1 /*
   2  * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/stringTable.hpp"
  27 #include "classfile/symbolTable.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "code/codeCache.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "code/nmethod.hpp"
  32 #include "code/pcDesc.hpp"
  33 #include "code/scopeDesc.hpp"
  34 #include "gc/shared/collectedHeap.hpp"
  35 #include "gc/shared/gcLocker.inline.hpp"
  36 #include "gc/shared/strongRootsScope.hpp"
  37 #include "gc/shared/workgroup.hpp"
  38 #include "interpreter/interpreter.hpp"
  39 #include "logging/log.hpp"
  40 #include "logging/logStream.hpp"
  41 #include "memory/resourceArea.hpp"
  42 #include "memory/universe.inline.hpp"
  43 #include "oops/oop.inline.hpp"
  44 #include "oops/symbol.hpp"
  45 #include "runtime/atomic.hpp"
  46 #include "runtime/compilationPolicy.hpp"
  47 #include "runtime/deoptimization.hpp"
  48 #include "runtime/frame.inline.hpp"
  49 #include "runtime/interfaceSupport.hpp"
  50 #include "runtime/mutexLocker.hpp"
  51 #include "runtime/orderAccess.inline.hpp"
  52 #include "runtime/osThread.hpp"
  53 #include "runtime/safepoint.hpp"
  54 #include "runtime/signature.hpp"
  55 #include "runtime/stubCodeGenerator.hpp"
  56 #include "runtime/stubRoutines.hpp"
  57 #include "runtime/sweeper.hpp"
  58 #include "runtime/synchronizer.hpp"
  59 #include "runtime/thread.inline.hpp"
  60 #include "runtime/timerTrace.hpp"
  61 #include "services/runtimeService.hpp"
  62 #include "trace/tracing.hpp"
  63 #include "trace/traceMacros.hpp"
  64 #include "utilities/events.hpp"
  65 #include "utilities/macros.hpp"
  66 #if INCLUDE_ALL_GCS
  67 #include "gc/shenandoah/shenandoahConcurrentThread.hpp"
  68 #include "gc/cms/concurrentMarkSweepThread.hpp"
  69 #include "gc/g1/suspendibleThreadSet.hpp"
  70 #endif // INCLUDE_ALL_GCS
  71 #ifdef COMPILER1
  72 #include "c1/c1_globals.hpp"
  73 #endif
  74 
  75 // --------------------------------------------------------------------------------------------------
  76 // Implementation of Safepoint begin/end
  77 
  78 SafepointSynchronize::SynchronizeState volatile SafepointSynchronize::_state = SafepointSynchronize::_not_synchronized;
  79 volatile int  SafepointSynchronize::_waiting_to_block = 0;
  80 volatile int SafepointSynchronize::_safepoint_counter = 0;
  81 int SafepointSynchronize::_current_jni_active_count = 0;
  82 long  SafepointSynchronize::_end_of_last_safepoint = 0;
  83 static volatile int PageArmed = 0 ;        // safepoint polling page is RO|RW vs PROT_NONE
  84 static volatile int TryingToBlock = 0 ;    // proximate value -- for advisory use only
  85 static bool timeout_error_printed = false;
  86 
  87 // Roll all threads forward to a safepoint and suspend them all
  88 void SafepointSynchronize::begin() {
  89   EventSafepointBegin begin_event;
  90   Thread* myThread = Thread::current();
  91   assert(myThread->is_VM_thread(), "Only VM thread may execute a safepoint");
  92 
  93   if (PrintSafepointStatistics || PrintSafepointStatisticsTimeout > 0) {
  94     _safepoint_begin_time = os::javaTimeNanos();
  95     _ts_of_current_safepoint = tty->time_stamp().seconds();
  96   }
  97 
  98 #if INCLUDE_ALL_GCS
  99   if (UseConcMarkSweepGC) {
 100     // In the future we should investigate whether CMS can use the
 101     // more-general mechanism below.  DLD (01/05).
 102     ConcurrentMarkSweepThread::synchronize(false);
 103   } else if (UseG1GC || (UseShenandoahGC && ShenandoahSuspendibleWorkers)) {
 104     SuspendibleThreadSet::synchronize();
 105   }
 106 #endif // INCLUDE_ALL_GCS
 107 
 108   // By getting the Threads_lock, we assure that no threads are about to start or
 109   // exit. It is released again in SafepointSynchronize::end().
 110   Threads_lock->lock();
 111 
 112   assert( _state == _not_synchronized, "trying to safepoint synchronize with wrong state");
 113 
 114   int nof_threads = Threads::number_of_threads();
 115 
 116   log_debug(safepoint)("Safepoint synchronization initiated. (%d)", nof_threads);
 117 
 118   RuntimeService::record_safepoint_begin();
 119 
 120   MutexLocker mu(Safepoint_lock);
 121 
 122   // Reset the count of active JNI critical threads
 123   _current_jni_active_count = 0;
 124 
 125   // Set number of threads to wait for, before we initiate the callbacks
 126   _waiting_to_block = nof_threads;
 127   TryingToBlock     = 0 ;
 128   int still_running = nof_threads;
 129 
 130   // Save the starting time, so that it can be compared to see if this has taken
 131   // too long to complete.
 132   jlong safepoint_limit_time = 0;
 133   timeout_error_printed = false;
 134 
 135   // PrintSafepointStatisticsTimeout can be specified separately. When
 136   // specified, PrintSafepointStatistics will be set to true in
 137   // deferred_initialize_stat method. The initialization has to be done
 138   // early enough to avoid any races. See bug 6880029 for details.
 139   if (PrintSafepointStatistics || PrintSafepointStatisticsTimeout > 0) {
 140     deferred_initialize_stat();
 141   }
 142 
 143   // Begin the process of bringing the system to a safepoint.
 144   // Java threads can be in several different states and are
 145   // stopped by different mechanisms:
 146   //
 147   //  1. Running interpreted
 148   //     The interpreter dispatch table is changed to force it to
 149   //     check for a safepoint condition between bytecodes.
 150   //  2. Running in native code
 151   //     When returning from the native code, a Java thread must check
 152   //     the safepoint _state to see if we must block.  If the
 153   //     VM thread sees a Java thread in native, it does
 154   //     not wait for this thread to block.  The order of the memory
 155   //     writes and reads of both the safepoint state and the Java
 156   //     threads state is critical.  In order to guarantee that the
 157   //     memory writes are serialized with respect to each other,
 158   //     the VM thread issues a memory barrier instruction
 159   //     (on MP systems).  In order to avoid the overhead of issuing
 160   //     a memory barrier for each Java thread making native calls, each Java
 161   //     thread performs a write to a single memory page after changing
 162   //     the thread state.  The VM thread performs a sequence of
 163   //     mprotect OS calls which forces all previous writes from all
 164   //     Java threads to be serialized.  This is done in the
 165   //     os::serialize_thread_states() call.  This has proven to be
 166   //     much more efficient than executing a membar instruction
 167   //     on every call to native code.
 168   //  3. Running compiled Code
 169   //     Compiled code reads a global (Safepoint Polling) page that
 170   //     is set to fault if we are trying to get to a safepoint.
 171   //  4. Blocked
 172   //     A thread which is blocked will not be allowed to return from the
 173   //     block condition until the safepoint operation is complete.
 174   //  5. In VM or Transitioning between states
 175   //     If a Java thread is currently running in the VM or transitioning
 176   //     between states, the safepointing code will wait for the thread to
 177   //     block itself when it attempts transitions to a new state.
 178   //
 179   {
 180     EventSafepointStateSynchronization sync_event;
 181     int initial_running = 0;
 182 
 183     _state            = _synchronizing;
 184     OrderAccess::fence();
 185 
 186     // Flush all thread states to memory
 187     if (!UseMembar) {
 188       os::serialize_thread_states();
 189     }
 190 
 191     // Make interpreter safepoint aware
 192     Interpreter::notice_safepoints();
 193 
 194     if (DeferPollingPageLoopCount < 0) {
 195       // Make polling safepoint aware
 196       guarantee (PageArmed == 0, "invariant") ;
 197       PageArmed = 1 ;
 198       os::make_polling_page_unreadable();
 199     }
 200 
 201     // Consider using active_processor_count() ... but that call is expensive.
 202     int ncpus = os::processor_count() ;
 203 
 204 #ifdef ASSERT
 205     for (JavaThread *cur = Threads::first(); cur != NULL; cur = cur->next()) {
 206       assert(cur->safepoint_state()->is_running(), "Illegal initial state");
 207       // Clear the visited flag to ensure that the critical counts are collected properly.
 208       cur->set_visited_for_critical_count(false);
 209     }
 210 #endif // ASSERT
 211 
 212     if (SafepointTimeout)
 213       safepoint_limit_time = os::javaTimeNanos() + (jlong)SafepointTimeoutDelay * MICROUNITS;
 214 
 215     // Iterate through all threads until it have been determined how to stop them all at a safepoint
 216     unsigned int iterations = 0;
 217     int steps = 0 ;
 218     while(still_running > 0) {
 219       for (JavaThread *cur = Threads::first(); cur != NULL; cur = cur->next()) {
 220         assert(!cur->is_ConcurrentGC_thread(), "A concurrent GC thread is unexpectly being suspended");
 221         ThreadSafepointState *cur_state = cur->safepoint_state();
 222         if (cur_state->is_running()) {
 223           cur_state->examine_state_of_thread();
 224           if (!cur_state->is_running()) {
 225             still_running--;
 226             // consider adjusting steps downward:
 227             //   steps = 0
 228             //   steps -= NNN
 229             //   steps >>= 1
 230             //   steps = MIN(steps, 2000-100)
 231             //   if (iterations != 0) steps -= NNN
 232           }
 233           LogTarget(Trace, safepoint) lt;
 234           if (lt.is_enabled()) {
 235             ResourceMark rm;
 236             LogStream ls(lt);
 237             cur_state->print_on(&ls);
 238           }
 239         }
 240       }
 241 
 242       if (iterations == 0) {
 243         initial_running = still_running;
 244         if (PrintSafepointStatistics) {
 245           begin_statistics(nof_threads, still_running);
 246         }
 247       }
 248 
 249       if (still_running > 0) {
 250         // Check for if it takes to long
 251         if (SafepointTimeout && safepoint_limit_time < os::javaTimeNanos()) {
 252           print_safepoint_timeout(_spinning_timeout);
 253         }
 254 
 255         // Spin to avoid context switching.
 256         // There's a tension between allowing the mutators to run (and rendezvous)
 257         // vs spinning.  As the VM thread spins, wasting cycles, it consumes CPU that
 258         // a mutator might otherwise use profitably to reach a safepoint.  Excessive
 259         // spinning by the VM thread on a saturated system can increase rendezvous latency.
 260         // Blocking or yielding incur their own penalties in the form of context switching
 261         // and the resultant loss of $ residency.
 262         //
 263         // Further complicating matters is that yield() does not work as naively expected
 264         // on many platforms -- yield() does not guarantee that any other ready threads
 265         // will run.   As such we revert to naked_short_sleep() after some number of iterations.
 266         // nakes_short_sleep() is implemented as a short unconditional sleep.
 267         // Typical operating systems round a "short" sleep period up to 10 msecs, so sleeping
 268         // can actually increase the time it takes the VM thread to detect that a system-wide
 269         // stop-the-world safepoint has been reached.  In a pathological scenario such as that
 270         // described in CR6415670 the VMthread may sleep just before the mutator(s) become safe.
 271         // In that case the mutators will be stalled waiting for the safepoint to complete and the
 272         // the VMthread will be sleeping, waiting for the mutators to rendezvous.  The VMthread
 273         // will eventually wake up and detect that all mutators are safe, at which point
 274         // we'll again make progress.
 275         //
 276         // Beware too that that the VMThread typically runs at elevated priority.
 277         // Its default priority is higher than the default mutator priority.
 278         // Obviously, this complicates spinning.
 279         //
 280         // Note too that on Windows XP SwitchThreadTo() has quite different behavior than Sleep(0).
 281         // Sleep(0) will _not yield to lower priority threads, while SwitchThreadTo() will.
 282         //
 283         // See the comments in synchronizer.cpp for additional remarks on spinning.
 284         //
 285         // In the future we might:
 286         // 1. Modify the safepoint scheme to avoid potentially unbounded spinning.
 287         //    This is tricky as the path used by a thread exiting the JVM (say on
 288         //    on JNI call-out) simply stores into its state field.  The burden
 289         //    is placed on the VM thread, which must poll (spin).
 290         // 2. Find something useful to do while spinning.  If the safepoint is GC-related
 291         //    we might aggressively scan the stacks of threads that are already safe.
 292         // 3. Use Solaris schedctl to examine the state of the still-running mutators.
 293         //    If all the mutators are ONPROC there's no reason to sleep or yield.
 294         // 4. YieldTo() any still-running mutators that are ready but OFFPROC.
 295         // 5. Check system saturation.  If the system is not fully saturated then
 296         //    simply spin and avoid sleep/yield.
 297         // 6. As still-running mutators rendezvous they could unpark the sleeping
 298         //    VMthread.  This works well for still-running mutators that become
 299         //    safe.  The VMthread must still poll for mutators that call-out.
 300         // 7. Drive the policy on time-since-begin instead of iterations.
 301         // 8. Consider making the spin duration a function of the # of CPUs:
 302         //    Spin = (((ncpus-1) * M) + K) + F(still_running)
 303         //    Alternately, instead of counting iterations of the outer loop
 304         //    we could count the # of threads visited in the inner loop, above.
 305         // 9. On windows consider using the return value from SwitchThreadTo()
 306         //    to drive subsequent spin/SwitchThreadTo()/Sleep(N) decisions.
 307 
 308         if (int(iterations) == DeferPollingPageLoopCount) {
 309           guarantee (PageArmed == 0, "invariant") ;
 310           PageArmed = 1 ;
 311           os::make_polling_page_unreadable();
 312         }
 313 
 314         // Instead of (ncpus > 1) consider either (still_running < (ncpus + EPSILON)) or
 315         // ((still_running + _waiting_to_block - TryingToBlock)) < ncpus)
 316         ++steps ;
 317         if (ncpus > 1 && steps < SafepointSpinBeforeYield) {
 318           SpinPause() ;     // MP-Polite spin
 319         } else
 320           if (steps < DeferThrSuspendLoopCount) {
 321             os::naked_yield() ;
 322           } else {
 323             os::naked_short_sleep(1);
 324           }
 325 
 326         iterations ++ ;
 327       }
 328       assert(iterations < (uint)max_jint, "We have been iterating in the safepoint loop too long");
 329     }
 330     assert(still_running == 0, "sanity check");
 331 
 332     if (PrintSafepointStatistics) {
 333       update_statistics_on_spin_end();
 334     }
 335 
 336     if (sync_event.should_commit()) {
 337       sync_event.set_safepointId(safepoint_counter());
 338       sync_event.set_initialThreadCount(initial_running);
 339       sync_event.set_runningThreadCount(_waiting_to_block);
 340       sync_event.set_iterations(iterations);
 341       sync_event.commit();
 342     }
 343   } //EventSafepointStateSync
 344 
 345   // wait until all threads are stopped
 346   {
 347     EventSafepointWaitBlocked wait_blocked_event;
 348     int initial_waiting_to_block = _waiting_to_block;
 349 
 350     while (_waiting_to_block > 0) {
 351       log_debug(safepoint)("Waiting for %d thread(s) to block", _waiting_to_block);
 352       if (!SafepointTimeout || timeout_error_printed) {
 353         Safepoint_lock->wait(true);  // true, means with no safepoint checks
 354       } else {
 355         // Compute remaining time
 356         jlong remaining_time = safepoint_limit_time - os::javaTimeNanos();
 357 
 358         // If there is no remaining time, then there is an error
 359         if (remaining_time < 0 || Safepoint_lock->wait(true, remaining_time / MICROUNITS)) {
 360           print_safepoint_timeout(_blocking_timeout);
 361         }
 362       }
 363     }
 364     assert(_waiting_to_block == 0, "sanity check");
 365 
 366 #ifndef PRODUCT
 367     if (SafepointTimeout) {
 368       jlong current_time = os::javaTimeNanos();
 369       if (safepoint_limit_time < current_time) {
 370         tty->print_cr("# SafepointSynchronize: Finished after "
 371                       INT64_FORMAT_W(6) " ms",
 372                       (int64_t)((current_time - safepoint_limit_time) / MICROUNITS +
 373                                 (jlong)SafepointTimeoutDelay));
 374       }
 375     }
 376 #endif
 377 
 378     assert((_safepoint_counter & 0x1) == 0, "must be even");
 379     assert(Threads_lock->owned_by_self(), "must hold Threads_lock");
 380     _safepoint_counter ++;
 381 
 382     // Record state
 383     _state = _synchronized;
 384 
 385     OrderAccess::fence();
 386 
 387     if (wait_blocked_event.should_commit()) {
 388       wait_blocked_event.set_safepointId(safepoint_counter());
 389       wait_blocked_event.set_runningThreadCount(initial_waiting_to_block);
 390       wait_blocked_event.commit();
 391     }
 392   } // EventSafepointWaitBlocked
 393 
 394 #ifdef ASSERT
 395   for (JavaThread *cur = Threads::first(); cur != NULL; cur = cur->next()) {
 396     // make sure all the threads were visited
 397     assert(cur->was_visited_for_critical_count(), "missed a thread");
 398   }
 399 #endif // ASSERT
 400 
 401   // Update the count of active JNI critical regions
 402   GCLocker::set_jni_lock_count(_current_jni_active_count);
 403 
 404   if (log_is_enabled(Debug, safepoint)) {
 405     log_debug(safepoint)("Entering safepoint region: %s", VMThread::vm_safepoint_description());
 406   }
 407 
 408   RuntimeService::record_safepoint_synchronized();
 409   if (PrintSafepointStatistics) {
 410     update_statistics_on_sync_end(os::javaTimeNanos());
 411   }
 412 
 413   // Call stuff that needs to be run when a safepoint is just about to be completed
 414   {
 415     EventSafepointCleanup cleanup_event;
 416     do_cleanup_tasks();
 417     if (cleanup_event.should_commit()) {
 418       cleanup_event.set_safepointId(safepoint_counter());
 419       cleanup_event.commit();
 420     }
 421   }
 422 
 423   if (PrintSafepointStatistics) {
 424     // Record how much time spend on the above cleanup tasks
 425     update_statistics_on_cleanup_end(os::javaTimeNanos());
 426   }
 427   if (begin_event.should_commit()) {
 428     begin_event.set_safepointId(safepoint_counter());
 429     begin_event.set_totalThreadCount(nof_threads);
 430     begin_event.set_jniCriticalThreadCount(_current_jni_active_count);
 431     begin_event.commit();
 432   }
 433 }
 434 
 435 // Wake up all threads, so they are ready to resume execution after the safepoint
 436 // operation has been carried out
 437 void SafepointSynchronize::end() {
 438   EventSafepointEnd event;
 439   int safepoint_id = safepoint_counter(); // Keep the odd counter as "id"
 440 
 441   assert(Threads_lock->owned_by_self(), "must hold Threads_lock");
 442   assert((_safepoint_counter & 0x1) == 1, "must be odd");
 443   _safepoint_counter ++;
 444   // memory fence isn't required here since an odd _safepoint_counter
 445   // value can do no harm and a fence is issued below anyway.
 446 
 447   DEBUG_ONLY(Thread* myThread = Thread::current();)
 448   assert(myThread->is_VM_thread(), "Only VM thread can execute a safepoint");
 449 
 450   if (PrintSafepointStatistics) {
 451     end_statistics(os::javaTimeNanos());
 452   }
 453 
 454 #ifdef ASSERT
 455   // A pending_exception cannot be installed during a safepoint.  The threads
 456   // may install an async exception after they come back from a safepoint into
 457   // pending_exception after they unblock.  But that should happen later.
 458   for(JavaThread *cur = Threads::first(); cur; cur = cur->next()) {
 459     assert (!(cur->has_pending_exception() &&
 460               cur->safepoint_state()->is_at_poll_safepoint()),
 461             "safepoint installed a pending exception");
 462   }
 463 #endif // ASSERT
 464 
 465   if (PageArmed) {
 466     // Make polling safepoint aware
 467     os::make_polling_page_readable();
 468     PageArmed = 0 ;
 469   }
 470 
 471   // Remove safepoint check from interpreter
 472   Interpreter::ignore_safepoints();
 473 
 474   {
 475     MutexLocker mu(Safepoint_lock);
 476 
 477     assert(_state == _synchronized, "must be synchronized before ending safepoint synchronization");
 478 
 479     // Set to not synchronized, so the threads will not go into the signal_thread_blocked method
 480     // when they get restarted.
 481     _state = _not_synchronized;
 482     OrderAccess::fence();
 483 
 484     log_debug(safepoint)("Leaving safepoint region");
 485 
 486     // Start suspended threads
 487     for(JavaThread *current = Threads::first(); current; current = current->next()) {
 488       // A problem occurring on Solaris is when attempting to restart threads
 489       // the first #cpus - 1 go well, but then the VMThread is preempted when we get
 490       // to the next one (since it has been running the longest).  We then have
 491       // to wait for a cpu to become available before we can continue restarting
 492       // threads.
 493       // FIXME: This causes the performance of the VM to degrade when active and with
 494       // large numbers of threads.  Apparently this is due to the synchronous nature
 495       // of suspending threads.
 496       //
 497       // TODO-FIXME: the comments above are vestigial and no longer apply.
 498       // Furthermore, using solaris' schedctl in this particular context confers no benefit
 499       if (VMThreadHintNoPreempt) {
 500         os::hint_no_preempt();
 501       }
 502       ThreadSafepointState* cur_state = current->safepoint_state();
 503       assert(cur_state->type() != ThreadSafepointState::_running, "Thread not suspended at safepoint");
 504       cur_state->restart();
 505       assert(cur_state->is_running(), "safepoint state has not been reset");
 506     }
 507 
 508     RuntimeService::record_safepoint_end();
 509 
 510     // Release threads lock, so threads can be created/destroyed again. It will also starts all threads
 511     // blocked in signal_thread_blocked
 512     Threads_lock->unlock();
 513 
 514   }
 515 #if INCLUDE_ALL_GCS
 516   // If there are any concurrent GC threads resume them.
 517   if (UseConcMarkSweepGC) {
 518     ConcurrentMarkSweepThread::desynchronize(false);
 519   } else if (UseG1GC || (UseShenandoahGC && ShenandoahSuspendibleWorkers)) {
 520     SuspendibleThreadSet::desynchronize();
 521   }
 522 #endif // INCLUDE_ALL_GCS
 523   // record this time so VMThread can keep track how much time has elapsed
 524   // since last safepoint.
 525   _end_of_last_safepoint = os::javaTimeMillis();
 526 
 527   if (event.should_commit()) {
 528     event.set_safepointId(safepoint_id);
 529     event.commit();
 530   }
 531 }
 532 
 533 bool SafepointSynchronize::is_cleanup_needed() {
 534   // Need a safepoint if there are many monitors to deflate.
 535   if (ObjectSynchronizer::is_cleanup_needed()) return true;
 536   // Need a safepoint if some inline cache buffers is non-empty
 537   if (!InlineCacheBuffer::is_empty()) return true;
 538   return false;
 539 }
 540 
 541 static void event_safepoint_cleanup_task_commit(EventSafepointCleanupTask& event, const char* name) {
 542   if (event.should_commit()) {
 543     event.set_safepointId(SafepointSynchronize::safepoint_counter());
 544     event.set_name(name);
 545     event.commit();
 546   }
 547 }
 548 
 549 class ParallelSPCleanupThreadClosure : public ThreadClosure {
 550 private:
 551   bool _do_deflate_idle_monitors;
 552   CodeBlobClosure* _nmethod_cl;
 553   DeflateMonitorCounters* _counters;
 554 
 555 public:
 556   ParallelSPCleanupThreadClosure(DeflateMonitorCounters* counters) :
 557     _counters(counters) {
 558     VM_Operation* op = VMThread::vm_operation();
 559     _do_deflate_idle_monitors = op == NULL || ! op->deflates_idle_monitors();
 560     if (op == NULL || ! op->marks_nmethods()) {
 561       _nmethod_cl = NMethodSweeper::prepare_mark_active_nmethods();
 562     } else {
 563       _nmethod_cl = NULL;
 564     }
 565   }
 566 
 567   void do_thread(Thread* thread) {
 568     if (_do_deflate_idle_monitors) {
 569       ObjectSynchronizer::deflate_thread_local_monitors(thread, _counters, NULL);
 570     }
 571     if (_nmethod_cl != NULL && thread->is_Java_thread() &&
 572         ! thread->is_Code_cache_sweeper_thread()) {
 573       JavaThread* jt = (JavaThread*) thread;
 574       jt->nmethods_do(_nmethod_cl);
 575     }
 576   }
 577 };
 578 
 579 class ParallelSPCleanupTask : public AbstractGangTask {
 580 private:
 581   SubTasksDone _subtasks;
 582   ParallelSPCleanupThreadClosure _cleanup_threads_cl;
 583   uint _num_workers;
 584   DeflateMonitorCounters* _counters;
 585 public:
 586   ParallelSPCleanupTask(uint num_workers, DeflateMonitorCounters* counters) :
 587     AbstractGangTask("Parallel Safepoint Cleanup"),
 588     _cleanup_threads_cl(ParallelSPCleanupThreadClosure(counters)),
 589     _num_workers(num_workers),
 590     _subtasks(SubTasksDone(SafepointSynchronize::SAFEPOINT_CLEANUP_NUM_TASKS)),
 591     _counters(counters) {}
 592 
 593   void work(uint worker_id) {
 594     // All threads deflate monitors and mark nmethods (if necessary).
 595     Threads::parallel_java_threads_do(&_cleanup_threads_cl);
 596 
 597     if (!_subtasks.is_task_claimed(SafepointSynchronize::SAFEPOINT_CLEANUP_DEFLATE_MONITORS)) {
 598       const char* name = "deflating idle monitors";
 599       EventSafepointCleanupTask event;
 600       TraceTime timer(name, TRACETIME_LOG(Info, safepoint, cleanup));
 601       ObjectSynchronizer::deflate_idle_monitors(_counters);
 602       event_safepoint_cleanup_task_commit(event, name);
 603     }
 604 
 605     if (!_subtasks.is_task_claimed(SafepointSynchronize::SAFEPOINT_CLEANUP_UPDATE_INLINE_CACHES)) {
 606       const char* name = "updating inline caches";
 607       EventSafepointCleanupTask event;
 608       TraceTime timer(name, TRACETIME_LOG(Info, safepoint, cleanup));
 609       InlineCacheBuffer::update_inline_caches();
 610       event_safepoint_cleanup_task_commit(event, name);
 611     }
 612 
 613     if (!_subtasks.is_task_claimed(SafepointSynchronize::SAFEPOINT_CLEANUP_COMPILATION_POLICY)) {
 614       const char* name = "compilation policy safepoint handler";
 615       EventSafepointCleanupTask event;
 616       TraceTime timer(name, TRACETIME_LOG(Info, safepoint, cleanup));
 617       CompilationPolicy::policy()->do_safepoint_work();
 618       event_safepoint_cleanup_task_commit(event, name);
 619     }
 620 
 621     if (!_subtasks.is_task_claimed(SafepointSynchronize::SAFEPOINT_CLEANUP_SYMBOL_TABLE_REHASH)) {
 622       if (SymbolTable::needs_rehashing()) {
 623         const char* name = "rehashing symbol table";
 624         EventSafepointCleanupTask event;
 625         TraceTime timer(name, TRACETIME_LOG(Info, safepoint, cleanup));
 626         SymbolTable::rehash_table();
 627         event_safepoint_cleanup_task_commit(event, name);
 628       }
 629     }
 630 
 631     if (!_subtasks.is_task_claimed(SafepointSynchronize::SAFEPOINT_CLEANUP_STRING_TABLE_REHASH)) {
 632       if (StringTable::needs_rehashing()) {
 633         const char* name = "rehashing string table";
 634         EventSafepointCleanupTask event;
 635         TraceTime timer(name, TRACETIME_LOG(Info, safepoint, cleanup));
 636         StringTable::rehash_table();
 637         event_safepoint_cleanup_task_commit(event, name);
 638       }
 639     }
 640 
 641     if (!_subtasks.is_task_claimed(SafepointSynchronize::SAFEPOINT_CLEANUP_CLD_PURGE)) {
 642       // CMS delays purging the CLDG until the beginning of the next safepoint and to
 643       // make sure concurrent sweep is done
 644       const char* name = "purging class loader data graph";
 645       EventSafepointCleanupTask event;
 646       TraceTime timer(name, TRACETIME_LOG(Info, safepoint, cleanup));
 647       ClassLoaderDataGraph::purge_if_needed();
 648       event_safepoint_cleanup_task_commit(event, name);
 649     }
 650     _subtasks.all_tasks_completed(_num_workers);
 651   }
 652 };
 653 
 654 // Various cleaning tasks that should be done periodically at safepoints.
 655 void SafepointSynchronize::do_cleanup_tasks() {
 656 
 657   TraceTime timer("safepoint cleanup tasks", TRACETIME_LOG(Info, safepoint, cleanup));
 658 
 659   // Prepare for monitor deflation.
 660   DeflateMonitorCounters deflate_counters;
 661   ObjectSynchronizer::prepare_deflate_idle_monitors(&deflate_counters);
 662 
 663   CollectedHeap* heap = Universe::heap();
 664   assert(heap != NULL, "heap not initialized yet?");
 665   WorkGang* cleanup_workers = heap->get_safepoint_workers();
 666   if (cleanup_workers != NULL) {
 667     // Parallel cleanup using GC provided thread pool.
 668     uint num_cleanup_workers = cleanup_workers->active_workers();
 669     ParallelSPCleanupTask cleanup(num_cleanup_workers, &deflate_counters);
 670     StrongRootsScope srs(num_cleanup_workers);
 671     cleanup_workers->run_task(&cleanup);
 672   } else {
 673     // Serial cleanup using VMThread.
 674     ParallelSPCleanupTask cleanup(1, &deflate_counters);
 675     StrongRootsScope srs(1);
 676     cleanup.work(0);
 677   }
 678 
 679   // Finish monitor deflation.
 680   ObjectSynchronizer::finish_deflate_idle_monitors(&deflate_counters);
 681 }
 682 
 683 
 684 bool SafepointSynchronize::safepoint_safe(JavaThread *thread, JavaThreadState state) {
 685   switch(state) {
 686   case _thread_in_native:
 687     // native threads are safe if they have no java stack or have walkable stack
 688     return !thread->has_last_Java_frame() || thread->frame_anchor()->walkable();
 689 
 690    // blocked threads should have already have walkable stack
 691   case _thread_blocked:
 692     assert(!thread->has_last_Java_frame() || thread->frame_anchor()->walkable(), "blocked and not walkable");
 693     return true;
 694 
 695   default:
 696     return false;
 697   }
 698 }
 699 
 700 
 701 // See if the thread is running inside a lazy critical native and
 702 // update the thread critical count if so.  Also set a suspend flag to
 703 // cause the native wrapper to return into the JVM to do the unlock
 704 // once the native finishes.
 705 void SafepointSynchronize::check_for_lazy_critical_native(JavaThread *thread, JavaThreadState state) {
 706   if (state == _thread_in_native &&
 707       thread->has_last_Java_frame() &&
 708       thread->frame_anchor()->walkable()) {
 709     // This thread might be in a critical native nmethod so look at
 710     // the top of the stack and increment the critical count if it
 711     // is.
 712     frame wrapper_frame = thread->last_frame();
 713     CodeBlob* stub_cb = wrapper_frame.cb();
 714     if (stub_cb != NULL &&
 715         stub_cb->is_nmethod() &&
 716         stub_cb->as_nmethod_or_null()->is_lazy_critical_native()) {
 717       // A thread could potentially be in a critical native across
 718       // more than one safepoint, so only update the critical state on
 719       // the first one.  When it returns it will perform the unlock.
 720       if (!thread->do_critical_native_unlock()) {
 721 #ifdef ASSERT
 722         if (!thread->in_critical()) {
 723           GCLocker::increment_debug_jni_lock_count();
 724         }
 725 #endif
 726         thread->enter_critical();
 727         // Make sure the native wrapper calls back on return to
 728         // perform the needed critical unlock.
 729         thread->set_critical_native_unlock();
 730       }
 731     }
 732   }
 733 }
 734 
 735 
 736 
 737 // -------------------------------------------------------------------------------------------------------
 738 // Implementation of Safepoint callback point
 739 
 740 void SafepointSynchronize::block(JavaThread *thread) {
 741   assert(thread != NULL, "thread must be set");
 742   assert(thread->is_Java_thread(), "not a Java thread");
 743 
 744   // Threads shouldn't block if they are in the middle of printing, but...
 745   ttyLocker::break_tty_lock_for_safepoint(os::current_thread_id());
 746 
 747   // Only bail from the block() call if the thread is gone from the
 748   // thread list; starting to exit should still block.
 749   if (thread->is_terminated()) {
 750      // block current thread if we come here from native code when VM is gone
 751      thread->block_if_vm_exited();
 752 
 753      // otherwise do nothing
 754      return;
 755   }
 756 
 757   JavaThreadState state = thread->thread_state();
 758   thread->frame_anchor()->make_walkable(thread);
 759 
 760   // Check that we have a valid thread_state at this point
 761   switch(state) {
 762     case _thread_in_vm_trans:
 763     case _thread_in_Java:        // From compiled code
 764 
 765       // We are highly likely to block on the Safepoint_lock. In order to avoid blocking in this case,
 766       // we pretend we are still in the VM.
 767       thread->set_thread_state(_thread_in_vm);
 768 
 769       if (is_synchronizing()) {
 770          Atomic::inc (&TryingToBlock) ;
 771       }
 772 
 773       // We will always be holding the Safepoint_lock when we are examine the state
 774       // of a thread. Hence, the instructions between the Safepoint_lock->lock() and
 775       // Safepoint_lock->unlock() are happening atomic with regards to the safepoint code
 776       Safepoint_lock->lock_without_safepoint_check();
 777       if (is_synchronizing()) {
 778         // Decrement the number of threads to wait for and signal vm thread
 779         assert(_waiting_to_block > 0, "sanity check");
 780         _waiting_to_block--;
 781         thread->safepoint_state()->set_has_called_back(true);
 782 
 783         DEBUG_ONLY(thread->set_visited_for_critical_count(true));
 784         if (thread->in_critical()) {
 785           // Notice that this thread is in a critical section
 786           increment_jni_active_count();
 787         }
 788 
 789         // Consider (_waiting_to_block < 2) to pipeline the wakeup of the VM thread
 790         if (_waiting_to_block == 0) {
 791           Safepoint_lock->notify_all();
 792         }
 793       }
 794 
 795       // We transition the thread to state _thread_blocked here, but
 796       // we can't do our usual check for external suspension and then
 797       // self-suspend after the lock_without_safepoint_check() call
 798       // below because we are often called during transitions while
 799       // we hold different locks. That would leave us suspended while
 800       // holding a resource which results in deadlocks.
 801       thread->set_thread_state(_thread_blocked);
 802       Safepoint_lock->unlock();
 803 
 804       // We now try to acquire the threads lock. Since this lock is hold by the VM thread during
 805       // the entire safepoint, the threads will all line up here during the safepoint.
 806       Threads_lock->lock_without_safepoint_check();
 807       // restore original state. This is important if the thread comes from compiled code, so it
 808       // will continue to execute with the _thread_in_Java state.
 809       thread->set_thread_state(state);
 810       Threads_lock->unlock();
 811       break;
 812 
 813     case _thread_in_native_trans:
 814     case _thread_blocked_trans:
 815     case _thread_new_trans:
 816       if (thread->safepoint_state()->type() == ThreadSafepointState::_call_back) {
 817         thread->print_thread_state();
 818         fatal("Deadlock in safepoint code.  "
 819               "Should have called back to the VM before blocking.");
 820       }
 821 
 822       // We transition the thread to state _thread_blocked here, but
 823       // we can't do our usual check for external suspension and then
 824       // self-suspend after the lock_without_safepoint_check() call
 825       // below because we are often called during transitions while
 826       // we hold different locks. That would leave us suspended while
 827       // holding a resource which results in deadlocks.
 828       thread->set_thread_state(_thread_blocked);
 829 
 830       // It is not safe to suspend a thread if we discover it is in _thread_in_native_trans. Hence,
 831       // the safepoint code might still be waiting for it to block. We need to change the state here,
 832       // so it can see that it is at a safepoint.
 833 
 834       // Block until the safepoint operation is completed.
 835       Threads_lock->lock_without_safepoint_check();
 836 
 837       // Restore state
 838       thread->set_thread_state(state);
 839 
 840       Threads_lock->unlock();
 841       break;
 842 
 843     default:
 844      fatal("Illegal threadstate encountered: %d", state);
 845   }
 846 
 847   // Check for pending. async. exceptions or suspends - except if the
 848   // thread was blocked inside the VM. has_special_runtime_exit_condition()
 849   // is called last since it grabs a lock and we only want to do that when
 850   // we must.
 851   //
 852   // Note: we never deliver an async exception at a polling point as the
 853   // compiler may not have an exception handler for it. The polling
 854   // code will notice the async and deoptimize and the exception will
 855   // be delivered. (Polling at a return point is ok though). Sure is
 856   // a lot of bother for a deprecated feature...
 857   //
 858   // We don't deliver an async exception if the thread state is
 859   // _thread_in_native_trans so JNI functions won't be called with
 860   // a surprising pending exception. If the thread state is going back to java,
 861   // async exception is checked in check_special_condition_for_native_trans().
 862 
 863   if (state != _thread_blocked_trans &&
 864       state != _thread_in_vm_trans &&
 865       thread->has_special_runtime_exit_condition()) {
 866     thread->handle_special_runtime_exit_condition(
 867       !thread->is_at_poll_safepoint() && (state != _thread_in_native_trans));
 868   }
 869 }
 870 
 871 // ------------------------------------------------------------------------------------------------------
 872 // Exception handlers
 873 
 874 
 875 void SafepointSynchronize::handle_polling_page_exception(JavaThread *thread) {
 876   assert(thread->is_Java_thread(), "polling reference encountered by VM thread");
 877   assert(thread->thread_state() == _thread_in_Java, "should come from Java code");
 878   assert(SafepointSynchronize::is_synchronizing(), "polling encountered outside safepoint synchronization");
 879 
 880   if (ShowSafepointMsgs) {
 881     tty->print("handle_polling_page_exception: ");
 882   }
 883 
 884   if (PrintSafepointStatistics) {
 885     inc_page_trap_count();
 886   }
 887 
 888   ThreadSafepointState* state = thread->safepoint_state();
 889 
 890   state->handle_polling_page_exception();
 891 }
 892 
 893 
 894 void SafepointSynchronize::print_safepoint_timeout(SafepointTimeoutReason reason) {
 895   if (!timeout_error_printed) {
 896     timeout_error_printed = true;
 897     // Print out the thread info which didn't reach the safepoint for debugging
 898     // purposes (useful when there are lots of threads in the debugger).
 899     tty->cr();
 900     tty->print_cr("# SafepointSynchronize::begin: Timeout detected:");
 901     if (reason ==  _spinning_timeout) {
 902       tty->print_cr("# SafepointSynchronize::begin: Timed out while spinning to reach a safepoint.");
 903     } else if (reason == _blocking_timeout) {
 904       tty->print_cr("# SafepointSynchronize::begin: Timed out while waiting for threads to stop.");
 905     }
 906 
 907     tty->print_cr("# SafepointSynchronize::begin: Threads which did not reach the safepoint:");
 908     ThreadSafepointState *cur_state;
 909     ResourceMark rm;
 910     for(JavaThread *cur_thread = Threads::first(); cur_thread;
 911         cur_thread = cur_thread->next()) {
 912       cur_state = cur_thread->safepoint_state();
 913 
 914       if (cur_thread->thread_state() != _thread_blocked &&
 915           ((reason == _spinning_timeout && cur_state->is_running()) ||
 916            (reason == _blocking_timeout && !cur_state->has_called_back()))) {
 917         tty->print("# ");
 918         cur_thread->print();
 919         tty->cr();
 920       }
 921     }
 922     tty->print_cr("# SafepointSynchronize::begin: (End of list)");
 923   }
 924 
 925   // To debug the long safepoint, specify both DieOnSafepointTimeout &
 926   // ShowMessageBoxOnError.
 927   if (DieOnSafepointTimeout) {
 928     fatal("Safepoint sync time longer than " INTX_FORMAT "ms detected when executing %s.",
 929           SafepointTimeoutDelay, VMThread::vm_safepoint_description());
 930   }
 931 }
 932 
 933 
 934 // -------------------------------------------------------------------------------------------------------
 935 // Implementation of ThreadSafepointState
 936 
 937 ThreadSafepointState::ThreadSafepointState(JavaThread *thread) {
 938   _thread = thread;
 939   _type   = _running;
 940   _has_called_back = false;
 941   _at_poll_safepoint = false;
 942 }
 943 
 944 void ThreadSafepointState::create(JavaThread *thread) {
 945   ThreadSafepointState *state = new ThreadSafepointState(thread);
 946   thread->set_safepoint_state(state);
 947 }
 948 
 949 void ThreadSafepointState::destroy(JavaThread *thread) {
 950   if (thread->safepoint_state()) {
 951     delete(thread->safepoint_state());
 952     thread->set_safepoint_state(NULL);
 953   }
 954 }
 955 
 956 void ThreadSafepointState::examine_state_of_thread() {
 957   assert(is_running(), "better be running or just have hit safepoint poll");
 958 
 959   JavaThreadState state = _thread->thread_state();
 960 
 961   // Save the state at the start of safepoint processing.
 962   _orig_thread_state = state;
 963 
 964   // Check for a thread that is suspended. Note that thread resume tries
 965   // to grab the Threads_lock which we own here, so a thread cannot be
 966   // resumed during safepoint synchronization.
 967 
 968   // We check to see if this thread is suspended without locking to
 969   // avoid deadlocking with a third thread that is waiting for this
 970   // thread to be suspended. The third thread can notice the safepoint
 971   // that we're trying to start at the beginning of its SR_lock->wait()
 972   // call. If that happens, then the third thread will block on the
 973   // safepoint while still holding the underlying SR_lock. We won't be
 974   // able to get the SR_lock and we'll deadlock.
 975   //
 976   // We don't need to grab the SR_lock here for two reasons:
 977   // 1) The suspend flags are both volatile and are set with an
 978   //    Atomic::cmpxchg() call so we should see the suspended
 979   //    state right away.
 980   // 2) We're being called from the safepoint polling loop; if
 981   //    we don't see the suspended state on this iteration, then
 982   //    we'll come around again.
 983   //
 984   bool is_suspended = _thread->is_ext_suspended();
 985   if (is_suspended) {
 986     roll_forward(_at_safepoint);
 987     return;
 988   }
 989 
 990   // Some JavaThread states have an initial safepoint state of
 991   // running, but are actually at a safepoint. We will happily
 992   // agree and update the safepoint state here.
 993   if (SafepointSynchronize::safepoint_safe(_thread, state)) {
 994     SafepointSynchronize::check_for_lazy_critical_native(_thread, state);
 995     roll_forward(_at_safepoint);
 996     return;
 997   }
 998 
 999   if (state == _thread_in_vm) {
1000     roll_forward(_call_back);
1001     return;
1002   }
1003 
1004   // All other thread states will continue to run until they
1005   // transition and self-block in state _blocked
1006   // Safepoint polling in compiled code causes the Java threads to do the same.
1007   // Note: new threads may require a malloc so they must be allowed to finish
1008 
1009   assert(is_running(), "examine_state_of_thread on non-running thread");
1010   return;
1011 }
1012 
1013 // Returns true is thread could not be rolled forward at present position.
1014 void ThreadSafepointState::roll_forward(suspend_type type) {
1015   _type = type;
1016 
1017   switch(_type) {
1018     case _at_safepoint:
1019       SafepointSynchronize::signal_thread_at_safepoint();
1020       DEBUG_ONLY(_thread->set_visited_for_critical_count(true));
1021       if (_thread->in_critical()) {
1022         // Notice that this thread is in a critical section
1023         SafepointSynchronize::increment_jni_active_count();
1024       }
1025       break;
1026 
1027     case _call_back:
1028       set_has_called_back(false);
1029       break;
1030 
1031     case _running:
1032     default:
1033       ShouldNotReachHere();
1034   }
1035 }
1036 
1037 void ThreadSafepointState::restart() {
1038   switch(type()) {
1039     case _at_safepoint:
1040     case _call_back:
1041       break;
1042 
1043     case _running:
1044     default:
1045        tty->print_cr("restart thread " INTPTR_FORMAT " with state %d",
1046                      p2i(_thread), _type);
1047        _thread->print();
1048       ShouldNotReachHere();
1049   }
1050   _type = _running;
1051   set_has_called_back(false);
1052 }
1053 
1054 
1055 void ThreadSafepointState::print_on(outputStream *st) const {
1056   const char *s = NULL;
1057 
1058   switch(_type) {
1059     case _running                : s = "_running";              break;
1060     case _at_safepoint           : s = "_at_safepoint";         break;
1061     case _call_back              : s = "_call_back";            break;
1062     default:
1063       ShouldNotReachHere();
1064   }
1065 
1066   st->print_cr("Thread: " INTPTR_FORMAT
1067               "  [0x%2x] State: %s _has_called_back %d _at_poll_safepoint %d",
1068                p2i(_thread), _thread->osthread()->thread_id(), s, _has_called_back,
1069                _at_poll_safepoint);
1070 
1071   _thread->print_thread_state_on(st);
1072 }
1073 
1074 // ---------------------------------------------------------------------------------------------------------------------
1075 
1076 // Block the thread at the safepoint poll or poll return.
1077 void ThreadSafepointState::handle_polling_page_exception() {
1078 
1079   // Check state.  block() will set thread state to thread_in_vm which will
1080   // cause the safepoint state _type to become _call_back.
1081   assert(type() == ThreadSafepointState::_running,
1082          "polling page exception on thread not running state");
1083 
1084   // Step 1: Find the nmethod from the return address
1085   if (ShowSafepointMsgs && Verbose) {
1086     tty->print_cr("Polling page exception at " INTPTR_FORMAT, p2i(thread()->saved_exception_pc()));
1087   }
1088   address real_return_addr = thread()->saved_exception_pc();
1089 
1090   CodeBlob *cb = CodeCache::find_blob(real_return_addr);
1091   assert(cb != NULL && cb->is_compiled(), "return address should be in nmethod");
1092   CompiledMethod* nm = (CompiledMethod*)cb;
1093 
1094   // Find frame of caller
1095   frame stub_fr = thread()->last_frame();
1096   CodeBlob* stub_cb = stub_fr.cb();
1097   assert(stub_cb->is_safepoint_stub(), "must be a safepoint stub");
1098   RegisterMap map(thread(), true);
1099   frame caller_fr = stub_fr.sender(&map);
1100 
1101   // Should only be poll_return or poll
1102   assert( nm->is_at_poll_or_poll_return(real_return_addr), "should not be at call" );
1103 
1104   // This is a poll immediately before a return. The exception handling code
1105   // has already had the effect of causing the return to occur, so the execution
1106   // will continue immediately after the call. In addition, the oopmap at the
1107   // return point does not mark the return value as an oop (if it is), so
1108   // it needs a handle here to be updated.
1109   if( nm->is_at_poll_return(real_return_addr) ) {
1110     // See if return type is an oop.
1111     bool return_oop = nm->method()->is_returning_oop();
1112     Handle return_value;
1113     if (return_oop) {
1114       // The oop result has been saved on the stack together with all
1115       // the other registers. In order to preserve it over GCs we need
1116       // to keep it in a handle.
1117       oop result = caller_fr.saved_oop_result(&map);
1118       assert(result == NULL || result->is_oop(), "must be oop");
1119       return_value = Handle(thread(), result);
1120       assert(Universe::heap()->is_in_or_null(result), "must be heap pointer");
1121     }
1122 
1123     // Block the thread
1124     SafepointSynchronize::block(thread());
1125 
1126     // restore oop result, if any
1127     if (return_oop) {
1128       caller_fr.set_saved_oop_result(&map, return_value());
1129     }
1130   }
1131 
1132   // This is a safepoint poll. Verify the return address and block.
1133   else {
1134     set_at_poll_safepoint(true);
1135 
1136     // verify the blob built the "return address" correctly
1137     assert(real_return_addr == caller_fr.pc(), "must match");
1138 
1139     // Block the thread
1140     SafepointSynchronize::block(thread());
1141     set_at_poll_safepoint(false);
1142 
1143     // If we have a pending async exception deoptimize the frame
1144     // as otherwise we may never deliver it.
1145     if (thread()->has_async_condition()) {
1146       ThreadInVMfromJavaNoAsyncException __tiv(thread());
1147       Deoptimization::deoptimize_frame(thread(), caller_fr.id());
1148     }
1149 
1150     // If an exception has been installed we must check for a pending deoptimization
1151     // Deoptimize frame if exception has been thrown.
1152 
1153     if (thread()->has_pending_exception() ) {
1154       RegisterMap map(thread(), true);
1155       frame caller_fr = stub_fr.sender(&map);
1156       if (caller_fr.is_deoptimized_frame()) {
1157         // The exception patch will destroy registers that are still
1158         // live and will be needed during deoptimization. Defer the
1159         // Async exception should have deferred the exception until the
1160         // next safepoint which will be detected when we get into
1161         // the interpreter so if we have an exception now things
1162         // are messed up.
1163 
1164         fatal("Exception installed and deoptimization is pending");
1165       }
1166     }
1167   }
1168 }
1169 
1170 
1171 //
1172 //                     Statistics & Instrumentations
1173 //
1174 SafepointSynchronize::SafepointStats*  SafepointSynchronize::_safepoint_stats = NULL;
1175 jlong  SafepointSynchronize::_safepoint_begin_time = 0;
1176 int    SafepointSynchronize::_cur_stat_index = 0;
1177 julong SafepointSynchronize::_safepoint_reasons[VM_Operation::VMOp_Terminating];
1178 julong SafepointSynchronize::_coalesced_vmop_count = 0;
1179 jlong  SafepointSynchronize::_max_sync_time = 0;
1180 jlong  SafepointSynchronize::_max_vmop_time = 0;
1181 float  SafepointSynchronize::_ts_of_current_safepoint = 0.0f;
1182 
1183 static jlong  cleanup_end_time = 0;
1184 static bool   need_to_track_page_armed_status = false;
1185 static bool   init_done = false;
1186 
1187 // Helper method to print the header.
1188 static void print_header() {
1189   // The number of spaces is significant here, and should match the format
1190   // specifiers in print_statistics().
1191 
1192   tty->print("          vmop                            "
1193              "[ threads:    total initially_running wait_to_block ]"
1194              "[ time:    spin   block    sync cleanup    vmop ] ");
1195 
1196   // no page armed status printed out if it is always armed.
1197   if (need_to_track_page_armed_status) {
1198     tty->print("page_armed ");
1199   }
1200 
1201   tty->print_cr("page_trap_count");
1202 }
1203 
1204 void SafepointSynchronize::deferred_initialize_stat() {
1205   if (init_done) return;
1206 
1207   // If PrintSafepointStatisticsTimeout is specified, the statistics data will
1208   // be printed right away, in which case, _safepoint_stats will regress to
1209   // a single element array. Otherwise, it is a circular ring buffer with default
1210   // size of PrintSafepointStatisticsCount.
1211   int stats_array_size;
1212   if (PrintSafepointStatisticsTimeout > 0) {
1213     stats_array_size = 1;
1214     PrintSafepointStatistics = true;
1215   } else {
1216     stats_array_size = PrintSafepointStatisticsCount;
1217   }
1218   _safepoint_stats = (SafepointStats*)os::malloc(stats_array_size
1219                                                  * sizeof(SafepointStats), mtInternal);
1220   guarantee(_safepoint_stats != NULL,
1221             "not enough memory for safepoint instrumentation data");
1222 
1223   if (DeferPollingPageLoopCount >= 0) {
1224     need_to_track_page_armed_status = true;
1225   }
1226   init_done = true;
1227 }
1228 
1229 void SafepointSynchronize::begin_statistics(int nof_threads, int nof_running) {
1230   assert(init_done, "safepoint statistics array hasn't been initialized");
1231   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1232 
1233   spstat->_time_stamp = _ts_of_current_safepoint;
1234 
1235   VM_Operation *op = VMThread::vm_operation();
1236   spstat->_vmop_type = (op != NULL ? op->type() : -1);
1237   if (op != NULL) {
1238     _safepoint_reasons[spstat->_vmop_type]++;
1239   }
1240 
1241   spstat->_nof_total_threads = nof_threads;
1242   spstat->_nof_initial_running_threads = nof_running;
1243   spstat->_nof_threads_hit_page_trap = 0;
1244 
1245   // Records the start time of spinning. The real time spent on spinning
1246   // will be adjusted when spin is done. Same trick is applied for time
1247   // spent on waiting for threads to block.
1248   if (nof_running != 0) {
1249     spstat->_time_to_spin = os::javaTimeNanos();
1250   }  else {
1251     spstat->_time_to_spin = 0;
1252   }
1253 }
1254 
1255 void SafepointSynchronize::update_statistics_on_spin_end() {
1256   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1257 
1258   jlong cur_time = os::javaTimeNanos();
1259 
1260   spstat->_nof_threads_wait_to_block = _waiting_to_block;
1261   if (spstat->_nof_initial_running_threads != 0) {
1262     spstat->_time_to_spin = cur_time - spstat->_time_to_spin;
1263   }
1264 
1265   if (need_to_track_page_armed_status) {
1266     spstat->_page_armed = (PageArmed == 1);
1267   }
1268 
1269   // Records the start time of waiting for to block. Updated when block is done.
1270   if (_waiting_to_block != 0) {
1271     spstat->_time_to_wait_to_block = cur_time;
1272   } else {
1273     spstat->_time_to_wait_to_block = 0;
1274   }
1275 }
1276 
1277 void SafepointSynchronize::update_statistics_on_sync_end(jlong end_time) {
1278   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1279 
1280   if (spstat->_nof_threads_wait_to_block != 0) {
1281     spstat->_time_to_wait_to_block = end_time -
1282       spstat->_time_to_wait_to_block;
1283   }
1284 
1285   // Records the end time of sync which will be used to calculate the total
1286   // vm operation time. Again, the real time spending in syncing will be deducted
1287   // from the start of the sync time later when end_statistics is called.
1288   spstat->_time_to_sync = end_time - _safepoint_begin_time;
1289   if (spstat->_time_to_sync > _max_sync_time) {
1290     _max_sync_time = spstat->_time_to_sync;
1291   }
1292 
1293   spstat->_time_to_do_cleanups = end_time;
1294 }
1295 
1296 void SafepointSynchronize::update_statistics_on_cleanup_end(jlong end_time) {
1297   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1298 
1299   // Record how long spent in cleanup tasks.
1300   spstat->_time_to_do_cleanups = end_time - spstat->_time_to_do_cleanups;
1301 
1302   cleanup_end_time = end_time;
1303 }
1304 
1305 void SafepointSynchronize::end_statistics(jlong vmop_end_time) {
1306   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1307 
1308   // Update the vm operation time.
1309   spstat->_time_to_exec_vmop = vmop_end_time -  cleanup_end_time;
1310   if (spstat->_time_to_exec_vmop > _max_vmop_time) {
1311     _max_vmop_time = spstat->_time_to_exec_vmop;
1312   }
1313   // Only the sync time longer than the specified
1314   // PrintSafepointStatisticsTimeout will be printed out right away.
1315   // By default, it is -1 meaning all samples will be put into the list.
1316   if ( PrintSafepointStatisticsTimeout > 0) {
1317     if (spstat->_time_to_sync > (jlong)PrintSafepointStatisticsTimeout * MICROUNITS) {
1318       print_statistics();
1319     }
1320   } else {
1321     // The safepoint statistics will be printed out when the _safepoin_stats
1322     // array fills up.
1323     if (_cur_stat_index == PrintSafepointStatisticsCount - 1) {
1324       print_statistics();
1325       _cur_stat_index = 0;
1326     } else {
1327       _cur_stat_index++;
1328     }
1329   }
1330 }
1331 
1332 void SafepointSynchronize::print_statistics() {
1333   for (int index = 0; index <= _cur_stat_index; index++) {
1334     if (index % 30 == 0) {
1335       print_header();
1336     }
1337     SafepointStats* sstats = &_safepoint_stats[index];
1338     tty->print("%8.3f: ", sstats->_time_stamp);
1339     tty->print("%-30s  [          "
1340                INT32_FORMAT_W(8) " " INT32_FORMAT_W(17) " " INT32_FORMAT_W(13) " "
1341                "]",
1342                (sstats->_vmop_type == -1 ? "no vm operation" : VM_Operation::name(sstats->_vmop_type)),
1343                sstats->_nof_total_threads,
1344                sstats->_nof_initial_running_threads,
1345                sstats->_nof_threads_wait_to_block);
1346     // "/ MICROUNITS " is to convert the unit from nanos to millis.
1347     tty->print("[       "
1348                INT64_FORMAT_W(7) " " INT64_FORMAT_W(7) " "
1349                INT64_FORMAT_W(7) " " INT64_FORMAT_W(7) " "
1350                INT64_FORMAT_W(7) " ] ",
1351                (int64_t)(sstats->_time_to_spin / MICROUNITS),
1352                (int64_t)(sstats->_time_to_wait_to_block / MICROUNITS),
1353                (int64_t)(sstats->_time_to_sync / MICROUNITS),
1354                (int64_t)(sstats->_time_to_do_cleanups / MICROUNITS),
1355                (int64_t)(sstats->_time_to_exec_vmop / MICROUNITS));
1356 
1357     if (need_to_track_page_armed_status) {
1358       tty->print(INT32_FORMAT_W(10) " ", sstats->_page_armed);
1359     }
1360     tty->print_cr(INT32_FORMAT_W(15) " ", sstats->_nof_threads_hit_page_trap);
1361   }
1362 }
1363 
1364 // This method will be called when VM exits. It will first call
1365 // print_statistics to print out the rest of the sampling.  Then
1366 // it tries to summarize the sampling.
1367 void SafepointSynchronize::print_stat_on_exit() {
1368   if (_safepoint_stats == NULL) return;
1369 
1370   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1371 
1372   // During VM exit, end_statistics may not get called and in that
1373   // case, if the sync time is less than PrintSafepointStatisticsTimeout,
1374   // don't print it out.
1375   // Approximate the vm op time.
1376   _safepoint_stats[_cur_stat_index]._time_to_exec_vmop =
1377     os::javaTimeNanos() - cleanup_end_time;
1378 
1379   if ( PrintSafepointStatisticsTimeout < 0 ||
1380        spstat->_time_to_sync > (jlong)PrintSafepointStatisticsTimeout * MICROUNITS) {
1381     print_statistics();
1382   }
1383   tty->cr();
1384 
1385   // Print out polling page sampling status.
1386   if (!need_to_track_page_armed_status) {
1387     tty->print_cr("Polling page always armed");
1388   } else {
1389     tty->print_cr("Defer polling page loop count = " INTX_FORMAT "\n",
1390                   DeferPollingPageLoopCount);
1391   }
1392 
1393   for (int index = 0; index < VM_Operation::VMOp_Terminating; index++) {
1394     if (_safepoint_reasons[index] != 0) {
1395       tty->print_cr("%-26s" UINT64_FORMAT_W(10), VM_Operation::name(index),
1396                     _safepoint_reasons[index]);
1397     }
1398   }
1399 
1400   tty->print_cr(UINT64_FORMAT_W(5) " VM operations coalesced during safepoint",
1401                 _coalesced_vmop_count);
1402   tty->print_cr("Maximum sync time  " INT64_FORMAT_W(5) " ms",
1403                 (int64_t)(_max_sync_time / MICROUNITS));
1404   tty->print_cr("Maximum vm operation time (except for Exit VM operation)  "
1405                 INT64_FORMAT_W(5) " ms",
1406                 (int64_t)(_max_vmop_time / MICROUNITS));
1407 }
1408 
1409 // ------------------------------------------------------------------------------------------------
1410 // Non-product code
1411 
1412 #ifndef PRODUCT
1413 
1414 void SafepointSynchronize::print_state() {
1415   if (_state == _not_synchronized) {
1416     tty->print_cr("not synchronized");
1417   } else if (_state == _synchronizing || _state == _synchronized) {
1418     tty->print_cr("State: %s", (_state == _synchronizing) ? "synchronizing" :
1419                   "synchronized");
1420 
1421     for(JavaThread *cur = Threads::first(); cur; cur = cur->next()) {
1422        cur->safepoint_state()->print();
1423     }
1424   }
1425 }
1426 
1427 void SafepointSynchronize::safepoint_msg(const char* format, ...) {
1428   if (ShowSafepointMsgs) {
1429     va_list ap;
1430     va_start(ap, format);
1431     tty->vprint_cr(format, ap);
1432     va_end(ap);
1433   }
1434 }
1435 
1436 #endif // !PRODUCT