1 /*
   2  * Copyright (c) 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "opto/addnode.hpp"
  27 #include "opto/callnode.hpp"
  28 #include "opto/castnode.hpp"
  29 #include "opto/connode.hpp"
  30 #include "opto/matcher.hpp"
  31 #include "opto/phaseX.hpp"
  32 #include "opto/subnode.hpp"
  33 #include "opto/type.hpp"
  34 
  35 //=============================================================================
  36 // If input is already higher or equal to cast type, then this is an identity.
  37 Node* ConstraintCastNode::Identity(PhaseGVN* phase) {
  38   Node* dom = dominating_cast(phase);
  39   if (dom != NULL) {
  40     return dom;
  41   }
  42   if (_carry_dependency) {
  43     return this;
  44   }
  45   return phase->type(in(1))->higher_equal_speculative(_type) ? in(1) : this;
  46 }
  47 
  48 //------------------------------Value------------------------------------------
  49 // Take 'join' of input and cast-up type
  50 const Type* ConstraintCastNode::Value(PhaseGVN* phase) const {
  51   if (in(0) && phase->type(in(0)) == Type::TOP) return Type::TOP;
  52   const Type* ft = phase->type(in(1))->filter_speculative(_type);
  53 
  54 #ifdef ASSERT
  55   // Previous versions of this function had some special case logic,
  56   // which is no longer necessary.  Make sure of the required effects.
  57   switch (Opcode()) {
  58     case Op_CastII:
  59     {
  60       const Type* t1 = phase->type(in(1));
  61       if( t1 == Type::TOP )  assert(ft == Type::TOP, "special case #1");
  62       const Type* rt = t1->join_speculative(_type);
  63       if (rt->empty())       assert(ft == Type::TOP, "special case #2");
  64       break;
  65     }
  66     case Op_CastPP:
  67     if (phase->type(in(1)) == TypePtr::NULL_PTR &&
  68         _type->isa_ptr() && _type->is_ptr()->_ptr == TypePtr::NotNull)
  69     assert(ft == Type::TOP, "special case #3");
  70     break;
  71   }
  72 #endif //ASSERT
  73 
  74   return ft;
  75 }
  76 
  77 //------------------------------Ideal------------------------------------------
  78 // Return a node which is more "ideal" than the current node.  Strip out
  79 // control copies
  80 Node *ConstraintCastNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  81   return (in(0) && remove_dead_region(phase, can_reshape)) ? this : NULL;
  82 }
  83 
  84 uint ConstraintCastNode::cmp(const Node &n) const {
  85   return TypeNode::cmp(n) && ((ConstraintCastNode&)n)._carry_dependency == _carry_dependency;
  86 }
  87 
  88 uint ConstraintCastNode::size_of() const {
  89   return sizeof(*this);
  90 }
  91 
  92 Node* ConstraintCastNode::make_cast(int opcode, Node* c, Node *n, const Type *t, bool carry_dependency) {
  93   switch(opcode) {
  94   case Op_CastII: {
  95     Node* cast = new CastIINode(n, t, carry_dependency);
  96     cast->set_req(0, c);
  97     return cast;
  98   }
  99   case Op_CastPP: {
 100     Node* cast = new CastPPNode(n, t, carry_dependency);
 101     cast->set_req(0, c);
 102     return cast;
 103   }
 104   case Op_CheckCastPP: return new CheckCastPPNode(c, n, t, carry_dependency);
 105   default:
 106     fatal("Bad opcode %d", opcode);
 107   }
 108   return NULL;
 109 }
 110 
 111 TypeNode* ConstraintCastNode::dominating_cast(PhaseTransform *phase) const {
 112   Node* val = in(1);
 113   Node* ctl = in(0);
 114   uint opc = Opcode();
 115   if (ctl == NULL) {
 116     return NULL;
 117   }
 118   // Range check CastIIs may all end up under a single range check and
 119   // in that case only the narrower CastII would be kept by the code
 120   // below which would be incorrect.
 121   if (is_CastII() && as_CastII()->has_range_check()) {
 122     return NULL;
 123   }
 124   for (DUIterator_Fast imax, i = val->fast_outs(imax); i < imax; i++) {
 125     Node* u = val->fast_out(i);
 126     if (u != this &&
 127         u->outcnt() > 0 &&
 128         u->Opcode() == opc &&
 129         u->in(0) != NULL &&
 130         u->bottom_type()->higher_equal(type())) {
 131       if (phase->is_dominator(u->in(0), ctl)) {
 132         return u->as_Type();
 133       }
 134       if (is_CheckCastPP() && u->in(1)->is_Proj() && u->in(1)->in(0)->is_Allocate() &&
 135           u->in(0)->is_Proj() && u->in(0)->in(0)->is_Initialize() &&
 136           u->in(1)->in(0)->as_Allocate()->initialization() == u->in(0)->in(0)) {
 137         // CheckCastPP following an allocation always dominates all
 138         // use of the allocation result
 139         return u->as_Type();
 140       }
 141     }
 142   }
 143   return NULL;
 144 }
 145 
 146 #ifndef PRODUCT
 147 void ConstraintCastNode::dump_spec(outputStream *st) const {
 148   TypeNode::dump_spec(st);
 149   if (_carry_dependency) {
 150     st->print(" carry dependency");
 151   }
 152 }
 153 #endif
 154 
 155 const Type* CastIINode::Value(PhaseGVN* phase) const {
 156   const Type *res = ConstraintCastNode::Value(phase);
 157 
 158   // Try to improve the type of the CastII if we recognize a CmpI/If
 159   // pattern.
 160   if (_carry_dependency) {
 161     if (in(0) != NULL && in(0)->in(0) != NULL && in(0)->in(0)->is_If()) {
 162       assert(in(0)->is_IfFalse() || in(0)->is_IfTrue(), "should be If proj");
 163       Node* proj = in(0);
 164       if (proj->in(0)->in(1)->is_Bool()) {
 165         Node* b = proj->in(0)->in(1);
 166         if (b->in(1)->Opcode() == Op_CmpI) {
 167           Node* cmp = b->in(1);
 168           if (cmp->in(1) == in(1) && phase->type(cmp->in(2))->isa_int()) {
 169             const TypeInt* in2_t = phase->type(cmp->in(2))->is_int();
 170             const Type* t = TypeInt::INT;
 171             BoolTest test = b->as_Bool()->_test;
 172             if (proj->is_IfFalse()) {
 173               test = test.negate();
 174             }
 175             BoolTest::mask m = test._test;
 176             jlong lo_long = min_jint;
 177             jlong hi_long = max_jint;
 178             if (m == BoolTest::le || m == BoolTest::lt) {
 179               hi_long = in2_t->_hi;
 180               if (m == BoolTest::lt) {
 181                 hi_long -= 1;
 182               }
 183             } else if (m == BoolTest::ge || m == BoolTest::gt) {
 184               lo_long = in2_t->_lo;
 185               if (m == BoolTest::gt) {
 186                 lo_long += 1;
 187               }
 188             } else if (m == BoolTest::eq) {
 189               lo_long = in2_t->_lo;
 190               hi_long = in2_t->_hi;
 191             } else if (m == BoolTest::ne) {
 192               // can't do any better
 193             } else {
 194               stringStream ss;
 195               test.dump_on(&ss);
 196               fatal("unexpected comparison %s", ss.as_string());
 197             }
 198             int lo_int = (int)lo_long;
 199             int hi_int = (int)hi_long;
 200 
 201             if (lo_long != (jlong)lo_int) {
 202               lo_int = min_jint;
 203             }
 204             if (hi_long != (jlong)hi_int) {
 205               hi_int = max_jint;
 206             }
 207 
 208             t = TypeInt::make(lo_int, hi_int, Type::WidenMax);
 209 
 210             res = res->filter_speculative(t);
 211 
 212             return res;
 213           }
 214         }
 215       }
 216     }
 217   }
 218   return res;
 219 }
 220 
 221 Node *CastIINode::Ideal(PhaseGVN *phase, bool can_reshape) {
 222   Node* progress = ConstraintCastNode::Ideal(phase, can_reshape);
 223   if (progress != NULL) {
 224     return progress;
 225   }
 226 
 227   // transform:
 228   // (CastII (AddI x const)) -> (AddI (CastII x) const)
 229   // So the AddI has a chance to be optimized out
 230   if (in(1)->Opcode() == Op_AddI) {
 231     Node* in2 = in(1)->in(2);
 232     const TypeInt* in2_t = phase->type(in2)->isa_int();
 233     if (in2_t != NULL && in2_t->singleton()) {
 234       int in2_const = in2_t->_lo;
 235       const TypeInt* current_type = _type->is_int();
 236       jlong new_lo_long = ((jlong)current_type->_lo) - in2_const;
 237       jlong new_hi_long = ((jlong)current_type->_hi) - in2_const;
 238       int new_lo = (int)new_lo_long;
 239       int new_hi = (int)new_hi_long;
 240       if (((jlong)new_lo) == new_lo_long && ((jlong)new_hi) == new_hi_long) {
 241         Node* in1 = in(1)->in(1);
 242         CastIINode* new_cast = (CastIINode*)clone();
 243         AddINode* new_add = (AddINode*)in(1)->clone();
 244         new_cast->set_type(TypeInt::make(new_lo, new_hi, current_type->_widen));
 245         new_cast->set_req(1, in1);
 246         new_add->set_req(1, phase->transform(new_cast));
 247         return new_add;
 248       }
 249     }
 250   }
 251   // Similar to ConvI2LNode::Ideal() for the same reasons
 252   if (can_reshape && !phase->C->major_progress()) {
 253     const TypeInt* this_type = this->type()->is_int();
 254     const TypeInt* in_type = phase->type(in(1))->isa_int();
 255     if (in_type != NULL && this_type != NULL &&
 256         (in_type->_lo != this_type->_lo ||
 257          in_type->_hi != this_type->_hi)) {
 258       int lo1 = this_type->_lo;
 259       int hi1 = this_type->_hi;
 260       int w1  = this_type->_widen;
 261 
 262       if (lo1 >= 0) {
 263         // Keep a range assertion of >=0.
 264         lo1 = 0;        hi1 = max_jint;
 265       } else if (hi1 < 0) {
 266         // Keep a range assertion of <0.
 267         lo1 = min_jint; hi1 = -1;
 268       } else {
 269         lo1 = min_jint; hi1 = max_jint;
 270       }
 271       const TypeInt* wtype = TypeInt::make(MAX2(in_type->_lo, lo1),
 272                                            MIN2(in_type->_hi, hi1),
 273                                            MAX2((int)in_type->_widen, w1));
 274       if (wtype != type()) {
 275         set_type(wtype);
 276         return this;
 277       }
 278     }
 279   }
 280   return NULL;
 281 }
 282 
 283 uint CastIINode::cmp(const Node &n) const {
 284   return ConstraintCastNode::cmp(n) && ((CastIINode&)n)._range_check_dependency == _range_check_dependency;
 285 }
 286 
 287 uint CastIINode::size_of() const {
 288   return sizeof(*this);
 289 }
 290 
 291 #ifndef PRODUCT
 292 void CastIINode::dump_spec(outputStream* st) const {
 293   ConstraintCastNode::dump_spec(st);
 294   if (_range_check_dependency) {
 295     st->print(" range check dependency");
 296   }
 297 }
 298 #endif
 299 
 300 //=============================================================================
 301 //------------------------------Identity---------------------------------------
 302 // If input is already higher or equal to cast type, then this is an identity.
 303 Node* CheckCastPPNode::Identity(PhaseGVN* phase) {
 304   Node* dom = dominating_cast(phase);
 305   if (dom != NULL) {
 306     return dom;
 307   }
 308   if (_carry_dependency) {
 309     return this;
 310   }
 311   // Toned down to rescue meeting at a Phi 3 different oops all implementing
 312   // the same interface.  CompileTheWorld starting at 502, kd12rc1.zip.
 313   return (phase->type(in(1)) == phase->type(this)) ? in(1) : this;
 314 }
 315 
 316 //------------------------------Value------------------------------------------
 317 // Take 'join' of input and cast-up type, unless working with an Interface
 318 const Type* CheckCastPPNode::Value(PhaseGVN* phase) const {
 319   if( in(0) && phase->type(in(0)) == Type::TOP ) return Type::TOP;
 320 
 321   const Type *inn = phase->type(in(1));
 322   if( inn == Type::TOP ) return Type::TOP;  // No information yet
 323 
 324   const TypePtr *in_type   = inn->isa_ptr();
 325   const TypePtr *my_type   = _type->isa_ptr();
 326   const Type *result = _type;
 327   if( in_type != NULL && my_type != NULL ) {
 328     TypePtr::PTR   in_ptr    = in_type->ptr();
 329     if (in_ptr == TypePtr::Null) {
 330       result = in_type;
 331     } else if (in_ptr == TypePtr::Constant) {
 332       const TypeOopPtr *jptr = my_type->isa_oopptr();
 333       assert(jptr, "");
 334       result = !in_type->higher_equal(_type)
 335       ? my_type->cast_to_ptr_type(TypePtr::NotNull)
 336       : in_type;
 337     } else {
 338       result =  my_type->cast_to_ptr_type( my_type->join_ptr(in_ptr) );
 339     }
 340   }
 341 
 342   // This is the code from TypePtr::xmeet() that prevents us from
 343   // having 2 ways to represent the same type. We have to replicate it
 344   // here because we don't go through meet/join.
 345   if (result->remove_speculative() == result->speculative()) {
 346     result = result->remove_speculative();
 347   }
 348 
 349   // Same as above: because we don't go through meet/join, remove the
 350   // speculative type if we know we won't use it.
 351   return result->cleanup_speculative();
 352 
 353   // JOIN NOT DONE HERE BECAUSE OF INTERFACE ISSUES.
 354   // FIX THIS (DO THE JOIN) WHEN UNION TYPES APPEAR!
 355 
 356   //
 357   // Remove this code after overnight run indicates no performance
 358   // loss from not performing JOIN at CheckCastPPNode
 359   //
 360   // const TypeInstPtr *in_oop = in->isa_instptr();
 361   // const TypeInstPtr *my_oop = _type->isa_instptr();
 362   // // If either input is an 'interface', return destination type
 363   // assert (in_oop == NULL || in_oop->klass() != NULL, "");
 364   // assert (my_oop == NULL || my_oop->klass() != NULL, "");
 365   // if( (in_oop && in_oop->klass()->is_interface())
 366   //   ||(my_oop && my_oop->klass()->is_interface()) ) {
 367   //   TypePtr::PTR  in_ptr = in->isa_ptr() ? in->is_ptr()->_ptr : TypePtr::BotPTR;
 368   //   // Preserve cast away nullness for interfaces
 369   //   if( in_ptr == TypePtr::NotNull && my_oop && my_oop->_ptr == TypePtr::BotPTR ) {
 370   //     return my_oop->cast_to_ptr_type(TypePtr::NotNull);
 371   //   }
 372   //   return _type;
 373   // }
 374   //
 375   // // Neither the input nor the destination type is an interface,
 376   //
 377   // // history: JOIN used to cause weird corner case bugs
 378   // //          return (in == TypeOopPtr::NULL_PTR) ? in : _type;
 379   // // JOIN picks up NotNull in common instance-of/check-cast idioms, both oops.
 380   // // JOIN does not preserve NotNull in other cases, e.g. RawPtr vs InstPtr
 381   // const Type *join = in->join(_type);
 382   // // Check if join preserved NotNull'ness for pointers
 383   // if( join->isa_ptr() && _type->isa_ptr() ) {
 384   //   TypePtr::PTR join_ptr = join->is_ptr()->_ptr;
 385   //   TypePtr::PTR type_ptr = _type->is_ptr()->_ptr;
 386   //   // If there isn't any NotNull'ness to preserve
 387   //   // OR if join preserved NotNull'ness then return it
 388   //   if( type_ptr == TypePtr::BotPTR  || type_ptr == TypePtr::Null ||
 389   //       join_ptr == TypePtr::NotNull || join_ptr == TypePtr::Constant ) {
 390   //     return join;
 391   //   }
 392   //   // ELSE return same old type as before
 393   //   return _type;
 394   // }
 395   // // Not joining two pointers
 396   // return join;
 397 }
 398 
 399 //=============================================================================
 400 //------------------------------Value------------------------------------------
 401 const Type* CastX2PNode::Value(PhaseGVN* phase) const {
 402   const Type* t = phase->type(in(1));
 403   if (t == Type::TOP) return Type::TOP;
 404   if (t->base() == Type_X && t->singleton()) {
 405     uintptr_t bits = (uintptr_t) t->is_intptr_t()->get_con();
 406     if (bits == 0)   return TypePtr::NULL_PTR;
 407     return TypeRawPtr::make((address) bits);
 408   }
 409   return CastX2PNode::bottom_type();
 410 }
 411 
 412 //------------------------------Idealize---------------------------------------
 413 static inline bool fits_in_int(const Type* t, bool but_not_min_int = false) {
 414   if (t == Type::TOP)  return false;
 415   const TypeX* tl = t->is_intptr_t();
 416   jint lo = min_jint;
 417   jint hi = max_jint;
 418   if (but_not_min_int)  ++lo;  // caller wants to negate the value w/o overflow
 419   return (tl->_lo >= lo) && (tl->_hi <= hi);
 420 }
 421 
 422 static inline Node* addP_of_X2P(PhaseGVN *phase,
 423                                 Node* base,
 424                                 Node* dispX,
 425                                 bool negate = false) {
 426   if (negate) {
 427     dispX = new SubXNode(phase->MakeConX(0), phase->transform(dispX));
 428   }
 429   return new AddPNode(phase->C->top(),
 430                       phase->transform(new CastX2PNode(base)),
 431                       phase->transform(dispX));
 432 }
 433 
 434 Node *CastX2PNode::Ideal(PhaseGVN *phase, bool can_reshape) {
 435   // convert CastX2P(AddX(x, y)) to AddP(CastX2P(x), y) if y fits in an int
 436   int op = in(1)->Opcode();
 437   Node* x;
 438   Node* y;
 439   switch (op) {
 440     case Op_SubX:
 441     x = in(1)->in(1);
 442     // Avoid ideal transformations ping-pong between this and AddP for raw pointers.
 443     if (phase->find_intptr_t_con(x, -1) == 0)
 444     break;
 445     y = in(1)->in(2);
 446     if (fits_in_int(phase->type(y), true)) {
 447       return addP_of_X2P(phase, x, y, true);
 448     }
 449     break;
 450     case Op_AddX:
 451     x = in(1)->in(1);
 452     y = in(1)->in(2);
 453     if (fits_in_int(phase->type(y))) {
 454       return addP_of_X2P(phase, x, y);
 455     }
 456     if (fits_in_int(phase->type(x))) {
 457       return addP_of_X2P(phase, y, x);
 458     }
 459     break;
 460   }
 461   return NULL;
 462 }
 463 
 464 //------------------------------Identity---------------------------------------
 465 Node* CastX2PNode::Identity(PhaseGVN* phase) {
 466   if (in(1)->Opcode() == Op_CastP2X)  return in(1)->in(1);
 467   return this;
 468 }
 469 
 470 //=============================================================================
 471 //------------------------------Value------------------------------------------
 472 const Type* CastP2XNode::Value(PhaseGVN* phase) const {
 473   const Type* t = phase->type(in(1));
 474   if (t == Type::TOP) return Type::TOP;
 475   if (t->base() == Type::RawPtr && t->singleton()) {
 476     uintptr_t bits = (uintptr_t) t->is_rawptr()->get_con();
 477     return TypeX::make(bits);
 478   }
 479   return CastP2XNode::bottom_type();
 480 }
 481 
 482 Node *CastP2XNode::Ideal(PhaseGVN *phase, bool can_reshape) {
 483   return (in(0) && remove_dead_region(phase, can_reshape)) ? this : NULL;
 484 }
 485 
 486 //------------------------------Identity---------------------------------------
 487 Node* CastP2XNode::Identity(PhaseGVN* phase) {
 488   if (in(1)->Opcode() == Op_CastX2P)  return in(1)->in(1);
 489   return this;
 490 }