/* * Copyright (c) 1997, 2020, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2015, 2020, Red Hat Inc. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "asm/macroAssembler.hpp" #include "asm/macroAssembler.inline.hpp" #include "memory/resourceArea.hpp" #include "runtime/java.hpp" #include "runtime/os.hpp" #include "runtime/stubCodeGenerator.hpp" #include "runtime/vm_version.hpp" #include "utilities/macros.hpp" #include OS_HEADER_INLINE(os) #include #include #ifndef HWCAP_AES #define HWCAP_AES (1<<3) #endif #ifndef HWCAP_PMULL #define HWCAP_PMULL (1<<4) #endif #ifndef HWCAP_SHA1 #define HWCAP_SHA1 (1<<5) #endif #ifndef HWCAP_SHA2 #define HWCAP_SHA2 (1<<6) #endif #ifndef HWCAP_CRC32 #define HWCAP_CRC32 (1<<7) #endif #ifndef HWCAP_ATOMICS #define HWCAP_ATOMICS (1<<8) #endif int VM_Version::_cpu; int VM_Version::_model; int VM_Version::_model2; int VM_Version::_variant; int VM_Version::_revision; int VM_Version::_stepping; bool VM_Version::_dcpop; VM_Version::PsrInfo VM_Version::_psr_info = { 0, }; static BufferBlob* stub_blob; static const int stub_size = 550; extern "C" { typedef void (*getPsrInfo_stub_t)(void*); } static getPsrInfo_stub_t getPsrInfo_stub = NULL; class VM_Version_StubGenerator: public StubCodeGenerator { public: VM_Version_StubGenerator(CodeBuffer *c) : StubCodeGenerator(c) {} address generate_getPsrInfo() { StubCodeMark mark(this, "VM_Version", "getPsrInfo_stub"); # define __ _masm-> address start = __ pc(); // void getPsrInfo(VM_Version::PsrInfo* psr_info); address entry = __ pc(); __ enter(); __ get_dczid_el0(rscratch1); __ strw(rscratch1, Address(c_rarg0, in_bytes(VM_Version::dczid_el0_offset()))); __ get_ctr_el0(rscratch1); __ strw(rscratch1, Address(c_rarg0, in_bytes(VM_Version::ctr_el0_offset()))); __ leave(); __ ret(lr); # undef __ return start; } }; void VM_Version::get_processor_features() { _supports_cx8 = true; _supports_atomic_getset4 = true; _supports_atomic_getadd4 = true; _supports_atomic_getset8 = true; _supports_atomic_getadd8 = true; getPsrInfo_stub(&_psr_info); int dcache_line = VM_Version::dcache_line_size(); // Limit AllocatePrefetchDistance so that it does not exceed the // constraint in AllocatePrefetchDistanceConstraintFunc. if (FLAG_IS_DEFAULT(AllocatePrefetchDistance)) FLAG_SET_DEFAULT(AllocatePrefetchDistance, MIN2(512, 3*dcache_line)); if (FLAG_IS_DEFAULT(AllocatePrefetchStepSize)) FLAG_SET_DEFAULT(AllocatePrefetchStepSize, dcache_line); if (FLAG_IS_DEFAULT(PrefetchScanIntervalInBytes)) FLAG_SET_DEFAULT(PrefetchScanIntervalInBytes, 3*dcache_line); if (FLAG_IS_DEFAULT(PrefetchCopyIntervalInBytes)) FLAG_SET_DEFAULT(PrefetchCopyIntervalInBytes, 3*dcache_line); if (FLAG_IS_DEFAULT(SoftwarePrefetchHintDistance)) FLAG_SET_DEFAULT(SoftwarePrefetchHintDistance, 3*dcache_line); if (PrefetchCopyIntervalInBytes != -1 && ((PrefetchCopyIntervalInBytes & 7) || (PrefetchCopyIntervalInBytes >= 32768))) { warning("PrefetchCopyIntervalInBytes must be -1, or a multiple of 8 and < 32768"); PrefetchCopyIntervalInBytes &= ~7; if (PrefetchCopyIntervalInBytes >= 32768) PrefetchCopyIntervalInBytes = 32760; } if (AllocatePrefetchDistance !=-1 && (AllocatePrefetchDistance & 7)) { warning("AllocatePrefetchDistance must be multiple of 8"); AllocatePrefetchDistance &= ~7; } if (AllocatePrefetchStepSize & 7) { warning("AllocatePrefetchStepSize must be multiple of 8"); AllocatePrefetchStepSize &= ~7; } if (SoftwarePrefetchHintDistance != -1 && (SoftwarePrefetchHintDistance & 7)) { warning("SoftwarePrefetchHintDistance must be -1, or a multiple of 8"); SoftwarePrefetchHintDistance &= ~7; } unsigned long auxv = getauxval(AT_HWCAP); char buf[512]; _features = auxv; int cpu_lines = 0; if (FILE *f = fopen("/proc/cpuinfo", "r")) { // need a large buffer as the flags line may include lots of text char buf[1024], *p; while (fgets(buf, sizeof (buf), f) != NULL) { if ((p = strchr(buf, ':')) != NULL) { long v = strtol(p+1, NULL, 0); if (strncmp(buf, "CPU implementer", sizeof "CPU implementer" - 1) == 0) { _cpu = v; cpu_lines++; } else if (strncmp(buf, "CPU variant", sizeof "CPU variant" - 1) == 0) { _variant = v; } else if (strncmp(buf, "CPU part", sizeof "CPU part" - 1) == 0) { if (_model != v) _model2 = _model; _model = v; } else if (strncmp(buf, "CPU revision", sizeof "CPU revision" - 1) == 0) { _revision = v; } else if (strncmp(buf, "flags", sizeof("flags") - 1) == 0) { if (strstr(p+1, "dcpop")) { _dcpop = true; } } } } fclose(f); } if (os::supports_map_sync()) { // if dcpop is available publish data cache line flush size via // generic field, otherwise let if default to zero thereby // disabling writeback if (_dcpop) { _data_cache_line_flush_size = dcache_line; } } // Enable vendor specific features // Ampere eMAG if (_cpu == CPU_AMCC && (_model == 0) && (_variant == 0x3)) { if (FLAG_IS_DEFAULT(AvoidUnalignedAccesses)) { FLAG_SET_DEFAULT(AvoidUnalignedAccesses, true); } if (FLAG_IS_DEFAULT(UseSIMDForMemoryOps)) { FLAG_SET_DEFAULT(UseSIMDForMemoryOps, true); } if (FLAG_IS_DEFAULT(UseSIMDForArrayEquals)) { FLAG_SET_DEFAULT(UseSIMDForArrayEquals, !(_revision == 1 || _revision == 2)); } } // ThunderX if (_cpu == CPU_CAVIUM && (_model == 0xA1)) { guarantee(_variant != 0, "Pre-release hardware no longer supported."); if (FLAG_IS_DEFAULT(AvoidUnalignedAccesses)) { FLAG_SET_DEFAULT(AvoidUnalignedAccesses, true); } if (FLAG_IS_DEFAULT(UseSIMDForMemoryOps)) { FLAG_SET_DEFAULT(UseSIMDForMemoryOps, (_variant > 0)); } if (FLAG_IS_DEFAULT(UseSIMDForArrayEquals)) { FLAG_SET_DEFAULT(UseSIMDForArrayEquals, false); } } // ThunderX2 if ((_cpu == CPU_CAVIUM && (_model == 0xAF)) || (_cpu == CPU_BROADCOM && (_model == 0x516))) { if (FLAG_IS_DEFAULT(AvoidUnalignedAccesses)) { FLAG_SET_DEFAULT(AvoidUnalignedAccesses, true); } if (FLAG_IS_DEFAULT(UseSIMDForMemoryOps)) { FLAG_SET_DEFAULT(UseSIMDForMemoryOps, true); } } // HiSilicon TSV110 if (_cpu == CPU_HISILICON && _model == 0xd01) { if (FLAG_IS_DEFAULT(AvoidUnalignedAccesses)) { FLAG_SET_DEFAULT(AvoidUnalignedAccesses, true); } if (FLAG_IS_DEFAULT(UseSIMDForMemoryOps)) { FLAG_SET_DEFAULT(UseSIMDForMemoryOps, true); } } // Cortex A53 if (_cpu == CPU_ARM && (_model == 0xd03 || _model2 == 0xd03)) { _features |= CPU_A53MAC; if (FLAG_IS_DEFAULT(UseSIMDForArrayEquals)) { FLAG_SET_DEFAULT(UseSIMDForArrayEquals, false); } } // Cortex A73 if (_cpu == CPU_ARM && (_model == 0xd09 || _model2 == 0xd09)) { if (FLAG_IS_DEFAULT(SoftwarePrefetchHintDistance)) { FLAG_SET_DEFAULT(SoftwarePrefetchHintDistance, -1); } // A73 is faster with short-and-easy-for-speculative-execution-loop if (FLAG_IS_DEFAULT(UseSimpleArrayEquals)) { FLAG_SET_DEFAULT(UseSimpleArrayEquals, true); } } if (_cpu == CPU_ARM && (_model == 0xd07 || _model2 == 0xd07)) _features |= CPU_STXR_PREFETCH; // If an olde style /proc/cpuinfo (cpu_lines == 1) then if _model is an A57 (0xd07) // we assume the worst and assume we could be on a big little system and have // undisclosed A53 cores which we could be swapped to at any stage if (_cpu == CPU_ARM && cpu_lines == 1 && _model == 0xd07) _features |= CPU_A53MAC; sprintf(buf, "0x%02x:0x%x:0x%03x:%d", _cpu, _variant, _model, _revision); if (_model2) sprintf(buf+strlen(buf), "(0x%03x)", _model2); if (auxv & HWCAP_ASIMD) strcat(buf, ", simd"); if (auxv & HWCAP_CRC32) strcat(buf, ", crc"); if (auxv & HWCAP_AES) strcat(buf, ", aes"); if (auxv & HWCAP_SHA1) strcat(buf, ", sha1"); if (auxv & HWCAP_SHA2) strcat(buf, ", sha256"); if (auxv & HWCAP_ATOMICS) strcat(buf, ", lse"); _features_string = os::strdup(buf); if (FLAG_IS_DEFAULT(UseCRC32)) { UseCRC32 = (auxv & HWCAP_CRC32) != 0; } if (UseCRC32 && (auxv & HWCAP_CRC32) == 0) { warning("UseCRC32 specified, but not supported on this CPU"); FLAG_SET_DEFAULT(UseCRC32, false); } if (FLAG_IS_DEFAULT(UseAdler32Intrinsics)) { FLAG_SET_DEFAULT(UseAdler32Intrinsics, true); } if (UseVectorizedMismatchIntrinsic) { warning("UseVectorizedMismatchIntrinsic specified, but not available on this CPU."); FLAG_SET_DEFAULT(UseVectorizedMismatchIntrinsic, false); } if (auxv & HWCAP_ATOMICS) { if (FLAG_IS_DEFAULT(UseLSE)) FLAG_SET_DEFAULT(UseLSE, true); } else { if (UseLSE) { warning("UseLSE specified, but not supported on this CPU"); FLAG_SET_DEFAULT(UseLSE, false); } } if (auxv & HWCAP_AES) { UseAES = UseAES || FLAG_IS_DEFAULT(UseAES); UseAESIntrinsics = UseAESIntrinsics || (UseAES && FLAG_IS_DEFAULT(UseAESIntrinsics)); if (UseAESIntrinsics && !UseAES) { warning("UseAESIntrinsics enabled, but UseAES not, enabling"); UseAES = true; } } else { if (UseAES) { warning("AES instructions are not available on this CPU"); FLAG_SET_DEFAULT(UseAES, false); } if (UseAESIntrinsics) { warning("AES intrinsics are not available on this CPU"); FLAG_SET_DEFAULT(UseAESIntrinsics, false); } } if (UseAESCTRIntrinsics) { warning("AES/CTR intrinsics are not available on this CPU"); FLAG_SET_DEFAULT(UseAESCTRIntrinsics, false); } if (FLAG_IS_DEFAULT(UseCRC32Intrinsics)) { UseCRC32Intrinsics = true; } if (auxv & HWCAP_CRC32) { if (FLAG_IS_DEFAULT(UseCRC32CIntrinsics)) { FLAG_SET_DEFAULT(UseCRC32CIntrinsics, true); } } else if (UseCRC32CIntrinsics) { warning("CRC32C is not available on the CPU"); FLAG_SET_DEFAULT(UseCRC32CIntrinsics, false); } if (FLAG_IS_DEFAULT(UseFMA)) { FLAG_SET_DEFAULT(UseFMA, true); } if (auxv & (HWCAP_SHA1 | HWCAP_SHA2)) { if (FLAG_IS_DEFAULT(UseSHA)) { FLAG_SET_DEFAULT(UseSHA, true); } } else if (UseSHA) { warning("SHA instructions are not available on this CPU"); FLAG_SET_DEFAULT(UseSHA, false); } if (UseSHA && (auxv & HWCAP_SHA1)) { if (FLAG_IS_DEFAULT(UseSHA1Intrinsics)) { FLAG_SET_DEFAULT(UseSHA1Intrinsics, true); } } else if (UseSHA1Intrinsics) { warning("Intrinsics for SHA-1 crypto hash functions not available on this CPU."); FLAG_SET_DEFAULT(UseSHA1Intrinsics, false); } if (UseSHA && (auxv & HWCAP_SHA2)) { if (FLAG_IS_DEFAULT(UseSHA256Intrinsics)) { FLAG_SET_DEFAULT(UseSHA256Intrinsics, true); } } else if (UseSHA256Intrinsics) { warning("Intrinsics for SHA-224 and SHA-256 crypto hash functions not available on this CPU."); FLAG_SET_DEFAULT(UseSHA256Intrinsics, false); } if (UseSHA512Intrinsics) { warning("Intrinsics for SHA-384 and SHA-512 crypto hash functions not available on this CPU."); FLAG_SET_DEFAULT(UseSHA512Intrinsics, false); } if (!(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics)) { FLAG_SET_DEFAULT(UseSHA, false); } if (auxv & HWCAP_PMULL) { if (FLAG_IS_DEFAULT(UseGHASHIntrinsics)) { FLAG_SET_DEFAULT(UseGHASHIntrinsics, true); } } else if (UseGHASHIntrinsics) { warning("GHASH intrinsics are not available on this CPU"); FLAG_SET_DEFAULT(UseGHASHIntrinsics, false); } if (is_zva_enabled()) { if (FLAG_IS_DEFAULT(UseBlockZeroing)) { FLAG_SET_DEFAULT(UseBlockZeroing, true); } if (FLAG_IS_DEFAULT(BlockZeroingLowLimit)) { FLAG_SET_DEFAULT(BlockZeroingLowLimit, 4 * VM_Version::zva_length()); } } else if (UseBlockZeroing) { warning("DC ZVA is not available on this CPU"); FLAG_SET_DEFAULT(UseBlockZeroing, false); } // This machine allows unaligned memory accesses if (FLAG_IS_DEFAULT(UseUnalignedAccesses)) { FLAG_SET_DEFAULT(UseUnalignedAccesses, true); } if (FLAG_IS_DEFAULT(UsePopCountInstruction)) { FLAG_SET_DEFAULT(UsePopCountInstruction, true); } if (!UsePopCountInstruction) { warning("UsePopCountInstruction is always enabled on this CPU"); UsePopCountInstruction = true; } #ifdef COMPILER2 if (FLAG_IS_DEFAULT(UseMultiplyToLenIntrinsic)) { UseMultiplyToLenIntrinsic = true; } if (FLAG_IS_DEFAULT(UseSquareToLenIntrinsic)) { UseSquareToLenIntrinsic = true; } if (FLAG_IS_DEFAULT(UseMulAddIntrinsic)) { UseMulAddIntrinsic = true; } if (FLAG_IS_DEFAULT(UseMontgomeryMultiplyIntrinsic)) { UseMontgomeryMultiplyIntrinsic = true; } if (FLAG_IS_DEFAULT(UseMontgomerySquareIntrinsic)) { UseMontgomerySquareIntrinsic = true; } int min_vector_size = 8; if (!FLAG_IS_DEFAULT(MaxVectorSize)) { if (MaxVectorSize < min_vector_size) { warning("MaxVectorSize must be at least %i on this platform", min_vector_size); FLAG_SET_DEFAULT(MaxVectorSize, min_vector_size); } } if (FLAG_IS_DEFAULT(OptoScheduling)) { OptoScheduling = true; } if (FLAG_IS_DEFAULT(AlignVector)) { AlignVector = AvoidUnalignedAccesses; } #endif } void VM_Version::initialize() { ResourceMark rm; stub_blob = BufferBlob::create("getPsrInfo_stub", stub_size); if (stub_blob == NULL) { vm_exit_during_initialization("Unable to allocate getPsrInfo_stub"); } CodeBuffer c(stub_blob); VM_Version_StubGenerator g(&c); getPsrInfo_stub = CAST_TO_FN_PTR(getPsrInfo_stub_t, g.generate_getPsrInfo()); get_processor_features(); UNSUPPORTED_OPTION(CriticalJNINatives); }