
 501 
 502     /**
 503      * Constructs a newly allocated {@code Float} object that
 504      * represents the primitive {@code float} argument.
 505      *
 506      * @param   value   the value to be represented by the {@code Float}.
 507      */
 508     public Float(float value) {
 509         this.value = value;
 510     }
 511 
 512     /**
 513      * Constructs a newly allocated {@code Float} object that
 514      * represents the argument converted to type {@code float}.
 515      *
 516      * @param   value   the value to be represented by the {@code Float}.
 517      */
 518     public Float(double value) {
 519         this.value = (float)value;
 520     }
 521 
 522     /**
 523      * Constructs a newly allocated {@code Float} object that
 524      * represents the floating-point value of type {@code float}
 525      * represented by the string. The string is converted to a
 526      * {@code float} value as if by the {@code valueOf} method.
 527      *
 528      * @param      s   a string to be converted to a {@code Float}.
 529      * @throws  NumberFormatException  if the string does not contain a
 530      *               parsable number.
 531      * @see        java.lang.Float#valueOf(java.lang.String)
 532      */
 533     public Float(String s) throws NumberFormatException {
 534         value = parseFloat(s);
 535     }
 536 
 537     /**
 538      * Returns {@code true} if this {@code Float} value is a
 539      * Not-a-Number (NaN), {@code false} otherwise.
 540      *
 541      * @return  {@code true} if the value represented by this object is
 542      *          NaN; {@code false} otherwise.
 543      */
 544     public boolean isNaN() {
 545         return isNaN(value);
 546     }
 547 
 548     /**
 549      * Returns {@code true} if this {@code Float} value is
 550      * infinitely large in magnitude, {@code false} otherwise.
 551      *
 552      * @return  {@code true} if the value represented by this object is
 553      *          positive infinity or negative infinity;
 554      *          {@code false} otherwise.
 555      */
 556     public boolean isInfinite() {
 557         return isInfinite(value);
 558     }
 559 
 560     /**
 561      * Returns a string representation of this {@code Float} object.
 562      * The primitive {@code float} value represented by this object
 563      * is converted to a {@code String} exactly as if by the method
 564      * {@code toString} of one argument.
 565      *
 566      * @return  a {@code String} representation of this object.
 567      * @see java.lang.Float#toString(float)
 568      */
 569     public String toString() {
 570         return Float.toString(value);
 571     }
 572 
 573     /**
 574      * Returns the value of this {@code Float} as a {@code byte} after
 575      * a narrowing primitive conversion.
 576      *
 577      * @return  the {@code float} value represented by this object
 578      *          converted to type {@code byte}
 579      * @jls 5.1.3 Narrowing Primitive Conversions
 580      */
 581     public byte byteValue() {
 582         return (byte)value;
 583     }
 584 
 585     /**
 586      * Returns the value of this {@code Float} as a {@code short}
 587      * after a narrowing primitive conversion.
 588      *
 589      * @return  the {@code float} value represented by this object
 590      *          converted to type {@code short}
 591      * @jls 5.1.3 Narrowing Primitive Conversions
 592      * @since 1.1
 593      */
 594     public short shortValue() {
 595         return (short)value;
 596     }
 597 
 598     /**
 599      * Returns the value of this {@code Float} as an {@code int} after
 600      * a narrowing primitive conversion.
 601      *
 602      * @return  the {@code float} value represented by this object
 603      *          converted to type {@code int}
 604      * @jls 5.1.3 Narrowing Primitive Conversions
 605      */
 606     public int intValue() {
 607         return (int)value;
 608     }
 609 
 610     /**
 611      * Returns value of this {@code Float} as a {@code long} after a
 612      * narrowing primitive conversion.
 613      *
 614      * @return  the {@code float} value represented by this object
 615      *          converted to type {@code long}
 616      * @jls 5.1.3 Narrowing Primitive Conversions
 617      */
 618     public long longValue() {
 619         return (long)value;
 620     }
 621 
 622     /**
 623      * Returns the {@code float} value of this {@code Float} object.
 624      *
 625      * @return the {@code float} value represented by this object
 626      */
 627     @HotSpotIntrinsicCandidate
 628     public float floatValue() {
 629         return value;
 630     }
 631 
 632     /**
 633      * Returns the value of this {@code Float} as a {@code double}
 634      * after a widening primitive conversion.
 635      *
 636      * @return the {@code float} value represented by this
 637      *         object converted to type {@code double}
 638      * @jls 5.1.2 Widening Primitive Conversions
 639      */
 640     public double doubleValue() {
 641         return (double)value;
 642     }
 643 
 644     /**
 645      * Returns a hash code for this {@code Float} object. The
 646      * result is the integer bit representation, exactly as produced
 647      * by the method {@link #floatToIntBits(float)}, of the primitive
 648      * {@code float} value represented by this {@code Float}
 649      * object.
 650      *
 651      * @return a hash code value for this object.
 652      */
 653     @Override
 654     public int hashCode() {
 655         return Float.hashCode(value);
 656     }
 657 
 658     /**
 659      * Returns a hash code for a {@code float} value; compatible with
 660      * {@code Float.hashCode()}.
 661      *
 662      * @param value the value to hash
 663      * @return a hash code value for a {@code float} value.
 664      * @since 1.8
 665      */
 666     public static int hashCode(float value) {
 667         return floatToIntBits(value);
 668     }
 669 
 670     /**
 671 
 672      * Compares this object against the specified object.  The result
 673      * is {@code true} if and only if the argument is not
 674      * {@code null} and is a {@code Float} object that
 675      * represents a {@code float} with the same value as the
 676      * {@code float} represented by this object. For this
 677      * purpose, two {@code float} values are considered to be the
 678      * same if and only if the method {@link #floatToIntBits(float)}
 679      * returns the identical {@code int} value when applied to
 680      * each.
 681      *
 682      * <p>Note that in most cases, for two instances of class
 683      * {@code Float}, {@code f1} and {@code f2}, the value
 684      * of {@code f1.equals(f2)} is {@code true} if and only if
 685      *
 686      * <blockquote><pre>
 687      *   f1.floatValue() == f2.floatValue()
 688      * </pre></blockquote>
 689      *
 690      * <p>also has the value {@code true}. However, there are two exceptions:
 691      * <ul>
 692      * <li>If {@code f1} and {@code f2} both represent
 693      *     {@code Float.NaN}, then the {@code equals} method returns
 694      *     {@code true}, even though {@code Float.NaN==Float.NaN}
 695      *     has the value {@code false}.
 696      * <li>If {@code f1} represents {@code +0.0f} while
 697      *     {@code f2} represents {@code -0.0f}, or vice
 698      *     versa, the {@code equal} test has the value
 699      *     {@code false}, even though {@code 0.0f==-0.0f}
 700      *     has the value {@code true}.
 701      * </ul>
 702      *
 703      * This definition allows hash tables to operate properly.
 704      *
 705      * @param obj the object to be compared
 706      * @return  {@code true} if the objects are the same;
 707      *          {@code false} otherwise.
 708      * @see java.lang.Float#floatToIntBits(float)
 709      */
 710     public boolean equals(Object obj) {
 711         return (obj instanceof Float)
 712                && (floatToIntBits(((Float)obj).value) == floatToIntBits(value));
 713     }
 714 
 715     /**
 716      * Returns a representation of the specified floating-point value
 717      * according to the IEEE 754 floating-point "single format" bit
 718      * layout.
 719      *
 720      * <p>Bit 31 (the bit that is selected by the mask
 721      * {@code 0x80000000}) represents the sign of the floating-point
 722      * number.
 723      * Bits 30-23 (the bits that are selected by the mask
 724      * {@code 0x7f800000}) represent the exponent.
 725      * Bits 22-0 (the bits that are selected by the mask
 726      * {@code 0x007fffff}) represent the significand (sometimes called
 727      * the mantissa) of the floating-point number.
 728      *
 729      * <p>If the argument is positive infinity, the result is
 730      * {@code 0x7f800000}.
 731      *
 732      * <p>If the argument is negative infinity, the result is
 733      * {@code 0xff800000}.
 734      *
 735      * <p>If the argument is NaN, the result is {@code 0x7fc00000}.
 736      *
 737      * <p>In all cases, the result is an integer that, when given to the
 738      * {@link #intBitsToFloat(int)} method, will produce a floating-point
 739      * value the same as the argument to {@code floatToIntBits}
 740      * (except all NaN values are collapsed to a single
 741      * "canonical" NaN value).
 742      *
 743      * @param   value   a floating-point number.
 744      * @return the bits that represent the floating-point number.
 745      */
 746     @HotSpotIntrinsicCandidate
 747     public static int floatToIntBits(float value) {
 748         if (!isNaN(value)) {
 749             return floatToRawIntBits(value);
 750         }
 751         return 0x7fc00000;
 752     }
 753 
 754     /**
 755      * Returns a representation of the specified floating-point value
 756      * according to the IEEE 754 floating-point "single format" bit
 757      * layout, preserving Not-a-Number (NaN) values.
 758      *
 759      * <p>Bit 31 (the bit that is selected by the mask
 760      * {@code 0x80000000}) represents the sign of the floating-point
 761      * number.
 762      * Bits 30-23 (the bits that are selected by the mask
 763      * {@code 0x7f800000}) represent the exponent.
 764      * Bits 22-0 (the bits that are selected by the mask
 765      * {@code 0x007fffff}) represent the significand (sometimes called
 766      * the mantissa) of the floating-point number.
 767      *
 768      * <p>If the argument is positive infinity, the result is
 769      * {@code 0x7f800000}.
 770      *
 771      * <p>If the argument is negative infinity, the result is
 772      * {@code 0xff800000}.
 773      *
 774      * <p>If the argument is NaN, the result is the integer representing
 775      * the actual NaN value.  Unlike the {@code floatToIntBits}
 776      * method, {@code floatToRawIntBits} does not collapse all the
 777      * bit patterns encoding a NaN to a single "canonical"
 778      * NaN value.
 779      *
 780      * <p>In all cases, the result is an integer that, when given to the
 781      * {@link #intBitsToFloat(int)} method, will produce a
 782      * floating-point value the same as the argument to
 783      * {@code floatToRawIntBits}.
 784      *
 785      * @param   value   a floating-point number.
 786      * @return the bits that represent the floating-point number.
 787      * @since 1.3
 788      */
 789     @HotSpotIntrinsicCandidate
 790     public static native int floatToRawIntBits(float value);
 791 
 792     /**
 793      * Returns the {@code float} value corresponding to a given
 794      * bit representation.
 795      * The argument is considered to be a representation of a
 796      * floating-point value according to the IEEE 754 floating-point
 797      * "single format" bit layout.
 798      *
 799      * <p>If the argument is {@code 0x7f800000}, the result is positive
 800      * infinity.
 801      *
 802      * <p>If the argument is {@code 0xff800000}, the result is negative
 803      * infinity.
 804      *
 805      * <p>If the argument is any value in the range
 806      * {@code 0x7f800001} through {@code 0x7fffffff} or in
 807      * the range {@code 0xff800001} through
 808      * {@code 0xffffffff}, the result is a NaN.  No IEEE 754
 809      * floating-point operation provided by Java can distinguish
 810      * between two NaN values of the same type with different bit
 811      * patterns.  Distinct values of NaN are only distinguishable by
 812      * use of the {@code Float.floatToRawIntBits} method.
 813      *
 814      * <p>In all other cases, let <i>s</i>, <i>e</i>, and <i>m</i> be three
 815      * values that can be computed from the argument:
 816      *
 817      * <blockquote><pre>{@code
 818      * int s = ((bits >> 31) == 0) ? 1 : -1;
 819      * int e = ((bits >> 23) & 0xff);
 820      * int m = (e == 0) ?
 821      *                 (bits & 0x7fffff) << 1 :
 822      *                 (bits & 0x7fffff) | 0x800000;
 823      * }</pre></blockquote>
 824      *
 825      * Then the floating-point result equals the value of the mathematical
 826      * expression <i>s</i>&middot;<i>m</i>&middot;2<sup><i>e</i>-150</sup>.
 827      *
 828      * <p>Note that this method may not be able to return a
 829      * {@code float} NaN with exactly same bit pattern as the
 830      * {@code int} argument.  IEEE 754 distinguishes between two
 831      * kinds of NaNs, quiet NaNs and <i>signaling NaNs</i>.  The
 832      * differences between the two kinds of NaN are generally not
 833      * visible in Java.  Arithmetic operations on signaling NaNs turn
 834      * them into quiet NaNs with a different, but often similar, bit
 835      * pattern.  However, on some processors merely copying a
 836      * signaling NaN also performs that conversion.  In particular,
 837      * copying a signaling NaN to return it to the calling method may
 838      * perform this conversion.  So {@code intBitsToFloat} may
 839      * not be able to return a {@code float} with a signaling NaN
 840      * bit pattern.  Consequently, for some {@code int} values,
 841      * {@code floatToRawIntBits(intBitsToFloat(start))} may
 842      * <i>not</i> equal {@code start}.  Moreover, which
 843      * particular bit patterns represent signaling NaNs is platform
 844      * dependent; although all NaN bit patterns, quiet or signaling,
 845      * must be in the NaN range identified above.
 846      *
 847      * @param   bits   an integer.
 848      * @return  the {@code float} floating-point value with the same bit
 849      *          pattern.
 850      */
 851     @HotSpotIntrinsicCandidate
 852     public static native float intBitsToFloat(int bits);
 853 
 854     /**
 855      * Compares two {@code Float} objects numerically.  There are
 856      * two ways in which comparisons performed by this method differ
 857      * from those performed by the Java language numerical comparison
 858      * operators ({@code <, <=, ==, >=, >}) when
 859      * applied to primitive {@code float} values:
 860      *
 861      * <ul><li>
 862      *          {@code Float.NaN} is considered by this method to
 863      *          be equal to itself and greater than all other
 864      *          {@code float} values
 865      *          (including {@code Float.POSITIVE_INFINITY}).
 866      * <li>
 867      *          {@code 0.0f} is considered by this method to be greater
 868      *          than {@code -0.0f}.
 869      * </ul>
 870      *
 871      * This ensures that the <i>natural ordering</i> of {@code Float}
 872      * objects imposed by this method is <i>consistent with equals</i>.
 873      *
 874      * @param   anotherFloat   the {@code Float} to be compared.
 875      * @return  the value {@code 0} if {@code anotherFloat} is
 876      *          numerically equal to this {@code Float}; a value
 877      *          less than {@code 0} if this {@code Float}
 878      *          is numerically less than {@code anotherFloat};
 879      *          and a value greater than {@code 0} if this
 880      *          {@code Float} is numerically greater than
 881      *          {@code anotherFloat}.
 882      *
 883      * @since   1.2
 884      * @see Comparable#compareTo(Object)
 885      */
 886     public int compareTo(Float anotherFloat) {
 887         return Float.compare(value, anotherFloat.value);
 888     }
 889 
 890     /**
 891      * Compares the two specified {@code float} values. The sign
 892      * of the integer value returned is the same as that of the
 893      * integer that would be returned by the call:
 894      * <pre>
 895      *    new Float(f1).compareTo(new Float(f2))
 896      * </pre>
 897      *
 898      * @param   f1        the first {@code float} to compare.
 899      * @param   f2        the second {@code float} to compare.
 900      * @return  the value {@code 0} if {@code f1} is
 901      *          numerically equal to {@code f2}; a value less than
 902      *          {@code 0} if {@code f1} is numerically less than
 903      *          {@code f2}; and a value greater than {@code 0}
 904      *          if {@code f1} is numerically greater than
 905      *          {@code f2}.
 906      * @since 1.4
 907      */
 908     public static int compare(float f1, float f2) {
 909         if (f1 < f2)
 910             return -1;           // Neither val is NaN, thisVal is smaller
 911         if (f1 > f2)
 912             return 1;            // Neither val is NaN, thisVal is larger
 913 
 914         // Cannot use floatToRawIntBits because of possibility of NaNs.
 915         int thisBits    = Float.floatToIntBits(f1);
 916         int anotherBits = Float.floatToIntBits(f2);
 917 
 918         return (thisBits == anotherBits ?  0 : // Values are equal
 919                 (thisBits < anotherBits ? -1 : // (-0.0, 0.0) or (!NaN, NaN)
 920                  1));                          // (0.0, -0.0) or (NaN, !NaN)
 921     }
 922 
 923     /**
 924      * Adds two {@code float} values together as per the + operator.
 925      *
 926      * @param a the first operand
 927      * @param b the second operand
 928      * @return the sum of {@code a} and {@code b}
 929      * @jls 4.2.4 Floating-Point Operations
 930      * @see java.util.function.BinaryOperator
 931      * @since 1.8
 932      */
 933     public static float sum(float a, float b) {
 934         return a + b;
 935     }
 936 
 937     /**
 938      * Returns the greater of two {@code float} values
 939      * as if by calling {@link Math#max(float, float) Math.max}.
 940      *
 941      * @param a the first operand
 942      * @param b the second operand
 943      * @return the greater of {@code a} and {@code b}
 944      * @see java.util.function.BinaryOperator
 945      * @since 1.8
 946      */
 947     public static float max(float a, float b) {
 948         return Math.max(a, b);
 949     }
 950 
 951     /**
 952      * Returns the smaller of two {@code float} values
 953      * as if by calling {@link Math#min(float, float) Math.min}.
 954      *
 955      * @param a the first operand
 956      * @param b the second operand
 957      * @return the smaller of {@code a} and {@code b}
 958      * @see java.util.function.BinaryOperator
 959      * @since 1.8
 960      */
 961     public static float min(float a, float b) {
 962         return Math.min(a, b);
 963     }
 964 
 965     /** use serialVersionUID from JDK 1.0.2 for interoperability */
 966     private static final long serialVersionUID = -2671257302660747028L;
 967 }