/* * Copyright (c) 1997, 2020, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2014, 2020, Red Hat Inc. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include #include "precompiled.hpp" #include "jvm.h" #include "asm/assembler.hpp" #include "asm/assembler.inline.hpp" #include "gc/shared/barrierSet.hpp" #include "gc/shared/cardTable.hpp" #include "gc/shared/barrierSetAssembler.hpp" #include "gc/shared/cardTableBarrierSet.hpp" #include "interpreter/interpreter.hpp" #include "compiler/disassembler.hpp" #include "memory/resourceArea.hpp" #include "memory/universe.hpp" #include "nativeInst_aarch64.hpp" #include "oops/accessDecorators.hpp" #include "oops/compressedOops.inline.hpp" #include "oops/klass.inline.hpp" #include "runtime/biasedLocking.hpp" #include "runtime/icache.hpp" #include "runtime/interfaceSupport.inline.hpp" #include "runtime/jniHandles.inline.hpp" #include "runtime/sharedRuntime.hpp" #include "runtime/thread.hpp" #include "utilities/powerOfTwo.hpp" #ifdef COMPILER1 #include "c1/c1_LIRAssembler.hpp" #endif #ifdef COMPILER2 #include "oops/oop.hpp" #include "opto/compile.hpp" #include "opto/node.hpp" #include "opto/output.hpp" #endif #ifdef PRODUCT #define BLOCK_COMMENT(str) /* nothing */ #else #define BLOCK_COMMENT(str) block_comment(str) #endif #define STOP(str) stop(str); #define BIND(label) bind(label); BLOCK_COMMENT(#label ":") // Patch any kind of instruction; there may be several instructions. // Return the total length (in bytes) of the instructions. int MacroAssembler::pd_patch_instruction_size(address branch, address target) { int instructions = 1; assert((uint64_t)target < (1ul << 48), "48-bit overflow in address constant"); long offset = (target - branch) >> 2; unsigned insn = *(unsigned*)branch; if ((Instruction_aarch64::extract(insn, 29, 24) & 0b111011) == 0b011000) { // Load register (literal) Instruction_aarch64::spatch(branch, 23, 5, offset); } else if (Instruction_aarch64::extract(insn, 30, 26) == 0b00101) { // Unconditional branch (immediate) Instruction_aarch64::spatch(branch, 25, 0, offset); } else if (Instruction_aarch64::extract(insn, 31, 25) == 0b0101010) { // Conditional branch (immediate) Instruction_aarch64::spatch(branch, 23, 5, offset); } else if (Instruction_aarch64::extract(insn, 30, 25) == 0b011010) { // Compare & branch (immediate) Instruction_aarch64::spatch(branch, 23, 5, offset); } else if (Instruction_aarch64::extract(insn, 30, 25) == 0b011011) { // Test & branch (immediate) Instruction_aarch64::spatch(branch, 18, 5, offset); } else if (Instruction_aarch64::extract(insn, 28, 24) == 0b10000) { // PC-rel. addressing offset = target-branch; int shift = Instruction_aarch64::extract(insn, 31, 31); if (shift) { u_int64_t dest = (u_int64_t)target; uint64_t pc_page = (uint64_t)branch >> 12; uint64_t adr_page = (uint64_t)target >> 12; unsigned offset_lo = dest & 0xfff; offset = adr_page - pc_page; // We handle 4 types of PC relative addressing // 1 - adrp Rx, target_page // ldr/str Ry, [Rx, #offset_in_page] // 2 - adrp Rx, target_page // add Ry, Rx, #offset_in_page // 3 - adrp Rx, target_page (page aligned reloc, offset == 0) // movk Rx, #imm16<<32 // 4 - adrp Rx, target_page (page aligned reloc, offset == 0) // In the first 3 cases we must check that Rx is the same in the adrp and the // subsequent ldr/str, add or movk instruction. Otherwise we could accidentally end // up treating a type 4 relocation as a type 1, 2 or 3 just because it happened // to be followed by a random unrelated ldr/str, add or movk instruction. // unsigned insn2 = ((unsigned*)branch)[1]; if (Instruction_aarch64::extract(insn2, 29, 24) == 0b111001 && Instruction_aarch64::extract(insn, 4, 0) == Instruction_aarch64::extract(insn2, 9, 5)) { // Load/store register (unsigned immediate) unsigned size = Instruction_aarch64::extract(insn2, 31, 30); Instruction_aarch64::patch(branch + sizeof (unsigned), 21, 10, offset_lo >> size); guarantee(((dest >> size) << size) == dest, "misaligned target"); instructions = 2; } else if (Instruction_aarch64::extract(insn2, 31, 22) == 0b1001000100 && Instruction_aarch64::extract(insn, 4, 0) == Instruction_aarch64::extract(insn2, 4, 0)) { // add (immediate) Instruction_aarch64::patch(branch + sizeof (unsigned), 21, 10, offset_lo); instructions = 2; } else if (Instruction_aarch64::extract(insn2, 31, 21) == 0b11110010110 && Instruction_aarch64::extract(insn, 4, 0) == Instruction_aarch64::extract(insn2, 4, 0)) { // movk #imm16<<32 Instruction_aarch64::patch(branch + 4, 20, 5, (uint64_t)target >> 32); long dest = ((long)target & 0xffffffffL) | ((long)branch & 0xffff00000000L); long pc_page = (long)branch >> 12; long adr_page = (long)dest >> 12; offset = adr_page - pc_page; instructions = 2; } } int offset_lo = offset & 3; offset >>= 2; Instruction_aarch64::spatch(branch, 23, 5, offset); Instruction_aarch64::patch(branch, 30, 29, offset_lo); } else if (Instruction_aarch64::extract(insn, 31, 21) == 0b11010010100) { u_int64_t dest = (u_int64_t)target; // Move wide constant assert(nativeInstruction_at(branch+4)->is_movk(), "wrong insns in patch"); assert(nativeInstruction_at(branch+8)->is_movk(), "wrong insns in patch"); Instruction_aarch64::patch(branch, 20, 5, dest & 0xffff); Instruction_aarch64::patch(branch+4, 20, 5, (dest >>= 16) & 0xffff); Instruction_aarch64::patch(branch+8, 20, 5, (dest >>= 16) & 0xffff); assert(target_addr_for_insn(branch) == target, "should be"); instructions = 3; } else if (Instruction_aarch64::extract(insn, 31, 22) == 0b1011100101 && Instruction_aarch64::extract(insn, 4, 0) == 0b11111) { // nothing to do assert(target == 0, "did not expect to relocate target for polling page load"); } else { ShouldNotReachHere(); } return instructions * NativeInstruction::instruction_size; } int MacroAssembler::patch_oop(address insn_addr, address o) { int instructions; unsigned insn = *(unsigned*)insn_addr; assert(nativeInstruction_at(insn_addr+4)->is_movk(), "wrong insns in patch"); // OOPs are either narrow (32 bits) or wide (48 bits). We encode // narrow OOPs by setting the upper 16 bits in the first // instruction. if (Instruction_aarch64::extract(insn, 31, 21) == 0b11010010101) { // Move narrow OOP narrowOop n = CompressedOops::encode((oop)o); Instruction_aarch64::patch(insn_addr, 20, 5, n >> 16); Instruction_aarch64::patch(insn_addr+4, 20, 5, n & 0xffff); instructions = 2; } else { // Move wide OOP assert(nativeInstruction_at(insn_addr+8)->is_movk(), "wrong insns in patch"); uintptr_t dest = (uintptr_t)o; Instruction_aarch64::patch(insn_addr, 20, 5, dest & 0xffff); Instruction_aarch64::patch(insn_addr+4, 20, 5, (dest >>= 16) & 0xffff); Instruction_aarch64::patch(insn_addr+8, 20, 5, (dest >>= 16) & 0xffff); instructions = 3; } return instructions * NativeInstruction::instruction_size; } int MacroAssembler::patch_narrow_klass(address insn_addr, narrowKlass n) { // Metatdata pointers are either narrow (32 bits) or wide (48 bits). // We encode narrow ones by setting the upper 16 bits in the first // instruction. NativeInstruction *insn = nativeInstruction_at(insn_addr); assert(Instruction_aarch64::extract(insn->encoding(), 31, 21) == 0b11010010101 && nativeInstruction_at(insn_addr+4)->is_movk(), "wrong insns in patch"); Instruction_aarch64::patch(insn_addr, 20, 5, n >> 16); Instruction_aarch64::patch(insn_addr+4, 20, 5, n & 0xffff); return 2 * NativeInstruction::instruction_size; } address MacroAssembler::target_addr_for_insn(address insn_addr, unsigned insn) { long offset = 0; if ((Instruction_aarch64::extract(insn, 29, 24) & 0b011011) == 0b00011000) { // Load register (literal) offset = Instruction_aarch64::sextract(insn, 23, 5); return address(((uint64_t)insn_addr + (offset << 2))); } else if (Instruction_aarch64::extract(insn, 30, 26) == 0b00101) { // Unconditional branch (immediate) offset = Instruction_aarch64::sextract(insn, 25, 0); } else if (Instruction_aarch64::extract(insn, 31, 25) == 0b0101010) { // Conditional branch (immediate) offset = Instruction_aarch64::sextract(insn, 23, 5); } else if (Instruction_aarch64::extract(insn, 30, 25) == 0b011010) { // Compare & branch (immediate) offset = Instruction_aarch64::sextract(insn, 23, 5); } else if (Instruction_aarch64::extract(insn, 30, 25) == 0b011011) { // Test & branch (immediate) offset = Instruction_aarch64::sextract(insn, 18, 5); } else if (Instruction_aarch64::extract(insn, 28, 24) == 0b10000) { // PC-rel. addressing offset = Instruction_aarch64::extract(insn, 30, 29); offset |= Instruction_aarch64::sextract(insn, 23, 5) << 2; int shift = Instruction_aarch64::extract(insn, 31, 31) ? 12 : 0; if (shift) { offset <<= shift; uint64_t target_page = ((uint64_t)insn_addr) + offset; target_page &= ((uint64_t)-1) << shift; // Return the target address for the following sequences // 1 - adrp Rx, target_page // ldr/str Ry, [Rx, #offset_in_page] // 2 - adrp Rx, target_page // add Ry, Rx, #offset_in_page // 3 - adrp Rx, target_page (page aligned reloc, offset == 0) // movk Rx, #imm12<<32 // 4 - adrp Rx, target_page (page aligned reloc, offset == 0) // // In the first two cases we check that the register is the same and // return the target_page + the offset within the page. // Otherwise we assume it is a page aligned relocation and return // the target page only. // unsigned insn2 = ((unsigned*)insn_addr)[1]; if (Instruction_aarch64::extract(insn2, 29, 24) == 0b111001 && Instruction_aarch64::extract(insn, 4, 0) == Instruction_aarch64::extract(insn2, 9, 5)) { // Load/store register (unsigned immediate) unsigned int byte_offset = Instruction_aarch64::extract(insn2, 21, 10); unsigned int size = Instruction_aarch64::extract(insn2, 31, 30); return address(target_page + (byte_offset << size)); } else if (Instruction_aarch64::extract(insn2, 31, 22) == 0b1001000100 && Instruction_aarch64::extract(insn, 4, 0) == Instruction_aarch64::extract(insn2, 4, 0)) { // add (immediate) unsigned int byte_offset = Instruction_aarch64::extract(insn2, 21, 10); return address(target_page + byte_offset); } else { if (Instruction_aarch64::extract(insn2, 31, 21) == 0b11110010110 && Instruction_aarch64::extract(insn, 4, 0) == Instruction_aarch64::extract(insn2, 4, 0)) { target_page = (target_page & 0xffffffff) | ((uint64_t)Instruction_aarch64::extract(insn2, 20, 5) << 32); } return (address)target_page; } } else { ShouldNotReachHere(); } } else if (Instruction_aarch64::extract(insn, 31, 23) == 0b110100101) { u_int32_t *insns = (u_int32_t *)insn_addr; // Move wide constant: movz, movk, movk. See movptr(). assert(nativeInstruction_at(insns+1)->is_movk(), "wrong insns in patch"); assert(nativeInstruction_at(insns+2)->is_movk(), "wrong insns in patch"); return address(u_int64_t(Instruction_aarch64::extract(insns[0], 20, 5)) + (u_int64_t(Instruction_aarch64::extract(insns[1], 20, 5)) << 16) + (u_int64_t(Instruction_aarch64::extract(insns[2], 20, 5)) << 32)); } else if (Instruction_aarch64::extract(insn, 31, 22) == 0b1011100101 && Instruction_aarch64::extract(insn, 4, 0) == 0b11111) { return 0; } else { ShouldNotReachHere(); } return address(((uint64_t)insn_addr + (offset << 2))); } void MacroAssembler::safepoint_poll(Label& slow_path) { ldr(rscratch1, Address(rthread, Thread::polling_page_offset())); tbnz(rscratch1, exact_log2(SafepointMechanism::poll_bit()), slow_path); } // Just like safepoint_poll, but use an acquiring load for thread- // local polling. // // We need an acquire here to ensure that any subsequent load of the // global SafepointSynchronize::_state flag is ordered after this load // of the local Thread::_polling page. We don't want this poll to // return false (i.e. not safepointing) and a later poll of the global // SafepointSynchronize::_state spuriously to return true. // // This is to avoid a race when we're in a native->Java transition // racing the code which wakes up from a safepoint. // void MacroAssembler::safepoint_poll_acquire(Label& slow_path) { lea(rscratch1, Address(rthread, Thread::polling_page_offset())); ldar(rscratch1, rscratch1); tbnz(rscratch1, exact_log2(SafepointMechanism::poll_bit()), slow_path); } void MacroAssembler::reset_last_Java_frame(bool clear_fp) { // we must set sp to zero to clear frame str(zr, Address(rthread, JavaThread::last_Java_sp_offset())); // must clear fp, so that compiled frames are not confused; it is // possible that we need it only for debugging if (clear_fp) { str(zr, Address(rthread, JavaThread::last_Java_fp_offset())); } // Always clear the pc because it could have been set by make_walkable() str(zr, Address(rthread, JavaThread::last_Java_pc_offset())); } // Calls to C land // // When entering C land, the rfp, & resp of the last Java frame have to be recorded // in the (thread-local) JavaThread object. When leaving C land, the last Java fp // has to be reset to 0. This is required to allow proper stack traversal. void MacroAssembler::set_last_Java_frame(Register last_java_sp, Register last_java_fp, Register last_java_pc, Register scratch) { if (last_java_pc->is_valid()) { str(last_java_pc, Address(rthread, JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset())); } // determine last_java_sp register if (last_java_sp == sp) { mov(scratch, sp); last_java_sp = scratch; } else if (!last_java_sp->is_valid()) { last_java_sp = esp; } str(last_java_sp, Address(rthread, JavaThread::last_Java_sp_offset())); // last_java_fp is optional if (last_java_fp->is_valid()) { str(last_java_fp, Address(rthread, JavaThread::last_Java_fp_offset())); } } void MacroAssembler::set_last_Java_frame(Register last_java_sp, Register last_java_fp, address last_java_pc, Register scratch) { assert(last_java_pc != NULL, "must provide a valid PC"); adr(scratch, last_java_pc); str(scratch, Address(rthread, JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset())); set_last_Java_frame(last_java_sp, last_java_fp, noreg, scratch); } void MacroAssembler::set_last_Java_frame(Register last_java_sp, Register last_java_fp, Label &L, Register scratch) { if (L.is_bound()) { set_last_Java_frame(last_java_sp, last_java_fp, target(L), scratch); } else { InstructionMark im(this); L.add_patch_at(code(), locator()); set_last_Java_frame(last_java_sp, last_java_fp, pc() /* Patched later */, scratch); } } void MacroAssembler::far_call(Address entry, CodeBuffer *cbuf, Register tmp) { assert(ReservedCodeCacheSize < 4*G, "branch out of range"); assert(CodeCache::find_blob(entry.target()) != NULL, "destination of far call not found in code cache"); if (far_branches()) { unsigned long offset; // We can use ADRP here because we know that the total size of // the code cache cannot exceed 2Gb. adrp(tmp, entry, offset); add(tmp, tmp, offset); if (cbuf) cbuf->set_insts_mark(); blr(tmp); } else { if (cbuf) cbuf->set_insts_mark(); bl(entry); } } void MacroAssembler::far_jump(Address entry, CodeBuffer *cbuf, Register tmp) { assert(ReservedCodeCacheSize < 4*G, "branch out of range"); assert(CodeCache::find_blob(entry.target()) != NULL, "destination of far call not found in code cache"); if (far_branches()) { unsigned long offset; // We can use ADRP here because we know that the total size of // the code cache cannot exceed 2Gb. adrp(tmp, entry, offset); add(tmp, tmp, offset); if (cbuf) cbuf->set_insts_mark(); br(tmp); } else { if (cbuf) cbuf->set_insts_mark(); b(entry); } } void MacroAssembler::reserved_stack_check() { // testing if reserved zone needs to be enabled Label no_reserved_zone_enabling; ldr(rscratch1, Address(rthread, JavaThread::reserved_stack_activation_offset())); cmp(sp, rscratch1); br(Assembler::LO, no_reserved_zone_enabling); enter(); // LR and FP are live. lea(rscratch1, CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone)); mov(c_rarg0, rthread); blr(rscratch1); leave(); // We have already removed our own frame. // throw_delayed_StackOverflowError will think that it's been // called by our caller. lea(rscratch1, RuntimeAddress(StubRoutines::throw_delayed_StackOverflowError_entry())); br(rscratch1); should_not_reach_here(); bind(no_reserved_zone_enabling); } int MacroAssembler::biased_locking_enter(Register lock_reg, Register obj_reg, Register swap_reg, Register tmp_reg, bool swap_reg_contains_mark, Label& done, Label* slow_case, BiasedLockingCounters* counters) { assert(UseBiasedLocking, "why call this otherwise?"); assert_different_registers(lock_reg, obj_reg, swap_reg); if (PrintBiasedLockingStatistics && counters == NULL) counters = BiasedLocking::counters(); assert_different_registers(lock_reg, obj_reg, swap_reg, tmp_reg, rscratch1, rscratch2, noreg); assert(markWord::age_shift == markWord::lock_bits + markWord::biased_lock_bits, "biased locking makes assumptions about bit layout"); Address mark_addr (obj_reg, oopDesc::mark_offset_in_bytes()); Address klass_addr (obj_reg, oopDesc::klass_offset_in_bytes()); Address saved_mark_addr(lock_reg, 0); // Biased locking // See whether the lock is currently biased toward our thread and // whether the epoch is still valid // Note that the runtime guarantees sufficient alignment of JavaThread // pointers to allow age to be placed into low bits // First check to see whether biasing is even enabled for this object Label cas_label; int null_check_offset = -1; if (!swap_reg_contains_mark) { null_check_offset = offset(); ldr(swap_reg, mark_addr); } andr(tmp_reg, swap_reg, markWord::biased_lock_mask_in_place); cmp(tmp_reg, (u1)markWord::biased_lock_pattern); br(Assembler::NE, cas_label); // The bias pattern is present in the object's header. Need to check // whether the bias owner and the epoch are both still current. load_prototype_header(tmp_reg, obj_reg); orr(tmp_reg, tmp_reg, rthread); eor(tmp_reg, swap_reg, tmp_reg); andr(tmp_reg, tmp_reg, ~((int) markWord::age_mask_in_place)); if (counters != NULL) { Label around; cbnz(tmp_reg, around); atomic_incw(Address((address)counters->biased_lock_entry_count_addr()), tmp_reg, rscratch1, rscratch2); b(done); bind(around); } else { cbz(tmp_reg, done); } Label try_revoke_bias; Label try_rebias; // At this point we know that the header has the bias pattern and // that we are not the bias owner in the current epoch. We need to // figure out more details about the state of the header in order to // know what operations can be legally performed on the object's // header. // If the low three bits in the xor result aren't clear, that means // the prototype header is no longer biased and we have to revoke // the bias on this object. andr(rscratch1, tmp_reg, markWord::biased_lock_mask_in_place); cbnz(rscratch1, try_revoke_bias); // Biasing is still enabled for this data type. See whether the // epoch of the current bias is still valid, meaning that the epoch // bits of the mark word are equal to the epoch bits of the // prototype header. (Note that the prototype header's epoch bits // only change at a safepoint.) If not, attempt to rebias the object // toward the current thread. Note that we must be absolutely sure // that the current epoch is invalid in order to do this because // otherwise the manipulations it performs on the mark word are // illegal. andr(rscratch1, tmp_reg, markWord::epoch_mask_in_place); cbnz(rscratch1, try_rebias); // The epoch of the current bias is still valid but we know nothing // about the owner; it might be set or it might be clear. Try to // acquire the bias of the object using an atomic operation. If this // fails we will go in to the runtime to revoke the object's bias. // Note that we first construct the presumed unbiased header so we // don't accidentally blow away another thread's valid bias. { Label here; mov(rscratch1, markWord::biased_lock_mask_in_place | markWord::age_mask_in_place | markWord::epoch_mask_in_place); andr(swap_reg, swap_reg, rscratch1); orr(tmp_reg, swap_reg, rthread); cmpxchg_obj_header(swap_reg, tmp_reg, obj_reg, rscratch1, here, slow_case); // If the biasing toward our thread failed, this means that // another thread succeeded in biasing it toward itself and we // need to revoke that bias. The revocation will occur in the // interpreter runtime in the slow case. bind(here); if (counters != NULL) { atomic_incw(Address((address)counters->anonymously_biased_lock_entry_count_addr()), tmp_reg, rscratch1, rscratch2); } } b(done); bind(try_rebias); // At this point we know the epoch has expired, meaning that the // current "bias owner", if any, is actually invalid. Under these // circumstances _only_, we are allowed to use the current header's // value as the comparison value when doing the cas to acquire the // bias in the current epoch. In other words, we allow transfer of // the bias from one thread to another directly in this situation. // // FIXME: due to a lack of registers we currently blow away the age // bits in this situation. Should attempt to preserve them. { Label here; load_prototype_header(tmp_reg, obj_reg); orr(tmp_reg, rthread, tmp_reg); cmpxchg_obj_header(swap_reg, tmp_reg, obj_reg, rscratch1, here, slow_case); // If the biasing toward our thread failed, then another thread // succeeded in biasing it toward itself and we need to revoke that // bias. The revocation will occur in the runtime in the slow case. bind(here); if (counters != NULL) { atomic_incw(Address((address)counters->rebiased_lock_entry_count_addr()), tmp_reg, rscratch1, rscratch2); } } b(done); bind(try_revoke_bias); // The prototype mark in the klass doesn't have the bias bit set any // more, indicating that objects of this data type are not supposed // to be biased any more. We are going to try to reset the mark of // this object to the prototype value and fall through to the // CAS-based locking scheme. Note that if our CAS fails, it means // that another thread raced us for the privilege of revoking the // bias of this particular object, so it's okay to continue in the // normal locking code. // // FIXME: due to a lack of registers we currently blow away the age // bits in this situation. Should attempt to preserve them. { Label here, nope; load_prototype_header(tmp_reg, obj_reg); cmpxchg_obj_header(swap_reg, tmp_reg, obj_reg, rscratch1, here, &nope); bind(here); // Fall through to the normal CAS-based lock, because no matter what // the result of the above CAS, some thread must have succeeded in // removing the bias bit from the object's header. if (counters != NULL) { atomic_incw(Address((address)counters->revoked_lock_entry_count_addr()), tmp_reg, rscratch1, rscratch2); } bind(nope); } bind(cas_label); return null_check_offset; } void MacroAssembler::biased_locking_exit(Register obj_reg, Register temp_reg, Label& done) { assert(UseBiasedLocking, "why call this otherwise?"); // Check for biased locking unlock case, which is a no-op // Note: we do not have to check the thread ID for two reasons. // First, the interpreter checks for IllegalMonitorStateException at // a higher level. Second, if the bias was revoked while we held the // lock, the object could not be rebiased toward another thread, so // the bias bit would be clear. ldr(temp_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes())); andr(temp_reg, temp_reg, markWord::biased_lock_mask_in_place); cmp(temp_reg, (u1)markWord::biased_lock_pattern); br(Assembler::EQ, done); } static void pass_arg0(MacroAssembler* masm, Register arg) { if (c_rarg0 != arg ) { masm->mov(c_rarg0, arg); } } static void pass_arg1(MacroAssembler* masm, Register arg) { if (c_rarg1 != arg ) { masm->mov(c_rarg1, arg); } } static void pass_arg2(MacroAssembler* masm, Register arg) { if (c_rarg2 != arg ) { masm->mov(c_rarg2, arg); } } static void pass_arg3(MacroAssembler* masm, Register arg) { if (c_rarg3 != arg ) { masm->mov(c_rarg3, arg); } } void MacroAssembler::call_VM_base(Register oop_result, Register java_thread, Register last_java_sp, address entry_point, int number_of_arguments, bool check_exceptions) { // determine java_thread register if (!java_thread->is_valid()) { java_thread = rthread; } // determine last_java_sp register if (!last_java_sp->is_valid()) { last_java_sp = esp; } // debugging support assert(number_of_arguments >= 0 , "cannot have negative number of arguments"); assert(java_thread == rthread, "unexpected register"); #ifdef ASSERT // TraceBytecodes does not use r12 but saves it over the call, so don't verify // if ((UseCompressedOops || UseCompressedClassPointers) && !TraceBytecodes) verify_heapbase("call_VM_base: heap base corrupted?"); #endif // ASSERT assert(java_thread != oop_result , "cannot use the same register for java_thread & oop_result"); assert(java_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp"); // push java thread (becomes first argument of C function) mov(c_rarg0, java_thread); // set last Java frame before call assert(last_java_sp != rfp, "can't use rfp"); Label l; set_last_Java_frame(last_java_sp, rfp, l, rscratch1); // do the call, remove parameters MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments, &l); // reset last Java frame // Only interpreter should have to clear fp reset_last_Java_frame(true); // C++ interp handles this in the interpreter check_and_handle_popframe(java_thread); check_and_handle_earlyret(java_thread); if (check_exceptions) { // check for pending exceptions (java_thread is set upon return) ldr(rscratch1, Address(java_thread, in_bytes(Thread::pending_exception_offset()))); Label ok; cbz(rscratch1, ok); lea(rscratch1, RuntimeAddress(StubRoutines::forward_exception_entry())); br(rscratch1); bind(ok); } // get oop result if there is one and reset the value in the thread if (oop_result->is_valid()) { get_vm_result(oop_result, java_thread); } } void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) { call_VM_base(oop_result, noreg, noreg, entry_point, number_of_arguments, check_exceptions); } // Maybe emit a call via a trampoline. If the code cache is small // trampolines won't be emitted. address MacroAssembler::trampoline_call(Address entry, CodeBuffer *cbuf) { assert(JavaThread::current()->is_Compiler_thread(), "just checking"); assert(entry.rspec().type() == relocInfo::runtime_call_type || entry.rspec().type() == relocInfo::opt_virtual_call_type || entry.rspec().type() == relocInfo::static_call_type || entry.rspec().type() == relocInfo::virtual_call_type, "wrong reloc type"); // We need a trampoline if branches are far. if (far_branches()) { bool in_scratch_emit_size = false; #ifdef COMPILER2 // We don't want to emit a trampoline if C2 is generating dummy // code during its branch shortening phase. CompileTask* task = ciEnv::current()->task(); in_scratch_emit_size = (task != NULL && is_c2_compile(task->comp_level()) && Compile::current()->output()->in_scratch_emit_size()); #endif if (!in_scratch_emit_size) { address stub = emit_trampoline_stub(offset(), entry.target()); if (stub == NULL) { return NULL; // CodeCache is full } } } if (cbuf) cbuf->set_insts_mark(); relocate(entry.rspec()); if (!far_branches()) { bl(entry.target()); } else { bl(pc()); } // just need to return a non-null address return pc(); } // Emit a trampoline stub for a call to a target which is too far away. // // code sequences: // // call-site: // branch-and-link to or // // Related trampoline stub for this call site in the stub section: // load the call target from the constant pool // branch (LR still points to the call site above) address MacroAssembler::emit_trampoline_stub(int insts_call_instruction_offset, address dest) { // Max stub size: alignment nop, TrampolineStub. address stub = start_a_stub(NativeInstruction::instruction_size + NativeCallTrampolineStub::instruction_size); if (stub == NULL) { return NULL; // CodeBuffer::expand failed } // Create a trampoline stub relocation which relates this trampoline stub // with the call instruction at insts_call_instruction_offset in the // instructions code-section. align(wordSize); relocate(trampoline_stub_Relocation::spec(code()->insts()->start() + insts_call_instruction_offset)); const int stub_start_offset = offset(); // Now, create the trampoline stub's code: // - load the call // - call Label target; ldr(rscratch1, target); br(rscratch1); bind(target); assert(offset() - stub_start_offset == NativeCallTrampolineStub::data_offset, "should be"); emit_int64((int64_t)dest); const address stub_start_addr = addr_at(stub_start_offset); assert(is_NativeCallTrampolineStub_at(stub_start_addr), "doesn't look like a trampoline"); end_a_stub(); return stub_start_addr; } void MacroAssembler::emit_static_call_stub() { // CompiledDirectStaticCall::set_to_interpreted knows the // exact layout of this stub. isb(); mov_metadata(rmethod, (Metadata*)NULL); // Jump to the entry point of the i2c stub. movptr(rscratch1, 0); br(rscratch1); } void MacroAssembler::c2bool(Register x) { // implements x == 0 ? 0 : 1 // note: must only look at least-significant byte of x // since C-style booleans are stored in one byte // only! (was bug) tst(x, 0xff); cset(x, Assembler::NE); } address MacroAssembler::ic_call(address entry, jint method_index) { RelocationHolder rh = virtual_call_Relocation::spec(pc(), method_index); // address const_ptr = long_constant((jlong)Universe::non_oop_word()); // unsigned long offset; // ldr_constant(rscratch2, const_ptr); movptr(rscratch2, (uintptr_t)Universe::non_oop_word()); return trampoline_call(Address(entry, rh)); } // Implementation of call_VM versions void MacroAssembler::call_VM(Register oop_result, address entry_point, bool check_exceptions) { call_VM_helper(oop_result, entry_point, 0, check_exceptions); } void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, bool check_exceptions) { pass_arg1(this, arg_1); call_VM_helper(oop_result, entry_point, 1, check_exceptions); } void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, bool check_exceptions) { assert(arg_1 != c_rarg2, "smashed arg"); pass_arg2(this, arg_2); pass_arg1(this, arg_1); call_VM_helper(oop_result, entry_point, 2, check_exceptions); } void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions) { assert(arg_1 != c_rarg3, "smashed arg"); assert(arg_2 != c_rarg3, "smashed arg"); pass_arg3(this, arg_3); assert(arg_1 != c_rarg2, "smashed arg"); pass_arg2(this, arg_2); pass_arg1(this, arg_1); call_VM_helper(oop_result, entry_point, 3, check_exceptions); } void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments, bool check_exceptions) { call_VM_base(oop_result, rthread, last_java_sp, entry_point, number_of_arguments, check_exceptions); } void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions) { pass_arg1(this, arg_1); call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions); } void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions) { assert(arg_1 != c_rarg2, "smashed arg"); pass_arg2(this, arg_2); pass_arg1(this, arg_1); call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions); } void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions) { assert(arg_1 != c_rarg3, "smashed arg"); assert(arg_2 != c_rarg3, "smashed arg"); pass_arg3(this, arg_3); assert(arg_1 != c_rarg2, "smashed arg"); pass_arg2(this, arg_2); pass_arg1(this, arg_1); call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions); } void MacroAssembler::get_vm_result(Register oop_result, Register java_thread) { ldr(oop_result, Address(java_thread, JavaThread::vm_result_offset())); str(zr, Address(java_thread, JavaThread::vm_result_offset())); verify_oop(oop_result, "broken oop in call_VM_base"); } void MacroAssembler::get_vm_result_2(Register metadata_result, Register java_thread) { ldr(metadata_result, Address(java_thread, JavaThread::vm_result_2_offset())); str(zr, Address(java_thread, JavaThread::vm_result_2_offset())); } void MacroAssembler::align(int modulus) { while (offset() % modulus != 0) nop(); } // these are no-ops overridden by InterpreterMacroAssembler void MacroAssembler::check_and_handle_earlyret(Register java_thread) { } void MacroAssembler::check_and_handle_popframe(Register java_thread) { } RegisterOrConstant MacroAssembler::delayed_value_impl(intptr_t* delayed_value_addr, Register tmp, int offset) { intptr_t value = *delayed_value_addr; if (value != 0) return RegisterOrConstant(value + offset); // load indirectly to solve generation ordering problem ldr(tmp, ExternalAddress((address) delayed_value_addr)); if (offset != 0) add(tmp, tmp, offset); return RegisterOrConstant(tmp); } // Look up the method for a megamorphic invokeinterface call. // The target method is determined by . // The receiver klass is in recv_klass. // On success, the result will be in method_result, and execution falls through. // On failure, execution transfers to the given label. void MacroAssembler::lookup_interface_method(Register recv_klass, Register intf_klass, RegisterOrConstant itable_index, Register method_result, Register scan_temp, Label& L_no_such_interface, bool return_method) { assert_different_registers(recv_klass, intf_klass, scan_temp); assert_different_registers(method_result, intf_klass, scan_temp); assert(recv_klass != method_result || !return_method, "recv_klass can be destroyed when method isn't needed"); assert(itable_index.is_constant() || itable_index.as_register() == method_result, "caller must use same register for non-constant itable index as for method"); // Compute start of first itableOffsetEntry (which is at the end of the vtable) int vtable_base = in_bytes(Klass::vtable_start_offset()); int itentry_off = itableMethodEntry::method_offset_in_bytes(); int scan_step = itableOffsetEntry::size() * wordSize; int vte_size = vtableEntry::size_in_bytes(); assert(vte_size == wordSize, "else adjust times_vte_scale"); ldrw(scan_temp, Address(recv_klass, Klass::vtable_length_offset())); // %%% Could store the aligned, prescaled offset in the klassoop. // lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base)); lea(scan_temp, Address(recv_klass, scan_temp, Address::lsl(3))); add(scan_temp, scan_temp, vtable_base); if (return_method) { // Adjust recv_klass by scaled itable_index, so we can free itable_index. assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below"); // lea(recv_klass, Address(recv_klass, itable_index, Address::times_ptr, itentry_off)); lea(recv_klass, Address(recv_klass, itable_index, Address::lsl(3))); if (itentry_off) add(recv_klass, recv_klass, itentry_off); } // for (scan = klass->itable(); scan->interface() != NULL; scan += scan_step) { // if (scan->interface() == intf) { // result = (klass + scan->offset() + itable_index); // } // } Label search, found_method; for (int peel = 1; peel >= 0; peel--) { ldr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset_in_bytes())); cmp(intf_klass, method_result); if (peel) { br(Assembler::EQ, found_method); } else { br(Assembler::NE, search); // (invert the test to fall through to found_method...) } if (!peel) break; bind(search); // Check that the previous entry is non-null. A null entry means that // the receiver class doesn't implement the interface, and wasn't the // same as when the caller was compiled. cbz(method_result, L_no_such_interface); add(scan_temp, scan_temp, scan_step); } bind(found_method); // Got a hit. if (return_method) { ldrw(scan_temp, Address(scan_temp, itableOffsetEntry::offset_offset_in_bytes())); ldr(method_result, Address(recv_klass, scan_temp, Address::uxtw(0))); } } // virtual method calling void MacroAssembler::lookup_virtual_method(Register recv_klass, RegisterOrConstant vtable_index, Register method_result) { const int base = in_bytes(Klass::vtable_start_offset()); assert(vtableEntry::size() * wordSize == 8, "adjust the scaling in the code below"); int vtable_offset_in_bytes = base + vtableEntry::method_offset_in_bytes(); if (vtable_index.is_register()) { lea(method_result, Address(recv_klass, vtable_index.as_register(), Address::lsl(LogBytesPerWord))); ldr(method_result, Address(method_result, vtable_offset_in_bytes)); } else { vtable_offset_in_bytes += vtable_index.as_constant() * wordSize; ldr(method_result, form_address(rscratch1, recv_klass, vtable_offset_in_bytes, 0)); } } void MacroAssembler::check_klass_subtype(Register sub_klass, Register super_klass, Register temp_reg, Label& L_success) { Label L_failure; check_klass_subtype_fast_path(sub_klass, super_klass, temp_reg, &L_success, &L_failure, NULL); check_klass_subtype_slow_path(sub_klass, super_klass, temp_reg, noreg, &L_success, NULL); bind(L_failure); } void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass, Register super_klass, Register temp_reg, Label* L_success, Label* L_failure, Label* L_slow_path, RegisterOrConstant super_check_offset) { assert_different_registers(sub_klass, super_klass, temp_reg); bool must_load_sco = (super_check_offset.constant_or_zero() == -1); if (super_check_offset.is_register()) { assert_different_registers(sub_klass, super_klass, super_check_offset.as_register()); } else if (must_load_sco) { assert(temp_reg != noreg, "supply either a temp or a register offset"); } Label L_fallthrough; int label_nulls = 0; if (L_success == NULL) { L_success = &L_fallthrough; label_nulls++; } if (L_failure == NULL) { L_failure = &L_fallthrough; label_nulls++; } if (L_slow_path == NULL) { L_slow_path = &L_fallthrough; label_nulls++; } assert(label_nulls <= 1, "at most one NULL in the batch"); int sc_offset = in_bytes(Klass::secondary_super_cache_offset()); int sco_offset = in_bytes(Klass::super_check_offset_offset()); Address super_check_offset_addr(super_klass, sco_offset); // Hacked jmp, which may only be used just before L_fallthrough. #define final_jmp(label) \ if (&(label) == &L_fallthrough) { /*do nothing*/ } \ else b(label) /*omit semi*/ // If the pointers are equal, we are done (e.g., String[] elements). // This self-check enables sharing of secondary supertype arrays among // non-primary types such as array-of-interface. Otherwise, each such // type would need its own customized SSA. // We move this check to the front of the fast path because many // type checks are in fact trivially successful in this manner, // so we get a nicely predicted branch right at the start of the check. cmp(sub_klass, super_klass); br(Assembler::EQ, *L_success); // Check the supertype display: if (must_load_sco) { ldrw(temp_reg, super_check_offset_addr); super_check_offset = RegisterOrConstant(temp_reg); } Address super_check_addr(sub_klass, super_check_offset); ldr(rscratch1, super_check_addr); cmp(super_klass, rscratch1); // load displayed supertype // This check has worked decisively for primary supers. // Secondary supers are sought in the super_cache ('super_cache_addr'). // (Secondary supers are interfaces and very deeply nested subtypes.) // This works in the same check above because of a tricky aliasing // between the super_cache and the primary super display elements. // (The 'super_check_addr' can address either, as the case requires.) // Note that the cache is updated below if it does not help us find // what we need immediately. // So if it was a primary super, we can just fail immediately. // Otherwise, it's the slow path for us (no success at this point). if (super_check_offset.is_register()) { br(Assembler::EQ, *L_success); subs(zr, super_check_offset.as_register(), sc_offset); if (L_failure == &L_fallthrough) { br(Assembler::EQ, *L_slow_path); } else { br(Assembler::NE, *L_failure); final_jmp(*L_slow_path); } } else if (super_check_offset.as_constant() == sc_offset) { // Need a slow path; fast failure is impossible. if (L_slow_path == &L_fallthrough) { br(Assembler::EQ, *L_success); } else { br(Assembler::NE, *L_slow_path); final_jmp(*L_success); } } else { // No slow path; it's a fast decision. if (L_failure == &L_fallthrough) { br(Assembler::EQ, *L_success); } else { br(Assembler::NE, *L_failure); final_jmp(*L_success); } } bind(L_fallthrough); #undef final_jmp } // These two are taken from x86, but they look generally useful // scans count pointer sized words at [addr] for occurence of value, // generic void MacroAssembler::repne_scan(Register addr, Register value, Register count, Register scratch) { Label Lloop, Lexit; cbz(count, Lexit); bind(Lloop); ldr(scratch, post(addr, wordSize)); cmp(value, scratch); br(EQ, Lexit); sub(count, count, 1); cbnz(count, Lloop); bind(Lexit); } // scans count 4 byte words at [addr] for occurence of value, // generic void MacroAssembler::repne_scanw(Register addr, Register value, Register count, Register scratch) { Label Lloop, Lexit; cbz(count, Lexit); bind(Lloop); ldrw(scratch, post(addr, wordSize)); cmpw(value, scratch); br(EQ, Lexit); sub(count, count, 1); cbnz(count, Lloop); bind(Lexit); } void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass, Register super_klass, Register temp_reg, Register temp2_reg, Label* L_success, Label* L_failure, bool set_cond_codes) { assert_different_registers(sub_klass, super_klass, temp_reg); if (temp2_reg != noreg) assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg, rscratch1); #define IS_A_TEMP(reg) ((reg) == temp_reg || (reg) == temp2_reg) Label L_fallthrough; int label_nulls = 0; if (L_success == NULL) { L_success = &L_fallthrough; label_nulls++; } if (L_failure == NULL) { L_failure = &L_fallthrough; label_nulls++; } assert(label_nulls <= 1, "at most one NULL in the batch"); // a couple of useful fields in sub_klass: int ss_offset = in_bytes(Klass::secondary_supers_offset()); int sc_offset = in_bytes(Klass::secondary_super_cache_offset()); Address secondary_supers_addr(sub_klass, ss_offset); Address super_cache_addr( sub_klass, sc_offset); BLOCK_COMMENT("check_klass_subtype_slow_path"); // Do a linear scan of the secondary super-klass chain. // This code is rarely used, so simplicity is a virtue here. // The repne_scan instruction uses fixed registers, which we must spill. // Don't worry too much about pre-existing connections with the input regs. assert(sub_klass != r0, "killed reg"); // killed by mov(r0, super) assert(sub_klass != r2, "killed reg"); // killed by lea(r2, &pst_counter) RegSet pushed_registers; if (!IS_A_TEMP(r2)) pushed_registers += r2; if (!IS_A_TEMP(r5)) pushed_registers += r5; if (super_klass != r0 || UseCompressedOops) { if (!IS_A_TEMP(r0)) pushed_registers += r0; } push(pushed_registers, sp); // Get super_klass value into r0 (even if it was in r5 or r2). if (super_klass != r0) { mov(r0, super_klass); } #ifndef PRODUCT mov(rscratch2, (address)&SharedRuntime::_partial_subtype_ctr); Address pst_counter_addr(rscratch2); ldr(rscratch1, pst_counter_addr); add(rscratch1, rscratch1, 1); str(rscratch1, pst_counter_addr); #endif //PRODUCT // We will consult the secondary-super array. ldr(r5, secondary_supers_addr); // Load the array length. ldrw(r2, Address(r5, Array::length_offset_in_bytes())); // Skip to start of data. add(r5, r5, Array::base_offset_in_bytes()); cmp(sp, zr); // Clear Z flag; SP is never zero // Scan R2 words at [R5] for an occurrence of R0. // Set NZ/Z based on last compare. repne_scan(r5, r0, r2, rscratch1); // Unspill the temp. registers: pop(pushed_registers, sp); br(Assembler::NE, *L_failure); // Success. Cache the super we found and proceed in triumph. str(super_klass, super_cache_addr); if (L_success != &L_fallthrough) { b(*L_success); } #undef IS_A_TEMP bind(L_fallthrough); } void MacroAssembler::clinit_barrier(Register klass, Register scratch, Label* L_fast_path, Label* L_slow_path) { assert(L_fast_path != NULL || L_slow_path != NULL, "at least one is required"); assert_different_registers(klass, rthread, scratch); Label L_fallthrough, L_tmp; if (L_fast_path == NULL) { L_fast_path = &L_fallthrough; } else if (L_slow_path == NULL) { L_slow_path = &L_fallthrough; } // Fast path check: class is fully initialized ldrb(scratch, Address(klass, InstanceKlass::init_state_offset())); subs(zr, scratch, InstanceKlass::fully_initialized); br(Assembler::EQ, *L_fast_path); // Fast path check: current thread is initializer thread ldr(scratch, Address(klass, InstanceKlass::init_thread_offset())); cmp(rthread, scratch); if (L_slow_path == &L_fallthrough) { br(Assembler::EQ, *L_fast_path); bind(*L_slow_path); } else if (L_fast_path == &L_fallthrough) { br(Assembler::NE, *L_slow_path); bind(*L_fast_path); } else { Unimplemented(); } } void MacroAssembler::verify_oop(Register reg, const char* s) { if (!VerifyOops) return; // Pass register number to verify_oop_subroutine const char* b = NULL; { ResourceMark rm; stringStream ss; ss.print("verify_oop: %s: %s", reg->name(), s); b = code_string(ss.as_string()); } BLOCK_COMMENT("verify_oop {"); stp(r0, rscratch1, Address(pre(sp, -2 * wordSize))); stp(rscratch2, lr, Address(pre(sp, -2 * wordSize))); mov(r0, reg); movptr(rscratch1, (uintptr_t)(address)b); // call indirectly to solve generation ordering problem lea(rscratch2, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address())); ldr(rscratch2, Address(rscratch2)); blr(rscratch2); ldp(rscratch2, lr, Address(post(sp, 2 * wordSize))); ldp(r0, rscratch1, Address(post(sp, 2 * wordSize))); BLOCK_COMMENT("} verify_oop"); } void MacroAssembler::verify_oop_addr(Address addr, const char* s) { if (!VerifyOops) return; const char* b = NULL; { ResourceMark rm; stringStream ss; ss.print("verify_oop_addr: %s", s); b = code_string(ss.as_string()); } BLOCK_COMMENT("verify_oop_addr {"); stp(r0, rscratch1, Address(pre(sp, -2 * wordSize))); stp(rscratch2, lr, Address(pre(sp, -2 * wordSize))); // addr may contain sp so we will have to adjust it based on the // pushes that we just did. if (addr.uses(sp)) { lea(r0, addr); ldr(r0, Address(r0, 4 * wordSize)); } else { ldr(r0, addr); } movptr(rscratch1, (uintptr_t)(address)b); // call indirectly to solve generation ordering problem lea(rscratch2, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address())); ldr(rscratch2, Address(rscratch2)); blr(rscratch2); ldp(rscratch2, lr, Address(post(sp, 2 * wordSize))); ldp(r0, rscratch1, Address(post(sp, 2 * wordSize))); BLOCK_COMMENT("} verify_oop_addr"); } Address MacroAssembler::argument_address(RegisterOrConstant arg_slot, int extra_slot_offset) { // cf. TemplateTable::prepare_invoke(), if (load_receiver). int stackElementSize = Interpreter::stackElementSize; int offset = Interpreter::expr_offset_in_bytes(extra_slot_offset+0); #ifdef ASSERT int offset1 = Interpreter::expr_offset_in_bytes(extra_slot_offset+1); assert(offset1 - offset == stackElementSize, "correct arithmetic"); #endif if (arg_slot.is_constant()) { return Address(esp, arg_slot.as_constant() * stackElementSize + offset); } else { add(rscratch1, esp, arg_slot.as_register(), ext::uxtx, exact_log2(stackElementSize)); return Address(rscratch1, offset); } } void MacroAssembler::call_VM_leaf_base(address entry_point, int number_of_arguments, Label *retaddr) { Label E, L; stp(rscratch1, rmethod, Address(pre(sp, -2 * wordSize))); mov(rscratch1, entry_point); blr(rscratch1); if (retaddr) bind(*retaddr); ldp(rscratch1, rmethod, Address(post(sp, 2 * wordSize))); maybe_isb(); } void MacroAssembler::call_VM_leaf(address entry_point, int number_of_arguments) { call_VM_leaf_base(entry_point, number_of_arguments); } void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0) { pass_arg0(this, arg_0); call_VM_leaf_base(entry_point, 1); } void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) { pass_arg0(this, arg_0); pass_arg1(this, arg_1); call_VM_leaf_base(entry_point, 2); } void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) { pass_arg0(this, arg_0); pass_arg1(this, arg_1); pass_arg2(this, arg_2); call_VM_leaf_base(entry_point, 3); } void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0) { pass_arg0(this, arg_0); MacroAssembler::call_VM_leaf_base(entry_point, 1); } void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1) { assert(arg_0 != c_rarg1, "smashed arg"); pass_arg1(this, arg_1); pass_arg0(this, arg_0); MacroAssembler::call_VM_leaf_base(entry_point, 2); } void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) { assert(arg_0 != c_rarg2, "smashed arg"); assert(arg_1 != c_rarg2, "smashed arg"); pass_arg2(this, arg_2); assert(arg_0 != c_rarg1, "smashed arg"); pass_arg1(this, arg_1); pass_arg0(this, arg_0); MacroAssembler::call_VM_leaf_base(entry_point, 3); } void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) { assert(arg_0 != c_rarg3, "smashed arg"); assert(arg_1 != c_rarg3, "smashed arg"); assert(arg_2 != c_rarg3, "smashed arg"); pass_arg3(this, arg_3); assert(arg_0 != c_rarg2, "smashed arg"); assert(arg_1 != c_rarg2, "smashed arg"); pass_arg2(this, arg_2); assert(arg_0 != c_rarg1, "smashed arg"); pass_arg1(this, arg_1); pass_arg0(this, arg_0); MacroAssembler::call_VM_leaf_base(entry_point, 4); } void MacroAssembler::null_check(Register reg, int offset) { if (needs_explicit_null_check(offset)) { // provoke OS NULL exception if reg = NULL by // accessing M[reg] w/o changing any registers // NOTE: this is plenty to provoke a segv ldr(zr, Address(reg)); } else { // nothing to do, (later) access of M[reg + offset] // will provoke OS NULL exception if reg = NULL } } // MacroAssembler protected routines needed to implement // public methods void MacroAssembler::mov(Register r, Address dest) { code_section()->relocate(pc(), dest.rspec()); u_int64_t imm64 = (u_int64_t)dest.target(); movptr(r, imm64); } // Move a constant pointer into r. In AArch64 mode the virtual // address space is 48 bits in size, so we only need three // instructions to create a patchable instruction sequence that can // reach anywhere. void MacroAssembler::movptr(Register r, uintptr_t imm64) { #ifndef PRODUCT { char buffer[64]; snprintf(buffer, sizeof(buffer), "0x%" PRIX64, imm64); block_comment(buffer); } #endif assert(imm64 < (1ul << 48), "48-bit overflow in address constant"); movz(r, imm64 & 0xffff); imm64 >>= 16; movk(r, imm64 & 0xffff, 16); imm64 >>= 16; movk(r, imm64 & 0xffff, 32); } // Macro to mov replicated immediate to vector register. // Vd will get the following values for different arrangements in T // imm32 == hex 000000gh T8B: Vd = ghghghghghghghgh // imm32 == hex 000000gh T16B: Vd = ghghghghghghghghghghghghghghghgh // imm32 == hex 0000efgh T4H: Vd = efghefghefghefgh // imm32 == hex 0000efgh T8H: Vd = efghefghefghefghefghefghefghefgh // imm32 == hex abcdefgh T2S: Vd = abcdefghabcdefgh // imm32 == hex abcdefgh T4S: Vd = abcdefghabcdefghabcdefghabcdefgh // T1D/T2D: invalid void MacroAssembler::mov(FloatRegister Vd, SIMD_Arrangement T, u_int32_t imm32) { assert(T != T1D && T != T2D, "invalid arrangement"); if (T == T8B || T == T16B) { assert((imm32 & ~0xff) == 0, "extraneous bits in unsigned imm32 (T8B/T16B)"); movi(Vd, T, imm32 & 0xff, 0); return; } u_int32_t nimm32 = ~imm32; if (T == T4H || T == T8H) { assert((imm32 & ~0xffff) == 0, "extraneous bits in unsigned imm32 (T4H/T8H)"); imm32 &= 0xffff; nimm32 &= 0xffff; } u_int32_t x = imm32; int movi_cnt = 0; int movn_cnt = 0; while (x) { if (x & 0xff) movi_cnt++; x >>= 8; } x = nimm32; while (x) { if (x & 0xff) movn_cnt++; x >>= 8; } if (movn_cnt < movi_cnt) imm32 = nimm32; unsigned lsl = 0; while (imm32 && (imm32 & 0xff) == 0) { lsl += 8; imm32 >>= 8; } if (movn_cnt < movi_cnt) mvni(Vd, T, imm32 & 0xff, lsl); else movi(Vd, T, imm32 & 0xff, lsl); imm32 >>= 8; lsl += 8; while (imm32) { while ((imm32 & 0xff) == 0) { lsl += 8; imm32 >>= 8; } if (movn_cnt < movi_cnt) bici(Vd, T, imm32 & 0xff, lsl); else orri(Vd, T, imm32 & 0xff, lsl); lsl += 8; imm32 >>= 8; } } void MacroAssembler::mov_immediate64(Register dst, u_int64_t imm64) { #ifndef PRODUCT { char buffer[64]; snprintf(buffer, sizeof(buffer), "0x%" PRIX64, imm64); block_comment(buffer); } #endif if (operand_valid_for_logical_immediate(false, imm64)) { orr(dst, zr, imm64); } else { // we can use a combination of MOVZ or MOVN with // MOVK to build up the constant u_int64_t imm_h[4]; int zero_count = 0; int neg_count = 0; int i; for (i = 0; i < 4; i++) { imm_h[i] = ((imm64 >> (i * 16)) & 0xffffL); if (imm_h[i] == 0) { zero_count++; } else if (imm_h[i] == 0xffffL) { neg_count++; } } if (zero_count == 4) { // one MOVZ will do movz(dst, 0); } else if (neg_count == 4) { // one MOVN will do movn(dst, 0); } else if (zero_count == 3) { for (i = 0; i < 4; i++) { if (imm_h[i] != 0L) { movz(dst, (u_int32_t)imm_h[i], (i << 4)); break; } } } else if (neg_count == 3) { // one MOVN will do for (int i = 0; i < 4; i++) { if (imm_h[i] != 0xffffL) { movn(dst, (u_int32_t)imm_h[i] ^ 0xffffL, (i << 4)); break; } } } else if (zero_count == 2) { // one MOVZ and one MOVK will do for (i = 0; i < 3; i++) { if (imm_h[i] != 0L) { movz(dst, (u_int32_t)imm_h[i], (i << 4)); i++; break; } } for (;i < 4; i++) { if (imm_h[i] != 0L) { movk(dst, (u_int32_t)imm_h[i], (i << 4)); } } } else if (neg_count == 2) { // one MOVN and one MOVK will do for (i = 0; i < 4; i++) { if (imm_h[i] != 0xffffL) { movn(dst, (u_int32_t)imm_h[i] ^ 0xffffL, (i << 4)); i++; break; } } for (;i < 4; i++) { if (imm_h[i] != 0xffffL) { movk(dst, (u_int32_t)imm_h[i], (i << 4)); } } } else if (zero_count == 1) { // one MOVZ and two MOVKs will do for (i = 0; i < 4; i++) { if (imm_h[i] != 0L) { movz(dst, (u_int32_t)imm_h[i], (i << 4)); i++; break; } } for (;i < 4; i++) { if (imm_h[i] != 0x0L) { movk(dst, (u_int32_t)imm_h[i], (i << 4)); } } } else if (neg_count == 1) { // one MOVN and two MOVKs will do for (i = 0; i < 4; i++) { if (imm_h[i] != 0xffffL) { movn(dst, (u_int32_t)imm_h[i] ^ 0xffffL, (i << 4)); i++; break; } } for (;i < 4; i++) { if (imm_h[i] != 0xffffL) { movk(dst, (u_int32_t)imm_h[i], (i << 4)); } } } else { // use a MOVZ and 3 MOVKs (makes it easier to debug) movz(dst, (u_int32_t)imm_h[0], 0); for (i = 1; i < 4; i++) { movk(dst, (u_int32_t)imm_h[i], (i << 4)); } } } } void MacroAssembler::mov_immediate32(Register dst, u_int32_t imm32) { #ifndef PRODUCT { char buffer[64]; snprintf(buffer, sizeof(buffer), "0x%" PRIX32, imm32); block_comment(buffer); } #endif if (operand_valid_for_logical_immediate(true, imm32)) { orrw(dst, zr, imm32); } else { // we can use MOVZ, MOVN or two calls to MOVK to build up the // constant u_int32_t imm_h[2]; imm_h[0] = imm32 & 0xffff; imm_h[1] = ((imm32 >> 16) & 0xffff); if (imm_h[0] == 0) { movzw(dst, imm_h[1], 16); } else if (imm_h[0] == 0xffff) { movnw(dst, imm_h[1] ^ 0xffff, 16); } else if (imm_h[1] == 0) { movzw(dst, imm_h[0], 0); } else if (imm_h[1] == 0xffff) { movnw(dst, imm_h[0] ^ 0xffff, 0); } else { // use a MOVZ and MOVK (makes it easier to debug) movzw(dst, imm_h[0], 0); movkw(dst, imm_h[1], 16); } } } // Form an address from base + offset in Rd. Rd may or may // not actually be used: you must use the Address that is returned. // It is up to you to ensure that the shift provided matches the size // of your data. Address MacroAssembler::form_address(Register Rd, Register base, long byte_offset, int shift) { if (Address::offset_ok_for_immed(byte_offset, shift)) // It fits; no need for any heroics return Address(base, byte_offset); // Don't do anything clever with negative or misaligned offsets unsigned mask = (1 << shift) - 1; if (byte_offset < 0 || byte_offset & mask) { mov(Rd, byte_offset); add(Rd, base, Rd); return Address(Rd); } // See if we can do this with two 12-bit offsets { unsigned long word_offset = byte_offset >> shift; unsigned long masked_offset = word_offset & 0xfff000; if (Address::offset_ok_for_immed(word_offset - masked_offset, 0) && Assembler::operand_valid_for_add_sub_immediate(masked_offset << shift)) { add(Rd, base, masked_offset << shift); word_offset -= masked_offset; return Address(Rd, word_offset << shift); } } // Do it the hard way mov(Rd, byte_offset); add(Rd, base, Rd); return Address(Rd); } void MacroAssembler::atomic_incw(Register counter_addr, Register tmp, Register tmp2) { if (UseLSE) { mov(tmp, 1); ldadd(Assembler::word, tmp, zr, counter_addr); return; } Label retry_load; if ((VM_Version::features() & VM_Version::CPU_STXR_PREFETCH)) prfm(Address(counter_addr), PSTL1STRM); bind(retry_load); // flush and load exclusive from the memory location ldxrw(tmp, counter_addr); addw(tmp, tmp, 1); // if we store+flush with no intervening write tmp wil be zero stxrw(tmp2, tmp, counter_addr); cbnzw(tmp2, retry_load); } int MacroAssembler::corrected_idivl(Register result, Register ra, Register rb, bool want_remainder, Register scratch) { // Full implementation of Java idiv and irem. The function // returns the (pc) offset of the div instruction - may be needed // for implicit exceptions. // // constraint : ra/rb =/= scratch // normal case // // input : ra: dividend // rb: divisor // // result: either // quotient (= ra idiv rb) // remainder (= ra irem rb) assert(ra != scratch && rb != scratch, "reg cannot be scratch"); int idivl_offset = offset(); if (! want_remainder) { sdivw(result, ra, rb); } else { sdivw(scratch, ra, rb); Assembler::msubw(result, scratch, rb, ra); } return idivl_offset; } int MacroAssembler::corrected_idivq(Register result, Register ra, Register rb, bool want_remainder, Register scratch) { // Full implementation of Java ldiv and lrem. The function // returns the (pc) offset of the div instruction - may be needed // for implicit exceptions. // // constraint : ra/rb =/= scratch // normal case // // input : ra: dividend // rb: divisor // // result: either // quotient (= ra idiv rb) // remainder (= ra irem rb) assert(ra != scratch && rb != scratch, "reg cannot be scratch"); int idivq_offset = offset(); if (! want_remainder) { sdiv(result, ra, rb); } else { sdiv(scratch, ra, rb); Assembler::msub(result, scratch, rb, ra); } return idivq_offset; } void MacroAssembler::membar(Membar_mask_bits order_constraint) { address prev = pc() - NativeMembar::instruction_size; address last = code()->last_insn(); if (last != NULL && nativeInstruction_at(last)->is_Membar() && prev == last) { NativeMembar *bar = NativeMembar_at(prev); // We are merging two memory barrier instructions. On AArch64 we // can do this simply by ORing them together. bar->set_kind(bar->get_kind() | order_constraint); BLOCK_COMMENT("merged membar"); } else { code()->set_last_insn(pc()); dmb(Assembler::barrier(order_constraint)); } } bool MacroAssembler::try_merge_ldst(Register rt, const Address &adr, size_t size_in_bytes, bool is_store) { if (ldst_can_merge(rt, adr, size_in_bytes, is_store)) { merge_ldst(rt, adr, size_in_bytes, is_store); code()->clear_last_insn(); return true; } else { assert(size_in_bytes == 8 || size_in_bytes == 4, "only 8 bytes or 4 bytes load/store is supported."); const unsigned mask = size_in_bytes - 1; if (adr.getMode() == Address::base_plus_offset && (adr.offset() & mask) == 0) { // only supports base_plus_offset. code()->set_last_insn(pc()); } return false; } } void MacroAssembler::ldr(Register Rx, const Address &adr) { // We always try to merge two adjacent loads into one ldp. if (!try_merge_ldst(Rx, adr, 8, false)) { Assembler::ldr(Rx, adr); } } void MacroAssembler::ldrw(Register Rw, const Address &adr) { // We always try to merge two adjacent loads into one ldp. if (!try_merge_ldst(Rw, adr, 4, false)) { Assembler::ldrw(Rw, adr); } } void MacroAssembler::str(Register Rx, const Address &adr) { // We always try to merge two adjacent stores into one stp. if (!try_merge_ldst(Rx, adr, 8, true)) { Assembler::str(Rx, adr); } } void MacroAssembler::strw(Register Rw, const Address &adr) { // We always try to merge two adjacent stores into one stp. if (!try_merge_ldst(Rw, adr, 4, true)) { Assembler::strw(Rw, adr); } } // MacroAssembler routines found actually to be needed void MacroAssembler::push(Register src) { str(src, Address(pre(esp, -1 * wordSize))); } void MacroAssembler::pop(Register dst) { ldr(dst, Address(post(esp, 1 * wordSize))); } // Note: load_unsigned_short used to be called load_unsigned_word. int MacroAssembler::load_unsigned_short(Register dst, Address src) { int off = offset(); ldrh(dst, src); return off; } int MacroAssembler::load_unsigned_byte(Register dst, Address src) { int off = offset(); ldrb(dst, src); return off; } int MacroAssembler::load_signed_short(Register dst, Address src) { int off = offset(); ldrsh(dst, src); return off; } int MacroAssembler::load_signed_byte(Register dst, Address src) { int off = offset(); ldrsb(dst, src); return off; } int MacroAssembler::load_signed_short32(Register dst, Address src) { int off = offset(); ldrshw(dst, src); return off; } int MacroAssembler::load_signed_byte32(Register dst, Address src) { int off = offset(); ldrsbw(dst, src); return off; } void MacroAssembler::load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2) { switch (size_in_bytes) { case 8: ldr(dst, src); break; case 4: ldrw(dst, src); break; case 2: is_signed ? load_signed_short(dst, src) : load_unsigned_short(dst, src); break; case 1: is_signed ? load_signed_byte( dst, src) : load_unsigned_byte( dst, src); break; default: ShouldNotReachHere(); } } void MacroAssembler::store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2) { switch (size_in_bytes) { case 8: str(src, dst); break; case 4: strw(src, dst); break; case 2: strh(src, dst); break; case 1: strb(src, dst); break; default: ShouldNotReachHere(); } } void MacroAssembler::decrementw(Register reg, int value) { if (value < 0) { incrementw(reg, -value); return; } if (value == 0) { return; } if (value < (1 << 12)) { subw(reg, reg, value); return; } /* else */ { guarantee(reg != rscratch2, "invalid dst for register decrement"); movw(rscratch2, (unsigned)value); subw(reg, reg, rscratch2); } } void MacroAssembler::decrement(Register reg, int value) { if (value < 0) { increment(reg, -value); return; } if (value == 0) { return; } if (value < (1 << 12)) { sub(reg, reg, value); return; } /* else */ { assert(reg != rscratch2, "invalid dst for register decrement"); mov(rscratch2, (unsigned long)value); sub(reg, reg, rscratch2); } } void MacroAssembler::decrementw(Address dst, int value) { assert(!dst.uses(rscratch1), "invalid dst for address decrement"); if (dst.getMode() == Address::literal) { assert(abs(value) < (1 << 12), "invalid value and address mode combination"); lea(rscratch2, dst); dst = Address(rscratch2); } ldrw(rscratch1, dst); decrementw(rscratch1, value); strw(rscratch1, dst); } void MacroAssembler::decrement(Address dst, int value) { assert(!dst.uses(rscratch1), "invalid address for decrement"); if (dst.getMode() == Address::literal) { assert(abs(value) < (1 << 12), "invalid value and address mode combination"); lea(rscratch2, dst); dst = Address(rscratch2); } ldr(rscratch1, dst); decrement(rscratch1, value); str(rscratch1, dst); } void MacroAssembler::incrementw(Register reg, int value) { if (value < 0) { decrementw(reg, -value); return; } if (value == 0) { return; } if (value < (1 << 12)) { addw(reg, reg, value); return; } /* else */ { assert(reg != rscratch2, "invalid dst for register increment"); movw(rscratch2, (unsigned)value); addw(reg, reg, rscratch2); } } void MacroAssembler::increment(Register reg, int value) { if (value < 0) { decrement(reg, -value); return; } if (value == 0) { return; } if (value < (1 << 12)) { add(reg, reg, value); return; } /* else */ { assert(reg != rscratch2, "invalid dst for register increment"); movw(rscratch2, (unsigned)value); add(reg, reg, rscratch2); } } void MacroAssembler::incrementw(Address dst, int value) { assert(!dst.uses(rscratch1), "invalid dst for address increment"); if (dst.getMode() == Address::literal) { assert(abs(value) < (1 << 12), "invalid value and address mode combination"); lea(rscratch2, dst); dst = Address(rscratch2); } ldrw(rscratch1, dst); incrementw(rscratch1, value); strw(rscratch1, dst); } void MacroAssembler::increment(Address dst, int value) { assert(!dst.uses(rscratch1), "invalid dst for address increment"); if (dst.getMode() == Address::literal) { assert(abs(value) < (1 << 12), "invalid value and address mode combination"); lea(rscratch2, dst); dst = Address(rscratch2); } ldr(rscratch1, dst); increment(rscratch1, value); str(rscratch1, dst); } void MacroAssembler::pusha() { push(0x7fffffff, sp); } void MacroAssembler::popa() { pop(0x7fffffff, sp); } // Push lots of registers in the bit set supplied. Don't push sp. // Return the number of words pushed int MacroAssembler::push(unsigned int bitset, Register stack) { int words_pushed = 0; // Scan bitset to accumulate register pairs unsigned char regs[32]; int count = 0; for (int reg = 0; reg <= 30; reg++) { if (1 & bitset) regs[count++] = reg; bitset >>= 1; } regs[count++] = zr->encoding_nocheck(); count &= ~1; // Only push an even nuber of regs if (count) { stp(as_Register(regs[0]), as_Register(regs[1]), Address(pre(stack, -count * wordSize))); words_pushed += 2; } for (int i = 2; i < count; i += 2) { stp(as_Register(regs[i]), as_Register(regs[i+1]), Address(stack, i * wordSize)); words_pushed += 2; } assert(words_pushed == count, "oops, pushed != count"); return count; } int MacroAssembler::pop(unsigned int bitset, Register stack) { int words_pushed = 0; // Scan bitset to accumulate register pairs unsigned char regs[32]; int count = 0; for (int reg = 0; reg <= 30; reg++) { if (1 & bitset) regs[count++] = reg; bitset >>= 1; } regs[count++] = zr->encoding_nocheck(); count &= ~1; for (int i = 2; i < count; i += 2) { ldp(as_Register(regs[i]), as_Register(regs[i+1]), Address(stack, i * wordSize)); words_pushed += 2; } if (count) { ldp(as_Register(regs[0]), as_Register(regs[1]), Address(post(stack, count * wordSize))); words_pushed += 2; } assert(words_pushed == count, "oops, pushed != count"); return count; } // Push lots of registers in the bit set supplied. Don't push sp. // Return the number of words pushed int MacroAssembler::push_fp(unsigned int bitset, Register stack) { int words_pushed = 0; // Scan bitset to accumulate register pairs unsigned char regs[32]; int count = 0; for (int reg = 0; reg <= 31; reg++) { if (1 & bitset) regs[count++] = reg; bitset >>= 1; } regs[count++] = zr->encoding_nocheck(); count &= ~1; // Only push an even number of regs // Always pushing full 128 bit registers. if (count) { stpq(as_FloatRegister(regs[0]), as_FloatRegister(regs[1]), Address(pre(stack, -count * wordSize * 2))); words_pushed += 2; } for (int i = 2; i < count; i += 2) { stpq(as_FloatRegister(regs[i]), as_FloatRegister(regs[i+1]), Address(stack, i * wordSize * 2)); words_pushed += 2; } assert(words_pushed == count, "oops, pushed != count"); return count; } int MacroAssembler::pop_fp(unsigned int bitset, Register stack) { int words_pushed = 0; // Scan bitset to accumulate register pairs unsigned char regs[32]; int count = 0; for (int reg = 0; reg <= 31; reg++) { if (1 & bitset) regs[count++] = reg; bitset >>= 1; } regs[count++] = zr->encoding_nocheck(); count &= ~1; for (int i = 2; i < count; i += 2) { ldpq(as_FloatRegister(regs[i]), as_FloatRegister(regs[i+1]), Address(stack, i * wordSize * 2)); words_pushed += 2; } if (count) { ldpq(as_FloatRegister(regs[0]), as_FloatRegister(regs[1]), Address(post(stack, count * wordSize * 2))); words_pushed += 2; } assert(words_pushed == count, "oops, pushed != count"); return count; } #ifdef ASSERT void MacroAssembler::verify_heapbase(const char* msg) { #if 0 assert (UseCompressedOops || UseCompressedClassPointers, "should be compressed"); assert (Universe::heap() != NULL, "java heap should be initialized"); if (!UseCompressedOops || Universe::ptr_base() == NULL) { // rheapbase is allocated as general register return; } if (CheckCompressedOops) { Label ok; push(1 << rscratch1->encoding(), sp); // cmpptr trashes rscratch1 cmpptr(rheapbase, ExternalAddress((address)CompressedOops::ptrs_base_addr())); br(Assembler::EQ, ok); stop(msg); bind(ok); pop(1 << rscratch1->encoding(), sp); } #endif } #endif void MacroAssembler::resolve_jobject(Register value, Register thread, Register tmp) { Label done, not_weak; cbz(value, done); // Use NULL as-is. STATIC_ASSERT(JNIHandles::weak_tag_mask == 1u); tbz(r0, 0, not_weak); // Test for jweak tag. // Resolve jweak. access_load_at(T_OBJECT, IN_NATIVE | ON_PHANTOM_OOP_REF, value, Address(value, -JNIHandles::weak_tag_value), tmp, thread); verify_oop(value); b(done); bind(not_weak); // Resolve (untagged) jobject. access_load_at(T_OBJECT, IN_NATIVE, value, Address(value, 0), tmp, thread); verify_oop(value); bind(done); } void MacroAssembler::stop(const char* msg) { BLOCK_COMMENT(msg); dcps1(0xdeae); emit_int64((uintptr_t)msg); } void MacroAssembler::unimplemented(const char* what) { const char* buf = NULL; { ResourceMark rm; stringStream ss; ss.print("unimplemented: %s", what); buf = code_string(ss.as_string()); } stop(buf); } // If a constant does not fit in an immediate field, generate some // number of MOV instructions and then perform the operation. void MacroAssembler::wrap_add_sub_imm_insn(Register Rd, Register Rn, unsigned imm, add_sub_imm_insn insn1, add_sub_reg_insn insn2) { assert(Rd != zr, "Rd = zr and not setting flags?"); if (operand_valid_for_add_sub_immediate((int)imm)) { (this->*insn1)(Rd, Rn, imm); } else { if (uabs(imm) < (1 << 24)) { (this->*insn1)(Rd, Rn, imm & -(1 << 12)); (this->*insn1)(Rd, Rd, imm & ((1 << 12)-1)); } else { assert_different_registers(Rd, Rn); mov(Rd, (uint64_t)imm); (this->*insn2)(Rd, Rn, Rd, LSL, 0); } } } // Seperate vsn which sets the flags. Optimisations are more restricted // because we must set the flags correctly. void MacroAssembler::wrap_adds_subs_imm_insn(Register Rd, Register Rn, unsigned imm, add_sub_imm_insn insn1, add_sub_reg_insn insn2) { if (operand_valid_for_add_sub_immediate((int)imm)) { (this->*insn1)(Rd, Rn, imm); } else { assert_different_registers(Rd, Rn); assert(Rd != zr, "overflow in immediate operand"); mov(Rd, (uint64_t)imm); (this->*insn2)(Rd, Rn, Rd, LSL, 0); } } void MacroAssembler::add(Register Rd, Register Rn, RegisterOrConstant increment) { if (increment.is_register()) { add(Rd, Rn, increment.as_register()); } else { add(Rd, Rn, increment.as_constant()); } } void MacroAssembler::addw(Register Rd, Register Rn, RegisterOrConstant increment) { if (increment.is_register()) { addw(Rd, Rn, increment.as_register()); } else { addw(Rd, Rn, increment.as_constant()); } } void MacroAssembler::sub(Register Rd, Register Rn, RegisterOrConstant decrement) { if (decrement.is_register()) { sub(Rd, Rn, decrement.as_register()); } else { sub(Rd, Rn, decrement.as_constant()); } } void MacroAssembler::subw(Register Rd, Register Rn, RegisterOrConstant decrement) { if (decrement.is_register()) { subw(Rd, Rn, decrement.as_register()); } else { subw(Rd, Rn, decrement.as_constant()); } } void MacroAssembler::reinit_heapbase() { if (UseCompressedOops) { if (Universe::is_fully_initialized()) { mov(rheapbase, CompressedOops::ptrs_base()); } else { lea(rheapbase, ExternalAddress((address)CompressedOops::ptrs_base_addr())); ldr(rheapbase, Address(rheapbase)); } } } // this simulates the behaviour of the x86 cmpxchg instruction using a // load linked/store conditional pair. we use the acquire/release // versions of these instructions so that we flush pending writes as // per Java semantics. // n.b the x86 version assumes the old value to be compared against is // in rax and updates rax with the value located in memory if the // cmpxchg fails. we supply a register for the old value explicitly // the aarch64 load linked/store conditional instructions do not // accept an offset. so, unlike x86, we must provide a plain register // to identify the memory word to be compared/exchanged rather than a // register+offset Address. void MacroAssembler::cmpxchgptr(Register oldv, Register newv, Register addr, Register tmp, Label &succeed, Label *fail) { // oldv holds comparison value // newv holds value to write in exchange // addr identifies memory word to compare against/update if (UseLSE) { mov(tmp, oldv); casal(Assembler::xword, oldv, newv, addr); cmp(tmp, oldv); br(Assembler::EQ, succeed); membar(AnyAny); } else { Label retry_load, nope; if ((VM_Version::features() & VM_Version::CPU_STXR_PREFETCH)) prfm(Address(addr), PSTL1STRM); bind(retry_load); // flush and load exclusive from the memory location // and fail if it is not what we expect ldaxr(tmp, addr); cmp(tmp, oldv); br(Assembler::NE, nope); // if we store+flush with no intervening write tmp wil be zero stlxr(tmp, newv, addr); cbzw(tmp, succeed); // retry so we only ever return after a load fails to compare // ensures we don't return a stale value after a failed write. b(retry_load); // if the memory word differs we return it in oldv and signal a fail bind(nope); membar(AnyAny); mov(oldv, tmp); } if (fail) b(*fail); } void MacroAssembler::cmpxchg_obj_header(Register oldv, Register newv, Register obj, Register tmp, Label &succeed, Label *fail) { assert(oopDesc::mark_offset_in_bytes() == 0, "assumption"); cmpxchgptr(oldv, newv, obj, tmp, succeed, fail); } void MacroAssembler::cmpxchgw(Register oldv, Register newv, Register addr, Register tmp, Label &succeed, Label *fail) { // oldv holds comparison value // newv holds value to write in exchange // addr identifies memory word to compare against/update // tmp returns 0/1 for success/failure if (UseLSE) { mov(tmp, oldv); casal(Assembler::word, oldv, newv, addr); cmp(tmp, oldv); br(Assembler::EQ, succeed); membar(AnyAny); } else { Label retry_load, nope; if ((VM_Version::features() & VM_Version::CPU_STXR_PREFETCH)) prfm(Address(addr), PSTL1STRM); bind(retry_load); // flush and load exclusive from the memory location // and fail if it is not what we expect ldaxrw(tmp, addr); cmp(tmp, oldv); br(Assembler::NE, nope); // if we store+flush with no intervening write tmp wil be zero stlxrw(tmp, newv, addr); cbzw(tmp, succeed); // retry so we only ever return after a load fails to compare // ensures we don't return a stale value after a failed write. b(retry_load); // if the memory word differs we return it in oldv and signal a fail bind(nope); membar(AnyAny); mov(oldv, tmp); } if (fail) b(*fail); } // A generic CAS; success or failure is in the EQ flag. A weak CAS // doesn't retry and may fail spuriously. If the oldval is wanted, // Pass a register for the result, otherwise pass noreg. // Clobbers rscratch1 void MacroAssembler::cmpxchg(Register addr, Register expected, Register new_val, enum operand_size size, bool acquire, bool release, bool weak, Register result) { if (result == noreg) result = rscratch1; BLOCK_COMMENT("cmpxchg {"); if (UseLSE) { mov(result, expected); lse_cas(result, new_val, addr, size, acquire, release, /*not_pair*/ true); compare_eq(result, expected, size); } else { Label retry_load, done; if ((VM_Version::features() & VM_Version::CPU_STXR_PREFETCH)) prfm(Address(addr), PSTL1STRM); bind(retry_load); load_exclusive(result, addr, size, acquire); compare_eq(result, expected, size); br(Assembler::NE, done); store_exclusive(rscratch1, new_val, addr, size, release); if (weak) { cmpw(rscratch1, 0u); // If the store fails, return NE to our caller. } else { cbnzw(rscratch1, retry_load); } bind(done); } BLOCK_COMMENT("} cmpxchg"); } // A generic comparison. Only compares for equality, clobbers rscratch1. void MacroAssembler::compare_eq(Register rm, Register rn, enum operand_size size) { if (size == xword) { cmp(rm, rn); } else if (size == word) { cmpw(rm, rn); } else if (size == halfword) { eorw(rscratch1, rm, rn); ands(zr, rscratch1, 0xffff); } else if (size == byte) { eorw(rscratch1, rm, rn); ands(zr, rscratch1, 0xff); } else { ShouldNotReachHere(); } } static bool different(Register a, RegisterOrConstant b, Register c) { if (b.is_constant()) return a != c; else return a != b.as_register() && a != c && b.as_register() != c; } #define ATOMIC_OP(NAME, LDXR, OP, IOP, AOP, STXR, sz) \ void MacroAssembler::atomic_##NAME(Register prev, RegisterOrConstant incr, Register addr) { \ if (UseLSE) { \ prev = prev->is_valid() ? prev : zr; \ if (incr.is_register()) { \ AOP(sz, incr.as_register(), prev, addr); \ } else { \ mov(rscratch2, incr.as_constant()); \ AOP(sz, rscratch2, prev, addr); \ } \ return; \ } \ Register result = rscratch2; \ if (prev->is_valid()) \ result = different(prev, incr, addr) ? prev : rscratch2; \ \ Label retry_load; \ if ((VM_Version::features() & VM_Version::CPU_STXR_PREFETCH)) \ prfm(Address(addr), PSTL1STRM); \ bind(retry_load); \ LDXR(result, addr); \ OP(rscratch1, result, incr); \ STXR(rscratch2, rscratch1, addr); \ cbnzw(rscratch2, retry_load); \ if (prev->is_valid() && prev != result) { \ IOP(prev, rscratch1, incr); \ } \ } ATOMIC_OP(add, ldxr, add, sub, ldadd, stxr, Assembler::xword) ATOMIC_OP(addw, ldxrw, addw, subw, ldadd, stxrw, Assembler::word) ATOMIC_OP(addal, ldaxr, add, sub, ldaddal, stlxr, Assembler::xword) ATOMIC_OP(addalw, ldaxrw, addw, subw, ldaddal, stlxrw, Assembler::word) #undef ATOMIC_OP #define ATOMIC_XCHG(OP, AOP, LDXR, STXR, sz) \ void MacroAssembler::atomic_##OP(Register prev, Register newv, Register addr) { \ if (UseLSE) { \ prev = prev->is_valid() ? prev : zr; \ AOP(sz, newv, prev, addr); \ return; \ } \ Register result = rscratch2; \ if (prev->is_valid()) \ result = different(prev, newv, addr) ? prev : rscratch2; \ \ Label retry_load; \ if ((VM_Version::features() & VM_Version::CPU_STXR_PREFETCH)) \ prfm(Address(addr), PSTL1STRM); \ bind(retry_load); \ LDXR(result, addr); \ STXR(rscratch1, newv, addr); \ cbnzw(rscratch1, retry_load); \ if (prev->is_valid() && prev != result) \ mov(prev, result); \ } ATOMIC_XCHG(xchg, swp, ldxr, stxr, Assembler::xword) ATOMIC_XCHG(xchgw, swp, ldxrw, stxrw, Assembler::word) ATOMIC_XCHG(xchgal, swpal, ldaxr, stlxr, Assembler::xword) ATOMIC_XCHG(xchgalw, swpal, ldaxrw, stlxrw, Assembler::word) #undef ATOMIC_XCHG #ifndef PRODUCT extern "C" void findpc(intptr_t x); #endif void MacroAssembler::debug64(char* msg, int64_t pc, int64_t regs[]) { // In order to get locks to work, we need to fake a in_VM state if (ShowMessageBoxOnError ) { JavaThread* thread = JavaThread::current(); JavaThreadState saved_state = thread->thread_state(); thread->set_thread_state(_thread_in_vm); #ifndef PRODUCT if (CountBytecodes || TraceBytecodes || StopInterpreterAt) { ttyLocker ttyl; BytecodeCounter::print(); } #endif if (os::message_box(msg, "Execution stopped, print registers?")) { ttyLocker ttyl; tty->print_cr(" pc = 0x%016lx", pc); #ifndef PRODUCT tty->cr(); findpc(pc); tty->cr(); #endif tty->print_cr(" r0 = 0x%016lx", regs[0]); tty->print_cr(" r1 = 0x%016lx", regs[1]); tty->print_cr(" r2 = 0x%016lx", regs[2]); tty->print_cr(" r3 = 0x%016lx", regs[3]); tty->print_cr(" r4 = 0x%016lx", regs[4]); tty->print_cr(" r5 = 0x%016lx", regs[5]); tty->print_cr(" r6 = 0x%016lx", regs[6]); tty->print_cr(" r7 = 0x%016lx", regs[7]); tty->print_cr(" r8 = 0x%016lx", regs[8]); tty->print_cr(" r9 = 0x%016lx", regs[9]); tty->print_cr("r10 = 0x%016lx", regs[10]); tty->print_cr("r11 = 0x%016lx", regs[11]); tty->print_cr("r12 = 0x%016lx", regs[12]); tty->print_cr("r13 = 0x%016lx", regs[13]); tty->print_cr("r14 = 0x%016lx", regs[14]); tty->print_cr("r15 = 0x%016lx", regs[15]); tty->print_cr("r16 = 0x%016lx", regs[16]); tty->print_cr("r17 = 0x%016lx", regs[17]); tty->print_cr("r18 = 0x%016lx", regs[18]); tty->print_cr("r19 = 0x%016lx", regs[19]); tty->print_cr("r20 = 0x%016lx", regs[20]); tty->print_cr("r21 = 0x%016lx", regs[21]); tty->print_cr("r22 = 0x%016lx", regs[22]); tty->print_cr("r23 = 0x%016lx", regs[23]); tty->print_cr("r24 = 0x%016lx", regs[24]); tty->print_cr("r25 = 0x%016lx", regs[25]); tty->print_cr("r26 = 0x%016lx", regs[26]); tty->print_cr("r27 = 0x%016lx", regs[27]); tty->print_cr("r28 = 0x%016lx", regs[28]); tty->print_cr("r30 = 0x%016lx", regs[30]); tty->print_cr("r31 = 0x%016lx", regs[31]); BREAKPOINT; } } fatal("DEBUG MESSAGE: %s", msg); } void MacroAssembler::push_call_clobbered_registers() { int step = 4 * wordSize; push(RegSet::range(r0, r18) - RegSet::of(rscratch1, rscratch2), sp); sub(sp, sp, step); mov(rscratch1, -step); // Push v0-v7, v16-v31. for (int i = 31; i>= 4; i -= 4) { if (i <= v7->encoding() || i >= v16->encoding()) st1(as_FloatRegister(i-3), as_FloatRegister(i-2), as_FloatRegister(i-1), as_FloatRegister(i), T1D, Address(post(sp, rscratch1))); } st1(as_FloatRegister(0), as_FloatRegister(1), as_FloatRegister(2), as_FloatRegister(3), T1D, Address(sp)); } void MacroAssembler::pop_call_clobbered_registers() { for (int i = 0; i < 32; i += 4) { if (i <= v7->encoding() || i >= v16->encoding()) ld1(as_FloatRegister(i), as_FloatRegister(i+1), as_FloatRegister(i+2), as_FloatRegister(i+3), T1D, Address(post(sp, 4 * wordSize))); } pop(RegSet::range(r0, r18) - RegSet::of(rscratch1, rscratch2), sp); } void MacroAssembler::push_CPU_state(bool save_vectors) { int step = (save_vectors ? 8 : 4) * wordSize; push(0x3fffffff, sp); // integer registers except lr & sp mov(rscratch1, -step); sub(sp, sp, step); for (int i = 28; i >= 4; i -= 4) { st1(as_FloatRegister(i), as_FloatRegister(i+1), as_FloatRegister(i+2), as_FloatRegister(i+3), save_vectors ? T2D : T1D, Address(post(sp, rscratch1))); } st1(v0, v1, v2, v3, save_vectors ? T2D : T1D, sp); } void MacroAssembler::pop_CPU_state(bool restore_vectors) { int step = (restore_vectors ? 8 : 4) * wordSize; for (int i = 0; i <= 28; i += 4) ld1(as_FloatRegister(i), as_FloatRegister(i+1), as_FloatRegister(i+2), as_FloatRegister(i+3), restore_vectors ? T2D : T1D, Address(post(sp, step))); pop(0x3fffffff, sp); // integer registers except lr & sp } /** * Helpers for multiply_to_len(). */ void MacroAssembler::add2_with_carry(Register final_dest_hi, Register dest_hi, Register dest_lo, Register src1, Register src2) { adds(dest_lo, dest_lo, src1); adc(dest_hi, dest_hi, zr); adds(dest_lo, dest_lo, src2); adc(final_dest_hi, dest_hi, zr); } // Generate an address from (r + r1 extend offset). "size" is the // size of the operand. The result may be in rscratch2. Address MacroAssembler::offsetted_address(Register r, Register r1, Address::extend ext, int offset, int size) { if (offset || (ext.shift() % size != 0)) { lea(rscratch2, Address(r, r1, ext)); return Address(rscratch2, offset); } else { return Address(r, r1, ext); } } Address MacroAssembler::spill_address(int size, int offset, Register tmp) { assert(offset >= 0, "spill to negative address?"); // Offset reachable ? // Not aligned - 9 bits signed offset // Aligned - 12 bits unsigned offset shifted Register base = sp; if ((offset & (size-1)) && offset >= (1<<8)) { add(tmp, base, offset & ((1<<12)-1)); base = tmp; offset &= -1u<<12; } if (offset >= (1<<12) * size) { add(tmp, base, offset & (((1<<12)-1)<<12)); base = tmp; offset &= ~(((1<<12)-1)<<12); } return Address(base, offset); } // Checks whether offset is aligned. // Returns true if it is, else false. bool MacroAssembler::merge_alignment_check(Register base, size_t size, long cur_offset, long prev_offset) const { if (AvoidUnalignedAccesses) { if (base == sp) { // Checks whether low offset if aligned to pair of registers. long pair_mask = size * 2 - 1; long offset = prev_offset > cur_offset ? cur_offset : prev_offset; return (offset & pair_mask) == 0; } else { // If base is not sp, we can't guarantee the access is aligned. return false; } } else { long mask = size - 1; // Load/store pair instruction only supports element size aligned offset. return (cur_offset & mask) == 0 && (prev_offset & mask) == 0; } } // Checks whether current and previous loads/stores can be merged. // Returns true if it can be merged, else false. bool MacroAssembler::ldst_can_merge(Register rt, const Address &adr, size_t cur_size_in_bytes, bool is_store) const { address prev = pc() - NativeInstruction::instruction_size; address last = code()->last_insn(); if (last == NULL || !nativeInstruction_at(last)->is_Imm_LdSt()) { return false; } if (adr.getMode() != Address::base_plus_offset || prev != last) { return false; } NativeLdSt* prev_ldst = NativeLdSt_at(prev); size_t prev_size_in_bytes = prev_ldst->size_in_bytes(); assert(prev_size_in_bytes == 4 || prev_size_in_bytes == 8, "only supports 64/32bit merging."); assert(cur_size_in_bytes == 4 || cur_size_in_bytes == 8, "only supports 64/32bit merging."); if (cur_size_in_bytes != prev_size_in_bytes || is_store != prev_ldst->is_store()) { return false; } long max_offset = 63 * prev_size_in_bytes; long min_offset = -64 * prev_size_in_bytes; assert(prev_ldst->is_not_pre_post_index(), "pre-index or post-index is not supported to be merged."); // Only same base can be merged. if (adr.base() != prev_ldst->base()) { return false; } long cur_offset = adr.offset(); long prev_offset = prev_ldst->offset(); size_t diff = abs(cur_offset - prev_offset); if (diff != prev_size_in_bytes) { return false; } // Following cases can not be merged: // ldr x2, [x2, #8] // ldr x3, [x2, #16] // or: // ldr x2, [x3, #8] // ldr x2, [x3, #16] // If t1 and t2 is the same in "ldp t1, t2, [xn, #imm]", we'll get SIGILL. if (!is_store && (adr.base() == prev_ldst->target() || rt == prev_ldst->target())) { return false; } long low_offset = prev_offset > cur_offset ? cur_offset : prev_offset; // Offset range must be in ldp/stp instruction's range. if (low_offset > max_offset || low_offset < min_offset) { return false; } if (merge_alignment_check(adr.base(), prev_size_in_bytes, cur_offset, prev_offset)) { return true; } return false; } // Merge current load/store with previous load/store into ldp/stp. void MacroAssembler::merge_ldst(Register rt, const Address &adr, size_t cur_size_in_bytes, bool is_store) { assert(ldst_can_merge(rt, adr, cur_size_in_bytes, is_store) == true, "cur and prev must be able to be merged."); Register rt_low, rt_high; address prev = pc() - NativeInstruction::instruction_size; NativeLdSt* prev_ldst = NativeLdSt_at(prev); long offset; if (adr.offset() < prev_ldst->offset()) { offset = adr.offset(); rt_low = rt; rt_high = prev_ldst->target(); } else { offset = prev_ldst->offset(); rt_low = prev_ldst->target(); rt_high = rt; } Address adr_p = Address(prev_ldst->base(), offset); // Overwrite previous generated binary. code_section()->set_end(prev); const int sz = prev_ldst->size_in_bytes(); assert(sz == 8 || sz == 4, "only supports 64/32bit merging."); if (!is_store) { BLOCK_COMMENT("merged ldr pair"); if (sz == 8) { ldp(rt_low, rt_high, adr_p); } else { ldpw(rt_low, rt_high, adr_p); } } else { BLOCK_COMMENT("merged str pair"); if (sz == 8) { stp(rt_low, rt_high, adr_p); } else { stpw(rt_low, rt_high, adr_p); } } } /** * Multiply 64 bit by 64 bit first loop. */ void MacroAssembler::multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart, Register y, Register y_idx, Register z, Register carry, Register product, Register idx, Register kdx) { // // jlong carry, x[], y[], z[]; // for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) { // huge_128 product = y[idx] * x[xstart] + carry; // z[kdx] = (jlong)product; // carry = (jlong)(product >>> 64); // } // z[xstart] = carry; // Label L_first_loop, L_first_loop_exit; Label L_one_x, L_one_y, L_multiply; subsw(xstart, xstart, 1); br(Assembler::MI, L_one_x); lea(rscratch1, Address(x, xstart, Address::lsl(LogBytesPerInt))); ldr(x_xstart, Address(rscratch1)); ror(x_xstart, x_xstart, 32); // convert big-endian to little-endian bind(L_first_loop); subsw(idx, idx, 1); br(Assembler::MI, L_first_loop_exit); subsw(idx, idx, 1); br(Assembler::MI, L_one_y); lea(rscratch1, Address(y, idx, Address::uxtw(LogBytesPerInt))); ldr(y_idx, Address(rscratch1)); ror(y_idx, y_idx, 32); // convert big-endian to little-endian bind(L_multiply); // AArch64 has a multiply-accumulate instruction that we can't use // here because it has no way to process carries, so we have to use // separate add and adc instructions. Bah. umulh(rscratch1, x_xstart, y_idx); // x_xstart * y_idx -> rscratch1:product mul(product, x_xstart, y_idx); adds(product, product, carry); adc(carry, rscratch1, zr); // x_xstart * y_idx + carry -> carry:product subw(kdx, kdx, 2); ror(product, product, 32); // back to big-endian str(product, offsetted_address(z, kdx, Address::uxtw(LogBytesPerInt), 0, BytesPerLong)); b(L_first_loop); bind(L_one_y); ldrw(y_idx, Address(y, 0)); b(L_multiply); bind(L_one_x); ldrw(x_xstart, Address(x, 0)); b(L_first_loop); bind(L_first_loop_exit); } /** * Multiply 128 bit by 128. Unrolled inner loop. * */ void MacroAssembler::multiply_128_x_128_loop(Register y, Register z, Register carry, Register carry2, Register idx, Register jdx, Register yz_idx1, Register yz_idx2, Register tmp, Register tmp3, Register tmp4, Register tmp6, Register product_hi) { // jlong carry, x[], y[], z[]; // int kdx = ystart+1; // for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop // huge_128 tmp3 = (y[idx+1] * product_hi) + z[kdx+idx+1] + carry; // jlong carry2 = (jlong)(tmp3 >>> 64); // huge_128 tmp4 = (y[idx] * product_hi) + z[kdx+idx] + carry2; // carry = (jlong)(tmp4 >>> 64); // z[kdx+idx+1] = (jlong)tmp3; // z[kdx+idx] = (jlong)tmp4; // } // idx += 2; // if (idx > 0) { // yz_idx1 = (y[idx] * product_hi) + z[kdx+idx] + carry; // z[kdx+idx] = (jlong)yz_idx1; // carry = (jlong)(yz_idx1 >>> 64); // } // Label L_third_loop, L_third_loop_exit, L_post_third_loop_done; lsrw(jdx, idx, 2); bind(L_third_loop); subsw(jdx, jdx, 1); br(Assembler::MI, L_third_loop_exit); subw(idx, idx, 4); lea(rscratch1, Address(y, idx, Address::uxtw(LogBytesPerInt))); ldp(yz_idx2, yz_idx1, Address(rscratch1, 0)); lea(tmp6, Address(z, idx, Address::uxtw(LogBytesPerInt))); ror(yz_idx1, yz_idx1, 32); // convert big-endian to little-endian ror(yz_idx2, yz_idx2, 32); ldp(rscratch2, rscratch1, Address(tmp6, 0)); mul(tmp3, product_hi, yz_idx1); // yz_idx1 * product_hi -> tmp4:tmp3 umulh(tmp4, product_hi, yz_idx1); ror(rscratch1, rscratch1, 32); // convert big-endian to little-endian ror(rscratch2, rscratch2, 32); mul(tmp, product_hi, yz_idx2); // yz_idx2 * product_hi -> carry2:tmp umulh(carry2, product_hi, yz_idx2); // propagate sum of both multiplications into carry:tmp4:tmp3 adds(tmp3, tmp3, carry); adc(tmp4, tmp4, zr); adds(tmp3, tmp3, rscratch1); adcs(tmp4, tmp4, tmp); adc(carry, carry2, zr); adds(tmp4, tmp4, rscratch2); adc(carry, carry, zr); ror(tmp3, tmp3, 32); // convert little-endian to big-endian ror(tmp4, tmp4, 32); stp(tmp4, tmp3, Address(tmp6, 0)); b(L_third_loop); bind (L_third_loop_exit); andw (idx, idx, 0x3); cbz(idx, L_post_third_loop_done); Label L_check_1; subsw(idx, idx, 2); br(Assembler::MI, L_check_1); lea(rscratch1, Address(y, idx, Address::uxtw(LogBytesPerInt))); ldr(yz_idx1, Address(rscratch1, 0)); ror(yz_idx1, yz_idx1, 32); mul(tmp3, product_hi, yz_idx1); // yz_idx1 * product_hi -> tmp4:tmp3 umulh(tmp4, product_hi, yz_idx1); lea(rscratch1, Address(z, idx, Address::uxtw(LogBytesPerInt))); ldr(yz_idx2, Address(rscratch1, 0)); ror(yz_idx2, yz_idx2, 32); add2_with_carry(carry, tmp4, tmp3, carry, yz_idx2); ror(tmp3, tmp3, 32); str(tmp3, Address(rscratch1, 0)); bind (L_check_1); andw (idx, idx, 0x1); subsw(idx, idx, 1); br(Assembler::MI, L_post_third_loop_done); ldrw(tmp4, Address(y, idx, Address::uxtw(LogBytesPerInt))); mul(tmp3, tmp4, product_hi); // tmp4 * product_hi -> carry2:tmp3 umulh(carry2, tmp4, product_hi); ldrw(tmp4, Address(z, idx, Address::uxtw(LogBytesPerInt))); add2_with_carry(carry2, tmp3, tmp4, carry); strw(tmp3, Address(z, idx, Address::uxtw(LogBytesPerInt))); extr(carry, carry2, tmp3, 32); bind(L_post_third_loop_done); } /** * Code for BigInteger::multiplyToLen() instrinsic. * * r0: x * r1: xlen * r2: y * r3: ylen * r4: z * r5: zlen * r10: tmp1 * r11: tmp2 * r12: tmp3 * r13: tmp4 * r14: tmp5 * r15: tmp6 * r16: tmp7 * */ void MacroAssembler::multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z, Register zlen, Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register tmp6, Register product_hi) { assert_different_registers(x, xlen, y, ylen, z, zlen, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6); const Register idx = tmp1; const Register kdx = tmp2; const Register xstart = tmp3; const Register y_idx = tmp4; const Register carry = tmp5; const Register product = xlen; const Register x_xstart = zlen; // reuse register // First Loop. // // final static long LONG_MASK = 0xffffffffL; // int xstart = xlen - 1; // int ystart = ylen - 1; // long carry = 0; // for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) { // long product = (y[idx] & LONG_MASK) * (x[xstart] & LONG_MASK) + carry; // z[kdx] = (int)product; // carry = product >>> 32; // } // z[xstart] = (int)carry; // movw(idx, ylen); // idx = ylen; movw(kdx, zlen); // kdx = xlen+ylen; mov(carry, zr); // carry = 0; Label L_done; movw(xstart, xlen); subsw(xstart, xstart, 1); br(Assembler::MI, L_done); multiply_64_x_64_loop(x, xstart, x_xstart, y, y_idx, z, carry, product, idx, kdx); Label L_second_loop; cbzw(kdx, L_second_loop); Label L_carry; subw(kdx, kdx, 1); cbzw(kdx, L_carry); strw(carry, Address(z, kdx, Address::uxtw(LogBytesPerInt))); lsr(carry, carry, 32); subw(kdx, kdx, 1); bind(L_carry); strw(carry, Address(z, kdx, Address::uxtw(LogBytesPerInt))); // Second and third (nested) loops. // // for (int i = xstart-1; i >= 0; i--) { // Second loop // carry = 0; // for (int jdx=ystart, k=ystart+1+i; jdx >= 0; jdx--, k--) { // Third loop // long product = (y[jdx] & LONG_MASK) * (x[i] & LONG_MASK) + // (z[k] & LONG_MASK) + carry; // z[k] = (int)product; // carry = product >>> 32; // } // z[i] = (int)carry; // } // // i = xlen, j = tmp1, k = tmp2, carry = tmp5, x[i] = product_hi const Register jdx = tmp1; bind(L_second_loop); mov(carry, zr); // carry = 0; movw(jdx, ylen); // j = ystart+1 subsw(xstart, xstart, 1); // i = xstart-1; br(Assembler::MI, L_done); str(z, Address(pre(sp, -4 * wordSize))); Label L_last_x; lea(z, offsetted_address(z, xstart, Address::uxtw(LogBytesPerInt), 4, BytesPerInt)); // z = z + k - j subsw(xstart, xstart, 1); // i = xstart-1; br(Assembler::MI, L_last_x); lea(rscratch1, Address(x, xstart, Address::uxtw(LogBytesPerInt))); ldr(product_hi, Address(rscratch1)); ror(product_hi, product_hi, 32); // convert big-endian to little-endian Label L_third_loop_prologue; bind(L_third_loop_prologue); str(ylen, Address(sp, wordSize)); stp(x, xstart, Address(sp, 2 * wordSize)); multiply_128_x_128_loop(y, z, carry, x, jdx, ylen, product, tmp2, x_xstart, tmp3, tmp4, tmp6, product_hi); ldp(z, ylen, Address(post(sp, 2 * wordSize))); ldp(x, xlen, Address(post(sp, 2 * wordSize))); // copy old xstart -> xlen addw(tmp3, xlen, 1); strw(carry, Address(z, tmp3, Address::uxtw(LogBytesPerInt))); subsw(tmp3, tmp3, 1); br(Assembler::MI, L_done); lsr(carry, carry, 32); strw(carry, Address(z, tmp3, Address::uxtw(LogBytesPerInt))); b(L_second_loop); // Next infrequent code is moved outside loops. bind(L_last_x); ldrw(product_hi, Address(x, 0)); b(L_third_loop_prologue); bind(L_done); } // Code for BigInteger::mulAdd instrinsic // out = r0 // in = r1 // offset = r2 (already out.length-offset) // len = r3 // k = r4 // // pseudo code from java implementation: // carry = 0; // offset = out.length-offset - 1; // for (int j=len-1; j >= 0; j--) { // product = (in[j] & LONG_MASK) * kLong + (out[offset] & LONG_MASK) + carry; // out[offset--] = (int)product; // carry = product >>> 32; // } // return (int)carry; void MacroAssembler::mul_add(Register out, Register in, Register offset, Register len, Register k) { Label LOOP, END; // pre-loop cmp(len, zr); // cmp, not cbz/cbnz: to use condition twice => less branches csel(out, zr, out, Assembler::EQ); br(Assembler::EQ, END); add(in, in, len, LSL, 2); // in[j+1] address add(offset, out, offset, LSL, 2); // out[offset + 1] address mov(out, zr); // used to keep carry now BIND(LOOP); ldrw(rscratch1, Address(pre(in, -4))); madd(rscratch1, rscratch1, k, out); ldrw(rscratch2, Address(pre(offset, -4))); add(rscratch1, rscratch1, rscratch2); strw(rscratch1, Address(offset)); lsr(out, rscratch1, 32); subs(len, len, 1); br(Assembler::NE, LOOP); BIND(END); } /** * Emits code to update CRC-32 with a byte value according to constants in table * * @param [in,out]crc Register containing the crc. * @param [in]val Register containing the byte to fold into the CRC. * @param [in]table Register containing the table of crc constants. * * uint32_t crc; * val = crc_table[(val ^ crc) & 0xFF]; * crc = val ^ (crc >> 8); * */ void MacroAssembler::update_byte_crc32(Register crc, Register val, Register table) { eor(val, val, crc); andr(val, val, 0xff); ldrw(val, Address(table, val, Address::lsl(2))); eor(crc, val, crc, Assembler::LSR, 8); } /** * Emits code to update CRC-32 with a 32-bit value according to tables 0 to 3 * * @param [in,out]crc Register containing the crc. * @param [in]v Register containing the 32-bit to fold into the CRC. * @param [in]table0 Register containing table 0 of crc constants. * @param [in]table1 Register containing table 1 of crc constants. * @param [in]table2 Register containing table 2 of crc constants. * @param [in]table3 Register containing table 3 of crc constants. * * uint32_t crc; * v = crc ^ v * crc = table3[v&0xff]^table2[(v>>8)&0xff]^table1[(v>>16)&0xff]^table0[v>>24] * */ void MacroAssembler::update_word_crc32(Register crc, Register v, Register tmp, Register table0, Register table1, Register table2, Register table3, bool upper) { eor(v, crc, v, upper ? LSR:LSL, upper ? 32:0); uxtb(tmp, v); ldrw(crc, Address(table3, tmp, Address::lsl(2))); ubfx(tmp, v, 8, 8); ldrw(tmp, Address(table2, tmp, Address::lsl(2))); eor(crc, crc, tmp); ubfx(tmp, v, 16, 8); ldrw(tmp, Address(table1, tmp, Address::lsl(2))); eor(crc, crc, tmp); ubfx(tmp, v, 24, 8); ldrw(tmp, Address(table0, tmp, Address::lsl(2))); eor(crc, crc, tmp); } void MacroAssembler::kernel_crc32_using_crc32(Register crc, Register buf, Register len, Register tmp0, Register tmp1, Register tmp2, Register tmp3) { Label CRC_by64_loop, CRC_by4_loop, CRC_by1_loop, CRC_less64, CRC_by64_pre, CRC_by32_loop, CRC_less32, L_exit; assert_different_registers(crc, buf, len, tmp0, tmp1, tmp2, tmp3); mvnw(crc, crc); subs(len, len, 128); br(Assembler::GE, CRC_by64_pre); BIND(CRC_less64); adds(len, len, 128-32); br(Assembler::GE, CRC_by32_loop); BIND(CRC_less32); adds(len, len, 32-4); br(Assembler::GE, CRC_by4_loop); adds(len, len, 4); br(Assembler::GT, CRC_by1_loop); b(L_exit); BIND(CRC_by32_loop); ldp(tmp0, tmp1, Address(post(buf, 16))); subs(len, len, 32); crc32x(crc, crc, tmp0); ldr(tmp2, Address(post(buf, 8))); crc32x(crc, crc, tmp1); ldr(tmp3, Address(post(buf, 8))); crc32x(crc, crc, tmp2); crc32x(crc, crc, tmp3); br(Assembler::GE, CRC_by32_loop); cmn(len, 32); br(Assembler::NE, CRC_less32); b(L_exit); BIND(CRC_by4_loop); ldrw(tmp0, Address(post(buf, 4))); subs(len, len, 4); crc32w(crc, crc, tmp0); br(Assembler::GE, CRC_by4_loop); adds(len, len, 4); br(Assembler::LE, L_exit); BIND(CRC_by1_loop); ldrb(tmp0, Address(post(buf, 1))); subs(len, len, 1); crc32b(crc, crc, tmp0); br(Assembler::GT, CRC_by1_loop); b(L_exit); BIND(CRC_by64_pre); sub(buf, buf, 8); ldp(tmp0, tmp1, Address(buf, 8)); crc32x(crc, crc, tmp0); ldr(tmp2, Address(buf, 24)); crc32x(crc, crc, tmp1); ldr(tmp3, Address(buf, 32)); crc32x(crc, crc, tmp2); ldr(tmp0, Address(buf, 40)); crc32x(crc, crc, tmp3); ldr(tmp1, Address(buf, 48)); crc32x(crc, crc, tmp0); ldr(tmp2, Address(buf, 56)); crc32x(crc, crc, tmp1); ldr(tmp3, Address(pre(buf, 64))); b(CRC_by64_loop); align(CodeEntryAlignment); BIND(CRC_by64_loop); subs(len, len, 64); crc32x(crc, crc, tmp2); ldr(tmp0, Address(buf, 8)); crc32x(crc, crc, tmp3); ldr(tmp1, Address(buf, 16)); crc32x(crc, crc, tmp0); ldr(tmp2, Address(buf, 24)); crc32x(crc, crc, tmp1); ldr(tmp3, Address(buf, 32)); crc32x(crc, crc, tmp2); ldr(tmp0, Address(buf, 40)); crc32x(crc, crc, tmp3); ldr(tmp1, Address(buf, 48)); crc32x(crc, crc, tmp0); ldr(tmp2, Address(buf, 56)); crc32x(crc, crc, tmp1); ldr(tmp3, Address(pre(buf, 64))); br(Assembler::GE, CRC_by64_loop); // post-loop crc32x(crc, crc, tmp2); crc32x(crc, crc, tmp3); sub(len, len, 64); add(buf, buf, 8); cmn(len, 128); br(Assembler::NE, CRC_less64); BIND(L_exit); mvnw(crc, crc); } /** * @param crc register containing existing CRC (32-bit) * @param buf register pointing to input byte buffer (byte*) * @param len register containing number of bytes * @param table register that will contain address of CRC table * @param tmp scratch register */ void MacroAssembler::kernel_crc32(Register crc, Register buf, Register len, Register table0, Register table1, Register table2, Register table3, Register tmp, Register tmp2, Register tmp3) { Label L_by16, L_by16_loop, L_by4, L_by4_loop, L_by1, L_by1_loop, L_exit; unsigned long offset; if (UseCRC32) { kernel_crc32_using_crc32(crc, buf, len, table0, table1, table2, table3); return; } mvnw(crc, crc); adrp(table0, ExternalAddress(StubRoutines::crc_table_addr()), offset); if (offset) add(table0, table0, offset); add(table1, table0, 1*256*sizeof(juint)); add(table2, table0, 2*256*sizeof(juint)); add(table3, table0, 3*256*sizeof(juint)); if (UseNeon) { cmp(len, (u1)64); br(Assembler::LT, L_by16); eor(v16, T16B, v16, v16); Label L_fold; add(tmp, table0, 4*256*sizeof(juint)); // Point at the Neon constants ld1(v0, v1, T2D, post(buf, 32)); ld1r(v4, T2D, post(tmp, 8)); ld1r(v5, T2D, post(tmp, 8)); ld1r(v6, T2D, post(tmp, 8)); ld1r(v7, T2D, post(tmp, 8)); mov(v16, T4S, 0, crc); eor(v0, T16B, v0, v16); sub(len, len, 64); BIND(L_fold); pmull(v22, T8H, v0, v5, T8B); pmull(v20, T8H, v0, v7, T8B); pmull(v23, T8H, v0, v4, T8B); pmull(v21, T8H, v0, v6, T8B); pmull2(v18, T8H, v0, v5, T16B); pmull2(v16, T8H, v0, v7, T16B); pmull2(v19, T8H, v0, v4, T16B); pmull2(v17, T8H, v0, v6, T16B); uzp1(v24, T8H, v20, v22); uzp2(v25, T8H, v20, v22); eor(v20, T16B, v24, v25); uzp1(v26, T8H, v16, v18); uzp2(v27, T8H, v16, v18); eor(v16, T16B, v26, v27); ushll2(v22, T4S, v20, T8H, 8); ushll(v20, T4S, v20, T4H, 8); ushll2(v18, T4S, v16, T8H, 8); ushll(v16, T4S, v16, T4H, 8); eor(v22, T16B, v23, v22); eor(v18, T16B, v19, v18); eor(v20, T16B, v21, v20); eor(v16, T16B, v17, v16); uzp1(v17, T2D, v16, v20); uzp2(v21, T2D, v16, v20); eor(v17, T16B, v17, v21); ushll2(v20, T2D, v17, T4S, 16); ushll(v16, T2D, v17, T2S, 16); eor(v20, T16B, v20, v22); eor(v16, T16B, v16, v18); uzp1(v17, T2D, v20, v16); uzp2(v21, T2D, v20, v16); eor(v28, T16B, v17, v21); pmull(v22, T8H, v1, v5, T8B); pmull(v20, T8H, v1, v7, T8B); pmull(v23, T8H, v1, v4, T8B); pmull(v21, T8H, v1, v6, T8B); pmull2(v18, T8H, v1, v5, T16B); pmull2(v16, T8H, v1, v7, T16B); pmull2(v19, T8H, v1, v4, T16B); pmull2(v17, T8H, v1, v6, T16B); ld1(v0, v1, T2D, post(buf, 32)); uzp1(v24, T8H, v20, v22); uzp2(v25, T8H, v20, v22); eor(v20, T16B, v24, v25); uzp1(v26, T8H, v16, v18); uzp2(v27, T8H, v16, v18); eor(v16, T16B, v26, v27); ushll2(v22, T4S, v20, T8H, 8); ushll(v20, T4S, v20, T4H, 8); ushll2(v18, T4S, v16, T8H, 8); ushll(v16, T4S, v16, T4H, 8); eor(v22, T16B, v23, v22); eor(v18, T16B, v19, v18); eor(v20, T16B, v21, v20); eor(v16, T16B, v17, v16); uzp1(v17, T2D, v16, v20); uzp2(v21, T2D, v16, v20); eor(v16, T16B, v17, v21); ushll2(v20, T2D, v16, T4S, 16); ushll(v16, T2D, v16, T2S, 16); eor(v20, T16B, v22, v20); eor(v16, T16B, v16, v18); uzp1(v17, T2D, v20, v16); uzp2(v21, T2D, v20, v16); eor(v20, T16B, v17, v21); shl(v16, T2D, v28, 1); shl(v17, T2D, v20, 1); eor(v0, T16B, v0, v16); eor(v1, T16B, v1, v17); subs(len, len, 32); br(Assembler::GE, L_fold); mov(crc, 0); mov(tmp, v0, T1D, 0); update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false); update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true); mov(tmp, v0, T1D, 1); update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false); update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true); mov(tmp, v1, T1D, 0); update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false); update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true); mov(tmp, v1, T1D, 1); update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false); update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true); add(len, len, 32); } BIND(L_by16); subs(len, len, 16); br(Assembler::GE, L_by16_loop); adds(len, len, 16-4); br(Assembler::GE, L_by4_loop); adds(len, len, 4); br(Assembler::GT, L_by1_loop); b(L_exit); BIND(L_by4_loop); ldrw(tmp, Address(post(buf, 4))); update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3); subs(len, len, 4); br(Assembler::GE, L_by4_loop); adds(len, len, 4); br(Assembler::LE, L_exit); BIND(L_by1_loop); subs(len, len, 1); ldrb(tmp, Address(post(buf, 1))); update_byte_crc32(crc, tmp, table0); br(Assembler::GT, L_by1_loop); b(L_exit); align(CodeEntryAlignment); BIND(L_by16_loop); subs(len, len, 16); ldp(tmp, tmp3, Address(post(buf, 16))); update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false); update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true); update_word_crc32(crc, tmp3, tmp2, table0, table1, table2, table3, false); update_word_crc32(crc, tmp3, tmp2, table0, table1, table2, table3, true); br(Assembler::GE, L_by16_loop); adds(len, len, 16-4); br(Assembler::GE, L_by4_loop); adds(len, len, 4); br(Assembler::GT, L_by1_loop); BIND(L_exit); mvnw(crc, crc); } void MacroAssembler::kernel_crc32c_using_crc32c(Register crc, Register buf, Register len, Register tmp0, Register tmp1, Register tmp2, Register tmp3) { Label CRC_by64_loop, CRC_by4_loop, CRC_by1_loop, CRC_less64, CRC_by64_pre, CRC_by32_loop, CRC_less32, L_exit; assert_different_registers(crc, buf, len, tmp0, tmp1, tmp2, tmp3); subs(len, len, 128); br(Assembler::GE, CRC_by64_pre); BIND(CRC_less64); adds(len, len, 128-32); br(Assembler::GE, CRC_by32_loop); BIND(CRC_less32); adds(len, len, 32-4); br(Assembler::GE, CRC_by4_loop); adds(len, len, 4); br(Assembler::GT, CRC_by1_loop); b(L_exit); BIND(CRC_by32_loop); ldp(tmp0, tmp1, Address(post(buf, 16))); subs(len, len, 32); crc32cx(crc, crc, tmp0); ldr(tmp2, Address(post(buf, 8))); crc32cx(crc, crc, tmp1); ldr(tmp3, Address(post(buf, 8))); crc32cx(crc, crc, tmp2); crc32cx(crc, crc, tmp3); br(Assembler::GE, CRC_by32_loop); cmn(len, 32); br(Assembler::NE, CRC_less32); b(L_exit); BIND(CRC_by4_loop); ldrw(tmp0, Address(post(buf, 4))); subs(len, len, 4); crc32cw(crc, crc, tmp0); br(Assembler::GE, CRC_by4_loop); adds(len, len, 4); br(Assembler::LE, L_exit); BIND(CRC_by1_loop); ldrb(tmp0, Address(post(buf, 1))); subs(len, len, 1); crc32cb(crc, crc, tmp0); br(Assembler::GT, CRC_by1_loop); b(L_exit); BIND(CRC_by64_pre); sub(buf, buf, 8); ldp(tmp0, tmp1, Address(buf, 8)); crc32cx(crc, crc, tmp0); ldr(tmp2, Address(buf, 24)); crc32cx(crc, crc, tmp1); ldr(tmp3, Address(buf, 32)); crc32cx(crc, crc, tmp2); ldr(tmp0, Address(buf, 40)); crc32cx(crc, crc, tmp3); ldr(tmp1, Address(buf, 48)); crc32cx(crc, crc, tmp0); ldr(tmp2, Address(buf, 56)); crc32cx(crc, crc, tmp1); ldr(tmp3, Address(pre(buf, 64))); b(CRC_by64_loop); align(CodeEntryAlignment); BIND(CRC_by64_loop); subs(len, len, 64); crc32cx(crc, crc, tmp2); ldr(tmp0, Address(buf, 8)); crc32cx(crc, crc, tmp3); ldr(tmp1, Address(buf, 16)); crc32cx(crc, crc, tmp0); ldr(tmp2, Address(buf, 24)); crc32cx(crc, crc, tmp1); ldr(tmp3, Address(buf, 32)); crc32cx(crc, crc, tmp2); ldr(tmp0, Address(buf, 40)); crc32cx(crc, crc, tmp3); ldr(tmp1, Address(buf, 48)); crc32cx(crc, crc, tmp0); ldr(tmp2, Address(buf, 56)); crc32cx(crc, crc, tmp1); ldr(tmp3, Address(pre(buf, 64))); br(Assembler::GE, CRC_by64_loop); // post-loop crc32cx(crc, crc, tmp2); crc32cx(crc, crc, tmp3); sub(len, len, 64); add(buf, buf, 8); cmn(len, 128); br(Assembler::NE, CRC_less64); BIND(L_exit); } /** * @param crc register containing existing CRC (32-bit) * @param buf register pointing to input byte buffer (byte*) * @param len register containing number of bytes * @param table register that will contain address of CRC table * @param tmp scratch register */ void MacroAssembler::kernel_crc32c(Register crc, Register buf, Register len, Register table0, Register table1, Register table2, Register table3, Register tmp, Register tmp2, Register tmp3) { kernel_crc32c_using_crc32c(crc, buf, len, table0, table1, table2, table3); } SkipIfEqual::SkipIfEqual( MacroAssembler* masm, const bool* flag_addr, bool value) { _masm = masm; unsigned long offset; _masm->adrp(rscratch1, ExternalAddress((address)flag_addr), offset); _masm->ldrb(rscratch1, Address(rscratch1, offset)); _masm->cbzw(rscratch1, _label); } SkipIfEqual::~SkipIfEqual() { _masm->bind(_label); } void MacroAssembler::addptr(const Address &dst, int32_t src) { Address adr; switch(dst.getMode()) { case Address::base_plus_offset: // This is the expected mode, although we allow all the other // forms below. adr = form_address(rscratch2, dst.base(), dst.offset(), LogBytesPerWord); break; default: lea(rscratch2, dst); adr = Address(rscratch2); break; } ldr(rscratch1, adr); add(rscratch1, rscratch1, src); str(rscratch1, adr); } void MacroAssembler::cmpptr(Register src1, Address src2) { unsigned long offset; adrp(rscratch1, src2, offset); ldr(rscratch1, Address(rscratch1, offset)); cmp(src1, rscratch1); } void MacroAssembler::cmpoop(Register obj1, Register obj2) { BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler(); bs->obj_equals(this, obj1, obj2); } void MacroAssembler::load_method_holder_cld(Register rresult, Register rmethod) { load_method_holder(rresult, rmethod); ldr(rresult, Address(rresult, InstanceKlass::class_loader_data_offset())); } void MacroAssembler::load_method_holder(Register holder, Register method) { ldr(holder, Address(method, Method::const_offset())); // ConstMethod* ldr(holder, Address(holder, ConstMethod::constants_offset())); // ConstantPool* ldr(holder, Address(holder, ConstantPool::pool_holder_offset_in_bytes())); // InstanceKlass* } void MacroAssembler::load_klass(Register dst, Register src) { if (UseCompressedClassPointers) { ldrw(dst, Address(src, oopDesc::klass_offset_in_bytes())); decode_klass_not_null(dst); } else { ldr(dst, Address(src, oopDesc::klass_offset_in_bytes())); } } // ((OopHandle)result).resolve(); void MacroAssembler::resolve_oop_handle(Register result, Register tmp) { // OopHandle::resolve is an indirection. access_load_at(T_OBJECT, IN_NATIVE, result, Address(result, 0), tmp, noreg); } // ((WeakHandle)result).resolve(); void MacroAssembler::resolve_weak_handle(Register rresult, Register rtmp) { assert_different_registers(rresult, rtmp); Label resolved; // A null weak handle resolves to null. cbz(rresult, resolved); // Only 64 bit platforms support GCs that require a tmp register // Only IN_HEAP loads require a thread_tmp register // WeakHandle::resolve is an indirection like jweak. access_load_at(T_OBJECT, IN_NATIVE | ON_PHANTOM_OOP_REF, rresult, Address(rresult), rtmp, /*tmp_thread*/noreg); bind(resolved); } void MacroAssembler::load_mirror(Register dst, Register method, Register tmp) { const int mirror_offset = in_bytes(Klass::java_mirror_offset()); ldr(dst, Address(rmethod, Method::const_offset())); ldr(dst, Address(dst, ConstMethod::constants_offset())); ldr(dst, Address(dst, ConstantPool::pool_holder_offset_in_bytes())); ldr(dst, Address(dst, mirror_offset)); resolve_oop_handle(dst, tmp); } void MacroAssembler::cmp_klass(Register oop, Register trial_klass, Register tmp) { if (UseCompressedClassPointers) { ldrw(tmp, Address(oop, oopDesc::klass_offset_in_bytes())); if (CompressedKlassPointers::base() == NULL) { cmp(trial_klass, tmp, LSL, CompressedKlassPointers::shift()); return; } else if (((uint64_t)CompressedKlassPointers::base() & 0xffffffff) == 0 && CompressedKlassPointers::shift() == 0) { // Only the bottom 32 bits matter cmpw(trial_klass, tmp); return; } decode_klass_not_null(tmp); } else { ldr(tmp, Address(oop, oopDesc::klass_offset_in_bytes())); } cmp(trial_klass, tmp); } void MacroAssembler::load_prototype_header(Register dst, Register src) { load_klass(dst, src); ldr(dst, Address(dst, Klass::prototype_header_offset())); } void MacroAssembler::store_klass(Register dst, Register src) { // FIXME: Should this be a store release? concurrent gcs assumes // klass length is valid if klass field is not null. if (UseCompressedClassPointers) { encode_klass_not_null(src); strw(src, Address(dst, oopDesc::klass_offset_in_bytes())); } else { str(src, Address(dst, oopDesc::klass_offset_in_bytes())); } } void MacroAssembler::store_klass_gap(Register dst, Register src) { if (UseCompressedClassPointers) { // Store to klass gap in destination strw(src, Address(dst, oopDesc::klass_gap_offset_in_bytes())); } } // Algorithm must match CompressedOops::encode. void MacroAssembler::encode_heap_oop(Register d, Register s) { #ifdef ASSERT verify_heapbase("MacroAssembler::encode_heap_oop: heap base corrupted?"); #endif verify_oop(s, "broken oop in encode_heap_oop"); if (CompressedOops::base() == NULL) { if (CompressedOops::shift() != 0) { assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); lsr(d, s, LogMinObjAlignmentInBytes); } else { mov(d, s); } } else { subs(d, s, rheapbase); csel(d, d, zr, Assembler::HS); lsr(d, d, LogMinObjAlignmentInBytes); /* Old algorithm: is this any worse? Label nonnull; cbnz(r, nonnull); sub(r, r, rheapbase); bind(nonnull); lsr(r, r, LogMinObjAlignmentInBytes); */ } } void MacroAssembler::encode_heap_oop_not_null(Register r) { #ifdef ASSERT verify_heapbase("MacroAssembler::encode_heap_oop_not_null: heap base corrupted?"); if (CheckCompressedOops) { Label ok; cbnz(r, ok); stop("null oop passed to encode_heap_oop_not_null"); bind(ok); } #endif verify_oop(r, "broken oop in encode_heap_oop_not_null"); if (CompressedOops::base() != NULL) { sub(r, r, rheapbase); } if (CompressedOops::shift() != 0) { assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); lsr(r, r, LogMinObjAlignmentInBytes); } } void MacroAssembler::encode_heap_oop_not_null(Register dst, Register src) { #ifdef ASSERT verify_heapbase("MacroAssembler::encode_heap_oop_not_null2: heap base corrupted?"); if (CheckCompressedOops) { Label ok; cbnz(src, ok); stop("null oop passed to encode_heap_oop_not_null2"); bind(ok); } #endif verify_oop(src, "broken oop in encode_heap_oop_not_null2"); Register data = src; if (CompressedOops::base() != NULL) { sub(dst, src, rheapbase); data = dst; } if (CompressedOops::shift() != 0) { assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); lsr(dst, data, LogMinObjAlignmentInBytes); data = dst; } if (data == src) mov(dst, src); } void MacroAssembler::decode_heap_oop(Register d, Register s) { #ifdef ASSERT verify_heapbase("MacroAssembler::decode_heap_oop: heap base corrupted?"); #endif if (CompressedOops::base() == NULL) { if (CompressedOops::shift() != 0 || d != s) { lsl(d, s, CompressedOops::shift()); } } else { Label done; if (d != s) mov(d, s); cbz(s, done); add(d, rheapbase, s, Assembler::LSL, LogMinObjAlignmentInBytes); bind(done); } verify_oop(d, "broken oop in decode_heap_oop"); } void MacroAssembler::decode_heap_oop_not_null(Register r) { assert (UseCompressedOops, "should only be used for compressed headers"); assert (Universe::heap() != NULL, "java heap should be initialized"); // Cannot assert, unverified entry point counts instructions (see .ad file) // vtableStubs also counts instructions in pd_code_size_limit. // Also do not verify_oop as this is called by verify_oop. if (CompressedOops::shift() != 0) { assert(LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); if (CompressedOops::base() != NULL) { add(r, rheapbase, r, Assembler::LSL, LogMinObjAlignmentInBytes); } else { add(r, zr, r, Assembler::LSL, LogMinObjAlignmentInBytes); } } else { assert (CompressedOops::base() == NULL, "sanity"); } } void MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) { assert (UseCompressedOops, "should only be used for compressed headers"); assert (Universe::heap() != NULL, "java heap should be initialized"); // Cannot assert, unverified entry point counts instructions (see .ad file) // vtableStubs also counts instructions in pd_code_size_limit. // Also do not verify_oop as this is called by verify_oop. if (CompressedOops::shift() != 0) { assert(LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); if (CompressedOops::base() != NULL) { add(dst, rheapbase, src, Assembler::LSL, LogMinObjAlignmentInBytes); } else { add(dst, zr, src, Assembler::LSL, LogMinObjAlignmentInBytes); } } else { assert (CompressedOops::base() == NULL, "sanity"); if (dst != src) { mov(dst, src); } } } MacroAssembler::KlassDecodeMode MacroAssembler::_klass_decode_mode(KlassDecodeNone); MacroAssembler::KlassDecodeMode MacroAssembler::klass_decode_mode() { assert(UseCompressedClassPointers, "not using compressed class pointers"); assert(Metaspace::initialized(), "metaspace not initialized yet"); if (_klass_decode_mode != KlassDecodeNone) { return _klass_decode_mode; } assert(LogKlassAlignmentInBytes == CompressedKlassPointers::shift() || 0 == CompressedKlassPointers::shift(), "decode alg wrong"); if (CompressedKlassPointers::base() == NULL) { return (_klass_decode_mode = KlassDecodeZero); } if (operand_valid_for_logical_immediate( /*is32*/false, (uint64_t)CompressedKlassPointers::base())) { const uint64_t range_mask = (1UL << log2_intptr(CompressedKlassPointers::range())) - 1; if (((uint64_t)CompressedKlassPointers::base() & range_mask) == 0) { return (_klass_decode_mode = KlassDecodeXor); } } const uint64_t shifted_base = (uint64_t)CompressedKlassPointers::base() >> CompressedKlassPointers::shift(); guarantee((shifted_base & 0xffff0000ffffffff) == 0, "compressed class base bad alignment"); return (_klass_decode_mode = KlassDecodeMovk); } void MacroAssembler::encode_klass_not_null(Register dst, Register src) { switch (klass_decode_mode()) { case KlassDecodeZero: if (CompressedKlassPointers::shift() != 0) { lsr(dst, src, LogKlassAlignmentInBytes); } else { if (dst != src) mov(dst, src); } break; case KlassDecodeXor: if (CompressedKlassPointers::shift() != 0) { eor(dst, src, (uint64_t)CompressedKlassPointers::base()); lsr(dst, dst, LogKlassAlignmentInBytes); } else { eor(dst, src, (uint64_t)CompressedKlassPointers::base()); } break; case KlassDecodeMovk: if (CompressedKlassPointers::shift() != 0) { ubfx(dst, src, LogKlassAlignmentInBytes, 32); } else { movw(dst, src); } break; case KlassDecodeNone: ShouldNotReachHere(); break; } } void MacroAssembler::encode_klass_not_null(Register r) { encode_klass_not_null(r, r); } void MacroAssembler::decode_klass_not_null(Register dst, Register src) { assert (UseCompressedClassPointers, "should only be used for compressed headers"); switch (klass_decode_mode()) { case KlassDecodeZero: if (CompressedKlassPointers::shift() != 0) { lsl(dst, src, LogKlassAlignmentInBytes); } else { if (dst != src) mov(dst, src); } break; case KlassDecodeXor: if (CompressedKlassPointers::shift() != 0) { lsl(dst, src, LogKlassAlignmentInBytes); eor(dst, dst, (uint64_t)CompressedKlassPointers::base()); } else { eor(dst, src, (uint64_t)CompressedKlassPointers::base()); } break; case KlassDecodeMovk: { const uint64_t shifted_base = (uint64_t)CompressedKlassPointers::base() >> CompressedKlassPointers::shift(); if (dst != src) movw(dst, src); movk(dst, shifted_base >> 32, 32); if (CompressedKlassPointers::shift() != 0) { lsl(dst, dst, LogKlassAlignmentInBytes); } break; } case KlassDecodeNone: ShouldNotReachHere(); break; } } void MacroAssembler::decode_klass_not_null(Register r) { decode_klass_not_null(r, r); } void MacroAssembler::set_narrow_oop(Register dst, jobject obj) { #ifdef ASSERT { ThreadInVMfromUnknown tiv; assert (UseCompressedOops, "should only be used for compressed oops"); assert (Universe::heap() != NULL, "java heap should be initialized"); assert (oop_recorder() != NULL, "this assembler needs an OopRecorder"); assert(Universe::heap()->is_in(JNIHandles::resolve(obj)), "should be real oop"); } #endif int oop_index = oop_recorder()->find_index(obj); InstructionMark im(this); RelocationHolder rspec = oop_Relocation::spec(oop_index); code_section()->relocate(inst_mark(), rspec); movz(dst, 0xDEAD, 16); movk(dst, 0xBEEF); } void MacroAssembler::set_narrow_klass(Register dst, Klass* k) { assert (UseCompressedClassPointers, "should only be used for compressed headers"); assert (oop_recorder() != NULL, "this assembler needs an OopRecorder"); int index = oop_recorder()->find_index(k); assert(! Universe::heap()->is_in(k), "should not be an oop"); InstructionMark im(this); RelocationHolder rspec = metadata_Relocation::spec(index); code_section()->relocate(inst_mark(), rspec); narrowKlass nk = CompressedKlassPointers::encode(k); movz(dst, (nk >> 16), 16); movk(dst, nk & 0xffff); } void MacroAssembler::access_load_at(BasicType type, DecoratorSet decorators, Register dst, Address src, Register tmp1, Register thread_tmp) { BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler(); decorators = AccessInternal::decorator_fixup(decorators); bool as_raw = (decorators & AS_RAW) != 0; if (as_raw) { bs->BarrierSetAssembler::load_at(this, decorators, type, dst, src, tmp1, thread_tmp); } else { bs->load_at(this, decorators, type, dst, src, tmp1, thread_tmp); } } void MacroAssembler::access_store_at(BasicType type, DecoratorSet decorators, Address dst, Register src, Register tmp1, Register thread_tmp) { BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler(); decorators = AccessInternal::decorator_fixup(decorators); bool as_raw = (decorators & AS_RAW) != 0; if (as_raw) { bs->BarrierSetAssembler::store_at(this, decorators, type, dst, src, tmp1, thread_tmp); } else { bs->store_at(this, decorators, type, dst, src, tmp1, thread_tmp); } } void MacroAssembler::resolve(DecoratorSet decorators, Register obj) { // Use stronger ACCESS_WRITE|ACCESS_READ by default. if ((decorators & (ACCESS_READ | ACCESS_WRITE)) == 0) { decorators |= ACCESS_READ | ACCESS_WRITE; } BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler(); return bs->resolve(this, decorators, obj); } void MacroAssembler::load_heap_oop(Register dst, Address src, Register tmp1, Register thread_tmp, DecoratorSet decorators) { access_load_at(T_OBJECT, IN_HEAP | decorators, dst, src, tmp1, thread_tmp); } void MacroAssembler::load_heap_oop_not_null(Register dst, Address src, Register tmp1, Register thread_tmp, DecoratorSet decorators) { access_load_at(T_OBJECT, IN_HEAP | IS_NOT_NULL | decorators, dst, src, tmp1, thread_tmp); } void MacroAssembler::store_heap_oop(Address dst, Register src, Register tmp1, Register thread_tmp, DecoratorSet decorators) { access_store_at(T_OBJECT, IN_HEAP | decorators, dst, src, tmp1, thread_tmp); } // Used for storing NULLs. void MacroAssembler::store_heap_oop_null(Address dst) { access_store_at(T_OBJECT, IN_HEAP, dst, noreg, noreg, noreg); } Address MacroAssembler::allocate_metadata_address(Metadata* obj) { assert(oop_recorder() != NULL, "this assembler needs a Recorder"); int index = oop_recorder()->allocate_metadata_index(obj); RelocationHolder rspec = metadata_Relocation::spec(index); return Address((address)obj, rspec); } // Move an oop into a register. immediate is true if we want // immediate instructions and nmethod entry barriers are not enabled. // i.e. we are not going to patch this instruction while the code is being // executed by another thread. void MacroAssembler::movoop(Register dst, jobject obj, bool immediate) { int oop_index; if (obj == NULL) { oop_index = oop_recorder()->allocate_oop_index(obj); } else { #ifdef ASSERT { ThreadInVMfromUnknown tiv; assert(Universe::heap()->is_in(JNIHandles::resolve(obj)), "should be real oop"); } #endif oop_index = oop_recorder()->find_index(obj); } RelocationHolder rspec = oop_Relocation::spec(oop_index); // nmethod entry barrier necessitate using the constant pool. They have to be // ordered with respected to oop accesses. // Using immediate literals would necessitate ISBs. if (BarrierSet::barrier_set()->barrier_set_nmethod() != NULL || !immediate) { address dummy = address(uintptr_t(pc()) & -wordSize); // A nearby aligned address ldr_constant(dst, Address(dummy, rspec)); } else mov(dst, Address((address)obj, rspec)); } // Move a metadata address into a register. void MacroAssembler::mov_metadata(Register dst, Metadata* obj) { int oop_index; if (obj == NULL) { oop_index = oop_recorder()->allocate_metadata_index(obj); } else { oop_index = oop_recorder()->find_index(obj); } RelocationHolder rspec = metadata_Relocation::spec(oop_index); mov(dst, Address((address)obj, rspec)); } Address MacroAssembler::constant_oop_address(jobject obj) { #ifdef ASSERT { ThreadInVMfromUnknown tiv; assert(oop_recorder() != NULL, "this assembler needs an OopRecorder"); assert(Universe::heap()->is_in(JNIHandles::resolve(obj)), "not an oop"); } #endif int oop_index = oop_recorder()->find_index(obj); return Address((address)obj, oop_Relocation::spec(oop_index)); } // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes. void MacroAssembler::tlab_allocate(Register obj, Register var_size_in_bytes, int con_size_in_bytes, Register t1, Register t2, Label& slow_case) { BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler(); bs->tlab_allocate(this, obj, var_size_in_bytes, con_size_in_bytes, t1, t2, slow_case); } // Defines obj, preserves var_size_in_bytes void MacroAssembler::eden_allocate(Register obj, Register var_size_in_bytes, int con_size_in_bytes, Register t1, Label& slow_case) { BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler(); bs->eden_allocate(this, obj, var_size_in_bytes, con_size_in_bytes, t1, slow_case); } // Zero words; len is in bytes // Destroys all registers except addr // len must be a nonzero multiple of wordSize void MacroAssembler::zero_memory(Register addr, Register len, Register t1) { assert_different_registers(addr, len, t1, rscratch1, rscratch2); #ifdef ASSERT { Label L; tst(len, BytesPerWord - 1); br(Assembler::EQ, L); stop("len is not a multiple of BytesPerWord"); bind(L); } #endif #ifndef PRODUCT block_comment("zero memory"); #endif Label loop; Label entry; // Algorithm: // // scratch1 = cnt & 7; // cnt -= scratch1; // p += scratch1; // switch (scratch1) { // do { // cnt -= 8; // p[-8] = 0; // case 7: // p[-7] = 0; // case 6: // p[-6] = 0; // // ... // case 1: // p[-1] = 0; // case 0: // p += 8; // } while (cnt); // } const int unroll = 8; // Number of str(zr) instructions we'll unroll lsr(len, len, LogBytesPerWord); andr(rscratch1, len, unroll - 1); // tmp1 = cnt % unroll sub(len, len, rscratch1); // cnt -= unroll // t1 always points to the end of the region we're about to zero add(t1, addr, rscratch1, Assembler::LSL, LogBytesPerWord); adr(rscratch2, entry); sub(rscratch2, rscratch2, rscratch1, Assembler::LSL, 2); br(rscratch2); bind(loop); sub(len, len, unroll); for (int i = -unroll; i < 0; i++) Assembler::str(zr, Address(t1, i * wordSize)); bind(entry); add(t1, t1, unroll * wordSize); cbnz(len, loop); } void MacroAssembler::verify_tlab() { #ifdef ASSERT if (UseTLAB && VerifyOops) { Label next, ok; stp(rscratch2, rscratch1, Address(pre(sp, -16))); ldr(rscratch2, Address(rthread, in_bytes(JavaThread::tlab_top_offset()))); ldr(rscratch1, Address(rthread, in_bytes(JavaThread::tlab_start_offset()))); cmp(rscratch2, rscratch1); br(Assembler::HS, next); STOP("assert(top >= start)"); should_not_reach_here(); bind(next); ldr(rscratch2, Address(rthread, in_bytes(JavaThread::tlab_end_offset()))); ldr(rscratch1, Address(rthread, in_bytes(JavaThread::tlab_top_offset()))); cmp(rscratch2, rscratch1); br(Assembler::HS, ok); STOP("assert(top <= end)"); should_not_reach_here(); bind(ok); ldp(rscratch2, rscratch1, Address(post(sp, 16))); } #endif } // Writes to stack successive pages until offset reached to check for // stack overflow + shadow pages. This clobbers tmp. void MacroAssembler::bang_stack_size(Register size, Register tmp) { assert_different_registers(tmp, size, rscratch1); mov(tmp, sp); // Bang stack for total size given plus shadow page size. // Bang one page at a time because large size can bang beyond yellow and // red zones. Label loop; mov(rscratch1, os::vm_page_size()); bind(loop); lea(tmp, Address(tmp, -os::vm_page_size())); subsw(size, size, rscratch1); str(size, Address(tmp)); br(Assembler::GT, loop); // Bang down shadow pages too. // At this point, (tmp-0) is the last address touched, so don't // touch it again. (It was touched as (tmp-pagesize) but then tmp // was post-decremented.) Skip this address by starting at i=1, and // touch a few more pages below. N.B. It is important to touch all // the way down to and including i=StackShadowPages. for (int i = 0; i < (int)(JavaThread::stack_shadow_zone_size() / os::vm_page_size()) - 1; i++) { // this could be any sized move but this is can be a debugging crumb // so the bigger the better. lea(tmp, Address(tmp, -os::vm_page_size())); str(size, Address(tmp)); } } // Move the address of the polling page into dest. void MacroAssembler::get_polling_page(Register dest, relocInfo::relocType rtype) { ldr(dest, Address(rthread, Thread::polling_page_offset())); } // Move the address of the polling page into r, then read the polling // page. address MacroAssembler::fetch_and_read_polling_page(Register r, relocInfo::relocType rtype) { get_polling_page(r, rtype); return read_polling_page(r, rtype); } // Read the polling page. The address of the polling page must // already be in r. address MacroAssembler::read_polling_page(Register r, relocInfo::relocType rtype) { InstructionMark im(this); code_section()->relocate(inst_mark(), rtype); ldrw(zr, Address(r, 0)); return inst_mark(); } void MacroAssembler::adrp(Register reg1, const Address &dest, unsigned long &byte_offset) { relocInfo::relocType rtype = dest.rspec().reloc()->type(); unsigned long low_page = (unsigned long)CodeCache::low_bound() >> 12; unsigned long high_page = (unsigned long)(CodeCache::high_bound()-1) >> 12; unsigned long dest_page = (unsigned long)dest.target() >> 12; long offset_low = dest_page - low_page; long offset_high = dest_page - high_page; assert(is_valid_AArch64_address(dest.target()), "bad address"); assert(dest.getMode() == Address::literal, "ADRP must be applied to a literal address"); InstructionMark im(this); code_section()->relocate(inst_mark(), dest.rspec()); // 8143067: Ensure that the adrp can reach the dest from anywhere within // the code cache so that if it is relocated we know it will still reach if (offset_high >= -(1<<20) && offset_low < (1<<20)) { _adrp(reg1, dest.target()); } else { unsigned long target = (unsigned long)dest.target(); unsigned long adrp_target = (target & 0xffffffffUL) | ((unsigned long)pc() & 0xffff00000000UL); _adrp(reg1, (address)adrp_target); movk(reg1, target >> 32, 32); } byte_offset = (unsigned long)dest.target() & 0xfff; } void MacroAssembler::load_byte_map_base(Register reg) { CardTable::CardValue* byte_map_base = ((CardTableBarrierSet*)(BarrierSet::barrier_set()))->card_table()->byte_map_base(); if (is_valid_AArch64_address((address)byte_map_base)) { // Strictly speaking the byte_map_base isn't an address at all, // and it might even be negative. unsigned long offset; adrp(reg, ExternalAddress((address)byte_map_base), offset); // We expect offset to be zero with most collectors. if (offset != 0) { add(reg, reg, offset); } } else { mov(reg, (uint64_t)byte_map_base); } } void MacroAssembler::build_frame(int framesize) { assert(framesize > 0, "framesize must be > 0"); if (framesize < ((1 << 9) + 2 * wordSize)) { sub(sp, sp, framesize); stp(rfp, lr, Address(sp, framesize - 2 * wordSize)); if (PreserveFramePointer) add(rfp, sp, framesize - 2 * wordSize); } else { stp(rfp, lr, Address(pre(sp, -2 * wordSize))); if (PreserveFramePointer) mov(rfp, sp); if (framesize < ((1 << 12) + 2 * wordSize)) sub(sp, sp, framesize - 2 * wordSize); else { mov(rscratch1, framesize - 2 * wordSize); sub(sp, sp, rscratch1); } } } void MacroAssembler::remove_frame(int framesize) { assert(framesize > 0, "framesize must be > 0"); if (framesize < ((1 << 9) + 2 * wordSize)) { ldp(rfp, lr, Address(sp, framesize - 2 * wordSize)); add(sp, sp, framesize); } else { if (framesize < ((1 << 12) + 2 * wordSize)) add(sp, sp, framesize - 2 * wordSize); else { mov(rscratch1, framesize - 2 * wordSize); add(sp, sp, rscratch1); } ldp(rfp, lr, Address(post(sp, 2 * wordSize))); } } // This method checks if provided byte array contains byte with highest bit set. void MacroAssembler::has_negatives(Register ary1, Register len, Register result) { // Simple and most common case of aligned small array which is not at the // end of memory page is placed here. All other cases are in stub. Label LOOP, END, STUB, STUB_LONG, SET_RESULT, DONE; const uint64_t UPPER_BIT_MASK=0x8080808080808080; assert_different_registers(ary1, len, result); cmpw(len, 0); br(LE, SET_RESULT); cmpw(len, 4 * wordSize); br(GE, STUB_LONG); // size > 32 then go to stub int shift = 64 - exact_log2(os::vm_page_size()); lsl(rscratch1, ary1, shift); mov(rscratch2, (size_t)(4 * wordSize) << shift); adds(rscratch2, rscratch1, rscratch2); // At end of page? br(CS, STUB); // at the end of page then go to stub subs(len, len, wordSize); br(LT, END); BIND(LOOP); ldr(rscratch1, Address(post(ary1, wordSize))); tst(rscratch1, UPPER_BIT_MASK); br(NE, SET_RESULT); subs(len, len, wordSize); br(GE, LOOP); cmpw(len, -wordSize); br(EQ, SET_RESULT); BIND(END); ldr(result, Address(ary1)); sub(len, zr, len, LSL, 3); // LSL 3 is to get bits from bytes lslv(result, result, len); tst(result, UPPER_BIT_MASK); b(SET_RESULT); BIND(STUB); RuntimeAddress has_neg = RuntimeAddress(StubRoutines::aarch64::has_negatives()); assert(has_neg.target() != NULL, "has_negatives stub has not been generated"); trampoline_call(has_neg); b(DONE); BIND(STUB_LONG); RuntimeAddress has_neg_long = RuntimeAddress( StubRoutines::aarch64::has_negatives_long()); assert(has_neg_long.target() != NULL, "has_negatives stub has not been generated"); trampoline_call(has_neg_long); b(DONE); BIND(SET_RESULT); cset(result, NE); // set true or false BIND(DONE); } void MacroAssembler::arrays_equals(Register a1, Register a2, Register tmp3, Register tmp4, Register tmp5, Register result, Register cnt1, int elem_size) { Label DONE, SAME; Register tmp1 = rscratch1; Register tmp2 = rscratch2; Register cnt2 = tmp2; // cnt2 only used in array length compare int elem_per_word = wordSize/elem_size; int log_elem_size = exact_log2(elem_size); int length_offset = arrayOopDesc::length_offset_in_bytes(); int base_offset = arrayOopDesc::base_offset_in_bytes(elem_size == 2 ? T_CHAR : T_BYTE); int stubBytesThreshold = 3 * 64 + (UseSIMDForArrayEquals ? 0 : 16); assert(elem_size == 1 || elem_size == 2, "must be char or byte"); assert_different_registers(a1, a2, result, cnt1, rscratch1, rscratch2); #ifndef PRODUCT { const char kind = (elem_size == 2) ? 'U' : 'L'; char comment[64]; snprintf(comment, sizeof comment, "array_equals%c{", kind); BLOCK_COMMENT(comment); } #endif // if (a1 == a2) // return true; cmpoop(a1, a2); // May have read barriers for a1 and a2. br(EQ, SAME); if (UseSimpleArrayEquals) { Label NEXT_WORD, SHORT, TAIL03, TAIL01, A_MIGHT_BE_NULL, A_IS_NOT_NULL; // if (a1 == null || a2 == null) // return false; // a1 & a2 == 0 means (some-pointer is null) or // (very-rare-or-even-probably-impossible-pointer-values) // so, we can save one branch in most cases tst(a1, a2); mov(result, false); br(EQ, A_MIGHT_BE_NULL); // if (a1.length != a2.length) // return false; bind(A_IS_NOT_NULL); ldrw(cnt1, Address(a1, length_offset)); ldrw(cnt2, Address(a2, length_offset)); eorw(tmp5, cnt1, cnt2); cbnzw(tmp5, DONE); lea(a1, Address(a1, base_offset)); lea(a2, Address(a2, base_offset)); // Check for short strings, i.e. smaller than wordSize. subs(cnt1, cnt1, elem_per_word); br(Assembler::LT, SHORT); // Main 8 byte comparison loop. bind(NEXT_WORD); { ldr(tmp1, Address(post(a1, wordSize))); ldr(tmp2, Address(post(a2, wordSize))); subs(cnt1, cnt1, elem_per_word); eor(tmp5, tmp1, tmp2); cbnz(tmp5, DONE); } br(GT, NEXT_WORD); // Last longword. In the case where length == 4 we compare the // same longword twice, but that's still faster than another // conditional branch. // cnt1 could be 0, -1, -2, -3, -4 for chars; -4 only happens when // length == 4. if (log_elem_size > 0) lsl(cnt1, cnt1, log_elem_size); ldr(tmp3, Address(a1, cnt1)); ldr(tmp4, Address(a2, cnt1)); eor(tmp5, tmp3, tmp4); cbnz(tmp5, DONE); b(SAME); bind(A_MIGHT_BE_NULL); // in case both a1 and a2 are not-null, proceed with loads cbz(a1, DONE); cbz(a2, DONE); b(A_IS_NOT_NULL); bind(SHORT); tbz(cnt1, 2 - log_elem_size, TAIL03); // 0-7 bytes left. { ldrw(tmp1, Address(post(a1, 4))); ldrw(tmp2, Address(post(a2, 4))); eorw(tmp5, tmp1, tmp2); cbnzw(tmp5, DONE); } bind(TAIL03); tbz(cnt1, 1 - log_elem_size, TAIL01); // 0-3 bytes left. { ldrh(tmp3, Address(post(a1, 2))); ldrh(tmp4, Address(post(a2, 2))); eorw(tmp5, tmp3, tmp4); cbnzw(tmp5, DONE); } bind(TAIL01); if (elem_size == 1) { // Only needed when comparing byte arrays. tbz(cnt1, 0, SAME); // 0-1 bytes left. { ldrb(tmp1, a1); ldrb(tmp2, a2); eorw(tmp5, tmp1, tmp2); cbnzw(tmp5, DONE); } } } else { Label NEXT_DWORD, SHORT, TAIL, TAIL2, STUB, EARLY_OUT, CSET_EQ, LAST_CHECK; mov(result, false); cbz(a1, DONE); ldrw(cnt1, Address(a1, length_offset)); cbz(a2, DONE); ldrw(cnt2, Address(a2, length_offset)); // on most CPUs a2 is still "locked"(surprisingly) in ldrw and it's // faster to perform another branch before comparing a1 and a2 cmp(cnt1, (u1)elem_per_word); br(LE, SHORT); // short or same ldr(tmp3, Address(pre(a1, base_offset))); subs(zr, cnt1, stubBytesThreshold); br(GE, STUB); ldr(tmp4, Address(pre(a2, base_offset))); sub(tmp5, zr, cnt1, LSL, 3 + log_elem_size); cmp(cnt2, cnt1); br(NE, DONE); // Main 16 byte comparison loop with 2 exits bind(NEXT_DWORD); { ldr(tmp1, Address(pre(a1, wordSize))); ldr(tmp2, Address(pre(a2, wordSize))); subs(cnt1, cnt1, 2 * elem_per_word); br(LE, TAIL); eor(tmp4, tmp3, tmp4); cbnz(tmp4, DONE); ldr(tmp3, Address(pre(a1, wordSize))); ldr(tmp4, Address(pre(a2, wordSize))); cmp(cnt1, (u1)elem_per_word); br(LE, TAIL2); cmp(tmp1, tmp2); } br(EQ, NEXT_DWORD); b(DONE); bind(TAIL); eor(tmp4, tmp3, tmp4); eor(tmp2, tmp1, tmp2); lslv(tmp2, tmp2, tmp5); orr(tmp5, tmp4, tmp2); cmp(tmp5, zr); b(CSET_EQ); bind(TAIL2); eor(tmp2, tmp1, tmp2); cbnz(tmp2, DONE); b(LAST_CHECK); bind(STUB); ldr(tmp4, Address(pre(a2, base_offset))); cmp(cnt2, cnt1); br(NE, DONE); if (elem_size == 2) { // convert to byte counter lsl(cnt1, cnt1, 1); } eor(tmp5, tmp3, tmp4); cbnz(tmp5, DONE); RuntimeAddress stub = RuntimeAddress(StubRoutines::aarch64::large_array_equals()); assert(stub.target() != NULL, "array_equals_long stub has not been generated"); trampoline_call(stub); b(DONE); bind(EARLY_OUT); // (a1 != null && a2 == null) || (a1 != null && a2 != null && a1 == a2) // so, if a2 == null => return false(0), else return true, so we can return a2 mov(result, a2); b(DONE); bind(SHORT); cmp(cnt2, cnt1); br(NE, DONE); cbz(cnt1, SAME); sub(tmp5, zr, cnt1, LSL, 3 + log_elem_size); ldr(tmp3, Address(a1, base_offset)); ldr(tmp4, Address(a2, base_offset)); bind(LAST_CHECK); eor(tmp4, tmp3, tmp4); lslv(tmp5, tmp4, tmp5); cmp(tmp5, zr); bind(CSET_EQ); cset(result, EQ); b(DONE); } bind(SAME); mov(result, true); // That's it. bind(DONE); BLOCK_COMMENT("} array_equals"); } // Compare Strings // For Strings we're passed the address of the first characters in a1 // and a2 and the length in cnt1. // elem_size is the element size in bytes: either 1 or 2. // There are two implementations. For arrays >= 8 bytes, all // comparisons (including the final one, which may overlap) are // performed 8 bytes at a time. For strings < 8 bytes, we compare a // halfword, then a short, and then a byte. void MacroAssembler::string_equals(Register a1, Register a2, Register result, Register cnt1, int elem_size) { Label SAME, DONE, SHORT, NEXT_WORD; Register tmp1 = rscratch1; Register tmp2 = rscratch2; Register cnt2 = tmp2; // cnt2 only used in array length compare assert(elem_size == 1 || elem_size == 2, "must be 2 or 1 byte"); assert_different_registers(a1, a2, result, cnt1, rscratch1, rscratch2); #ifndef PRODUCT { const char kind = (elem_size == 2) ? 'U' : 'L'; char comment[64]; snprintf(comment, sizeof comment, "{string_equals%c", kind); BLOCK_COMMENT(comment); } #endif mov(result, false); // Check for short strings, i.e. smaller than wordSize. subs(cnt1, cnt1, wordSize); br(Assembler::LT, SHORT); // Main 8 byte comparison loop. bind(NEXT_WORD); { ldr(tmp1, Address(post(a1, wordSize))); ldr(tmp2, Address(post(a2, wordSize))); subs(cnt1, cnt1, wordSize); eor(tmp1, tmp1, tmp2); cbnz(tmp1, DONE); } br(GT, NEXT_WORD); // Last longword. In the case where length == 4 we compare the // same longword twice, but that's still faster than another // conditional branch. // cnt1 could be 0, -1, -2, -3, -4 for chars; -4 only happens when // length == 4. ldr(tmp1, Address(a1, cnt1)); ldr(tmp2, Address(a2, cnt1)); eor(tmp2, tmp1, tmp2); cbnz(tmp2, DONE); b(SAME); bind(SHORT); Label TAIL03, TAIL01; tbz(cnt1, 2, TAIL03); // 0-7 bytes left. { ldrw(tmp1, Address(post(a1, 4))); ldrw(tmp2, Address(post(a2, 4))); eorw(tmp1, tmp1, tmp2); cbnzw(tmp1, DONE); } bind(TAIL03); tbz(cnt1, 1, TAIL01); // 0-3 bytes left. { ldrh(tmp1, Address(post(a1, 2))); ldrh(tmp2, Address(post(a2, 2))); eorw(tmp1, tmp1, tmp2); cbnzw(tmp1, DONE); } bind(TAIL01); if (elem_size == 1) { // Only needed when comparing 1-byte elements tbz(cnt1, 0, SAME); // 0-1 bytes left. { ldrb(tmp1, a1); ldrb(tmp2, a2); eorw(tmp1, tmp1, tmp2); cbnzw(tmp1, DONE); } } // Arrays are equal. bind(SAME); mov(result, true); // That's it. bind(DONE); BLOCK_COMMENT("} string_equals"); } // The size of the blocks erased by the zero_blocks stub. We must // handle anything smaller than this ourselves in zero_words(). const int MacroAssembler::zero_words_block_size = 8; // zero_words() is used by C2 ClearArray patterns. It is as small as // possible, handling small word counts locally and delegating // anything larger to the zero_blocks stub. It is expanded many times // in compiled code, so it is important to keep it short. // ptr: Address of a buffer to be zeroed. // cnt: Count in HeapWords. // // ptr, cnt, rscratch1, and rscratch2 are clobbered. void MacroAssembler::zero_words(Register ptr, Register cnt) { assert(is_power_of_2(zero_words_block_size), "adjust this"); assert(ptr == r10 && cnt == r11, "mismatch in register usage"); BLOCK_COMMENT("zero_words {"); cmp(cnt, (u1)zero_words_block_size); Label around; br(LO, around); { RuntimeAddress zero_blocks = RuntimeAddress(StubRoutines::aarch64::zero_blocks()); assert(zero_blocks.target() != NULL, "zero_blocks stub has not been generated"); if (StubRoutines::aarch64::complete()) { trampoline_call(zero_blocks); } else { bl(zero_blocks); } } bind(around); for (int i = zero_words_block_size >> 1; i > 1; i >>= 1) { Label l; tbz(cnt, exact_log2(i), l); for (int j = 0; j < i; j += 2) { stp(zr, zr, post(ptr, 16)); } bind(l); } { Label l; tbz(cnt, 0, l); str(zr, Address(ptr)); bind(l); } BLOCK_COMMENT("} zero_words"); } // base: Address of a buffer to be zeroed, 8 bytes aligned. // cnt: Immediate count in HeapWords. #define SmallArraySize (18 * BytesPerLong) void MacroAssembler::zero_words(Register base, u_int64_t cnt) { BLOCK_COMMENT("zero_words {"); int i = cnt & 1; // store any odd word to start if (i) str(zr, Address(base)); if (cnt <= SmallArraySize / BytesPerLong) { for (; i < (int)cnt; i += 2) stp(zr, zr, Address(base, i * wordSize)); } else { const int unroll = 4; // Number of stp(zr, zr) instructions we'll unroll int remainder = cnt % (2 * unroll); for (; i < remainder; i += 2) stp(zr, zr, Address(base, i * wordSize)); Label loop; Register cnt_reg = rscratch1; Register loop_base = rscratch2; cnt = cnt - remainder; mov(cnt_reg, cnt); // adjust base and prebias by -2 * wordSize so we can pre-increment add(loop_base, base, (remainder - 2) * wordSize); bind(loop); sub(cnt_reg, cnt_reg, 2 * unroll); for (i = 1; i < unroll; i++) stp(zr, zr, Address(loop_base, 2 * i * wordSize)); stp(zr, zr, Address(pre(loop_base, 2 * unroll * wordSize))); cbnz(cnt_reg, loop); } BLOCK_COMMENT("} zero_words"); } // Zero blocks of memory by using DC ZVA. // // Aligns the base address first sufficently for DC ZVA, then uses // DC ZVA repeatedly for every full block. cnt is the size to be // zeroed in HeapWords. Returns the count of words left to be zeroed // in cnt. // // NOTE: This is intended to be used in the zero_blocks() stub. If // you want to use it elsewhere, note that cnt must be >= 2*zva_length. void MacroAssembler::zero_dcache_blocks(Register base, Register cnt) { Register tmp = rscratch1; Register tmp2 = rscratch2; int zva_length = VM_Version::zva_length(); Label initial_table_end, loop_zva; Label fini; // Base must be 16 byte aligned. If not just return and let caller handle it tst(base, 0x0f); br(Assembler::NE, fini); // Align base with ZVA length. neg(tmp, base); andr(tmp, tmp, zva_length - 1); // tmp: the number of bytes to be filled to align the base with ZVA length. add(base, base, tmp); sub(cnt, cnt, tmp, Assembler::ASR, 3); adr(tmp2, initial_table_end); sub(tmp2, tmp2, tmp, Assembler::LSR, 2); br(tmp2); for (int i = -zva_length + 16; i < 0; i += 16) stp(zr, zr, Address(base, i)); bind(initial_table_end); sub(cnt, cnt, zva_length >> 3); bind(loop_zva); dc(Assembler::ZVA, base); subs(cnt, cnt, zva_length >> 3); add(base, base, zva_length); br(Assembler::GE, loop_zva); add(cnt, cnt, zva_length >> 3); // count not zeroed by DC ZVA bind(fini); } // base: Address of a buffer to be filled, 8 bytes aligned. // cnt: Count in 8-byte unit. // value: Value to be filled with. // base will point to the end of the buffer after filling. void MacroAssembler::fill_words(Register base, Register cnt, Register value) { // Algorithm: // // scratch1 = cnt & 7; // cnt -= scratch1; // p += scratch1; // switch (scratch1) { // do { // cnt -= 8; // p[-8] = v; // case 7: // p[-7] = v; // case 6: // p[-6] = v; // // ... // case 1: // p[-1] = v; // case 0: // p += 8; // } while (cnt); // } assert_different_registers(base, cnt, value, rscratch1, rscratch2); Label fini, skip, entry, loop; const int unroll = 8; // Number of stp instructions we'll unroll cbz(cnt, fini); tbz(base, 3, skip); str(value, Address(post(base, 8))); sub(cnt, cnt, 1); bind(skip); andr(rscratch1, cnt, (unroll-1) * 2); sub(cnt, cnt, rscratch1); add(base, base, rscratch1, Assembler::LSL, 3); adr(rscratch2, entry); sub(rscratch2, rscratch2, rscratch1, Assembler::LSL, 1); br(rscratch2); bind(loop); add(base, base, unroll * 16); for (int i = -unroll; i < 0; i++) stp(value, value, Address(base, i * 16)); bind(entry); subs(cnt, cnt, unroll * 2); br(Assembler::GE, loop); tbz(cnt, 0, fini); str(value, Address(post(base, 8))); bind(fini); } // Intrinsic for sun/nio/cs/ISO_8859_1$Encoder.implEncodeISOArray and // java/lang/StringUTF16.compress. void MacroAssembler::encode_iso_array(Register src, Register dst, Register len, Register result, FloatRegister Vtmp1, FloatRegister Vtmp2, FloatRegister Vtmp3, FloatRegister Vtmp4) { Label DONE, SET_RESULT, NEXT_32, NEXT_32_PRFM, LOOP_8, NEXT_8, LOOP_1, NEXT_1, NEXT_32_START, NEXT_32_PRFM_START; Register tmp1 = rscratch1, tmp2 = rscratch2; mov(result, len); // Save initial len cmp(len, (u1)8); // handle shortest strings first br(LT, LOOP_1); cmp(len, (u1)32); br(LT, NEXT_8); // The following code uses the SIMD 'uzp1' and 'uzp2' instructions // to convert chars to bytes if (SoftwarePrefetchHintDistance >= 0) { ld1(Vtmp1, Vtmp2, Vtmp3, Vtmp4, T8H, src); subs(tmp2, len, SoftwarePrefetchHintDistance/2 + 16); br(LE, NEXT_32_START); b(NEXT_32_PRFM_START); BIND(NEXT_32_PRFM); ld1(Vtmp1, Vtmp2, Vtmp3, Vtmp4, T8H, src); BIND(NEXT_32_PRFM_START); prfm(Address(src, SoftwarePrefetchHintDistance)); orr(v4, T16B, Vtmp1, Vtmp2); orr(v5, T16B, Vtmp3, Vtmp4); uzp1(Vtmp1, T16B, Vtmp1, Vtmp2); uzp1(Vtmp3, T16B, Vtmp3, Vtmp4); uzp2(v5, T16B, v4, v5); // high bytes umov(tmp2, v5, D, 1); fmovd(tmp1, v5); orr(tmp1, tmp1, tmp2); cbnz(tmp1, LOOP_8); stpq(Vtmp1, Vtmp3, dst); sub(len, len, 32); add(dst, dst, 32); add(src, src, 64); subs(tmp2, len, SoftwarePrefetchHintDistance/2 + 16); br(GE, NEXT_32_PRFM); cmp(len, (u1)32); br(LT, LOOP_8); BIND(NEXT_32); ld1(Vtmp1, Vtmp2, Vtmp3, Vtmp4, T8H, src); BIND(NEXT_32_START); } else { BIND(NEXT_32); ld1(Vtmp1, Vtmp2, Vtmp3, Vtmp4, T8H, src); } prfm(Address(src, SoftwarePrefetchHintDistance)); uzp1(v4, T16B, Vtmp1, Vtmp2); uzp1(v5, T16B, Vtmp3, Vtmp4); orr(Vtmp1, T16B, Vtmp1, Vtmp2); orr(Vtmp3, T16B, Vtmp3, Vtmp4); uzp2(Vtmp1, T16B, Vtmp1, Vtmp3); // high bytes umov(tmp2, Vtmp1, D, 1); fmovd(tmp1, Vtmp1); orr(tmp1, tmp1, tmp2); cbnz(tmp1, LOOP_8); stpq(v4, v5, dst); sub(len, len, 32); add(dst, dst, 32); add(src, src, 64); cmp(len, (u1)32); br(GE, NEXT_32); cbz(len, DONE); BIND(LOOP_8); cmp(len, (u1)8); br(LT, LOOP_1); BIND(NEXT_8); ld1(Vtmp1, T8H, src); uzp1(Vtmp2, T16B, Vtmp1, Vtmp1); // low bytes uzp2(Vtmp3, T16B, Vtmp1, Vtmp1); // high bytes fmovd(tmp1, Vtmp3); cbnz(tmp1, NEXT_1); strd(Vtmp2, dst); sub(len, len, 8); add(dst, dst, 8); add(src, src, 16); cmp(len, (u1)8); br(GE, NEXT_8); BIND(LOOP_1); cbz(len, DONE); BIND(NEXT_1); ldrh(tmp1, Address(post(src, 2))); tst(tmp1, 0xff00); br(NE, SET_RESULT); strb(tmp1, Address(post(dst, 1))); subs(len, len, 1); br(GT, NEXT_1); BIND(SET_RESULT); sub(result, result, len); // Return index where we stopped // Return len == 0 if we processed all // characters BIND(DONE); } // Inflate byte[] array to char[]. void MacroAssembler::byte_array_inflate(Register src, Register dst, Register len, FloatRegister vtmp1, FloatRegister vtmp2, FloatRegister vtmp3, Register tmp4) { Label big, done, after_init, to_stub; assert_different_registers(src, dst, len, tmp4, rscratch1); fmovd(vtmp1, zr); lsrw(tmp4, len, 3); bind(after_init); cbnzw(tmp4, big); // Short string: less than 8 bytes. { Label loop, tiny; cmpw(len, 4); br(LT, tiny); // Use SIMD to do 4 bytes. ldrs(vtmp2, post(src, 4)); zip1(vtmp3, T8B, vtmp2, vtmp1); subw(len, len, 4); strd(vtmp3, post(dst, 8)); cbzw(len, done); // Do the remaining bytes by steam. bind(loop); ldrb(tmp4, post(src, 1)); strh(tmp4, post(dst, 2)); subw(len, len, 1); bind(tiny); cbnz(len, loop); b(done); } if (SoftwarePrefetchHintDistance >= 0) { bind(to_stub); RuntimeAddress stub = RuntimeAddress(StubRoutines::aarch64::large_byte_array_inflate()); assert(stub.target() != NULL, "large_byte_array_inflate stub has not been generated"); trampoline_call(stub); b(after_init); } // Unpack the bytes 8 at a time. bind(big); { Label loop, around, loop_last, loop_start; if (SoftwarePrefetchHintDistance >= 0) { const int large_loop_threshold = (64 + 16)/8; ldrd(vtmp2, post(src, 8)); andw(len, len, 7); cmp(tmp4, (u1)large_loop_threshold); br(GE, to_stub); b(loop_start); bind(loop); ldrd(vtmp2, post(src, 8)); bind(loop_start); subs(tmp4, tmp4, 1); br(EQ, loop_last); zip1(vtmp2, T16B, vtmp2, vtmp1); ldrd(vtmp3, post(src, 8)); st1(vtmp2, T8H, post(dst, 16)); subs(tmp4, tmp4, 1); zip1(vtmp3, T16B, vtmp3, vtmp1); st1(vtmp3, T8H, post(dst, 16)); br(NE, loop); b(around); bind(loop_last); zip1(vtmp2, T16B, vtmp2, vtmp1); st1(vtmp2, T8H, post(dst, 16)); bind(around); cbz(len, done); } else { andw(len, len, 7); bind(loop); ldrd(vtmp2, post(src, 8)); sub(tmp4, tmp4, 1); zip1(vtmp3, T16B, vtmp2, vtmp1); st1(vtmp3, T8H, post(dst, 16)); cbnz(tmp4, loop); } } // Do the tail of up to 8 bytes. add(src, src, len); ldrd(vtmp3, Address(src, -8)); add(dst, dst, len, ext::uxtw, 1); zip1(vtmp3, T16B, vtmp3, vtmp1); strq(vtmp3, Address(dst, -16)); bind(done); } // Compress char[] array to byte[]. void MacroAssembler::char_array_compress(Register src, Register dst, Register len, FloatRegister tmp1Reg, FloatRegister tmp2Reg, FloatRegister tmp3Reg, FloatRegister tmp4Reg, Register result) { encode_iso_array(src, dst, len, result, tmp1Reg, tmp2Reg, tmp3Reg, tmp4Reg); cmp(len, zr); csel(result, result, zr, EQ); } // get_thread() can be called anywhere inside generated code so we // need to save whatever non-callee save context might get clobbered // by the call to JavaThread::aarch64_get_thread_helper() or, indeed, // the call setup code. // // aarch64_get_thread_helper() clobbers only r0, r1, and flags. // void MacroAssembler::get_thread(Register dst) { RegSet saved_regs = RegSet::range(r0, r1) + lr - dst; push(saved_regs, sp); mov(lr, CAST_FROM_FN_PTR(address, JavaThread::aarch64_get_thread_helper)); blr(lr); if (dst != c_rarg0) { mov(dst, c_rarg0); } pop(saved_regs, sp); } void MacroAssembler::cache_wb(Address line) { assert(line.getMode() == Address::base_plus_offset, "mode should be base_plus_offset"); assert(line.index() == noreg, "index should be noreg"); assert(line.offset() == 0, "offset should be 0"); // would like to assert this // assert(line._ext.shift == 0, "shift should be zero"); if (VM_Version::supports_dcpop()) { // writeback using clear virtual address to point of persistence dc(Assembler::CVAP, line.base()); } else { // no need to generate anything as Unsafe.writebackMemory should // never invoke this stub } } void MacroAssembler::cache_wbsync(bool is_pre) { // we only need a barrier post sync if (!is_pre) { membar(Assembler::AnyAny); } }