1 /*
   2  * Copyright (c) 1998, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // output_c.cpp - Class CPP file output routines for architecture definition
  26 
  27 #include "adlc.hpp"
  28 
  29 // Utilities to characterize effect statements
  30 static bool is_def(int usedef) {
  31   switch(usedef) {
  32   case Component::DEF:
  33   case Component::USE_DEF: return true; break;
  34   }
  35   return false;
  36 }
  37 
  38 static bool is_use(int usedef) {
  39   switch(usedef) {
  40   case Component::USE:
  41   case Component::USE_DEF:
  42   case Component::USE_KILL: return true; break;
  43   }
  44   return false;
  45 }
  46 
  47 static bool is_kill(int usedef) {
  48   switch(usedef) {
  49   case Component::KILL:
  50   case Component::USE_KILL: return true; break;
  51   }
  52   return false;
  53 }
  54 
  55 // Define  an array containing the machine register names, strings.
  56 static void defineRegNames(FILE *fp, RegisterForm *registers) {
  57   if (registers) {
  58     fprintf(fp,"\n");
  59     fprintf(fp,"// An array of character pointers to machine register names.\n");
  60     fprintf(fp,"const char *Matcher::regName[REG_COUNT] = {\n");
  61 
  62     // Output the register name for each register in the allocation classes
  63     RegDef *reg_def = NULL;
  64     RegDef *next = NULL;
  65     registers->reset_RegDefs();
  66     for (reg_def = registers->iter_RegDefs(); reg_def != NULL; reg_def = next) {
  67       next = registers->iter_RegDefs();
  68       const char *comma = (next != NULL) ? "," : " // no trailing comma";
  69       fprintf(fp,"  \"%s\"%s\n", reg_def->_regname, comma);
  70     }
  71 
  72     // Finish defining enumeration
  73     fprintf(fp,"};\n");
  74 
  75     fprintf(fp,"\n");
  76     fprintf(fp,"// An array of character pointers to machine register names.\n");
  77     fprintf(fp,"const VMReg OptoReg::opto2vm[REG_COUNT] = {\n");
  78     reg_def = NULL;
  79     next = NULL;
  80     registers->reset_RegDefs();
  81     for (reg_def = registers->iter_RegDefs(); reg_def != NULL; reg_def = next) {
  82       next = registers->iter_RegDefs();
  83       const char *comma = (next != NULL) ? "," : " // no trailing comma";
  84       fprintf(fp,"\t%s%s\n", reg_def->_concrete, comma);
  85     }
  86     // Finish defining array
  87     fprintf(fp,"\t};\n");
  88     fprintf(fp,"\n");
  89 
  90     fprintf(fp," OptoReg::Name OptoReg::vm2opto[ConcreteRegisterImpl::number_of_registers];\n");
  91 
  92   }
  93 }
  94 
  95 // Define an array containing the machine register encoding values
  96 static void defineRegEncodes(FILE *fp, RegisterForm *registers) {
  97   if (registers) {
  98     fprintf(fp,"\n");
  99     fprintf(fp,"// An array of the machine register encode values\n");
 100     fprintf(fp,"const unsigned char Matcher::_regEncode[REG_COUNT] = {\n");
 101 
 102     // Output the register encoding for each register in the allocation classes
 103     RegDef *reg_def = NULL;
 104     RegDef *next    = NULL;
 105     registers->reset_RegDefs();
 106     for (reg_def = registers->iter_RegDefs(); reg_def != NULL; reg_def = next) {
 107       next = registers->iter_RegDefs();
 108       const char* register_encode = reg_def->register_encode();
 109       const char *comma = (next != NULL) ? "," : " // no trailing comma";
 110       int encval;
 111       if (!ADLParser::is_int_token(register_encode, encval)) {
 112         fprintf(fp,"  %s%s  // %s\n", register_encode, comma, reg_def->_regname);
 113       } else {
 114         // Output known constants in hex char format (backward compatibility).
 115         assert(encval < 256, "Exceeded supported width for register encoding");
 116         fprintf(fp,"  (unsigned char)'\\x%X'%s  // %s\n", encval, comma, reg_def->_regname);
 117       }
 118     }
 119     // Finish defining enumeration
 120     fprintf(fp,"};\n");
 121 
 122   } // Done defining array
 123 }
 124 
 125 // Output an enumeration of register class names
 126 static void defineRegClassEnum(FILE *fp, RegisterForm *registers) {
 127   if (registers) {
 128     // Output an enumeration of register class names
 129     fprintf(fp,"\n");
 130     fprintf(fp,"// Enumeration of register class names\n");
 131     fprintf(fp, "enum machRegisterClass {\n");
 132     registers->_rclasses.reset();
 133     for (const char *class_name = NULL; (class_name = registers->_rclasses.iter()) != NULL;) {
 134       const char * class_name_to_upper = toUpper(class_name);
 135       fprintf(fp,"  %s,\n", class_name_to_upper);
 136       delete[] class_name_to_upper;
 137     }
 138     // Finish defining enumeration
 139     fprintf(fp, "  _last_Mach_Reg_Class\n");
 140     fprintf(fp, "};\n");
 141   }
 142 }
 143 
 144 // Declare an enumeration of user-defined register classes
 145 // and a list of register masks, one for each class.
 146 void ArchDesc::declare_register_masks(FILE *fp_hpp) {
 147   const char  *rc_name;
 148 
 149   if (_register) {
 150     // Build enumeration of user-defined register classes.
 151     defineRegClassEnum(fp_hpp, _register);
 152 
 153     // Generate a list of register masks, one for each class.
 154     fprintf(fp_hpp,"\n");
 155     fprintf(fp_hpp,"// Register masks, one for each register class.\n");
 156     _register->_rclasses.reset();
 157     for (rc_name = NULL; (rc_name = _register->_rclasses.iter()) != NULL;) {
 158       const char *prefix = "";
 159       RegClass *reg_class = _register->getRegClass(rc_name);
 160       assert(reg_class, "Using an undefined register class");
 161 
 162       const char* rc_name_to_upper = toUpper(rc_name);
 163 
 164       if (reg_class->_user_defined == NULL) {
 165         fprintf(fp_hpp, "extern const RegMask _%s%s_mask;\n", prefix,  rc_name_to_upper);
 166         fprintf(fp_hpp, "inline const RegMask &%s%s_mask() { return _%s%s_mask; }\n", prefix, rc_name_to_upper, prefix, rc_name_to_upper);
 167       } else {
 168         fprintf(fp_hpp, "inline const RegMask &%s%s_mask() { %s }\n", prefix, rc_name_to_upper, reg_class->_user_defined);
 169       }
 170 
 171       if (reg_class->_stack_or_reg) {
 172         assert(reg_class->_user_defined == NULL, "no user defined reg class here");
 173         fprintf(fp_hpp, "extern const RegMask _%sSTACK_OR_%s_mask;\n", prefix, rc_name_to_upper);
 174         fprintf(fp_hpp, "inline const RegMask &%sSTACK_OR_%s_mask() { return _%sSTACK_OR_%s_mask; }\n", prefix, rc_name_to_upper, prefix, rc_name_to_upper);
 175       }
 176       delete[] rc_name_to_upper;
 177 
 178     }
 179   }
 180 }
 181 
 182 // Generate an enumeration of user-defined register classes
 183 // and a list of register masks, one for each class.
 184 void ArchDesc::build_register_masks(FILE *fp_cpp) {
 185   const char  *rc_name;
 186 
 187   if (_register) {
 188     // Generate a list of register masks, one for each class.
 189     fprintf(fp_cpp,"\n");
 190     fprintf(fp_cpp,"// Register masks, one for each register class.\n");
 191     _register->_rclasses.reset();
 192     for (rc_name = NULL; (rc_name = _register->_rclasses.iter()) != NULL;) {
 193       const char *prefix = "";
 194       RegClass *reg_class = _register->getRegClass(rc_name);
 195       assert(reg_class, "Using an undefined register class");
 196 
 197       if (reg_class->_user_defined != NULL) {
 198         continue;
 199       }
 200 
 201       int len = RegisterForm::RegMask_Size();
 202       const char* rc_name_to_upper = toUpper(rc_name);
 203       fprintf(fp_cpp, "const RegMask _%s%s_mask(", prefix, rc_name_to_upper);
 204 
 205       {
 206         int i;
 207         for(i = 0; i < len - 1; i++) {
 208           fprintf(fp_cpp," 0x%x,", reg_class->regs_in_word(i, false));
 209         }
 210         fprintf(fp_cpp," 0x%x );\n", reg_class->regs_in_word(i, false));
 211       }
 212 
 213       if (reg_class->_stack_or_reg) {
 214         int i;
 215         fprintf(fp_cpp, "const RegMask _%sSTACK_OR_%s_mask(", prefix, rc_name_to_upper);
 216         for(i = 0; i < len - 1; i++) {
 217           fprintf(fp_cpp," 0x%x,",reg_class->regs_in_word(i, true));
 218         }
 219         fprintf(fp_cpp," 0x%x );\n",reg_class->regs_in_word(i, true));
 220       }
 221       delete[] rc_name_to_upper;
 222     }
 223   }
 224 }
 225 
 226 // Compute an index for an array in the pipeline_reads_NNN arrays
 227 static int pipeline_reads_initializer(FILE *fp_cpp, NameList &pipeline_reads, PipeClassForm *pipeclass)
 228 {
 229   int templen = 1;
 230   int paramcount = 0;
 231   const char *paramname;
 232 
 233   if (pipeclass->_parameters.count() == 0)
 234     return -1;
 235 
 236   pipeclass->_parameters.reset();
 237   paramname = pipeclass->_parameters.iter();
 238   const PipeClassOperandForm *pipeopnd =
 239     (const PipeClassOperandForm *)pipeclass->_localUsage[paramname];
 240   if (pipeopnd && !pipeopnd->isWrite() && strcmp(pipeopnd->_stage, "Universal"))
 241     pipeclass->_parameters.reset();
 242 
 243   while ( (paramname = pipeclass->_parameters.iter()) != NULL ) {
 244     const PipeClassOperandForm *tmppipeopnd =
 245         (const PipeClassOperandForm *)pipeclass->_localUsage[paramname];
 246 
 247     if (tmppipeopnd)
 248       templen += 10 + (int)strlen(tmppipeopnd->_stage);
 249     else
 250       templen += 19;
 251 
 252     paramcount++;
 253   }
 254 
 255   // See if the count is zero
 256   if (paramcount == 0) {
 257     return -1;
 258   }
 259 
 260   char *operand_stages = new char [templen];
 261   operand_stages[0] = 0;
 262   int i = 0;
 263   templen = 0;
 264 
 265   pipeclass->_parameters.reset();
 266   paramname = pipeclass->_parameters.iter();
 267   pipeopnd = (const PipeClassOperandForm *)pipeclass->_localUsage[paramname];
 268   if (pipeopnd && !pipeopnd->isWrite() && strcmp(pipeopnd->_stage, "Universal"))
 269     pipeclass->_parameters.reset();
 270 
 271   while ( (paramname = pipeclass->_parameters.iter()) != NULL ) {
 272     const PipeClassOperandForm *tmppipeopnd =
 273         (const PipeClassOperandForm *)pipeclass->_localUsage[paramname];
 274     templen += sprintf(&operand_stages[templen], "  stage_%s%c\n",
 275       tmppipeopnd ? tmppipeopnd->_stage : "undefined",
 276       (++i < paramcount ? ',' : ' ') );
 277   }
 278 
 279   // See if the same string is in the table
 280   int ndx = pipeline_reads.index(operand_stages);
 281 
 282   // No, add it to the table
 283   if (ndx < 0) {
 284     pipeline_reads.addName(operand_stages);
 285     ndx = pipeline_reads.index(operand_stages);
 286 
 287     fprintf(fp_cpp, "static const enum machPipelineStages pipeline_reads_%03d[%d] = {\n%s};\n\n",
 288       ndx+1, paramcount, operand_stages);
 289   }
 290   else
 291     delete [] operand_stages;
 292 
 293   return (ndx);
 294 }
 295 
 296 // Compute an index for an array in the pipeline_res_stages_NNN arrays
 297 static int pipeline_res_stages_initializer(
 298   FILE *fp_cpp,
 299   PipelineForm *pipeline,
 300   NameList &pipeline_res_stages,
 301   PipeClassForm *pipeclass)
 302 {
 303   const PipeClassResourceForm *piperesource;
 304   int * res_stages = new int [pipeline->_rescount];
 305   int i;
 306 
 307   for (i = 0; i < pipeline->_rescount; i++)
 308      res_stages[i] = 0;
 309 
 310   for (pipeclass->_resUsage.reset();
 311        (piperesource = (const PipeClassResourceForm *)pipeclass->_resUsage.iter()) != NULL; ) {
 312     int used_mask = pipeline->_resdict[piperesource->_resource]->is_resource()->mask();
 313     for (i = 0; i < pipeline->_rescount; i++)
 314       if ((1 << i) & used_mask) {
 315         int stage = pipeline->_stages.index(piperesource->_stage);
 316         if (res_stages[i] < stage+1)
 317           res_stages[i] = stage+1;
 318       }
 319   }
 320 
 321   // Compute the length needed for the resource list
 322   int commentlen = 0;
 323   int max_stage = 0;
 324   for (i = 0; i < pipeline->_rescount; i++) {
 325     if (res_stages[i] == 0) {
 326       if (max_stage < 9)
 327         max_stage = 9;
 328     }
 329     else {
 330       int stagelen = (int)strlen(pipeline->_stages.name(res_stages[i]-1));
 331       if (max_stage < stagelen)
 332         max_stage = stagelen;
 333     }
 334 
 335     commentlen += (int)strlen(pipeline->_reslist.name(i));
 336   }
 337 
 338   int templen = 1 + commentlen + pipeline->_rescount * (max_stage + 14);
 339 
 340   // Allocate space for the resource list
 341   char * resource_stages = new char [templen];
 342 
 343   templen = 0;
 344   for (i = 0; i < pipeline->_rescount; i++) {
 345     const char * const resname =
 346       res_stages[i] == 0 ? "undefined" : pipeline->_stages.name(res_stages[i]-1);
 347 
 348     templen += sprintf(&resource_stages[templen], "  stage_%s%-*s // %s\n",
 349       resname, max_stage - (int)strlen(resname) + 1,
 350       (i < pipeline->_rescount-1) ? "," : "",
 351       pipeline->_reslist.name(i));
 352   }
 353 
 354   // See if the same string is in the table
 355   int ndx = pipeline_res_stages.index(resource_stages);
 356 
 357   // No, add it to the table
 358   if (ndx < 0) {
 359     pipeline_res_stages.addName(resource_stages);
 360     ndx = pipeline_res_stages.index(resource_stages);
 361 
 362     fprintf(fp_cpp, "static const enum machPipelineStages pipeline_res_stages_%03d[%d] = {\n%s};\n\n",
 363       ndx+1, pipeline->_rescount, resource_stages);
 364   }
 365   else
 366     delete [] resource_stages;
 367 
 368   delete [] res_stages;
 369 
 370   return (ndx);
 371 }
 372 
 373 // Compute an index for an array in the pipeline_res_cycles_NNN arrays
 374 static int pipeline_res_cycles_initializer(
 375   FILE *fp_cpp,
 376   PipelineForm *pipeline,
 377   NameList &pipeline_res_cycles,
 378   PipeClassForm *pipeclass)
 379 {
 380   const PipeClassResourceForm *piperesource;
 381   int * res_cycles = new int [pipeline->_rescount];
 382   int i;
 383 
 384   for (i = 0; i < pipeline->_rescount; i++)
 385      res_cycles[i] = 0;
 386 
 387   for (pipeclass->_resUsage.reset();
 388        (piperesource = (const PipeClassResourceForm *)pipeclass->_resUsage.iter()) != NULL; ) {
 389     int used_mask = pipeline->_resdict[piperesource->_resource]->is_resource()->mask();
 390     for (i = 0; i < pipeline->_rescount; i++)
 391       if ((1 << i) & used_mask) {
 392         int cycles = piperesource->_cycles;
 393         if (res_cycles[i] < cycles)
 394           res_cycles[i] = cycles;
 395       }
 396   }
 397 
 398   // Pre-compute the string length
 399   int templen;
 400   int cyclelen = 0, commentlen = 0;
 401   int max_cycles = 0;
 402   char temp[32];
 403 
 404   for (i = 0; i < pipeline->_rescount; i++) {
 405     if (max_cycles < res_cycles[i])
 406       max_cycles = res_cycles[i];
 407     templen = sprintf(temp, "%d", res_cycles[i]);
 408     if (cyclelen < templen)
 409       cyclelen = templen;
 410     commentlen += (int)strlen(pipeline->_reslist.name(i));
 411   }
 412 
 413   templen = 1 + commentlen + (cyclelen + 8) * pipeline->_rescount;
 414 
 415   // Allocate space for the resource list
 416   char * resource_cycles = new char [templen];
 417 
 418   templen = 0;
 419 
 420   for (i = 0; i < pipeline->_rescount; i++) {
 421     templen += sprintf(&resource_cycles[templen], "  %*d%c // %s\n",
 422       cyclelen, res_cycles[i], (i < pipeline->_rescount-1) ? ',' : ' ', pipeline->_reslist.name(i));
 423   }
 424 
 425   // See if the same string is in the table
 426   int ndx = pipeline_res_cycles.index(resource_cycles);
 427 
 428   // No, add it to the table
 429   if (ndx < 0) {
 430     pipeline_res_cycles.addName(resource_cycles);
 431     ndx = pipeline_res_cycles.index(resource_cycles);
 432 
 433     fprintf(fp_cpp, "static const uint pipeline_res_cycles_%03d[%d] = {\n%s};\n\n",
 434       ndx+1, pipeline->_rescount, resource_cycles);
 435   }
 436   else
 437     delete [] resource_cycles;
 438 
 439   delete [] res_cycles;
 440 
 441   return (ndx);
 442 }
 443 
 444 //typedef unsigned long long uint64_t;
 445 
 446 // Compute an index for an array in the pipeline_res_mask_NNN arrays
 447 static int pipeline_res_mask_initializer(
 448   FILE *fp_cpp,
 449   PipelineForm *pipeline,
 450   NameList &pipeline_res_mask,
 451   NameList &pipeline_res_args,
 452   PipeClassForm *pipeclass)
 453 {
 454   const PipeClassResourceForm *piperesource;
 455   const uint rescount      = pipeline->_rescount;
 456   const uint maxcycleused  = pipeline->_maxcycleused;
 457   const uint cyclemasksize = (maxcycleused + 31) >> 5;
 458 
 459   int i, j;
 460   int element_count = 0;
 461   uint *res_mask = new uint [cyclemasksize];
 462   uint resources_used             = 0;
 463   uint resources_used_exclusively = 0;
 464 
 465   for (pipeclass->_resUsage.reset();
 466        (piperesource = (const PipeClassResourceForm*)pipeclass->_resUsage.iter()) != NULL; ) {
 467     element_count++;
 468   }
 469 
 470   // Pre-compute the string length
 471   int templen;
 472   int commentlen = 0;
 473   int max_cycles = 0;
 474 
 475   int cyclelen = ((maxcycleused + 3) >> 2);
 476   int masklen = (rescount + 3) >> 2;
 477 
 478   int cycledigit = 0;
 479   for (i = maxcycleused; i > 0; i /= 10)
 480     cycledigit++;
 481 
 482   int maskdigit = 0;
 483   for (i = rescount; i > 0; i /= 10)
 484     maskdigit++;
 485 
 486   static const char* pipeline_use_cycle_mask = "Pipeline_Use_Cycle_Mask";
 487   static const char* pipeline_use_element    = "Pipeline_Use_Element";
 488 
 489   templen = 1 +
 490     (int)(strlen(pipeline_use_cycle_mask) + (int)strlen(pipeline_use_element) +
 491      (cyclemasksize * 12) + masklen + (cycledigit * 2) + 30) * element_count;
 492 
 493   // Allocate space for the resource list
 494   char * resource_mask = new char [templen];
 495   char * last_comma = NULL;
 496 
 497   templen = 0;
 498 
 499   for (pipeclass->_resUsage.reset();
 500        (piperesource = (const PipeClassResourceForm*)pipeclass->_resUsage.iter()) != NULL; ) {
 501     int used_mask = pipeline->_resdict[piperesource->_resource]->is_resource()->mask();
 502 
 503     if (!used_mask) {
 504       fprintf(stderr, "*** used_mask is 0 ***\n");
 505     }
 506 
 507     resources_used |= used_mask;
 508 
 509     uint lb, ub;
 510 
 511     for (lb =  0; (used_mask & (1 << lb)) == 0; lb++);
 512     for (ub = 31; (used_mask & (1 << ub)) == 0; ub--);
 513 
 514     if (lb == ub) {
 515       resources_used_exclusively |= used_mask;
 516     }
 517 
 518     int formatlen =
 519       sprintf(&resource_mask[templen], "  %s(0x%0*x, %*d, %*d, %s %s(",
 520         pipeline_use_element,
 521         masklen, used_mask,
 522         cycledigit, lb, cycledigit, ub,
 523         ((used_mask & (used_mask-1)) != 0) ? "true, " : "false,",
 524         pipeline_use_cycle_mask);
 525 
 526     templen += formatlen;
 527 
 528     memset(res_mask, 0, cyclemasksize * sizeof(uint));
 529 
 530     int cycles = piperesource->_cycles;
 531     uint stage          = pipeline->_stages.index(piperesource->_stage);
 532     if ((uint)NameList::Not_in_list == stage) {
 533       fprintf(stderr,
 534               "pipeline_res_mask_initializer: "
 535               "semantic error: "
 536               "pipeline stage undeclared: %s\n",
 537               piperesource->_stage);
 538       exit(1);
 539     }
 540     uint upper_limit    = stage + cycles - 1;
 541     uint lower_limit    = stage - 1;
 542     uint upper_idx      = upper_limit >> 5;
 543     uint lower_idx      = lower_limit >> 5;
 544     uint upper_position = upper_limit & 0x1f;
 545     uint lower_position = lower_limit & 0x1f;
 546 
 547     uint mask = (((uint)1) << upper_position) - 1;
 548 
 549     while (upper_idx > lower_idx) {
 550       res_mask[upper_idx--] |= mask;
 551       mask = (uint)-1;
 552     }
 553 
 554     mask -= (((uint)1) << lower_position) - 1;
 555     res_mask[upper_idx] |= mask;
 556 
 557     for (j = cyclemasksize-1; j >= 0; j--) {
 558       formatlen =
 559         sprintf(&resource_mask[templen], "0x%08x%s", res_mask[j], j > 0 ? ", " : "");
 560       templen += formatlen;
 561     }
 562 
 563     resource_mask[templen++] = ')';
 564     resource_mask[templen++] = ')';
 565     last_comma = &resource_mask[templen];
 566     resource_mask[templen++] = ',';
 567     resource_mask[templen++] = '\n';
 568   }
 569 
 570   resource_mask[templen] = 0;
 571   if (last_comma) {
 572     last_comma[0] = ' ';
 573   }
 574 
 575   // See if the same string is in the table
 576   int ndx = pipeline_res_mask.index(resource_mask);
 577 
 578   // No, add it to the table
 579   if (ndx < 0) {
 580     pipeline_res_mask.addName(resource_mask);
 581     ndx = pipeline_res_mask.index(resource_mask);
 582 
 583     if (strlen(resource_mask) > 0)
 584       fprintf(fp_cpp, "static const Pipeline_Use_Element pipeline_res_mask_%03d[%d] = {\n%s};\n\n",
 585         ndx+1, element_count, resource_mask);
 586 
 587     char* args = new char [9 + 2*masklen + maskdigit];
 588 
 589     sprintf(args, "0x%0*x, 0x%0*x, %*d",
 590       masklen, resources_used,
 591       masklen, resources_used_exclusively,
 592       maskdigit, element_count);
 593 
 594     pipeline_res_args.addName(args);
 595   }
 596   else {
 597     delete [] resource_mask;
 598   }
 599 
 600   delete [] res_mask;
 601 //delete [] res_masks;
 602 
 603   return (ndx);
 604 }
 605 
 606 void ArchDesc::build_pipe_classes(FILE *fp_cpp) {
 607   const char *classname;
 608   const char *resourcename;
 609   int resourcenamelen = 0;
 610   NameList pipeline_reads;
 611   NameList pipeline_res_stages;
 612   NameList pipeline_res_cycles;
 613   NameList pipeline_res_masks;
 614   NameList pipeline_res_args;
 615   const int default_latency = 1;
 616   const int non_operand_latency = 0;
 617   const int node_latency = 0;
 618 
 619   if (!_pipeline) {
 620     fprintf(fp_cpp, "uint Node::latency(uint i) const {\n");
 621     fprintf(fp_cpp, "  // assert(false, \"pipeline functionality is not defined\");\n");
 622     fprintf(fp_cpp, "  return %d;\n", non_operand_latency);
 623     fprintf(fp_cpp, "}\n");
 624     return;
 625   }
 626 
 627   fprintf(fp_cpp, "\n");
 628   fprintf(fp_cpp, "//------------------Pipeline Methods-----------------------------------------\n");
 629   fprintf(fp_cpp, "#ifndef PRODUCT\n");
 630   fprintf(fp_cpp, "const char * Pipeline::stageName(uint s) {\n");
 631   fprintf(fp_cpp, "  static const char * const _stage_names[] = {\n");
 632   fprintf(fp_cpp, "    \"undefined\"");
 633 
 634   for (int s = 0; s < _pipeline->_stagecnt; s++)
 635     fprintf(fp_cpp, ", \"%s\"", _pipeline->_stages.name(s));
 636 
 637   fprintf(fp_cpp, "\n  };\n\n");
 638   fprintf(fp_cpp, "  return (s <= %d ? _stage_names[s] : \"???\");\n",
 639     _pipeline->_stagecnt);
 640   fprintf(fp_cpp, "}\n");
 641   fprintf(fp_cpp, "#endif\n\n");
 642 
 643   fprintf(fp_cpp, "uint Pipeline::functional_unit_latency(uint start, const Pipeline *pred) const {\n");
 644   fprintf(fp_cpp, "  // See if the functional units overlap\n");
 645 #if 0
 646   fprintf(fp_cpp, "\n#ifndef PRODUCT\n");
 647   fprintf(fp_cpp, "  if (TraceOptoOutput) {\n");
 648   fprintf(fp_cpp, "    tty->print(\"#   functional_unit_latency: start == %%d, this->exclusively == 0x%%03x, pred->exclusively == 0x%%03x\\n\", start, resourcesUsedExclusively(), pred->resourcesUsedExclusively());\n");
 649   fprintf(fp_cpp, "  }\n");
 650   fprintf(fp_cpp, "#endif\n\n");
 651 #endif
 652   fprintf(fp_cpp, "  uint mask = resourcesUsedExclusively() & pred->resourcesUsedExclusively();\n");
 653   fprintf(fp_cpp, "  if (mask == 0)\n    return (start);\n\n");
 654 #if 0
 655   fprintf(fp_cpp, "\n#ifndef PRODUCT\n");
 656   fprintf(fp_cpp, "  if (TraceOptoOutput) {\n");
 657   fprintf(fp_cpp, "    tty->print(\"#   functional_unit_latency: mask == 0x%%x\\n\", mask);\n");
 658   fprintf(fp_cpp, "  }\n");
 659   fprintf(fp_cpp, "#endif\n\n");
 660 #endif
 661   fprintf(fp_cpp, "  for (uint i = 0; i < pred->resourceUseCount(); i++) {\n");
 662   fprintf(fp_cpp, "    const Pipeline_Use_Element *predUse = pred->resourceUseElement(i);\n");
 663   fprintf(fp_cpp, "    if (predUse->multiple())\n");
 664   fprintf(fp_cpp, "      continue;\n\n");
 665   fprintf(fp_cpp, "    for (uint j = 0; j < resourceUseCount(); j++) {\n");
 666   fprintf(fp_cpp, "      const Pipeline_Use_Element *currUse = resourceUseElement(j);\n");
 667   fprintf(fp_cpp, "      if (currUse->multiple())\n");
 668   fprintf(fp_cpp, "        continue;\n\n");
 669   fprintf(fp_cpp, "      if (predUse->used() & currUse->used()) {\n");
 670   fprintf(fp_cpp, "        Pipeline_Use_Cycle_Mask x = predUse->mask();\n");
 671   fprintf(fp_cpp, "        Pipeline_Use_Cycle_Mask y = currUse->mask();\n\n");
 672   fprintf(fp_cpp, "        for ( y <<= start; x.overlaps(y); start++ )\n");
 673   fprintf(fp_cpp, "          y <<= 1;\n");
 674   fprintf(fp_cpp, "      }\n");
 675   fprintf(fp_cpp, "    }\n");
 676   fprintf(fp_cpp, "  }\n\n");
 677   fprintf(fp_cpp, "  // There is the potential for overlap\n");
 678   fprintf(fp_cpp, "  return (start);\n");
 679   fprintf(fp_cpp, "}\n\n");
 680   fprintf(fp_cpp, "// The following two routines assume that the root Pipeline_Use entity\n");
 681   fprintf(fp_cpp, "// consists of exactly 1 element for each functional unit\n");
 682   fprintf(fp_cpp, "// start is relative to the current cycle; used for latency-based info\n");
 683   fprintf(fp_cpp, "uint Pipeline_Use::full_latency(uint delay, const Pipeline_Use &pred) const {\n");
 684   fprintf(fp_cpp, "  for (uint i = 0; i < pred._count; i++) {\n");
 685   fprintf(fp_cpp, "    const Pipeline_Use_Element *predUse = pred.element(i);\n");
 686   fprintf(fp_cpp, "    if (predUse->_multiple) {\n");
 687   fprintf(fp_cpp, "      uint min_delay = %d;\n",
 688     _pipeline->_maxcycleused+1);
 689   fprintf(fp_cpp, "      // Multiple possible functional units, choose first unused one\n");
 690   fprintf(fp_cpp, "      for (uint j = predUse->_lb; j <= predUse->_ub; j++) {\n");
 691   fprintf(fp_cpp, "        const Pipeline_Use_Element *currUse = element(j);\n");
 692   fprintf(fp_cpp, "        uint curr_delay = delay;\n");
 693   fprintf(fp_cpp, "        if (predUse->_used & currUse->_used) {\n");
 694   fprintf(fp_cpp, "          Pipeline_Use_Cycle_Mask x = predUse->_mask;\n");
 695   fprintf(fp_cpp, "          Pipeline_Use_Cycle_Mask y = currUse->_mask;\n\n");
 696   fprintf(fp_cpp, "          for ( y <<= curr_delay; x.overlaps(y); curr_delay++ )\n");
 697   fprintf(fp_cpp, "            y <<= 1;\n");
 698   fprintf(fp_cpp, "        }\n");
 699   fprintf(fp_cpp, "        if (min_delay > curr_delay)\n          min_delay = curr_delay;\n");
 700   fprintf(fp_cpp, "      }\n");
 701   fprintf(fp_cpp, "      if (delay < min_delay)\n      delay = min_delay;\n");
 702   fprintf(fp_cpp, "    }\n");
 703   fprintf(fp_cpp, "    else {\n");
 704   fprintf(fp_cpp, "      for (uint j = predUse->_lb; j <= predUse->_ub; j++) {\n");
 705   fprintf(fp_cpp, "        const Pipeline_Use_Element *currUse = element(j);\n");
 706   fprintf(fp_cpp, "        if (predUse->_used & currUse->_used) {\n");
 707   fprintf(fp_cpp, "          Pipeline_Use_Cycle_Mask x = predUse->_mask;\n");
 708   fprintf(fp_cpp, "          Pipeline_Use_Cycle_Mask y = currUse->_mask;\n\n");
 709   fprintf(fp_cpp, "          for ( y <<= delay; x.overlaps(y); delay++ )\n");
 710   fprintf(fp_cpp, "            y <<= 1;\n");
 711   fprintf(fp_cpp, "        }\n");
 712   fprintf(fp_cpp, "      }\n");
 713   fprintf(fp_cpp, "    }\n");
 714   fprintf(fp_cpp, "  }\n\n");
 715   fprintf(fp_cpp, "  return (delay);\n");
 716   fprintf(fp_cpp, "}\n\n");
 717   fprintf(fp_cpp, "void Pipeline_Use::add_usage(const Pipeline_Use &pred) {\n");
 718   fprintf(fp_cpp, "  for (uint i = 0; i < pred._count; i++) {\n");
 719   fprintf(fp_cpp, "    const Pipeline_Use_Element *predUse = pred.element(i);\n");
 720   fprintf(fp_cpp, "    if (predUse->_multiple) {\n");
 721   fprintf(fp_cpp, "      // Multiple possible functional units, choose first unused one\n");
 722   fprintf(fp_cpp, "      for (uint j = predUse->_lb; j <= predUse->_ub; j++) {\n");
 723   fprintf(fp_cpp, "        Pipeline_Use_Element *currUse = element(j);\n");
 724   fprintf(fp_cpp, "        if ( !predUse->_mask.overlaps(currUse->_mask) ) {\n");
 725   fprintf(fp_cpp, "          currUse->_used |= (1 << j);\n");
 726   fprintf(fp_cpp, "          _resources_used |= (1 << j);\n");
 727   fprintf(fp_cpp, "          currUse->_mask.Or(predUse->_mask);\n");
 728   fprintf(fp_cpp, "          break;\n");
 729   fprintf(fp_cpp, "        }\n");
 730   fprintf(fp_cpp, "      }\n");
 731   fprintf(fp_cpp, "    }\n");
 732   fprintf(fp_cpp, "    else {\n");
 733   fprintf(fp_cpp, "      for (uint j = predUse->_lb; j <= predUse->_ub; j++) {\n");
 734   fprintf(fp_cpp, "        Pipeline_Use_Element *currUse = element(j);\n");
 735   fprintf(fp_cpp, "        currUse->_used |= (1 << j);\n");
 736   fprintf(fp_cpp, "        _resources_used |= (1 << j);\n");
 737   fprintf(fp_cpp, "        currUse->_mask.Or(predUse->_mask);\n");
 738   fprintf(fp_cpp, "      }\n");
 739   fprintf(fp_cpp, "    }\n");
 740   fprintf(fp_cpp, "  }\n");
 741   fprintf(fp_cpp, "}\n\n");
 742 
 743   fprintf(fp_cpp, "uint Pipeline::operand_latency(uint opnd, const Pipeline *pred) const {\n");
 744   fprintf(fp_cpp, "  int const default_latency = 1;\n");
 745   fprintf(fp_cpp, "\n");
 746 #if 0
 747   fprintf(fp_cpp, "#ifndef PRODUCT\n");
 748   fprintf(fp_cpp, "  if (TraceOptoOutput) {\n");
 749   fprintf(fp_cpp, "    tty->print(\"#   operand_latency(%%d), _read_stage_count = %%d\\n\", opnd, _read_stage_count);\n");
 750   fprintf(fp_cpp, "  }\n");
 751   fprintf(fp_cpp, "#endif\n\n");
 752 #endif
 753   fprintf(fp_cpp, "  assert(this, \"NULL pipeline info\");\n");
 754   fprintf(fp_cpp, "  assert(pred, \"NULL predecessor pipline info\");\n\n");
 755   fprintf(fp_cpp, "  if (pred->hasFixedLatency())\n    return (pred->fixedLatency());\n\n");
 756   fprintf(fp_cpp, "  // If this is not an operand, then assume a dependence with 0 latency\n");
 757   fprintf(fp_cpp, "  if (opnd > _read_stage_count)\n    return (0);\n\n");
 758   fprintf(fp_cpp, "  uint writeStage = pred->_write_stage;\n");
 759   fprintf(fp_cpp, "  uint readStage  = _read_stages[opnd-1];\n");
 760 #if 0
 761   fprintf(fp_cpp, "\n#ifndef PRODUCT\n");
 762   fprintf(fp_cpp, "  if (TraceOptoOutput) {\n");
 763   fprintf(fp_cpp, "    tty->print(\"#   operand_latency: writeStage=%%s readStage=%%s, opnd=%%d\\n\", stageName(writeStage), stageName(readStage), opnd);\n");
 764   fprintf(fp_cpp, "  }\n");
 765   fprintf(fp_cpp, "#endif\n\n");
 766 #endif
 767   fprintf(fp_cpp, "\n");
 768   fprintf(fp_cpp, "  if (writeStage == stage_undefined || readStage == stage_undefined)\n");
 769   fprintf(fp_cpp, "    return (default_latency);\n");
 770   fprintf(fp_cpp, "\n");
 771   fprintf(fp_cpp, "  int delta = writeStage - readStage;\n");
 772   fprintf(fp_cpp, "  if (delta < 0) delta = 0;\n\n");
 773 #if 0
 774   fprintf(fp_cpp, "\n#ifndef PRODUCT\n");
 775   fprintf(fp_cpp, "  if (TraceOptoOutput) {\n");
 776   fprintf(fp_cpp, "    tty->print(\"# operand_latency: delta=%%d\\n\", delta);\n");
 777   fprintf(fp_cpp, "  }\n");
 778   fprintf(fp_cpp, "#endif\n\n");
 779 #endif
 780   fprintf(fp_cpp, "  return (delta);\n");
 781   fprintf(fp_cpp, "}\n\n");
 782 
 783   if (!_pipeline)
 784     /* Do Nothing */;
 785 
 786   else if (_pipeline->_maxcycleused <=
 787 #ifdef SPARC
 788     64
 789 #else
 790     32
 791 #endif
 792       ) {
 793     fprintf(fp_cpp, "Pipeline_Use_Cycle_Mask operator&(const Pipeline_Use_Cycle_Mask &in1, const Pipeline_Use_Cycle_Mask &in2) {\n");
 794     fprintf(fp_cpp, "  return Pipeline_Use_Cycle_Mask(in1._mask & in2._mask);\n");
 795     fprintf(fp_cpp, "}\n\n");
 796     fprintf(fp_cpp, "Pipeline_Use_Cycle_Mask operator|(const Pipeline_Use_Cycle_Mask &in1, const Pipeline_Use_Cycle_Mask &in2) {\n");
 797     fprintf(fp_cpp, "  return Pipeline_Use_Cycle_Mask(in1._mask | in2._mask);\n");
 798     fprintf(fp_cpp, "}\n\n");
 799   }
 800   else {
 801     uint l;
 802     uint masklen = (_pipeline->_maxcycleused + 31) >> 5;
 803     fprintf(fp_cpp, "Pipeline_Use_Cycle_Mask operator&(const Pipeline_Use_Cycle_Mask &in1, const Pipeline_Use_Cycle_Mask &in2) {\n");
 804     fprintf(fp_cpp, "  return Pipeline_Use_Cycle_Mask(");
 805     for (l = 1; l <= masklen; l++)
 806       fprintf(fp_cpp, "in1._mask%d & in2._mask%d%s\n", l, l, l < masklen ? ", " : "");
 807     fprintf(fp_cpp, ");\n");
 808     fprintf(fp_cpp, "}\n\n");
 809     fprintf(fp_cpp, "Pipeline_Use_Cycle_Mask operator|(const Pipeline_Use_Cycle_Mask &in1, const Pipeline_Use_Cycle_Mask &in2) {\n");
 810     fprintf(fp_cpp, "  return Pipeline_Use_Cycle_Mask(");
 811     for (l = 1; l <= masklen; l++)
 812       fprintf(fp_cpp, "in1._mask%d | in2._mask%d%s", l, l, l < masklen ? ", " : "");
 813     fprintf(fp_cpp, ");\n");
 814     fprintf(fp_cpp, "}\n\n");
 815     fprintf(fp_cpp, "void Pipeline_Use_Cycle_Mask::Or(const Pipeline_Use_Cycle_Mask &in2) {\n ");
 816     for (l = 1; l <= masklen; l++)
 817       fprintf(fp_cpp, " _mask%d |= in2._mask%d;", l, l);
 818     fprintf(fp_cpp, "\n}\n\n");
 819   }
 820 
 821   /* Get the length of all the resource names */
 822   for (_pipeline->_reslist.reset(), resourcenamelen = 0;
 823        (resourcename = _pipeline->_reslist.iter()) != NULL;
 824        resourcenamelen += (int)strlen(resourcename));
 825 
 826   // Create the pipeline class description
 827 
 828   fprintf(fp_cpp, "static const Pipeline pipeline_class_Zero_Instructions(0, 0, true, 0, 0, false, false, false, false, NULL, NULL, NULL, Pipeline_Use(0, 0, 0, NULL));\n\n");
 829   fprintf(fp_cpp, "static const Pipeline pipeline_class_Unknown_Instructions(0, 0, true, 0, 0, false, true, true, false, NULL, NULL, NULL, Pipeline_Use(0, 0, 0, NULL));\n\n");
 830 
 831   fprintf(fp_cpp, "const Pipeline_Use_Element Pipeline_Use::elaborated_elements[%d] = {\n", _pipeline->_rescount);
 832   for (int i1 = 0; i1 < _pipeline->_rescount; i1++) {
 833     fprintf(fp_cpp, "  Pipeline_Use_Element(0, %d, %d, false, Pipeline_Use_Cycle_Mask(", i1, i1);
 834     uint masklen = (_pipeline->_maxcycleused + 31) >> 5;
 835     for (int i2 = masklen-1; i2 >= 0; i2--)
 836       fprintf(fp_cpp, "0%s", i2 > 0 ? ", " : "");
 837     fprintf(fp_cpp, "))%s\n", i1 < (_pipeline->_rescount-1) ? "," : "");
 838   }
 839   fprintf(fp_cpp, "};\n\n");
 840 
 841   fprintf(fp_cpp, "const Pipeline_Use Pipeline_Use::elaborated_use(0, 0, %d, (Pipeline_Use_Element *)&elaborated_elements[0]);\n\n",
 842     _pipeline->_rescount);
 843 
 844   for (_pipeline->_classlist.reset(); (classname = _pipeline->_classlist.iter()) != NULL; ) {
 845     fprintf(fp_cpp, "\n");
 846     fprintf(fp_cpp, "// Pipeline Class \"%s\"\n", classname);
 847     PipeClassForm *pipeclass = _pipeline->_classdict[classname]->is_pipeclass();
 848     int maxWriteStage = -1;
 849     int maxMoreInstrs = 0;
 850     int paramcount = 0;
 851     int i = 0;
 852     const char *paramname;
 853     int resource_count = (_pipeline->_rescount + 3) >> 2;
 854 
 855     // Scan the operands, looking for last output stage and number of inputs
 856     for (pipeclass->_parameters.reset(); (paramname = pipeclass->_parameters.iter()) != NULL; ) {
 857       const PipeClassOperandForm *pipeopnd =
 858           (const PipeClassOperandForm *)pipeclass->_localUsage[paramname];
 859       if (pipeopnd) {
 860         if (pipeopnd->_iswrite) {
 861            int stagenum  = _pipeline->_stages.index(pipeopnd->_stage);
 862            int moreinsts = pipeopnd->_more_instrs;
 863           if ((maxWriteStage+maxMoreInstrs) < (stagenum+moreinsts)) {
 864             maxWriteStage = stagenum;
 865             maxMoreInstrs = moreinsts;
 866           }
 867         }
 868       }
 869 
 870       if (i++ > 0 || (pipeopnd && !pipeopnd->isWrite()))
 871         paramcount++;
 872     }
 873 
 874     // Create the list of stages for the operands that are read
 875     // Note that we will build a NameList to reduce the number of copies
 876 
 877     int pipeline_reads_index = pipeline_reads_initializer(fp_cpp, pipeline_reads, pipeclass);
 878 
 879     int pipeline_res_stages_index = pipeline_res_stages_initializer(
 880       fp_cpp, _pipeline, pipeline_res_stages, pipeclass);
 881 
 882     int pipeline_res_cycles_index = pipeline_res_cycles_initializer(
 883       fp_cpp, _pipeline, pipeline_res_cycles, pipeclass);
 884 
 885     int pipeline_res_mask_index = pipeline_res_mask_initializer(
 886       fp_cpp, _pipeline, pipeline_res_masks, pipeline_res_args, pipeclass);
 887 
 888 #if 0
 889     // Process the Resources
 890     const PipeClassResourceForm *piperesource;
 891 
 892     unsigned resources_used = 0;
 893     unsigned exclusive_resources_used = 0;
 894     unsigned resource_groups = 0;
 895     for (pipeclass->_resUsage.reset();
 896          (piperesource = (const PipeClassResourceForm *)pipeclass->_resUsage.iter()) != NULL; ) {
 897       int used_mask = _pipeline->_resdict[piperesource->_resource]->is_resource()->mask();
 898       if (used_mask)
 899         resource_groups++;
 900       resources_used |= used_mask;
 901       if ((used_mask & (used_mask-1)) == 0)
 902         exclusive_resources_used |= used_mask;
 903     }
 904 
 905     if (resource_groups > 0) {
 906       fprintf(fp_cpp, "static const uint pipeline_res_or_masks_%03d[%d] = {",
 907         pipeclass->_num, resource_groups);
 908       for (pipeclass->_resUsage.reset(), i = 1;
 909            (piperesource = (const PipeClassResourceForm *)pipeclass->_resUsage.iter()) != NULL;
 910            i++ ) {
 911         int used_mask = _pipeline->_resdict[piperesource->_resource]->is_resource()->mask();
 912         if (used_mask) {
 913           fprintf(fp_cpp, " 0x%0*x%c", resource_count, used_mask, i < (int)resource_groups ? ',' : ' ');
 914         }
 915       }
 916       fprintf(fp_cpp, "};\n\n");
 917     }
 918 #endif
 919 
 920     // Create the pipeline class description
 921     fprintf(fp_cpp, "static const Pipeline pipeline_class_%03d(",
 922       pipeclass->_num);
 923     if (maxWriteStage < 0)
 924       fprintf(fp_cpp, "(uint)stage_undefined");
 925     else if (maxMoreInstrs == 0)
 926       fprintf(fp_cpp, "(uint)stage_%s", _pipeline->_stages.name(maxWriteStage));
 927     else
 928       fprintf(fp_cpp, "((uint)stage_%s)+%d", _pipeline->_stages.name(maxWriteStage), maxMoreInstrs);
 929     fprintf(fp_cpp, ", %d, %s, %d, %d, %s, %s, %s, %s,\n",
 930       paramcount,
 931       pipeclass->hasFixedLatency() ? "true" : "false",
 932       pipeclass->fixedLatency(),
 933       pipeclass->InstructionCount(),
 934       pipeclass->hasBranchDelay() ? "true" : "false",
 935       pipeclass->hasMultipleBundles() ? "true" : "false",
 936       pipeclass->forceSerialization() ? "true" : "false",
 937       pipeclass->mayHaveNoCode() ? "true" : "false" );
 938     if (paramcount > 0) {
 939       fprintf(fp_cpp, "\n  (enum machPipelineStages * const) pipeline_reads_%03d,\n ",
 940         pipeline_reads_index+1);
 941     }
 942     else
 943       fprintf(fp_cpp, " NULL,");
 944     fprintf(fp_cpp, "  (enum machPipelineStages * const) pipeline_res_stages_%03d,\n",
 945       pipeline_res_stages_index+1);
 946     fprintf(fp_cpp, "  (uint * const) pipeline_res_cycles_%03d,\n",
 947       pipeline_res_cycles_index+1);
 948     fprintf(fp_cpp, "  Pipeline_Use(%s, (Pipeline_Use_Element *)",
 949       pipeline_res_args.name(pipeline_res_mask_index));
 950     if (strlen(pipeline_res_masks.name(pipeline_res_mask_index)) > 0)
 951       fprintf(fp_cpp, "&pipeline_res_mask_%03d[0]",
 952         pipeline_res_mask_index+1);
 953     else
 954       fprintf(fp_cpp, "NULL");
 955     fprintf(fp_cpp, "));\n");
 956   }
 957 
 958   // Generate the Node::latency method if _pipeline defined
 959   fprintf(fp_cpp, "\n");
 960   fprintf(fp_cpp, "//------------------Inter-Instruction Latency--------------------------------\n");
 961   fprintf(fp_cpp, "uint Node::latency(uint i) {\n");
 962   if (_pipeline) {
 963 #if 0
 964     fprintf(fp_cpp, "#ifndef PRODUCT\n");
 965     fprintf(fp_cpp, " if (TraceOptoOutput) {\n");
 966     fprintf(fp_cpp, "    tty->print(\"# %%4d->latency(%%d)\\n\", _idx, i);\n");
 967     fprintf(fp_cpp, " }\n");
 968     fprintf(fp_cpp, "#endif\n");
 969 #endif
 970     fprintf(fp_cpp, "  uint j;\n");
 971     fprintf(fp_cpp, "  // verify in legal range for inputs\n");
 972     fprintf(fp_cpp, "  assert(i < len(), \"index not in range\");\n\n");
 973     fprintf(fp_cpp, "  // verify input is not null\n");
 974     fprintf(fp_cpp, "  Node *pred = in(i);\n");
 975     fprintf(fp_cpp, "  if (!pred)\n    return %d;\n\n",
 976       non_operand_latency);
 977     fprintf(fp_cpp, "  if (pred->is_Proj())\n    pred = pred->in(0);\n\n");
 978     fprintf(fp_cpp, "  // if either node does not have pipeline info, use default\n");
 979     fprintf(fp_cpp, "  const Pipeline *predpipe = pred->pipeline();\n");
 980     fprintf(fp_cpp, "  assert(predpipe, \"no predecessor pipeline info\");\n\n");
 981     fprintf(fp_cpp, "  if (predpipe->hasFixedLatency())\n    return predpipe->fixedLatency();\n\n");
 982     fprintf(fp_cpp, "  const Pipeline *currpipe = pipeline();\n");
 983     fprintf(fp_cpp, "  assert(currpipe, \"no pipeline info\");\n\n");
 984     fprintf(fp_cpp, "  if (!is_Mach())\n    return %d;\n\n",
 985       node_latency);
 986     fprintf(fp_cpp, "  const MachNode *m = as_Mach();\n");
 987     fprintf(fp_cpp, "  j = m->oper_input_base();\n");
 988     fprintf(fp_cpp, "  if (i < j)\n    return currpipe->functional_unit_latency(%d, predpipe);\n\n",
 989       non_operand_latency);
 990     fprintf(fp_cpp, "  // determine which operand this is in\n");
 991     fprintf(fp_cpp, "  uint n = m->num_opnds();\n");
 992     fprintf(fp_cpp, "  int delta = %d;\n\n",
 993       non_operand_latency);
 994     fprintf(fp_cpp, "  uint k;\n");
 995     fprintf(fp_cpp, "  for (k = 1; k < n; k++) {\n");
 996     fprintf(fp_cpp, "    j += m->_opnds[k]->num_edges();\n");
 997     fprintf(fp_cpp, "    if (i < j)\n");
 998     fprintf(fp_cpp, "      break;\n");
 999     fprintf(fp_cpp, "  }\n");
1000     fprintf(fp_cpp, "  if (k < n)\n");
1001     fprintf(fp_cpp, "    delta = currpipe->operand_latency(k,predpipe);\n\n");
1002     fprintf(fp_cpp, "  return currpipe->functional_unit_latency(delta, predpipe);\n");
1003   }
1004   else {
1005     fprintf(fp_cpp, "  // assert(false, \"pipeline functionality is not defined\");\n");
1006     fprintf(fp_cpp, "  return %d;\n",
1007       non_operand_latency);
1008   }
1009   fprintf(fp_cpp, "}\n\n");
1010 
1011   // Output the list of nop nodes
1012   fprintf(fp_cpp, "// Descriptions for emitting different functional unit nops\n");
1013   const char *nop;
1014   int nopcnt = 0;
1015   for ( _pipeline->_noplist.reset(); (nop = _pipeline->_noplist.iter()) != NULL; nopcnt++ );
1016 
1017   fprintf(fp_cpp, "void Bundle::initialize_nops(MachNode * nop_list[%d], Compile *C) {\n", nopcnt);
1018   int i = 0;
1019   for ( _pipeline->_noplist.reset(); (nop = _pipeline->_noplist.iter()) != NULL; i++ ) {
1020     fprintf(fp_cpp, "  nop_list[%d] = (MachNode *) new (C) %sNode();\n", i, nop);
1021   }
1022   fprintf(fp_cpp, "};\n\n");
1023   fprintf(fp_cpp, "#ifndef PRODUCT\n");
1024   fprintf(fp_cpp, "void Bundle::dump(outputStream *st) const {\n");
1025   fprintf(fp_cpp, "  static const char * bundle_flags[] = {\n");
1026   fprintf(fp_cpp, "    \"\",\n");
1027   fprintf(fp_cpp, "    \"use nop delay\",\n");
1028   fprintf(fp_cpp, "    \"use unconditional delay\",\n");
1029   fprintf(fp_cpp, "    \"use conditional delay\",\n");
1030   fprintf(fp_cpp, "    \"used in conditional delay\",\n");
1031   fprintf(fp_cpp, "    \"used in unconditional delay\",\n");
1032   fprintf(fp_cpp, "    \"used in all conditional delays\",\n");
1033   fprintf(fp_cpp, "  };\n\n");
1034 
1035   fprintf(fp_cpp, "  static const char *resource_names[%d] = {", _pipeline->_rescount);
1036   for (i = 0; i < _pipeline->_rescount; i++)
1037     fprintf(fp_cpp, " \"%s\"%c", _pipeline->_reslist.name(i), i < _pipeline->_rescount-1 ? ',' : ' ');
1038   fprintf(fp_cpp, "};\n\n");
1039 
1040   // See if the same string is in the table
1041   fprintf(fp_cpp, "  bool needs_comma = false;\n\n");
1042   fprintf(fp_cpp, "  if (_flags) {\n");
1043   fprintf(fp_cpp, "    st->print(\"%%s\", bundle_flags[_flags]);\n");
1044   fprintf(fp_cpp, "    needs_comma = true;\n");
1045   fprintf(fp_cpp, "  };\n");
1046   fprintf(fp_cpp, "  if (instr_count()) {\n");
1047   fprintf(fp_cpp, "    st->print(\"%%s%%d instr%%s\", needs_comma ? \", \" : \"\", instr_count(), instr_count() != 1 ? \"s\" : \"\");\n");
1048   fprintf(fp_cpp, "    needs_comma = true;\n");
1049   fprintf(fp_cpp, "  };\n");
1050   fprintf(fp_cpp, "  uint r = resources_used();\n");
1051   fprintf(fp_cpp, "  if (r) {\n");
1052   fprintf(fp_cpp, "    st->print(\"%%sresource%%s:\", needs_comma ? \", \" : \"\", (r & (r-1)) != 0 ? \"s\" : \"\");\n");
1053   fprintf(fp_cpp, "    for (uint i = 0; i < %d; i++)\n", _pipeline->_rescount);
1054   fprintf(fp_cpp, "      if ((r & (1 << i)) != 0)\n");
1055   fprintf(fp_cpp, "        st->print(\" %%s\", resource_names[i]);\n");
1056   fprintf(fp_cpp, "    needs_comma = true;\n");
1057   fprintf(fp_cpp, "  };\n");
1058   fprintf(fp_cpp, "  st->print(\"\\n\");\n");
1059   fprintf(fp_cpp, "}\n");
1060   fprintf(fp_cpp, "#endif\n");
1061 }
1062 
1063 // ---------------------------------------------------------------------------
1064 //------------------------------Utilities to build Instruction Classes--------
1065 // ---------------------------------------------------------------------------
1066 
1067 static void defineOut_RegMask(FILE *fp, const char *node, const char *regMask) {
1068   fprintf(fp,"const RegMask &%sNode::out_RegMask() const { return (%s); }\n",
1069           node, regMask);
1070 }
1071 
1072 static void print_block_index(FILE *fp, int inst_position) {
1073   assert( inst_position >= 0, "Instruction number less than zero");
1074   fprintf(fp, "block_index");
1075   if( inst_position != 0 ) {
1076     fprintf(fp, " - %d", inst_position);
1077   }
1078 }
1079 
1080 // Scan the peepmatch and output a test for each instruction
1081 static void check_peepmatch_instruction_sequence(FILE *fp, PeepMatch *pmatch, PeepConstraint *pconstraint) {
1082   int         parent        = -1;
1083   int         inst_position = 0;
1084   const char* inst_name     = NULL;
1085   int         input         = 0;
1086   fprintf(fp, "  // Check instruction sub-tree\n");
1087   pmatch->reset();
1088   for( pmatch->next_instruction( parent, inst_position, inst_name, input );
1089        inst_name != NULL;
1090        pmatch->next_instruction( parent, inst_position, inst_name, input ) ) {
1091     // If this is not a placeholder
1092     if( ! pmatch->is_placeholder() ) {
1093       // Define temporaries 'inst#', based on parent and parent's input index
1094       if( parent != -1 ) {                // root was initialized
1095         fprintf(fp, "  // Identify previous instruction if inside this block\n");
1096         fprintf(fp, "  if( ");
1097         print_block_index(fp, inst_position);
1098         fprintf(fp, " > 0 ) {\n    Node *n = block->get_node(");
1099         print_block_index(fp, inst_position);
1100         fprintf(fp, ");\n    inst%d = (n->is_Mach()) ? ", inst_position);
1101         fprintf(fp, "n->as_Mach() : NULL;\n  }\n");
1102       }
1103 
1104       // When not the root
1105       // Test we have the correct instruction by comparing the rule.
1106       if( parent != -1 ) {
1107         fprintf(fp, "  matches = matches && (inst%d != NULL) && (inst%d->rule() == %s_rule);\n",
1108                 inst_position, inst_position, inst_name);
1109       }
1110     } else {
1111       // Check that user did not try to constrain a placeholder
1112       assert( ! pconstraint->constrains_instruction(inst_position),
1113               "fatal(): Can not constrain a placeholder instruction");
1114     }
1115   }
1116 }
1117 
1118 // Build mapping for register indices, num_edges to input
1119 static void build_instruction_index_mapping( FILE *fp, FormDict &globals, PeepMatch *pmatch ) {
1120   int         parent        = -1;
1121   int         inst_position = 0;
1122   const char* inst_name     = NULL;
1123   int         input         = 0;
1124   fprintf(fp, "      // Build map to register info\n");
1125   pmatch->reset();
1126   for( pmatch->next_instruction( parent, inst_position, inst_name, input );
1127        inst_name != NULL;
1128        pmatch->next_instruction( parent, inst_position, inst_name, input ) ) {
1129     // If this is not a placeholder
1130     if( ! pmatch->is_placeholder() ) {
1131       // Define temporaries 'inst#', based on self's inst_position
1132       InstructForm *inst = globals[inst_name]->is_instruction();
1133       if( inst != NULL ) {
1134         char inst_prefix[]  = "instXXXX_";
1135         sprintf(inst_prefix, "inst%d_",   inst_position);
1136         char receiver[]     = "instXXXX->";
1137         sprintf(receiver,    "inst%d->", inst_position);
1138         inst->index_temps( fp, globals, inst_prefix, receiver );
1139       }
1140     }
1141   }
1142 }
1143 
1144 // Generate tests for the constraints
1145 static void check_peepconstraints(FILE *fp, FormDict &globals, PeepMatch *pmatch, PeepConstraint *pconstraint) {
1146   fprintf(fp, "\n");
1147   fprintf(fp, "      // Check constraints on sub-tree-leaves\n");
1148 
1149   // Build mapping from num_edges to local variables
1150   build_instruction_index_mapping( fp, globals, pmatch );
1151 
1152   // Build constraint tests
1153   if( pconstraint != NULL ) {
1154     fprintf(fp, "      matches = matches &&");
1155     bool   first_constraint = true;
1156     while( pconstraint != NULL ) {
1157       // indentation and connecting '&&'
1158       const char *indentation = "      ";
1159       fprintf(fp, "\n%s%s", indentation, (!first_constraint ? "&& " : "  "));
1160 
1161       // Only have '==' relation implemented
1162       if( strcmp(pconstraint->_relation,"==") != 0 ) {
1163         assert( false, "Unimplemented()" );
1164       }
1165 
1166       // LEFT
1167       int left_index       = pconstraint->_left_inst;
1168       const char *left_op  = pconstraint->_left_op;
1169       // Access info on the instructions whose operands are compared
1170       InstructForm *inst_left = globals[pmatch->instruction_name(left_index)]->is_instruction();
1171       assert( inst_left, "Parser should guaranty this is an instruction");
1172       int left_op_base  = inst_left->oper_input_base(globals);
1173       // Access info on the operands being compared
1174       int left_op_index  = inst_left->operand_position(left_op, Component::USE);
1175       if( left_op_index == -1 ) {
1176         left_op_index = inst_left->operand_position(left_op, Component::DEF);
1177         if( left_op_index == -1 ) {
1178           left_op_index = inst_left->operand_position(left_op, Component::USE_DEF);
1179         }
1180       }
1181       assert( left_op_index  != NameList::Not_in_list, "Did not find operand in instruction");
1182       ComponentList components_left = inst_left->_components;
1183       const char *left_comp_type = components_left.at(left_op_index)->_type;
1184       OpClassForm *left_opclass = globals[left_comp_type]->is_opclass();
1185       Form::InterfaceType left_interface_type = left_opclass->interface_type(globals);
1186 
1187 
1188       // RIGHT
1189       int right_op_index = -1;
1190       int right_index      = pconstraint->_right_inst;
1191       const char *right_op = pconstraint->_right_op;
1192       if( right_index != -1 ) { // Match operand
1193         // Access info on the instructions whose operands are compared
1194         InstructForm *inst_right = globals[pmatch->instruction_name(right_index)]->is_instruction();
1195         assert( inst_right, "Parser should guaranty this is an instruction");
1196         int right_op_base = inst_right->oper_input_base(globals);
1197         // Access info on the operands being compared
1198         right_op_index = inst_right->operand_position(right_op, Component::USE);
1199         if( right_op_index == -1 ) {
1200           right_op_index = inst_right->operand_position(right_op, Component::DEF);
1201           if( right_op_index == -1 ) {
1202             right_op_index = inst_right->operand_position(right_op, Component::USE_DEF);
1203           }
1204         }
1205         assert( right_op_index != NameList::Not_in_list, "Did not find operand in instruction");
1206         ComponentList components_right = inst_right->_components;
1207         const char *right_comp_type = components_right.at(right_op_index)->_type;
1208         OpClassForm *right_opclass = globals[right_comp_type]->is_opclass();
1209         Form::InterfaceType right_interface_type = right_opclass->interface_type(globals);
1210         assert( right_interface_type == left_interface_type, "Both must be same interface");
1211 
1212       } else {                  // Else match register
1213         // assert( false, "should be a register" );
1214       }
1215 
1216       //
1217       // Check for equivalence
1218       //
1219       // fprintf(fp, "phase->eqv( ");
1220       // fprintf(fp, "inst%d->in(%d+%d) /* %s */, inst%d->in(%d+%d) /* %s */",
1221       //         left_index,  left_op_base,  left_op_index,  left_op,
1222       //         right_index, right_op_base, right_op_index, right_op );
1223       // fprintf(fp, ")");
1224       //
1225       switch( left_interface_type ) {
1226       case Form::register_interface: {
1227         // Check that they are allocated to the same register
1228         // Need parameter for index position if not result operand
1229         char left_reg_index[] = ",instXXXX_idxXXXX";
1230         if( left_op_index != 0 ) {
1231           assert( (left_index <= 9999) && (left_op_index <= 9999), "exceed string size");
1232           // Must have index into operands
1233           sprintf(left_reg_index,",inst%d_idx%d", (int)left_index, left_op_index);
1234         } else {
1235           strcpy(left_reg_index, "");
1236         }
1237         fprintf(fp, "(inst%d->_opnds[%d]->reg(ra_,inst%d%s)  /* %d.%s */",
1238                 left_index,  left_op_index, left_index, left_reg_index, left_index, left_op );
1239         fprintf(fp, " == ");
1240 
1241         if( right_index != -1 ) {
1242           char right_reg_index[18] = ",instXXXX_idxXXXX";
1243           if( right_op_index != 0 ) {
1244             assert( (right_index <= 9999) && (right_op_index <= 9999), "exceed string size");
1245             // Must have index into operands
1246             sprintf(right_reg_index,",inst%d_idx%d", (int)right_index, right_op_index);
1247           } else {
1248             strcpy(right_reg_index, "");
1249           }
1250           fprintf(fp, "/* %d.%s */ inst%d->_opnds[%d]->reg(ra_,inst%d%s)",
1251                   right_index, right_op, right_index, right_op_index, right_index, right_reg_index );
1252         } else {
1253           fprintf(fp, "%s_enc", right_op );
1254         }
1255         fprintf(fp,")");
1256         break;
1257       }
1258       case Form::constant_interface: {
1259         // Compare the '->constant()' values
1260         fprintf(fp, "(inst%d->_opnds[%d]->constant()  /* %d.%s */",
1261                 left_index,  left_op_index,  left_index, left_op );
1262         fprintf(fp, " == ");
1263         fprintf(fp, "/* %d.%s */ inst%d->_opnds[%d]->constant())",
1264                 right_index, right_op, right_index, right_op_index );
1265         break;
1266       }
1267       case Form::memory_interface: {
1268         // Compare 'base', 'index', 'scale', and 'disp'
1269         // base
1270         fprintf(fp, "( \n");
1271         fprintf(fp, "  (inst%d->_opnds[%d]->base(ra_,inst%d,inst%d_idx%d)  /* %d.%s$$base */",
1272           left_index, left_op_index, left_index, left_index, left_op_index, left_index, left_op );
1273         fprintf(fp, " == ");
1274         fprintf(fp, "/* %d.%s$$base */ inst%d->_opnds[%d]->base(ra_,inst%d,inst%d_idx%d)) &&\n",
1275                 right_index, right_op, right_index, right_op_index, right_index, right_index, right_op_index );
1276         // index
1277         fprintf(fp, "  (inst%d->_opnds[%d]->index(ra_,inst%d,inst%d_idx%d)  /* %d.%s$$index */",
1278                 left_index, left_op_index, left_index, left_index, left_op_index, left_index, left_op );
1279         fprintf(fp, " == ");
1280         fprintf(fp, "/* %d.%s$$index */ inst%d->_opnds[%d]->index(ra_,inst%d,inst%d_idx%d)) &&\n",
1281                 right_index, right_op, right_index, right_op_index, right_index, right_index, right_op_index );
1282         // scale
1283         fprintf(fp, "  (inst%d->_opnds[%d]->scale()  /* %d.%s$$scale */",
1284                 left_index,  left_op_index,  left_index, left_op );
1285         fprintf(fp, " == ");
1286         fprintf(fp, "/* %d.%s$$scale */ inst%d->_opnds[%d]->scale()) &&\n",
1287                 right_index, right_op, right_index, right_op_index );
1288         // disp
1289         fprintf(fp, "  (inst%d->_opnds[%d]->disp(ra_,inst%d,inst%d_idx%d)  /* %d.%s$$disp */",
1290                 left_index, left_op_index, left_index, left_index, left_op_index, left_index, left_op );
1291         fprintf(fp, " == ");
1292         fprintf(fp, "/* %d.%s$$disp */ inst%d->_opnds[%d]->disp(ra_,inst%d,inst%d_idx%d))\n",
1293                 right_index, right_op, right_index, right_op_index, right_index, right_index, right_op_index );
1294         fprintf(fp, ") \n");
1295         break;
1296       }
1297       case Form::conditional_interface: {
1298         // Compare the condition code being tested
1299         assert( false, "Unimplemented()" );
1300         break;
1301       }
1302       default: {
1303         assert( false, "ShouldNotReachHere()" );
1304         break;
1305       }
1306       }
1307 
1308       // Advance to next constraint
1309       pconstraint = pconstraint->next();
1310       first_constraint = false;
1311     }
1312 
1313     fprintf(fp, ";\n");
1314   }
1315 }
1316 
1317 // // EXPERIMENTAL -- TEMPORARY code
1318 // static Form::DataType get_operand_type(FormDict &globals, InstructForm *instr, const char *op_name ) {
1319 //   int op_index = instr->operand_position(op_name, Component::USE);
1320 //   if( op_index == -1 ) {
1321 //     op_index = instr->operand_position(op_name, Component::DEF);
1322 //     if( op_index == -1 ) {
1323 //       op_index = instr->operand_position(op_name, Component::USE_DEF);
1324 //     }
1325 //   }
1326 //   assert( op_index != NameList::Not_in_list, "Did not find operand in instruction");
1327 //
1328 //   ComponentList components_right = instr->_components;
1329 //   char *right_comp_type = components_right.at(op_index)->_type;
1330 //   OpClassForm *right_opclass = globals[right_comp_type]->is_opclass();
1331 //   Form::InterfaceType  right_interface_type = right_opclass->interface_type(globals);
1332 //
1333 //   return;
1334 // }
1335 
1336 // Construct the new sub-tree
1337 static void generate_peepreplace( FILE *fp, FormDict &globals, PeepMatch *pmatch, PeepConstraint *pconstraint, PeepReplace *preplace, int max_position ) {
1338   fprintf(fp, "      // IF instructions and constraints matched\n");
1339   fprintf(fp, "      if( matches ) {\n");
1340   fprintf(fp, "        // generate the new sub-tree\n");
1341   fprintf(fp, "        assert( true, \"Debug stopping point\");\n");
1342   if( preplace != NULL ) {
1343     // Get the root of the new sub-tree
1344     const char *root_inst = NULL;
1345     preplace->next_instruction(root_inst);
1346     InstructForm *root_form = globals[root_inst]->is_instruction();
1347     assert( root_form != NULL, "Replacement instruction was not previously defined");
1348     fprintf(fp, "        %sNode *root = new (C) %sNode();\n", root_inst, root_inst);
1349 
1350     int         inst_num;
1351     const char *op_name;
1352     int         opnds_index = 0;            // define result operand
1353     // Then install the use-operands for the new sub-tree
1354     // preplace->reset();             // reset breaks iteration
1355     for( preplace->next_operand( inst_num, op_name );
1356          op_name != NULL;
1357          preplace->next_operand( inst_num, op_name ) ) {
1358       InstructForm *inst_form;
1359       inst_form  = globals[pmatch->instruction_name(inst_num)]->is_instruction();
1360       assert( inst_form, "Parser should guaranty this is an instruction");
1361       int inst_op_num = inst_form->operand_position(op_name, Component::USE);
1362       if( inst_op_num == NameList::Not_in_list )
1363         inst_op_num = inst_form->operand_position(op_name, Component::USE_DEF);
1364       assert( inst_op_num != NameList::Not_in_list, "Did not find operand as USE");
1365       // find the name of the OperandForm from the local name
1366       const Form *form   = inst_form->_localNames[op_name];
1367       OperandForm  *op_form = form->is_operand();
1368       if( opnds_index == 0 ) {
1369         // Initial setup of new instruction
1370         fprintf(fp, "        // ----- Initial setup -----\n");
1371         //
1372         // Add control edge for this node
1373         fprintf(fp, "        root->add_req(_in[0]);                // control edge\n");
1374         // Add unmatched edges from root of match tree
1375         int op_base = root_form->oper_input_base(globals);
1376         for( int unmatched_edge = 1; unmatched_edge < op_base; ++unmatched_edge ) {
1377           fprintf(fp, "        root->add_req(inst%d->in(%d));        // unmatched ideal edge\n",
1378                                           inst_num, unmatched_edge);
1379         }
1380         // If new instruction captures bottom type
1381         if( root_form->captures_bottom_type(globals) ) {
1382           // Get bottom type from instruction whose result we are replacing
1383           fprintf(fp, "        root->_bottom_type = inst%d->bottom_type();\n", inst_num);
1384         }
1385         // Define result register and result operand
1386         fprintf(fp, "        ra_->add_reference(root, inst%d);\n", inst_num);
1387         fprintf(fp, "        ra_->set_oop (root, ra_->is_oop(inst%d));\n", inst_num);
1388         fprintf(fp, "        ra_->set_pair(root->_idx, ra_->get_reg_second(inst%d), ra_->get_reg_first(inst%d));\n", inst_num, inst_num);
1389         fprintf(fp, "        root->_opnds[0] = inst%d->_opnds[0]->clone(C); // result\n", inst_num);
1390         fprintf(fp, "        // ----- Done with initial setup -----\n");
1391       } else {
1392         if( (op_form == NULL) || (op_form->is_base_constant(globals) == Form::none) ) {
1393           // Do not have ideal edges for constants after matching
1394           fprintf(fp, "        for( unsigned x%d = inst%d_idx%d; x%d < inst%d_idx%d; x%d++ )\n",
1395                   inst_op_num, inst_num, inst_op_num,
1396                   inst_op_num, inst_num, inst_op_num+1, inst_op_num );
1397           fprintf(fp, "          root->add_req( inst%d->in(x%d) );\n",
1398                   inst_num, inst_op_num );
1399         } else {
1400           fprintf(fp, "        // no ideal edge for constants after matching\n");
1401         }
1402         fprintf(fp, "        root->_opnds[%d] = inst%d->_opnds[%d]->clone(C);\n",
1403                 opnds_index, inst_num, inst_op_num );
1404       }
1405       ++opnds_index;
1406     }
1407   }else {
1408     // Replacing subtree with empty-tree
1409     assert( false, "ShouldNotReachHere();");
1410   }
1411 
1412   // Return the new sub-tree
1413   fprintf(fp, "        deleted = %d;\n", max_position+1 /*zero to one based*/);
1414   fprintf(fp, "        return root;  // return new root;\n");
1415   fprintf(fp, "      }\n");
1416 }
1417 
1418 
1419 // Define the Peephole method for an instruction node
1420 void ArchDesc::definePeephole(FILE *fp, InstructForm *node) {
1421   // Generate Peephole function header
1422   fprintf(fp, "MachNode *%sNode::peephole( Block *block, int block_index, PhaseRegAlloc *ra_, int &deleted, Compile* C ) {\n", node->_ident);
1423   fprintf(fp, "  bool  matches = true;\n");
1424 
1425   // Identify the maximum instruction position,
1426   // generate temporaries that hold current instruction
1427   //
1428   //   MachNode  *inst0 = NULL;
1429   //   ...
1430   //   MachNode  *instMAX = NULL;
1431   //
1432   int max_position = 0;
1433   Peephole *peep;
1434   for( peep = node->peepholes(); peep != NULL; peep = peep->next() ) {
1435     PeepMatch *pmatch = peep->match();
1436     assert( pmatch != NULL, "fatal(), missing peepmatch rule");
1437     if( max_position < pmatch->max_position() )  max_position = pmatch->max_position();
1438   }
1439   for( int i = 0; i <= max_position; ++i ) {
1440     if( i == 0 ) {
1441       fprintf(fp, "  MachNode *inst0 = this;\n");
1442     } else {
1443       fprintf(fp, "  MachNode *inst%d = NULL;\n", i);
1444     }
1445   }
1446 
1447   // For each peephole rule in architecture description
1448   //   Construct a test for the desired instruction sub-tree
1449   //   then check the constraints
1450   //   If these match, Generate the new subtree
1451   for( peep = node->peepholes(); peep != NULL; peep = peep->next() ) {
1452     int         peephole_number = peep->peephole_number();
1453     PeepMatch      *pmatch      = peep->match();
1454     PeepConstraint *pconstraint = peep->constraints();
1455     PeepReplace    *preplace    = peep->replacement();
1456 
1457     // Root of this peephole is the current MachNode
1458     assert( true, // %%name?%% strcmp( node->_ident, pmatch->name(0) ) == 0,
1459             "root of PeepMatch does not match instruction");
1460 
1461     // Make each peephole rule individually selectable
1462     fprintf(fp, "  if( (OptoPeepholeAt == -1) || (OptoPeepholeAt==%d) ) {\n", peephole_number);
1463     fprintf(fp, "    matches = true;\n");
1464     // Scan the peepmatch and output a test for each instruction
1465     check_peepmatch_instruction_sequence( fp, pmatch, pconstraint );
1466 
1467     // Check constraints and build replacement inside scope
1468     fprintf(fp, "    // If instruction subtree matches\n");
1469     fprintf(fp, "    if( matches ) {\n");
1470 
1471     // Generate tests for the constraints
1472     check_peepconstraints( fp, _globalNames, pmatch, pconstraint );
1473 
1474     // Construct the new sub-tree
1475     generate_peepreplace( fp, _globalNames, pmatch, pconstraint, preplace, max_position );
1476 
1477     // End of scope for this peephole's constraints
1478     fprintf(fp, "    }\n");
1479     // Closing brace '}' to make each peephole rule individually selectable
1480     fprintf(fp, "  } // end of peephole rule #%d\n", peephole_number);
1481     fprintf(fp, "\n");
1482   }
1483 
1484   fprintf(fp, "  return NULL;  // No peephole rules matched\n");
1485   fprintf(fp, "}\n");
1486   fprintf(fp, "\n");
1487 }
1488 
1489 // Define the Expand method for an instruction node
1490 void ArchDesc::defineExpand(FILE *fp, InstructForm *node) {
1491   unsigned      cnt  = 0;          // Count nodes we have expand into
1492   unsigned      i;
1493 
1494   // Generate Expand function header
1495   fprintf(fp, "MachNode* %sNode::Expand(State* state, Node_List& proj_list, Node* mem) {\n", node->_ident);
1496   fprintf(fp, "  Compile* C = Compile::current();\n");
1497   // Generate expand code
1498   if( node->expands() ) {
1499     const char   *opid;
1500     int           new_pos, exp_pos;
1501     const char   *new_id   = NULL;
1502     const Form   *frm      = NULL;
1503     InstructForm *new_inst = NULL;
1504     OperandForm  *new_oper = NULL;
1505     unsigned      numo     = node->num_opnds() +
1506                                 node->_exprule->_newopers.count();
1507 
1508     // If necessary, generate any operands created in expand rule
1509     if (node->_exprule->_newopers.count()) {
1510       for(node->_exprule->_newopers.reset();
1511           (new_id = node->_exprule->_newopers.iter()) != NULL; cnt++) {
1512         frm = node->_localNames[new_id];
1513         assert(frm, "Invalid entry in new operands list of expand rule");
1514         new_oper = frm->is_operand();
1515         char *tmp = (char *)node->_exprule->_newopconst[new_id];
1516         if (tmp == NULL) {
1517           fprintf(fp,"  MachOper *op%d = new (C) %sOper();\n",
1518                   cnt, new_oper->_ident);
1519         }
1520         else {
1521           fprintf(fp,"  MachOper *op%d = new (C) %sOper(%s);\n",
1522                   cnt, new_oper->_ident, tmp);
1523         }
1524       }
1525     }
1526     cnt = 0;
1527     // Generate the temps to use for DAG building
1528     for(i = 0; i < numo; i++) {
1529       if (i < node->num_opnds()) {
1530         fprintf(fp,"  MachNode *tmp%d = this;\n", i);
1531       }
1532       else {
1533         fprintf(fp,"  MachNode *tmp%d = NULL;\n", i);
1534       }
1535     }
1536     // Build mapping from num_edges to local variables
1537     fprintf(fp,"  unsigned num0 = 0;\n");
1538     for( i = 1; i < node->num_opnds(); i++ ) {
1539       fprintf(fp,"  unsigned num%d = opnd_array(%d)->num_edges();\n",i,i);
1540     }
1541 
1542     // Build a mapping from operand index to input edges
1543     fprintf(fp,"  unsigned idx0 = oper_input_base();\n");
1544 
1545     // The order in which the memory input is added to a node is very
1546     // strange.  Store nodes get a memory input before Expand is
1547     // called and other nodes get it afterwards or before depending on
1548     // match order so oper_input_base is wrong during expansion.  This
1549     // code adjusts it so that expansion will work correctly.
1550     int has_memory_edge = node->_matrule->needs_ideal_memory_edge(_globalNames);
1551     if (has_memory_edge) {
1552       fprintf(fp,"  if (mem == (Node*)1) {\n");
1553       fprintf(fp,"    idx0--; // Adjust base because memory edge hasn't been inserted yet\n");
1554       fprintf(fp,"  }\n");
1555     }
1556 
1557     for( i = 0; i < node->num_opnds(); i++ ) {
1558       fprintf(fp,"  unsigned idx%d = idx%d + num%d;\n",
1559               i+1,i,i);
1560     }
1561 
1562     // Declare variable to hold root of expansion
1563     fprintf(fp,"  MachNode *result = NULL;\n");
1564 
1565     // Iterate over the instructions 'node' expands into
1566     ExpandRule  *expand       = node->_exprule;
1567     NameAndList *expand_instr = NULL;
1568     for(expand->reset_instructions();
1569         (expand_instr = expand->iter_instructions()) != NULL; cnt++) {
1570       new_id = expand_instr->name();
1571 
1572       InstructForm* expand_instruction = (InstructForm*)globalAD->globalNames()[new_id];
1573 
1574       if (!expand_instruction) {
1575         globalAD->syntax_err(node->_linenum, "In %s: instruction %s used in expand not declared\n",
1576                              node->_ident, new_id);
1577         continue;
1578       }
1579 
1580       if (expand_instruction->has_temps()) {
1581         globalAD->syntax_err(node->_linenum, "In %s: expand rules using instructs with TEMPs aren't supported: %s",
1582                              node->_ident, new_id);
1583       }
1584 
1585       // Build the node for the instruction
1586       fprintf(fp,"\n  %sNode *n%d = new (C) %sNode();\n", new_id, cnt, new_id);
1587       // Add control edge for this node
1588       fprintf(fp,"  n%d->add_req(_in[0]);\n", cnt);
1589       // Build the operand for the value this node defines.
1590       Form *form = (Form*)_globalNames[new_id];
1591       assert( form, "'new_id' must be a defined form name");
1592       // Grab the InstructForm for the new instruction
1593       new_inst = form->is_instruction();
1594       assert( new_inst, "'new_id' must be an instruction name");
1595       if( node->is_ideal_if() && new_inst->is_ideal_if() ) {
1596         fprintf(fp, "  ((MachIfNode*)n%d)->_prob = _prob;\n",cnt);
1597         fprintf(fp, "  ((MachIfNode*)n%d)->_fcnt = _fcnt;\n",cnt);
1598       }
1599 
1600       if( node->is_ideal_fastlock() && new_inst->is_ideal_fastlock() ) {
1601         fprintf(fp, "  ((MachFastLockNode*)n%d)->_counters = _counters;\n",cnt);
1602         fprintf(fp, "  ((MachFastLockNode*)n%d)->_rtm_counters = _rtm_counters;\n",cnt);
1603         fprintf(fp, "  ((MachFastLockNode*)n%d)->_stack_rtm_counters = _stack_rtm_counters;\n",cnt);
1604       }
1605 
1606       // Fill in the bottom_type where requested
1607       if (node->captures_bottom_type(_globalNames) &&
1608           new_inst->captures_bottom_type(_globalNames)) {
1609         fprintf(fp, "  ((MachTypeNode*)n%d)->_bottom_type = bottom_type();\n", cnt);
1610       }
1611 
1612       const char *resultOper = new_inst->reduce_result();
1613       fprintf(fp,"  n%d->set_opnd_array(0, state->MachOperGenerator( %s, C ));\n",
1614               cnt, machOperEnum(resultOper));
1615 
1616       // get the formal operand NameList
1617       NameList *formal_lst = &new_inst->_parameters;
1618       formal_lst->reset();
1619 
1620       // Handle any memory operand
1621       int memory_operand = new_inst->memory_operand(_globalNames);
1622       if( memory_operand != InstructForm::NO_MEMORY_OPERAND ) {
1623         int node_mem_op = node->memory_operand(_globalNames);
1624         assert( node_mem_op != InstructForm::NO_MEMORY_OPERAND,
1625                 "expand rule member needs memory but top-level inst doesn't have any" );
1626         if (has_memory_edge) {
1627           // Copy memory edge
1628           fprintf(fp,"  if (mem != (Node*)1) {\n");
1629           fprintf(fp,"    n%d->add_req(_in[1]);\t// Add memory edge\n", cnt);
1630           fprintf(fp,"  }\n");
1631         }
1632       }
1633 
1634       // Iterate over the new instruction's operands
1635       int prev_pos = -1;
1636       for( expand_instr->reset(); (opid = expand_instr->iter()) != NULL; ) {
1637         // Use 'parameter' at current position in list of new instruction's formals
1638         // instead of 'opid' when looking up info internal to new_inst
1639         const char *parameter = formal_lst->iter();
1640         if (!parameter) {
1641           globalAD->syntax_err(node->_linenum, "Operand %s of expand instruction %s has"
1642                                " no equivalent in new instruction %s.",
1643                                opid, node->_ident, new_inst->_ident);
1644           assert(0, "Wrong expand");
1645         }
1646 
1647         // Check for an operand which is created in the expand rule
1648         if ((exp_pos = node->_exprule->_newopers.index(opid)) != -1) {
1649           new_pos = new_inst->operand_position(parameter,Component::USE);
1650           exp_pos += node->num_opnds();
1651           // If there is no use of the created operand, just skip it
1652           if (new_pos != NameList::Not_in_list) {
1653             //Copy the operand from the original made above
1654             fprintf(fp,"  n%d->set_opnd_array(%d, op%d->clone(C)); // %s\n",
1655                     cnt, new_pos, exp_pos-node->num_opnds(), opid);
1656             // Check for who defines this operand & add edge if needed
1657             fprintf(fp,"  if(tmp%d != NULL)\n", exp_pos);
1658             fprintf(fp,"    n%d->add_req(tmp%d);\n", cnt, exp_pos);
1659           }
1660         }
1661         else {
1662           // Use operand name to get an index into instruction component list
1663           // ins = (InstructForm *) _globalNames[new_id];
1664           exp_pos = node->operand_position_format(opid);
1665           assert(exp_pos != -1, "Bad expand rule");
1666           if (prev_pos > exp_pos && expand_instruction->_matrule != NULL) {
1667             // For the add_req calls below to work correctly they need
1668             // to added in the same order that a match would add them.
1669             // This means that they would need to be in the order of
1670             // the components list instead of the formal parameters.
1671             // This is a sort of hidden invariant that previously
1672             // wasn't checked and could lead to incorrectly
1673             // constructed nodes.
1674             syntax_err(node->_linenum, "For expand in %s to work, parameter declaration order in %s must follow matchrule\n",
1675                        node->_ident, new_inst->_ident);
1676           }
1677           prev_pos = exp_pos;
1678 
1679           new_pos = new_inst->operand_position(parameter,Component::USE);
1680           if (new_pos != -1) {
1681             // Copy the operand from the ExpandNode to the new node
1682             fprintf(fp,"  n%d->set_opnd_array(%d, opnd_array(%d)->clone(C)); // %s\n",
1683                     cnt, new_pos, exp_pos, opid);
1684             // For each operand add appropriate input edges by looking at tmp's
1685             fprintf(fp,"  if(tmp%d == this) {\n", exp_pos);
1686             // Grab corresponding edges from ExpandNode and insert them here
1687             fprintf(fp,"    for(unsigned i = 0; i < num%d; i++) {\n", exp_pos);
1688             fprintf(fp,"      n%d->add_req(_in[i + idx%d]);\n", cnt, exp_pos);
1689             fprintf(fp,"    }\n");
1690             fprintf(fp,"  }\n");
1691             // This value is generated by one of the new instructions
1692             fprintf(fp,"  else n%d->add_req(tmp%d);\n", cnt, exp_pos);
1693           }
1694         }
1695 
1696         // Update the DAG tmp's for values defined by this instruction
1697         int new_def_pos = new_inst->operand_position(parameter,Component::DEF);
1698         Effect *eform = (Effect *)new_inst->_effects[parameter];
1699         // If this operand is a definition in either an effects rule
1700         // or a match rule
1701         if((eform) && (is_def(eform->_use_def))) {
1702           // Update the temp associated with this operand
1703           fprintf(fp,"  tmp%d = n%d;\n", exp_pos, cnt);
1704         }
1705         else if( new_def_pos != -1 ) {
1706           // Instruction defines a value but user did not declare it
1707           // in the 'effect' clause
1708           fprintf(fp,"  tmp%d = n%d;\n", exp_pos, cnt);
1709         }
1710       } // done iterating over a new instruction's operands
1711 
1712       // Invoke Expand() for the newly created instruction.
1713       fprintf(fp,"  result = n%d->Expand( state, proj_list, mem );\n", cnt);
1714       assert( !new_inst->expands(), "Do not have complete support for recursive expansion");
1715     } // done iterating over new instructions
1716     fprintf(fp,"\n");
1717   } // done generating expand rule
1718 
1719   // Generate projections for instruction's additional DEFs and KILLs
1720   if( ! node->expands() && (node->needs_projections() || node->has_temps())) {
1721     // Get string representing the MachNode that projections point at
1722     const char *machNode = "this";
1723     // Generate the projections
1724     fprintf(fp,"  // Add projection edges for additional defs or kills\n");
1725 
1726     // Examine each component to see if it is a DEF or KILL
1727     node->_components.reset();
1728     // Skip the first component, if already handled as (SET dst (...))
1729     Component *comp = NULL;
1730     // For kills, the choice of projection numbers is arbitrary
1731     int proj_no = 1;
1732     bool declared_def  = false;
1733     bool declared_kill = false;
1734 
1735     while( (comp = node->_components.iter()) != NULL ) {
1736       // Lookup register class associated with operand type
1737       Form        *form = (Form*)_globalNames[comp->_type];
1738       assert( form, "component type must be a defined form");
1739       OperandForm *op   = form->is_operand();
1740 
1741       if (comp->is(Component::TEMP)) {
1742         fprintf(fp, "  // TEMP %s\n", comp->_name);
1743         if (!declared_def) {
1744           // Define the variable "def" to hold new MachProjNodes
1745           fprintf(fp, "  MachTempNode *def;\n");
1746           declared_def = true;
1747         }
1748         if (op && op->_interface && op->_interface->is_RegInterface()) {
1749           fprintf(fp,"  def = new (C) MachTempNode(state->MachOperGenerator( %s, C ));\n",
1750                   machOperEnum(op->_ident));
1751           fprintf(fp,"  add_req(def);\n");
1752           // The operand for TEMP is already constructed during
1753           // this mach node construction, see buildMachNode().
1754           //
1755           // int idx  = node->operand_position_format(comp->_name);
1756           // fprintf(fp,"  set_opnd_array(%d, state->MachOperGenerator( %s, C ));\n",
1757           //         idx, machOperEnum(op->_ident));
1758         } else {
1759           assert(false, "can't have temps which aren't registers");
1760         }
1761       } else if (comp->isa(Component::KILL)) {
1762         fprintf(fp, "  // DEF/KILL %s\n", comp->_name);
1763 
1764         if (!declared_kill) {
1765           // Define the variable "kill" to hold new MachProjNodes
1766           fprintf(fp, "  MachProjNode *kill;\n");
1767           declared_kill = true;
1768         }
1769 
1770         assert( op, "Support additional KILLS for base operands");
1771         const char *regmask    = reg_mask(*op);
1772         const char *ideal_type = op->ideal_type(_globalNames, _register);
1773 
1774         if (!op->is_bound_register()) {
1775           syntax_err(node->_linenum, "In %s only bound registers can be killed: %s %s\n",
1776                      node->_ident, comp->_type, comp->_name);
1777         }
1778 
1779         fprintf(fp,"  kill = ");
1780         fprintf(fp,"new (C) MachProjNode( %s, %d, (%s), Op_%s );\n",
1781                 machNode, proj_no++, regmask, ideal_type);
1782         fprintf(fp,"  proj_list.push(kill);\n");
1783       }
1784     }
1785   }
1786 
1787   if( !node->expands() && node->_matrule != NULL ) {
1788     // Remove duplicated operands and inputs which use the same name.
1789     // Seach through match operands for the same name usage.
1790     uint cur_num_opnds = node->num_opnds();
1791     if( cur_num_opnds > 1 && cur_num_opnds != node->num_unique_opnds() ) {
1792       Component *comp = NULL;
1793       // Build mapping from num_edges to local variables
1794       fprintf(fp,"  unsigned num0 = 0;\n");
1795       for( i = 1; i < cur_num_opnds; i++ ) {
1796         fprintf(fp,"  unsigned num%d = opnd_array(%d)->num_edges();",i,i);
1797         fprintf(fp, " \t// %s\n", node->opnd_ident(i));
1798       }
1799       // Build a mapping from operand index to input edges
1800       fprintf(fp,"  unsigned idx0 = oper_input_base();\n");
1801       for( i = 0; i < cur_num_opnds; i++ ) {
1802         fprintf(fp,"  unsigned idx%d = idx%d + num%d;\n",
1803                 i+1,i,i);
1804       }
1805 
1806       uint new_num_opnds = 1;
1807       node->_components.reset();
1808       // Skip first unique operands.
1809       for( i = 1; i < cur_num_opnds; i++ ) {
1810         comp = node->_components.iter();
1811         if (i != node->unique_opnds_idx(i)) {
1812           break;
1813         }
1814         new_num_opnds++;
1815       }
1816       // Replace not unique operands with next unique operands.
1817       for( ; i < cur_num_opnds; i++ ) {
1818         comp = node->_components.iter();
1819         uint j = node->unique_opnds_idx(i);
1820         // unique_opnds_idx(i) is unique if unique_opnds_idx(j) is not unique.
1821         if( j != node->unique_opnds_idx(j) ) {
1822           fprintf(fp,"  set_opnd_array(%d, opnd_array(%d)->clone(C)); // %s\n",
1823                   new_num_opnds, i, comp->_name);
1824           // delete not unique edges here
1825           fprintf(fp,"  for(unsigned i = 0; i < num%d; i++) {\n", i);
1826           fprintf(fp,"    set_req(i + idx%d, _in[i + idx%d]);\n", new_num_opnds, i);
1827           fprintf(fp,"  }\n");
1828           fprintf(fp,"  num%d = num%d;\n", new_num_opnds, i);
1829           fprintf(fp,"  idx%d = idx%d + num%d;\n", new_num_opnds+1, new_num_opnds, new_num_opnds);
1830           new_num_opnds++;
1831         }
1832       }
1833       // delete the rest of edges
1834       fprintf(fp,"  for(int i = idx%d - 1; i >= (int)idx%d; i--) {\n", cur_num_opnds, new_num_opnds);
1835       fprintf(fp,"    del_req(i);\n");
1836       fprintf(fp,"  }\n");
1837       fprintf(fp,"  _num_opnds = %d;\n", new_num_opnds);
1838       assert(new_num_opnds == node->num_unique_opnds(), "what?");
1839     }
1840   }
1841 
1842   // If the node is a MachConstantNode, insert the MachConstantBaseNode edge.
1843   // NOTE: this edge must be the last input (see MachConstantNode::mach_constant_base_node_input).
1844   // There are nodes that don't use $constantablebase, but still require that it
1845   // is an input to the node. Example: divF_reg_immN, Repl32B_imm on x86_64.
1846   if (node->is_mach_constant() || node->needs_constant_base()) {
1847     if (node->is_ideal_call() != Form::invalid_type &&
1848         node->is_ideal_call() != Form::JAVA_LEAF) {
1849       fprintf(fp, "  // MachConstantBaseNode added in matcher.\n");
1850       _needs_clone_jvms = true;
1851     } else {
1852       fprintf(fp, "  add_req(C->mach_constant_base_node());\n");
1853     }
1854   }
1855 
1856   fprintf(fp, "\n");
1857   if (node->expands()) {
1858     fprintf(fp, "  return result;\n");
1859   } else {
1860     fprintf(fp, "  return this;\n");
1861   }
1862   fprintf(fp, "}\n");
1863   fprintf(fp, "\n");
1864 }
1865 
1866 
1867 //------------------------------Emit Routines----------------------------------
1868 // Special classes and routines for defining node emit routines which output
1869 // target specific instruction object encodings.
1870 // Define the ___Node::emit() routine
1871 //
1872 // (1) void  ___Node::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1873 // (2)   // ...  encoding defined by user
1874 // (3)
1875 // (4) }
1876 //
1877 
1878 class DefineEmitState {
1879 private:
1880   enum reloc_format { RELOC_NONE        = -1,
1881                       RELOC_IMMEDIATE   =  0,
1882                       RELOC_DISP        =  1,
1883                       RELOC_CALL_DISP   =  2 };
1884   enum literal_status{ LITERAL_NOT_SEEN  = 0,
1885                        LITERAL_SEEN      = 1,
1886                        LITERAL_ACCESSED  = 2,
1887                        LITERAL_OUTPUT    = 3 };
1888   // Temporaries that describe current operand
1889   bool          _cleared;
1890   OpClassForm  *_opclass;
1891   OperandForm  *_operand;
1892   int           _operand_idx;
1893   const char   *_local_name;
1894   const char   *_operand_name;
1895   bool          _doing_disp;
1896   bool          _doing_constant;
1897   Form::DataType _constant_type;
1898   DefineEmitState::literal_status _constant_status;
1899   DefineEmitState::literal_status _reg_status;
1900   bool          _doing_emit8;
1901   bool          _doing_emit_d32;
1902   bool          _doing_emit_d16;
1903   bool          _doing_emit_hi;
1904   bool          _doing_emit_lo;
1905   bool          _may_reloc;
1906   reloc_format  _reloc_form;
1907   const char *  _reloc_type;
1908   bool          _processing_noninput;
1909 
1910   NameList      _strings_to_emit;
1911 
1912   // Stable state, set by constructor
1913   ArchDesc     &_AD;
1914   FILE         *_fp;
1915   EncClass     &_encoding;
1916   InsEncode    &_ins_encode;
1917   InstructForm &_inst;
1918 
1919 public:
1920   DefineEmitState(FILE *fp, ArchDesc &AD, EncClass &encoding,
1921                   InsEncode &ins_encode, InstructForm &inst)
1922     : _AD(AD), _fp(fp), _encoding(encoding), _ins_encode(ins_encode), _inst(inst) {
1923       clear();
1924   }
1925 
1926   void clear() {
1927     _cleared       = true;
1928     _opclass       = NULL;
1929     _operand       = NULL;
1930     _operand_idx   = 0;
1931     _local_name    = "";
1932     _operand_name  = "";
1933     _doing_disp    = false;
1934     _doing_constant= false;
1935     _constant_type = Form::none;
1936     _constant_status = LITERAL_NOT_SEEN;
1937     _reg_status      = LITERAL_NOT_SEEN;
1938     _doing_emit8   = false;
1939     _doing_emit_d32= false;
1940     _doing_emit_d16= false;
1941     _doing_emit_hi = false;
1942     _doing_emit_lo = false;
1943     _may_reloc     = false;
1944     _reloc_form    = RELOC_NONE;
1945     _reloc_type    = AdlcVMDeps::none_reloc_type();
1946     _strings_to_emit.clear();
1947   }
1948 
1949   // Track necessary state when identifying a replacement variable
1950   // @arg rep_var: The formal parameter of the encoding.
1951   void update_state(const char *rep_var) {
1952     // A replacement variable or one of its subfields
1953     // Obtain replacement variable from list
1954     if ( (*rep_var) != '$' ) {
1955       // A replacement variable, '$' prefix
1956       // check_rep_var( rep_var );
1957       if ( Opcode::as_opcode_type(rep_var) != Opcode::NOT_AN_OPCODE ) {
1958         // No state needed.
1959         assert( _opclass == NULL,
1960                 "'primary', 'secondary' and 'tertiary' don't follow operand.");
1961       }
1962       else if ((strcmp(rep_var, "constanttablebase") == 0) ||
1963                (strcmp(rep_var, "constantoffset")    == 0) ||
1964                (strcmp(rep_var, "constantaddress")   == 0)) {
1965         if (!(_inst.is_mach_constant() || _inst.needs_constant_base())) {
1966           _AD.syntax_err(_encoding._linenum,
1967                          "Replacement variable %s not allowed in instruct %s (only in MachConstantNode or MachCall).\n",
1968                          rep_var, _encoding._name);
1969         }
1970       }
1971       else {
1972         // Lookup its position in (formal) parameter list of encoding
1973         int   param_no  = _encoding.rep_var_index(rep_var);
1974         if ( param_no == -1 ) {
1975           _AD.syntax_err( _encoding._linenum,
1976                           "Replacement variable %s not found in enc_class %s.\n",
1977                           rep_var, _encoding._name);
1978         }
1979 
1980         // Lookup the corresponding ins_encode parameter
1981         // This is the argument (actual parameter) to the encoding.
1982         const char *inst_rep_var = _ins_encode.rep_var_name(_inst, param_no);
1983         if (inst_rep_var == NULL) {
1984           _AD.syntax_err( _ins_encode._linenum,
1985                           "Parameter %s not passed to enc_class %s from instruct %s.\n",
1986                           rep_var, _encoding._name, _inst._ident);
1987         }
1988 
1989         // Check if instruction's actual parameter is a local name in the instruction
1990         const Form  *local     = _inst._localNames[inst_rep_var];
1991         OpClassForm *opc       = (local != NULL) ? local->is_opclass() : NULL;
1992         // Note: assert removed to allow constant and symbolic parameters
1993         // assert( opc, "replacement variable was not found in local names");
1994         // Lookup the index position iff the replacement variable is a localName
1995         int idx  = (opc != NULL) ? _inst.operand_position_format(inst_rep_var) : -1;
1996 
1997         if ( idx != -1 ) {
1998           // This is a local in the instruction
1999           // Update local state info.
2000           _opclass        = opc;
2001           _operand_idx    = idx;
2002           _local_name     = rep_var;
2003           _operand_name   = inst_rep_var;
2004 
2005           // !!!!!
2006           // Do not support consecutive operands.
2007           assert( _operand == NULL, "Unimplemented()");
2008           _operand = opc->is_operand();
2009         }
2010         else if( ADLParser::is_literal_constant(inst_rep_var) ) {
2011           // Instruction provided a constant expression
2012           // Check later that encoding specifies $$$constant to resolve as constant
2013           _constant_status   = LITERAL_SEEN;
2014         }
2015         else if( Opcode::as_opcode_type(inst_rep_var) != Opcode::NOT_AN_OPCODE ) {
2016           // Instruction provided an opcode: "primary", "secondary", "tertiary"
2017           // Check later that encoding specifies $$$constant to resolve as constant
2018           _constant_status   = LITERAL_SEEN;
2019         }
2020         else if((_AD.get_registers() != NULL ) && (_AD.get_registers()->getRegDef(inst_rep_var) != NULL)) {
2021           // Instruction provided a literal register name for this parameter
2022           // Check that encoding specifies $$$reg to resolve.as register.
2023           _reg_status        = LITERAL_SEEN;
2024         }
2025         else {
2026           // Check for unimplemented functionality before hard failure
2027           assert( strcmp(opc->_ident,"label")==0, "Unimplemented() Label");
2028           assert( false, "ShouldNotReachHere()");
2029         }
2030       } // done checking which operand this is.
2031     } else {
2032       //
2033       // A subfield variable, '$$' prefix
2034       // Check for fields that may require relocation information.
2035       // Then check that literal register parameters are accessed with 'reg' or 'constant'
2036       //
2037       if ( strcmp(rep_var,"$disp") == 0 ) {
2038         _doing_disp = true;
2039         assert( _opclass, "Must use operand or operand class before '$disp'");
2040         if( _operand == NULL ) {
2041           // Only have an operand class, generate run-time check for relocation
2042           _may_reloc    = true;
2043           _reloc_form   = RELOC_DISP;
2044           _reloc_type   = AdlcVMDeps::oop_reloc_type();
2045         } else {
2046           // Do precise check on operand: is it a ConP or not
2047           //
2048           // Check interface for value of displacement
2049           assert( ( _operand->_interface != NULL ),
2050                   "$disp can only follow memory interface operand");
2051           MemInterface *mem_interface= _operand->_interface->is_MemInterface();
2052           assert( mem_interface != NULL,
2053                   "$disp can only follow memory interface operand");
2054           const char *disp = mem_interface->_disp;
2055 
2056           if( disp != NULL && (*disp == '$') ) {
2057             // MemInterface::disp contains a replacement variable,
2058             // Check if this matches a ConP
2059             //
2060             // Lookup replacement variable, in operand's component list
2061             const char *rep_var_name = disp + 1; // Skip '$'
2062             const Component *comp = _operand->_components.search(rep_var_name);
2063             assert( comp != NULL,"Replacement variable not found in components");
2064             const char      *type = comp->_type;
2065             // Lookup operand form for replacement variable's type
2066             const Form *form = _AD.globalNames()[type];
2067             assert( form != NULL, "Replacement variable's type not found");
2068             OperandForm *op = form->is_operand();
2069             assert( op, "Attempting to emit a non-register or non-constant");
2070             // Check if this is a constant
2071             if (op->_matrule && op->_matrule->is_base_constant(_AD.globalNames())) {
2072               // Check which constant this name maps to: _c0, _c1, ..., _cn
2073               // const int idx = _operand.constant_position(_AD.globalNames(), comp);
2074               // assert( idx != -1, "Constant component not found in operand");
2075               Form::DataType dtype = op->is_base_constant(_AD.globalNames());
2076               if ( dtype == Form::idealP ) {
2077                 _may_reloc    = true;
2078                 // No longer true that idealP is always an oop
2079                 _reloc_form   = RELOC_DISP;
2080                 _reloc_type   = AdlcVMDeps::oop_reloc_type();
2081               }
2082             }
2083 
2084             else if( _operand->is_user_name_for_sReg() != Form::none ) {
2085               // The only non-constant allowed access to disp is an operand sRegX in a stackSlotX
2086               assert( op->ideal_to_sReg_type(type) != Form::none, "StackSlots access displacements using 'sRegs'");
2087               _may_reloc   = false;
2088             } else {
2089               assert( false, "fatal(); Only stackSlots can access a non-constant using 'disp'");
2090             }
2091           }
2092         } // finished with precise check of operand for relocation.
2093       } // finished with subfield variable
2094       else if ( strcmp(rep_var,"$constant") == 0 ) {
2095         _doing_constant = true;
2096         if ( _constant_status == LITERAL_NOT_SEEN ) {
2097           // Check operand for type of constant
2098           assert( _operand, "Must use operand before '$$constant'");
2099           Form::DataType dtype = _operand->is_base_constant(_AD.globalNames());
2100           _constant_type = dtype;
2101           if ( dtype == Form::idealP ) {
2102             _may_reloc    = true;
2103             // No longer true that idealP is always an oop
2104             // // _must_reloc   = true;
2105             _reloc_form   = RELOC_IMMEDIATE;
2106             _reloc_type   = AdlcVMDeps::oop_reloc_type();
2107           } else {
2108             // No relocation information needed
2109           }
2110         } else {
2111           // User-provided literals may not require relocation information !!!!!
2112           assert( _constant_status == LITERAL_SEEN, "Must know we are processing a user-provided literal");
2113         }
2114       }
2115       else if ( strcmp(rep_var,"$label") == 0 ) {
2116         // Calls containing labels require relocation
2117         if ( _inst.is_ideal_call() )  {
2118           _may_reloc    = true;
2119           // !!!!! !!!!!
2120           _reloc_type   = AdlcVMDeps::none_reloc_type();
2121         }
2122       }
2123 
2124       // literal register parameter must be accessed as a 'reg' field.
2125       if ( _reg_status != LITERAL_NOT_SEEN ) {
2126         assert( _reg_status == LITERAL_SEEN, "Must have seen register literal before now");
2127         if (strcmp(rep_var,"$reg") == 0 || reg_conversion(rep_var) != NULL) {
2128           _reg_status  = LITERAL_ACCESSED;
2129         } else {
2130           _AD.syntax_err(_encoding._linenum,
2131                          "Invalid access to literal register parameter '%s' in %s.\n",
2132                          rep_var, _encoding._name);
2133           assert( false, "invalid access to literal register parameter");
2134         }
2135       }
2136       // literal constant parameters must be accessed as a 'constant' field
2137       if (_constant_status != LITERAL_NOT_SEEN) {
2138         assert(_constant_status == LITERAL_SEEN, "Must have seen constant literal before now");
2139         if (strcmp(rep_var,"$constant") == 0) {
2140           _constant_status = LITERAL_ACCESSED;
2141         } else {
2142           _AD.syntax_err(_encoding._linenum,
2143                          "Invalid access to literal constant parameter '%s' in %s.\n",
2144                          rep_var, _encoding._name);
2145         }
2146       }
2147     } // end replacement and/or subfield
2148 
2149   }
2150 
2151   void add_rep_var(const char *rep_var) {
2152     // Handle subfield and replacement variables.
2153     if ( ( *rep_var == '$' ) && ( *(rep_var+1) == '$' ) ) {
2154       // Check for emit prefix, '$$emit32'
2155       assert( _cleared, "Can not nest $$$emit32");
2156       if ( strcmp(rep_var,"$$emit32") == 0 ) {
2157         _doing_emit_d32 = true;
2158       }
2159       else if ( strcmp(rep_var,"$$emit16") == 0 ) {
2160         _doing_emit_d16 = true;
2161       }
2162       else if ( strcmp(rep_var,"$$emit_hi") == 0 ) {
2163         _doing_emit_hi  = true;
2164       }
2165       else if ( strcmp(rep_var,"$$emit_lo") == 0 ) {
2166         _doing_emit_lo  = true;
2167       }
2168       else if ( strcmp(rep_var,"$$emit8") == 0 ) {
2169         _doing_emit8    = true;
2170       }
2171       else {
2172         _AD.syntax_err(_encoding._linenum, "Unsupported $$operation '%s'\n",rep_var);
2173         assert( false, "fatal();");
2174       }
2175     }
2176     else {
2177       // Update state for replacement variables
2178       update_state( rep_var );
2179       _strings_to_emit.addName(rep_var);
2180     }
2181     _cleared  = false;
2182   }
2183 
2184   void emit_replacement() {
2185     // A replacement variable or one of its subfields
2186     // Obtain replacement variable from list
2187     // const char *ec_rep_var = encoding->_rep_vars.iter();
2188     const char *rep_var;
2189     _strings_to_emit.reset();
2190     while ( (rep_var = _strings_to_emit.iter()) != NULL ) {
2191 
2192       if ( (*rep_var) == '$' ) {
2193         // A subfield variable, '$$' prefix
2194         emit_field( rep_var );
2195       } else {
2196         if (_strings_to_emit.peek() != NULL &&
2197             strcmp(_strings_to_emit.peek(), "$Address") == 0) {
2198           fprintf(_fp, "Address::make_raw(");
2199 
2200           emit_rep_var( rep_var );
2201           fprintf(_fp,"->base(ra_,this,idx%d), ", _operand_idx);
2202 
2203           _reg_status = LITERAL_ACCESSED;
2204           emit_rep_var( rep_var );
2205           fprintf(_fp,"->index(ra_,this,idx%d), ", _operand_idx);
2206 
2207           _reg_status = LITERAL_ACCESSED;
2208           emit_rep_var( rep_var );
2209           fprintf(_fp,"->scale(), ");
2210 
2211           _reg_status = LITERAL_ACCESSED;
2212           emit_rep_var( rep_var );
2213           Form::DataType stack_type = _operand ? _operand->is_user_name_for_sReg() : Form::none;
2214           if( _operand  && _operand_idx==0 && stack_type != Form::none ) {
2215             fprintf(_fp,"->disp(ra_,this,0), ");
2216           } else {
2217             fprintf(_fp,"->disp(ra_,this,idx%d), ", _operand_idx);
2218           }
2219 
2220           _reg_status = LITERAL_ACCESSED;
2221           emit_rep_var( rep_var );
2222           fprintf(_fp,"->disp_reloc())");
2223 
2224           // skip trailing $Address
2225           _strings_to_emit.iter();
2226         } else {
2227           // A replacement variable, '$' prefix
2228           const char* next = _strings_to_emit.peek();
2229           const char* next2 = _strings_to_emit.peek(2);
2230           if (next != NULL && next2 != NULL && strcmp(next2, "$Register") == 0 &&
2231               (strcmp(next, "$base") == 0 || strcmp(next, "$index") == 0)) {
2232             // handle $rev_var$$base$$Register and $rev_var$$index$$Register by
2233             // producing as_Register(opnd_array(#)->base(ra_,this,idx1)).
2234             fprintf(_fp, "as_Register(");
2235             // emit the operand reference
2236             emit_rep_var( rep_var );
2237             rep_var = _strings_to_emit.iter();
2238             assert(strcmp(rep_var, "$base") == 0 || strcmp(rep_var, "$index") == 0, "bad pattern");
2239             // handle base or index
2240             emit_field(rep_var);
2241             rep_var = _strings_to_emit.iter();
2242             assert(strcmp(rep_var, "$Register") == 0, "bad pattern");
2243             // close up the parens
2244             fprintf(_fp, ")");
2245           } else {
2246             emit_rep_var( rep_var );
2247           }
2248         }
2249       } // end replacement and/or subfield
2250     }
2251   }
2252 
2253   void emit_reloc_type(const char* type) {
2254     fprintf(_fp, "%s", type)
2255       ;
2256   }
2257 
2258 
2259   void emit() {
2260     //
2261     //   "emit_d32_reloc(" or "emit_hi_reloc" or "emit_lo_reloc"
2262     //
2263     // Emit the function name when generating an emit function
2264     if ( _doing_emit_d32 || _doing_emit_hi || _doing_emit_lo ) {
2265       const char *d32_hi_lo = _doing_emit_d32 ? "d32" : (_doing_emit_hi ? "hi" : "lo");
2266       // In general, relocatable isn't known at compiler compile time.
2267       // Check results of prior scan
2268       if ( ! _may_reloc ) {
2269         // Definitely don't need relocation information
2270         fprintf( _fp, "emit_%s(cbuf, ", d32_hi_lo );
2271         emit_replacement(); fprintf(_fp, ")");
2272       }
2273       else {
2274         // Emit RUNTIME CHECK to see if value needs relocation info
2275         // If emitting a relocatable address, use 'emit_d32_reloc'
2276         const char *disp_constant = _doing_disp ? "disp" : _doing_constant ? "constant" : "INVALID";
2277         assert( (_doing_disp || _doing_constant)
2278                 && !(_doing_disp && _doing_constant),
2279                 "Must be emitting either a displacement or a constant");
2280         fprintf(_fp,"\n");
2281         fprintf(_fp,"if ( opnd_array(%d)->%s_reloc() != relocInfo::none ) {\n",
2282                 _operand_idx, disp_constant);
2283         fprintf(_fp,"  ");
2284         fprintf(_fp,"emit_%s_reloc(cbuf, ", d32_hi_lo );
2285         emit_replacement();             fprintf(_fp,", ");
2286         fprintf(_fp,"opnd_array(%d)->%s_reloc(), ",
2287                 _operand_idx, disp_constant);
2288         fprintf(_fp, "%d", _reloc_form);fprintf(_fp, ");");
2289         fprintf(_fp,"\n");
2290         fprintf(_fp,"} else {\n");
2291         fprintf(_fp,"  emit_%s(cbuf, ", d32_hi_lo);
2292         emit_replacement(); fprintf(_fp, ");\n"); fprintf(_fp,"}");
2293       }
2294     }
2295     else if ( _doing_emit_d16 ) {
2296       // Relocation of 16-bit values is not supported
2297       fprintf(_fp,"emit_d16(cbuf, ");
2298       emit_replacement(); fprintf(_fp, ")");
2299       // No relocation done for 16-bit values
2300     }
2301     else if ( _doing_emit8 ) {
2302       // Relocation of 8-bit values is not supported
2303       fprintf(_fp,"emit_d8(cbuf, ");
2304       emit_replacement(); fprintf(_fp, ")");
2305       // No relocation done for 8-bit values
2306     }
2307     else {
2308       // Not an emit# command, just output the replacement string.
2309       emit_replacement();
2310     }
2311 
2312     // Get ready for next state collection.
2313     clear();
2314   }
2315 
2316 private:
2317 
2318   // recognizes names which represent MacroAssembler register types
2319   // and return the conversion function to build them from OptoReg
2320   const char* reg_conversion(const char* rep_var) {
2321     if (strcmp(rep_var,"$Register") == 0)      return "as_Register";
2322     if (strcmp(rep_var,"$FloatRegister") == 0) return "as_FloatRegister";
2323 #if defined(IA32) || defined(AMD64)
2324     if (strcmp(rep_var,"$XMMRegister") == 0)   return "as_XMMRegister";
2325 #endif
2326     if (strcmp(rep_var,"$CondRegister") == 0)  return "as_ConditionRegister";
2327     return NULL;
2328   }
2329 
2330   void emit_field(const char *rep_var) {
2331     const char* reg_convert = reg_conversion(rep_var);
2332 
2333     // A subfield variable, '$$subfield'
2334     if ( strcmp(rep_var, "$reg") == 0 || reg_convert != NULL) {
2335       // $reg form or the $Register MacroAssembler type conversions
2336       assert( _operand_idx != -1,
2337               "Must use this subfield after operand");
2338       if( _reg_status == LITERAL_NOT_SEEN ) {
2339         if (_processing_noninput) {
2340           const Form  *local     = _inst._localNames[_operand_name];
2341           OperandForm *oper      = local->is_operand();
2342           const RegDef* first = oper->get_RegClass()->find_first_elem();
2343           if (reg_convert != NULL) {
2344             fprintf(_fp, "%s(%s_enc)", reg_convert, first->_regname);
2345           } else {
2346             fprintf(_fp, "%s_enc", first->_regname);
2347           }
2348         } else {
2349           fprintf(_fp,"->%s(ra_,this", reg_convert != NULL ? reg_convert : "reg");
2350           // Add parameter for index position, if not result operand
2351           if( _operand_idx != 0 ) fprintf(_fp,",idx%d", _operand_idx);
2352           fprintf(_fp,")");
2353           fprintf(_fp, "/* %s */", _operand_name);
2354         }
2355       } else {
2356         assert( _reg_status == LITERAL_OUTPUT, "should have output register literal in emit_rep_var");
2357         // Register literal has already been sent to output file, nothing more needed
2358       }
2359     }
2360     else if ( strcmp(rep_var,"$base") == 0 ) {
2361       assert( _operand_idx != -1,
2362               "Must use this subfield after operand");
2363       assert( ! _may_reloc, "UnImplemented()");
2364       fprintf(_fp,"->base(ra_,this,idx%d)", _operand_idx);
2365     }
2366     else if ( strcmp(rep_var,"$index") == 0 ) {
2367       assert( _operand_idx != -1,
2368               "Must use this subfield after operand");
2369       assert( ! _may_reloc, "UnImplemented()");
2370       fprintf(_fp,"->index(ra_,this,idx%d)", _operand_idx);
2371     }
2372     else if ( strcmp(rep_var,"$scale") == 0 ) {
2373       assert( ! _may_reloc, "UnImplemented()");
2374       fprintf(_fp,"->scale()");
2375     }
2376     else if ( strcmp(rep_var,"$cmpcode") == 0 ) {
2377       assert( ! _may_reloc, "UnImplemented()");
2378       fprintf(_fp,"->ccode()");
2379     }
2380     else if ( strcmp(rep_var,"$constant") == 0 ) {
2381       if( _constant_status == LITERAL_NOT_SEEN ) {
2382         if ( _constant_type == Form::idealD ) {
2383           fprintf(_fp,"->constantD()");
2384         } else if ( _constant_type == Form::idealF ) {
2385           fprintf(_fp,"->constantF()");
2386         } else if ( _constant_type == Form::idealL ) {
2387           fprintf(_fp,"->constantL()");
2388         } else {
2389           fprintf(_fp,"->constant()");
2390         }
2391       } else {
2392         assert( _constant_status == LITERAL_OUTPUT, "should have output constant literal in emit_rep_var");
2393         // Constant literal has already been sent to output file, nothing more needed
2394       }
2395     }
2396     else if ( strcmp(rep_var,"$disp") == 0 ) {
2397       Form::DataType stack_type = _operand ? _operand->is_user_name_for_sReg() : Form::none;
2398       if( _operand  && _operand_idx==0 && stack_type != Form::none ) {
2399         fprintf(_fp,"->disp(ra_,this,0)");
2400       } else {
2401         fprintf(_fp,"->disp(ra_,this,idx%d)", _operand_idx);
2402       }
2403     }
2404     else if ( strcmp(rep_var,"$label") == 0 ) {
2405       fprintf(_fp,"->label()");
2406     }
2407     else if ( strcmp(rep_var,"$method") == 0 ) {
2408       fprintf(_fp,"->method()");
2409     }
2410     else {
2411       printf("emit_field: %s\n",rep_var);
2412       globalAD->syntax_err(_inst._linenum, "Unknown replacement variable %s in format statement of %s.",
2413                            rep_var, _inst._ident);
2414       assert( false, "UnImplemented()");
2415     }
2416   }
2417 
2418 
2419   void emit_rep_var(const char *rep_var) {
2420     _processing_noninput = false;
2421     // A replacement variable, originally '$'
2422     if ( Opcode::as_opcode_type(rep_var) != Opcode::NOT_AN_OPCODE ) {
2423       if (!_inst._opcode->print_opcode(_fp, Opcode::as_opcode_type(rep_var) )) {
2424         // Missing opcode
2425         _AD.syntax_err( _inst._linenum,
2426                         "Missing $%s opcode definition in %s, used by encoding %s\n",
2427                         rep_var, _inst._ident, _encoding._name);
2428       }
2429     }
2430     else if (strcmp(rep_var, "constanttablebase") == 0) {
2431       fprintf(_fp, "as_Register(ra_->get_encode(in(mach_constant_base_node_input())))");
2432     }
2433     else if (strcmp(rep_var, "constantoffset") == 0) {
2434       fprintf(_fp, "constant_offset()");
2435     }
2436     else if (strcmp(rep_var, "constantaddress") == 0) {
2437       fprintf(_fp, "InternalAddress(__ code()->consts()->start() + constant_offset())");
2438     }
2439     else {
2440       // Lookup its position in parameter list
2441       int   param_no  = _encoding.rep_var_index(rep_var);
2442       if ( param_no == -1 ) {
2443         _AD.syntax_err( _encoding._linenum,
2444                         "Replacement variable %s not found in enc_class %s.\n",
2445                         rep_var, _encoding._name);
2446       }
2447       // Lookup the corresponding ins_encode parameter
2448       const char *inst_rep_var = _ins_encode.rep_var_name(_inst, param_no);
2449 
2450       // Check if instruction's actual parameter is a local name in the instruction
2451       const Form  *local     = _inst._localNames[inst_rep_var];
2452       OpClassForm *opc       = (local != NULL) ? local->is_opclass() : NULL;
2453       // Note: assert removed to allow constant and symbolic parameters
2454       // assert( opc, "replacement variable was not found in local names");
2455       // Lookup the index position iff the replacement variable is a localName
2456       int idx  = (opc != NULL) ? _inst.operand_position_format(inst_rep_var) : -1;
2457       if( idx != -1 ) {
2458         if (_inst.is_noninput_operand(idx)) {
2459           // This operand isn't a normal input so printing it is done
2460           // specially.
2461           _processing_noninput = true;
2462         } else {
2463           // Output the emit code for this operand
2464           fprintf(_fp,"opnd_array(%d)",idx);
2465         }
2466         assert( _operand == opc->is_operand(),
2467                 "Previous emit $operand does not match current");
2468       }
2469       else if( ADLParser::is_literal_constant(inst_rep_var) ) {
2470         // else check if it is a constant expression
2471         // Removed following assert to allow primitive C types as arguments to encodings
2472         // assert( _constant_status == LITERAL_ACCESSED, "Must be processing a literal constant parameter");
2473         fprintf(_fp,"(%s)", inst_rep_var);
2474         _constant_status = LITERAL_OUTPUT;
2475       }
2476       else if( Opcode::as_opcode_type(inst_rep_var) != Opcode::NOT_AN_OPCODE ) {
2477         // else check if "primary", "secondary", "tertiary"
2478         assert( _constant_status == LITERAL_ACCESSED, "Must be processing a literal constant parameter");
2479         if (!_inst._opcode->print_opcode(_fp, Opcode::as_opcode_type(inst_rep_var) )) {
2480           // Missing opcode
2481           _AD.syntax_err( _inst._linenum,
2482                           "Missing $%s opcode definition in %s\n",
2483                           rep_var, _inst._ident);
2484 
2485         }
2486         _constant_status = LITERAL_OUTPUT;
2487       }
2488       else if((_AD.get_registers() != NULL ) && (_AD.get_registers()->getRegDef(inst_rep_var) != NULL)) {
2489         // Instruction provided a literal register name for this parameter
2490         // Check that encoding specifies $$$reg to resolve.as register.
2491         assert( _reg_status == LITERAL_ACCESSED, "Must be processing a literal register parameter");
2492         fprintf(_fp,"(%s_enc)", inst_rep_var);
2493         _reg_status = LITERAL_OUTPUT;
2494       }
2495       else {
2496         // Check for unimplemented functionality before hard failure
2497         assert( strcmp(opc->_ident,"label")==0, "Unimplemented() Label");
2498         assert( false, "ShouldNotReachHere()");
2499       }
2500       // all done
2501     }
2502   }
2503 
2504 };  // end class DefineEmitState
2505 
2506 
2507 void ArchDesc::defineSize(FILE *fp, InstructForm &inst) {
2508 
2509   //(1)
2510   // Output instruction's emit prototype
2511   fprintf(fp,"uint %sNode::size(PhaseRegAlloc *ra_) const {\n",
2512           inst._ident);
2513 
2514   fprintf(fp, "  assert(VerifyOops || MachNode::size(ra_) <= %s, \"bad fixed size\");\n", inst._size);
2515 
2516   //(2)
2517   // Print the size
2518   fprintf(fp, "  return (VerifyOops ? MachNode::size(ra_) : %s);\n", inst._size);
2519 
2520   // (3) and (4)
2521   fprintf(fp,"}\n\n");
2522 }
2523 
2524 // Emit postalloc expand function.
2525 void ArchDesc::define_postalloc_expand(FILE *fp, InstructForm &inst) {
2526   InsEncode *ins_encode = inst._insencode;
2527 
2528   // Output instruction's postalloc_expand prototype.
2529   fprintf(fp, "void  %sNode::postalloc_expand(GrowableArray <Node *> *nodes, PhaseRegAlloc *ra_) {\n",
2530           inst._ident);
2531 
2532   assert((_encode != NULL) && (ins_encode != NULL), "You must define an encode section.");
2533 
2534   // Output each operand's offset into the array of registers.
2535   inst.index_temps(fp, _globalNames);
2536 
2537   // Output variables "unsigned idx_<par_name>", Node *n_<par_name> and "MachOpnd *op_<par_name>"
2538   // for each parameter <par_name> specified in the encoding.
2539   ins_encode->reset();
2540   const char *ec_name = ins_encode->encode_class_iter();
2541   assert(ec_name != NULL, "Postalloc expand must specify an encoding.");
2542 
2543   EncClass *encoding = _encode->encClass(ec_name);
2544   if (encoding == NULL) {
2545     fprintf(stderr, "User did not define contents of this encode_class: %s\n", ec_name);
2546     abort();
2547   }
2548   if (ins_encode->current_encoding_num_args() != encoding->num_args()) {
2549     globalAD->syntax_err(ins_encode->_linenum, "In %s: passing %d arguments to %s but expecting %d",
2550                          inst._ident, ins_encode->current_encoding_num_args(),
2551                          ec_name, encoding->num_args());
2552   }
2553 
2554   fprintf(fp, "  // Access to ins and operands for postalloc expand.\n");
2555   const int buflen = 2000;
2556   char idxbuf[buflen]; char *ib = idxbuf; idxbuf[0] = '\0';
2557   char nbuf  [buflen]; char *nb = nbuf;   nbuf[0]   = '\0';
2558   char opbuf [buflen]; char *ob = opbuf;  opbuf[0]  = '\0';
2559 
2560   encoding->_parameter_type.reset();
2561   encoding->_parameter_name.reset();
2562   const char *type = encoding->_parameter_type.iter();
2563   const char *name = encoding->_parameter_name.iter();
2564   int param_no = 0;
2565   for (; (type != NULL) && (name != NULL);
2566        (type = encoding->_parameter_type.iter()), (name = encoding->_parameter_name.iter())) {
2567     const char* arg_name = ins_encode->rep_var_name(inst, param_no);
2568     int idx = inst.operand_position_format(arg_name);
2569     if (strcmp(arg_name, "constanttablebase") == 0) {
2570       ib += sprintf(ib, "  unsigned idx_%-5s = mach_constant_base_node_input(); \t// %s, \t%s\n",
2571                     name, type, arg_name);
2572       nb += sprintf(nb, "  Node    *n_%-7s = lookup(idx_%s);\n", name, name);
2573       // There is no operand for the constanttablebase.
2574     } else if (inst.is_noninput_operand(idx)) {
2575       globalAD->syntax_err(inst._linenum,
2576                            "In %s: you can not pass the non-input %s to a postalloc expand encoding.\n",
2577                            inst._ident, arg_name);
2578     } else {
2579       ib += sprintf(ib, "  unsigned idx_%-5s = idx%d; \t// %s, \t%s\n",
2580                     name, idx, type, arg_name);
2581       nb += sprintf(nb, "  Node    *n_%-7s = lookup(idx_%s);\n", name, name);
2582       ob += sprintf(ob, "  %sOper *op_%s = (%sOper *)opnd_array(%d);\n", type, name, type, idx);
2583     }
2584     param_no++;
2585   }
2586   assert(ib < &idxbuf[buflen-1] && nb < &nbuf[buflen-1] && ob < &opbuf[buflen-1], "buffer overflow");
2587 
2588   fprintf(fp, "%s", idxbuf);
2589   fprintf(fp, "  Node    *n_region  = lookup(0);\n");
2590   fprintf(fp, "%s%s", nbuf, opbuf);
2591   fprintf(fp, "  Compile *C = ra_->C;\n");
2592 
2593   // Output this instruction's encodings.
2594   fprintf(fp, "  {");
2595   const char *ec_code    = NULL;
2596   const char *ec_rep_var = NULL;
2597   assert(encoding == _encode->encClass(ec_name), "");
2598 
2599   DefineEmitState pending(fp, *this, *encoding, *ins_encode, inst);
2600   encoding->_code.reset();
2601   encoding->_rep_vars.reset();
2602   // Process list of user-defined strings,
2603   // and occurrences of replacement variables.
2604   // Replacement Vars are pushed into a list and then output.
2605   while ((ec_code = encoding->_code.iter()) != NULL) {
2606     if (! encoding->_code.is_signal(ec_code)) {
2607       // Emit pending code.
2608       pending.emit();
2609       pending.clear();
2610       // Emit this code section.
2611       fprintf(fp, "%s", ec_code);
2612     } else {
2613       // A replacement variable or one of its subfields.
2614       // Obtain replacement variable from list.
2615       ec_rep_var = encoding->_rep_vars.iter();
2616       pending.add_rep_var(ec_rep_var);
2617     }
2618   }
2619   // Emit pending code.
2620   pending.emit();
2621   pending.clear();
2622   fprintf(fp, "  }\n");
2623 
2624   fprintf(fp, "}\n\n");
2625 
2626   ec_name = ins_encode->encode_class_iter();
2627   assert(ec_name == NULL, "Postalloc expand may only have one encoding.");
2628 }
2629 
2630 // defineEmit -----------------------------------------------------------------
2631 void ArchDesc::defineEmit(FILE* fp, InstructForm& inst) {
2632   InsEncode* encode = inst._insencode;
2633 
2634   // (1)
2635   // Output instruction's emit prototype
2636   fprintf(fp, "void %sNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const {\n", inst._ident);
2637 
2638   // If user did not define an encode section,
2639   // provide stub that does not generate any machine code.
2640   if( (_encode == NULL) || (encode == NULL) ) {
2641     fprintf(fp, "  // User did not define an encode section.\n");
2642     fprintf(fp, "}\n");
2643     return;
2644   }
2645 
2646   // Save current instruction's starting address (helps with relocation).
2647   fprintf(fp, "  cbuf.set_insts_mark();\n");
2648 
2649   // For MachConstantNodes which are ideal jump nodes, fill the jump table.
2650   if (inst.is_mach_constant() && inst.is_ideal_jump()) {
2651     fprintf(fp, "  ra_->C->constant_table().fill_jump_table(cbuf, (MachConstantNode*) this, _index2label);\n");
2652   }
2653 
2654   // Output each operand's offset into the array of registers.
2655   inst.index_temps(fp, _globalNames);
2656 
2657   // Output this instruction's encodings
2658   const char *ec_name;
2659   bool        user_defined = false;
2660   encode->reset();
2661   while ((ec_name = encode->encode_class_iter()) != NULL) {
2662     fprintf(fp, "  {\n");
2663     // Output user-defined encoding
2664     user_defined           = true;
2665 
2666     const char *ec_code    = NULL;
2667     const char *ec_rep_var = NULL;
2668     EncClass   *encoding   = _encode->encClass(ec_name);
2669     if (encoding == NULL) {
2670       fprintf(stderr, "User did not define contents of this encode_class: %s\n", ec_name);
2671       abort();
2672     }
2673 
2674     if (encode->current_encoding_num_args() != encoding->num_args()) {
2675       globalAD->syntax_err(encode->_linenum, "In %s: passing %d arguments to %s but expecting %d",
2676                            inst._ident, encode->current_encoding_num_args(),
2677                            ec_name, encoding->num_args());
2678     }
2679 
2680     DefineEmitState pending(fp, *this, *encoding, *encode, inst);
2681     encoding->_code.reset();
2682     encoding->_rep_vars.reset();
2683     // Process list of user-defined strings,
2684     // and occurrences of replacement variables.
2685     // Replacement Vars are pushed into a list and then output
2686     while ((ec_code = encoding->_code.iter()) != NULL) {
2687       if (!encoding->_code.is_signal(ec_code)) {
2688         // Emit pending code
2689         pending.emit();
2690         pending.clear();
2691         // Emit this code section
2692         fprintf(fp, "%s", ec_code);
2693       } else {
2694         // A replacement variable or one of its subfields
2695         // Obtain replacement variable from list
2696         ec_rep_var  = encoding->_rep_vars.iter();
2697         pending.add_rep_var(ec_rep_var);
2698       }
2699     }
2700     // Emit pending code
2701     pending.emit();
2702     pending.clear();
2703     fprintf(fp, "  }\n");
2704   } // end while instruction's encodings
2705 
2706   // Check if user stated which encoding to user
2707   if ( user_defined == false ) {
2708     fprintf(fp, "  // User did not define which encode class to use.\n");
2709   }
2710 
2711   // (3) and (4)
2712   fprintf(fp, "}\n\n");
2713 }
2714 
2715 // defineEvalConstant ---------------------------------------------------------
2716 void ArchDesc::defineEvalConstant(FILE* fp, InstructForm& inst) {
2717   InsEncode* encode = inst._constant;
2718 
2719   // (1)
2720   // Output instruction's emit prototype
2721   fprintf(fp, "void %sNode::eval_constant(Compile* C) {\n", inst._ident);
2722 
2723   // For ideal jump nodes, add a jump-table entry.
2724   if (inst.is_ideal_jump()) {
2725     fprintf(fp, "  _constant = C->constant_table().add_jump_table(this);\n");
2726   }
2727 
2728   // If user did not define an encode section,
2729   // provide stub that does not generate any machine code.
2730   if ((_encode == NULL) || (encode == NULL)) {
2731     fprintf(fp, "  // User did not define an encode section.\n");
2732     fprintf(fp, "}\n");
2733     return;
2734   }
2735 
2736   // Output this instruction's encodings
2737   const char *ec_name;
2738   bool        user_defined = false;
2739   encode->reset();
2740   while ((ec_name = encode->encode_class_iter()) != NULL) {
2741     fprintf(fp, "  {\n");
2742     // Output user-defined encoding
2743     user_defined           = true;
2744 
2745     const char *ec_code    = NULL;
2746     const char *ec_rep_var = NULL;
2747     EncClass   *encoding   = _encode->encClass(ec_name);
2748     if (encoding == NULL) {
2749       fprintf(stderr, "User did not define contents of this encode_class: %s\n", ec_name);
2750       abort();
2751     }
2752 
2753     if (encode->current_encoding_num_args() != encoding->num_args()) {
2754       globalAD->syntax_err(encode->_linenum, "In %s: passing %d arguments to %s but expecting %d",
2755                            inst._ident, encode->current_encoding_num_args(),
2756                            ec_name, encoding->num_args());
2757     }
2758 
2759     DefineEmitState pending(fp, *this, *encoding, *encode, inst);
2760     encoding->_code.reset();
2761     encoding->_rep_vars.reset();
2762     // Process list of user-defined strings,
2763     // and occurrences of replacement variables.
2764     // Replacement Vars are pushed into a list and then output
2765     while ((ec_code = encoding->_code.iter()) != NULL) {
2766       if (!encoding->_code.is_signal(ec_code)) {
2767         // Emit pending code
2768         pending.emit();
2769         pending.clear();
2770         // Emit this code section
2771         fprintf(fp, "%s", ec_code);
2772       } else {
2773         // A replacement variable or one of its subfields
2774         // Obtain replacement variable from list
2775         ec_rep_var  = encoding->_rep_vars.iter();
2776         pending.add_rep_var(ec_rep_var);
2777       }
2778     }
2779     // Emit pending code
2780     pending.emit();
2781     pending.clear();
2782     fprintf(fp, "  }\n");
2783   } // end while instruction's encodings
2784 
2785   // Check if user stated which encoding to user
2786   if (user_defined == false) {
2787     fprintf(fp, "  // User did not define which encode class to use.\n");
2788   }
2789 
2790   // (3) and (4)
2791   fprintf(fp, "}\n");
2792 }
2793 
2794 // ---------------------------------------------------------------------------
2795 //--------Utilities to build MachOper and MachNode derived Classes------------
2796 // ---------------------------------------------------------------------------
2797 
2798 //------------------------------Utilities to build Operand Classes------------
2799 static void defineIn_RegMask(FILE *fp, FormDict &globals, OperandForm &oper) {
2800   uint num_edges = oper.num_edges(globals);
2801   if( num_edges != 0 ) {
2802     // Method header
2803     fprintf(fp, "const RegMask *%sOper::in_RegMask(int index) const {\n",
2804             oper._ident);
2805 
2806     // Assert that the index is in range.
2807     fprintf(fp, "  assert(0 <= index && index < %d, \"index out of range\");\n",
2808             num_edges);
2809 
2810     // Figure out if all RegMasks are the same.
2811     const char* first_reg_class = oper.in_reg_class(0, globals);
2812     bool all_same = true;
2813     assert(first_reg_class != NULL, "did not find register mask");
2814 
2815     for (uint index = 1; all_same && index < num_edges; index++) {
2816       const char* some_reg_class = oper.in_reg_class(index, globals);
2817       assert(some_reg_class != NULL, "did not find register mask");
2818       if (strcmp(first_reg_class, some_reg_class) != 0) {
2819         all_same = false;
2820       }
2821     }
2822 
2823     if (all_same) {
2824       // Return the sole RegMask.
2825       if (strcmp(first_reg_class, "stack_slots") == 0) {
2826         fprintf(fp,"  return &(Compile::current()->FIRST_STACK_mask());\n");
2827       } else {
2828         const char* first_reg_class_to_upper = toUpper(first_reg_class);
2829         fprintf(fp,"  return &%s_mask();\n", first_reg_class_to_upper);
2830         delete[] first_reg_class_to_upper;
2831       }
2832     } else {
2833       // Build a switch statement to return the desired mask.
2834       fprintf(fp,"  switch (index) {\n");
2835 
2836       for (uint index = 0; index < num_edges; index++) {
2837         const char *reg_class = oper.in_reg_class(index, globals);
2838         assert(reg_class != NULL, "did not find register mask");
2839         if( !strcmp(reg_class, "stack_slots") ) {
2840           fprintf(fp, "  case %d: return &(Compile::current()->FIRST_STACK_mask());\n", index);
2841         } else {
2842           const char* reg_class_to_upper = toUpper(reg_class);
2843           fprintf(fp, "  case %d: return &%s_mask();\n", index, reg_class_to_upper);
2844           delete[] reg_class_to_upper;
2845         }
2846       }
2847       fprintf(fp,"  }\n");
2848       fprintf(fp,"  ShouldNotReachHere();\n");
2849       fprintf(fp,"  return NULL;\n");
2850     }
2851 
2852     // Method close
2853     fprintf(fp, "}\n\n");
2854   }
2855 }
2856 
2857 // generate code to create a clone for a class derived from MachOper
2858 //
2859 // (0)  MachOper  *MachOperXOper::clone(Compile* C) const {
2860 // (1)    return new (C) MachXOper( _ccode, _c0, _c1, ..., _cn);
2861 // (2)  }
2862 //
2863 static void defineClone(FILE *fp, FormDict &globalNames, OperandForm &oper) {
2864   fprintf(fp,"MachOper *%sOper::clone(Compile* C) const {\n", oper._ident);
2865   // Check for constants that need to be copied over
2866   const int  num_consts    = oper.num_consts(globalNames);
2867   const bool is_ideal_bool = oper.is_ideal_bool();
2868   if( (num_consts > 0) ) {
2869     fprintf(fp,"  return new (C) %sOper(", oper._ident);
2870     // generate parameters for constants
2871     int i = 0;
2872     fprintf(fp,"_c%d", i);
2873     for( i = 1; i < num_consts; ++i) {
2874       fprintf(fp,", _c%d", i);
2875     }
2876     // finish line (1)
2877     fprintf(fp,");\n");
2878   }
2879   else {
2880     assert( num_consts == 0, "Currently support zero or one constant per operand clone function");
2881     fprintf(fp,"  return new (C) %sOper();\n", oper._ident);
2882   }
2883   // finish method
2884   fprintf(fp,"}\n");
2885 }
2886 
2887 // Helper functions for bug 4796752, abstracted with minimal modification
2888 // from define_oper_interface()
2889 OperandForm *rep_var_to_operand(const char *encoding, OperandForm &oper, FormDict &globals) {
2890   OperandForm *op = NULL;
2891   // Check for replacement variable
2892   if( *encoding == '$' ) {
2893     // Replacement variable
2894     const char *rep_var = encoding + 1;
2895     // Lookup replacement variable, rep_var, in operand's component list
2896     const Component *comp = oper._components.search(rep_var);
2897     assert( comp != NULL, "Replacement variable not found in components");
2898     // Lookup operand form for replacement variable's type
2899     const char      *type = comp->_type;
2900     Form            *form = (Form*)globals[type];
2901     assert( form != NULL, "Replacement variable's type not found");
2902     op = form->is_operand();
2903     assert( op, "Attempting to emit a non-register or non-constant");
2904   }
2905 
2906   return op;
2907 }
2908 
2909 int rep_var_to_constant_index(const char *encoding, OperandForm &oper, FormDict &globals) {
2910   int idx = -1;
2911   // Check for replacement variable
2912   if( *encoding == '$' ) {
2913     // Replacement variable
2914     const char *rep_var = encoding + 1;
2915     // Lookup replacement variable, rep_var, in operand's component list
2916     const Component *comp = oper._components.search(rep_var);
2917     assert( comp != NULL, "Replacement variable not found in components");
2918     // Lookup operand form for replacement variable's type
2919     const char      *type = comp->_type;
2920     Form            *form = (Form*)globals[type];
2921     assert( form != NULL, "Replacement variable's type not found");
2922     OperandForm *op = form->is_operand();
2923     assert( op, "Attempting to emit a non-register or non-constant");
2924     // Check that this is a constant and find constant's index:
2925     if (op->_matrule && op->_matrule->is_base_constant(globals)) {
2926       idx  = oper.constant_position(globals, comp);
2927     }
2928   }
2929 
2930   return idx;
2931 }
2932 
2933 bool is_regI(const char *encoding, OperandForm &oper, FormDict &globals ) {
2934   bool is_regI = false;
2935 
2936   OperandForm *op = rep_var_to_operand(encoding, oper, globals);
2937   if( op != NULL ) {
2938     // Check that this is a register
2939     if ( (op->_matrule && op->_matrule->is_base_register(globals)) ) {
2940       // Register
2941       const char* ideal  = op->ideal_type(globals);
2942       is_regI = (ideal && (op->ideal_to_Reg_type(ideal) == Form::idealI));
2943     }
2944   }
2945 
2946   return is_regI;
2947 }
2948 
2949 bool is_conP(const char *encoding, OperandForm &oper, FormDict &globals ) {
2950   bool is_conP = false;
2951 
2952   OperandForm *op = rep_var_to_operand(encoding, oper, globals);
2953   if( op != NULL ) {
2954     // Check that this is a constant pointer
2955     if (op->_matrule && op->_matrule->is_base_constant(globals)) {
2956       // Constant
2957       Form::DataType dtype = op->is_base_constant(globals);
2958       is_conP = (dtype == Form::idealP);
2959     }
2960   }
2961 
2962   return is_conP;
2963 }
2964 
2965 
2966 // Define a MachOper interface methods
2967 void ArchDesc::define_oper_interface(FILE *fp, OperandForm &oper, FormDict &globals,
2968                                      const char *name, const char *encoding) {
2969   bool emit_position = false;
2970   int position = -1;
2971 
2972   fprintf(fp,"  virtual int            %s", name);
2973   // Generate access method for base, index, scale, disp, ...
2974   if( (strcmp(name,"base") == 0) || (strcmp(name,"index") == 0) ) {
2975     fprintf(fp,"(PhaseRegAlloc *ra_, const Node *node, int idx) const { \n");
2976     emit_position = true;
2977   } else if ( (strcmp(name,"disp") == 0) ) {
2978     fprintf(fp,"(PhaseRegAlloc *ra_, const Node *node, int idx) const { \n");
2979   } else {
2980     fprintf(fp, "() const {\n");
2981   }
2982 
2983   // Check for hexadecimal value OR replacement variable
2984   if( *encoding == '$' ) {
2985     // Replacement variable
2986     const char *rep_var = encoding + 1;
2987     fprintf(fp,"    // Replacement variable: %s\n", encoding+1);
2988     // Lookup replacement variable, rep_var, in operand's component list
2989     const Component *comp = oper._components.search(rep_var);
2990     assert( comp != NULL, "Replacement variable not found in components");
2991     // Lookup operand form for replacement variable's type
2992     const char      *type = comp->_type;
2993     Form            *form = (Form*)globals[type];
2994     assert( form != NULL, "Replacement variable's type not found");
2995     OperandForm *op = form->is_operand();
2996     assert( op, "Attempting to emit a non-register or non-constant");
2997     // Check that this is a register or a constant and generate code:
2998     if ( (op->_matrule && op->_matrule->is_base_register(globals)) ) {
2999       // Register
3000       int idx_offset = oper.register_position( globals, rep_var);
3001       position = idx_offset;
3002       fprintf(fp,"    return (int)ra_->get_encode(node->in(idx");
3003       if ( idx_offset > 0 ) fprintf(fp,                      "+%d",idx_offset);
3004       fprintf(fp,"));\n");
3005     } else if ( op->ideal_to_sReg_type(op->_ident) != Form::none ) {
3006       // StackSlot for an sReg comes either from input node or from self, when idx==0
3007       fprintf(fp,"    if( idx != 0 ) {\n");
3008       fprintf(fp,"      // Access stack offset (register number) for input operand\n");
3009       fprintf(fp,"      return ra_->reg2offset(ra_->get_reg_first(node->in(idx)));/* sReg */\n");
3010       fprintf(fp,"    }\n");
3011       fprintf(fp,"    // Access stack offset (register number) from myself\n");
3012       fprintf(fp,"    return ra_->reg2offset(ra_->get_reg_first(node));/* sReg */\n");
3013     } else if (op->_matrule && op->_matrule->is_base_constant(globals)) {
3014       // Constant
3015       // Check which constant this name maps to: _c0, _c1, ..., _cn
3016       const int idx = oper.constant_position(globals, comp);
3017       assert( idx != -1, "Constant component not found in operand");
3018       // Output code for this constant, type dependent.
3019       fprintf(fp,"    return (int)" );
3020       oper.access_constant(fp, globals, (uint)idx /* , const_type */);
3021       fprintf(fp,";\n");
3022     } else {
3023       assert( false, "Attempting to emit a non-register or non-constant");
3024     }
3025   }
3026   else if( *encoding == '0' && *(encoding+1) == 'x' ) {
3027     // Hex value
3028     fprintf(fp,"    return %s;\n", encoding);
3029   } else {
3030     globalAD->syntax_err(oper._linenum, "In operand %s: Do not support this encode constant: '%s' for %s.",
3031                          oper._ident, encoding, name);
3032     assert( false, "Do not support octal or decimal encode constants");
3033   }
3034   fprintf(fp,"  }\n");
3035 
3036   if( emit_position && (position != -1) && (oper.num_edges(globals) > 0) ) {
3037     fprintf(fp,"  virtual int            %s_position() const { return %d; }\n", name, position);
3038     MemInterface *mem_interface = oper._interface->is_MemInterface();
3039     const char *base = mem_interface->_base;
3040     const char *disp = mem_interface->_disp;
3041     if( emit_position && (strcmp(name,"base") == 0)
3042         && base != NULL && is_regI(base, oper, globals)
3043         && disp != NULL && is_conP(disp, oper, globals) ) {
3044       // Found a memory access using a constant pointer for a displacement
3045       // and a base register containing an integer offset.
3046       // In this case the base and disp are reversed with respect to what
3047       // is expected by MachNode::get_base_and_disp() and MachNode::adr_type().
3048       // Provide a non-NULL return for disp_as_type() that will allow adr_type()
3049       // to correctly compute the access type for alias analysis.
3050       //
3051       // See BugId 4796752, operand indOffset32X in i486.ad
3052       int idx = rep_var_to_constant_index(disp, oper, globals);
3053       fprintf(fp,"  virtual const TypePtr *disp_as_type() const { return _c%d; }\n", idx);
3054     }
3055   }
3056 }
3057 
3058 //
3059 // Construct the method to copy _idx, inputs and operands to new node.
3060 static void define_fill_new_machnode(bool used, FILE *fp_cpp) {
3061   fprintf(fp_cpp, "\n");
3062   fprintf(fp_cpp, "// Copy _idx, inputs and operands to new node\n");
3063   fprintf(fp_cpp, "void MachNode::fill_new_machnode( MachNode* node, Compile* C) const {\n");
3064   if( !used ) {
3065     fprintf(fp_cpp, "  // This architecture does not have cisc or short branch instructions\n");
3066     fprintf(fp_cpp, "  ShouldNotCallThis();\n");
3067     fprintf(fp_cpp, "}\n");
3068   } else {
3069     // New node must use same node index for access through allocator's tables
3070     fprintf(fp_cpp, "  // New node must use same node index\n");
3071     fprintf(fp_cpp, "  node->set_idx( _idx );\n");
3072     // Copy machine-independent inputs
3073     fprintf(fp_cpp, "  // Copy machine-independent inputs\n");
3074     fprintf(fp_cpp, "  for( uint j = 0; j < req(); j++ ) {\n");
3075     fprintf(fp_cpp, "    node->add_req(in(j));\n");
3076     fprintf(fp_cpp, "  }\n");
3077     // Copy machine operands to new MachNode
3078     fprintf(fp_cpp, "  // Copy my operands, except for cisc position\n");
3079     fprintf(fp_cpp, "  int nopnds = num_opnds();\n");
3080     fprintf(fp_cpp, "  assert( node->num_opnds() == (uint)nopnds, \"Must have same number of operands\");\n");
3081     fprintf(fp_cpp, "  MachOper **to = node->_opnds;\n");
3082     fprintf(fp_cpp, "  for( int i = 0; i < nopnds; i++ ) {\n");
3083     fprintf(fp_cpp, "    if( i != cisc_operand() ) \n");
3084     fprintf(fp_cpp, "      to[i] = _opnds[i]->clone(C);\n");
3085     fprintf(fp_cpp, "  }\n");
3086     fprintf(fp_cpp, "}\n");
3087   }
3088   fprintf(fp_cpp, "\n");
3089 }
3090 
3091 //------------------------------defineClasses----------------------------------
3092 // Define members of MachNode and MachOper classes based on
3093 // operand and instruction lists
3094 void ArchDesc::defineClasses(FILE *fp) {
3095 
3096   // Define the contents of an array containing the machine register names
3097   defineRegNames(fp, _register);
3098   // Define an array containing the machine register encoding values
3099   defineRegEncodes(fp, _register);
3100   // Generate an enumeration of user-defined register classes
3101   // and a list of register masks, one for each class.
3102   // Only define the RegMask value objects in the expand file.
3103   // Declare each as an extern const RegMask ...; in ad_<arch>.hpp
3104   declare_register_masks(_HPP_file._fp);
3105   // build_register_masks(fp);
3106   build_register_masks(_CPP_EXPAND_file._fp);
3107   // Define the pipe_classes
3108   build_pipe_classes(_CPP_PIPELINE_file._fp);
3109 
3110   // Generate Machine Classes for each operand defined in AD file
3111   fprintf(fp,"\n");
3112   fprintf(fp,"\n");
3113   fprintf(fp,"//------------------Define classes derived from MachOper---------------------\n");
3114   // Iterate through all operands
3115   _operands.reset();
3116   OperandForm *oper;
3117   for( ; (oper = (OperandForm*)_operands.iter()) != NULL; ) {
3118     // Ensure this is a machine-world instruction
3119     if ( oper->ideal_only() ) continue;
3120     // !!!!!
3121     // The declaration of labelOper is in machine-independent file: machnode
3122     if ( strcmp(oper->_ident,"label") == 0 ) {
3123       defineIn_RegMask(_CPP_MISC_file._fp, _globalNames, *oper);
3124 
3125       fprintf(fp,"MachOper  *%sOper::clone(Compile* C) const {\n", oper->_ident);
3126       fprintf(fp,"  return  new (C) %sOper(_label, _block_num);\n", oper->_ident);
3127       fprintf(fp,"}\n");
3128 
3129       fprintf(fp,"uint %sOper::opcode() const { return %s; }\n",
3130               oper->_ident, machOperEnum(oper->_ident));
3131       // // Currently all XXXOper::Hash() methods are identical (990820)
3132       // define_hash(fp, oper->_ident);
3133       // // Currently all XXXOper::Cmp() methods are identical (990820)
3134       // define_cmp(fp, oper->_ident);
3135       fprintf(fp,"\n");
3136 
3137       continue;
3138     }
3139 
3140     // The declaration of methodOper is in machine-independent file: machnode
3141     if ( strcmp(oper->_ident,"method") == 0 ) {
3142       defineIn_RegMask(_CPP_MISC_file._fp, _globalNames, *oper);
3143 
3144       fprintf(fp,"MachOper  *%sOper::clone(Compile* C) const {\n", oper->_ident);
3145       fprintf(fp,"  return  new (C) %sOper(_method);\n", oper->_ident);
3146       fprintf(fp,"}\n");
3147 
3148       fprintf(fp,"uint %sOper::opcode() const { return %s; }\n",
3149               oper->_ident, machOperEnum(oper->_ident));
3150       // // Currently all XXXOper::Hash() methods are identical (990820)
3151       // define_hash(fp, oper->_ident);
3152       // // Currently all XXXOper::Cmp() methods are identical (990820)
3153       // define_cmp(fp, oper->_ident);
3154       fprintf(fp,"\n");
3155 
3156       continue;
3157     }
3158 
3159     defineIn_RegMask(fp, _globalNames, *oper);
3160     defineClone(_CPP_CLONE_file._fp, _globalNames, *oper);
3161     // // Currently all XXXOper::Hash() methods are identical (990820)
3162     // define_hash(fp, oper->_ident);
3163     // // Currently all XXXOper::Cmp() methods are identical (990820)
3164     // define_cmp(fp, oper->_ident);
3165 
3166     // side-call to generate output that used to be in the header file:
3167     extern void gen_oper_format(FILE *fp, FormDict &globals, OperandForm &oper, bool for_c_file);
3168     gen_oper_format(_CPP_FORMAT_file._fp, _globalNames, *oper, true);
3169 
3170   }
3171 
3172 
3173   // Generate Machine Classes for each instruction defined in AD file
3174   fprintf(fp,"//------------------Define members for classes derived from MachNode----------\n");
3175   // Output the definitions for out_RegMask() // & kill_RegMask()
3176   _instructions.reset();
3177   InstructForm *instr;
3178   MachNodeForm *machnode;
3179   for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
3180     // Ensure this is a machine-world instruction
3181     if ( instr->ideal_only() ) continue;
3182 
3183     defineOut_RegMask(_CPP_MISC_file._fp, instr->_ident, reg_mask(*instr));
3184   }
3185 
3186   bool used = false;
3187   // Output the definitions for expand rules & peephole rules
3188   _instructions.reset();
3189   for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
3190     // Ensure this is a machine-world instruction
3191     if ( instr->ideal_only() ) continue;
3192     // If there are multiple defs/kills, or an explicit expand rule, build rule
3193     if( instr->expands() || instr->needs_projections() ||
3194         instr->has_temps() ||
3195         instr->is_mach_constant() ||
3196         instr->needs_constant_base() ||
3197         instr->_matrule != NULL &&
3198         instr->num_opnds() != instr->num_unique_opnds() )
3199       defineExpand(_CPP_EXPAND_file._fp, instr);
3200     // If there is an explicit peephole rule, build it
3201     if ( instr->peepholes() )
3202       definePeephole(_CPP_PEEPHOLE_file._fp, instr);
3203 
3204     // Output code to convert to the cisc version, if applicable
3205     used |= instr->define_cisc_version(*this, fp);
3206 
3207     // Output code to convert to the short branch version, if applicable
3208     used |= instr->define_short_branch_methods(*this, fp);
3209   }
3210 
3211   // Construct the method called by cisc_version() to copy inputs and operands.
3212   define_fill_new_machnode(used, fp);
3213 
3214   // Output the definitions for labels
3215   _instructions.reset();
3216   while( (instr = (InstructForm*)_instructions.iter()) != NULL ) {
3217     // Ensure this is a machine-world instruction
3218     if ( instr->ideal_only() ) continue;
3219 
3220     // Access the fields for operand Label
3221     int label_position = instr->label_position();
3222     if( label_position != -1 ) {
3223       // Set the label
3224       fprintf(fp,"void %sNode::label_set( Label* label, uint block_num ) {\n", instr->_ident);
3225       fprintf(fp,"  labelOper* oper  = (labelOper*)(opnd_array(%d));\n",
3226               label_position );
3227       fprintf(fp,"  oper->_label     = label;\n");
3228       fprintf(fp,"  oper->_block_num = block_num;\n");
3229       fprintf(fp,"}\n");
3230       // Save the label
3231       fprintf(fp,"void %sNode::save_label( Label** label, uint* block_num ) {\n", instr->_ident);
3232       fprintf(fp,"  labelOper* oper  = (labelOper*)(opnd_array(%d));\n",
3233               label_position );
3234       fprintf(fp,"  *label = oper->_label;\n");
3235       fprintf(fp,"  *block_num = oper->_block_num;\n");
3236       fprintf(fp,"}\n");
3237     }
3238   }
3239 
3240   // Output the definitions for methods
3241   _instructions.reset();
3242   while( (instr = (InstructForm*)_instructions.iter()) != NULL ) {
3243     // Ensure this is a machine-world instruction
3244     if ( instr->ideal_only() ) continue;
3245 
3246     // Access the fields for operand Label
3247     int method_position = instr->method_position();
3248     if( method_position != -1 ) {
3249       // Access the method's address
3250       fprintf(fp,"void %sNode::method_set( intptr_t method ) {\n", instr->_ident);
3251       fprintf(fp,"  ((methodOper*)opnd_array(%d))->_method = method;\n",
3252               method_position );
3253       fprintf(fp,"}\n");
3254       fprintf(fp,"\n");
3255     }
3256   }
3257 
3258   // Define this instruction's number of relocation entries, base is '0'
3259   _instructions.reset();
3260   while( (instr = (InstructForm*)_instructions.iter()) != NULL ) {
3261     // Output the definition for number of relocation entries
3262     uint reloc_size = instr->reloc(_globalNames);
3263     if ( reloc_size != 0 ) {
3264       fprintf(fp,"int %sNode::reloc() const {\n", instr->_ident);
3265       fprintf(fp,"  return %d;\n", reloc_size);
3266       fprintf(fp,"}\n");
3267       fprintf(fp,"\n");
3268     }
3269   }
3270   fprintf(fp,"\n");
3271 
3272   // Output the definitions for code generation
3273   //
3274   // address  ___Node::emit(address ptr, PhaseRegAlloc *ra_) const {
3275   //   // ...  encoding defined by user
3276   //   return ptr;
3277   // }
3278   //
3279   _instructions.reset();
3280   for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
3281     // Ensure this is a machine-world instruction
3282     if ( instr->ideal_only() ) continue;
3283 
3284     if (instr->_insencode) {
3285       if (instr->postalloc_expands()) {
3286         // Don't write this to _CPP_EXPAND_file, as the code generated calls C-code
3287         // from code sections in ad file that is dumped to fp.
3288         define_postalloc_expand(fp, *instr);
3289       } else {
3290         defineEmit(fp, *instr);
3291       }
3292     }
3293     if (instr->is_mach_constant()) defineEvalConstant(fp, *instr);
3294     if (instr->_size)              defineSize        (fp, *instr);
3295 
3296     // side-call to generate output that used to be in the header file:
3297     extern void gen_inst_format(FILE *fp, FormDict &globals, InstructForm &oper, bool for_c_file);
3298     gen_inst_format(_CPP_FORMAT_file._fp, _globalNames, *instr, true);
3299   }
3300 
3301   // Output the definitions for alias analysis
3302   _instructions.reset();
3303   for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
3304     // Ensure this is a machine-world instruction
3305     if ( instr->ideal_only() ) continue;
3306 
3307     // Analyze machine instructions that either USE or DEF memory.
3308     int memory_operand = instr->memory_operand(_globalNames);
3309     // Some guys kill all of memory
3310     if ( instr->is_wide_memory_kill(_globalNames) ) {
3311       memory_operand = InstructForm::MANY_MEMORY_OPERANDS;
3312     }
3313 
3314     if ( memory_operand != InstructForm::NO_MEMORY_OPERAND ) {
3315       if( memory_operand == InstructForm::MANY_MEMORY_OPERANDS ) {
3316         fprintf(fp,"const TypePtr *%sNode::adr_type() const { return TypePtr::BOTTOM; }\n", instr->_ident);
3317         fprintf(fp,"const MachOper* %sNode::memory_operand() const { return (MachOper*)-1; }\n", instr->_ident);
3318       } else {
3319         fprintf(fp,"const MachOper* %sNode::memory_operand() const { return _opnds[%d]; }\n", instr->_ident, memory_operand);
3320   }
3321     }
3322   }
3323 
3324   // Get the length of the longest identifier
3325   int max_ident_len = 0;
3326   _instructions.reset();
3327 
3328   for ( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
3329     if (instr->_ins_pipe && _pipeline->_classlist.search(instr->_ins_pipe)) {
3330       int ident_len = (int)strlen(instr->_ident);
3331       if( max_ident_len < ident_len )
3332         max_ident_len = ident_len;
3333     }
3334   }
3335 
3336   // Emit specifically for Node(s)
3337   fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*s::pipeline_class() { return %s; }\n",
3338     max_ident_len, "Node", _pipeline ? "(&pipeline_class_Zero_Instructions)" : "NULL");
3339   fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*s::pipeline() const { return %s; }\n",
3340     max_ident_len, "Node", _pipeline ? "(&pipeline_class_Zero_Instructions)" : "NULL");
3341   fprintf(_CPP_PIPELINE_file._fp, "\n");
3342 
3343   fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*s::pipeline_class() { return %s; }\n",
3344     max_ident_len, "MachNode", _pipeline ? "(&pipeline_class_Unknown_Instructions)" : "NULL");
3345   fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*s::pipeline() const { return pipeline_class(); }\n",
3346     max_ident_len, "MachNode");
3347   fprintf(_CPP_PIPELINE_file._fp, "\n");
3348 
3349   // Output the definitions for machine node specific pipeline data
3350   _machnodes.reset();
3351 
3352   for ( ; (machnode = (MachNodeForm*)_machnodes.iter()) != NULL; ) {
3353     fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %sNode::pipeline() const { return (&pipeline_class_%03d); }\n",
3354       machnode->_ident, ((class PipeClassForm *)_pipeline->_classdict[machnode->_machnode_pipe])->_num);
3355   }
3356 
3357   fprintf(_CPP_PIPELINE_file._fp, "\n");
3358 
3359   // Output the definitions for instruction pipeline static data references
3360   _instructions.reset();
3361 
3362   for ( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
3363     if (instr->_ins_pipe && _pipeline->_classlist.search(instr->_ins_pipe)) {
3364       fprintf(_CPP_PIPELINE_file._fp, "\n");
3365       fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*sNode::pipeline_class() { return (&pipeline_class_%03d); }\n",
3366         max_ident_len, instr->_ident, ((class PipeClassForm *)_pipeline->_classdict[instr->_ins_pipe])->_num);
3367       fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*sNode::pipeline() const { return (&pipeline_class_%03d); }\n",
3368         max_ident_len, instr->_ident, ((class PipeClassForm *)_pipeline->_classdict[instr->_ins_pipe])->_num);
3369     }
3370   }
3371 }
3372 
3373 
3374 // -------------------------------- maps ------------------------------------
3375 
3376 // Information needed to generate the ReduceOp mapping for the DFA
3377 class OutputReduceOp : public OutputMap {
3378 public:
3379   OutputReduceOp(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
3380     : OutputMap(hpp, cpp, globals, AD, "reduceOp") {};
3381 
3382   void declaration() { fprintf(_hpp, "extern const int   reduceOp[];\n"); }
3383   void definition()  { fprintf(_cpp, "const        int   reduceOp[] = {\n"); }
3384   void closing()     { fprintf(_cpp, "  0 // no trailing comma\n");
3385                        OutputMap::closing();
3386   }
3387   void map(OpClassForm &opc)  {
3388     const char *reduce = opc._ident;
3389     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
3390     else          fprintf(_cpp, "  0");
3391   }
3392   void map(OperandForm &oper) {
3393     // Most operands without match rules, e.g.  eFlagsReg, do not have a result operand
3394     const char *reduce = (oper._matrule ? oper.reduce_result() : NULL);
3395     // operand stackSlot does not have a match rule, but produces a stackSlot
3396     if( oper.is_user_name_for_sReg() != Form::none ) reduce = oper.reduce_result();
3397     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
3398     else          fprintf(_cpp, "  0");
3399   }
3400   void map(InstructForm &inst) {
3401     const char *reduce = (inst._matrule ? inst.reduce_result() : NULL);
3402     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
3403     else          fprintf(_cpp, "  0");
3404   }
3405   void map(char         *reduce) {
3406     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
3407     else          fprintf(_cpp, "  0");
3408   }
3409 };
3410 
3411 // Information needed to generate the LeftOp mapping for the DFA
3412 class OutputLeftOp : public OutputMap {
3413 public:
3414   OutputLeftOp(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
3415     : OutputMap(hpp, cpp, globals, AD, "leftOp") {};
3416 
3417   void declaration() { fprintf(_hpp, "extern const int   leftOp[];\n"); }
3418   void definition()  { fprintf(_cpp, "const        int   leftOp[] = {\n"); }
3419   void closing()     { fprintf(_cpp, "  0 // no trailing comma\n");
3420                        OutputMap::closing();
3421   }
3422   void map(OpClassForm &opc)  { fprintf(_cpp, "  0"); }
3423   void map(OperandForm &oper) {
3424     const char *reduce = oper.reduce_left(_globals);
3425     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
3426     else          fprintf(_cpp, "  0");
3427   }
3428   void map(char        *name) {
3429     const char *reduce = _AD.reduceLeft(name);
3430     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
3431     else          fprintf(_cpp, "  0");
3432   }
3433   void map(InstructForm &inst) {
3434     const char *reduce = inst.reduce_left(_globals);
3435     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
3436     else          fprintf(_cpp, "  0");
3437   }
3438 };
3439 
3440 
3441 // Information needed to generate the RightOp mapping for the DFA
3442 class OutputRightOp : public OutputMap {
3443 public:
3444   OutputRightOp(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
3445     : OutputMap(hpp, cpp, globals, AD, "rightOp") {};
3446 
3447   void declaration() { fprintf(_hpp, "extern const int   rightOp[];\n"); }
3448   void definition()  { fprintf(_cpp, "const        int   rightOp[] = {\n"); }
3449   void closing()     { fprintf(_cpp, "  0 // no trailing comma\n");
3450                        OutputMap::closing();
3451   }
3452   void map(OpClassForm &opc)  { fprintf(_cpp, "  0"); }
3453   void map(OperandForm &oper) {
3454     const char *reduce = oper.reduce_right(_globals);
3455     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
3456     else          fprintf(_cpp, "  0");
3457   }
3458   void map(char        *name) {
3459     const char *reduce = _AD.reduceRight(name);
3460     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
3461     else          fprintf(_cpp, "  0");
3462   }
3463   void map(InstructForm &inst) {
3464     const char *reduce = inst.reduce_right(_globals);
3465     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
3466     else          fprintf(_cpp, "  0");
3467   }
3468 };
3469 
3470 
3471 // Information needed to generate the Rule names for the DFA
3472 class OutputRuleName : public OutputMap {
3473 public:
3474   OutputRuleName(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
3475     : OutputMap(hpp, cpp, globals, AD, "ruleName") {};
3476 
3477   void declaration() { fprintf(_hpp, "extern const char *ruleName[];\n"); }
3478   void definition()  { fprintf(_cpp, "const char        *ruleName[] = {\n"); }
3479   void closing()     { fprintf(_cpp, "  \"invalid rule name\" // no trailing comma\n");
3480                        OutputMap::closing();
3481   }
3482   void map(OpClassForm &opc)  { fprintf(_cpp, "  \"%s\"", _AD.machOperEnum(opc._ident) ); }
3483   void map(OperandForm &oper) { fprintf(_cpp, "  \"%s\"", _AD.machOperEnum(oper._ident) ); }
3484   void map(char        *name) { fprintf(_cpp, "  \"%s\"", name ? name : "0"); }
3485   void map(InstructForm &inst){ fprintf(_cpp, "  \"%s\"", inst._ident ? inst._ident : "0"); }
3486 };
3487 
3488 
3489 // Information needed to generate the swallowed mapping for the DFA
3490 class OutputSwallowed : public OutputMap {
3491 public:
3492   OutputSwallowed(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
3493     : OutputMap(hpp, cpp, globals, AD, "swallowed") {};
3494 
3495   void declaration() { fprintf(_hpp, "extern const bool  swallowed[];\n"); }
3496   void definition()  { fprintf(_cpp, "const        bool  swallowed[] = {\n"); }
3497   void closing()     { fprintf(_cpp, "  false // no trailing comma\n");
3498                        OutputMap::closing();
3499   }
3500   void map(OperandForm &oper) { // Generate the entry for this opcode
3501     const char *swallowed = oper.swallowed(_globals) ? "true" : "false";
3502     fprintf(_cpp, "  %s", swallowed);
3503   }
3504   void map(OpClassForm &opc)  { fprintf(_cpp, "  false"); }
3505   void map(char        *name) { fprintf(_cpp, "  false"); }
3506   void map(InstructForm &inst){ fprintf(_cpp, "  false"); }
3507 };
3508 
3509 
3510 // Information needed to generate the decision array for instruction chain rule
3511 class OutputInstChainRule : public OutputMap {
3512 public:
3513   OutputInstChainRule(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
3514     : OutputMap(hpp, cpp, globals, AD, "instruction_chain_rule") {};
3515 
3516   void declaration() { fprintf(_hpp, "extern const bool  instruction_chain_rule[];\n"); }
3517   void definition()  { fprintf(_cpp, "const        bool  instruction_chain_rule[] = {\n"); }
3518   void closing()     { fprintf(_cpp, "  false // no trailing comma\n");
3519                        OutputMap::closing();
3520   }
3521   void map(OpClassForm &opc)   { fprintf(_cpp, "  false"); }
3522   void map(OperandForm &oper)  { fprintf(_cpp, "  false"); }
3523   void map(char        *name)  { fprintf(_cpp, "  false"); }
3524   void map(InstructForm &inst) { // Check for simple chain rule
3525     const char *chain = inst.is_simple_chain_rule(_globals) ? "true" : "false";
3526     fprintf(_cpp, "  %s", chain);
3527   }
3528 };
3529 
3530 
3531 //---------------------------build_map------------------------------------
3532 // Build  mapping from enumeration for densely packed operands
3533 // TO result and child types.
3534 void ArchDesc::build_map(OutputMap &map) {
3535   FILE         *fp_hpp = map.decl_file();
3536   FILE         *fp_cpp = map.def_file();
3537   int           idx    = 0;
3538   OperandForm  *op;
3539   OpClassForm  *opc;
3540   InstructForm *inst;
3541 
3542   // Construct this mapping
3543   map.declaration();
3544   fprintf(fp_cpp,"\n");
3545   map.definition();
3546 
3547   // Output the mapping for operands
3548   map.record_position(OutputMap::BEGIN_OPERANDS, idx );
3549   _operands.reset();
3550   for(; (op = (OperandForm*)_operands.iter()) != NULL; ) {
3551     // Ensure this is a machine-world instruction
3552     if ( op->ideal_only() )  continue;
3553 
3554     // Generate the entry for this opcode
3555     fprintf(fp_cpp, "  /* %4d */", idx); map.map(*op); fprintf(fp_cpp, ",\n");
3556     ++idx;
3557   };
3558   fprintf(fp_cpp, "  // last operand\n");
3559 
3560   // Place all user-defined operand classes into the mapping
3561   map.record_position(OutputMap::BEGIN_OPCLASSES, idx );
3562   _opclass.reset();
3563   for(; (opc = (OpClassForm*)_opclass.iter()) != NULL; ) {
3564     fprintf(fp_cpp, "  /* %4d */", idx); map.map(*opc); fprintf(fp_cpp, ",\n");
3565     ++idx;
3566   };
3567   fprintf(fp_cpp, "  // last operand class\n");
3568 
3569   // Place all internally defined operands into the mapping
3570   map.record_position(OutputMap::BEGIN_INTERNALS, idx );
3571   _internalOpNames.reset();
3572   char *name = NULL;
3573   for(; (name = (char *)_internalOpNames.iter()) != NULL; ) {
3574     fprintf(fp_cpp, "  /* %4d */", idx); map.map(name); fprintf(fp_cpp, ",\n");
3575     ++idx;
3576   };
3577   fprintf(fp_cpp, "  // last internally defined operand\n");
3578 
3579   // Place all user-defined instructions into the mapping
3580   if( map.do_instructions() ) {
3581     map.record_position(OutputMap::BEGIN_INSTRUCTIONS, idx );
3582     // Output all simple instruction chain rules first
3583     map.record_position(OutputMap::BEGIN_INST_CHAIN_RULES, idx );
3584     {
3585       _instructions.reset();
3586       for(; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
3587         // Ensure this is a machine-world instruction
3588         if ( inst->ideal_only() )  continue;
3589         if ( ! inst->is_simple_chain_rule(_globalNames) ) continue;
3590         if ( inst->rematerialize(_globalNames, get_registers()) ) continue;
3591 
3592         fprintf(fp_cpp, "  /* %4d */", idx); map.map(*inst); fprintf(fp_cpp, ",\n");
3593         ++idx;
3594       };
3595       map.record_position(OutputMap::BEGIN_REMATERIALIZE, idx );
3596       _instructions.reset();
3597       for(; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
3598         // Ensure this is a machine-world instruction
3599         if ( inst->ideal_only() )  continue;
3600         if ( ! inst->is_simple_chain_rule(_globalNames) ) continue;
3601         if ( ! inst->rematerialize(_globalNames, get_registers()) ) continue;
3602 
3603         fprintf(fp_cpp, "  /* %4d */", idx); map.map(*inst); fprintf(fp_cpp, ",\n");
3604         ++idx;
3605       };
3606       map.record_position(OutputMap::END_INST_CHAIN_RULES, idx );
3607     }
3608     // Output all instructions that are NOT simple chain rules
3609     {
3610       _instructions.reset();
3611       for(; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
3612         // Ensure this is a machine-world instruction
3613         if ( inst->ideal_only() )  continue;
3614         if ( inst->is_simple_chain_rule(_globalNames) ) continue;
3615         if ( ! inst->rematerialize(_globalNames, get_registers()) ) continue;
3616 
3617         fprintf(fp_cpp, "  /* %4d */", idx); map.map(*inst); fprintf(fp_cpp, ",\n");
3618         ++idx;
3619       };
3620       map.record_position(OutputMap::END_REMATERIALIZE, idx );
3621       _instructions.reset();
3622       for(; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
3623         // Ensure this is a machine-world instruction
3624         if ( inst->ideal_only() )  continue;
3625         if ( inst->is_simple_chain_rule(_globalNames) ) continue;
3626         if ( inst->rematerialize(_globalNames, get_registers()) ) continue;
3627 
3628         fprintf(fp_cpp, "  /* %4d */", idx); map.map(*inst); fprintf(fp_cpp, ",\n");
3629         ++idx;
3630       };
3631     }
3632     fprintf(fp_cpp, "  // last instruction\n");
3633     map.record_position(OutputMap::END_INSTRUCTIONS, idx );
3634   }
3635   // Finish defining table
3636   map.closing();
3637 };
3638 
3639 
3640 // Helper function for buildReduceMaps
3641 char reg_save_policy(const char *calling_convention) {
3642   char callconv;
3643 
3644   if      (!strcmp(calling_convention, "NS"))  callconv = 'N';
3645   else if (!strcmp(calling_convention, "SOE")) callconv = 'E';
3646   else if (!strcmp(calling_convention, "SOC")) callconv = 'C';
3647   else if (!strcmp(calling_convention, "AS"))  callconv = 'A';
3648   else                                         callconv = 'Z';
3649 
3650   return callconv;
3651 }
3652 
3653 void ArchDesc::generate_needs_clone_jvms(FILE *fp_cpp) {
3654   fprintf(fp_cpp, "bool Compile::needs_clone_jvms() { return %s; }\n\n",
3655           _needs_clone_jvms ? "true" : "false");
3656 }
3657 
3658 //---------------------------generate_assertion_checks-------------------
3659 void ArchDesc::generate_adlc_verification(FILE *fp_cpp) {
3660   fprintf(fp_cpp, "\n");
3661 
3662   fprintf(fp_cpp, "#ifndef PRODUCT\n");
3663   fprintf(fp_cpp, "void Compile::adlc_verification() {\n");
3664   globalDefs().print_asserts(fp_cpp);
3665   fprintf(fp_cpp, "}\n");
3666   fprintf(fp_cpp, "#endif\n");
3667   fprintf(fp_cpp, "\n");
3668 }
3669 
3670 //---------------------------addSourceBlocks-----------------------------
3671 void ArchDesc::addSourceBlocks(FILE *fp_cpp) {
3672   if (_source.count() > 0)
3673     _source.output(fp_cpp);
3674 
3675   generate_adlc_verification(fp_cpp);
3676 }
3677 //---------------------------addHeaderBlocks-----------------------------
3678 void ArchDesc::addHeaderBlocks(FILE *fp_hpp) {
3679   if (_header.count() > 0)
3680     _header.output(fp_hpp);
3681 }
3682 //-------------------------addPreHeaderBlocks----------------------------
3683 void ArchDesc::addPreHeaderBlocks(FILE *fp_hpp) {
3684   // Output #defines from definition block
3685   globalDefs().print_defines(fp_hpp);
3686 
3687   if (_pre_header.count() > 0)
3688     _pre_header.output(fp_hpp);
3689 }
3690 
3691 //---------------------------buildReduceMaps-----------------------------
3692 // Build  mapping from enumeration for densely packed operands
3693 // TO result and child types.
3694 void ArchDesc::buildReduceMaps(FILE *fp_hpp, FILE *fp_cpp) {
3695   RegDef       *rdef;
3696   RegDef       *next;
3697 
3698   // The emit bodies currently require functions defined in the source block.
3699 
3700   // Build external declarations for mappings
3701   fprintf(fp_hpp, "\n");
3702   fprintf(fp_hpp, "extern const char  register_save_policy[];\n");
3703   fprintf(fp_hpp, "extern const char  c_reg_save_policy[];\n");
3704   fprintf(fp_hpp, "extern const int   register_save_type[];\n");
3705   fprintf(fp_hpp, "\n");
3706 
3707   // Construct Save-Policy array
3708   fprintf(fp_cpp, "// Map from machine-independent register number to register_save_policy\n");
3709   fprintf(fp_cpp, "const        char register_save_policy[] = {\n");
3710   _register->reset_RegDefs();
3711   for( rdef = _register->iter_RegDefs(); rdef != NULL; rdef = next ) {
3712     next              = _register->iter_RegDefs();
3713     char policy       = reg_save_policy(rdef->_callconv);
3714     const char *comma = (next != NULL) ? "," : " // no trailing comma";
3715     fprintf(fp_cpp, "  '%c'%s // %s\n", policy, comma, rdef->_regname);
3716   }
3717   fprintf(fp_cpp, "};\n\n");
3718 
3719   // Construct Native Save-Policy array
3720   fprintf(fp_cpp, "// Map from machine-independent register number to c_reg_save_policy\n");
3721   fprintf(fp_cpp, "const        char c_reg_save_policy[] = {\n");
3722   _register->reset_RegDefs();
3723   for( rdef = _register->iter_RegDefs(); rdef != NULL; rdef = next ) {
3724     next        = _register->iter_RegDefs();
3725     char policy = reg_save_policy(rdef->_c_conv);
3726     const char *comma = (next != NULL) ? "," : " // no trailing comma";
3727     fprintf(fp_cpp, "  '%c'%s // %s\n", policy, comma, rdef->_regname);
3728   }
3729   fprintf(fp_cpp, "};\n\n");
3730 
3731   // Construct Register Save Type array
3732   fprintf(fp_cpp, "// Map from machine-independent register number to register_save_type\n");
3733   fprintf(fp_cpp, "const        int register_save_type[] = {\n");
3734   _register->reset_RegDefs();
3735   for( rdef = _register->iter_RegDefs(); rdef != NULL; rdef = next ) {
3736     next = _register->iter_RegDefs();
3737     const char *comma = (next != NULL) ? "," : " // no trailing comma";
3738     fprintf(fp_cpp, "  %s%s\n", rdef->_idealtype, comma);
3739   }
3740   fprintf(fp_cpp, "};\n\n");
3741 
3742   // Construct the table for reduceOp
3743   OutputReduceOp output_reduce_op(fp_hpp, fp_cpp, _globalNames, *this);
3744   build_map(output_reduce_op);
3745   // Construct the table for leftOp
3746   OutputLeftOp output_left_op(fp_hpp, fp_cpp, _globalNames, *this);
3747   build_map(output_left_op);
3748   // Construct the table for rightOp
3749   OutputRightOp output_right_op(fp_hpp, fp_cpp, _globalNames, *this);
3750   build_map(output_right_op);
3751   // Construct the table of rule names
3752   OutputRuleName output_rule_name(fp_hpp, fp_cpp, _globalNames, *this);
3753   build_map(output_rule_name);
3754   // Construct the boolean table for subsumed operands
3755   OutputSwallowed output_swallowed(fp_hpp, fp_cpp, _globalNames, *this);
3756   build_map(output_swallowed);
3757   // // // Preserve in case we decide to use this table instead of another
3758   //// Construct the boolean table for instruction chain rules
3759   //OutputInstChainRule output_inst_chain(fp_hpp, fp_cpp, _globalNames, *this);
3760   //build_map(output_inst_chain);
3761 
3762 }
3763 
3764 
3765 //---------------------------buildMachOperGenerator---------------------------
3766 
3767 // Recurse through match tree, building path through corresponding state tree,
3768 // Until we reach the constant we are looking for.
3769 static void path_to_constant(FILE *fp, FormDict &globals,
3770                              MatchNode *mnode, uint idx) {
3771   if ( ! mnode) return;
3772 
3773   unsigned    position = 0;
3774   const char *result   = NULL;
3775   const char *name     = NULL;
3776   const char *optype   = NULL;
3777 
3778   // Base Case: access constant in ideal node linked to current state node
3779   // Each type of constant has its own access function
3780   if ( (mnode->_lChild == NULL) && (mnode->_rChild == NULL)
3781        && mnode->base_operand(position, globals, result, name, optype) ) {
3782     if (         strcmp(optype,"ConI") == 0 ) {
3783       fprintf(fp, "_leaf->get_int()");
3784     } else if ( (strcmp(optype,"ConP") == 0) ) {
3785       fprintf(fp, "_leaf->bottom_type()->is_ptr()");
3786     } else if ( (strcmp(optype,"ConN") == 0) ) {
3787       fprintf(fp, "_leaf->bottom_type()->is_narrowoop()");
3788     } else if ( (strcmp(optype,"ConNKlass") == 0) ) {
3789       fprintf(fp, "_leaf->bottom_type()->is_narrowklass()");
3790     } else if ( (strcmp(optype,"ConF") == 0) ) {
3791       fprintf(fp, "_leaf->getf()");
3792     } else if ( (strcmp(optype,"ConD") == 0) ) {
3793       fprintf(fp, "_leaf->getd()");
3794     } else if ( (strcmp(optype,"ConL") == 0) ) {
3795       fprintf(fp, "_leaf->get_long()");
3796     } else if ( (strcmp(optype,"Con")==0) ) {
3797       // !!!!! - Update if adding a machine-independent constant type
3798       fprintf(fp, "_leaf->get_int()");
3799       assert( false, "Unsupported constant type, pointer or indefinite");
3800     } else if ( (strcmp(optype,"Bool") == 0) ) {
3801       fprintf(fp, "_leaf->as_Bool()->_test._test");
3802     } else {
3803       assert( false, "Unsupported constant type");
3804     }
3805     return;
3806   }
3807 
3808   // If constant is in left child, build path and recurse
3809   uint lConsts = (mnode->_lChild) ? (mnode->_lChild->num_consts(globals) ) : 0;
3810   uint rConsts = (mnode->_rChild) ? (mnode->_rChild->num_consts(globals) ) : 0;
3811   if ( (mnode->_lChild) && (lConsts > idx) ) {
3812     fprintf(fp, "_kids[0]->");
3813     path_to_constant(fp, globals, mnode->_lChild, idx);
3814     return;
3815   }
3816   // If constant is in right child, build path and recurse
3817   if ( (mnode->_rChild) && (rConsts > (idx - lConsts) ) ) {
3818     idx = idx - lConsts;
3819     fprintf(fp, "_kids[1]->");
3820     path_to_constant(fp, globals, mnode->_rChild, idx);
3821     return;
3822   }
3823   assert( false, "ShouldNotReachHere()");
3824 }
3825 
3826 // Generate code that is executed when generating a specific Machine Operand
3827 static void genMachOperCase(FILE *fp, FormDict &globalNames, ArchDesc &AD,
3828                             OperandForm &op) {
3829   const char *opName         = op._ident;
3830   const char *opEnumName     = AD.machOperEnum(opName);
3831   uint        num_consts     = op.num_consts(globalNames);
3832 
3833   // Generate the case statement for this opcode
3834   fprintf(fp, "  case %s:", opEnumName);
3835   fprintf(fp, "\n    return new (C) %sOper(", opName);
3836   // Access parameters for constructor from the stat object
3837   //
3838   // Build access to condition code value
3839   if ( (num_consts > 0) ) {
3840     uint i = 0;
3841     path_to_constant(fp, globalNames, op._matrule, i);
3842     for ( i = 1; i < num_consts; ++i ) {
3843       fprintf(fp, ", ");
3844       path_to_constant(fp, globalNames, op._matrule, i);
3845     }
3846   }
3847   fprintf(fp, " );\n");
3848 }
3849 
3850 
3851 // Build switch to invoke "new" MachNode or MachOper
3852 void ArchDesc::buildMachOperGenerator(FILE *fp_cpp) {
3853   int idx = 0;
3854 
3855   // Build switch to invoke 'new' for a specific MachOper
3856   fprintf(fp_cpp, "\n");
3857   fprintf(fp_cpp, "\n");
3858   fprintf(fp_cpp,
3859           "//------------------------- MachOper Generator ---------------\n");
3860   fprintf(fp_cpp,
3861           "// A switch statement on the dense-packed user-defined type system\n"
3862           "// that invokes 'new' on the corresponding class constructor.\n");
3863   fprintf(fp_cpp, "\n");
3864   fprintf(fp_cpp, "MachOper *State::MachOperGenerator");
3865   fprintf(fp_cpp, "(int opcode, Compile* C)");
3866   fprintf(fp_cpp, "{\n");
3867   fprintf(fp_cpp, "\n");
3868   fprintf(fp_cpp, "  switch(opcode) {\n");
3869 
3870   // Place all user-defined operands into the mapping
3871   _operands.reset();
3872   int  opIndex = 0;
3873   OperandForm *op;
3874   for( ; (op =  (OperandForm*)_operands.iter()) != NULL; ) {
3875     // Ensure this is a machine-world instruction
3876     if ( op->ideal_only() )  continue;
3877 
3878     genMachOperCase(fp_cpp, _globalNames, *this, *op);
3879   };
3880 
3881   // Do not iterate over operand classes for the  operand generator!!!
3882 
3883   // Place all internal operands into the mapping
3884   _internalOpNames.reset();
3885   const char *iopn;
3886   for( ; (iopn =  _internalOpNames.iter()) != NULL; ) {
3887     const char *opEnumName = machOperEnum(iopn);
3888     // Generate the case statement for this opcode
3889     fprintf(fp_cpp, "  case %s:", opEnumName);
3890     fprintf(fp_cpp, "    return NULL;\n");
3891   };
3892 
3893   // Generate the default case for switch(opcode)
3894   fprintf(fp_cpp, "  \n");
3895   fprintf(fp_cpp, "  default:\n");
3896   fprintf(fp_cpp, "    fprintf(stderr, \"Default MachOper Generator invoked for: \\n\");\n");
3897   fprintf(fp_cpp, "    fprintf(stderr, \"   opcode = %cd\\n\", opcode);\n", '%');
3898   fprintf(fp_cpp, "    break;\n");
3899   fprintf(fp_cpp, "  }\n");
3900 
3901   // Generate the closing for method Matcher::MachOperGenerator
3902   fprintf(fp_cpp, "  return NULL;\n");
3903   fprintf(fp_cpp, "};\n");
3904 }
3905 
3906 
3907 //---------------------------buildMachNode-------------------------------------
3908 // Build a new MachNode, for MachNodeGenerator or cisc-spilling
3909 void ArchDesc::buildMachNode(FILE *fp_cpp, InstructForm *inst, const char *indent) {
3910   const char *opType  = NULL;
3911   const char *opClass = inst->_ident;
3912 
3913   // Create the MachNode object
3914   fprintf(fp_cpp, "%s %sNode *node = new (C) %sNode();\n",indent, opClass,opClass);
3915 
3916   if ( (inst->num_post_match_opnds() != 0) ) {
3917     // Instruction that contains operands which are not in match rule.
3918     //
3919     // Check if the first post-match component may be an interesting def
3920     bool           dont_care = false;
3921     ComponentList &comp_list = inst->_components;
3922     Component     *comp      = NULL;
3923     comp_list.reset();
3924     if ( comp_list.match_iter() != NULL )    dont_care = true;
3925 
3926     // Insert operands that are not in match-rule.
3927     // Only insert a DEF if the do_care flag is set
3928     comp_list.reset();
3929     while ( comp = comp_list.post_match_iter() ) {
3930       // Check if we don't care about DEFs or KILLs that are not USEs
3931       if ( dont_care && (! comp->isa(Component::USE)) ) {
3932         continue;
3933       }
3934       dont_care = true;
3935       // For each operand not in the match rule, call MachOperGenerator
3936       // with the enum for the opcode that needs to be built.
3937       ComponentList clist = inst->_components;
3938       int         index  = clist.operand_position(comp->_name, comp->_usedef, inst);
3939       const char *opcode = machOperEnum(comp->_type);
3940       fprintf(fp_cpp, "%s node->set_opnd_array(%d, ", indent, index);
3941       fprintf(fp_cpp, "MachOperGenerator(%s, C));\n", opcode);
3942       }
3943   }
3944   else if ( inst->is_chain_of_constant(_globalNames, opType) ) {
3945     // An instruction that chains from a constant!
3946     // In this case, we need to subsume the constant into the node
3947     // at operand position, oper_input_base().
3948     //
3949     // Fill in the constant
3950     fprintf(fp_cpp, "%s node->_opnd_array[%d] = ", indent,
3951             inst->oper_input_base(_globalNames));
3952     // #####
3953     // Check for multiple constants and then fill them in.
3954     // Just like MachOperGenerator
3955     const char *opName = inst->_matrule->_rChild->_opType;
3956     fprintf(fp_cpp, "new (C) %sOper(", opName);
3957     // Grab operand form
3958     OperandForm *op = (_globalNames[opName])->is_operand();
3959     // Look up the number of constants
3960     uint num_consts = op->num_consts(_globalNames);
3961     if ( (num_consts > 0) ) {
3962       uint i = 0;
3963       path_to_constant(fp_cpp, _globalNames, op->_matrule, i);
3964       for ( i = 1; i < num_consts; ++i ) {
3965         fprintf(fp_cpp, ", ");
3966         path_to_constant(fp_cpp, _globalNames, op->_matrule, i);
3967       }
3968     }
3969     fprintf(fp_cpp, " );\n");
3970     // #####
3971   }
3972 
3973   // Fill in the bottom_type where requested
3974   if (inst->captures_bottom_type(_globalNames)) {
3975     if (strncmp("MachCall", inst->mach_base_class(_globalNames), strlen("MachCall"))) {
3976       fprintf(fp_cpp, "%s node->_bottom_type = _leaf->bottom_type();\n", indent);
3977     }
3978   }
3979   if( inst->is_ideal_if() ) {
3980     fprintf(fp_cpp, "%s node->_prob = _leaf->as_If()->_prob;\n", indent);
3981     fprintf(fp_cpp, "%s node->_fcnt = _leaf->as_If()->_fcnt;\n", indent);
3982   }
3983   if( inst->is_ideal_fastlock() ) {
3984     fprintf(fp_cpp, "%s node->_counters = _leaf->as_FastLock()->counters();\n", indent);
3985     fprintf(fp_cpp, "%s node->_rtm_counters = _leaf->as_FastLock()->rtm_counters();\n", indent);
3986     fprintf(fp_cpp, "%s node->_stack_rtm_counters = _leaf->as_FastLock()->stack_rtm_counters();\n", indent);
3987   }
3988 
3989 }
3990 
3991 //---------------------------declare_cisc_version------------------------------
3992 // Build CISC version of this instruction
3993 void InstructForm::declare_cisc_version(ArchDesc &AD, FILE *fp_hpp) {
3994   if( AD.can_cisc_spill() ) {
3995     InstructForm *inst_cisc = cisc_spill_alternate();
3996     if (inst_cisc != NULL) {
3997       fprintf(fp_hpp, "  virtual int            cisc_operand() const { return %d; }\n", cisc_spill_operand());
3998       fprintf(fp_hpp, "  virtual MachNode      *cisc_version(int offset, Compile* C);\n");
3999       fprintf(fp_hpp, "  virtual void           use_cisc_RegMask();\n");
4000       fprintf(fp_hpp, "  virtual const RegMask *cisc_RegMask() const { return _cisc_RegMask; }\n");
4001     }
4002   }
4003 }
4004 
4005 //---------------------------define_cisc_version-------------------------------
4006 // Build CISC version of this instruction
4007 bool InstructForm::define_cisc_version(ArchDesc &AD, FILE *fp_cpp) {
4008   InstructForm *inst_cisc = this->cisc_spill_alternate();
4009   if( AD.can_cisc_spill() && (inst_cisc != NULL) ) {
4010     const char   *name      = inst_cisc->_ident;
4011     assert( inst_cisc->num_opnds() == this->num_opnds(), "Must have same number of operands");
4012     OperandForm *cisc_oper = AD.cisc_spill_operand();
4013     assert( cisc_oper != NULL, "insanity check");
4014     const char *cisc_oper_name  = cisc_oper->_ident;
4015     assert( cisc_oper_name != NULL, "insanity check");
4016     //
4017     // Set the correct reg_mask_or_stack for the cisc operand
4018     fprintf(fp_cpp, "\n");
4019     fprintf(fp_cpp, "void %sNode::use_cisc_RegMask() {\n", this->_ident);
4020     // Lookup the correct reg_mask_or_stack
4021     const char *reg_mask_name = cisc_reg_mask_name();
4022     fprintf(fp_cpp, "  _cisc_RegMask = &STACK_OR_%s;\n", reg_mask_name);
4023     fprintf(fp_cpp, "}\n");
4024     //
4025     // Construct CISC version of this instruction
4026     fprintf(fp_cpp, "\n");
4027     fprintf(fp_cpp, "// Build CISC version of this instruction\n");
4028     fprintf(fp_cpp, "MachNode *%sNode::cisc_version( int offset, Compile* C ) {\n", this->_ident);
4029     // Create the MachNode object
4030     fprintf(fp_cpp, "  %sNode *node = new (C) %sNode();\n", name, name);
4031     // Fill in the bottom_type where requested
4032     if ( this->captures_bottom_type(AD.globalNames()) ) {
4033       fprintf(fp_cpp, "  node->_bottom_type = bottom_type();\n");
4034     }
4035 
4036     uint cur_num_opnds = num_opnds();
4037     if (cur_num_opnds > 1 && cur_num_opnds != num_unique_opnds()) {
4038       fprintf(fp_cpp,"  node->_num_opnds = %d;\n", num_unique_opnds());
4039     }
4040 
4041     fprintf(fp_cpp, "\n");
4042     fprintf(fp_cpp, "  // Copy _idx, inputs and operands to new node\n");
4043     fprintf(fp_cpp, "  fill_new_machnode(node, C);\n");
4044     // Construct operand to access [stack_pointer + offset]
4045     fprintf(fp_cpp, "  // Construct operand to access [stack_pointer + offset]\n");
4046     fprintf(fp_cpp, "  node->set_opnd_array(cisc_operand(), new (C) %sOper(offset));\n", cisc_oper_name);
4047     fprintf(fp_cpp, "\n");
4048 
4049     // Return result and exit scope
4050     fprintf(fp_cpp, "  return node;\n");
4051     fprintf(fp_cpp, "}\n");
4052     fprintf(fp_cpp, "\n");
4053     return true;
4054   }
4055   return false;
4056 }
4057 
4058 //---------------------------declare_short_branch_methods----------------------
4059 // Build prototypes for short branch methods
4060 void InstructForm::declare_short_branch_methods(FILE *fp_hpp) {
4061   if (has_short_branch_form()) {
4062     fprintf(fp_hpp, "  virtual MachNode      *short_branch_version(Compile* C);\n");
4063   }
4064 }
4065 
4066 //---------------------------define_short_branch_methods-----------------------
4067 // Build definitions for short branch methods
4068 bool InstructForm::define_short_branch_methods(ArchDesc &AD, FILE *fp_cpp) {
4069   if (has_short_branch_form()) {
4070     InstructForm *short_branch = short_branch_form();
4071     const char   *name         = short_branch->_ident;
4072 
4073     // Construct short_branch_version() method.
4074     fprintf(fp_cpp, "// Build short branch version of this instruction\n");
4075     fprintf(fp_cpp, "MachNode *%sNode::short_branch_version(Compile* C) {\n", this->_ident);
4076     // Create the MachNode object
4077     fprintf(fp_cpp, "  %sNode *node = new (C) %sNode();\n", name, name);
4078     if( is_ideal_if() ) {
4079       fprintf(fp_cpp, "  node->_prob = _prob;\n");
4080       fprintf(fp_cpp, "  node->_fcnt = _fcnt;\n");
4081     }
4082     // Fill in the bottom_type where requested
4083     if ( this->captures_bottom_type(AD.globalNames()) ) {
4084       fprintf(fp_cpp, "  node->_bottom_type = bottom_type();\n");
4085     }
4086 
4087     fprintf(fp_cpp, "\n");
4088     // Short branch version must use same node index for access
4089     // through allocator's tables
4090     fprintf(fp_cpp, "  // Copy _idx, inputs and operands to new node\n");
4091     fprintf(fp_cpp, "  fill_new_machnode(node, C);\n");
4092 
4093     // Return result and exit scope
4094     fprintf(fp_cpp, "  return node;\n");
4095     fprintf(fp_cpp, "}\n");
4096     fprintf(fp_cpp,"\n");
4097     return true;
4098   }
4099   return false;
4100 }
4101 
4102 
4103 //---------------------------buildMachNodeGenerator----------------------------
4104 // Build switch to invoke appropriate "new" MachNode for an opcode
4105 void ArchDesc::buildMachNodeGenerator(FILE *fp_cpp) {
4106 
4107   // Build switch to invoke 'new' for a specific MachNode
4108   fprintf(fp_cpp, "\n");
4109   fprintf(fp_cpp, "\n");
4110   fprintf(fp_cpp,
4111           "//------------------------- MachNode Generator ---------------\n");
4112   fprintf(fp_cpp,
4113           "// A switch statement on the dense-packed user-defined type system\n"
4114           "// that invokes 'new' on the corresponding class constructor.\n");
4115   fprintf(fp_cpp, "\n");
4116   fprintf(fp_cpp, "MachNode *State::MachNodeGenerator");
4117   fprintf(fp_cpp, "(int opcode, Compile* C)");
4118   fprintf(fp_cpp, "{\n");
4119   fprintf(fp_cpp, "  switch(opcode) {\n");
4120 
4121   // Provide constructor for all user-defined instructions
4122   _instructions.reset();
4123   int  opIndex = operandFormCount();
4124   InstructForm *inst;
4125   for( ; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
4126     // Ensure that matrule is defined.
4127     if ( inst->_matrule == NULL ) continue;
4128 
4129     int         opcode  = opIndex++;
4130     const char *opClass = inst->_ident;
4131     char       *opType  = NULL;
4132 
4133     // Generate the case statement for this instruction
4134     fprintf(fp_cpp, "  case %s_rule:", opClass);
4135 
4136     // Start local scope
4137     fprintf(fp_cpp, " {\n");
4138     // Generate code to construct the new MachNode
4139     buildMachNode(fp_cpp, inst, "     ");
4140     // Return result and exit scope
4141     fprintf(fp_cpp, "      return node;\n");
4142     fprintf(fp_cpp, "    }\n");
4143   }
4144 
4145   // Generate the default case for switch(opcode)
4146   fprintf(fp_cpp, "  \n");
4147   fprintf(fp_cpp, "  default:\n");
4148   fprintf(fp_cpp, "    fprintf(stderr, \"Default MachNode Generator invoked for: \\n\");\n");
4149   fprintf(fp_cpp, "    fprintf(stderr, \"   opcode = %cd\\n\", opcode);\n", '%');
4150   fprintf(fp_cpp, "    break;\n");
4151   fprintf(fp_cpp, "  };\n");
4152 
4153   // Generate the closing for method Matcher::MachNodeGenerator
4154   fprintf(fp_cpp, "  return NULL;\n");
4155   fprintf(fp_cpp, "}\n");
4156 }
4157 
4158 
4159 //---------------------------buildInstructMatchCheck--------------------------
4160 // Output the method to Matcher which checks whether or not a specific
4161 // instruction has a matching rule for the host architecture.
4162 void ArchDesc::buildInstructMatchCheck(FILE *fp_cpp) const {
4163   fprintf(fp_cpp, "\n\n");
4164   fprintf(fp_cpp, "const bool Matcher::has_match_rule(int opcode) {\n");
4165   fprintf(fp_cpp, "  assert(_last_machine_leaf < opcode && opcode < _last_opcode, \"opcode in range\");\n");
4166   fprintf(fp_cpp, "  return _hasMatchRule[opcode];\n");
4167   fprintf(fp_cpp, "}\n\n");
4168 
4169   fprintf(fp_cpp, "const bool Matcher::_hasMatchRule[_last_opcode] = {\n");
4170   int i;
4171   for (i = 0; i < _last_opcode - 1; i++) {
4172     fprintf(fp_cpp, "    %-5s,  // %s\n",
4173             _has_match_rule[i] ? "true" : "false",
4174             NodeClassNames[i]);
4175   }
4176   fprintf(fp_cpp, "    %-5s   // %s\n",
4177           _has_match_rule[i] ? "true" : "false",
4178           NodeClassNames[i]);
4179   fprintf(fp_cpp, "};\n");
4180 }
4181 
4182 //---------------------------buildFrameMethods---------------------------------
4183 // Output the methods to Matcher which specify frame behavior
4184 void ArchDesc::buildFrameMethods(FILE *fp_cpp) {
4185   fprintf(fp_cpp,"\n\n");
4186   // Stack Direction
4187   fprintf(fp_cpp,"bool Matcher::stack_direction() const { return %s; }\n\n",
4188           _frame->_direction ? "true" : "false");
4189   // Sync Stack Slots
4190   fprintf(fp_cpp,"int Compile::sync_stack_slots() const { return %s; }\n\n",
4191           _frame->_sync_stack_slots);
4192   // Java Stack Alignment
4193   fprintf(fp_cpp,"uint Matcher::stack_alignment_in_bytes() { return %s; }\n\n",
4194           _frame->_alignment);
4195   // Java Return Address Location
4196   fprintf(fp_cpp,"OptoReg::Name Matcher::return_addr() const {");
4197   if (_frame->_return_addr_loc) {
4198     fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
4199             _frame->_return_addr);
4200   }
4201   else {
4202     fprintf(fp_cpp," return OptoReg::stack2reg(%s); }\n\n",
4203             _frame->_return_addr);
4204   }
4205   // Java Stack Slot Preservation
4206   fprintf(fp_cpp,"uint Compile::in_preserve_stack_slots() ");
4207   fprintf(fp_cpp,"{ return %s; }\n\n", _frame->_in_preserve_slots);
4208   // Top Of Stack Slot Preservation, for both Java and C
4209   fprintf(fp_cpp,"uint Compile::out_preserve_stack_slots() ");
4210   fprintf(fp_cpp,"{ return SharedRuntime::out_preserve_stack_slots(); }\n\n");
4211   // varargs C out slots killed
4212   fprintf(fp_cpp,"uint Compile::varargs_C_out_slots_killed() const ");
4213   fprintf(fp_cpp,"{ return %s; }\n\n", _frame->_varargs_C_out_slots_killed);
4214   // Java Argument Position
4215   fprintf(fp_cpp,"void Matcher::calling_convention(BasicType *sig_bt, VMRegPair *regs, uint length, bool is_outgoing) {\n");
4216   fprintf(fp_cpp,"%s\n", _frame->_calling_convention);
4217   fprintf(fp_cpp,"}\n\n");
4218   // Native Argument Position
4219   fprintf(fp_cpp,"void Matcher::c_calling_convention(BasicType *sig_bt, VMRegPair *regs, uint length) {\n");
4220   fprintf(fp_cpp,"%s\n", _frame->_c_calling_convention);
4221   fprintf(fp_cpp,"}\n\n");
4222   // Java Return Value Location
4223   fprintf(fp_cpp,"OptoRegPair Matcher::return_value(int ideal_reg, bool is_outgoing) {\n");
4224   fprintf(fp_cpp,"%s\n", _frame->_return_value);
4225   fprintf(fp_cpp,"}\n\n");
4226   // Native Return Value Location
4227   fprintf(fp_cpp,"OptoRegPair Matcher::c_return_value(int ideal_reg, bool is_outgoing) {\n");
4228   fprintf(fp_cpp,"%s\n", _frame->_c_return_value);
4229   fprintf(fp_cpp,"}\n\n");
4230 
4231   // Inline Cache Register, mask definition, and encoding
4232   fprintf(fp_cpp,"OptoReg::Name Matcher::inline_cache_reg() {");
4233   fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
4234           _frame->_inline_cache_reg);
4235   fprintf(fp_cpp,"int Matcher::inline_cache_reg_encode() {");
4236   fprintf(fp_cpp," return _regEncode[inline_cache_reg()]; }\n\n");
4237 
4238   // Interpreter's Method Oop Register, mask definition, and encoding
4239   fprintf(fp_cpp,"OptoReg::Name Matcher::interpreter_method_oop_reg() {");
4240   fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
4241           _frame->_interpreter_method_oop_reg);
4242   fprintf(fp_cpp,"int Matcher::interpreter_method_oop_reg_encode() {");
4243   fprintf(fp_cpp," return _regEncode[interpreter_method_oop_reg()]; }\n\n");
4244 
4245   // Interpreter's Frame Pointer Register, mask definition, and encoding
4246   fprintf(fp_cpp,"OptoReg::Name Matcher::interpreter_frame_pointer_reg() {");
4247   if (_frame->_interpreter_frame_pointer_reg == NULL)
4248     fprintf(fp_cpp," return OptoReg::Bad; }\n\n");
4249   else
4250     fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
4251             _frame->_interpreter_frame_pointer_reg);
4252 
4253   // Frame Pointer definition
4254   /* CNC - I can not contemplate having a different frame pointer between
4255      Java and native code; makes my head hurt to think about it.
4256   fprintf(fp_cpp,"OptoReg::Name Matcher::frame_pointer() const {");
4257   fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
4258           _frame->_frame_pointer);
4259   */
4260   // (Native) Frame Pointer definition
4261   fprintf(fp_cpp,"OptoReg::Name Matcher::c_frame_pointer() const {");
4262   fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
4263           _frame->_frame_pointer);
4264 
4265   // Number of callee-save + always-save registers for calling convention
4266   fprintf(fp_cpp, "// Number of callee-save + always-save registers\n");
4267   fprintf(fp_cpp, "int  Matcher::number_of_saved_registers() {\n");
4268   RegDef *rdef;
4269   int nof_saved_registers = 0;
4270   _register->reset_RegDefs();
4271   while( (rdef = _register->iter_RegDefs()) != NULL ) {
4272     if( !strcmp(rdef->_callconv, "SOE") ||  !strcmp(rdef->_callconv, "AS") )
4273       ++nof_saved_registers;
4274   }
4275   fprintf(fp_cpp, "  return %d;\n", nof_saved_registers);
4276   fprintf(fp_cpp, "};\n\n");
4277 }
4278 
4279 
4280 
4281 
4282 static int PrintAdlcCisc = 0;
4283 //---------------------------identify_cisc_spilling----------------------------
4284 // Get info for the CISC_oracle and MachNode::cisc_version()
4285 void ArchDesc::identify_cisc_spill_instructions() {
4286 
4287   if (_frame == NULL)
4288     return;
4289 
4290   // Find the user-defined operand for cisc-spilling
4291   if( _frame->_cisc_spilling_operand_name != NULL ) {
4292     const Form *form = _globalNames[_frame->_cisc_spilling_operand_name];
4293     OperandForm *oper = form ? form->is_operand() : NULL;
4294     // Verify the user's suggestion
4295     if( oper != NULL ) {
4296       // Ensure that match field is defined.
4297       if ( oper->_matrule != NULL )  {
4298         MatchRule &mrule = *oper->_matrule;
4299         if( strcmp(mrule._opType,"AddP") == 0 ) {
4300           MatchNode *left = mrule._lChild;
4301           MatchNode *right= mrule._rChild;
4302           if( left != NULL && right != NULL ) {
4303             const Form *left_op  = _globalNames[left->_opType]->is_operand();
4304             const Form *right_op = _globalNames[right->_opType]->is_operand();
4305             if(  (left_op != NULL && right_op != NULL)
4306               && (left_op->interface_type(_globalNames) == Form::register_interface)
4307               && (right_op->interface_type(_globalNames) == Form::constant_interface) ) {
4308               // Successfully verified operand
4309               set_cisc_spill_operand( oper );
4310               if( _cisc_spill_debug ) {
4311                 fprintf(stderr, "\n\nVerified CISC-spill operand %s\n\n", oper->_ident);
4312              }
4313             }
4314           }
4315         }
4316       }
4317     }
4318   }
4319 
4320   if( cisc_spill_operand() != NULL ) {
4321     // N^2 comparison of instructions looking for a cisc-spilling version
4322     _instructions.reset();
4323     InstructForm *instr;
4324     for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
4325       // Ensure that match field is defined.
4326       if ( instr->_matrule == NULL )  continue;
4327 
4328       MatchRule &mrule = *instr->_matrule;
4329       Predicate *pred  =  instr->build_predicate();
4330 
4331       // Grab the machine type of the operand
4332       const char *rootOp = instr->_ident;
4333       mrule._machType    = rootOp;
4334 
4335       // Find result type for match
4336       const char *result = instr->reduce_result();
4337 
4338       if( PrintAdlcCisc ) fprintf(stderr, "  new instruction %s \n", instr->_ident ? instr->_ident : " ");
4339       bool  found_cisc_alternate = false;
4340       _instructions.reset2();
4341       InstructForm *instr2;
4342       for( ; !found_cisc_alternate && (instr2 = (InstructForm*)_instructions.iter2()) != NULL; ) {
4343         // Ensure that match field is defined.
4344         if( PrintAdlcCisc ) fprintf(stderr, "  instr2 == %s \n", instr2->_ident ? instr2->_ident : " ");
4345         if ( instr2->_matrule != NULL
4346             && (instr != instr2 )                // Skip self
4347             && (instr2->reduce_result() != NULL) // want same result
4348             && (strcmp(result, instr2->reduce_result()) == 0)) {
4349           MatchRule &mrule2 = *instr2->_matrule;
4350           Predicate *pred2  =  instr2->build_predicate();
4351           found_cisc_alternate = instr->cisc_spills_to(*this, instr2);
4352         }
4353       }
4354     }
4355   }
4356 }
4357 
4358 //---------------------------build_cisc_spilling-------------------------------
4359 // Get info for the CISC_oracle and MachNode::cisc_version()
4360 void ArchDesc::build_cisc_spill_instructions(FILE *fp_hpp, FILE *fp_cpp) {
4361   // Output the table for cisc spilling
4362   fprintf(fp_cpp, "//  The following instructions can cisc-spill\n");
4363   _instructions.reset();
4364   InstructForm *inst = NULL;
4365   for(; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
4366     // Ensure this is a machine-world instruction
4367     if ( inst->ideal_only() )  continue;
4368     const char *inst_name = inst->_ident;
4369     int   operand   = inst->cisc_spill_operand();
4370     if( operand != AdlcVMDeps::Not_cisc_spillable ) {
4371       InstructForm *inst2 = inst->cisc_spill_alternate();
4372       fprintf(fp_cpp, "//  %s can cisc-spill operand %d to %s\n", inst->_ident, operand, inst2->_ident);
4373     }
4374   }
4375   fprintf(fp_cpp, "\n\n");
4376 }
4377 
4378 //---------------------------identify_short_branches----------------------------
4379 // Get info for our short branch replacement oracle.
4380 void ArchDesc::identify_short_branches() {
4381   // Walk over all instructions, checking to see if they match a short
4382   // branching alternate.
4383   _instructions.reset();
4384   InstructForm *instr;
4385   while( (instr = (InstructForm*)_instructions.iter()) != NULL ) {
4386     // The instruction must have a match rule.
4387     if (instr->_matrule != NULL &&
4388         instr->is_short_branch()) {
4389 
4390       _instructions.reset2();
4391       InstructForm *instr2;
4392       while( (instr2 = (InstructForm*)_instructions.iter2()) != NULL ) {
4393         instr2->check_branch_variant(*this, instr);
4394       }
4395     }
4396   }
4397 }
4398 
4399 
4400 //---------------------------identify_unique_operands---------------------------
4401 // Identify unique operands.
4402 void ArchDesc::identify_unique_operands() {
4403   // Walk over all instructions.
4404   _instructions.reset();
4405   InstructForm *instr;
4406   while( (instr = (InstructForm*)_instructions.iter()) != NULL ) {
4407     // Ensure this is a machine-world instruction
4408     if (!instr->ideal_only()) {
4409       instr->set_unique_opnds();
4410     }
4411   }
4412 }