1 /* 2 * reserved comment block 3 * DO NOT REMOVE OR ALTER! 4 */ 5 /* 6 * jdhuff.c 7 * 8 * Copyright (C) 1991-1997, Thomas G. Lane. 9 * This file is part of the Independent JPEG Group's software. 10 * For conditions of distribution and use, see the accompanying README file. 11 * 12 * This file contains Huffman entropy decoding routines. 13 * 14 * Much of the complexity here has to do with supporting input suspension. 15 * If the data source module demands suspension, we want to be able to back 16 * up to the start of the current MCU. To do this, we copy state variables 17 * into local working storage, and update them back to the permanent 18 * storage only upon successful completion of an MCU. 19 */ 20 21 #define JPEG_INTERNALS 22 #include "jinclude.h" 23 #include "jpeglib.h" 24 #include "jdhuff.h" /* Declarations shared with jdphuff.c */ 25 26 27 /* 28 * Expanded entropy decoder object for Huffman decoding. 29 * 30 * The savable_state subrecord contains fields that change within an MCU, 31 * but must not be updated permanently until we complete the MCU. 32 */ 33 34 typedef struct { 35 int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */ 36 } savable_state; 37 38 /* This macro is to work around compilers with missing or broken 39 * structure assignment. You'll need to fix this code if you have 40 * such a compiler and you change MAX_COMPS_IN_SCAN. 41 */ 42 43 #ifndef NO_STRUCT_ASSIGN 44 #define ASSIGN_STATE(dest,src) ((dest) = (src)) 45 #else 46 #if MAX_COMPS_IN_SCAN == 4 47 #define ASSIGN_STATE(dest,src) \ 48 ((dest).last_dc_val[0] = (src).last_dc_val[0], \ 49 (dest).last_dc_val[1] = (src).last_dc_val[1], \ 50 (dest).last_dc_val[2] = (src).last_dc_val[2], \ 51 (dest).last_dc_val[3] = (src).last_dc_val[3]) 52 #endif 53 #endif 54 55 56 typedef struct { 57 struct jpeg_entropy_decoder pub; /* public fields */ 58 59 /* These fields are loaded into local variables at start of each MCU. 60 * In case of suspension, we exit WITHOUT updating them. 61 */ 62 bitread_perm_state bitstate; /* Bit buffer at start of MCU */ 63 savable_state saved; /* Other state at start of MCU */ 64 65 /* These fields are NOT loaded into local working state. */ 66 unsigned int restarts_to_go; /* MCUs left in this restart interval */ 67 68 /* Pointers to derived tables (these workspaces have image lifespan) */ 69 d_derived_tbl * dc_derived_tbls[NUM_HUFF_TBLS]; 70 d_derived_tbl * ac_derived_tbls[NUM_HUFF_TBLS]; 71 72 /* Precalculated info set up by start_pass for use in decode_mcu: */ 73 74 /* Pointers to derived tables to be used for each block within an MCU */ 75 d_derived_tbl * dc_cur_tbls[D_MAX_BLOCKS_IN_MCU]; 76 d_derived_tbl * ac_cur_tbls[D_MAX_BLOCKS_IN_MCU]; 77 /* Whether we care about the DC and AC coefficient values for each block */ 78 boolean dc_needed[D_MAX_BLOCKS_IN_MCU]; 79 boolean ac_needed[D_MAX_BLOCKS_IN_MCU]; 80 } huff_entropy_decoder; 81 82 typedef huff_entropy_decoder * huff_entropy_ptr; 83 84 85 /* 86 * Initialize for a Huffman-compressed scan. 87 */ 88 89 METHODDEF(void) 90 start_pass_huff_decoder (j_decompress_ptr cinfo) 91 { 92 huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; 93 int ci, blkn, dctbl, actbl; 94 jpeg_component_info * compptr; 95 96 /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG. 97 * This ought to be an error condition, but we make it a warning because 98 * there are some baseline files out there with all zeroes in these bytes. 99 */ 100 if (cinfo->Ss != 0 || cinfo->Se != DCTSIZE2-1 || 101 cinfo->Ah != 0 || cinfo->Al != 0) 102 WARNMS(cinfo, JWRN_NOT_SEQUENTIAL); 103 104 for (ci = 0; ci < cinfo->comps_in_scan; ci++) { 105 compptr = cinfo->cur_comp_info[ci]; 106 dctbl = compptr->dc_tbl_no; 107 actbl = compptr->ac_tbl_no; 108 /* Compute derived values for Huffman tables */ 109 /* We may do this more than once for a table, but it's not expensive */ 110 jpeg_make_d_derived_tbl(cinfo, TRUE, dctbl, 111 & entropy->dc_derived_tbls[dctbl]); 112 jpeg_make_d_derived_tbl(cinfo, FALSE, actbl, 113 & entropy->ac_derived_tbls[actbl]); 114 /* Initialize DC predictions to 0 */ 115 entropy->saved.last_dc_val[ci] = 0; 116 } 117 118 /* Precalculate decoding info for each block in an MCU of this scan */ 119 for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { 120 ci = cinfo->MCU_membership[blkn]; 121 compptr = cinfo->cur_comp_info[ci]; 122 /* Precalculate which table to use for each block */ 123 entropy->dc_cur_tbls[blkn] = entropy->dc_derived_tbls[compptr->dc_tbl_no]; 124 entropy->ac_cur_tbls[blkn] = entropy->ac_derived_tbls[compptr->ac_tbl_no]; 125 /* Decide whether we really care about the coefficient values */ 126 if (compptr->component_needed) { 127 entropy->dc_needed[blkn] = TRUE; 128 /* we don't need the ACs if producing a 1/8th-size image */ 129 entropy->ac_needed[blkn] = (compptr->DCT_scaled_size > 1); 130 } else { 131 entropy->dc_needed[blkn] = entropy->ac_needed[blkn] = FALSE; 132 } 133 } 134 135 /* Initialize bitread state variables */ 136 entropy->bitstate.bits_left = 0; 137 entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */ 138 entropy->pub.insufficient_data = FALSE; 139 140 /* Initialize restart counter */ 141 entropy->restarts_to_go = cinfo->restart_interval; 142 } 143 144 145 /* 146 * Compute the derived values for a Huffman table. 147 * This routine also performs some validation checks on the table. 148 * 149 * Note this is also used by jdphuff.c. 150 */ 151 152 GLOBAL(void) 153 jpeg_make_d_derived_tbl (j_decompress_ptr cinfo, boolean isDC, int tblno, 154 d_derived_tbl ** pdtbl) 155 { 156 JHUFF_TBL *htbl; 157 d_derived_tbl *dtbl; 158 int p, i, l, si, numsymbols; 159 int lookbits, ctr; 160 char huffsize[257]; 161 unsigned int huffcode[257]; 162 unsigned int code; 163 164 /* Note that huffsize[] and huffcode[] are filled in code-length order, 165 * paralleling the order of the symbols themselves in htbl->huffval[]. 166 */ 167 168 /* Find the input Huffman table */ 169 if (tblno < 0 || tblno >= NUM_HUFF_TBLS) 170 ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno); 171 htbl = 172 isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno]; 173 if (htbl == NULL) 174 ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno); 175 176 /* Allocate a workspace if we haven't already done so. */ 177 if (*pdtbl == NULL) 178 *pdtbl = (d_derived_tbl *) 179 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, 180 SIZEOF(d_derived_tbl)); 181 dtbl = *pdtbl; 182 dtbl->pub = htbl; /* fill in back link */ 183 184 /* Figure C.1: make table of Huffman code length for each symbol */ 185 186 p = 0; 187 for (l = 1; l <= 16; l++) { 188 i = (int) htbl->bits[l]; 189 if (i < 0 || p + i > 256) /* protect against table overrun */ 190 ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); 191 while (i--) 192 huffsize[p++] = (char) l; 193 } 194 huffsize[p] = 0; 195 numsymbols = p; 196 197 /* Figure C.2: generate the codes themselves */ 198 /* We also validate that the counts represent a legal Huffman code tree. */ 199 200 code = 0; 201 si = huffsize[0]; 202 p = 0; 203 while (huffsize[p]) { 204 while (((int) huffsize[p]) == si) { 205 huffcode[p++] = code; 206 code++; 207 } 208 /* code is now 1 more than the last code used for codelength si; but 209 * it must still fit in si bits, since no code is allowed to be all ones. 210 */ 211 if (((INT32) code) >= (((INT32) 1) << si)) 212 ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); 213 code <<= 1; 214 si++; 215 } 216 217 /* Figure F.15: generate decoding tables for bit-sequential decoding */ 218 219 p = 0; 220 for (l = 1; l <= 16; l++) { 221 if (htbl->bits[l]) { 222 /* valoffset[l] = huffval[] index of 1st symbol of code length l, 223 * minus the minimum code of length l 224 */ 225 dtbl->valoffset[l] = (INT32) p - (INT32) huffcode[p]; 226 p += htbl->bits[l]; 227 dtbl->maxcode[l] = huffcode[p-1]; /* maximum code of length l */ 228 } else { 229 dtbl->maxcode[l] = -1; /* -1 if no codes of this length */ 230 } 231 } 232 dtbl->maxcode[17] = 0xFFFFFL; /* ensures jpeg_huff_decode terminates */ 233 234 /* Compute lookahead tables to speed up decoding. 235 * First we set all the table entries to 0, indicating "too long"; 236 * then we iterate through the Huffman codes that are short enough and 237 * fill in all the entries that correspond to bit sequences starting 238 * with that code. 239 */ 240 241 MEMZERO(dtbl->look_nbits, SIZEOF(dtbl->look_nbits)); 242 243 p = 0; 244 for (l = 1; l <= HUFF_LOOKAHEAD; l++) { 245 for (i = 1; i <= (int) htbl->bits[l]; i++, p++) { 246 /* l = current code's length, p = its index in huffcode[] & huffval[]. */ 247 /* Generate left-justified code followed by all possible bit sequences */ 248 lookbits = huffcode[p] << (HUFF_LOOKAHEAD-l); 249 for (ctr = 1 << (HUFF_LOOKAHEAD-l); ctr > 0; ctr--) { 250 dtbl->look_nbits[lookbits] = l; 251 dtbl->look_sym[lookbits] = htbl->huffval[p]; 252 lookbits++; 253 } 254 } 255 } 256 257 /* Validate symbols as being reasonable. 258 * For AC tables, we make no check, but accept all byte values 0..255. 259 * For DC tables, we require the symbols to be in range 0..15. 260 * (Tighter bounds could be applied depending on the data depth and mode, 261 * but this is sufficient to ensure safe decoding.) 262 */ 263 if (isDC) { 264 for (i = 0; i < numsymbols; i++) { 265 int sym = htbl->huffval[i]; 266 if (sym < 0 || sym > 15) 267 ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); 268 } 269 } 270 } 271 272 273 /* 274 * Out-of-line code for bit fetching (shared with jdphuff.c). 275 * See jdhuff.h for info about usage. 276 * Note: current values of get_buffer and bits_left are passed as parameters, 277 * but are returned in the corresponding fields of the state struct. 278 * 279 * On most machines MIN_GET_BITS should be 25 to allow the full 32-bit width 280 * of get_buffer to be used. (On machines with wider words, an even larger 281 * buffer could be used.) However, on some machines 32-bit shifts are 282 * quite slow and take time proportional to the number of places shifted. 283 * (This is true with most PC compilers, for instance.) In this case it may 284 * be a win to set MIN_GET_BITS to the minimum value of 15. This reduces the 285 * average shift distance at the cost of more calls to jpeg_fill_bit_buffer. 286 */ 287 288 #ifdef SLOW_SHIFT_32 289 #define MIN_GET_BITS 15 /* minimum allowable value */ 290 #else 291 #define MIN_GET_BITS (BIT_BUF_SIZE-7) 292 #endif 293 294 295 GLOBAL(boolean) 296 jpeg_fill_bit_buffer (bitread_working_state * state, 297 register bit_buf_type get_buffer, register int bits_left, 298 int nbits) 299 /* Load up the bit buffer to a depth of at least nbits */ 300 { 301 /* Copy heavily used state fields into locals (hopefully registers) */ 302 register const JOCTET * next_input_byte = state->next_input_byte; 303 register size_t bytes_in_buffer = state->bytes_in_buffer; 304 j_decompress_ptr cinfo = state->cinfo; 305 306 /* Attempt to load at least MIN_GET_BITS bits into get_buffer. */ 307 /* (It is assumed that no request will be for more than that many bits.) */ 308 /* We fail to do so only if we hit a marker or are forced to suspend. */ 309 310 if (cinfo->unread_marker == 0) { /* cannot advance past a marker */ 311 while (bits_left < MIN_GET_BITS) { 312 register int c; 313 314 /* Attempt to read a byte */ 315 if (bytes_in_buffer == 0) { 316 if (! (*cinfo->src->fill_input_buffer) (cinfo)) 317 return FALSE; 318 next_input_byte = cinfo->src->next_input_byte; 319 bytes_in_buffer = cinfo->src->bytes_in_buffer; 320 } 321 bytes_in_buffer--; 322 c = GETJOCTET(*next_input_byte++); 323 324 /* If it's 0xFF, check and discard stuffed zero byte */ 325 if (c == 0xFF) { 326 /* Loop here to discard any padding FF's on terminating marker, 327 * so that we can save a valid unread_marker value. NOTE: we will 328 * accept multiple FF's followed by a 0 as meaning a single FF data 329 * byte. This data pattern is not valid according to the standard. 330 */ 331 do { 332 if (bytes_in_buffer == 0) { 333 if (! (*cinfo->src->fill_input_buffer) (cinfo)) 334 return FALSE; 335 next_input_byte = cinfo->src->next_input_byte; 336 bytes_in_buffer = cinfo->src->bytes_in_buffer; 337 } 338 bytes_in_buffer--; 339 c = GETJOCTET(*next_input_byte++); 340 } while (c == 0xFF); 341 342 if (c == 0) { 343 /* Found FF/00, which represents an FF data byte */ 344 c = 0xFF; 345 } else { 346 /* Oops, it's actually a marker indicating end of compressed data. 347 * Save the marker code for later use. 348 * Fine point: it might appear that we should save the marker into 349 * bitread working state, not straight into permanent state. But 350 * once we have hit a marker, we cannot need to suspend within the 351 * current MCU, because we will read no more bytes from the data 352 * source. So it is OK to update permanent state right away. 353 */ 354 cinfo->unread_marker = c; 355 /* See if we need to insert some fake zero bits. */ 356 goto no_more_bytes; 357 } 358 } 359 360 /* OK, load c into get_buffer */ 361 get_buffer = (get_buffer << 8) | c; 362 bits_left += 8; 363 } /* end while */ 364 } else { 365 no_more_bytes: 366 /* We get here if we've read the marker that terminates the compressed 367 * data segment. There should be enough bits in the buffer register 368 * to satisfy the request; if so, no problem. 369 */ 370 if (nbits > bits_left) { 371 /* Uh-oh. Report corrupted data to user and stuff zeroes into 372 * the data stream, so that we can produce some kind of image. 373 * We use a nonvolatile flag to ensure that only one warning message 374 * appears per data segment. 375 */ 376 if (! cinfo->entropy->insufficient_data) { 377 WARNMS(cinfo, JWRN_HIT_MARKER); 378 cinfo->entropy->insufficient_data = TRUE; 379 } 380 /* Fill the buffer with zero bits */ 381 get_buffer <<= MIN_GET_BITS - bits_left; 382 bits_left = MIN_GET_BITS; 383 } 384 } 385 386 /* Unload the local registers */ 387 state->next_input_byte = next_input_byte; 388 state->bytes_in_buffer = bytes_in_buffer; 389 state->get_buffer = get_buffer; 390 state->bits_left = bits_left; 391 392 return TRUE; 393 } 394 395 396 /* 397 * Out-of-line code for Huffman code decoding. 398 * See jdhuff.h for info about usage. 399 */ 400 401 GLOBAL(int) 402 jpeg_huff_decode (bitread_working_state * state, 403 register bit_buf_type get_buffer, register int bits_left, 404 d_derived_tbl * htbl, int min_bits) 405 { 406 register int l = min_bits; 407 register INT32 code; 408 409 /* HUFF_DECODE has determined that the code is at least min_bits */ 410 /* bits long, so fetch that many bits in one swoop. */ 411 412 CHECK_BIT_BUFFER(*state, l, return -1); 413 code = GET_BITS(l); 414 415 /* Collect the rest of the Huffman code one bit at a time. */ 416 /* This is per Figure F.16 in the JPEG spec. */ 417 418 while (code > htbl->maxcode[l]) { 419 code <<= 1; 420 CHECK_BIT_BUFFER(*state, 1, return -1); 421 code |= GET_BITS(1); 422 l++; 423 } 424 425 /* Unload the local registers */ 426 state->get_buffer = get_buffer; 427 state->bits_left = bits_left; 428 429 /* With garbage input we may reach the sentinel value l = 17. */ 430 431 if (l > 16) { 432 WARNMS(state->cinfo, JWRN_HUFF_BAD_CODE); 433 return 0; /* fake a zero as the safest result */ 434 } 435 436 return htbl->pub->huffval[ (int) (code + htbl->valoffset[l]) ]; 437 } 438 439 440 /* 441 * Figure F.12: extend sign bit. 442 * On some machines, a shift and add will be faster than a table lookup. 443 */ 444 445 #ifdef AVOID_TABLES 446 447 #define HUFF_EXTEND(x,s) ((x) < (1<<((s)-1)) ? (x) + (((-1)<<(s)) + 1) : (x)) 448 449 #else 450 451 #define HUFF_EXTEND(x,s) ((x) < extend_test[s] ? (x) + extend_offset[s] : (x)) 452 453 static const int extend_test[16] = /* entry n is 2**(n-1) */ 454 { 0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080, 455 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000 }; 456 457 static const int extend_offset[16] = /* entry n is (-1 << n) + 1 */ 458 { 0, ((-1)<<1) + 1, ((-1)<<2) + 1, ((-1)<<3) + 1, ((-1)<<4) + 1, 459 ((-1)<<5) + 1, ((-1)<<6) + 1, ((-1)<<7) + 1, ((-1)<<8) + 1, 460 ((-1)<<9) + 1, ((-1)<<10) + 1, ((-1)<<11) + 1, ((-1)<<12) + 1, 461 ((-1)<<13) + 1, ((-1)<<14) + 1, ((-1)<<15) + 1 }; 462 463 #endif /* AVOID_TABLES */ 464 465 466 /* 467 * Check for a restart marker & resynchronize decoder. 468 * Returns FALSE if must suspend. 469 */ 470 471 LOCAL(boolean) 472 process_restart (j_decompress_ptr cinfo) 473 { 474 huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; 475 int ci; 476 477 /* Throw away any unused bits remaining in bit buffer; */ 478 /* include any full bytes in next_marker's count of discarded bytes */ 479 cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8; 480 entropy->bitstate.bits_left = 0; 481 482 /* Advance past the RSTn marker */ 483 if (! (*cinfo->marker->read_restart_marker) (cinfo)) 484 return FALSE; 485 486 /* Re-initialize DC predictions to 0 */ 487 for (ci = 0; ci < cinfo->comps_in_scan; ci++) 488 entropy->saved.last_dc_val[ci] = 0; 489 490 /* Reset restart counter */ 491 entropy->restarts_to_go = cinfo->restart_interval; 492 493 /* Reset out-of-data flag, unless read_restart_marker left us smack up 494 * against a marker. In that case we will end up treating the next data 495 * segment as empty, and we can avoid producing bogus output pixels by 496 * leaving the flag set. 497 */ 498 if (cinfo->unread_marker == 0) 499 entropy->pub.insufficient_data = FALSE; 500 501 return TRUE; 502 } 503 504 505 /* 506 * Decode and return one MCU's worth of Huffman-compressed coefficients. 507 * The coefficients are reordered from zigzag order into natural array order, 508 * but are not dequantized. 509 * 510 * The i'th block of the MCU is stored into the block pointed to by 511 * MCU_data[i]. WE ASSUME THIS AREA HAS BEEN ZEROED BY THE CALLER. 512 * (Wholesale zeroing is usually a little faster than retail...) 513 * 514 * Returns FALSE if data source requested suspension. In that case no 515 * changes have been made to permanent state. (Exception: some output 516 * coefficients may already have been assigned. This is harmless for 517 * this module, since we'll just re-assign them on the next call.) 518 */ 519 520 METHODDEF(boolean) 521 decode_mcu (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) 522 { 523 huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; 524 int blkn; 525 BITREAD_STATE_VARS; 526 savable_state state; 527 528 /* Process restart marker if needed; may have to suspend */ 529 if (cinfo->restart_interval) { 530 if (entropy->restarts_to_go == 0) 531 if (! process_restart(cinfo)) 532 return FALSE; 533 } 534 535 /* If we've run out of data, just leave the MCU set to zeroes. 536 * This way, we return uniform gray for the remainder of the segment. 537 */ 538 if (! entropy->pub.insufficient_data) { 539 540 /* Load up working state */ 541 BITREAD_LOAD_STATE(cinfo,entropy->bitstate); 542 ASSIGN_STATE(state, entropy->saved); 543 544 /* Outer loop handles each block in the MCU */ 545 546 for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { 547 JBLOCKROW block = MCU_data[blkn]; 548 d_derived_tbl * dctbl = entropy->dc_cur_tbls[blkn]; 549 d_derived_tbl * actbl = entropy->ac_cur_tbls[blkn]; 550 register int s, k, r; 551 552 /* Decode a single block's worth of coefficients */ 553 554 /* Section F.2.2.1: decode the DC coefficient difference */ 555 HUFF_DECODE(s, br_state, dctbl, return FALSE, label1); 556 if (s) { 557 CHECK_BIT_BUFFER(br_state, s, return FALSE); 558 r = GET_BITS(s); 559 s = HUFF_EXTEND(r, s); 560 } 561 562 if (entropy->dc_needed[blkn]) { 563 /* Convert DC difference to actual value, update last_dc_val */ 564 int ci = cinfo->MCU_membership[blkn]; 565 s += state.last_dc_val[ci]; 566 state.last_dc_val[ci] = s; 567 /* Output the DC coefficient (assumes jpeg_natural_order[0] = 0) */ 568 (*block)[0] = (JCOEF) s; 569 } 570 571 if (entropy->ac_needed[blkn]) { 572 573 /* Section F.2.2.2: decode the AC coefficients */ 574 /* Since zeroes are skipped, output area must be cleared beforehand */ 575 for (k = 1; k < DCTSIZE2; k++) { 576 HUFF_DECODE(s, br_state, actbl, return FALSE, label2); 577 578 r = s >> 4; 579 s &= 15; 580 581 if (s) { 582 k += r; 583 CHECK_BIT_BUFFER(br_state, s, return FALSE); 584 r = GET_BITS(s); 585 s = HUFF_EXTEND(r, s); 586 /* Output coefficient in natural (dezigzagged) order. 587 * Note: the extra entries in jpeg_natural_order[] will save us 588 * if k >= DCTSIZE2, which could happen if the data is corrupted. 589 */ 590 (*block)[jpeg_natural_order[k]] = (JCOEF) s; 591 } else { 592 if (r != 15) 593 break; 594 k += 15; 595 } 596 } 597 598 } else { 599 600 /* Section F.2.2.2: decode the AC coefficients */ 601 /* In this path we just discard the values */ 602 for (k = 1; k < DCTSIZE2; k++) { 603 HUFF_DECODE(s, br_state, actbl, return FALSE, label3); 604 605 r = s >> 4; 606 s &= 15; 607 608 if (s) { 609 k += r; 610 CHECK_BIT_BUFFER(br_state, s, return FALSE); 611 DROP_BITS(s); 612 } else { 613 if (r != 15) 614 break; 615 k += 15; 616 } 617 } 618 619 } 620 } 621 622 /* Completed MCU, so update state */ 623 BITREAD_SAVE_STATE(cinfo,entropy->bitstate); 624 ASSIGN_STATE(entropy->saved, state); 625 } 626 627 /* Account for restart interval (no-op if not using restarts) */ 628 entropy->restarts_to_go--; 629 630 return TRUE; 631 } 632 633 634 /* 635 * Module initialization routine for Huffman entropy decoding. 636 */ 637 638 GLOBAL(void) 639 jinit_huff_decoder (j_decompress_ptr cinfo) 640 { 641 huff_entropy_ptr entropy; 642 int i; 643 644 entropy = (huff_entropy_ptr) 645 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, 646 SIZEOF(huff_entropy_decoder)); 647 cinfo->entropy = (struct jpeg_entropy_decoder *) entropy; 648 entropy->pub.start_pass = start_pass_huff_decoder; 649 entropy->pub.decode_mcu = decode_mcu; 650 651 /* Mark tables unallocated */ 652 for (i = 0; i < NUM_HUFF_TBLS; i++) { 653 entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL; 654 } 655 } --- EOF ---