1 /* 2 * Copyright (c) 1997, 2020, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2014, 2020, Red Hat Inc. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #include <sys/types.h> 27 28 #include "precompiled.hpp" 29 #include "jvm.h" 30 #include "asm/assembler.hpp" 31 #include "asm/assembler.inline.hpp" 32 #include "gc/shared/barrierSet.hpp" 33 #include "gc/shared/cardTable.hpp" 34 #include "gc/shared/barrierSetAssembler.hpp" 35 #include "gc/shared/cardTableBarrierSet.hpp" 36 #include "interpreter/interpreter.hpp" 37 #include "compiler/disassembler.hpp" 38 #include "memory/resourceArea.hpp" 39 #include "memory/universe.hpp" 40 #include "nativeInst_aarch64.hpp" 41 #include "oops/accessDecorators.hpp" 42 #include "oops/compressedOops.inline.hpp" 43 #include "oops/klass.inline.hpp" 44 #include "runtime/biasedLocking.hpp" 45 #include "runtime/icache.hpp" 46 #include "runtime/interfaceSupport.inline.hpp" 47 #include "runtime/jniHandles.inline.hpp" 48 #include "runtime/sharedRuntime.hpp" 49 #include "runtime/thread.hpp" 50 #include "utilities/powerOfTwo.hpp" 51 #ifdef COMPILER1 52 #include "c1/c1_LIRAssembler.hpp" 53 #endif 54 #ifdef COMPILER2 55 #include "oops/oop.hpp" 56 #include "opto/compile.hpp" 57 #include "opto/node.hpp" 58 #include "opto/output.hpp" 59 #endif 60 61 #ifdef PRODUCT 62 #define BLOCK_COMMENT(str) /* nothing */ 63 #else 64 #define BLOCK_COMMENT(str) block_comment(str) 65 #endif 66 #define STOP(str) stop(str); 67 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":") 68 69 // Patch any kind of instruction; there may be several instructions. 70 // Return the total length (in bytes) of the instructions. 71 int MacroAssembler::pd_patch_instruction_size(address branch, address target) { 72 int instructions = 1; 73 assert((uint64_t)target < (1ul << 48), "48-bit overflow in address constant"); 74 long offset = (target - branch) >> 2; 75 unsigned insn = *(unsigned*)branch; 76 if ((Instruction_aarch64::extract(insn, 29, 24) & 0b111011) == 0b011000) { 77 // Load register (literal) 78 Instruction_aarch64::spatch(branch, 23, 5, offset); 79 } else if (Instruction_aarch64::extract(insn, 30, 26) == 0b00101) { 80 // Unconditional branch (immediate) 81 Instruction_aarch64::spatch(branch, 25, 0, offset); 82 } else if (Instruction_aarch64::extract(insn, 31, 25) == 0b0101010) { 83 // Conditional branch (immediate) 84 Instruction_aarch64::spatch(branch, 23, 5, offset); 85 } else if (Instruction_aarch64::extract(insn, 30, 25) == 0b011010) { 86 // Compare & branch (immediate) 87 Instruction_aarch64::spatch(branch, 23, 5, offset); 88 } else if (Instruction_aarch64::extract(insn, 30, 25) == 0b011011) { 89 // Test & branch (immediate) 90 Instruction_aarch64::spatch(branch, 18, 5, offset); 91 } else if (Instruction_aarch64::extract(insn, 28, 24) == 0b10000) { 92 // PC-rel. addressing 93 offset = target-branch; 94 int shift = Instruction_aarch64::extract(insn, 31, 31); 95 if (shift) { 96 u_int64_t dest = (u_int64_t)target; 97 uint64_t pc_page = (uint64_t)branch >> 12; 98 uint64_t adr_page = (uint64_t)target >> 12; 99 unsigned offset_lo = dest & 0xfff; 100 offset = adr_page - pc_page; 101 102 // We handle 4 types of PC relative addressing 103 // 1 - adrp Rx, target_page 104 // ldr/str Ry, [Rx, #offset_in_page] 105 // 2 - adrp Rx, target_page 106 // add Ry, Rx, #offset_in_page 107 // 3 - adrp Rx, target_page (page aligned reloc, offset == 0) 108 // movk Rx, #imm16<<32 109 // 4 - adrp Rx, target_page (page aligned reloc, offset == 0) 110 // In the first 3 cases we must check that Rx is the same in the adrp and the 111 // subsequent ldr/str, add or movk instruction. Otherwise we could accidentally end 112 // up treating a type 4 relocation as a type 1, 2 or 3 just because it happened 113 // to be followed by a random unrelated ldr/str, add or movk instruction. 114 // 115 unsigned insn2 = ((unsigned*)branch)[1]; 116 if (Instruction_aarch64::extract(insn2, 29, 24) == 0b111001 && 117 Instruction_aarch64::extract(insn, 4, 0) == 118 Instruction_aarch64::extract(insn2, 9, 5)) { 119 // Load/store register (unsigned immediate) 120 unsigned size = Instruction_aarch64::extract(insn2, 31, 30); 121 Instruction_aarch64::patch(branch + sizeof (unsigned), 122 21, 10, offset_lo >> size); 123 guarantee(((dest >> size) << size) == dest, "misaligned target"); 124 instructions = 2; 125 } else if (Instruction_aarch64::extract(insn2, 31, 22) == 0b1001000100 && 126 Instruction_aarch64::extract(insn, 4, 0) == 127 Instruction_aarch64::extract(insn2, 4, 0)) { 128 // add (immediate) 129 Instruction_aarch64::patch(branch + sizeof (unsigned), 130 21, 10, offset_lo); 131 instructions = 2; 132 } else if (Instruction_aarch64::extract(insn2, 31, 21) == 0b11110010110 && 133 Instruction_aarch64::extract(insn, 4, 0) == 134 Instruction_aarch64::extract(insn2, 4, 0)) { 135 // movk #imm16<<32 136 Instruction_aarch64::patch(branch + 4, 20, 5, (uint64_t)target >> 32); 137 long dest = ((long)target & 0xffffffffL) | ((long)branch & 0xffff00000000L); 138 long pc_page = (long)branch >> 12; 139 long adr_page = (long)dest >> 12; 140 offset = adr_page - pc_page; 141 instructions = 2; 142 } 143 } 144 int offset_lo = offset & 3; 145 offset >>= 2; 146 Instruction_aarch64::spatch(branch, 23, 5, offset); 147 Instruction_aarch64::patch(branch, 30, 29, offset_lo); 148 } else if (Instruction_aarch64::extract(insn, 31, 21) == 0b11010010100) { 149 u_int64_t dest = (u_int64_t)target; 150 // Move wide constant 151 assert(nativeInstruction_at(branch+4)->is_movk(), "wrong insns in patch"); 152 assert(nativeInstruction_at(branch+8)->is_movk(), "wrong insns in patch"); 153 Instruction_aarch64::patch(branch, 20, 5, dest & 0xffff); 154 Instruction_aarch64::patch(branch+4, 20, 5, (dest >>= 16) & 0xffff); 155 Instruction_aarch64::patch(branch+8, 20, 5, (dest >>= 16) & 0xffff); 156 assert(target_addr_for_insn(branch) == target, "should be"); 157 instructions = 3; 158 } else if (Instruction_aarch64::extract(insn, 31, 22) == 0b1011100101 && 159 Instruction_aarch64::extract(insn, 4, 0) == 0b11111) { 160 // nothing to do 161 assert(target == 0, "did not expect to relocate target for polling page load"); 162 } else { 163 ShouldNotReachHere(); 164 } 165 return instructions * NativeInstruction::instruction_size; 166 } 167 168 int MacroAssembler::patch_oop(address insn_addr, address o) { 169 int instructions; 170 unsigned insn = *(unsigned*)insn_addr; 171 assert(nativeInstruction_at(insn_addr+4)->is_movk(), "wrong insns in patch"); 172 173 // OOPs are either narrow (32 bits) or wide (48 bits). We encode 174 // narrow OOPs by setting the upper 16 bits in the first 175 // instruction. 176 if (Instruction_aarch64::extract(insn, 31, 21) == 0b11010010101) { 177 // Move narrow OOP 178 narrowOop n = CompressedOops::encode((oop)o); 179 Instruction_aarch64::patch(insn_addr, 20, 5, n >> 16); 180 Instruction_aarch64::patch(insn_addr+4, 20, 5, n & 0xffff); 181 instructions = 2; 182 } else { 183 // Move wide OOP 184 assert(nativeInstruction_at(insn_addr+8)->is_movk(), "wrong insns in patch"); 185 uintptr_t dest = (uintptr_t)o; 186 Instruction_aarch64::patch(insn_addr, 20, 5, dest & 0xffff); 187 Instruction_aarch64::patch(insn_addr+4, 20, 5, (dest >>= 16) & 0xffff); 188 Instruction_aarch64::patch(insn_addr+8, 20, 5, (dest >>= 16) & 0xffff); 189 instructions = 3; 190 } 191 return instructions * NativeInstruction::instruction_size; 192 } 193 194 int MacroAssembler::patch_narrow_klass(address insn_addr, narrowKlass n) { 195 // Metatdata pointers are either narrow (32 bits) or wide (48 bits). 196 // We encode narrow ones by setting the upper 16 bits in the first 197 // instruction. 198 NativeInstruction *insn = nativeInstruction_at(insn_addr); 199 assert(Instruction_aarch64::extract(insn->encoding(), 31, 21) == 0b11010010101 && 200 nativeInstruction_at(insn_addr+4)->is_movk(), "wrong insns in patch"); 201 202 Instruction_aarch64::patch(insn_addr, 20, 5, n >> 16); 203 Instruction_aarch64::patch(insn_addr+4, 20, 5, n & 0xffff); 204 return 2 * NativeInstruction::instruction_size; 205 } 206 207 address MacroAssembler::target_addr_for_insn(address insn_addr, unsigned insn) { 208 long offset = 0; 209 if ((Instruction_aarch64::extract(insn, 29, 24) & 0b011011) == 0b00011000) { 210 // Load register (literal) 211 offset = Instruction_aarch64::sextract(insn, 23, 5); 212 return address(((uint64_t)insn_addr + (offset << 2))); 213 } else if (Instruction_aarch64::extract(insn, 30, 26) == 0b00101) { 214 // Unconditional branch (immediate) 215 offset = Instruction_aarch64::sextract(insn, 25, 0); 216 } else if (Instruction_aarch64::extract(insn, 31, 25) == 0b0101010) { 217 // Conditional branch (immediate) 218 offset = Instruction_aarch64::sextract(insn, 23, 5); 219 } else if (Instruction_aarch64::extract(insn, 30, 25) == 0b011010) { 220 // Compare & branch (immediate) 221 offset = Instruction_aarch64::sextract(insn, 23, 5); 222 } else if (Instruction_aarch64::extract(insn, 30, 25) == 0b011011) { 223 // Test & branch (immediate) 224 offset = Instruction_aarch64::sextract(insn, 18, 5); 225 } else if (Instruction_aarch64::extract(insn, 28, 24) == 0b10000) { 226 // PC-rel. addressing 227 offset = Instruction_aarch64::extract(insn, 30, 29); 228 offset |= Instruction_aarch64::sextract(insn, 23, 5) << 2; 229 int shift = Instruction_aarch64::extract(insn, 31, 31) ? 12 : 0; 230 if (shift) { 231 offset <<= shift; 232 uint64_t target_page = ((uint64_t)insn_addr) + offset; 233 target_page &= ((uint64_t)-1) << shift; 234 // Return the target address for the following sequences 235 // 1 - adrp Rx, target_page 236 // ldr/str Ry, [Rx, #offset_in_page] 237 // 2 - adrp Rx, target_page 238 // add Ry, Rx, #offset_in_page 239 // 3 - adrp Rx, target_page (page aligned reloc, offset == 0) 240 // movk Rx, #imm12<<32 241 // 4 - adrp Rx, target_page (page aligned reloc, offset == 0) 242 // 243 // In the first two cases we check that the register is the same and 244 // return the target_page + the offset within the page. 245 // Otherwise we assume it is a page aligned relocation and return 246 // the target page only. 247 // 248 unsigned insn2 = ((unsigned*)insn_addr)[1]; 249 if (Instruction_aarch64::extract(insn2, 29, 24) == 0b111001 && 250 Instruction_aarch64::extract(insn, 4, 0) == 251 Instruction_aarch64::extract(insn2, 9, 5)) { 252 // Load/store register (unsigned immediate) 253 unsigned int byte_offset = Instruction_aarch64::extract(insn2, 21, 10); 254 unsigned int size = Instruction_aarch64::extract(insn2, 31, 30); 255 return address(target_page + (byte_offset << size)); 256 } else if (Instruction_aarch64::extract(insn2, 31, 22) == 0b1001000100 && 257 Instruction_aarch64::extract(insn, 4, 0) == 258 Instruction_aarch64::extract(insn2, 4, 0)) { 259 // add (immediate) 260 unsigned int byte_offset = Instruction_aarch64::extract(insn2, 21, 10); 261 return address(target_page + byte_offset); 262 } else { 263 if (Instruction_aarch64::extract(insn2, 31, 21) == 0b11110010110 && 264 Instruction_aarch64::extract(insn, 4, 0) == 265 Instruction_aarch64::extract(insn2, 4, 0)) { 266 target_page = (target_page & 0xffffffff) | 267 ((uint64_t)Instruction_aarch64::extract(insn2, 20, 5) << 32); 268 } 269 return (address)target_page; 270 } 271 } else { 272 ShouldNotReachHere(); 273 } 274 } else if (Instruction_aarch64::extract(insn, 31, 23) == 0b110100101) { 275 u_int32_t *insns = (u_int32_t *)insn_addr; 276 // Move wide constant: movz, movk, movk. See movptr(). 277 assert(nativeInstruction_at(insns+1)->is_movk(), "wrong insns in patch"); 278 assert(nativeInstruction_at(insns+2)->is_movk(), "wrong insns in patch"); 279 return address(u_int64_t(Instruction_aarch64::extract(insns[0], 20, 5)) 280 + (u_int64_t(Instruction_aarch64::extract(insns[1], 20, 5)) << 16) 281 + (u_int64_t(Instruction_aarch64::extract(insns[2], 20, 5)) << 32)); 282 } else if (Instruction_aarch64::extract(insn, 31, 22) == 0b1011100101 && 283 Instruction_aarch64::extract(insn, 4, 0) == 0b11111) { 284 return 0; 285 } else { 286 ShouldNotReachHere(); 287 } 288 return address(((uint64_t)insn_addr + (offset << 2))); 289 } 290 291 void MacroAssembler::safepoint_poll(Label& slow_path) { 292 ldr(rscratch1, Address(rthread, Thread::polling_page_offset())); 293 tbnz(rscratch1, exact_log2(SafepointMechanism::poll_bit()), slow_path); 294 } 295 296 // Just like safepoint_poll, but use an acquiring load for thread- 297 // local polling. 298 // 299 // We need an acquire here to ensure that any subsequent load of the 300 // global SafepointSynchronize::_state flag is ordered after this load 301 // of the local Thread::_polling page. We don't want this poll to 302 // return false (i.e. not safepointing) and a later poll of the global 303 // SafepointSynchronize::_state spuriously to return true. 304 // 305 // This is to avoid a race when we're in a native->Java transition 306 // racing the code which wakes up from a safepoint. 307 // 308 void MacroAssembler::safepoint_poll_acquire(Label& slow_path) { 309 lea(rscratch1, Address(rthread, Thread::polling_page_offset())); 310 ldar(rscratch1, rscratch1); 311 tbnz(rscratch1, exact_log2(SafepointMechanism::poll_bit()), slow_path); 312 } 313 314 void MacroAssembler::reset_last_Java_frame(bool clear_fp) { 315 // we must set sp to zero to clear frame 316 str(zr, Address(rthread, JavaThread::last_Java_sp_offset())); 317 318 // must clear fp, so that compiled frames are not confused; it is 319 // possible that we need it only for debugging 320 if (clear_fp) { 321 str(zr, Address(rthread, JavaThread::last_Java_fp_offset())); 322 } 323 324 // Always clear the pc because it could have been set by make_walkable() 325 str(zr, Address(rthread, JavaThread::last_Java_pc_offset())); 326 } 327 328 // Calls to C land 329 // 330 // When entering C land, the rfp, & resp of the last Java frame have to be recorded 331 // in the (thread-local) JavaThread object. When leaving C land, the last Java fp 332 // has to be reset to 0. This is required to allow proper stack traversal. 333 void MacroAssembler::set_last_Java_frame(Register last_java_sp, 334 Register last_java_fp, 335 Register last_java_pc, 336 Register scratch) { 337 338 if (last_java_pc->is_valid()) { 339 str(last_java_pc, Address(rthread, 340 JavaThread::frame_anchor_offset() 341 + JavaFrameAnchor::last_Java_pc_offset())); 342 } 343 344 // determine last_java_sp register 345 if (last_java_sp == sp) { 346 mov(scratch, sp); 347 last_java_sp = scratch; 348 } else if (!last_java_sp->is_valid()) { 349 last_java_sp = esp; 350 } 351 352 str(last_java_sp, Address(rthread, JavaThread::last_Java_sp_offset())); 353 354 // last_java_fp is optional 355 if (last_java_fp->is_valid()) { 356 str(last_java_fp, Address(rthread, JavaThread::last_Java_fp_offset())); 357 } 358 } 359 360 void MacroAssembler::set_last_Java_frame(Register last_java_sp, 361 Register last_java_fp, 362 address last_java_pc, 363 Register scratch) { 364 assert(last_java_pc != NULL, "must provide a valid PC"); 365 366 adr(scratch, last_java_pc); 367 str(scratch, Address(rthread, 368 JavaThread::frame_anchor_offset() 369 + JavaFrameAnchor::last_Java_pc_offset())); 370 371 set_last_Java_frame(last_java_sp, last_java_fp, noreg, scratch); 372 } 373 374 void MacroAssembler::set_last_Java_frame(Register last_java_sp, 375 Register last_java_fp, 376 Label &L, 377 Register scratch) { 378 if (L.is_bound()) { 379 set_last_Java_frame(last_java_sp, last_java_fp, target(L), scratch); 380 } else { 381 InstructionMark im(this); 382 L.add_patch_at(code(), locator()); 383 set_last_Java_frame(last_java_sp, last_java_fp, pc() /* Patched later */, scratch); 384 } 385 } 386 387 void MacroAssembler::far_call(Address entry, CodeBuffer *cbuf, Register tmp) { 388 assert(ReservedCodeCacheSize < 4*G, "branch out of range"); 389 assert(CodeCache::find_blob(entry.target()) != NULL, 390 "destination of far call not found in code cache"); 391 if (far_branches()) { 392 unsigned long offset; 393 // We can use ADRP here because we know that the total size of 394 // the code cache cannot exceed 2Gb. 395 adrp(tmp, entry, offset); 396 add(tmp, tmp, offset); 397 if (cbuf) cbuf->set_insts_mark(); 398 blr(tmp); 399 } else { 400 if (cbuf) cbuf->set_insts_mark(); 401 bl(entry); 402 } 403 } 404 405 void MacroAssembler::far_jump(Address entry, CodeBuffer *cbuf, Register tmp) { 406 assert(ReservedCodeCacheSize < 4*G, "branch out of range"); 407 assert(CodeCache::find_blob(entry.target()) != NULL, 408 "destination of far call not found in code cache"); 409 if (far_branches()) { 410 unsigned long offset; 411 // We can use ADRP here because we know that the total size of 412 // the code cache cannot exceed 2Gb. 413 adrp(tmp, entry, offset); 414 add(tmp, tmp, offset); 415 if (cbuf) cbuf->set_insts_mark(); 416 br(tmp); 417 } else { 418 if (cbuf) cbuf->set_insts_mark(); 419 b(entry); 420 } 421 } 422 423 void MacroAssembler::reserved_stack_check() { 424 // testing if reserved zone needs to be enabled 425 Label no_reserved_zone_enabling; 426 427 ldr(rscratch1, Address(rthread, JavaThread::reserved_stack_activation_offset())); 428 cmp(sp, rscratch1); 429 br(Assembler::LO, no_reserved_zone_enabling); 430 431 enter(); // LR and FP are live. 432 lea(rscratch1, CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone)); 433 mov(c_rarg0, rthread); 434 blr(rscratch1); 435 leave(); 436 437 // We have already removed our own frame. 438 // throw_delayed_StackOverflowError will think that it's been 439 // called by our caller. 440 lea(rscratch1, RuntimeAddress(StubRoutines::throw_delayed_StackOverflowError_entry())); 441 br(rscratch1); 442 should_not_reach_here(); 443 444 bind(no_reserved_zone_enabling); 445 } 446 447 int MacroAssembler::biased_locking_enter(Register lock_reg, 448 Register obj_reg, 449 Register swap_reg, 450 Register tmp_reg, 451 bool swap_reg_contains_mark, 452 Label& done, 453 Label* slow_case, 454 BiasedLockingCounters* counters) { 455 assert(UseBiasedLocking, "why call this otherwise?"); 456 assert_different_registers(lock_reg, obj_reg, swap_reg); 457 458 if (PrintBiasedLockingStatistics && counters == NULL) 459 counters = BiasedLocking::counters(); 460 461 assert_different_registers(lock_reg, obj_reg, swap_reg, tmp_reg, rscratch1, rscratch2, noreg); 462 assert(markWord::age_shift == markWord::lock_bits + markWord::biased_lock_bits, "biased locking makes assumptions about bit layout"); 463 Address mark_addr (obj_reg, oopDesc::mark_offset_in_bytes()); 464 Address klass_addr (obj_reg, oopDesc::klass_offset_in_bytes()); 465 Address saved_mark_addr(lock_reg, 0); 466 467 // Biased locking 468 // See whether the lock is currently biased toward our thread and 469 // whether the epoch is still valid 470 // Note that the runtime guarantees sufficient alignment of JavaThread 471 // pointers to allow age to be placed into low bits 472 // First check to see whether biasing is even enabled for this object 473 Label cas_label; 474 int null_check_offset = -1; 475 if (!swap_reg_contains_mark) { 476 null_check_offset = offset(); 477 ldr(swap_reg, mark_addr); 478 } 479 andr(tmp_reg, swap_reg, markWord::biased_lock_mask_in_place); 480 cmp(tmp_reg, (u1)markWord::biased_lock_pattern); 481 br(Assembler::NE, cas_label); 482 // The bias pattern is present in the object's header. Need to check 483 // whether the bias owner and the epoch are both still current. 484 load_prototype_header(tmp_reg, obj_reg); 485 orr(tmp_reg, tmp_reg, rthread); 486 eor(tmp_reg, swap_reg, tmp_reg); 487 andr(tmp_reg, tmp_reg, ~((int) markWord::age_mask_in_place)); 488 if (counters != NULL) { 489 Label around; 490 cbnz(tmp_reg, around); 491 atomic_incw(Address((address)counters->biased_lock_entry_count_addr()), tmp_reg, rscratch1, rscratch2); 492 b(done); 493 bind(around); 494 } else { 495 cbz(tmp_reg, done); 496 } 497 498 Label try_revoke_bias; 499 Label try_rebias; 500 501 // At this point we know that the header has the bias pattern and 502 // that we are not the bias owner in the current epoch. We need to 503 // figure out more details about the state of the header in order to 504 // know what operations can be legally performed on the object's 505 // header. 506 507 // If the low three bits in the xor result aren't clear, that means 508 // the prototype header is no longer biased and we have to revoke 509 // the bias on this object. 510 andr(rscratch1, tmp_reg, markWord::biased_lock_mask_in_place); 511 cbnz(rscratch1, try_revoke_bias); 512 513 // Biasing is still enabled for this data type. See whether the 514 // epoch of the current bias is still valid, meaning that the epoch 515 // bits of the mark word are equal to the epoch bits of the 516 // prototype header. (Note that the prototype header's epoch bits 517 // only change at a safepoint.) If not, attempt to rebias the object 518 // toward the current thread. Note that we must be absolutely sure 519 // that the current epoch is invalid in order to do this because 520 // otherwise the manipulations it performs on the mark word are 521 // illegal. 522 andr(rscratch1, tmp_reg, markWord::epoch_mask_in_place); 523 cbnz(rscratch1, try_rebias); 524 525 // The epoch of the current bias is still valid but we know nothing 526 // about the owner; it might be set or it might be clear. Try to 527 // acquire the bias of the object using an atomic operation. If this 528 // fails we will go in to the runtime to revoke the object's bias. 529 // Note that we first construct the presumed unbiased header so we 530 // don't accidentally blow away another thread's valid bias. 531 { 532 Label here; 533 mov(rscratch1, markWord::biased_lock_mask_in_place | markWord::age_mask_in_place | markWord::epoch_mask_in_place); 534 andr(swap_reg, swap_reg, rscratch1); 535 orr(tmp_reg, swap_reg, rthread); 536 cmpxchg_obj_header(swap_reg, tmp_reg, obj_reg, rscratch1, here, slow_case); 537 // If the biasing toward our thread failed, this means that 538 // another thread succeeded in biasing it toward itself and we 539 // need to revoke that bias. The revocation will occur in the 540 // interpreter runtime in the slow case. 541 bind(here); 542 if (counters != NULL) { 543 atomic_incw(Address((address)counters->anonymously_biased_lock_entry_count_addr()), 544 tmp_reg, rscratch1, rscratch2); 545 } 546 } 547 b(done); 548 549 bind(try_rebias); 550 // At this point we know the epoch has expired, meaning that the 551 // current "bias owner", if any, is actually invalid. Under these 552 // circumstances _only_, we are allowed to use the current header's 553 // value as the comparison value when doing the cas to acquire the 554 // bias in the current epoch. In other words, we allow transfer of 555 // the bias from one thread to another directly in this situation. 556 // 557 // FIXME: due to a lack of registers we currently blow away the age 558 // bits in this situation. Should attempt to preserve them. 559 { 560 Label here; 561 load_prototype_header(tmp_reg, obj_reg); 562 orr(tmp_reg, rthread, tmp_reg); 563 cmpxchg_obj_header(swap_reg, tmp_reg, obj_reg, rscratch1, here, slow_case); 564 // If the biasing toward our thread failed, then another thread 565 // succeeded in biasing it toward itself and we need to revoke that 566 // bias. The revocation will occur in the runtime in the slow case. 567 bind(here); 568 if (counters != NULL) { 569 atomic_incw(Address((address)counters->rebiased_lock_entry_count_addr()), 570 tmp_reg, rscratch1, rscratch2); 571 } 572 } 573 b(done); 574 575 bind(try_revoke_bias); 576 // The prototype mark in the klass doesn't have the bias bit set any 577 // more, indicating that objects of this data type are not supposed 578 // to be biased any more. We are going to try to reset the mark of 579 // this object to the prototype value and fall through to the 580 // CAS-based locking scheme. Note that if our CAS fails, it means 581 // that another thread raced us for the privilege of revoking the 582 // bias of this particular object, so it's okay to continue in the 583 // normal locking code. 584 // 585 // FIXME: due to a lack of registers we currently blow away the age 586 // bits in this situation. Should attempt to preserve them. 587 { 588 Label here, nope; 589 load_prototype_header(tmp_reg, obj_reg); 590 cmpxchg_obj_header(swap_reg, tmp_reg, obj_reg, rscratch1, here, &nope); 591 bind(here); 592 593 // Fall through to the normal CAS-based lock, because no matter what 594 // the result of the above CAS, some thread must have succeeded in 595 // removing the bias bit from the object's header. 596 if (counters != NULL) { 597 atomic_incw(Address((address)counters->revoked_lock_entry_count_addr()), tmp_reg, 598 rscratch1, rscratch2); 599 } 600 bind(nope); 601 } 602 603 bind(cas_label); 604 605 return null_check_offset; 606 } 607 608 void MacroAssembler::biased_locking_exit(Register obj_reg, Register temp_reg, Label& done) { 609 assert(UseBiasedLocking, "why call this otherwise?"); 610 611 // Check for biased locking unlock case, which is a no-op 612 // Note: we do not have to check the thread ID for two reasons. 613 // First, the interpreter checks for IllegalMonitorStateException at 614 // a higher level. Second, if the bias was revoked while we held the 615 // lock, the object could not be rebiased toward another thread, so 616 // the bias bit would be clear. 617 ldr(temp_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes())); 618 andr(temp_reg, temp_reg, markWord::biased_lock_mask_in_place); 619 cmp(temp_reg, (u1)markWord::biased_lock_pattern); 620 br(Assembler::EQ, done); 621 } 622 623 static void pass_arg0(MacroAssembler* masm, Register arg) { 624 if (c_rarg0 != arg ) { 625 masm->mov(c_rarg0, arg); 626 } 627 } 628 629 static void pass_arg1(MacroAssembler* masm, Register arg) { 630 if (c_rarg1 != arg ) { 631 masm->mov(c_rarg1, arg); 632 } 633 } 634 635 static void pass_arg2(MacroAssembler* masm, Register arg) { 636 if (c_rarg2 != arg ) { 637 masm->mov(c_rarg2, arg); 638 } 639 } 640 641 static void pass_arg3(MacroAssembler* masm, Register arg) { 642 if (c_rarg3 != arg ) { 643 masm->mov(c_rarg3, arg); 644 } 645 } 646 647 void MacroAssembler::call_VM_base(Register oop_result, 648 Register java_thread, 649 Register last_java_sp, 650 address entry_point, 651 int number_of_arguments, 652 bool check_exceptions) { 653 // determine java_thread register 654 if (!java_thread->is_valid()) { 655 java_thread = rthread; 656 } 657 658 // determine last_java_sp register 659 if (!last_java_sp->is_valid()) { 660 last_java_sp = esp; 661 } 662 663 // debugging support 664 assert(number_of_arguments >= 0 , "cannot have negative number of arguments"); 665 assert(java_thread == rthread, "unexpected register"); 666 #ifdef ASSERT 667 // TraceBytecodes does not use r12 but saves it over the call, so don't verify 668 // if ((UseCompressedOops || UseCompressedClassPointers) && !TraceBytecodes) verify_heapbase("call_VM_base: heap base corrupted?"); 669 #endif // ASSERT 670 671 assert(java_thread != oop_result , "cannot use the same register for java_thread & oop_result"); 672 assert(java_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp"); 673 674 // push java thread (becomes first argument of C function) 675 676 mov(c_rarg0, java_thread); 677 678 // set last Java frame before call 679 assert(last_java_sp != rfp, "can't use rfp"); 680 681 Label l; 682 set_last_Java_frame(last_java_sp, rfp, l, rscratch1); 683 684 // do the call, remove parameters 685 MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments, &l); 686 687 // reset last Java frame 688 // Only interpreter should have to clear fp 689 reset_last_Java_frame(true); 690 691 // C++ interp handles this in the interpreter 692 check_and_handle_popframe(java_thread); 693 check_and_handle_earlyret(java_thread); 694 695 if (check_exceptions) { 696 // check for pending exceptions (java_thread is set upon return) 697 ldr(rscratch1, Address(java_thread, in_bytes(Thread::pending_exception_offset()))); 698 Label ok; 699 cbz(rscratch1, ok); 700 lea(rscratch1, RuntimeAddress(StubRoutines::forward_exception_entry())); 701 br(rscratch1); 702 bind(ok); 703 } 704 705 // get oop result if there is one and reset the value in the thread 706 if (oop_result->is_valid()) { 707 get_vm_result(oop_result, java_thread); 708 } 709 } 710 711 void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) { 712 call_VM_base(oop_result, noreg, noreg, entry_point, number_of_arguments, check_exceptions); 713 } 714 715 // Maybe emit a call via a trampoline. If the code cache is small 716 // trampolines won't be emitted. 717 718 address MacroAssembler::trampoline_call(Address entry, CodeBuffer *cbuf) { 719 assert(JavaThread::current()->is_Compiler_thread(), "just checking"); 720 assert(entry.rspec().type() == relocInfo::runtime_call_type 721 || entry.rspec().type() == relocInfo::opt_virtual_call_type 722 || entry.rspec().type() == relocInfo::static_call_type 723 || entry.rspec().type() == relocInfo::virtual_call_type, "wrong reloc type"); 724 725 // We need a trampoline if branches are far. 726 if (far_branches()) { 727 bool in_scratch_emit_size = false; 728 #ifdef COMPILER2 729 // We don't want to emit a trampoline if C2 is generating dummy 730 // code during its branch shortening phase. 731 CompileTask* task = ciEnv::current()->task(); 732 in_scratch_emit_size = 733 (task != NULL && is_c2_compile(task->comp_level()) && 734 Compile::current()->output()->in_scratch_emit_size()); 735 #endif 736 if (!in_scratch_emit_size) { 737 address stub = emit_trampoline_stub(offset(), entry.target()); 738 if (stub == NULL) { 739 return NULL; // CodeCache is full 740 } 741 } 742 } 743 744 if (cbuf) cbuf->set_insts_mark(); 745 relocate(entry.rspec()); 746 if (!far_branches()) { 747 bl(entry.target()); 748 } else { 749 bl(pc()); 750 } 751 // just need to return a non-null address 752 return pc(); 753 } 754 755 756 // Emit a trampoline stub for a call to a target which is too far away. 757 // 758 // code sequences: 759 // 760 // call-site: 761 // branch-and-link to <destination> or <trampoline stub> 762 // 763 // Related trampoline stub for this call site in the stub section: 764 // load the call target from the constant pool 765 // branch (LR still points to the call site above) 766 767 address MacroAssembler::emit_trampoline_stub(int insts_call_instruction_offset, 768 address dest) { 769 // Max stub size: alignment nop, TrampolineStub. 770 address stub = start_a_stub(NativeInstruction::instruction_size 771 + NativeCallTrampolineStub::instruction_size); 772 if (stub == NULL) { 773 return NULL; // CodeBuffer::expand failed 774 } 775 776 // Create a trampoline stub relocation which relates this trampoline stub 777 // with the call instruction at insts_call_instruction_offset in the 778 // instructions code-section. 779 align(wordSize); 780 relocate(trampoline_stub_Relocation::spec(code()->insts()->start() 781 + insts_call_instruction_offset)); 782 const int stub_start_offset = offset(); 783 784 // Now, create the trampoline stub's code: 785 // - load the call 786 // - call 787 Label target; 788 ldr(rscratch1, target); 789 br(rscratch1); 790 bind(target); 791 assert(offset() - stub_start_offset == NativeCallTrampolineStub::data_offset, 792 "should be"); 793 emit_int64((int64_t)dest); 794 795 const address stub_start_addr = addr_at(stub_start_offset); 796 797 assert(is_NativeCallTrampolineStub_at(stub_start_addr), "doesn't look like a trampoline"); 798 799 end_a_stub(); 800 return stub_start_addr; 801 } 802 803 void MacroAssembler::emit_static_call_stub() { 804 // CompiledDirectStaticCall::set_to_interpreted knows the 805 // exact layout of this stub. 806 807 isb(); 808 mov_metadata(rmethod, (Metadata*)NULL); 809 810 // Jump to the entry point of the i2c stub. 811 movptr(rscratch1, 0); 812 br(rscratch1); 813 } 814 815 void MacroAssembler::c2bool(Register x) { 816 // implements x == 0 ? 0 : 1 817 // note: must only look at least-significant byte of x 818 // since C-style booleans are stored in one byte 819 // only! (was bug) 820 tst(x, 0xff); 821 cset(x, Assembler::NE); 822 } 823 824 address MacroAssembler::ic_call(address entry, jint method_index) { 825 RelocationHolder rh = virtual_call_Relocation::spec(pc(), method_index); 826 // address const_ptr = long_constant((jlong)Universe::non_oop_word()); 827 // unsigned long offset; 828 // ldr_constant(rscratch2, const_ptr); 829 movptr(rscratch2, (uintptr_t)Universe::non_oop_word()); 830 return trampoline_call(Address(entry, rh)); 831 } 832 833 // Implementation of call_VM versions 834 835 void MacroAssembler::call_VM(Register oop_result, 836 address entry_point, 837 bool check_exceptions) { 838 call_VM_helper(oop_result, entry_point, 0, check_exceptions); 839 } 840 841 void MacroAssembler::call_VM(Register oop_result, 842 address entry_point, 843 Register arg_1, 844 bool check_exceptions) { 845 pass_arg1(this, arg_1); 846 call_VM_helper(oop_result, entry_point, 1, check_exceptions); 847 } 848 849 void MacroAssembler::call_VM(Register oop_result, 850 address entry_point, 851 Register arg_1, 852 Register arg_2, 853 bool check_exceptions) { 854 assert(arg_1 != c_rarg2, "smashed arg"); 855 pass_arg2(this, arg_2); 856 pass_arg1(this, arg_1); 857 call_VM_helper(oop_result, entry_point, 2, check_exceptions); 858 } 859 860 void MacroAssembler::call_VM(Register oop_result, 861 address entry_point, 862 Register arg_1, 863 Register arg_2, 864 Register arg_3, 865 bool check_exceptions) { 866 assert(arg_1 != c_rarg3, "smashed arg"); 867 assert(arg_2 != c_rarg3, "smashed arg"); 868 pass_arg3(this, arg_3); 869 870 assert(arg_1 != c_rarg2, "smashed arg"); 871 pass_arg2(this, arg_2); 872 873 pass_arg1(this, arg_1); 874 call_VM_helper(oop_result, entry_point, 3, check_exceptions); 875 } 876 877 void MacroAssembler::call_VM(Register oop_result, 878 Register last_java_sp, 879 address entry_point, 880 int number_of_arguments, 881 bool check_exceptions) { 882 call_VM_base(oop_result, rthread, last_java_sp, entry_point, number_of_arguments, check_exceptions); 883 } 884 885 void MacroAssembler::call_VM(Register oop_result, 886 Register last_java_sp, 887 address entry_point, 888 Register arg_1, 889 bool check_exceptions) { 890 pass_arg1(this, arg_1); 891 call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions); 892 } 893 894 void MacroAssembler::call_VM(Register oop_result, 895 Register last_java_sp, 896 address entry_point, 897 Register arg_1, 898 Register arg_2, 899 bool check_exceptions) { 900 901 assert(arg_1 != c_rarg2, "smashed arg"); 902 pass_arg2(this, arg_2); 903 pass_arg1(this, arg_1); 904 call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions); 905 } 906 907 void MacroAssembler::call_VM(Register oop_result, 908 Register last_java_sp, 909 address entry_point, 910 Register arg_1, 911 Register arg_2, 912 Register arg_3, 913 bool check_exceptions) { 914 assert(arg_1 != c_rarg3, "smashed arg"); 915 assert(arg_2 != c_rarg3, "smashed arg"); 916 pass_arg3(this, arg_3); 917 assert(arg_1 != c_rarg2, "smashed arg"); 918 pass_arg2(this, arg_2); 919 pass_arg1(this, arg_1); 920 call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions); 921 } 922 923 924 void MacroAssembler::get_vm_result(Register oop_result, Register java_thread) { 925 ldr(oop_result, Address(java_thread, JavaThread::vm_result_offset())); 926 str(zr, Address(java_thread, JavaThread::vm_result_offset())); 927 verify_oop(oop_result, "broken oop in call_VM_base"); 928 } 929 930 void MacroAssembler::get_vm_result_2(Register metadata_result, Register java_thread) { 931 ldr(metadata_result, Address(java_thread, JavaThread::vm_result_2_offset())); 932 str(zr, Address(java_thread, JavaThread::vm_result_2_offset())); 933 } 934 935 void MacroAssembler::align(int modulus) { 936 while (offset() % modulus != 0) nop(); 937 } 938 939 // these are no-ops overridden by InterpreterMacroAssembler 940 941 void MacroAssembler::check_and_handle_earlyret(Register java_thread) { } 942 943 void MacroAssembler::check_and_handle_popframe(Register java_thread) { } 944 945 946 RegisterOrConstant MacroAssembler::delayed_value_impl(intptr_t* delayed_value_addr, 947 Register tmp, 948 int offset) { 949 intptr_t value = *delayed_value_addr; 950 if (value != 0) 951 return RegisterOrConstant(value + offset); 952 953 // load indirectly to solve generation ordering problem 954 ldr(tmp, ExternalAddress((address) delayed_value_addr)); 955 956 if (offset != 0) 957 add(tmp, tmp, offset); 958 959 return RegisterOrConstant(tmp); 960 } 961 962 // Look up the method for a megamorphic invokeinterface call. 963 // The target method is determined by <intf_klass, itable_index>. 964 // The receiver klass is in recv_klass. 965 // On success, the result will be in method_result, and execution falls through. 966 // On failure, execution transfers to the given label. 967 void MacroAssembler::lookup_interface_method(Register recv_klass, 968 Register intf_klass, 969 RegisterOrConstant itable_index, 970 Register method_result, 971 Register scan_temp, 972 Label& L_no_such_interface, 973 bool return_method) { 974 assert_different_registers(recv_klass, intf_klass, scan_temp); 975 assert_different_registers(method_result, intf_klass, scan_temp); 976 assert(recv_klass != method_result || !return_method, 977 "recv_klass can be destroyed when method isn't needed"); 978 assert(itable_index.is_constant() || itable_index.as_register() == method_result, 979 "caller must use same register for non-constant itable index as for method"); 980 981 // Compute start of first itableOffsetEntry (which is at the end of the vtable) 982 int vtable_base = in_bytes(Klass::vtable_start_offset()); 983 int itentry_off = itableMethodEntry::method_offset_in_bytes(); 984 int scan_step = itableOffsetEntry::size() * wordSize; 985 int vte_size = vtableEntry::size_in_bytes(); 986 assert(vte_size == wordSize, "else adjust times_vte_scale"); 987 988 ldrw(scan_temp, Address(recv_klass, Klass::vtable_length_offset())); 989 990 // %%% Could store the aligned, prescaled offset in the klassoop. 991 // lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base)); 992 lea(scan_temp, Address(recv_klass, scan_temp, Address::lsl(3))); 993 add(scan_temp, scan_temp, vtable_base); 994 995 if (return_method) { 996 // Adjust recv_klass by scaled itable_index, so we can free itable_index. 997 assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below"); 998 // lea(recv_klass, Address(recv_klass, itable_index, Address::times_ptr, itentry_off)); 999 lea(recv_klass, Address(recv_klass, itable_index, Address::lsl(3))); 1000 if (itentry_off) 1001 add(recv_klass, recv_klass, itentry_off); 1002 } 1003 1004 // for (scan = klass->itable(); scan->interface() != NULL; scan += scan_step) { 1005 // if (scan->interface() == intf) { 1006 // result = (klass + scan->offset() + itable_index); 1007 // } 1008 // } 1009 Label search, found_method; 1010 1011 for (int peel = 1; peel >= 0; peel--) { 1012 ldr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset_in_bytes())); 1013 cmp(intf_klass, method_result); 1014 1015 if (peel) { 1016 br(Assembler::EQ, found_method); 1017 } else { 1018 br(Assembler::NE, search); 1019 // (invert the test to fall through to found_method...) 1020 } 1021 1022 if (!peel) break; 1023 1024 bind(search); 1025 1026 // Check that the previous entry is non-null. A null entry means that 1027 // the receiver class doesn't implement the interface, and wasn't the 1028 // same as when the caller was compiled. 1029 cbz(method_result, L_no_such_interface); 1030 add(scan_temp, scan_temp, scan_step); 1031 } 1032 1033 bind(found_method); 1034 1035 // Got a hit. 1036 if (return_method) { 1037 ldrw(scan_temp, Address(scan_temp, itableOffsetEntry::offset_offset_in_bytes())); 1038 ldr(method_result, Address(recv_klass, scan_temp, Address::uxtw(0))); 1039 } 1040 } 1041 1042 // virtual method calling 1043 void MacroAssembler::lookup_virtual_method(Register recv_klass, 1044 RegisterOrConstant vtable_index, 1045 Register method_result) { 1046 const int base = in_bytes(Klass::vtable_start_offset()); 1047 assert(vtableEntry::size() * wordSize == 8, 1048 "adjust the scaling in the code below"); 1049 int vtable_offset_in_bytes = base + vtableEntry::method_offset_in_bytes(); 1050 1051 if (vtable_index.is_register()) { 1052 lea(method_result, Address(recv_klass, 1053 vtable_index.as_register(), 1054 Address::lsl(LogBytesPerWord))); 1055 ldr(method_result, Address(method_result, vtable_offset_in_bytes)); 1056 } else { 1057 vtable_offset_in_bytes += vtable_index.as_constant() * wordSize; 1058 ldr(method_result, 1059 form_address(rscratch1, recv_klass, vtable_offset_in_bytes, 0)); 1060 } 1061 } 1062 1063 void MacroAssembler::check_klass_subtype(Register sub_klass, 1064 Register super_klass, 1065 Register temp_reg, 1066 Label& L_success) { 1067 Label L_failure; 1068 check_klass_subtype_fast_path(sub_klass, super_klass, temp_reg, &L_success, &L_failure, NULL); 1069 check_klass_subtype_slow_path(sub_klass, super_klass, temp_reg, noreg, &L_success, NULL); 1070 bind(L_failure); 1071 } 1072 1073 1074 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass, 1075 Register super_klass, 1076 Register temp_reg, 1077 Label* L_success, 1078 Label* L_failure, 1079 Label* L_slow_path, 1080 RegisterOrConstant super_check_offset) { 1081 assert_different_registers(sub_klass, super_klass, temp_reg); 1082 bool must_load_sco = (super_check_offset.constant_or_zero() == -1); 1083 if (super_check_offset.is_register()) { 1084 assert_different_registers(sub_klass, super_klass, 1085 super_check_offset.as_register()); 1086 } else if (must_load_sco) { 1087 assert(temp_reg != noreg, "supply either a temp or a register offset"); 1088 } 1089 1090 Label L_fallthrough; 1091 int label_nulls = 0; 1092 if (L_success == NULL) { L_success = &L_fallthrough; label_nulls++; } 1093 if (L_failure == NULL) { L_failure = &L_fallthrough; label_nulls++; } 1094 if (L_slow_path == NULL) { L_slow_path = &L_fallthrough; label_nulls++; } 1095 assert(label_nulls <= 1, "at most one NULL in the batch"); 1096 1097 int sc_offset = in_bytes(Klass::secondary_super_cache_offset()); 1098 int sco_offset = in_bytes(Klass::super_check_offset_offset()); 1099 Address super_check_offset_addr(super_klass, sco_offset); 1100 1101 // Hacked jmp, which may only be used just before L_fallthrough. 1102 #define final_jmp(label) \ 1103 if (&(label) == &L_fallthrough) { /*do nothing*/ } \ 1104 else b(label) /*omit semi*/ 1105 1106 // If the pointers are equal, we are done (e.g., String[] elements). 1107 // This self-check enables sharing of secondary supertype arrays among 1108 // non-primary types such as array-of-interface. Otherwise, each such 1109 // type would need its own customized SSA. 1110 // We move this check to the front of the fast path because many 1111 // type checks are in fact trivially successful in this manner, 1112 // so we get a nicely predicted branch right at the start of the check. 1113 cmp(sub_klass, super_klass); 1114 br(Assembler::EQ, *L_success); 1115 1116 // Check the supertype display: 1117 if (must_load_sco) { 1118 ldrw(temp_reg, super_check_offset_addr); 1119 super_check_offset = RegisterOrConstant(temp_reg); 1120 } 1121 Address super_check_addr(sub_klass, super_check_offset); 1122 ldr(rscratch1, super_check_addr); 1123 cmp(super_klass, rscratch1); // load displayed supertype 1124 1125 // This check has worked decisively for primary supers. 1126 // Secondary supers are sought in the super_cache ('super_cache_addr'). 1127 // (Secondary supers are interfaces and very deeply nested subtypes.) 1128 // This works in the same check above because of a tricky aliasing 1129 // between the super_cache and the primary super display elements. 1130 // (The 'super_check_addr' can address either, as the case requires.) 1131 // Note that the cache is updated below if it does not help us find 1132 // what we need immediately. 1133 // So if it was a primary super, we can just fail immediately. 1134 // Otherwise, it's the slow path for us (no success at this point). 1135 1136 if (super_check_offset.is_register()) { 1137 br(Assembler::EQ, *L_success); 1138 subs(zr, super_check_offset.as_register(), sc_offset); 1139 if (L_failure == &L_fallthrough) { 1140 br(Assembler::EQ, *L_slow_path); 1141 } else { 1142 br(Assembler::NE, *L_failure); 1143 final_jmp(*L_slow_path); 1144 } 1145 } else if (super_check_offset.as_constant() == sc_offset) { 1146 // Need a slow path; fast failure is impossible. 1147 if (L_slow_path == &L_fallthrough) { 1148 br(Assembler::EQ, *L_success); 1149 } else { 1150 br(Assembler::NE, *L_slow_path); 1151 final_jmp(*L_success); 1152 } 1153 } else { 1154 // No slow path; it's a fast decision. 1155 if (L_failure == &L_fallthrough) { 1156 br(Assembler::EQ, *L_success); 1157 } else { 1158 br(Assembler::NE, *L_failure); 1159 final_jmp(*L_success); 1160 } 1161 } 1162 1163 bind(L_fallthrough); 1164 1165 #undef final_jmp 1166 } 1167 1168 // These two are taken from x86, but they look generally useful 1169 1170 // scans count pointer sized words at [addr] for occurence of value, 1171 // generic 1172 void MacroAssembler::repne_scan(Register addr, Register value, Register count, 1173 Register scratch) { 1174 Label Lloop, Lexit; 1175 cbz(count, Lexit); 1176 bind(Lloop); 1177 ldr(scratch, post(addr, wordSize)); 1178 cmp(value, scratch); 1179 br(EQ, Lexit); 1180 sub(count, count, 1); 1181 cbnz(count, Lloop); 1182 bind(Lexit); 1183 } 1184 1185 // scans count 4 byte words at [addr] for occurence of value, 1186 // generic 1187 void MacroAssembler::repne_scanw(Register addr, Register value, Register count, 1188 Register scratch) { 1189 Label Lloop, Lexit; 1190 cbz(count, Lexit); 1191 bind(Lloop); 1192 ldrw(scratch, post(addr, wordSize)); 1193 cmpw(value, scratch); 1194 br(EQ, Lexit); 1195 sub(count, count, 1); 1196 cbnz(count, Lloop); 1197 bind(Lexit); 1198 } 1199 1200 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass, 1201 Register super_klass, 1202 Register temp_reg, 1203 Register temp2_reg, 1204 Label* L_success, 1205 Label* L_failure, 1206 bool set_cond_codes) { 1207 assert_different_registers(sub_klass, super_klass, temp_reg); 1208 if (temp2_reg != noreg) 1209 assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg, rscratch1); 1210 #define IS_A_TEMP(reg) ((reg) == temp_reg || (reg) == temp2_reg) 1211 1212 Label L_fallthrough; 1213 int label_nulls = 0; 1214 if (L_success == NULL) { L_success = &L_fallthrough; label_nulls++; } 1215 if (L_failure == NULL) { L_failure = &L_fallthrough; label_nulls++; } 1216 assert(label_nulls <= 1, "at most one NULL in the batch"); 1217 1218 // a couple of useful fields in sub_klass: 1219 int ss_offset = in_bytes(Klass::secondary_supers_offset()); 1220 int sc_offset = in_bytes(Klass::secondary_super_cache_offset()); 1221 Address secondary_supers_addr(sub_klass, ss_offset); 1222 Address super_cache_addr( sub_klass, sc_offset); 1223 1224 BLOCK_COMMENT("check_klass_subtype_slow_path"); 1225 1226 // Do a linear scan of the secondary super-klass chain. 1227 // This code is rarely used, so simplicity is a virtue here. 1228 // The repne_scan instruction uses fixed registers, which we must spill. 1229 // Don't worry too much about pre-existing connections with the input regs. 1230 1231 assert(sub_klass != r0, "killed reg"); // killed by mov(r0, super) 1232 assert(sub_klass != r2, "killed reg"); // killed by lea(r2, &pst_counter) 1233 1234 RegSet pushed_registers; 1235 if (!IS_A_TEMP(r2)) pushed_registers += r2; 1236 if (!IS_A_TEMP(r5)) pushed_registers += r5; 1237 1238 if (super_klass != r0 || UseCompressedOops) { 1239 if (!IS_A_TEMP(r0)) pushed_registers += r0; 1240 } 1241 1242 push(pushed_registers, sp); 1243 1244 // Get super_klass value into r0 (even if it was in r5 or r2). 1245 if (super_klass != r0) { 1246 mov(r0, super_klass); 1247 } 1248 1249 #ifndef PRODUCT 1250 mov(rscratch2, (address)&SharedRuntime::_partial_subtype_ctr); 1251 Address pst_counter_addr(rscratch2); 1252 ldr(rscratch1, pst_counter_addr); 1253 add(rscratch1, rscratch1, 1); 1254 str(rscratch1, pst_counter_addr); 1255 #endif //PRODUCT 1256 1257 // We will consult the secondary-super array. 1258 ldr(r5, secondary_supers_addr); 1259 // Load the array length. 1260 ldrw(r2, Address(r5, Array<Klass*>::length_offset_in_bytes())); 1261 // Skip to start of data. 1262 add(r5, r5, Array<Klass*>::base_offset_in_bytes()); 1263 1264 cmp(sp, zr); // Clear Z flag; SP is never zero 1265 // Scan R2 words at [R5] for an occurrence of R0. 1266 // Set NZ/Z based on last compare. 1267 repne_scan(r5, r0, r2, rscratch1); 1268 1269 // Unspill the temp. registers: 1270 pop(pushed_registers, sp); 1271 1272 br(Assembler::NE, *L_failure); 1273 1274 // Success. Cache the super we found and proceed in triumph. 1275 str(super_klass, super_cache_addr); 1276 1277 if (L_success != &L_fallthrough) { 1278 b(*L_success); 1279 } 1280 1281 #undef IS_A_TEMP 1282 1283 bind(L_fallthrough); 1284 } 1285 1286 void MacroAssembler::clinit_barrier(Register klass, Register scratch, Label* L_fast_path, Label* L_slow_path) { 1287 assert(L_fast_path != NULL || L_slow_path != NULL, "at least one is required"); 1288 assert_different_registers(klass, rthread, scratch); 1289 1290 Label L_fallthrough, L_tmp; 1291 if (L_fast_path == NULL) { 1292 L_fast_path = &L_fallthrough; 1293 } else if (L_slow_path == NULL) { 1294 L_slow_path = &L_fallthrough; 1295 } 1296 // Fast path check: class is fully initialized 1297 ldrb(scratch, Address(klass, InstanceKlass::init_state_offset())); 1298 subs(zr, scratch, InstanceKlass::fully_initialized); 1299 br(Assembler::EQ, *L_fast_path); 1300 1301 // Fast path check: current thread is initializer thread 1302 ldr(scratch, Address(klass, InstanceKlass::init_thread_offset())); 1303 cmp(rthread, scratch); 1304 1305 if (L_slow_path == &L_fallthrough) { 1306 br(Assembler::EQ, *L_fast_path); 1307 bind(*L_slow_path); 1308 } else if (L_fast_path == &L_fallthrough) { 1309 br(Assembler::NE, *L_slow_path); 1310 bind(*L_fast_path); 1311 } else { 1312 Unimplemented(); 1313 } 1314 } 1315 1316 void MacroAssembler::verify_oop(Register reg, const char* s) { 1317 if (!VerifyOops) return; 1318 1319 // Pass register number to verify_oop_subroutine 1320 const char* b = NULL; 1321 { 1322 ResourceMark rm; 1323 stringStream ss; 1324 ss.print("verify_oop: %s: %s", reg->name(), s); 1325 b = code_string(ss.as_string()); 1326 } 1327 BLOCK_COMMENT("verify_oop {"); 1328 1329 stp(r0, rscratch1, Address(pre(sp, -2 * wordSize))); 1330 stp(rscratch2, lr, Address(pre(sp, -2 * wordSize))); 1331 1332 mov(r0, reg); 1333 movptr(rscratch1, (uintptr_t)(address)b); 1334 1335 // call indirectly to solve generation ordering problem 1336 lea(rscratch2, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address())); 1337 ldr(rscratch2, Address(rscratch2)); 1338 blr(rscratch2); 1339 1340 ldp(rscratch2, lr, Address(post(sp, 2 * wordSize))); 1341 ldp(r0, rscratch1, Address(post(sp, 2 * wordSize))); 1342 1343 BLOCK_COMMENT("} verify_oop"); 1344 } 1345 1346 void MacroAssembler::verify_oop_addr(Address addr, const char* s) { 1347 if (!VerifyOops) return; 1348 1349 const char* b = NULL; 1350 { 1351 ResourceMark rm; 1352 stringStream ss; 1353 ss.print("verify_oop_addr: %s", s); 1354 b = code_string(ss.as_string()); 1355 } 1356 BLOCK_COMMENT("verify_oop_addr {"); 1357 1358 stp(r0, rscratch1, Address(pre(sp, -2 * wordSize))); 1359 stp(rscratch2, lr, Address(pre(sp, -2 * wordSize))); 1360 1361 // addr may contain sp so we will have to adjust it based on the 1362 // pushes that we just did. 1363 if (addr.uses(sp)) { 1364 lea(r0, addr); 1365 ldr(r0, Address(r0, 4 * wordSize)); 1366 } else { 1367 ldr(r0, addr); 1368 } 1369 movptr(rscratch1, (uintptr_t)(address)b); 1370 1371 // call indirectly to solve generation ordering problem 1372 lea(rscratch2, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address())); 1373 ldr(rscratch2, Address(rscratch2)); 1374 blr(rscratch2); 1375 1376 ldp(rscratch2, lr, Address(post(sp, 2 * wordSize))); 1377 ldp(r0, rscratch1, Address(post(sp, 2 * wordSize))); 1378 1379 BLOCK_COMMENT("} verify_oop_addr"); 1380 } 1381 1382 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot, 1383 int extra_slot_offset) { 1384 // cf. TemplateTable::prepare_invoke(), if (load_receiver). 1385 int stackElementSize = Interpreter::stackElementSize; 1386 int offset = Interpreter::expr_offset_in_bytes(extra_slot_offset+0); 1387 #ifdef ASSERT 1388 int offset1 = Interpreter::expr_offset_in_bytes(extra_slot_offset+1); 1389 assert(offset1 - offset == stackElementSize, "correct arithmetic"); 1390 #endif 1391 if (arg_slot.is_constant()) { 1392 return Address(esp, arg_slot.as_constant() * stackElementSize 1393 + offset); 1394 } else { 1395 add(rscratch1, esp, arg_slot.as_register(), 1396 ext::uxtx, exact_log2(stackElementSize)); 1397 return Address(rscratch1, offset); 1398 } 1399 } 1400 1401 void MacroAssembler::call_VM_leaf_base(address entry_point, 1402 int number_of_arguments, 1403 Label *retaddr) { 1404 Label E, L; 1405 1406 stp(rscratch1, rmethod, Address(pre(sp, -2 * wordSize))); 1407 1408 mov(rscratch1, entry_point); 1409 blr(rscratch1); 1410 if (retaddr) 1411 bind(*retaddr); 1412 1413 ldp(rscratch1, rmethod, Address(post(sp, 2 * wordSize))); 1414 maybe_isb(); 1415 } 1416 1417 void MacroAssembler::call_VM_leaf(address entry_point, int number_of_arguments) { 1418 call_VM_leaf_base(entry_point, number_of_arguments); 1419 } 1420 1421 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0) { 1422 pass_arg0(this, arg_0); 1423 call_VM_leaf_base(entry_point, 1); 1424 } 1425 1426 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) { 1427 pass_arg0(this, arg_0); 1428 pass_arg1(this, arg_1); 1429 call_VM_leaf_base(entry_point, 2); 1430 } 1431 1432 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, 1433 Register arg_1, Register arg_2) { 1434 pass_arg0(this, arg_0); 1435 pass_arg1(this, arg_1); 1436 pass_arg2(this, arg_2); 1437 call_VM_leaf_base(entry_point, 3); 1438 } 1439 1440 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0) { 1441 pass_arg0(this, arg_0); 1442 MacroAssembler::call_VM_leaf_base(entry_point, 1); 1443 } 1444 1445 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1) { 1446 1447 assert(arg_0 != c_rarg1, "smashed arg"); 1448 pass_arg1(this, arg_1); 1449 pass_arg0(this, arg_0); 1450 MacroAssembler::call_VM_leaf_base(entry_point, 2); 1451 } 1452 1453 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) { 1454 assert(arg_0 != c_rarg2, "smashed arg"); 1455 assert(arg_1 != c_rarg2, "smashed arg"); 1456 pass_arg2(this, arg_2); 1457 assert(arg_0 != c_rarg1, "smashed arg"); 1458 pass_arg1(this, arg_1); 1459 pass_arg0(this, arg_0); 1460 MacroAssembler::call_VM_leaf_base(entry_point, 3); 1461 } 1462 1463 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) { 1464 assert(arg_0 != c_rarg3, "smashed arg"); 1465 assert(arg_1 != c_rarg3, "smashed arg"); 1466 assert(arg_2 != c_rarg3, "smashed arg"); 1467 pass_arg3(this, arg_3); 1468 assert(arg_0 != c_rarg2, "smashed arg"); 1469 assert(arg_1 != c_rarg2, "smashed arg"); 1470 pass_arg2(this, arg_2); 1471 assert(arg_0 != c_rarg1, "smashed arg"); 1472 pass_arg1(this, arg_1); 1473 pass_arg0(this, arg_0); 1474 MacroAssembler::call_VM_leaf_base(entry_point, 4); 1475 } 1476 1477 void MacroAssembler::null_check(Register reg, int offset) { 1478 if (needs_explicit_null_check(offset)) { 1479 // provoke OS NULL exception if reg = NULL by 1480 // accessing M[reg] w/o changing any registers 1481 // NOTE: this is plenty to provoke a segv 1482 ldr(zr, Address(reg)); 1483 } else { 1484 // nothing to do, (later) access of M[reg + offset] 1485 // will provoke OS NULL exception if reg = NULL 1486 } 1487 } 1488 1489 // MacroAssembler protected routines needed to implement 1490 // public methods 1491 1492 void MacroAssembler::mov(Register r, Address dest) { 1493 code_section()->relocate(pc(), dest.rspec()); 1494 u_int64_t imm64 = (u_int64_t)dest.target(); 1495 movptr(r, imm64); 1496 } 1497 1498 // Move a constant pointer into r. In AArch64 mode the virtual 1499 // address space is 48 bits in size, so we only need three 1500 // instructions to create a patchable instruction sequence that can 1501 // reach anywhere. 1502 void MacroAssembler::movptr(Register r, uintptr_t imm64) { 1503 #ifndef PRODUCT 1504 { 1505 char buffer[64]; 1506 snprintf(buffer, sizeof(buffer), "0x%" PRIX64, imm64); 1507 block_comment(buffer); 1508 } 1509 #endif 1510 assert(imm64 < (1ul << 48), "48-bit overflow in address constant"); 1511 movz(r, imm64 & 0xffff); 1512 imm64 >>= 16; 1513 movk(r, imm64 & 0xffff, 16); 1514 imm64 >>= 16; 1515 movk(r, imm64 & 0xffff, 32); 1516 } 1517 1518 // Macro to mov replicated immediate to vector register. 1519 // Vd will get the following values for different arrangements in T 1520 // imm32 == hex 000000gh T8B: Vd = ghghghghghghghgh 1521 // imm32 == hex 000000gh T16B: Vd = ghghghghghghghghghghghghghghghgh 1522 // imm32 == hex 0000efgh T4H: Vd = efghefghefghefgh 1523 // imm32 == hex 0000efgh T8H: Vd = efghefghefghefghefghefghefghefgh 1524 // imm32 == hex abcdefgh T2S: Vd = abcdefghabcdefgh 1525 // imm32 == hex abcdefgh T4S: Vd = abcdefghabcdefghabcdefghabcdefgh 1526 // T1D/T2D: invalid 1527 void MacroAssembler::mov(FloatRegister Vd, SIMD_Arrangement T, u_int32_t imm32) { 1528 assert(T != T1D && T != T2D, "invalid arrangement"); 1529 if (T == T8B || T == T16B) { 1530 assert((imm32 & ~0xff) == 0, "extraneous bits in unsigned imm32 (T8B/T16B)"); 1531 movi(Vd, T, imm32 & 0xff, 0); 1532 return; 1533 } 1534 u_int32_t nimm32 = ~imm32; 1535 if (T == T4H || T == T8H) { 1536 assert((imm32 & ~0xffff) == 0, "extraneous bits in unsigned imm32 (T4H/T8H)"); 1537 imm32 &= 0xffff; 1538 nimm32 &= 0xffff; 1539 } 1540 u_int32_t x = imm32; 1541 int movi_cnt = 0; 1542 int movn_cnt = 0; 1543 while (x) { if (x & 0xff) movi_cnt++; x >>= 8; } 1544 x = nimm32; 1545 while (x) { if (x & 0xff) movn_cnt++; x >>= 8; } 1546 if (movn_cnt < movi_cnt) imm32 = nimm32; 1547 unsigned lsl = 0; 1548 while (imm32 && (imm32 & 0xff) == 0) { lsl += 8; imm32 >>= 8; } 1549 if (movn_cnt < movi_cnt) 1550 mvni(Vd, T, imm32 & 0xff, lsl); 1551 else 1552 movi(Vd, T, imm32 & 0xff, lsl); 1553 imm32 >>= 8; lsl += 8; 1554 while (imm32) { 1555 while ((imm32 & 0xff) == 0) { lsl += 8; imm32 >>= 8; } 1556 if (movn_cnt < movi_cnt) 1557 bici(Vd, T, imm32 & 0xff, lsl); 1558 else 1559 orri(Vd, T, imm32 & 0xff, lsl); 1560 lsl += 8; imm32 >>= 8; 1561 } 1562 } 1563 1564 void MacroAssembler::mov_immediate64(Register dst, u_int64_t imm64) 1565 { 1566 #ifndef PRODUCT 1567 { 1568 char buffer[64]; 1569 snprintf(buffer, sizeof(buffer), "0x%" PRIX64, imm64); 1570 block_comment(buffer); 1571 } 1572 #endif 1573 if (operand_valid_for_logical_immediate(false, imm64)) { 1574 orr(dst, zr, imm64); 1575 } else { 1576 // we can use a combination of MOVZ or MOVN with 1577 // MOVK to build up the constant 1578 u_int64_t imm_h[4]; 1579 int zero_count = 0; 1580 int neg_count = 0; 1581 int i; 1582 for (i = 0; i < 4; i++) { 1583 imm_h[i] = ((imm64 >> (i * 16)) & 0xffffL); 1584 if (imm_h[i] == 0) { 1585 zero_count++; 1586 } else if (imm_h[i] == 0xffffL) { 1587 neg_count++; 1588 } 1589 } 1590 if (zero_count == 4) { 1591 // one MOVZ will do 1592 movz(dst, 0); 1593 } else if (neg_count == 4) { 1594 // one MOVN will do 1595 movn(dst, 0); 1596 } else if (zero_count == 3) { 1597 for (i = 0; i < 4; i++) { 1598 if (imm_h[i] != 0L) { 1599 movz(dst, (u_int32_t)imm_h[i], (i << 4)); 1600 break; 1601 } 1602 } 1603 } else if (neg_count == 3) { 1604 // one MOVN will do 1605 for (int i = 0; i < 4; i++) { 1606 if (imm_h[i] != 0xffffL) { 1607 movn(dst, (u_int32_t)imm_h[i] ^ 0xffffL, (i << 4)); 1608 break; 1609 } 1610 } 1611 } else if (zero_count == 2) { 1612 // one MOVZ and one MOVK will do 1613 for (i = 0; i < 3; i++) { 1614 if (imm_h[i] != 0L) { 1615 movz(dst, (u_int32_t)imm_h[i], (i << 4)); 1616 i++; 1617 break; 1618 } 1619 } 1620 for (;i < 4; i++) { 1621 if (imm_h[i] != 0L) { 1622 movk(dst, (u_int32_t)imm_h[i], (i << 4)); 1623 } 1624 } 1625 } else if (neg_count == 2) { 1626 // one MOVN and one MOVK will do 1627 for (i = 0; i < 4; i++) { 1628 if (imm_h[i] != 0xffffL) { 1629 movn(dst, (u_int32_t)imm_h[i] ^ 0xffffL, (i << 4)); 1630 i++; 1631 break; 1632 } 1633 } 1634 for (;i < 4; i++) { 1635 if (imm_h[i] != 0xffffL) { 1636 movk(dst, (u_int32_t)imm_h[i], (i << 4)); 1637 } 1638 } 1639 } else if (zero_count == 1) { 1640 // one MOVZ and two MOVKs will do 1641 for (i = 0; i < 4; i++) { 1642 if (imm_h[i] != 0L) { 1643 movz(dst, (u_int32_t)imm_h[i], (i << 4)); 1644 i++; 1645 break; 1646 } 1647 } 1648 for (;i < 4; i++) { 1649 if (imm_h[i] != 0x0L) { 1650 movk(dst, (u_int32_t)imm_h[i], (i << 4)); 1651 } 1652 } 1653 } else if (neg_count == 1) { 1654 // one MOVN and two MOVKs will do 1655 for (i = 0; i < 4; i++) { 1656 if (imm_h[i] != 0xffffL) { 1657 movn(dst, (u_int32_t)imm_h[i] ^ 0xffffL, (i << 4)); 1658 i++; 1659 break; 1660 } 1661 } 1662 for (;i < 4; i++) { 1663 if (imm_h[i] != 0xffffL) { 1664 movk(dst, (u_int32_t)imm_h[i], (i << 4)); 1665 } 1666 } 1667 } else { 1668 // use a MOVZ and 3 MOVKs (makes it easier to debug) 1669 movz(dst, (u_int32_t)imm_h[0], 0); 1670 for (i = 1; i < 4; i++) { 1671 movk(dst, (u_int32_t)imm_h[i], (i << 4)); 1672 } 1673 } 1674 } 1675 } 1676 1677 void MacroAssembler::mov_immediate32(Register dst, u_int32_t imm32) 1678 { 1679 #ifndef PRODUCT 1680 { 1681 char buffer[64]; 1682 snprintf(buffer, sizeof(buffer), "0x%" PRIX32, imm32); 1683 block_comment(buffer); 1684 } 1685 #endif 1686 if (operand_valid_for_logical_immediate(true, imm32)) { 1687 orrw(dst, zr, imm32); 1688 } else { 1689 // we can use MOVZ, MOVN or two calls to MOVK to build up the 1690 // constant 1691 u_int32_t imm_h[2]; 1692 imm_h[0] = imm32 & 0xffff; 1693 imm_h[1] = ((imm32 >> 16) & 0xffff); 1694 if (imm_h[0] == 0) { 1695 movzw(dst, imm_h[1], 16); 1696 } else if (imm_h[0] == 0xffff) { 1697 movnw(dst, imm_h[1] ^ 0xffff, 16); 1698 } else if (imm_h[1] == 0) { 1699 movzw(dst, imm_h[0], 0); 1700 } else if (imm_h[1] == 0xffff) { 1701 movnw(dst, imm_h[0] ^ 0xffff, 0); 1702 } else { 1703 // use a MOVZ and MOVK (makes it easier to debug) 1704 movzw(dst, imm_h[0], 0); 1705 movkw(dst, imm_h[1], 16); 1706 } 1707 } 1708 } 1709 1710 // Form an address from base + offset in Rd. Rd may or may 1711 // not actually be used: you must use the Address that is returned. 1712 // It is up to you to ensure that the shift provided matches the size 1713 // of your data. 1714 Address MacroAssembler::form_address(Register Rd, Register base, long byte_offset, int shift) { 1715 if (Address::offset_ok_for_immed(byte_offset, shift)) 1716 // It fits; no need for any heroics 1717 return Address(base, byte_offset); 1718 1719 // Don't do anything clever with negative or misaligned offsets 1720 unsigned mask = (1 << shift) - 1; 1721 if (byte_offset < 0 || byte_offset & mask) { 1722 mov(Rd, byte_offset); 1723 add(Rd, base, Rd); 1724 return Address(Rd); 1725 } 1726 1727 // See if we can do this with two 12-bit offsets 1728 { 1729 unsigned long word_offset = byte_offset >> shift; 1730 unsigned long masked_offset = word_offset & 0xfff000; 1731 if (Address::offset_ok_for_immed(word_offset - masked_offset, 0) 1732 && Assembler::operand_valid_for_add_sub_immediate(masked_offset << shift)) { 1733 add(Rd, base, masked_offset << shift); 1734 word_offset -= masked_offset; 1735 return Address(Rd, word_offset << shift); 1736 } 1737 } 1738 1739 // Do it the hard way 1740 mov(Rd, byte_offset); 1741 add(Rd, base, Rd); 1742 return Address(Rd); 1743 } 1744 1745 void MacroAssembler::atomic_incw(Register counter_addr, Register tmp, Register tmp2) { 1746 if (UseLSE) { 1747 mov(tmp, 1); 1748 ldadd(Assembler::word, tmp, zr, counter_addr); 1749 return; 1750 } 1751 Label retry_load; 1752 if ((VM_Version::features() & VM_Version::CPU_STXR_PREFETCH)) 1753 prfm(Address(counter_addr), PSTL1STRM); 1754 bind(retry_load); 1755 // flush and load exclusive from the memory location 1756 ldxrw(tmp, counter_addr); 1757 addw(tmp, tmp, 1); 1758 // if we store+flush with no intervening write tmp wil be zero 1759 stxrw(tmp2, tmp, counter_addr); 1760 cbnzw(tmp2, retry_load); 1761 } 1762 1763 1764 int MacroAssembler::corrected_idivl(Register result, Register ra, Register rb, 1765 bool want_remainder, Register scratch) 1766 { 1767 // Full implementation of Java idiv and irem. The function 1768 // returns the (pc) offset of the div instruction - may be needed 1769 // for implicit exceptions. 1770 // 1771 // constraint : ra/rb =/= scratch 1772 // normal case 1773 // 1774 // input : ra: dividend 1775 // rb: divisor 1776 // 1777 // result: either 1778 // quotient (= ra idiv rb) 1779 // remainder (= ra irem rb) 1780 1781 assert(ra != scratch && rb != scratch, "reg cannot be scratch"); 1782 1783 int idivl_offset = offset(); 1784 if (! want_remainder) { 1785 sdivw(result, ra, rb); 1786 } else { 1787 sdivw(scratch, ra, rb); 1788 Assembler::msubw(result, scratch, rb, ra); 1789 } 1790 1791 return idivl_offset; 1792 } 1793 1794 int MacroAssembler::corrected_idivq(Register result, Register ra, Register rb, 1795 bool want_remainder, Register scratch) 1796 { 1797 // Full implementation of Java ldiv and lrem. The function 1798 // returns the (pc) offset of the div instruction - may be needed 1799 // for implicit exceptions. 1800 // 1801 // constraint : ra/rb =/= scratch 1802 // normal case 1803 // 1804 // input : ra: dividend 1805 // rb: divisor 1806 // 1807 // result: either 1808 // quotient (= ra idiv rb) 1809 // remainder (= ra irem rb) 1810 1811 assert(ra != scratch && rb != scratch, "reg cannot be scratch"); 1812 1813 int idivq_offset = offset(); 1814 if (! want_remainder) { 1815 sdiv(result, ra, rb); 1816 } else { 1817 sdiv(scratch, ra, rb); 1818 Assembler::msub(result, scratch, rb, ra); 1819 } 1820 1821 return idivq_offset; 1822 } 1823 1824 void MacroAssembler::membar(Membar_mask_bits order_constraint) { 1825 address prev = pc() - NativeMembar::instruction_size; 1826 address last = code()->last_insn(); 1827 if (last != NULL && nativeInstruction_at(last)->is_Membar() && prev == last) { 1828 NativeMembar *bar = NativeMembar_at(prev); 1829 // We are merging two memory barrier instructions. On AArch64 we 1830 // can do this simply by ORing them together. 1831 bar->set_kind(bar->get_kind() | order_constraint); 1832 BLOCK_COMMENT("merged membar"); 1833 } else { 1834 code()->set_last_insn(pc()); 1835 dmb(Assembler::barrier(order_constraint)); 1836 } 1837 } 1838 1839 bool MacroAssembler::try_merge_ldst(Register rt, const Address &adr, size_t size_in_bytes, bool is_store) { 1840 if (ldst_can_merge(rt, adr, size_in_bytes, is_store)) { 1841 merge_ldst(rt, adr, size_in_bytes, is_store); 1842 code()->clear_last_insn(); 1843 return true; 1844 } else { 1845 assert(size_in_bytes == 8 || size_in_bytes == 4, "only 8 bytes or 4 bytes load/store is supported."); 1846 const unsigned mask = size_in_bytes - 1; 1847 if (adr.getMode() == Address::base_plus_offset && 1848 (adr.offset() & mask) == 0) { // only supports base_plus_offset. 1849 code()->set_last_insn(pc()); 1850 } 1851 return false; 1852 } 1853 } 1854 1855 void MacroAssembler::ldr(Register Rx, const Address &adr) { 1856 // We always try to merge two adjacent loads into one ldp. 1857 if (!try_merge_ldst(Rx, adr, 8, false)) { 1858 Assembler::ldr(Rx, adr); 1859 } 1860 } 1861 1862 void MacroAssembler::ldrw(Register Rw, const Address &adr) { 1863 // We always try to merge two adjacent loads into one ldp. 1864 if (!try_merge_ldst(Rw, adr, 4, false)) { 1865 Assembler::ldrw(Rw, adr); 1866 } 1867 } 1868 1869 void MacroAssembler::str(Register Rx, const Address &adr) { 1870 // We always try to merge two adjacent stores into one stp. 1871 if (!try_merge_ldst(Rx, adr, 8, true)) { 1872 Assembler::str(Rx, adr); 1873 } 1874 } 1875 1876 void MacroAssembler::strw(Register Rw, const Address &adr) { 1877 // We always try to merge two adjacent stores into one stp. 1878 if (!try_merge_ldst(Rw, adr, 4, true)) { 1879 Assembler::strw(Rw, adr); 1880 } 1881 } 1882 1883 // MacroAssembler routines found actually to be needed 1884 1885 void MacroAssembler::push(Register src) 1886 { 1887 str(src, Address(pre(esp, -1 * wordSize))); 1888 } 1889 1890 void MacroAssembler::pop(Register dst) 1891 { 1892 ldr(dst, Address(post(esp, 1 * wordSize))); 1893 } 1894 1895 // Note: load_unsigned_short used to be called load_unsigned_word. 1896 int MacroAssembler::load_unsigned_short(Register dst, Address src) { 1897 int off = offset(); 1898 ldrh(dst, src); 1899 return off; 1900 } 1901 1902 int MacroAssembler::load_unsigned_byte(Register dst, Address src) { 1903 int off = offset(); 1904 ldrb(dst, src); 1905 return off; 1906 } 1907 1908 int MacroAssembler::load_signed_short(Register dst, Address src) { 1909 int off = offset(); 1910 ldrsh(dst, src); 1911 return off; 1912 } 1913 1914 int MacroAssembler::load_signed_byte(Register dst, Address src) { 1915 int off = offset(); 1916 ldrsb(dst, src); 1917 return off; 1918 } 1919 1920 int MacroAssembler::load_signed_short32(Register dst, Address src) { 1921 int off = offset(); 1922 ldrshw(dst, src); 1923 return off; 1924 } 1925 1926 int MacroAssembler::load_signed_byte32(Register dst, Address src) { 1927 int off = offset(); 1928 ldrsbw(dst, src); 1929 return off; 1930 } 1931 1932 void MacroAssembler::load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2) { 1933 switch (size_in_bytes) { 1934 case 8: ldr(dst, src); break; 1935 case 4: ldrw(dst, src); break; 1936 case 2: is_signed ? load_signed_short(dst, src) : load_unsigned_short(dst, src); break; 1937 case 1: is_signed ? load_signed_byte( dst, src) : load_unsigned_byte( dst, src); break; 1938 default: ShouldNotReachHere(); 1939 } 1940 } 1941 1942 void MacroAssembler::store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2) { 1943 switch (size_in_bytes) { 1944 case 8: str(src, dst); break; 1945 case 4: strw(src, dst); break; 1946 case 2: strh(src, dst); break; 1947 case 1: strb(src, dst); break; 1948 default: ShouldNotReachHere(); 1949 } 1950 } 1951 1952 void MacroAssembler::decrementw(Register reg, int value) 1953 { 1954 if (value < 0) { incrementw(reg, -value); return; } 1955 if (value == 0) { return; } 1956 if (value < (1 << 12)) { subw(reg, reg, value); return; } 1957 /* else */ { 1958 guarantee(reg != rscratch2, "invalid dst for register decrement"); 1959 movw(rscratch2, (unsigned)value); 1960 subw(reg, reg, rscratch2); 1961 } 1962 } 1963 1964 void MacroAssembler::decrement(Register reg, int value) 1965 { 1966 if (value < 0) { increment(reg, -value); return; } 1967 if (value == 0) { return; } 1968 if (value < (1 << 12)) { sub(reg, reg, value); return; } 1969 /* else */ { 1970 assert(reg != rscratch2, "invalid dst for register decrement"); 1971 mov(rscratch2, (unsigned long)value); 1972 sub(reg, reg, rscratch2); 1973 } 1974 } 1975 1976 void MacroAssembler::decrementw(Address dst, int value) 1977 { 1978 assert(!dst.uses(rscratch1), "invalid dst for address decrement"); 1979 if (dst.getMode() == Address::literal) { 1980 assert(abs(value) < (1 << 12), "invalid value and address mode combination"); 1981 lea(rscratch2, dst); 1982 dst = Address(rscratch2); 1983 } 1984 ldrw(rscratch1, dst); 1985 decrementw(rscratch1, value); 1986 strw(rscratch1, dst); 1987 } 1988 1989 void MacroAssembler::decrement(Address dst, int value) 1990 { 1991 assert(!dst.uses(rscratch1), "invalid address for decrement"); 1992 if (dst.getMode() == Address::literal) { 1993 assert(abs(value) < (1 << 12), "invalid value and address mode combination"); 1994 lea(rscratch2, dst); 1995 dst = Address(rscratch2); 1996 } 1997 ldr(rscratch1, dst); 1998 decrement(rscratch1, value); 1999 str(rscratch1, dst); 2000 } 2001 2002 void MacroAssembler::incrementw(Register reg, int value) 2003 { 2004 if (value < 0) { decrementw(reg, -value); return; } 2005 if (value == 0) { return; } 2006 if (value < (1 << 12)) { addw(reg, reg, value); return; } 2007 /* else */ { 2008 assert(reg != rscratch2, "invalid dst for register increment"); 2009 movw(rscratch2, (unsigned)value); 2010 addw(reg, reg, rscratch2); 2011 } 2012 } 2013 2014 void MacroAssembler::increment(Register reg, int value) 2015 { 2016 if (value < 0) { decrement(reg, -value); return; } 2017 if (value == 0) { return; } 2018 if (value < (1 << 12)) { add(reg, reg, value); return; } 2019 /* else */ { 2020 assert(reg != rscratch2, "invalid dst for register increment"); 2021 movw(rscratch2, (unsigned)value); 2022 add(reg, reg, rscratch2); 2023 } 2024 } 2025 2026 void MacroAssembler::incrementw(Address dst, int value) 2027 { 2028 assert(!dst.uses(rscratch1), "invalid dst for address increment"); 2029 if (dst.getMode() == Address::literal) { 2030 assert(abs(value) < (1 << 12), "invalid value and address mode combination"); 2031 lea(rscratch2, dst); 2032 dst = Address(rscratch2); 2033 } 2034 ldrw(rscratch1, dst); 2035 incrementw(rscratch1, value); 2036 strw(rscratch1, dst); 2037 } 2038 2039 void MacroAssembler::increment(Address dst, int value) 2040 { 2041 assert(!dst.uses(rscratch1), "invalid dst for address increment"); 2042 if (dst.getMode() == Address::literal) { 2043 assert(abs(value) < (1 << 12), "invalid value and address mode combination"); 2044 lea(rscratch2, dst); 2045 dst = Address(rscratch2); 2046 } 2047 ldr(rscratch1, dst); 2048 increment(rscratch1, value); 2049 str(rscratch1, dst); 2050 } 2051 2052 2053 void MacroAssembler::pusha() { 2054 push(0x7fffffff, sp); 2055 } 2056 2057 void MacroAssembler::popa() { 2058 pop(0x7fffffff, sp); 2059 } 2060 2061 // Push lots of registers in the bit set supplied. Don't push sp. 2062 // Return the number of words pushed 2063 int MacroAssembler::push(unsigned int bitset, Register stack) { 2064 int words_pushed = 0; 2065 2066 // Scan bitset to accumulate register pairs 2067 unsigned char regs[32]; 2068 int count = 0; 2069 for (int reg = 0; reg <= 30; reg++) { 2070 if (1 & bitset) 2071 regs[count++] = reg; 2072 bitset >>= 1; 2073 } 2074 regs[count++] = zr->encoding_nocheck(); 2075 count &= ~1; // Only push an even nuber of regs 2076 2077 if (count) { 2078 stp(as_Register(regs[0]), as_Register(regs[1]), 2079 Address(pre(stack, -count * wordSize))); 2080 words_pushed += 2; 2081 } 2082 for (int i = 2; i < count; i += 2) { 2083 stp(as_Register(regs[i]), as_Register(regs[i+1]), 2084 Address(stack, i * wordSize)); 2085 words_pushed += 2; 2086 } 2087 2088 assert(words_pushed == count, "oops, pushed != count"); 2089 2090 return count; 2091 } 2092 2093 int MacroAssembler::pop(unsigned int bitset, Register stack) { 2094 int words_pushed = 0; 2095 2096 // Scan bitset to accumulate register pairs 2097 unsigned char regs[32]; 2098 int count = 0; 2099 for (int reg = 0; reg <= 30; reg++) { 2100 if (1 & bitset) 2101 regs[count++] = reg; 2102 bitset >>= 1; 2103 } 2104 regs[count++] = zr->encoding_nocheck(); 2105 count &= ~1; 2106 2107 for (int i = 2; i < count; i += 2) { 2108 ldp(as_Register(regs[i]), as_Register(regs[i+1]), 2109 Address(stack, i * wordSize)); 2110 words_pushed += 2; 2111 } 2112 if (count) { 2113 ldp(as_Register(regs[0]), as_Register(regs[1]), 2114 Address(post(stack, count * wordSize))); 2115 words_pushed += 2; 2116 } 2117 2118 assert(words_pushed == count, "oops, pushed != count"); 2119 2120 return count; 2121 } 2122 2123 // Push lots of registers in the bit set supplied. Don't push sp. 2124 // Return the number of words pushed 2125 int MacroAssembler::push_fp(unsigned int bitset, Register stack) { 2126 int words_pushed = 0; 2127 2128 // Scan bitset to accumulate register pairs 2129 unsigned char regs[32]; 2130 int count = 0; 2131 for (int reg = 0; reg <= 31; reg++) { 2132 if (1 & bitset) 2133 regs[count++] = reg; 2134 bitset >>= 1; 2135 } 2136 regs[count++] = zr->encoding_nocheck(); 2137 count &= ~1; // Only push an even number of regs 2138 2139 // Always pushing full 128 bit registers. 2140 if (count) { 2141 stpq(as_FloatRegister(regs[0]), as_FloatRegister(regs[1]), Address(pre(stack, -count * wordSize * 2))); 2142 words_pushed += 2; 2143 } 2144 for (int i = 2; i < count; i += 2) { 2145 stpq(as_FloatRegister(regs[i]), as_FloatRegister(regs[i+1]), Address(stack, i * wordSize * 2)); 2146 words_pushed += 2; 2147 } 2148 2149 assert(words_pushed == count, "oops, pushed != count"); 2150 return count; 2151 } 2152 2153 int MacroAssembler::pop_fp(unsigned int bitset, Register stack) { 2154 int words_pushed = 0; 2155 2156 // Scan bitset to accumulate register pairs 2157 unsigned char regs[32]; 2158 int count = 0; 2159 for (int reg = 0; reg <= 31; reg++) { 2160 if (1 & bitset) 2161 regs[count++] = reg; 2162 bitset >>= 1; 2163 } 2164 regs[count++] = zr->encoding_nocheck(); 2165 count &= ~1; 2166 2167 for (int i = 2; i < count; i += 2) { 2168 ldpq(as_FloatRegister(regs[i]), as_FloatRegister(regs[i+1]), Address(stack, i * wordSize * 2)); 2169 words_pushed += 2; 2170 } 2171 if (count) { 2172 ldpq(as_FloatRegister(regs[0]), as_FloatRegister(regs[1]), Address(post(stack, count * wordSize * 2))); 2173 words_pushed += 2; 2174 } 2175 2176 assert(words_pushed == count, "oops, pushed != count"); 2177 2178 return count; 2179 } 2180 2181 #ifdef ASSERT 2182 void MacroAssembler::verify_heapbase(const char* msg) { 2183 #if 0 2184 assert (UseCompressedOops || UseCompressedClassPointers, "should be compressed"); 2185 assert (Universe::heap() != NULL, "java heap should be initialized"); 2186 if (!UseCompressedOops || Universe::ptr_base() == NULL) { 2187 // rheapbase is allocated as general register 2188 return; 2189 } 2190 if (CheckCompressedOops) { 2191 Label ok; 2192 push(1 << rscratch1->encoding(), sp); // cmpptr trashes rscratch1 2193 cmpptr(rheapbase, ExternalAddress((address)CompressedOops::ptrs_base_addr())); 2194 br(Assembler::EQ, ok); 2195 stop(msg); 2196 bind(ok); 2197 pop(1 << rscratch1->encoding(), sp); 2198 } 2199 #endif 2200 } 2201 #endif 2202 2203 void MacroAssembler::resolve_jobject(Register value, Register thread, Register tmp) { 2204 Label done, not_weak; 2205 cbz(value, done); // Use NULL as-is. 2206 2207 STATIC_ASSERT(JNIHandles::weak_tag_mask == 1u); 2208 tbz(r0, 0, not_weak); // Test for jweak tag. 2209 2210 // Resolve jweak. 2211 access_load_at(T_OBJECT, IN_NATIVE | ON_PHANTOM_OOP_REF, value, 2212 Address(value, -JNIHandles::weak_tag_value), tmp, thread); 2213 verify_oop(value); 2214 b(done); 2215 2216 bind(not_weak); 2217 // Resolve (untagged) jobject. 2218 access_load_at(T_OBJECT, IN_NATIVE, value, Address(value, 0), tmp, thread); 2219 verify_oop(value); 2220 bind(done); 2221 } 2222 2223 void MacroAssembler::stop(const char* msg) { 2224 BLOCK_COMMENT(msg); 2225 dcps1(0xdeae); 2226 emit_int64((uintptr_t)msg); 2227 } 2228 2229 void MacroAssembler::unimplemented(const char* what) { 2230 const char* buf = NULL; 2231 { 2232 ResourceMark rm; 2233 stringStream ss; 2234 ss.print("unimplemented: %s", what); 2235 buf = code_string(ss.as_string()); 2236 } 2237 stop(buf); 2238 } 2239 2240 // If a constant does not fit in an immediate field, generate some 2241 // number of MOV instructions and then perform the operation. 2242 void MacroAssembler::wrap_add_sub_imm_insn(Register Rd, Register Rn, unsigned imm, 2243 add_sub_imm_insn insn1, 2244 add_sub_reg_insn insn2) { 2245 assert(Rd != zr, "Rd = zr and not setting flags?"); 2246 if (operand_valid_for_add_sub_immediate((int)imm)) { 2247 (this->*insn1)(Rd, Rn, imm); 2248 } else { 2249 if (uabs(imm) < (1 << 24)) { 2250 (this->*insn1)(Rd, Rn, imm & -(1 << 12)); 2251 (this->*insn1)(Rd, Rd, imm & ((1 << 12)-1)); 2252 } else { 2253 assert_different_registers(Rd, Rn); 2254 mov(Rd, (uint64_t)imm); 2255 (this->*insn2)(Rd, Rn, Rd, LSL, 0); 2256 } 2257 } 2258 } 2259 2260 // Seperate vsn which sets the flags. Optimisations are more restricted 2261 // because we must set the flags correctly. 2262 void MacroAssembler::wrap_adds_subs_imm_insn(Register Rd, Register Rn, unsigned imm, 2263 add_sub_imm_insn insn1, 2264 add_sub_reg_insn insn2) { 2265 if (operand_valid_for_add_sub_immediate((int)imm)) { 2266 (this->*insn1)(Rd, Rn, imm); 2267 } else { 2268 assert_different_registers(Rd, Rn); 2269 assert(Rd != zr, "overflow in immediate operand"); 2270 mov(Rd, (uint64_t)imm); 2271 (this->*insn2)(Rd, Rn, Rd, LSL, 0); 2272 } 2273 } 2274 2275 2276 void MacroAssembler::add(Register Rd, Register Rn, RegisterOrConstant increment) { 2277 if (increment.is_register()) { 2278 add(Rd, Rn, increment.as_register()); 2279 } else { 2280 add(Rd, Rn, increment.as_constant()); 2281 } 2282 } 2283 2284 void MacroAssembler::addw(Register Rd, Register Rn, RegisterOrConstant increment) { 2285 if (increment.is_register()) { 2286 addw(Rd, Rn, increment.as_register()); 2287 } else { 2288 addw(Rd, Rn, increment.as_constant()); 2289 } 2290 } 2291 2292 void MacroAssembler::sub(Register Rd, Register Rn, RegisterOrConstant decrement) { 2293 if (decrement.is_register()) { 2294 sub(Rd, Rn, decrement.as_register()); 2295 } else { 2296 sub(Rd, Rn, decrement.as_constant()); 2297 } 2298 } 2299 2300 void MacroAssembler::subw(Register Rd, Register Rn, RegisterOrConstant decrement) { 2301 if (decrement.is_register()) { 2302 subw(Rd, Rn, decrement.as_register()); 2303 } else { 2304 subw(Rd, Rn, decrement.as_constant()); 2305 } 2306 } 2307 2308 void MacroAssembler::reinit_heapbase() 2309 { 2310 if (UseCompressedOops) { 2311 if (Universe::is_fully_initialized()) { 2312 mov(rheapbase, CompressedOops::ptrs_base()); 2313 } else { 2314 lea(rheapbase, ExternalAddress((address)CompressedOops::ptrs_base_addr())); 2315 ldr(rheapbase, Address(rheapbase)); 2316 } 2317 } 2318 } 2319 2320 // this simulates the behaviour of the x86 cmpxchg instruction using a 2321 // load linked/store conditional pair. we use the acquire/release 2322 // versions of these instructions so that we flush pending writes as 2323 // per Java semantics. 2324 2325 // n.b the x86 version assumes the old value to be compared against is 2326 // in rax and updates rax with the value located in memory if the 2327 // cmpxchg fails. we supply a register for the old value explicitly 2328 2329 // the aarch64 load linked/store conditional instructions do not 2330 // accept an offset. so, unlike x86, we must provide a plain register 2331 // to identify the memory word to be compared/exchanged rather than a 2332 // register+offset Address. 2333 2334 void MacroAssembler::cmpxchgptr(Register oldv, Register newv, Register addr, Register tmp, 2335 Label &succeed, Label *fail) { 2336 // oldv holds comparison value 2337 // newv holds value to write in exchange 2338 // addr identifies memory word to compare against/update 2339 if (UseLSE) { 2340 mov(tmp, oldv); 2341 casal(Assembler::xword, oldv, newv, addr); 2342 cmp(tmp, oldv); 2343 br(Assembler::EQ, succeed); 2344 membar(AnyAny); 2345 } else { 2346 Label retry_load, nope; 2347 if ((VM_Version::features() & VM_Version::CPU_STXR_PREFETCH)) 2348 prfm(Address(addr), PSTL1STRM); 2349 bind(retry_load); 2350 // flush and load exclusive from the memory location 2351 // and fail if it is not what we expect 2352 ldaxr(tmp, addr); 2353 cmp(tmp, oldv); 2354 br(Assembler::NE, nope); 2355 // if we store+flush with no intervening write tmp wil be zero 2356 stlxr(tmp, newv, addr); 2357 cbzw(tmp, succeed); 2358 // retry so we only ever return after a load fails to compare 2359 // ensures we don't return a stale value after a failed write. 2360 b(retry_load); 2361 // if the memory word differs we return it in oldv and signal a fail 2362 bind(nope); 2363 membar(AnyAny); 2364 mov(oldv, tmp); 2365 } 2366 if (fail) 2367 b(*fail); 2368 } 2369 2370 void MacroAssembler::cmpxchg_obj_header(Register oldv, Register newv, Register obj, Register tmp, 2371 Label &succeed, Label *fail) { 2372 assert(oopDesc::mark_offset_in_bytes() == 0, "assumption"); 2373 cmpxchgptr(oldv, newv, obj, tmp, succeed, fail); 2374 } 2375 2376 void MacroAssembler::cmpxchgw(Register oldv, Register newv, Register addr, Register tmp, 2377 Label &succeed, Label *fail) { 2378 // oldv holds comparison value 2379 // newv holds value to write in exchange 2380 // addr identifies memory word to compare against/update 2381 // tmp returns 0/1 for success/failure 2382 if (UseLSE) { 2383 mov(tmp, oldv); 2384 casal(Assembler::word, oldv, newv, addr); 2385 cmp(tmp, oldv); 2386 br(Assembler::EQ, succeed); 2387 membar(AnyAny); 2388 } else { 2389 Label retry_load, nope; 2390 if ((VM_Version::features() & VM_Version::CPU_STXR_PREFETCH)) 2391 prfm(Address(addr), PSTL1STRM); 2392 bind(retry_load); 2393 // flush and load exclusive from the memory location 2394 // and fail if it is not what we expect 2395 ldaxrw(tmp, addr); 2396 cmp(tmp, oldv); 2397 br(Assembler::NE, nope); 2398 // if we store+flush with no intervening write tmp wil be zero 2399 stlxrw(tmp, newv, addr); 2400 cbzw(tmp, succeed); 2401 // retry so we only ever return after a load fails to compare 2402 // ensures we don't return a stale value after a failed write. 2403 b(retry_load); 2404 // if the memory word differs we return it in oldv and signal a fail 2405 bind(nope); 2406 membar(AnyAny); 2407 mov(oldv, tmp); 2408 } 2409 if (fail) 2410 b(*fail); 2411 } 2412 2413 // A generic CAS; success or failure is in the EQ flag. A weak CAS 2414 // doesn't retry and may fail spuriously. If the oldval is wanted, 2415 // Pass a register for the result, otherwise pass noreg. 2416 2417 // Clobbers rscratch1 2418 void MacroAssembler::cmpxchg(Register addr, Register expected, 2419 Register new_val, 2420 enum operand_size size, 2421 bool acquire, bool release, 2422 bool weak, 2423 Register result) { 2424 if (result == noreg) result = rscratch1; 2425 BLOCK_COMMENT("cmpxchg {"); 2426 if (UseLSE) { 2427 mov(result, expected); 2428 lse_cas(result, new_val, addr, size, acquire, release, /*not_pair*/ true); 2429 compare_eq(result, expected, size); 2430 } else { 2431 Label retry_load, done; 2432 if ((VM_Version::features() & VM_Version::CPU_STXR_PREFETCH)) 2433 prfm(Address(addr), PSTL1STRM); 2434 bind(retry_load); 2435 load_exclusive(result, addr, size, acquire); 2436 compare_eq(result, expected, size); 2437 br(Assembler::NE, done); 2438 store_exclusive(rscratch1, new_val, addr, size, release); 2439 if (weak) { 2440 cmpw(rscratch1, 0u); // If the store fails, return NE to our caller. 2441 } else { 2442 cbnzw(rscratch1, retry_load); 2443 } 2444 bind(done); 2445 } 2446 BLOCK_COMMENT("} cmpxchg"); 2447 } 2448 2449 // A generic comparison. Only compares for equality, clobbers rscratch1. 2450 void MacroAssembler::compare_eq(Register rm, Register rn, enum operand_size size) { 2451 if (size == xword) { 2452 cmp(rm, rn); 2453 } else if (size == word) { 2454 cmpw(rm, rn); 2455 } else if (size == halfword) { 2456 eorw(rscratch1, rm, rn); 2457 ands(zr, rscratch1, 0xffff); 2458 } else if (size == byte) { 2459 eorw(rscratch1, rm, rn); 2460 ands(zr, rscratch1, 0xff); 2461 } else { 2462 ShouldNotReachHere(); 2463 } 2464 } 2465 2466 2467 static bool different(Register a, RegisterOrConstant b, Register c) { 2468 if (b.is_constant()) 2469 return a != c; 2470 else 2471 return a != b.as_register() && a != c && b.as_register() != c; 2472 } 2473 2474 #define ATOMIC_OP(NAME, LDXR, OP, IOP, AOP, STXR, sz) \ 2475 void MacroAssembler::atomic_##NAME(Register prev, RegisterOrConstant incr, Register addr) { \ 2476 if (UseLSE) { \ 2477 prev = prev->is_valid() ? prev : zr; \ 2478 if (incr.is_register()) { \ 2479 AOP(sz, incr.as_register(), prev, addr); \ 2480 } else { \ 2481 mov(rscratch2, incr.as_constant()); \ 2482 AOP(sz, rscratch2, prev, addr); \ 2483 } \ 2484 return; \ 2485 } \ 2486 Register result = rscratch2; \ 2487 if (prev->is_valid()) \ 2488 result = different(prev, incr, addr) ? prev : rscratch2; \ 2489 \ 2490 Label retry_load; \ 2491 if ((VM_Version::features() & VM_Version::CPU_STXR_PREFETCH)) \ 2492 prfm(Address(addr), PSTL1STRM); \ 2493 bind(retry_load); \ 2494 LDXR(result, addr); \ 2495 OP(rscratch1, result, incr); \ 2496 STXR(rscratch2, rscratch1, addr); \ 2497 cbnzw(rscratch2, retry_load); \ 2498 if (prev->is_valid() && prev != result) { \ 2499 IOP(prev, rscratch1, incr); \ 2500 } \ 2501 } 2502 2503 ATOMIC_OP(add, ldxr, add, sub, ldadd, stxr, Assembler::xword) 2504 ATOMIC_OP(addw, ldxrw, addw, subw, ldadd, stxrw, Assembler::word) 2505 ATOMIC_OP(addal, ldaxr, add, sub, ldaddal, stlxr, Assembler::xword) 2506 ATOMIC_OP(addalw, ldaxrw, addw, subw, ldaddal, stlxrw, Assembler::word) 2507 2508 #undef ATOMIC_OP 2509 2510 #define ATOMIC_XCHG(OP, AOP, LDXR, STXR, sz) \ 2511 void MacroAssembler::atomic_##OP(Register prev, Register newv, Register addr) { \ 2512 if (UseLSE) { \ 2513 prev = prev->is_valid() ? prev : zr; \ 2514 AOP(sz, newv, prev, addr); \ 2515 return; \ 2516 } \ 2517 Register result = rscratch2; \ 2518 if (prev->is_valid()) \ 2519 result = different(prev, newv, addr) ? prev : rscratch2; \ 2520 \ 2521 Label retry_load; \ 2522 if ((VM_Version::features() & VM_Version::CPU_STXR_PREFETCH)) \ 2523 prfm(Address(addr), PSTL1STRM); \ 2524 bind(retry_load); \ 2525 LDXR(result, addr); \ 2526 STXR(rscratch1, newv, addr); \ 2527 cbnzw(rscratch1, retry_load); \ 2528 if (prev->is_valid() && prev != result) \ 2529 mov(prev, result); \ 2530 } 2531 2532 ATOMIC_XCHG(xchg, swp, ldxr, stxr, Assembler::xword) 2533 ATOMIC_XCHG(xchgw, swp, ldxrw, stxrw, Assembler::word) 2534 ATOMIC_XCHG(xchgal, swpal, ldaxr, stlxr, Assembler::xword) 2535 ATOMIC_XCHG(xchgalw, swpal, ldaxrw, stlxrw, Assembler::word) 2536 2537 #undef ATOMIC_XCHG 2538 2539 #ifndef PRODUCT 2540 extern "C" void findpc(intptr_t x); 2541 #endif 2542 2543 void MacroAssembler::debug64(char* msg, int64_t pc, int64_t regs[]) 2544 { 2545 // In order to get locks to work, we need to fake a in_VM state 2546 if (ShowMessageBoxOnError ) { 2547 JavaThread* thread = JavaThread::current(); 2548 JavaThreadState saved_state = thread->thread_state(); 2549 thread->set_thread_state(_thread_in_vm); 2550 #ifndef PRODUCT 2551 if (CountBytecodes || TraceBytecodes || StopInterpreterAt) { 2552 ttyLocker ttyl; 2553 BytecodeCounter::print(); 2554 } 2555 #endif 2556 if (os::message_box(msg, "Execution stopped, print registers?")) { 2557 ttyLocker ttyl; 2558 tty->print_cr(" pc = 0x%016lx", pc); 2559 #ifndef PRODUCT 2560 tty->cr(); 2561 findpc(pc); 2562 tty->cr(); 2563 #endif 2564 tty->print_cr(" r0 = 0x%016lx", regs[0]); 2565 tty->print_cr(" r1 = 0x%016lx", regs[1]); 2566 tty->print_cr(" r2 = 0x%016lx", regs[2]); 2567 tty->print_cr(" r3 = 0x%016lx", regs[3]); 2568 tty->print_cr(" r4 = 0x%016lx", regs[4]); 2569 tty->print_cr(" r5 = 0x%016lx", regs[5]); 2570 tty->print_cr(" r6 = 0x%016lx", regs[6]); 2571 tty->print_cr(" r7 = 0x%016lx", regs[7]); 2572 tty->print_cr(" r8 = 0x%016lx", regs[8]); 2573 tty->print_cr(" r9 = 0x%016lx", regs[9]); 2574 tty->print_cr("r10 = 0x%016lx", regs[10]); 2575 tty->print_cr("r11 = 0x%016lx", regs[11]); 2576 tty->print_cr("r12 = 0x%016lx", regs[12]); 2577 tty->print_cr("r13 = 0x%016lx", regs[13]); 2578 tty->print_cr("r14 = 0x%016lx", regs[14]); 2579 tty->print_cr("r15 = 0x%016lx", regs[15]); 2580 tty->print_cr("r16 = 0x%016lx", regs[16]); 2581 tty->print_cr("r17 = 0x%016lx", regs[17]); 2582 tty->print_cr("r18 = 0x%016lx", regs[18]); 2583 tty->print_cr("r19 = 0x%016lx", regs[19]); 2584 tty->print_cr("r20 = 0x%016lx", regs[20]); 2585 tty->print_cr("r21 = 0x%016lx", regs[21]); 2586 tty->print_cr("r22 = 0x%016lx", regs[22]); 2587 tty->print_cr("r23 = 0x%016lx", regs[23]); 2588 tty->print_cr("r24 = 0x%016lx", regs[24]); 2589 tty->print_cr("r25 = 0x%016lx", regs[25]); 2590 tty->print_cr("r26 = 0x%016lx", regs[26]); 2591 tty->print_cr("r27 = 0x%016lx", regs[27]); 2592 tty->print_cr("r28 = 0x%016lx", regs[28]); 2593 tty->print_cr("r30 = 0x%016lx", regs[30]); 2594 tty->print_cr("r31 = 0x%016lx", regs[31]); 2595 BREAKPOINT; 2596 } 2597 } 2598 fatal("DEBUG MESSAGE: %s", msg); 2599 } 2600 2601 void MacroAssembler::push_call_clobbered_registers() { 2602 int step = 4 * wordSize; 2603 push(RegSet::range(r0, r18) - RegSet::of(rscratch1, rscratch2), sp); 2604 sub(sp, sp, step); 2605 mov(rscratch1, -step); 2606 // Push v0-v7, v16-v31. 2607 for (int i = 31; i>= 4; i -= 4) { 2608 if (i <= v7->encoding() || i >= v16->encoding()) 2609 st1(as_FloatRegister(i-3), as_FloatRegister(i-2), as_FloatRegister(i-1), 2610 as_FloatRegister(i), T1D, Address(post(sp, rscratch1))); 2611 } 2612 st1(as_FloatRegister(0), as_FloatRegister(1), as_FloatRegister(2), 2613 as_FloatRegister(3), T1D, Address(sp)); 2614 } 2615 2616 void MacroAssembler::pop_call_clobbered_registers() { 2617 for (int i = 0; i < 32; i += 4) { 2618 if (i <= v7->encoding() || i >= v16->encoding()) 2619 ld1(as_FloatRegister(i), as_FloatRegister(i+1), as_FloatRegister(i+2), 2620 as_FloatRegister(i+3), T1D, Address(post(sp, 4 * wordSize))); 2621 } 2622 2623 pop(RegSet::range(r0, r18) - RegSet::of(rscratch1, rscratch2), sp); 2624 } 2625 2626 void MacroAssembler::push_CPU_state(bool save_vectors) { 2627 int step = (save_vectors ? 8 : 4) * wordSize; 2628 push(0x3fffffff, sp); // integer registers except lr & sp 2629 mov(rscratch1, -step); 2630 sub(sp, sp, step); 2631 for (int i = 28; i >= 4; i -= 4) { 2632 st1(as_FloatRegister(i), as_FloatRegister(i+1), as_FloatRegister(i+2), 2633 as_FloatRegister(i+3), save_vectors ? T2D : T1D, Address(post(sp, rscratch1))); 2634 } 2635 st1(v0, v1, v2, v3, save_vectors ? T2D : T1D, sp); 2636 } 2637 2638 void MacroAssembler::pop_CPU_state(bool restore_vectors) { 2639 int step = (restore_vectors ? 8 : 4) * wordSize; 2640 for (int i = 0; i <= 28; i += 4) 2641 ld1(as_FloatRegister(i), as_FloatRegister(i+1), as_FloatRegister(i+2), 2642 as_FloatRegister(i+3), restore_vectors ? T2D : T1D, Address(post(sp, step))); 2643 pop(0x3fffffff, sp); // integer registers except lr & sp 2644 } 2645 2646 /** 2647 * Helpers for multiply_to_len(). 2648 */ 2649 void MacroAssembler::add2_with_carry(Register final_dest_hi, Register dest_hi, Register dest_lo, 2650 Register src1, Register src2) { 2651 adds(dest_lo, dest_lo, src1); 2652 adc(dest_hi, dest_hi, zr); 2653 adds(dest_lo, dest_lo, src2); 2654 adc(final_dest_hi, dest_hi, zr); 2655 } 2656 2657 // Generate an address from (r + r1 extend offset). "size" is the 2658 // size of the operand. The result may be in rscratch2. 2659 Address MacroAssembler::offsetted_address(Register r, Register r1, 2660 Address::extend ext, int offset, int size) { 2661 if (offset || (ext.shift() % size != 0)) { 2662 lea(rscratch2, Address(r, r1, ext)); 2663 return Address(rscratch2, offset); 2664 } else { 2665 return Address(r, r1, ext); 2666 } 2667 } 2668 2669 Address MacroAssembler::spill_address(int size, int offset, Register tmp) 2670 { 2671 assert(offset >= 0, "spill to negative address?"); 2672 // Offset reachable ? 2673 // Not aligned - 9 bits signed offset 2674 // Aligned - 12 bits unsigned offset shifted 2675 Register base = sp; 2676 if ((offset & (size-1)) && offset >= (1<<8)) { 2677 add(tmp, base, offset & ((1<<12)-1)); 2678 base = tmp; 2679 offset &= -1u<<12; 2680 } 2681 2682 if (offset >= (1<<12) * size) { 2683 add(tmp, base, offset & (((1<<12)-1)<<12)); 2684 base = tmp; 2685 offset &= ~(((1<<12)-1)<<12); 2686 } 2687 2688 return Address(base, offset); 2689 } 2690 2691 // Checks whether offset is aligned. 2692 // Returns true if it is, else false. 2693 bool MacroAssembler::merge_alignment_check(Register base, 2694 size_t size, 2695 long cur_offset, 2696 long prev_offset) const { 2697 if (AvoidUnalignedAccesses) { 2698 if (base == sp) { 2699 // Checks whether low offset if aligned to pair of registers. 2700 long pair_mask = size * 2 - 1; 2701 long offset = prev_offset > cur_offset ? cur_offset : prev_offset; 2702 return (offset & pair_mask) == 0; 2703 } else { // If base is not sp, we can't guarantee the access is aligned. 2704 return false; 2705 } 2706 } else { 2707 long mask = size - 1; 2708 // Load/store pair instruction only supports element size aligned offset. 2709 return (cur_offset & mask) == 0 && (prev_offset & mask) == 0; 2710 } 2711 } 2712 2713 // Checks whether current and previous loads/stores can be merged. 2714 // Returns true if it can be merged, else false. 2715 bool MacroAssembler::ldst_can_merge(Register rt, 2716 const Address &adr, 2717 size_t cur_size_in_bytes, 2718 bool is_store) const { 2719 address prev = pc() - NativeInstruction::instruction_size; 2720 address last = code()->last_insn(); 2721 2722 if (last == NULL || !nativeInstruction_at(last)->is_Imm_LdSt()) { 2723 return false; 2724 } 2725 2726 if (adr.getMode() != Address::base_plus_offset || prev != last) { 2727 return false; 2728 } 2729 2730 NativeLdSt* prev_ldst = NativeLdSt_at(prev); 2731 size_t prev_size_in_bytes = prev_ldst->size_in_bytes(); 2732 2733 assert(prev_size_in_bytes == 4 || prev_size_in_bytes == 8, "only supports 64/32bit merging."); 2734 assert(cur_size_in_bytes == 4 || cur_size_in_bytes == 8, "only supports 64/32bit merging."); 2735 2736 if (cur_size_in_bytes != prev_size_in_bytes || is_store != prev_ldst->is_store()) { 2737 return false; 2738 } 2739 2740 long max_offset = 63 * prev_size_in_bytes; 2741 long min_offset = -64 * prev_size_in_bytes; 2742 2743 assert(prev_ldst->is_not_pre_post_index(), "pre-index or post-index is not supported to be merged."); 2744 2745 // Only same base can be merged. 2746 if (adr.base() != prev_ldst->base()) { 2747 return false; 2748 } 2749 2750 long cur_offset = adr.offset(); 2751 long prev_offset = prev_ldst->offset(); 2752 size_t diff = abs(cur_offset - prev_offset); 2753 if (diff != prev_size_in_bytes) { 2754 return false; 2755 } 2756 2757 // Following cases can not be merged: 2758 // ldr x2, [x2, #8] 2759 // ldr x3, [x2, #16] 2760 // or: 2761 // ldr x2, [x3, #8] 2762 // ldr x2, [x3, #16] 2763 // If t1 and t2 is the same in "ldp t1, t2, [xn, #imm]", we'll get SIGILL. 2764 if (!is_store && (adr.base() == prev_ldst->target() || rt == prev_ldst->target())) { 2765 return false; 2766 } 2767 2768 long low_offset = prev_offset > cur_offset ? cur_offset : prev_offset; 2769 // Offset range must be in ldp/stp instruction's range. 2770 if (low_offset > max_offset || low_offset < min_offset) { 2771 return false; 2772 } 2773 2774 if (merge_alignment_check(adr.base(), prev_size_in_bytes, cur_offset, prev_offset)) { 2775 return true; 2776 } 2777 2778 return false; 2779 } 2780 2781 // Merge current load/store with previous load/store into ldp/stp. 2782 void MacroAssembler::merge_ldst(Register rt, 2783 const Address &adr, 2784 size_t cur_size_in_bytes, 2785 bool is_store) { 2786 2787 assert(ldst_can_merge(rt, adr, cur_size_in_bytes, is_store) == true, "cur and prev must be able to be merged."); 2788 2789 Register rt_low, rt_high; 2790 address prev = pc() - NativeInstruction::instruction_size; 2791 NativeLdSt* prev_ldst = NativeLdSt_at(prev); 2792 2793 long offset; 2794 2795 if (adr.offset() < prev_ldst->offset()) { 2796 offset = adr.offset(); 2797 rt_low = rt; 2798 rt_high = prev_ldst->target(); 2799 } else { 2800 offset = prev_ldst->offset(); 2801 rt_low = prev_ldst->target(); 2802 rt_high = rt; 2803 } 2804 2805 Address adr_p = Address(prev_ldst->base(), offset); 2806 // Overwrite previous generated binary. 2807 code_section()->set_end(prev); 2808 2809 const int sz = prev_ldst->size_in_bytes(); 2810 assert(sz == 8 || sz == 4, "only supports 64/32bit merging."); 2811 if (!is_store) { 2812 BLOCK_COMMENT("merged ldr pair"); 2813 if (sz == 8) { 2814 ldp(rt_low, rt_high, adr_p); 2815 } else { 2816 ldpw(rt_low, rt_high, adr_p); 2817 } 2818 } else { 2819 BLOCK_COMMENT("merged str pair"); 2820 if (sz == 8) { 2821 stp(rt_low, rt_high, adr_p); 2822 } else { 2823 stpw(rt_low, rt_high, adr_p); 2824 } 2825 } 2826 } 2827 2828 /** 2829 * Multiply 64 bit by 64 bit first loop. 2830 */ 2831 void MacroAssembler::multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart, 2832 Register y, Register y_idx, Register z, 2833 Register carry, Register product, 2834 Register idx, Register kdx) { 2835 // 2836 // jlong carry, x[], y[], z[]; 2837 // for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) { 2838 // huge_128 product = y[idx] * x[xstart] + carry; 2839 // z[kdx] = (jlong)product; 2840 // carry = (jlong)(product >>> 64); 2841 // } 2842 // z[xstart] = carry; 2843 // 2844 2845 Label L_first_loop, L_first_loop_exit; 2846 Label L_one_x, L_one_y, L_multiply; 2847 2848 subsw(xstart, xstart, 1); 2849 br(Assembler::MI, L_one_x); 2850 2851 lea(rscratch1, Address(x, xstart, Address::lsl(LogBytesPerInt))); 2852 ldr(x_xstart, Address(rscratch1)); 2853 ror(x_xstart, x_xstart, 32); // convert big-endian to little-endian 2854 2855 bind(L_first_loop); 2856 subsw(idx, idx, 1); 2857 br(Assembler::MI, L_first_loop_exit); 2858 subsw(idx, idx, 1); 2859 br(Assembler::MI, L_one_y); 2860 lea(rscratch1, Address(y, idx, Address::uxtw(LogBytesPerInt))); 2861 ldr(y_idx, Address(rscratch1)); 2862 ror(y_idx, y_idx, 32); // convert big-endian to little-endian 2863 bind(L_multiply); 2864 2865 // AArch64 has a multiply-accumulate instruction that we can't use 2866 // here because it has no way to process carries, so we have to use 2867 // separate add and adc instructions. Bah. 2868 umulh(rscratch1, x_xstart, y_idx); // x_xstart * y_idx -> rscratch1:product 2869 mul(product, x_xstart, y_idx); 2870 adds(product, product, carry); 2871 adc(carry, rscratch1, zr); // x_xstart * y_idx + carry -> carry:product 2872 2873 subw(kdx, kdx, 2); 2874 ror(product, product, 32); // back to big-endian 2875 str(product, offsetted_address(z, kdx, Address::uxtw(LogBytesPerInt), 0, BytesPerLong)); 2876 2877 b(L_first_loop); 2878 2879 bind(L_one_y); 2880 ldrw(y_idx, Address(y, 0)); 2881 b(L_multiply); 2882 2883 bind(L_one_x); 2884 ldrw(x_xstart, Address(x, 0)); 2885 b(L_first_loop); 2886 2887 bind(L_first_loop_exit); 2888 } 2889 2890 /** 2891 * Multiply 128 bit by 128. Unrolled inner loop. 2892 * 2893 */ 2894 void MacroAssembler::multiply_128_x_128_loop(Register y, Register z, 2895 Register carry, Register carry2, 2896 Register idx, Register jdx, 2897 Register yz_idx1, Register yz_idx2, 2898 Register tmp, Register tmp3, Register tmp4, 2899 Register tmp6, Register product_hi) { 2900 2901 // jlong carry, x[], y[], z[]; 2902 // int kdx = ystart+1; 2903 // for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop 2904 // huge_128 tmp3 = (y[idx+1] * product_hi) + z[kdx+idx+1] + carry; 2905 // jlong carry2 = (jlong)(tmp3 >>> 64); 2906 // huge_128 tmp4 = (y[idx] * product_hi) + z[kdx+idx] + carry2; 2907 // carry = (jlong)(tmp4 >>> 64); 2908 // z[kdx+idx+1] = (jlong)tmp3; 2909 // z[kdx+idx] = (jlong)tmp4; 2910 // } 2911 // idx += 2; 2912 // if (idx > 0) { 2913 // yz_idx1 = (y[idx] * product_hi) + z[kdx+idx] + carry; 2914 // z[kdx+idx] = (jlong)yz_idx1; 2915 // carry = (jlong)(yz_idx1 >>> 64); 2916 // } 2917 // 2918 2919 Label L_third_loop, L_third_loop_exit, L_post_third_loop_done; 2920 2921 lsrw(jdx, idx, 2); 2922 2923 bind(L_third_loop); 2924 2925 subsw(jdx, jdx, 1); 2926 br(Assembler::MI, L_third_loop_exit); 2927 subw(idx, idx, 4); 2928 2929 lea(rscratch1, Address(y, idx, Address::uxtw(LogBytesPerInt))); 2930 2931 ldp(yz_idx2, yz_idx1, Address(rscratch1, 0)); 2932 2933 lea(tmp6, Address(z, idx, Address::uxtw(LogBytesPerInt))); 2934 2935 ror(yz_idx1, yz_idx1, 32); // convert big-endian to little-endian 2936 ror(yz_idx2, yz_idx2, 32); 2937 2938 ldp(rscratch2, rscratch1, Address(tmp6, 0)); 2939 2940 mul(tmp3, product_hi, yz_idx1); // yz_idx1 * product_hi -> tmp4:tmp3 2941 umulh(tmp4, product_hi, yz_idx1); 2942 2943 ror(rscratch1, rscratch1, 32); // convert big-endian to little-endian 2944 ror(rscratch2, rscratch2, 32); 2945 2946 mul(tmp, product_hi, yz_idx2); // yz_idx2 * product_hi -> carry2:tmp 2947 umulh(carry2, product_hi, yz_idx2); 2948 2949 // propagate sum of both multiplications into carry:tmp4:tmp3 2950 adds(tmp3, tmp3, carry); 2951 adc(tmp4, tmp4, zr); 2952 adds(tmp3, tmp3, rscratch1); 2953 adcs(tmp4, tmp4, tmp); 2954 adc(carry, carry2, zr); 2955 adds(tmp4, tmp4, rscratch2); 2956 adc(carry, carry, zr); 2957 2958 ror(tmp3, tmp3, 32); // convert little-endian to big-endian 2959 ror(tmp4, tmp4, 32); 2960 stp(tmp4, tmp3, Address(tmp6, 0)); 2961 2962 b(L_third_loop); 2963 bind (L_third_loop_exit); 2964 2965 andw (idx, idx, 0x3); 2966 cbz(idx, L_post_third_loop_done); 2967 2968 Label L_check_1; 2969 subsw(idx, idx, 2); 2970 br(Assembler::MI, L_check_1); 2971 2972 lea(rscratch1, Address(y, idx, Address::uxtw(LogBytesPerInt))); 2973 ldr(yz_idx1, Address(rscratch1, 0)); 2974 ror(yz_idx1, yz_idx1, 32); 2975 mul(tmp3, product_hi, yz_idx1); // yz_idx1 * product_hi -> tmp4:tmp3 2976 umulh(tmp4, product_hi, yz_idx1); 2977 lea(rscratch1, Address(z, idx, Address::uxtw(LogBytesPerInt))); 2978 ldr(yz_idx2, Address(rscratch1, 0)); 2979 ror(yz_idx2, yz_idx2, 32); 2980 2981 add2_with_carry(carry, tmp4, tmp3, carry, yz_idx2); 2982 2983 ror(tmp3, tmp3, 32); 2984 str(tmp3, Address(rscratch1, 0)); 2985 2986 bind (L_check_1); 2987 2988 andw (idx, idx, 0x1); 2989 subsw(idx, idx, 1); 2990 br(Assembler::MI, L_post_third_loop_done); 2991 ldrw(tmp4, Address(y, idx, Address::uxtw(LogBytesPerInt))); 2992 mul(tmp3, tmp4, product_hi); // tmp4 * product_hi -> carry2:tmp3 2993 umulh(carry2, tmp4, product_hi); 2994 ldrw(tmp4, Address(z, idx, Address::uxtw(LogBytesPerInt))); 2995 2996 add2_with_carry(carry2, tmp3, tmp4, carry); 2997 2998 strw(tmp3, Address(z, idx, Address::uxtw(LogBytesPerInt))); 2999 extr(carry, carry2, tmp3, 32); 3000 3001 bind(L_post_third_loop_done); 3002 } 3003 3004 /** 3005 * Code for BigInteger::multiplyToLen() instrinsic. 3006 * 3007 * r0: x 3008 * r1: xlen 3009 * r2: y 3010 * r3: ylen 3011 * r4: z 3012 * r5: zlen 3013 * r10: tmp1 3014 * r11: tmp2 3015 * r12: tmp3 3016 * r13: tmp4 3017 * r14: tmp5 3018 * r15: tmp6 3019 * r16: tmp7 3020 * 3021 */ 3022 void MacroAssembler::multiply_to_len(Register x, Register xlen, Register y, Register ylen, 3023 Register z, Register zlen, 3024 Register tmp1, Register tmp2, Register tmp3, Register tmp4, 3025 Register tmp5, Register tmp6, Register product_hi) { 3026 3027 assert_different_registers(x, xlen, y, ylen, z, zlen, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6); 3028 3029 const Register idx = tmp1; 3030 const Register kdx = tmp2; 3031 const Register xstart = tmp3; 3032 3033 const Register y_idx = tmp4; 3034 const Register carry = tmp5; 3035 const Register product = xlen; 3036 const Register x_xstart = zlen; // reuse register 3037 3038 // First Loop. 3039 // 3040 // final static long LONG_MASK = 0xffffffffL; 3041 // int xstart = xlen - 1; 3042 // int ystart = ylen - 1; 3043 // long carry = 0; 3044 // for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) { 3045 // long product = (y[idx] & LONG_MASK) * (x[xstart] & LONG_MASK) + carry; 3046 // z[kdx] = (int)product; 3047 // carry = product >>> 32; 3048 // } 3049 // z[xstart] = (int)carry; 3050 // 3051 3052 movw(idx, ylen); // idx = ylen; 3053 movw(kdx, zlen); // kdx = xlen+ylen; 3054 mov(carry, zr); // carry = 0; 3055 3056 Label L_done; 3057 3058 movw(xstart, xlen); 3059 subsw(xstart, xstart, 1); 3060 br(Assembler::MI, L_done); 3061 3062 multiply_64_x_64_loop(x, xstart, x_xstart, y, y_idx, z, carry, product, idx, kdx); 3063 3064 Label L_second_loop; 3065 cbzw(kdx, L_second_loop); 3066 3067 Label L_carry; 3068 subw(kdx, kdx, 1); 3069 cbzw(kdx, L_carry); 3070 3071 strw(carry, Address(z, kdx, Address::uxtw(LogBytesPerInt))); 3072 lsr(carry, carry, 32); 3073 subw(kdx, kdx, 1); 3074 3075 bind(L_carry); 3076 strw(carry, Address(z, kdx, Address::uxtw(LogBytesPerInt))); 3077 3078 // Second and third (nested) loops. 3079 // 3080 // for (int i = xstart-1; i >= 0; i--) { // Second loop 3081 // carry = 0; 3082 // for (int jdx=ystart, k=ystart+1+i; jdx >= 0; jdx--, k--) { // Third loop 3083 // long product = (y[jdx] & LONG_MASK) * (x[i] & LONG_MASK) + 3084 // (z[k] & LONG_MASK) + carry; 3085 // z[k] = (int)product; 3086 // carry = product >>> 32; 3087 // } 3088 // z[i] = (int)carry; 3089 // } 3090 // 3091 // i = xlen, j = tmp1, k = tmp2, carry = tmp5, x[i] = product_hi 3092 3093 const Register jdx = tmp1; 3094 3095 bind(L_second_loop); 3096 mov(carry, zr); // carry = 0; 3097 movw(jdx, ylen); // j = ystart+1 3098 3099 subsw(xstart, xstart, 1); // i = xstart-1; 3100 br(Assembler::MI, L_done); 3101 3102 str(z, Address(pre(sp, -4 * wordSize))); 3103 3104 Label L_last_x; 3105 lea(z, offsetted_address(z, xstart, Address::uxtw(LogBytesPerInt), 4, BytesPerInt)); // z = z + k - j 3106 subsw(xstart, xstart, 1); // i = xstart-1; 3107 br(Assembler::MI, L_last_x); 3108 3109 lea(rscratch1, Address(x, xstart, Address::uxtw(LogBytesPerInt))); 3110 ldr(product_hi, Address(rscratch1)); 3111 ror(product_hi, product_hi, 32); // convert big-endian to little-endian 3112 3113 Label L_third_loop_prologue; 3114 bind(L_third_loop_prologue); 3115 3116 str(ylen, Address(sp, wordSize)); 3117 stp(x, xstart, Address(sp, 2 * wordSize)); 3118 multiply_128_x_128_loop(y, z, carry, x, jdx, ylen, product, 3119 tmp2, x_xstart, tmp3, tmp4, tmp6, product_hi); 3120 ldp(z, ylen, Address(post(sp, 2 * wordSize))); 3121 ldp(x, xlen, Address(post(sp, 2 * wordSize))); // copy old xstart -> xlen 3122 3123 addw(tmp3, xlen, 1); 3124 strw(carry, Address(z, tmp3, Address::uxtw(LogBytesPerInt))); 3125 subsw(tmp3, tmp3, 1); 3126 br(Assembler::MI, L_done); 3127 3128 lsr(carry, carry, 32); 3129 strw(carry, Address(z, tmp3, Address::uxtw(LogBytesPerInt))); 3130 b(L_second_loop); 3131 3132 // Next infrequent code is moved outside loops. 3133 bind(L_last_x); 3134 ldrw(product_hi, Address(x, 0)); 3135 b(L_third_loop_prologue); 3136 3137 bind(L_done); 3138 } 3139 3140 // Code for BigInteger::mulAdd instrinsic 3141 // out = r0 3142 // in = r1 3143 // offset = r2 (already out.length-offset) 3144 // len = r3 3145 // k = r4 3146 // 3147 // pseudo code from java implementation: 3148 // carry = 0; 3149 // offset = out.length-offset - 1; 3150 // for (int j=len-1; j >= 0; j--) { 3151 // product = (in[j] & LONG_MASK) * kLong + (out[offset] & LONG_MASK) + carry; 3152 // out[offset--] = (int)product; 3153 // carry = product >>> 32; 3154 // } 3155 // return (int)carry; 3156 void MacroAssembler::mul_add(Register out, Register in, Register offset, 3157 Register len, Register k) { 3158 Label LOOP, END; 3159 // pre-loop 3160 cmp(len, zr); // cmp, not cbz/cbnz: to use condition twice => less branches 3161 csel(out, zr, out, Assembler::EQ); 3162 br(Assembler::EQ, END); 3163 add(in, in, len, LSL, 2); // in[j+1] address 3164 add(offset, out, offset, LSL, 2); // out[offset + 1] address 3165 mov(out, zr); // used to keep carry now 3166 BIND(LOOP); 3167 ldrw(rscratch1, Address(pre(in, -4))); 3168 madd(rscratch1, rscratch1, k, out); 3169 ldrw(rscratch2, Address(pre(offset, -4))); 3170 add(rscratch1, rscratch1, rscratch2); 3171 strw(rscratch1, Address(offset)); 3172 lsr(out, rscratch1, 32); 3173 subs(len, len, 1); 3174 br(Assembler::NE, LOOP); 3175 BIND(END); 3176 } 3177 3178 /** 3179 * Emits code to update CRC-32 with a byte value according to constants in table 3180 * 3181 * @param [in,out]crc Register containing the crc. 3182 * @param [in]val Register containing the byte to fold into the CRC. 3183 * @param [in]table Register containing the table of crc constants. 3184 * 3185 * uint32_t crc; 3186 * val = crc_table[(val ^ crc) & 0xFF]; 3187 * crc = val ^ (crc >> 8); 3188 * 3189 */ 3190 void MacroAssembler::update_byte_crc32(Register crc, Register val, Register table) { 3191 eor(val, val, crc); 3192 andr(val, val, 0xff); 3193 ldrw(val, Address(table, val, Address::lsl(2))); 3194 eor(crc, val, crc, Assembler::LSR, 8); 3195 } 3196 3197 /** 3198 * Emits code to update CRC-32 with a 32-bit value according to tables 0 to 3 3199 * 3200 * @param [in,out]crc Register containing the crc. 3201 * @param [in]v Register containing the 32-bit to fold into the CRC. 3202 * @param [in]table0 Register containing table 0 of crc constants. 3203 * @param [in]table1 Register containing table 1 of crc constants. 3204 * @param [in]table2 Register containing table 2 of crc constants. 3205 * @param [in]table3 Register containing table 3 of crc constants. 3206 * 3207 * uint32_t crc; 3208 * v = crc ^ v 3209 * crc = table3[v&0xff]^table2[(v>>8)&0xff]^table1[(v>>16)&0xff]^table0[v>>24] 3210 * 3211 */ 3212 void MacroAssembler::update_word_crc32(Register crc, Register v, Register tmp, 3213 Register table0, Register table1, Register table2, Register table3, 3214 bool upper) { 3215 eor(v, crc, v, upper ? LSR:LSL, upper ? 32:0); 3216 uxtb(tmp, v); 3217 ldrw(crc, Address(table3, tmp, Address::lsl(2))); 3218 ubfx(tmp, v, 8, 8); 3219 ldrw(tmp, Address(table2, tmp, Address::lsl(2))); 3220 eor(crc, crc, tmp); 3221 ubfx(tmp, v, 16, 8); 3222 ldrw(tmp, Address(table1, tmp, Address::lsl(2))); 3223 eor(crc, crc, tmp); 3224 ubfx(tmp, v, 24, 8); 3225 ldrw(tmp, Address(table0, tmp, Address::lsl(2))); 3226 eor(crc, crc, tmp); 3227 } 3228 3229 void MacroAssembler::kernel_crc32_using_crc32(Register crc, Register buf, 3230 Register len, Register tmp0, Register tmp1, Register tmp2, 3231 Register tmp3) { 3232 Label CRC_by64_loop, CRC_by4_loop, CRC_by1_loop, CRC_less64, CRC_by64_pre, CRC_by32_loop, CRC_less32, L_exit; 3233 assert_different_registers(crc, buf, len, tmp0, tmp1, tmp2, tmp3); 3234 3235 mvnw(crc, crc); 3236 3237 subs(len, len, 128); 3238 br(Assembler::GE, CRC_by64_pre); 3239 BIND(CRC_less64); 3240 adds(len, len, 128-32); 3241 br(Assembler::GE, CRC_by32_loop); 3242 BIND(CRC_less32); 3243 adds(len, len, 32-4); 3244 br(Assembler::GE, CRC_by4_loop); 3245 adds(len, len, 4); 3246 br(Assembler::GT, CRC_by1_loop); 3247 b(L_exit); 3248 3249 BIND(CRC_by32_loop); 3250 ldp(tmp0, tmp1, Address(post(buf, 16))); 3251 subs(len, len, 32); 3252 crc32x(crc, crc, tmp0); 3253 ldr(tmp2, Address(post(buf, 8))); 3254 crc32x(crc, crc, tmp1); 3255 ldr(tmp3, Address(post(buf, 8))); 3256 crc32x(crc, crc, tmp2); 3257 crc32x(crc, crc, tmp3); 3258 br(Assembler::GE, CRC_by32_loop); 3259 cmn(len, 32); 3260 br(Assembler::NE, CRC_less32); 3261 b(L_exit); 3262 3263 BIND(CRC_by4_loop); 3264 ldrw(tmp0, Address(post(buf, 4))); 3265 subs(len, len, 4); 3266 crc32w(crc, crc, tmp0); 3267 br(Assembler::GE, CRC_by4_loop); 3268 adds(len, len, 4); 3269 br(Assembler::LE, L_exit); 3270 BIND(CRC_by1_loop); 3271 ldrb(tmp0, Address(post(buf, 1))); 3272 subs(len, len, 1); 3273 crc32b(crc, crc, tmp0); 3274 br(Assembler::GT, CRC_by1_loop); 3275 b(L_exit); 3276 3277 BIND(CRC_by64_pre); 3278 sub(buf, buf, 8); 3279 ldp(tmp0, tmp1, Address(buf, 8)); 3280 crc32x(crc, crc, tmp0); 3281 ldr(tmp2, Address(buf, 24)); 3282 crc32x(crc, crc, tmp1); 3283 ldr(tmp3, Address(buf, 32)); 3284 crc32x(crc, crc, tmp2); 3285 ldr(tmp0, Address(buf, 40)); 3286 crc32x(crc, crc, tmp3); 3287 ldr(tmp1, Address(buf, 48)); 3288 crc32x(crc, crc, tmp0); 3289 ldr(tmp2, Address(buf, 56)); 3290 crc32x(crc, crc, tmp1); 3291 ldr(tmp3, Address(pre(buf, 64))); 3292 3293 b(CRC_by64_loop); 3294 3295 align(CodeEntryAlignment); 3296 BIND(CRC_by64_loop); 3297 subs(len, len, 64); 3298 crc32x(crc, crc, tmp2); 3299 ldr(tmp0, Address(buf, 8)); 3300 crc32x(crc, crc, tmp3); 3301 ldr(tmp1, Address(buf, 16)); 3302 crc32x(crc, crc, tmp0); 3303 ldr(tmp2, Address(buf, 24)); 3304 crc32x(crc, crc, tmp1); 3305 ldr(tmp3, Address(buf, 32)); 3306 crc32x(crc, crc, tmp2); 3307 ldr(tmp0, Address(buf, 40)); 3308 crc32x(crc, crc, tmp3); 3309 ldr(tmp1, Address(buf, 48)); 3310 crc32x(crc, crc, tmp0); 3311 ldr(tmp2, Address(buf, 56)); 3312 crc32x(crc, crc, tmp1); 3313 ldr(tmp3, Address(pre(buf, 64))); 3314 br(Assembler::GE, CRC_by64_loop); 3315 3316 // post-loop 3317 crc32x(crc, crc, tmp2); 3318 crc32x(crc, crc, tmp3); 3319 3320 sub(len, len, 64); 3321 add(buf, buf, 8); 3322 cmn(len, 128); 3323 br(Assembler::NE, CRC_less64); 3324 BIND(L_exit); 3325 mvnw(crc, crc); 3326 } 3327 3328 /** 3329 * @param crc register containing existing CRC (32-bit) 3330 * @param buf register pointing to input byte buffer (byte*) 3331 * @param len register containing number of bytes 3332 * @param table register that will contain address of CRC table 3333 * @param tmp scratch register 3334 */ 3335 void MacroAssembler::kernel_crc32(Register crc, Register buf, Register len, 3336 Register table0, Register table1, Register table2, Register table3, 3337 Register tmp, Register tmp2, Register tmp3) { 3338 Label L_by16, L_by16_loop, L_by4, L_by4_loop, L_by1, L_by1_loop, L_exit; 3339 unsigned long offset; 3340 3341 if (UseCRC32) { 3342 kernel_crc32_using_crc32(crc, buf, len, table0, table1, table2, table3); 3343 return; 3344 } 3345 3346 mvnw(crc, crc); 3347 3348 adrp(table0, ExternalAddress(StubRoutines::crc_table_addr()), offset); 3349 if (offset) add(table0, table0, offset); 3350 add(table1, table0, 1*256*sizeof(juint)); 3351 add(table2, table0, 2*256*sizeof(juint)); 3352 add(table3, table0, 3*256*sizeof(juint)); 3353 3354 if (UseNeon) { 3355 cmp(len, (u1)64); 3356 br(Assembler::LT, L_by16); 3357 eor(v16, T16B, v16, v16); 3358 3359 Label L_fold; 3360 3361 add(tmp, table0, 4*256*sizeof(juint)); // Point at the Neon constants 3362 3363 ld1(v0, v1, T2D, post(buf, 32)); 3364 ld1r(v4, T2D, post(tmp, 8)); 3365 ld1r(v5, T2D, post(tmp, 8)); 3366 ld1r(v6, T2D, post(tmp, 8)); 3367 ld1r(v7, T2D, post(tmp, 8)); 3368 mov(v16, T4S, 0, crc); 3369 3370 eor(v0, T16B, v0, v16); 3371 sub(len, len, 64); 3372 3373 BIND(L_fold); 3374 pmull(v22, T8H, v0, v5, T8B); 3375 pmull(v20, T8H, v0, v7, T8B); 3376 pmull(v23, T8H, v0, v4, T8B); 3377 pmull(v21, T8H, v0, v6, T8B); 3378 3379 pmull2(v18, T8H, v0, v5, T16B); 3380 pmull2(v16, T8H, v0, v7, T16B); 3381 pmull2(v19, T8H, v0, v4, T16B); 3382 pmull2(v17, T8H, v0, v6, T16B); 3383 3384 uzp1(v24, T8H, v20, v22); 3385 uzp2(v25, T8H, v20, v22); 3386 eor(v20, T16B, v24, v25); 3387 3388 uzp1(v26, T8H, v16, v18); 3389 uzp2(v27, T8H, v16, v18); 3390 eor(v16, T16B, v26, v27); 3391 3392 ushll2(v22, T4S, v20, T8H, 8); 3393 ushll(v20, T4S, v20, T4H, 8); 3394 3395 ushll2(v18, T4S, v16, T8H, 8); 3396 ushll(v16, T4S, v16, T4H, 8); 3397 3398 eor(v22, T16B, v23, v22); 3399 eor(v18, T16B, v19, v18); 3400 eor(v20, T16B, v21, v20); 3401 eor(v16, T16B, v17, v16); 3402 3403 uzp1(v17, T2D, v16, v20); 3404 uzp2(v21, T2D, v16, v20); 3405 eor(v17, T16B, v17, v21); 3406 3407 ushll2(v20, T2D, v17, T4S, 16); 3408 ushll(v16, T2D, v17, T2S, 16); 3409 3410 eor(v20, T16B, v20, v22); 3411 eor(v16, T16B, v16, v18); 3412 3413 uzp1(v17, T2D, v20, v16); 3414 uzp2(v21, T2D, v20, v16); 3415 eor(v28, T16B, v17, v21); 3416 3417 pmull(v22, T8H, v1, v5, T8B); 3418 pmull(v20, T8H, v1, v7, T8B); 3419 pmull(v23, T8H, v1, v4, T8B); 3420 pmull(v21, T8H, v1, v6, T8B); 3421 3422 pmull2(v18, T8H, v1, v5, T16B); 3423 pmull2(v16, T8H, v1, v7, T16B); 3424 pmull2(v19, T8H, v1, v4, T16B); 3425 pmull2(v17, T8H, v1, v6, T16B); 3426 3427 ld1(v0, v1, T2D, post(buf, 32)); 3428 3429 uzp1(v24, T8H, v20, v22); 3430 uzp2(v25, T8H, v20, v22); 3431 eor(v20, T16B, v24, v25); 3432 3433 uzp1(v26, T8H, v16, v18); 3434 uzp2(v27, T8H, v16, v18); 3435 eor(v16, T16B, v26, v27); 3436 3437 ushll2(v22, T4S, v20, T8H, 8); 3438 ushll(v20, T4S, v20, T4H, 8); 3439 3440 ushll2(v18, T4S, v16, T8H, 8); 3441 ushll(v16, T4S, v16, T4H, 8); 3442 3443 eor(v22, T16B, v23, v22); 3444 eor(v18, T16B, v19, v18); 3445 eor(v20, T16B, v21, v20); 3446 eor(v16, T16B, v17, v16); 3447 3448 uzp1(v17, T2D, v16, v20); 3449 uzp2(v21, T2D, v16, v20); 3450 eor(v16, T16B, v17, v21); 3451 3452 ushll2(v20, T2D, v16, T4S, 16); 3453 ushll(v16, T2D, v16, T2S, 16); 3454 3455 eor(v20, T16B, v22, v20); 3456 eor(v16, T16B, v16, v18); 3457 3458 uzp1(v17, T2D, v20, v16); 3459 uzp2(v21, T2D, v20, v16); 3460 eor(v20, T16B, v17, v21); 3461 3462 shl(v16, T2D, v28, 1); 3463 shl(v17, T2D, v20, 1); 3464 3465 eor(v0, T16B, v0, v16); 3466 eor(v1, T16B, v1, v17); 3467 3468 subs(len, len, 32); 3469 br(Assembler::GE, L_fold); 3470 3471 mov(crc, 0); 3472 mov(tmp, v0, T1D, 0); 3473 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false); 3474 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true); 3475 mov(tmp, v0, T1D, 1); 3476 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false); 3477 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true); 3478 mov(tmp, v1, T1D, 0); 3479 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false); 3480 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true); 3481 mov(tmp, v1, T1D, 1); 3482 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false); 3483 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true); 3484 3485 add(len, len, 32); 3486 } 3487 3488 BIND(L_by16); 3489 subs(len, len, 16); 3490 br(Assembler::GE, L_by16_loop); 3491 adds(len, len, 16-4); 3492 br(Assembler::GE, L_by4_loop); 3493 adds(len, len, 4); 3494 br(Assembler::GT, L_by1_loop); 3495 b(L_exit); 3496 3497 BIND(L_by4_loop); 3498 ldrw(tmp, Address(post(buf, 4))); 3499 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3); 3500 subs(len, len, 4); 3501 br(Assembler::GE, L_by4_loop); 3502 adds(len, len, 4); 3503 br(Assembler::LE, L_exit); 3504 BIND(L_by1_loop); 3505 subs(len, len, 1); 3506 ldrb(tmp, Address(post(buf, 1))); 3507 update_byte_crc32(crc, tmp, table0); 3508 br(Assembler::GT, L_by1_loop); 3509 b(L_exit); 3510 3511 align(CodeEntryAlignment); 3512 BIND(L_by16_loop); 3513 subs(len, len, 16); 3514 ldp(tmp, tmp3, Address(post(buf, 16))); 3515 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false); 3516 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true); 3517 update_word_crc32(crc, tmp3, tmp2, table0, table1, table2, table3, false); 3518 update_word_crc32(crc, tmp3, tmp2, table0, table1, table2, table3, true); 3519 br(Assembler::GE, L_by16_loop); 3520 adds(len, len, 16-4); 3521 br(Assembler::GE, L_by4_loop); 3522 adds(len, len, 4); 3523 br(Assembler::GT, L_by1_loop); 3524 BIND(L_exit); 3525 mvnw(crc, crc); 3526 } 3527 3528 void MacroAssembler::kernel_crc32c_using_crc32c(Register crc, Register buf, 3529 Register len, Register tmp0, Register tmp1, Register tmp2, 3530 Register tmp3) { 3531 Label CRC_by64_loop, CRC_by4_loop, CRC_by1_loop, CRC_less64, CRC_by64_pre, CRC_by32_loop, CRC_less32, L_exit; 3532 assert_different_registers(crc, buf, len, tmp0, tmp1, tmp2, tmp3); 3533 3534 subs(len, len, 128); 3535 br(Assembler::GE, CRC_by64_pre); 3536 BIND(CRC_less64); 3537 adds(len, len, 128-32); 3538 br(Assembler::GE, CRC_by32_loop); 3539 BIND(CRC_less32); 3540 adds(len, len, 32-4); 3541 br(Assembler::GE, CRC_by4_loop); 3542 adds(len, len, 4); 3543 br(Assembler::GT, CRC_by1_loop); 3544 b(L_exit); 3545 3546 BIND(CRC_by32_loop); 3547 ldp(tmp0, tmp1, Address(post(buf, 16))); 3548 subs(len, len, 32); 3549 crc32cx(crc, crc, tmp0); 3550 ldr(tmp2, Address(post(buf, 8))); 3551 crc32cx(crc, crc, tmp1); 3552 ldr(tmp3, Address(post(buf, 8))); 3553 crc32cx(crc, crc, tmp2); 3554 crc32cx(crc, crc, tmp3); 3555 br(Assembler::GE, CRC_by32_loop); 3556 cmn(len, 32); 3557 br(Assembler::NE, CRC_less32); 3558 b(L_exit); 3559 3560 BIND(CRC_by4_loop); 3561 ldrw(tmp0, Address(post(buf, 4))); 3562 subs(len, len, 4); 3563 crc32cw(crc, crc, tmp0); 3564 br(Assembler::GE, CRC_by4_loop); 3565 adds(len, len, 4); 3566 br(Assembler::LE, L_exit); 3567 BIND(CRC_by1_loop); 3568 ldrb(tmp0, Address(post(buf, 1))); 3569 subs(len, len, 1); 3570 crc32cb(crc, crc, tmp0); 3571 br(Assembler::GT, CRC_by1_loop); 3572 b(L_exit); 3573 3574 BIND(CRC_by64_pre); 3575 sub(buf, buf, 8); 3576 ldp(tmp0, tmp1, Address(buf, 8)); 3577 crc32cx(crc, crc, tmp0); 3578 ldr(tmp2, Address(buf, 24)); 3579 crc32cx(crc, crc, tmp1); 3580 ldr(tmp3, Address(buf, 32)); 3581 crc32cx(crc, crc, tmp2); 3582 ldr(tmp0, Address(buf, 40)); 3583 crc32cx(crc, crc, tmp3); 3584 ldr(tmp1, Address(buf, 48)); 3585 crc32cx(crc, crc, tmp0); 3586 ldr(tmp2, Address(buf, 56)); 3587 crc32cx(crc, crc, tmp1); 3588 ldr(tmp3, Address(pre(buf, 64))); 3589 3590 b(CRC_by64_loop); 3591 3592 align(CodeEntryAlignment); 3593 BIND(CRC_by64_loop); 3594 subs(len, len, 64); 3595 crc32cx(crc, crc, tmp2); 3596 ldr(tmp0, Address(buf, 8)); 3597 crc32cx(crc, crc, tmp3); 3598 ldr(tmp1, Address(buf, 16)); 3599 crc32cx(crc, crc, tmp0); 3600 ldr(tmp2, Address(buf, 24)); 3601 crc32cx(crc, crc, tmp1); 3602 ldr(tmp3, Address(buf, 32)); 3603 crc32cx(crc, crc, tmp2); 3604 ldr(tmp0, Address(buf, 40)); 3605 crc32cx(crc, crc, tmp3); 3606 ldr(tmp1, Address(buf, 48)); 3607 crc32cx(crc, crc, tmp0); 3608 ldr(tmp2, Address(buf, 56)); 3609 crc32cx(crc, crc, tmp1); 3610 ldr(tmp3, Address(pre(buf, 64))); 3611 br(Assembler::GE, CRC_by64_loop); 3612 3613 // post-loop 3614 crc32cx(crc, crc, tmp2); 3615 crc32cx(crc, crc, tmp3); 3616 3617 sub(len, len, 64); 3618 add(buf, buf, 8); 3619 cmn(len, 128); 3620 br(Assembler::NE, CRC_less64); 3621 BIND(L_exit); 3622 } 3623 3624 /** 3625 * @param crc register containing existing CRC (32-bit) 3626 * @param buf register pointing to input byte buffer (byte*) 3627 * @param len register containing number of bytes 3628 * @param table register that will contain address of CRC table 3629 * @param tmp scratch register 3630 */ 3631 void MacroAssembler::kernel_crc32c(Register crc, Register buf, Register len, 3632 Register table0, Register table1, Register table2, Register table3, 3633 Register tmp, Register tmp2, Register tmp3) { 3634 kernel_crc32c_using_crc32c(crc, buf, len, table0, table1, table2, table3); 3635 } 3636 3637 3638 SkipIfEqual::SkipIfEqual( 3639 MacroAssembler* masm, const bool* flag_addr, bool value) { 3640 _masm = masm; 3641 unsigned long offset; 3642 _masm->adrp(rscratch1, ExternalAddress((address)flag_addr), offset); 3643 _masm->ldrb(rscratch1, Address(rscratch1, offset)); 3644 _masm->cbzw(rscratch1, _label); 3645 } 3646 3647 SkipIfEqual::~SkipIfEqual() { 3648 _masm->bind(_label); 3649 } 3650 3651 void MacroAssembler::addptr(const Address &dst, int32_t src) { 3652 Address adr; 3653 switch(dst.getMode()) { 3654 case Address::base_plus_offset: 3655 // This is the expected mode, although we allow all the other 3656 // forms below. 3657 adr = form_address(rscratch2, dst.base(), dst.offset(), LogBytesPerWord); 3658 break; 3659 default: 3660 lea(rscratch2, dst); 3661 adr = Address(rscratch2); 3662 break; 3663 } 3664 ldr(rscratch1, adr); 3665 add(rscratch1, rscratch1, src); 3666 str(rscratch1, adr); 3667 } 3668 3669 void MacroAssembler::cmpptr(Register src1, Address src2) { 3670 unsigned long offset; 3671 adrp(rscratch1, src2, offset); 3672 ldr(rscratch1, Address(rscratch1, offset)); 3673 cmp(src1, rscratch1); 3674 } 3675 3676 void MacroAssembler::cmpoop(Register obj1, Register obj2) { 3677 BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler(); 3678 bs->obj_equals(this, obj1, obj2); 3679 } 3680 3681 void MacroAssembler::load_method_holder_cld(Register rresult, Register rmethod) { 3682 load_method_holder(rresult, rmethod); 3683 ldr(rresult, Address(rresult, InstanceKlass::class_loader_data_offset())); 3684 } 3685 3686 void MacroAssembler::load_method_holder(Register holder, Register method) { 3687 ldr(holder, Address(method, Method::const_offset())); // ConstMethod* 3688 ldr(holder, Address(holder, ConstMethod::constants_offset())); // ConstantPool* 3689 ldr(holder, Address(holder, ConstantPool::pool_holder_offset_in_bytes())); // InstanceKlass* 3690 } 3691 3692 void MacroAssembler::load_klass(Register dst, Register src) { 3693 if (UseCompressedClassPointers) { 3694 ldrw(dst, Address(src, oopDesc::klass_offset_in_bytes())); 3695 decode_klass_not_null(dst); 3696 } else { 3697 ldr(dst, Address(src, oopDesc::klass_offset_in_bytes())); 3698 } 3699 } 3700 3701 // ((OopHandle)result).resolve(); 3702 void MacroAssembler::resolve_oop_handle(Register result, Register tmp) { 3703 // OopHandle::resolve is an indirection. 3704 access_load_at(T_OBJECT, IN_NATIVE, result, Address(result, 0), tmp, noreg); 3705 } 3706 3707 // ((WeakHandle)result).resolve(); 3708 void MacroAssembler::resolve_weak_handle(Register rresult, Register rtmp) { 3709 assert_different_registers(rresult, rtmp); 3710 Label resolved; 3711 3712 // A null weak handle resolves to null. 3713 cbz(rresult, resolved); 3714 3715 // Only 64 bit platforms support GCs that require a tmp register 3716 // Only IN_HEAP loads require a thread_tmp register 3717 // WeakHandle::resolve is an indirection like jweak. 3718 access_load_at(T_OBJECT, IN_NATIVE | ON_PHANTOM_OOP_REF, 3719 rresult, Address(rresult), rtmp, /*tmp_thread*/noreg); 3720 bind(resolved); 3721 } 3722 3723 void MacroAssembler::load_mirror(Register dst, Register method, Register tmp) { 3724 const int mirror_offset = in_bytes(Klass::java_mirror_offset()); 3725 ldr(dst, Address(rmethod, Method::const_offset())); 3726 ldr(dst, Address(dst, ConstMethod::constants_offset())); 3727 ldr(dst, Address(dst, ConstantPool::pool_holder_offset_in_bytes())); 3728 ldr(dst, Address(dst, mirror_offset)); 3729 resolve_oop_handle(dst, tmp); 3730 } 3731 3732 void MacroAssembler::cmp_klass(Register oop, Register trial_klass, Register tmp) { 3733 if (UseCompressedClassPointers) { 3734 ldrw(tmp, Address(oop, oopDesc::klass_offset_in_bytes())); 3735 if (CompressedKlassPointers::base() == NULL) { 3736 cmp(trial_klass, tmp, LSL, CompressedKlassPointers::shift()); 3737 return; 3738 } else if (((uint64_t)CompressedKlassPointers::base() & 0xffffffff) == 0 3739 && CompressedKlassPointers::shift() == 0) { 3740 // Only the bottom 32 bits matter 3741 cmpw(trial_klass, tmp); 3742 return; 3743 } 3744 decode_klass_not_null(tmp); 3745 } else { 3746 ldr(tmp, Address(oop, oopDesc::klass_offset_in_bytes())); 3747 } 3748 cmp(trial_klass, tmp); 3749 } 3750 3751 void MacroAssembler::load_prototype_header(Register dst, Register src) { 3752 load_klass(dst, src); 3753 ldr(dst, Address(dst, Klass::prototype_header_offset())); 3754 } 3755 3756 void MacroAssembler::store_klass(Register dst, Register src) { 3757 // FIXME: Should this be a store release? concurrent gcs assumes 3758 // klass length is valid if klass field is not null. 3759 if (UseCompressedClassPointers) { 3760 encode_klass_not_null(src); 3761 strw(src, Address(dst, oopDesc::klass_offset_in_bytes())); 3762 } else { 3763 str(src, Address(dst, oopDesc::klass_offset_in_bytes())); 3764 } 3765 } 3766 3767 void MacroAssembler::store_klass_gap(Register dst, Register src) { 3768 if (UseCompressedClassPointers) { 3769 // Store to klass gap in destination 3770 strw(src, Address(dst, oopDesc::klass_gap_offset_in_bytes())); 3771 } 3772 } 3773 3774 // Algorithm must match CompressedOops::encode. 3775 void MacroAssembler::encode_heap_oop(Register d, Register s) { 3776 #ifdef ASSERT 3777 verify_heapbase("MacroAssembler::encode_heap_oop: heap base corrupted?"); 3778 #endif 3779 verify_oop(s, "broken oop in encode_heap_oop"); 3780 if (CompressedOops::base() == NULL) { 3781 if (CompressedOops::shift() != 0) { 3782 assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 3783 lsr(d, s, LogMinObjAlignmentInBytes); 3784 } else { 3785 mov(d, s); 3786 } 3787 } else { 3788 subs(d, s, rheapbase); 3789 csel(d, d, zr, Assembler::HS); 3790 lsr(d, d, LogMinObjAlignmentInBytes); 3791 3792 /* Old algorithm: is this any worse? 3793 Label nonnull; 3794 cbnz(r, nonnull); 3795 sub(r, r, rheapbase); 3796 bind(nonnull); 3797 lsr(r, r, LogMinObjAlignmentInBytes); 3798 */ 3799 } 3800 } 3801 3802 void MacroAssembler::encode_heap_oop_not_null(Register r) { 3803 #ifdef ASSERT 3804 verify_heapbase("MacroAssembler::encode_heap_oop_not_null: heap base corrupted?"); 3805 if (CheckCompressedOops) { 3806 Label ok; 3807 cbnz(r, ok); 3808 stop("null oop passed to encode_heap_oop_not_null"); 3809 bind(ok); 3810 } 3811 #endif 3812 verify_oop(r, "broken oop in encode_heap_oop_not_null"); 3813 if (CompressedOops::base() != NULL) { 3814 sub(r, r, rheapbase); 3815 } 3816 if (CompressedOops::shift() != 0) { 3817 assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 3818 lsr(r, r, LogMinObjAlignmentInBytes); 3819 } 3820 } 3821 3822 void MacroAssembler::encode_heap_oop_not_null(Register dst, Register src) { 3823 #ifdef ASSERT 3824 verify_heapbase("MacroAssembler::encode_heap_oop_not_null2: heap base corrupted?"); 3825 if (CheckCompressedOops) { 3826 Label ok; 3827 cbnz(src, ok); 3828 stop("null oop passed to encode_heap_oop_not_null2"); 3829 bind(ok); 3830 } 3831 #endif 3832 verify_oop(src, "broken oop in encode_heap_oop_not_null2"); 3833 3834 Register data = src; 3835 if (CompressedOops::base() != NULL) { 3836 sub(dst, src, rheapbase); 3837 data = dst; 3838 } 3839 if (CompressedOops::shift() != 0) { 3840 assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 3841 lsr(dst, data, LogMinObjAlignmentInBytes); 3842 data = dst; 3843 } 3844 if (data == src) 3845 mov(dst, src); 3846 } 3847 3848 void MacroAssembler::decode_heap_oop(Register d, Register s) { 3849 #ifdef ASSERT 3850 verify_heapbase("MacroAssembler::decode_heap_oop: heap base corrupted?"); 3851 #endif 3852 if (CompressedOops::base() == NULL) { 3853 if (CompressedOops::shift() != 0 || d != s) { 3854 lsl(d, s, CompressedOops::shift()); 3855 } 3856 } else { 3857 Label done; 3858 if (d != s) 3859 mov(d, s); 3860 cbz(s, done); 3861 add(d, rheapbase, s, Assembler::LSL, LogMinObjAlignmentInBytes); 3862 bind(done); 3863 } 3864 verify_oop(d, "broken oop in decode_heap_oop"); 3865 } 3866 3867 void MacroAssembler::decode_heap_oop_not_null(Register r) { 3868 assert (UseCompressedOops, "should only be used for compressed headers"); 3869 assert (Universe::heap() != NULL, "java heap should be initialized"); 3870 // Cannot assert, unverified entry point counts instructions (see .ad file) 3871 // vtableStubs also counts instructions in pd_code_size_limit. 3872 // Also do not verify_oop as this is called by verify_oop. 3873 if (CompressedOops::shift() != 0) { 3874 assert(LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 3875 if (CompressedOops::base() != NULL) { 3876 add(r, rheapbase, r, Assembler::LSL, LogMinObjAlignmentInBytes); 3877 } else { 3878 add(r, zr, r, Assembler::LSL, LogMinObjAlignmentInBytes); 3879 } 3880 } else { 3881 assert (CompressedOops::base() == NULL, "sanity"); 3882 } 3883 } 3884 3885 void MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) { 3886 assert (UseCompressedOops, "should only be used for compressed headers"); 3887 assert (Universe::heap() != NULL, "java heap should be initialized"); 3888 // Cannot assert, unverified entry point counts instructions (see .ad file) 3889 // vtableStubs also counts instructions in pd_code_size_limit. 3890 // Also do not verify_oop as this is called by verify_oop. 3891 if (CompressedOops::shift() != 0) { 3892 assert(LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 3893 if (CompressedOops::base() != NULL) { 3894 add(dst, rheapbase, src, Assembler::LSL, LogMinObjAlignmentInBytes); 3895 } else { 3896 add(dst, zr, src, Assembler::LSL, LogMinObjAlignmentInBytes); 3897 } 3898 } else { 3899 assert (CompressedOops::base() == NULL, "sanity"); 3900 if (dst != src) { 3901 mov(dst, src); 3902 } 3903 } 3904 } 3905 3906 MacroAssembler::KlassDecodeMode MacroAssembler::_klass_decode_mode(KlassDecodeNone); 3907 3908 MacroAssembler::KlassDecodeMode MacroAssembler::klass_decode_mode() { 3909 assert(UseCompressedClassPointers, "not using compressed class pointers"); 3910 assert(Metaspace::initialized(), "metaspace not initialized yet"); 3911 3912 if (_klass_decode_mode != KlassDecodeNone) { 3913 return _klass_decode_mode; 3914 } 3915 3916 assert(LogKlassAlignmentInBytes == CompressedKlassPointers::shift() 3917 || 0 == CompressedKlassPointers::shift(), "decode alg wrong"); 3918 3919 if (CompressedKlassPointers::base() == NULL) { 3920 return (_klass_decode_mode = KlassDecodeZero); 3921 } 3922 3923 if (operand_valid_for_logical_immediate( 3924 /*is32*/false, (uint64_t)CompressedKlassPointers::base())) { 3925 const uint64_t range_mask = 3926 (1UL << log2_intptr(CompressedKlassPointers::range())) - 1; 3927 if (((uint64_t)CompressedKlassPointers::base() & range_mask) == 0) { 3928 return (_klass_decode_mode = KlassDecodeXor); 3929 } 3930 } 3931 3932 const uint64_t shifted_base = 3933 (uint64_t)CompressedKlassPointers::base() >> CompressedKlassPointers::shift(); 3934 guarantee((shifted_base & 0xffff0000ffffffff) == 0, 3935 "compressed class base bad alignment"); 3936 3937 return (_klass_decode_mode = KlassDecodeMovk); 3938 } 3939 3940 void MacroAssembler::encode_klass_not_null(Register dst, Register src) { 3941 switch (klass_decode_mode()) { 3942 case KlassDecodeZero: 3943 if (CompressedKlassPointers::shift() != 0) { 3944 lsr(dst, src, LogKlassAlignmentInBytes); 3945 } else { 3946 if (dst != src) mov(dst, src); 3947 } 3948 break; 3949 3950 case KlassDecodeXor: 3951 if (CompressedKlassPointers::shift() != 0) { 3952 eor(dst, src, (uint64_t)CompressedKlassPointers::base()); 3953 lsr(dst, dst, LogKlassAlignmentInBytes); 3954 } else { 3955 eor(dst, src, (uint64_t)CompressedKlassPointers::base()); 3956 } 3957 break; 3958 3959 case KlassDecodeMovk: 3960 if (CompressedKlassPointers::shift() != 0) { 3961 ubfx(dst, src, LogKlassAlignmentInBytes, 32); 3962 } else { 3963 movw(dst, src); 3964 } 3965 break; 3966 3967 case KlassDecodeNone: 3968 ShouldNotReachHere(); 3969 break; 3970 } 3971 } 3972 3973 void MacroAssembler::encode_klass_not_null(Register r) { 3974 encode_klass_not_null(r, r); 3975 } 3976 3977 void MacroAssembler::decode_klass_not_null(Register dst, Register src) { 3978 assert (UseCompressedClassPointers, "should only be used for compressed headers"); 3979 3980 switch (klass_decode_mode()) { 3981 case KlassDecodeZero: 3982 if (CompressedKlassPointers::shift() != 0) { 3983 lsl(dst, src, LogKlassAlignmentInBytes); 3984 } else { 3985 if (dst != src) mov(dst, src); 3986 } 3987 break; 3988 3989 case KlassDecodeXor: 3990 if (CompressedKlassPointers::shift() != 0) { 3991 lsl(dst, src, LogKlassAlignmentInBytes); 3992 eor(dst, dst, (uint64_t)CompressedKlassPointers::base()); 3993 } else { 3994 eor(dst, src, (uint64_t)CompressedKlassPointers::base()); 3995 } 3996 break; 3997 3998 case KlassDecodeMovk: { 3999 const uint64_t shifted_base = 4000 (uint64_t)CompressedKlassPointers::base() >> CompressedKlassPointers::shift(); 4001 4002 if (dst != src) movw(dst, src); 4003 movk(dst, shifted_base >> 32, 32); 4004 4005 if (CompressedKlassPointers::shift() != 0) { 4006 lsl(dst, dst, LogKlassAlignmentInBytes); 4007 } 4008 4009 break; 4010 } 4011 4012 case KlassDecodeNone: 4013 ShouldNotReachHere(); 4014 break; 4015 } 4016 } 4017 4018 void MacroAssembler::decode_klass_not_null(Register r) { 4019 decode_klass_not_null(r, r); 4020 } 4021 4022 void MacroAssembler::set_narrow_oop(Register dst, jobject obj) { 4023 #ifdef ASSERT 4024 { 4025 ThreadInVMfromUnknown tiv; 4026 assert (UseCompressedOops, "should only be used for compressed oops"); 4027 assert (Universe::heap() != NULL, "java heap should be initialized"); 4028 assert (oop_recorder() != NULL, "this assembler needs an OopRecorder"); 4029 assert(Universe::heap()->is_in(JNIHandles::resolve(obj)), "should be real oop"); 4030 } 4031 #endif 4032 int oop_index = oop_recorder()->find_index(obj); 4033 InstructionMark im(this); 4034 RelocationHolder rspec = oop_Relocation::spec(oop_index); 4035 code_section()->relocate(inst_mark(), rspec); 4036 movz(dst, 0xDEAD, 16); 4037 movk(dst, 0xBEEF); 4038 } 4039 4040 void MacroAssembler::set_narrow_klass(Register dst, Klass* k) { 4041 assert (UseCompressedClassPointers, "should only be used for compressed headers"); 4042 assert (oop_recorder() != NULL, "this assembler needs an OopRecorder"); 4043 int index = oop_recorder()->find_index(k); 4044 assert(! Universe::heap()->is_in(k), "should not be an oop"); 4045 4046 InstructionMark im(this); 4047 RelocationHolder rspec = metadata_Relocation::spec(index); 4048 code_section()->relocate(inst_mark(), rspec); 4049 narrowKlass nk = CompressedKlassPointers::encode(k); 4050 movz(dst, (nk >> 16), 16); 4051 movk(dst, nk & 0xffff); 4052 } 4053 4054 void MacroAssembler::access_load_at(BasicType type, DecoratorSet decorators, 4055 Register dst, Address src, 4056 Register tmp1, Register thread_tmp) { 4057 BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler(); 4058 decorators = AccessInternal::decorator_fixup(decorators); 4059 bool as_raw = (decorators & AS_RAW) != 0; 4060 if (as_raw) { 4061 bs->BarrierSetAssembler::load_at(this, decorators, type, dst, src, tmp1, thread_tmp); 4062 } else { 4063 bs->load_at(this, decorators, type, dst, src, tmp1, thread_tmp); 4064 } 4065 } 4066 4067 void MacroAssembler::access_store_at(BasicType type, DecoratorSet decorators, 4068 Address dst, Register src, 4069 Register tmp1, Register thread_tmp) { 4070 BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler(); 4071 decorators = AccessInternal::decorator_fixup(decorators); 4072 bool as_raw = (decorators & AS_RAW) != 0; 4073 if (as_raw) { 4074 bs->BarrierSetAssembler::store_at(this, decorators, type, dst, src, tmp1, thread_tmp); 4075 } else { 4076 bs->store_at(this, decorators, type, dst, src, tmp1, thread_tmp); 4077 } 4078 } 4079 4080 void MacroAssembler::resolve(DecoratorSet decorators, Register obj) { 4081 // Use stronger ACCESS_WRITE|ACCESS_READ by default. 4082 if ((decorators & (ACCESS_READ | ACCESS_WRITE)) == 0) { 4083 decorators |= ACCESS_READ | ACCESS_WRITE; 4084 } 4085 BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler(); 4086 return bs->resolve(this, decorators, obj); 4087 } 4088 4089 void MacroAssembler::load_heap_oop(Register dst, Address src, Register tmp1, 4090 Register thread_tmp, DecoratorSet decorators) { 4091 access_load_at(T_OBJECT, IN_HEAP | decorators, dst, src, tmp1, thread_tmp); 4092 } 4093 4094 void MacroAssembler::load_heap_oop_not_null(Register dst, Address src, Register tmp1, 4095 Register thread_tmp, DecoratorSet decorators) { 4096 access_load_at(T_OBJECT, IN_HEAP | IS_NOT_NULL | decorators, dst, src, tmp1, thread_tmp); 4097 } 4098 4099 void MacroAssembler::store_heap_oop(Address dst, Register src, Register tmp1, 4100 Register thread_tmp, DecoratorSet decorators) { 4101 access_store_at(T_OBJECT, IN_HEAP | decorators, dst, src, tmp1, thread_tmp); 4102 } 4103 4104 // Used for storing NULLs. 4105 void MacroAssembler::store_heap_oop_null(Address dst) { 4106 access_store_at(T_OBJECT, IN_HEAP, dst, noreg, noreg, noreg); 4107 } 4108 4109 Address MacroAssembler::allocate_metadata_address(Metadata* obj) { 4110 assert(oop_recorder() != NULL, "this assembler needs a Recorder"); 4111 int index = oop_recorder()->allocate_metadata_index(obj); 4112 RelocationHolder rspec = metadata_Relocation::spec(index); 4113 return Address((address)obj, rspec); 4114 } 4115 4116 // Move an oop into a register. immediate is true if we want 4117 // immediate instructions and nmethod entry barriers are not enabled. 4118 // i.e. we are not going to patch this instruction while the code is being 4119 // executed by another thread. 4120 void MacroAssembler::movoop(Register dst, jobject obj, bool immediate) { 4121 int oop_index; 4122 if (obj == NULL) { 4123 oop_index = oop_recorder()->allocate_oop_index(obj); 4124 } else { 4125 #ifdef ASSERT 4126 { 4127 ThreadInVMfromUnknown tiv; 4128 assert(Universe::heap()->is_in(JNIHandles::resolve(obj)), "should be real oop"); 4129 } 4130 #endif 4131 oop_index = oop_recorder()->find_index(obj); 4132 } 4133 RelocationHolder rspec = oop_Relocation::spec(oop_index); 4134 4135 // nmethod entry barrier necessitate using the constant pool. They have to be 4136 // ordered with respected to oop accesses. 4137 // Using immediate literals would necessitate ISBs. 4138 if (BarrierSet::barrier_set()->barrier_set_nmethod() != NULL || !immediate) { 4139 address dummy = address(uintptr_t(pc()) & -wordSize); // A nearby aligned address 4140 ldr_constant(dst, Address(dummy, rspec)); 4141 } else 4142 mov(dst, Address((address)obj, rspec)); 4143 4144 } 4145 4146 // Move a metadata address into a register. 4147 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) { 4148 int oop_index; 4149 if (obj == NULL) { 4150 oop_index = oop_recorder()->allocate_metadata_index(obj); 4151 } else { 4152 oop_index = oop_recorder()->find_index(obj); 4153 } 4154 RelocationHolder rspec = metadata_Relocation::spec(oop_index); 4155 mov(dst, Address((address)obj, rspec)); 4156 } 4157 4158 Address MacroAssembler::constant_oop_address(jobject obj) { 4159 #ifdef ASSERT 4160 { 4161 ThreadInVMfromUnknown tiv; 4162 assert(oop_recorder() != NULL, "this assembler needs an OopRecorder"); 4163 assert(Universe::heap()->is_in(JNIHandles::resolve(obj)), "not an oop"); 4164 } 4165 #endif 4166 int oop_index = oop_recorder()->find_index(obj); 4167 return Address((address)obj, oop_Relocation::spec(oop_index)); 4168 } 4169 4170 // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes. 4171 void MacroAssembler::tlab_allocate(Register obj, 4172 Register var_size_in_bytes, 4173 int con_size_in_bytes, 4174 Register t1, 4175 Register t2, 4176 Label& slow_case) { 4177 BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler(); 4178 bs->tlab_allocate(this, obj, var_size_in_bytes, con_size_in_bytes, t1, t2, slow_case); 4179 } 4180 4181 // Defines obj, preserves var_size_in_bytes 4182 void MacroAssembler::eden_allocate(Register obj, 4183 Register var_size_in_bytes, 4184 int con_size_in_bytes, 4185 Register t1, 4186 Label& slow_case) { 4187 BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler(); 4188 bs->eden_allocate(this, obj, var_size_in_bytes, con_size_in_bytes, t1, slow_case); 4189 } 4190 4191 // Zero words; len is in bytes 4192 // Destroys all registers except addr 4193 // len must be a nonzero multiple of wordSize 4194 void MacroAssembler::zero_memory(Register addr, Register len, Register t1) { 4195 assert_different_registers(addr, len, t1, rscratch1, rscratch2); 4196 4197 #ifdef ASSERT 4198 { Label L; 4199 tst(len, BytesPerWord - 1); 4200 br(Assembler::EQ, L); 4201 stop("len is not a multiple of BytesPerWord"); 4202 bind(L); 4203 } 4204 #endif 4205 4206 #ifndef PRODUCT 4207 block_comment("zero memory"); 4208 #endif 4209 4210 Label loop; 4211 Label entry; 4212 4213 // Algorithm: 4214 // 4215 // scratch1 = cnt & 7; 4216 // cnt -= scratch1; 4217 // p += scratch1; 4218 // switch (scratch1) { 4219 // do { 4220 // cnt -= 8; 4221 // p[-8] = 0; 4222 // case 7: 4223 // p[-7] = 0; 4224 // case 6: 4225 // p[-6] = 0; 4226 // // ... 4227 // case 1: 4228 // p[-1] = 0; 4229 // case 0: 4230 // p += 8; 4231 // } while (cnt); 4232 // } 4233 4234 const int unroll = 8; // Number of str(zr) instructions we'll unroll 4235 4236 lsr(len, len, LogBytesPerWord); 4237 andr(rscratch1, len, unroll - 1); // tmp1 = cnt % unroll 4238 sub(len, len, rscratch1); // cnt -= unroll 4239 // t1 always points to the end of the region we're about to zero 4240 add(t1, addr, rscratch1, Assembler::LSL, LogBytesPerWord); 4241 adr(rscratch2, entry); 4242 sub(rscratch2, rscratch2, rscratch1, Assembler::LSL, 2); 4243 br(rscratch2); 4244 bind(loop); 4245 sub(len, len, unroll); 4246 for (int i = -unroll; i < 0; i++) 4247 Assembler::str(zr, Address(t1, i * wordSize)); 4248 bind(entry); 4249 add(t1, t1, unroll * wordSize); 4250 cbnz(len, loop); 4251 } 4252 4253 void MacroAssembler::verify_tlab() { 4254 #ifdef ASSERT 4255 if (UseTLAB && VerifyOops) { 4256 Label next, ok; 4257 4258 stp(rscratch2, rscratch1, Address(pre(sp, -16))); 4259 4260 ldr(rscratch2, Address(rthread, in_bytes(JavaThread::tlab_top_offset()))); 4261 ldr(rscratch1, Address(rthread, in_bytes(JavaThread::tlab_start_offset()))); 4262 cmp(rscratch2, rscratch1); 4263 br(Assembler::HS, next); 4264 STOP("assert(top >= start)"); 4265 should_not_reach_here(); 4266 4267 bind(next); 4268 ldr(rscratch2, Address(rthread, in_bytes(JavaThread::tlab_end_offset()))); 4269 ldr(rscratch1, Address(rthread, in_bytes(JavaThread::tlab_top_offset()))); 4270 cmp(rscratch2, rscratch1); 4271 br(Assembler::HS, ok); 4272 STOP("assert(top <= end)"); 4273 should_not_reach_here(); 4274 4275 bind(ok); 4276 ldp(rscratch2, rscratch1, Address(post(sp, 16))); 4277 } 4278 #endif 4279 } 4280 4281 // Writes to stack successive pages until offset reached to check for 4282 // stack overflow + shadow pages. This clobbers tmp. 4283 void MacroAssembler::bang_stack_size(Register size, Register tmp) { 4284 assert_different_registers(tmp, size, rscratch1); 4285 mov(tmp, sp); 4286 // Bang stack for total size given plus shadow page size. 4287 // Bang one page at a time because large size can bang beyond yellow and 4288 // red zones. 4289 Label loop; 4290 mov(rscratch1, os::vm_page_size()); 4291 bind(loop); 4292 lea(tmp, Address(tmp, -os::vm_page_size())); 4293 subsw(size, size, rscratch1); 4294 str(size, Address(tmp)); 4295 br(Assembler::GT, loop); 4296 4297 // Bang down shadow pages too. 4298 // At this point, (tmp-0) is the last address touched, so don't 4299 // touch it again. (It was touched as (tmp-pagesize) but then tmp 4300 // was post-decremented.) Skip this address by starting at i=1, and 4301 // touch a few more pages below. N.B. It is important to touch all 4302 // the way down to and including i=StackShadowPages. 4303 for (int i = 0; i < (int)(JavaThread::stack_shadow_zone_size() / os::vm_page_size()) - 1; i++) { 4304 // this could be any sized move but this is can be a debugging crumb 4305 // so the bigger the better. 4306 lea(tmp, Address(tmp, -os::vm_page_size())); 4307 str(size, Address(tmp)); 4308 } 4309 } 4310 4311 // Move the address of the polling page into dest. 4312 void MacroAssembler::get_polling_page(Register dest, relocInfo::relocType rtype) { 4313 ldr(dest, Address(rthread, Thread::polling_page_offset())); 4314 } 4315 4316 // Move the address of the polling page into r, then read the polling 4317 // page. 4318 address MacroAssembler::fetch_and_read_polling_page(Register r, relocInfo::relocType rtype) { 4319 get_polling_page(r, rtype); 4320 return read_polling_page(r, rtype); 4321 } 4322 4323 // Read the polling page. The address of the polling page must 4324 // already be in r. 4325 address MacroAssembler::read_polling_page(Register r, relocInfo::relocType rtype) { 4326 InstructionMark im(this); 4327 code_section()->relocate(inst_mark(), rtype); 4328 ldrw(zr, Address(r, 0)); 4329 return inst_mark(); 4330 } 4331 4332 void MacroAssembler::adrp(Register reg1, const Address &dest, unsigned long &byte_offset) { 4333 relocInfo::relocType rtype = dest.rspec().reloc()->type(); 4334 unsigned long low_page = (unsigned long)CodeCache::low_bound() >> 12; 4335 unsigned long high_page = (unsigned long)(CodeCache::high_bound()-1) >> 12; 4336 unsigned long dest_page = (unsigned long)dest.target() >> 12; 4337 long offset_low = dest_page - low_page; 4338 long offset_high = dest_page - high_page; 4339 4340 assert(is_valid_AArch64_address(dest.target()), "bad address"); 4341 assert(dest.getMode() == Address::literal, "ADRP must be applied to a literal address"); 4342 4343 InstructionMark im(this); 4344 code_section()->relocate(inst_mark(), dest.rspec()); 4345 // 8143067: Ensure that the adrp can reach the dest from anywhere within 4346 // the code cache so that if it is relocated we know it will still reach 4347 if (offset_high >= -(1<<20) && offset_low < (1<<20)) { 4348 _adrp(reg1, dest.target()); 4349 } else { 4350 unsigned long target = (unsigned long)dest.target(); 4351 unsigned long adrp_target 4352 = (target & 0xffffffffUL) | ((unsigned long)pc() & 0xffff00000000UL); 4353 4354 _adrp(reg1, (address)adrp_target); 4355 movk(reg1, target >> 32, 32); 4356 } 4357 byte_offset = (unsigned long)dest.target() & 0xfff; 4358 } 4359 4360 void MacroAssembler::load_byte_map_base(Register reg) { 4361 CardTable::CardValue* byte_map_base = 4362 ((CardTableBarrierSet*)(BarrierSet::barrier_set()))->card_table()->byte_map_base(); 4363 4364 if (is_valid_AArch64_address((address)byte_map_base)) { 4365 // Strictly speaking the byte_map_base isn't an address at all, 4366 // and it might even be negative. 4367 unsigned long offset; 4368 adrp(reg, ExternalAddress((address)byte_map_base), offset); 4369 // We expect offset to be zero with most collectors. 4370 if (offset != 0) { 4371 add(reg, reg, offset); 4372 } 4373 } else { 4374 mov(reg, (uint64_t)byte_map_base); 4375 } 4376 } 4377 4378 void MacroAssembler::build_frame(int framesize) { 4379 assert(framesize > 0, "framesize must be > 0"); 4380 if (framesize < ((1 << 9) + 2 * wordSize)) { 4381 sub(sp, sp, framesize); 4382 stp(rfp, lr, Address(sp, framesize - 2 * wordSize)); 4383 if (PreserveFramePointer) add(rfp, sp, framesize - 2 * wordSize); 4384 } else { 4385 stp(rfp, lr, Address(pre(sp, -2 * wordSize))); 4386 if (PreserveFramePointer) mov(rfp, sp); 4387 if (framesize < ((1 << 12) + 2 * wordSize)) 4388 sub(sp, sp, framesize - 2 * wordSize); 4389 else { 4390 mov(rscratch1, framesize - 2 * wordSize); 4391 sub(sp, sp, rscratch1); 4392 } 4393 } 4394 } 4395 4396 void MacroAssembler::remove_frame(int framesize) { 4397 assert(framesize > 0, "framesize must be > 0"); 4398 if (framesize < ((1 << 9) + 2 * wordSize)) { 4399 ldp(rfp, lr, Address(sp, framesize - 2 * wordSize)); 4400 add(sp, sp, framesize); 4401 } else { 4402 if (framesize < ((1 << 12) + 2 * wordSize)) 4403 add(sp, sp, framesize - 2 * wordSize); 4404 else { 4405 mov(rscratch1, framesize - 2 * wordSize); 4406 add(sp, sp, rscratch1); 4407 } 4408 ldp(rfp, lr, Address(post(sp, 2 * wordSize))); 4409 } 4410 } 4411 4412 4413 // This method checks if provided byte array contains byte with highest bit set. 4414 void MacroAssembler::has_negatives(Register ary1, Register len, Register result) { 4415 // Simple and most common case of aligned small array which is not at the 4416 // end of memory page is placed here. All other cases are in stub. 4417 Label LOOP, END, STUB, STUB_LONG, SET_RESULT, DONE; 4418 const uint64_t UPPER_BIT_MASK=0x8080808080808080; 4419 assert_different_registers(ary1, len, result); 4420 4421 cmpw(len, 0); 4422 br(LE, SET_RESULT); 4423 cmpw(len, 4 * wordSize); 4424 br(GE, STUB_LONG); // size > 32 then go to stub 4425 4426 int shift = 64 - exact_log2(os::vm_page_size()); 4427 lsl(rscratch1, ary1, shift); 4428 mov(rscratch2, (size_t)(4 * wordSize) << shift); 4429 adds(rscratch2, rscratch1, rscratch2); // At end of page? 4430 br(CS, STUB); // at the end of page then go to stub 4431 subs(len, len, wordSize); 4432 br(LT, END); 4433 4434 BIND(LOOP); 4435 ldr(rscratch1, Address(post(ary1, wordSize))); 4436 tst(rscratch1, UPPER_BIT_MASK); 4437 br(NE, SET_RESULT); 4438 subs(len, len, wordSize); 4439 br(GE, LOOP); 4440 cmpw(len, -wordSize); 4441 br(EQ, SET_RESULT); 4442 4443 BIND(END); 4444 ldr(result, Address(ary1)); 4445 sub(len, zr, len, LSL, 3); // LSL 3 is to get bits from bytes 4446 lslv(result, result, len); 4447 tst(result, UPPER_BIT_MASK); 4448 b(SET_RESULT); 4449 4450 BIND(STUB); 4451 RuntimeAddress has_neg = RuntimeAddress(StubRoutines::aarch64::has_negatives()); 4452 assert(has_neg.target() != NULL, "has_negatives stub has not been generated"); 4453 trampoline_call(has_neg); 4454 b(DONE); 4455 4456 BIND(STUB_LONG); 4457 RuntimeAddress has_neg_long = RuntimeAddress( 4458 StubRoutines::aarch64::has_negatives_long()); 4459 assert(has_neg_long.target() != NULL, "has_negatives stub has not been generated"); 4460 trampoline_call(has_neg_long); 4461 b(DONE); 4462 4463 BIND(SET_RESULT); 4464 cset(result, NE); // set true or false 4465 4466 BIND(DONE); 4467 } 4468 4469 void MacroAssembler::arrays_equals(Register a1, Register a2, Register tmp3, 4470 Register tmp4, Register tmp5, Register result, 4471 Register cnt1, int elem_size) { 4472 Label DONE, SAME; 4473 Register tmp1 = rscratch1; 4474 Register tmp2 = rscratch2; 4475 Register cnt2 = tmp2; // cnt2 only used in array length compare 4476 int elem_per_word = wordSize/elem_size; 4477 int log_elem_size = exact_log2(elem_size); 4478 int length_offset = arrayOopDesc::length_offset_in_bytes(); 4479 int base_offset 4480 = arrayOopDesc::base_offset_in_bytes(elem_size == 2 ? T_CHAR : T_BYTE); 4481 int stubBytesThreshold = 3 * 64 + (UseSIMDForArrayEquals ? 0 : 16); 4482 4483 assert(elem_size == 1 || elem_size == 2, "must be char or byte"); 4484 assert_different_registers(a1, a2, result, cnt1, rscratch1, rscratch2); 4485 4486 #ifndef PRODUCT 4487 { 4488 const char kind = (elem_size == 2) ? 'U' : 'L'; 4489 char comment[64]; 4490 snprintf(comment, sizeof comment, "array_equals%c{", kind); 4491 BLOCK_COMMENT(comment); 4492 } 4493 #endif 4494 4495 // if (a1 == a2) 4496 // return true; 4497 cmpoop(a1, a2); // May have read barriers for a1 and a2. 4498 br(EQ, SAME); 4499 4500 if (UseSimpleArrayEquals) { 4501 Label NEXT_WORD, SHORT, TAIL03, TAIL01, A_MIGHT_BE_NULL, A_IS_NOT_NULL; 4502 // if (a1 == null || a2 == null) 4503 // return false; 4504 // a1 & a2 == 0 means (some-pointer is null) or 4505 // (very-rare-or-even-probably-impossible-pointer-values) 4506 // so, we can save one branch in most cases 4507 tst(a1, a2); 4508 mov(result, false); 4509 br(EQ, A_MIGHT_BE_NULL); 4510 // if (a1.length != a2.length) 4511 // return false; 4512 bind(A_IS_NOT_NULL); 4513 ldrw(cnt1, Address(a1, length_offset)); 4514 ldrw(cnt2, Address(a2, length_offset)); 4515 eorw(tmp5, cnt1, cnt2); 4516 cbnzw(tmp5, DONE); 4517 lea(a1, Address(a1, base_offset)); 4518 lea(a2, Address(a2, base_offset)); 4519 // Check for short strings, i.e. smaller than wordSize. 4520 subs(cnt1, cnt1, elem_per_word); 4521 br(Assembler::LT, SHORT); 4522 // Main 8 byte comparison loop. 4523 bind(NEXT_WORD); { 4524 ldr(tmp1, Address(post(a1, wordSize))); 4525 ldr(tmp2, Address(post(a2, wordSize))); 4526 subs(cnt1, cnt1, elem_per_word); 4527 eor(tmp5, tmp1, tmp2); 4528 cbnz(tmp5, DONE); 4529 } br(GT, NEXT_WORD); 4530 // Last longword. In the case where length == 4 we compare the 4531 // same longword twice, but that's still faster than another 4532 // conditional branch. 4533 // cnt1 could be 0, -1, -2, -3, -4 for chars; -4 only happens when 4534 // length == 4. 4535 if (log_elem_size > 0) 4536 lsl(cnt1, cnt1, log_elem_size); 4537 ldr(tmp3, Address(a1, cnt1)); 4538 ldr(tmp4, Address(a2, cnt1)); 4539 eor(tmp5, tmp3, tmp4); 4540 cbnz(tmp5, DONE); 4541 b(SAME); 4542 bind(A_MIGHT_BE_NULL); 4543 // in case both a1 and a2 are not-null, proceed with loads 4544 cbz(a1, DONE); 4545 cbz(a2, DONE); 4546 b(A_IS_NOT_NULL); 4547 bind(SHORT); 4548 4549 tbz(cnt1, 2 - log_elem_size, TAIL03); // 0-7 bytes left. 4550 { 4551 ldrw(tmp1, Address(post(a1, 4))); 4552 ldrw(tmp2, Address(post(a2, 4))); 4553 eorw(tmp5, tmp1, tmp2); 4554 cbnzw(tmp5, DONE); 4555 } 4556 bind(TAIL03); 4557 tbz(cnt1, 1 - log_elem_size, TAIL01); // 0-3 bytes left. 4558 { 4559 ldrh(tmp3, Address(post(a1, 2))); 4560 ldrh(tmp4, Address(post(a2, 2))); 4561 eorw(tmp5, tmp3, tmp4); 4562 cbnzw(tmp5, DONE); 4563 } 4564 bind(TAIL01); 4565 if (elem_size == 1) { // Only needed when comparing byte arrays. 4566 tbz(cnt1, 0, SAME); // 0-1 bytes left. 4567 { 4568 ldrb(tmp1, a1); 4569 ldrb(tmp2, a2); 4570 eorw(tmp5, tmp1, tmp2); 4571 cbnzw(tmp5, DONE); 4572 } 4573 } 4574 } else { 4575 Label NEXT_DWORD, SHORT, TAIL, TAIL2, STUB, EARLY_OUT, 4576 CSET_EQ, LAST_CHECK; 4577 mov(result, false); 4578 cbz(a1, DONE); 4579 ldrw(cnt1, Address(a1, length_offset)); 4580 cbz(a2, DONE); 4581 ldrw(cnt2, Address(a2, length_offset)); 4582 // on most CPUs a2 is still "locked"(surprisingly) in ldrw and it's 4583 // faster to perform another branch before comparing a1 and a2 4584 cmp(cnt1, (u1)elem_per_word); 4585 br(LE, SHORT); // short or same 4586 ldr(tmp3, Address(pre(a1, base_offset))); 4587 subs(zr, cnt1, stubBytesThreshold); 4588 br(GE, STUB); 4589 ldr(tmp4, Address(pre(a2, base_offset))); 4590 sub(tmp5, zr, cnt1, LSL, 3 + log_elem_size); 4591 cmp(cnt2, cnt1); 4592 br(NE, DONE); 4593 4594 // Main 16 byte comparison loop with 2 exits 4595 bind(NEXT_DWORD); { 4596 ldr(tmp1, Address(pre(a1, wordSize))); 4597 ldr(tmp2, Address(pre(a2, wordSize))); 4598 subs(cnt1, cnt1, 2 * elem_per_word); 4599 br(LE, TAIL); 4600 eor(tmp4, tmp3, tmp4); 4601 cbnz(tmp4, DONE); 4602 ldr(tmp3, Address(pre(a1, wordSize))); 4603 ldr(tmp4, Address(pre(a2, wordSize))); 4604 cmp(cnt1, (u1)elem_per_word); 4605 br(LE, TAIL2); 4606 cmp(tmp1, tmp2); 4607 } br(EQ, NEXT_DWORD); 4608 b(DONE); 4609 4610 bind(TAIL); 4611 eor(tmp4, tmp3, tmp4); 4612 eor(tmp2, tmp1, tmp2); 4613 lslv(tmp2, tmp2, tmp5); 4614 orr(tmp5, tmp4, tmp2); 4615 cmp(tmp5, zr); 4616 b(CSET_EQ); 4617 4618 bind(TAIL2); 4619 eor(tmp2, tmp1, tmp2); 4620 cbnz(tmp2, DONE); 4621 b(LAST_CHECK); 4622 4623 bind(STUB); 4624 ldr(tmp4, Address(pre(a2, base_offset))); 4625 cmp(cnt2, cnt1); 4626 br(NE, DONE); 4627 if (elem_size == 2) { // convert to byte counter 4628 lsl(cnt1, cnt1, 1); 4629 } 4630 eor(tmp5, tmp3, tmp4); 4631 cbnz(tmp5, DONE); 4632 RuntimeAddress stub = RuntimeAddress(StubRoutines::aarch64::large_array_equals()); 4633 assert(stub.target() != NULL, "array_equals_long stub has not been generated"); 4634 trampoline_call(stub); 4635 b(DONE); 4636 4637 bind(EARLY_OUT); 4638 // (a1 != null && a2 == null) || (a1 != null && a2 != null && a1 == a2) 4639 // so, if a2 == null => return false(0), else return true, so we can return a2 4640 mov(result, a2); 4641 b(DONE); 4642 bind(SHORT); 4643 cmp(cnt2, cnt1); 4644 br(NE, DONE); 4645 cbz(cnt1, SAME); 4646 sub(tmp5, zr, cnt1, LSL, 3 + log_elem_size); 4647 ldr(tmp3, Address(a1, base_offset)); 4648 ldr(tmp4, Address(a2, base_offset)); 4649 bind(LAST_CHECK); 4650 eor(tmp4, tmp3, tmp4); 4651 lslv(tmp5, tmp4, tmp5); 4652 cmp(tmp5, zr); 4653 bind(CSET_EQ); 4654 cset(result, EQ); 4655 b(DONE); 4656 } 4657 4658 bind(SAME); 4659 mov(result, true); 4660 // That's it. 4661 bind(DONE); 4662 4663 BLOCK_COMMENT("} array_equals"); 4664 } 4665 4666 // Compare Strings 4667 4668 // For Strings we're passed the address of the first characters in a1 4669 // and a2 and the length in cnt1. 4670 // elem_size is the element size in bytes: either 1 or 2. 4671 // There are two implementations. For arrays >= 8 bytes, all 4672 // comparisons (including the final one, which may overlap) are 4673 // performed 8 bytes at a time. For strings < 8 bytes, we compare a 4674 // halfword, then a short, and then a byte. 4675 4676 void MacroAssembler::string_equals(Register a1, Register a2, 4677 Register result, Register cnt1, int elem_size) 4678 { 4679 Label SAME, DONE, SHORT, NEXT_WORD; 4680 Register tmp1 = rscratch1; 4681 Register tmp2 = rscratch2; 4682 Register cnt2 = tmp2; // cnt2 only used in array length compare 4683 4684 assert(elem_size == 1 || elem_size == 2, "must be 2 or 1 byte"); 4685 assert_different_registers(a1, a2, result, cnt1, rscratch1, rscratch2); 4686 4687 #ifndef PRODUCT 4688 { 4689 const char kind = (elem_size == 2) ? 'U' : 'L'; 4690 char comment[64]; 4691 snprintf(comment, sizeof comment, "{string_equals%c", kind); 4692 BLOCK_COMMENT(comment); 4693 } 4694 #endif 4695 4696 mov(result, false); 4697 4698 // Check for short strings, i.e. smaller than wordSize. 4699 subs(cnt1, cnt1, wordSize); 4700 br(Assembler::LT, SHORT); 4701 // Main 8 byte comparison loop. 4702 bind(NEXT_WORD); { 4703 ldr(tmp1, Address(post(a1, wordSize))); 4704 ldr(tmp2, Address(post(a2, wordSize))); 4705 subs(cnt1, cnt1, wordSize); 4706 eor(tmp1, tmp1, tmp2); 4707 cbnz(tmp1, DONE); 4708 } br(GT, NEXT_WORD); 4709 // Last longword. In the case where length == 4 we compare the 4710 // same longword twice, but that's still faster than another 4711 // conditional branch. 4712 // cnt1 could be 0, -1, -2, -3, -4 for chars; -4 only happens when 4713 // length == 4. 4714 ldr(tmp1, Address(a1, cnt1)); 4715 ldr(tmp2, Address(a2, cnt1)); 4716 eor(tmp2, tmp1, tmp2); 4717 cbnz(tmp2, DONE); 4718 b(SAME); 4719 4720 bind(SHORT); 4721 Label TAIL03, TAIL01; 4722 4723 tbz(cnt1, 2, TAIL03); // 0-7 bytes left. 4724 { 4725 ldrw(tmp1, Address(post(a1, 4))); 4726 ldrw(tmp2, Address(post(a2, 4))); 4727 eorw(tmp1, tmp1, tmp2); 4728 cbnzw(tmp1, DONE); 4729 } 4730 bind(TAIL03); 4731 tbz(cnt1, 1, TAIL01); // 0-3 bytes left. 4732 { 4733 ldrh(tmp1, Address(post(a1, 2))); 4734 ldrh(tmp2, Address(post(a2, 2))); 4735 eorw(tmp1, tmp1, tmp2); 4736 cbnzw(tmp1, DONE); 4737 } 4738 bind(TAIL01); 4739 if (elem_size == 1) { // Only needed when comparing 1-byte elements 4740 tbz(cnt1, 0, SAME); // 0-1 bytes left. 4741 { 4742 ldrb(tmp1, a1); 4743 ldrb(tmp2, a2); 4744 eorw(tmp1, tmp1, tmp2); 4745 cbnzw(tmp1, DONE); 4746 } 4747 } 4748 // Arrays are equal. 4749 bind(SAME); 4750 mov(result, true); 4751 4752 // That's it. 4753 bind(DONE); 4754 BLOCK_COMMENT("} string_equals"); 4755 } 4756 4757 4758 // The size of the blocks erased by the zero_blocks stub. We must 4759 // handle anything smaller than this ourselves in zero_words(). 4760 const int MacroAssembler::zero_words_block_size = 8; 4761 4762 // zero_words() is used by C2 ClearArray patterns. It is as small as 4763 // possible, handling small word counts locally and delegating 4764 // anything larger to the zero_blocks stub. It is expanded many times 4765 // in compiled code, so it is important to keep it short. 4766 4767 // ptr: Address of a buffer to be zeroed. 4768 // cnt: Count in HeapWords. 4769 // 4770 // ptr, cnt, rscratch1, and rscratch2 are clobbered. 4771 void MacroAssembler::zero_words(Register ptr, Register cnt) 4772 { 4773 assert(is_power_of_2(zero_words_block_size), "adjust this"); 4774 assert(ptr == r10 && cnt == r11, "mismatch in register usage"); 4775 4776 BLOCK_COMMENT("zero_words {"); 4777 cmp(cnt, (u1)zero_words_block_size); 4778 Label around; 4779 br(LO, around); 4780 { 4781 RuntimeAddress zero_blocks = RuntimeAddress(StubRoutines::aarch64::zero_blocks()); 4782 assert(zero_blocks.target() != NULL, "zero_blocks stub has not been generated"); 4783 if (StubRoutines::aarch64::complete()) { 4784 trampoline_call(zero_blocks); 4785 } else { 4786 bl(zero_blocks); 4787 } 4788 } 4789 bind(around); 4790 for (int i = zero_words_block_size >> 1; i > 1; i >>= 1) { 4791 Label l; 4792 tbz(cnt, exact_log2(i), l); 4793 for (int j = 0; j < i; j += 2) { 4794 stp(zr, zr, post(ptr, 16)); 4795 } 4796 bind(l); 4797 } 4798 { 4799 Label l; 4800 tbz(cnt, 0, l); 4801 str(zr, Address(ptr)); 4802 bind(l); 4803 } 4804 BLOCK_COMMENT("} zero_words"); 4805 } 4806 4807 // base: Address of a buffer to be zeroed, 8 bytes aligned. 4808 // cnt: Immediate count in HeapWords. 4809 #define SmallArraySize (18 * BytesPerLong) 4810 void MacroAssembler::zero_words(Register base, u_int64_t cnt) 4811 { 4812 BLOCK_COMMENT("zero_words {"); 4813 int i = cnt & 1; // store any odd word to start 4814 if (i) str(zr, Address(base)); 4815 4816 if (cnt <= SmallArraySize / BytesPerLong) { 4817 for (; i < (int)cnt; i += 2) 4818 stp(zr, zr, Address(base, i * wordSize)); 4819 } else { 4820 const int unroll = 4; // Number of stp(zr, zr) instructions we'll unroll 4821 int remainder = cnt % (2 * unroll); 4822 for (; i < remainder; i += 2) 4823 stp(zr, zr, Address(base, i * wordSize)); 4824 4825 Label loop; 4826 Register cnt_reg = rscratch1; 4827 Register loop_base = rscratch2; 4828 cnt = cnt - remainder; 4829 mov(cnt_reg, cnt); 4830 // adjust base and prebias by -2 * wordSize so we can pre-increment 4831 add(loop_base, base, (remainder - 2) * wordSize); 4832 bind(loop); 4833 sub(cnt_reg, cnt_reg, 2 * unroll); 4834 for (i = 1; i < unroll; i++) 4835 stp(zr, zr, Address(loop_base, 2 * i * wordSize)); 4836 stp(zr, zr, Address(pre(loop_base, 2 * unroll * wordSize))); 4837 cbnz(cnt_reg, loop); 4838 } 4839 BLOCK_COMMENT("} zero_words"); 4840 } 4841 4842 // Zero blocks of memory by using DC ZVA. 4843 // 4844 // Aligns the base address first sufficently for DC ZVA, then uses 4845 // DC ZVA repeatedly for every full block. cnt is the size to be 4846 // zeroed in HeapWords. Returns the count of words left to be zeroed 4847 // in cnt. 4848 // 4849 // NOTE: This is intended to be used in the zero_blocks() stub. If 4850 // you want to use it elsewhere, note that cnt must be >= 2*zva_length. 4851 void MacroAssembler::zero_dcache_blocks(Register base, Register cnt) { 4852 Register tmp = rscratch1; 4853 Register tmp2 = rscratch2; 4854 int zva_length = VM_Version::zva_length(); 4855 Label initial_table_end, loop_zva; 4856 Label fini; 4857 4858 // Base must be 16 byte aligned. If not just return and let caller handle it 4859 tst(base, 0x0f); 4860 br(Assembler::NE, fini); 4861 // Align base with ZVA length. 4862 neg(tmp, base); 4863 andr(tmp, tmp, zva_length - 1); 4864 4865 // tmp: the number of bytes to be filled to align the base with ZVA length. 4866 add(base, base, tmp); 4867 sub(cnt, cnt, tmp, Assembler::ASR, 3); 4868 adr(tmp2, initial_table_end); 4869 sub(tmp2, tmp2, tmp, Assembler::LSR, 2); 4870 br(tmp2); 4871 4872 for (int i = -zva_length + 16; i < 0; i += 16) 4873 stp(zr, zr, Address(base, i)); 4874 bind(initial_table_end); 4875 4876 sub(cnt, cnt, zva_length >> 3); 4877 bind(loop_zva); 4878 dc(Assembler::ZVA, base); 4879 subs(cnt, cnt, zva_length >> 3); 4880 add(base, base, zva_length); 4881 br(Assembler::GE, loop_zva); 4882 add(cnt, cnt, zva_length >> 3); // count not zeroed by DC ZVA 4883 bind(fini); 4884 } 4885 4886 // base: Address of a buffer to be filled, 8 bytes aligned. 4887 // cnt: Count in 8-byte unit. 4888 // value: Value to be filled with. 4889 // base will point to the end of the buffer after filling. 4890 void MacroAssembler::fill_words(Register base, Register cnt, Register value) 4891 { 4892 // Algorithm: 4893 // 4894 // scratch1 = cnt & 7; 4895 // cnt -= scratch1; 4896 // p += scratch1; 4897 // switch (scratch1) { 4898 // do { 4899 // cnt -= 8; 4900 // p[-8] = v; 4901 // case 7: 4902 // p[-7] = v; 4903 // case 6: 4904 // p[-6] = v; 4905 // // ... 4906 // case 1: 4907 // p[-1] = v; 4908 // case 0: 4909 // p += 8; 4910 // } while (cnt); 4911 // } 4912 4913 assert_different_registers(base, cnt, value, rscratch1, rscratch2); 4914 4915 Label fini, skip, entry, loop; 4916 const int unroll = 8; // Number of stp instructions we'll unroll 4917 4918 cbz(cnt, fini); 4919 tbz(base, 3, skip); 4920 str(value, Address(post(base, 8))); 4921 sub(cnt, cnt, 1); 4922 bind(skip); 4923 4924 andr(rscratch1, cnt, (unroll-1) * 2); 4925 sub(cnt, cnt, rscratch1); 4926 add(base, base, rscratch1, Assembler::LSL, 3); 4927 adr(rscratch2, entry); 4928 sub(rscratch2, rscratch2, rscratch1, Assembler::LSL, 1); 4929 br(rscratch2); 4930 4931 bind(loop); 4932 add(base, base, unroll * 16); 4933 for (int i = -unroll; i < 0; i++) 4934 stp(value, value, Address(base, i * 16)); 4935 bind(entry); 4936 subs(cnt, cnt, unroll * 2); 4937 br(Assembler::GE, loop); 4938 4939 tbz(cnt, 0, fini); 4940 str(value, Address(post(base, 8))); 4941 bind(fini); 4942 } 4943 4944 // Intrinsic for sun/nio/cs/ISO_8859_1$Encoder.implEncodeISOArray and 4945 // java/lang/StringUTF16.compress. 4946 void MacroAssembler::encode_iso_array(Register src, Register dst, 4947 Register len, Register result, 4948 FloatRegister Vtmp1, FloatRegister Vtmp2, 4949 FloatRegister Vtmp3, FloatRegister Vtmp4) 4950 { 4951 Label DONE, SET_RESULT, NEXT_32, NEXT_32_PRFM, LOOP_8, NEXT_8, LOOP_1, NEXT_1, 4952 NEXT_32_START, NEXT_32_PRFM_START; 4953 Register tmp1 = rscratch1, tmp2 = rscratch2; 4954 4955 mov(result, len); // Save initial len 4956 4957 cmp(len, (u1)8); // handle shortest strings first 4958 br(LT, LOOP_1); 4959 cmp(len, (u1)32); 4960 br(LT, NEXT_8); 4961 // The following code uses the SIMD 'uzp1' and 'uzp2' instructions 4962 // to convert chars to bytes 4963 if (SoftwarePrefetchHintDistance >= 0) { 4964 ld1(Vtmp1, Vtmp2, Vtmp3, Vtmp4, T8H, src); 4965 subs(tmp2, len, SoftwarePrefetchHintDistance/2 + 16); 4966 br(LE, NEXT_32_START); 4967 b(NEXT_32_PRFM_START); 4968 BIND(NEXT_32_PRFM); 4969 ld1(Vtmp1, Vtmp2, Vtmp3, Vtmp4, T8H, src); 4970 BIND(NEXT_32_PRFM_START); 4971 prfm(Address(src, SoftwarePrefetchHintDistance)); 4972 orr(v4, T16B, Vtmp1, Vtmp2); 4973 orr(v5, T16B, Vtmp3, Vtmp4); 4974 uzp1(Vtmp1, T16B, Vtmp1, Vtmp2); 4975 uzp1(Vtmp3, T16B, Vtmp3, Vtmp4); 4976 uzp2(v5, T16B, v4, v5); // high bytes 4977 umov(tmp2, v5, D, 1); 4978 fmovd(tmp1, v5); 4979 orr(tmp1, tmp1, tmp2); 4980 cbnz(tmp1, LOOP_8); 4981 stpq(Vtmp1, Vtmp3, dst); 4982 sub(len, len, 32); 4983 add(dst, dst, 32); 4984 add(src, src, 64); 4985 subs(tmp2, len, SoftwarePrefetchHintDistance/2 + 16); 4986 br(GE, NEXT_32_PRFM); 4987 cmp(len, (u1)32); 4988 br(LT, LOOP_8); 4989 BIND(NEXT_32); 4990 ld1(Vtmp1, Vtmp2, Vtmp3, Vtmp4, T8H, src); 4991 BIND(NEXT_32_START); 4992 } else { 4993 BIND(NEXT_32); 4994 ld1(Vtmp1, Vtmp2, Vtmp3, Vtmp4, T8H, src); 4995 } 4996 prfm(Address(src, SoftwarePrefetchHintDistance)); 4997 uzp1(v4, T16B, Vtmp1, Vtmp2); 4998 uzp1(v5, T16B, Vtmp3, Vtmp4); 4999 orr(Vtmp1, T16B, Vtmp1, Vtmp2); 5000 orr(Vtmp3, T16B, Vtmp3, Vtmp4); 5001 uzp2(Vtmp1, T16B, Vtmp1, Vtmp3); // high bytes 5002 umov(tmp2, Vtmp1, D, 1); 5003 fmovd(tmp1, Vtmp1); 5004 orr(tmp1, tmp1, tmp2); 5005 cbnz(tmp1, LOOP_8); 5006 stpq(v4, v5, dst); 5007 sub(len, len, 32); 5008 add(dst, dst, 32); 5009 add(src, src, 64); 5010 cmp(len, (u1)32); 5011 br(GE, NEXT_32); 5012 cbz(len, DONE); 5013 5014 BIND(LOOP_8); 5015 cmp(len, (u1)8); 5016 br(LT, LOOP_1); 5017 BIND(NEXT_8); 5018 ld1(Vtmp1, T8H, src); 5019 uzp1(Vtmp2, T16B, Vtmp1, Vtmp1); // low bytes 5020 uzp2(Vtmp3, T16B, Vtmp1, Vtmp1); // high bytes 5021 fmovd(tmp1, Vtmp3); 5022 cbnz(tmp1, NEXT_1); 5023 strd(Vtmp2, dst); 5024 5025 sub(len, len, 8); 5026 add(dst, dst, 8); 5027 add(src, src, 16); 5028 cmp(len, (u1)8); 5029 br(GE, NEXT_8); 5030 5031 BIND(LOOP_1); 5032 5033 cbz(len, DONE); 5034 BIND(NEXT_1); 5035 ldrh(tmp1, Address(post(src, 2))); 5036 tst(tmp1, 0xff00); 5037 br(NE, SET_RESULT); 5038 strb(tmp1, Address(post(dst, 1))); 5039 subs(len, len, 1); 5040 br(GT, NEXT_1); 5041 5042 BIND(SET_RESULT); 5043 sub(result, result, len); // Return index where we stopped 5044 // Return len == 0 if we processed all 5045 // characters 5046 BIND(DONE); 5047 } 5048 5049 5050 // Inflate byte[] array to char[]. 5051 void MacroAssembler::byte_array_inflate(Register src, Register dst, Register len, 5052 FloatRegister vtmp1, FloatRegister vtmp2, FloatRegister vtmp3, 5053 Register tmp4) { 5054 Label big, done, after_init, to_stub; 5055 5056 assert_different_registers(src, dst, len, tmp4, rscratch1); 5057 5058 fmovd(vtmp1, zr); 5059 lsrw(tmp4, len, 3); 5060 bind(after_init); 5061 cbnzw(tmp4, big); 5062 // Short string: less than 8 bytes. 5063 { 5064 Label loop, tiny; 5065 5066 cmpw(len, 4); 5067 br(LT, tiny); 5068 // Use SIMD to do 4 bytes. 5069 ldrs(vtmp2, post(src, 4)); 5070 zip1(vtmp3, T8B, vtmp2, vtmp1); 5071 subw(len, len, 4); 5072 strd(vtmp3, post(dst, 8)); 5073 5074 cbzw(len, done); 5075 5076 // Do the remaining bytes by steam. 5077 bind(loop); 5078 ldrb(tmp4, post(src, 1)); 5079 strh(tmp4, post(dst, 2)); 5080 subw(len, len, 1); 5081 5082 bind(tiny); 5083 cbnz(len, loop); 5084 5085 b(done); 5086 } 5087 5088 if (SoftwarePrefetchHintDistance >= 0) { 5089 bind(to_stub); 5090 RuntimeAddress stub = RuntimeAddress(StubRoutines::aarch64::large_byte_array_inflate()); 5091 assert(stub.target() != NULL, "large_byte_array_inflate stub has not been generated"); 5092 trampoline_call(stub); 5093 b(after_init); 5094 } 5095 5096 // Unpack the bytes 8 at a time. 5097 bind(big); 5098 { 5099 Label loop, around, loop_last, loop_start; 5100 5101 if (SoftwarePrefetchHintDistance >= 0) { 5102 const int large_loop_threshold = (64 + 16)/8; 5103 ldrd(vtmp2, post(src, 8)); 5104 andw(len, len, 7); 5105 cmp(tmp4, (u1)large_loop_threshold); 5106 br(GE, to_stub); 5107 b(loop_start); 5108 5109 bind(loop); 5110 ldrd(vtmp2, post(src, 8)); 5111 bind(loop_start); 5112 subs(tmp4, tmp4, 1); 5113 br(EQ, loop_last); 5114 zip1(vtmp2, T16B, vtmp2, vtmp1); 5115 ldrd(vtmp3, post(src, 8)); 5116 st1(vtmp2, T8H, post(dst, 16)); 5117 subs(tmp4, tmp4, 1); 5118 zip1(vtmp3, T16B, vtmp3, vtmp1); 5119 st1(vtmp3, T8H, post(dst, 16)); 5120 br(NE, loop); 5121 b(around); 5122 bind(loop_last); 5123 zip1(vtmp2, T16B, vtmp2, vtmp1); 5124 st1(vtmp2, T8H, post(dst, 16)); 5125 bind(around); 5126 cbz(len, done); 5127 } else { 5128 andw(len, len, 7); 5129 bind(loop); 5130 ldrd(vtmp2, post(src, 8)); 5131 sub(tmp4, tmp4, 1); 5132 zip1(vtmp3, T16B, vtmp2, vtmp1); 5133 st1(vtmp3, T8H, post(dst, 16)); 5134 cbnz(tmp4, loop); 5135 } 5136 } 5137 5138 // Do the tail of up to 8 bytes. 5139 add(src, src, len); 5140 ldrd(vtmp3, Address(src, -8)); 5141 add(dst, dst, len, ext::uxtw, 1); 5142 zip1(vtmp3, T16B, vtmp3, vtmp1); 5143 strq(vtmp3, Address(dst, -16)); 5144 5145 bind(done); 5146 } 5147 5148 // Compress char[] array to byte[]. 5149 void MacroAssembler::char_array_compress(Register src, Register dst, Register len, 5150 FloatRegister tmp1Reg, FloatRegister tmp2Reg, 5151 FloatRegister tmp3Reg, FloatRegister tmp4Reg, 5152 Register result) { 5153 encode_iso_array(src, dst, len, result, 5154 tmp1Reg, tmp2Reg, tmp3Reg, tmp4Reg); 5155 cmp(len, zr); 5156 csel(result, result, zr, EQ); 5157 } 5158 5159 // get_thread() can be called anywhere inside generated code so we 5160 // need to save whatever non-callee save context might get clobbered 5161 // by the call to JavaThread::aarch64_get_thread_helper() or, indeed, 5162 // the call setup code. 5163 // 5164 // aarch64_get_thread_helper() clobbers only r0, r1, and flags. 5165 // 5166 void MacroAssembler::get_thread(Register dst) { 5167 RegSet saved_regs = RegSet::range(r0, r1) + lr - dst; 5168 push(saved_regs, sp); 5169 5170 mov(lr, CAST_FROM_FN_PTR(address, JavaThread::aarch64_get_thread_helper)); 5171 blr(lr); 5172 if (dst != c_rarg0) { 5173 mov(dst, c_rarg0); 5174 } 5175 5176 pop(saved_regs, sp); 5177 } 5178 5179 void MacroAssembler::cache_wb(Address line) { 5180 assert(line.getMode() == Address::base_plus_offset, "mode should be base_plus_offset"); 5181 assert(line.index() == noreg, "index should be noreg"); 5182 assert(line.offset() == 0, "offset should be 0"); 5183 // would like to assert this 5184 // assert(line._ext.shift == 0, "shift should be zero"); 5185 if (VM_Version::supports_dcpop()) { 5186 // writeback using clear virtual address to point of persistence 5187 dc(Assembler::CVAP, line.base()); 5188 } else { 5189 // no need to generate anything as Unsafe.writebackMemory should 5190 // never invoke this stub 5191 } 5192 } 5193 5194 void MacroAssembler::cache_wbsync(bool is_pre) { 5195 // we only need a barrier post sync 5196 if (!is_pre) { 5197 membar(Assembler::AnyAny); 5198 } 5199 }