1 /*
   2  * Copyright (c) 2001, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/metadataOnStackMark.hpp"
  27 #include "classfile/symbolTable.hpp"
  28 #include "code/codeCache.hpp"
  29 #include "gc/g1/concurrentMarkThread.inline.hpp"
  30 #include "gc/g1/g1CollectedHeap.inline.hpp"
  31 #include "gc/g1/g1CollectorState.hpp"
  32 #include "gc/g1/g1ConcurrentMark.inline.hpp"
  33 #include "gc/g1/g1HeapVerifier.hpp"
  34 #include "gc/g1/g1OopClosures.inline.hpp"
  35 #include "gc/g1/g1CardLiveData.inline.hpp"
  36 #include "gc/g1/g1Policy.hpp"
  37 #include "gc/g1/g1StringDedup.hpp"
  38 #include "gc/g1/heapRegion.inline.hpp"
  39 #include "gc/g1/heapRegionRemSet.hpp"
  40 #include "gc/g1/heapRegionSet.inline.hpp"
  41 #include "gc/shared/gcId.hpp"
  42 #include "gc/shared/gcTimer.hpp"
  43 #include "gc/shared/gcTrace.hpp"
  44 #include "gc/shared/gcTraceTime.inline.hpp"
  45 #include "gc/shared/genOopClosures.inline.hpp"
  46 #include "gc/shared/referencePolicy.hpp"
  47 #include "gc/shared/strongRootsScope.hpp"
  48 #include "gc/shared/suspendibleThreadSet.hpp"
  49 #include "gc/shared/taskqueue.inline.hpp"
  50 #include "gc/shared/vmGCOperations.hpp"
  51 #include "gc/shared/weakProcessor.hpp"
  52 #include "logging/log.hpp"
  53 #include "memory/allocation.hpp"
  54 #include "memory/resourceArea.hpp"
  55 #include "oops/oop.inline.hpp"
  56 #include "runtime/atomic.hpp"
  57 #include "runtime/handles.inline.hpp"
  58 #include "runtime/java.hpp"
  59 #include "runtime/prefetch.inline.hpp"
  60 #include "services/memTracker.hpp"
  61 #include "utilities/align.hpp"
  62 #include "utilities/growableArray.hpp"
  63 
  64 bool G1CMBitMapClosure::do_addr(HeapWord* const addr) {
  65   assert(addr < _cm->finger(), "invariant");
  66   assert(addr >= _task->finger(), "invariant");
  67 
  68   // We move that task's local finger along.
  69   _task->move_finger_to(addr);
  70 
  71   _task->scan_task_entry(G1TaskQueueEntry::from_oop(oop(addr)));
  72   // we only partially drain the local queue and global stack
  73   _task->drain_local_queue(true);
  74   _task->drain_global_stack(true);
  75 
  76   // if the has_aborted flag has been raised, we need to bail out of
  77   // the iteration
  78   return !_task->has_aborted();
  79 }
  80 
  81 G1CMMarkStack::G1CMMarkStack() :
  82   _max_chunk_capacity(0),
  83   _base(NULL),
  84   _chunk_capacity(0) {
  85   set_empty();
  86 }
  87 
  88 bool G1CMMarkStack::resize(size_t new_capacity) {
  89   assert(is_empty(), "Only resize when stack is empty.");
  90   assert(new_capacity <= _max_chunk_capacity,
  91          "Trying to resize stack to " SIZE_FORMAT " chunks when the maximum is " SIZE_FORMAT, new_capacity, _max_chunk_capacity);
  92 
  93   TaskQueueEntryChunk* new_base = MmapArrayAllocator<TaskQueueEntryChunk>::allocate_or_null(new_capacity, mtGC);
  94 
  95   if (new_base == NULL) {
  96     log_warning(gc)("Failed to reserve memory for new overflow mark stack with " SIZE_FORMAT " chunks and size " SIZE_FORMAT "B.", new_capacity, new_capacity * sizeof(TaskQueueEntryChunk));
  97     return false;
  98   }
  99   // Release old mapping.
 100   if (_base != NULL) {
 101     MmapArrayAllocator<TaskQueueEntryChunk>::free(_base, _chunk_capacity);
 102   }
 103 
 104   _base = new_base;
 105   _chunk_capacity = new_capacity;
 106   set_empty();
 107 
 108   return true;
 109 }
 110 
 111 size_t G1CMMarkStack::capacity_alignment() {
 112   return (size_t)lcm(os::vm_allocation_granularity(), sizeof(TaskQueueEntryChunk)) / sizeof(G1TaskQueueEntry);
 113 }
 114 
 115 bool G1CMMarkStack::initialize(size_t initial_capacity, size_t max_capacity) {
 116   guarantee(_max_chunk_capacity == 0, "G1CMMarkStack already initialized.");
 117 
 118   size_t const TaskEntryChunkSizeInVoidStar = sizeof(TaskQueueEntryChunk) / sizeof(G1TaskQueueEntry);
 119 
 120   _max_chunk_capacity = align_up(max_capacity, capacity_alignment()) / TaskEntryChunkSizeInVoidStar;
 121   size_t initial_chunk_capacity = align_up(initial_capacity, capacity_alignment()) / TaskEntryChunkSizeInVoidStar;
 122 
 123   guarantee(initial_chunk_capacity <= _max_chunk_capacity,
 124             "Maximum chunk capacity " SIZE_FORMAT " smaller than initial capacity " SIZE_FORMAT,
 125             _max_chunk_capacity,
 126             initial_chunk_capacity);
 127 
 128   log_debug(gc)("Initialize mark stack with " SIZE_FORMAT " chunks, maximum " SIZE_FORMAT,
 129                 initial_chunk_capacity, _max_chunk_capacity);
 130 
 131   return resize(initial_chunk_capacity);
 132 }
 133 
 134 void G1CMMarkStack::expand() {
 135   if (_chunk_capacity == _max_chunk_capacity) {
 136     log_debug(gc)("Can not expand overflow mark stack further, already at maximum capacity of " SIZE_FORMAT " chunks.", _chunk_capacity);
 137     return;
 138   }
 139   size_t old_capacity = _chunk_capacity;
 140   // Double capacity if possible
 141   size_t new_capacity = MIN2(old_capacity * 2, _max_chunk_capacity);
 142 
 143   if (resize(new_capacity)) {
 144     log_debug(gc)("Expanded mark stack capacity from " SIZE_FORMAT " to " SIZE_FORMAT " chunks",
 145                   old_capacity, new_capacity);
 146   } else {
 147     log_warning(gc)("Failed to expand mark stack capacity from " SIZE_FORMAT " to " SIZE_FORMAT " chunks",
 148                     old_capacity, new_capacity);
 149   }
 150 }
 151 
 152 G1CMMarkStack::~G1CMMarkStack() {
 153   if (_base != NULL) {
 154     MmapArrayAllocator<TaskQueueEntryChunk>::free(_base, _chunk_capacity);
 155   }
 156 }
 157 
 158 void G1CMMarkStack::add_chunk_to_list(TaskQueueEntryChunk* volatile* list, TaskQueueEntryChunk* elem) {
 159   elem->next = *list;
 160   *list = elem;
 161 }
 162 
 163 void G1CMMarkStack::add_chunk_to_chunk_list(TaskQueueEntryChunk* elem) {
 164   MutexLockerEx x(MarkStackChunkList_lock, Mutex::_no_safepoint_check_flag);
 165   add_chunk_to_list(&_chunk_list, elem);
 166   _chunks_in_chunk_list++;
 167 }
 168 
 169 void G1CMMarkStack::add_chunk_to_free_list(TaskQueueEntryChunk* elem) {
 170   MutexLockerEx x(MarkStackFreeList_lock, Mutex::_no_safepoint_check_flag);
 171   add_chunk_to_list(&_free_list, elem);
 172 }
 173 
 174 G1CMMarkStack::TaskQueueEntryChunk* G1CMMarkStack::remove_chunk_from_list(TaskQueueEntryChunk* volatile* list) {
 175   TaskQueueEntryChunk* result = *list;
 176   if (result != NULL) {
 177     *list = (*list)->next;
 178   }
 179   return result;
 180 }
 181 
 182 G1CMMarkStack::TaskQueueEntryChunk* G1CMMarkStack::remove_chunk_from_chunk_list() {
 183   MutexLockerEx x(MarkStackChunkList_lock, Mutex::_no_safepoint_check_flag);
 184   TaskQueueEntryChunk* result = remove_chunk_from_list(&_chunk_list);
 185   if (result != NULL) {
 186     _chunks_in_chunk_list--;
 187   }
 188   return result;
 189 }
 190 
 191 G1CMMarkStack::TaskQueueEntryChunk* G1CMMarkStack::remove_chunk_from_free_list() {
 192   MutexLockerEx x(MarkStackFreeList_lock, Mutex::_no_safepoint_check_flag);
 193   return remove_chunk_from_list(&_free_list);
 194 }
 195 
 196 G1CMMarkStack::TaskQueueEntryChunk* G1CMMarkStack::allocate_new_chunk() {
 197   // This dirty read of _hwm is okay because we only ever increase the _hwm in parallel code.
 198   // Further this limits _hwm to a value of _chunk_capacity + #threads, avoiding
 199   // wraparound of _hwm.
 200   if (_hwm >= _chunk_capacity) {
 201     return NULL;
 202   }
 203 
 204   size_t cur_idx = Atomic::add(1u, &_hwm) - 1;
 205   if (cur_idx >= _chunk_capacity) {
 206     return NULL;
 207   }
 208 
 209   TaskQueueEntryChunk* result = ::new (&_base[cur_idx]) TaskQueueEntryChunk;
 210   result->next = NULL;
 211   return result;
 212 }
 213 
 214 bool G1CMMarkStack::par_push_chunk(G1TaskQueueEntry* ptr_arr) {
 215   // Get a new chunk.
 216   TaskQueueEntryChunk* new_chunk = remove_chunk_from_free_list();
 217 
 218   if (new_chunk == NULL) {
 219     // Did not get a chunk from the free list. Allocate from backing memory.
 220     new_chunk = allocate_new_chunk();
 221 
 222     if (new_chunk == NULL) {
 223       return false;
 224     }
 225   }
 226 
 227   Copy::conjoint_memory_atomic(ptr_arr, new_chunk->data, EntriesPerChunk * sizeof(G1TaskQueueEntry));
 228 
 229   add_chunk_to_chunk_list(new_chunk);
 230 
 231   return true;
 232 }
 233 
 234 bool G1CMMarkStack::par_pop_chunk(G1TaskQueueEntry* ptr_arr) {
 235   TaskQueueEntryChunk* cur = remove_chunk_from_chunk_list();
 236 
 237   if (cur == NULL) {
 238     return false;
 239   }
 240 
 241   Copy::conjoint_memory_atomic(cur->data, ptr_arr, EntriesPerChunk * sizeof(G1TaskQueueEntry));
 242 
 243   add_chunk_to_free_list(cur);
 244   return true;
 245 }
 246 
 247 void G1CMMarkStack::set_empty() {
 248   _chunks_in_chunk_list = 0;
 249   _hwm = 0;
 250   _chunk_list = NULL;
 251   _free_list = NULL;
 252 }
 253 
 254 G1CMRootRegions::G1CMRootRegions() :
 255   _cm(NULL), _scan_in_progress(false),
 256   _should_abort(false), _claimed_survivor_index(0) { }
 257 
 258 void G1CMRootRegions::init(const G1SurvivorRegions* survivors, G1ConcurrentMark* cm) {
 259   _survivors = survivors;
 260   _cm = cm;
 261 }
 262 
 263 void G1CMRootRegions::prepare_for_scan() {
 264   assert(!scan_in_progress(), "pre-condition");
 265 
 266   // Currently, only survivors can be root regions.
 267   _claimed_survivor_index = 0;
 268   _scan_in_progress = _survivors->regions()->is_nonempty();
 269   _should_abort = false;
 270 }
 271 
 272 HeapRegion* G1CMRootRegions::claim_next() {
 273   if (_should_abort) {
 274     // If someone has set the should_abort flag, we return NULL to
 275     // force the caller to bail out of their loop.
 276     return NULL;
 277   }
 278 
 279   // Currently, only survivors can be root regions.
 280   const GrowableArray<HeapRegion*>* survivor_regions = _survivors->regions();
 281 
 282   int claimed_index = Atomic::add(1, &_claimed_survivor_index) - 1;
 283   if (claimed_index < survivor_regions->length()) {
 284     return survivor_regions->at(claimed_index);
 285   }
 286   return NULL;
 287 }
 288 
 289 uint G1CMRootRegions::num_root_regions() const {
 290   return (uint)_survivors->regions()->length();
 291 }
 292 
 293 void G1CMRootRegions::notify_scan_done() {
 294   MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
 295   _scan_in_progress = false;
 296   RootRegionScan_lock->notify_all();
 297 }
 298 
 299 void G1CMRootRegions::cancel_scan() {
 300   notify_scan_done();
 301 }
 302 
 303 void G1CMRootRegions::scan_finished() {
 304   assert(scan_in_progress(), "pre-condition");
 305 
 306   // Currently, only survivors can be root regions.
 307   if (!_should_abort) {
 308     assert(_claimed_survivor_index >= 0, "otherwise comparison is invalid: %d", _claimed_survivor_index);
 309     assert((uint)_claimed_survivor_index >= _survivors->length(),
 310            "we should have claimed all survivors, claimed index = %u, length = %u",
 311            (uint)_claimed_survivor_index, _survivors->length());
 312   }
 313 
 314   notify_scan_done();
 315 }
 316 
 317 bool G1CMRootRegions::wait_until_scan_finished() {
 318   if (!scan_in_progress()) return false;
 319 
 320   {
 321     MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
 322     while (scan_in_progress()) {
 323       RootRegionScan_lock->wait(Mutex::_no_safepoint_check_flag);
 324     }
 325   }
 326   return true;
 327 }
 328 
 329 // Returns the maximum number of workers to be used in a concurrent
 330 // phase based on the number of GC workers being used in a STW
 331 // phase.
 332 static uint scale_concurrent_worker_threads(uint num_gc_workers) {
 333   return MAX2((num_gc_workers + 2) / 4, 1U);
 334 }
 335 
 336 G1ConcurrentMark::G1ConcurrentMark(G1CollectedHeap* g1h,
 337                                    G1RegionToSpaceMapper* prev_bitmap_storage,
 338                                    G1RegionToSpaceMapper* next_bitmap_storage) :
 339   // _cm_thread set inside the constructor
 340   _g1h(g1h),
 341   _completed_initialization(false),
 342 
 343   _cleanup_list("Concurrent Mark Cleanup List"),
 344   _mark_bitmap_1(),
 345   _mark_bitmap_2(),
 346   _prev_mark_bitmap(&_mark_bitmap_1),
 347   _next_mark_bitmap(&_mark_bitmap_2),
 348 
 349   _heap_start(_g1h->reserved_region().start()),
 350   _heap_end(_g1h->reserved_region().end()),
 351 
 352   _root_regions(),
 353 
 354   _global_mark_stack(),
 355 
 356   // _finger set in set_non_marking_state
 357 
 358   _max_num_tasks(ParallelGCThreads),
 359   // _num_active_tasks set in set_non_marking_state()
 360   // _tasks set inside the constructor
 361 
 362   _task_queues(new G1CMTaskQueueSet((int) _max_num_tasks)),
 363   _terminator(ParallelTaskTerminator((int) _max_num_tasks, _task_queues)),
 364 
 365   _first_overflow_barrier_sync(),
 366   _second_overflow_barrier_sync(),
 367 
 368   _has_overflown(false),
 369   _concurrent(false),
 370   _has_aborted(false),
 371   _restart_for_overflow(false),
 372   _concurrent_marking_in_progress(false),
 373   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
 374   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) G1OldTracer()),
 375 
 376   // _verbose_level set below
 377 
 378   _init_times(),
 379   _remark_times(),
 380   _remark_mark_times(),
 381   _remark_weak_ref_times(),
 382   _cleanup_times(),
 383   _total_counting_time(0.0),
 384   _total_rs_scrub_time(0.0),
 385 
 386   _accum_task_vtime(NULL),
 387 
 388   _concurrent_workers(NULL),
 389   _num_concurrent_workers(0),
 390   _max_concurrent_workers(0)
 391 {
 392   _mark_bitmap_1.initialize(g1h->reserved_region(), prev_bitmap_storage);
 393   _mark_bitmap_2.initialize(g1h->reserved_region(), next_bitmap_storage);
 394 
 395   // Create & start ConcurrentMark thread.
 396   _cm_thread = new ConcurrentMarkThread(this);
 397   if (_cm_thread->osthread() == NULL) {
 398     vm_shutdown_during_initialization("Could not create ConcurrentMarkThread");
 399   }
 400 
 401   assert(CGC_lock != NULL, "CGC_lock must be initialized");
 402 
 403   SATBMarkQueueSet& satb_qs = JavaThread::satb_mark_queue_set();
 404   satb_qs.set_buffer_size(G1SATBBufferSize);
 405 
 406   _root_regions.init(_g1h->survivor(), this);
 407 
 408   if (FLAG_IS_DEFAULT(ConcGCThreads) || ConcGCThreads == 0) {
 409     // Calculate the number of concurrent worker threads by scaling
 410     // the number of parallel GC threads.
 411     uint marking_thread_num = scale_concurrent_worker_threads(ParallelGCThreads);
 412     FLAG_SET_ERGO(uint, ConcGCThreads, marking_thread_num);
 413   }
 414 
 415   assert(ConcGCThreads > 0, "ConcGCThreads have been set.");
 416   if (ConcGCThreads > ParallelGCThreads) {
 417     log_warning(gc)("More ConcGCThreads (%u) than ParallelGCThreads (%u).",
 418                     ConcGCThreads, ParallelGCThreads);
 419     return;
 420   }
 421 
 422   log_debug(gc)("ConcGCThreads: %u", ConcGCThreads);
 423   log_debug(gc)("ParallelGCThreads: %u", ParallelGCThreads);
 424 
 425   _num_concurrent_workers = ConcGCThreads;
 426   _max_concurrent_workers = _num_concurrent_workers;
 427 
 428   _concurrent_workers = new WorkGang("G1 Conc", _max_concurrent_workers, false, true);
 429   _concurrent_workers->initialize_workers();
 430 
 431   if (FLAG_IS_DEFAULT(MarkStackSize)) {
 432     size_t mark_stack_size =
 433       MIN2(MarkStackSizeMax,
 434           MAX2(MarkStackSize, (size_t) (_max_concurrent_workers * TASKQUEUE_SIZE)));
 435     // Verify that the calculated value for MarkStackSize is in range.
 436     // It would be nice to use the private utility routine from Arguments.
 437     if (!(mark_stack_size >= 1 && mark_stack_size <= MarkStackSizeMax)) {
 438       log_warning(gc)("Invalid value calculated for MarkStackSize (" SIZE_FORMAT "): "
 439                       "must be between 1 and " SIZE_FORMAT,
 440                       mark_stack_size, MarkStackSizeMax);
 441       return;
 442     }
 443     FLAG_SET_ERGO(size_t, MarkStackSize, mark_stack_size);
 444   } else {
 445     // Verify MarkStackSize is in range.
 446     if (FLAG_IS_CMDLINE(MarkStackSize)) {
 447       if (FLAG_IS_DEFAULT(MarkStackSizeMax)) {
 448         if (!(MarkStackSize >= 1 && MarkStackSize <= MarkStackSizeMax)) {
 449           log_warning(gc)("Invalid value specified for MarkStackSize (" SIZE_FORMAT "): "
 450                           "must be between 1 and " SIZE_FORMAT,
 451                           MarkStackSize, MarkStackSizeMax);
 452           return;
 453         }
 454       } else if (FLAG_IS_CMDLINE(MarkStackSizeMax)) {
 455         if (!(MarkStackSize >= 1 && MarkStackSize <= MarkStackSizeMax)) {
 456           log_warning(gc)("Invalid value specified for MarkStackSize (" SIZE_FORMAT ")"
 457                           " or for MarkStackSizeMax (" SIZE_FORMAT ")",
 458                           MarkStackSize, MarkStackSizeMax);
 459           return;
 460         }
 461       }
 462     }
 463   }
 464 
 465   if (!_global_mark_stack.initialize(MarkStackSize, MarkStackSizeMax)) {
 466     vm_exit_during_initialization("Failed to allocate initial concurrent mark overflow mark stack.");
 467   }
 468 
 469   _tasks = NEW_C_HEAP_ARRAY(G1CMTask*, _max_num_tasks, mtGC);
 470   _accum_task_vtime = NEW_C_HEAP_ARRAY(double, _max_num_tasks, mtGC);
 471 
 472   // so that the assertion in MarkingTaskQueue::task_queue doesn't fail
 473   _num_active_tasks = _max_num_tasks;
 474 
 475   for (uint i = 0; i < _max_num_tasks; ++i) {
 476     G1CMTaskQueue* task_queue = new G1CMTaskQueue();
 477     task_queue->initialize();
 478     _task_queues->register_queue(i, task_queue);
 479 
 480     _tasks[i] = new G1CMTask(i, this, task_queue);
 481 
 482     _accum_task_vtime[i] = 0.0;
 483   }
 484 
 485   set_non_marking_state();
 486   _completed_initialization = true;
 487 }
 488 
 489 void G1ConcurrentMark::reset() {
 490   // Starting values for these two. This should be called in a STW
 491   // phase.
 492   MemRegion reserved = _g1h->g1_reserved();
 493   _heap_start = reserved.start();
 494   _heap_end   = reserved.end();
 495 
 496   // Separated the asserts so that we know which one fires.
 497   assert(_heap_start != NULL, "heap bounds should look ok");
 498   assert(_heap_end != NULL, "heap bounds should look ok");
 499   assert(_heap_start < _heap_end, "heap bounds should look ok");
 500 
 501   // Reset all the marking data structures and any necessary flags
 502   reset_marking_state();
 503 
 504   // We reset all of them, since different phases will use
 505   // different number of active threads. So, it's easiest to have all
 506   // of them ready.
 507   for (uint i = 0; i < _max_num_tasks; ++i) {
 508     _tasks[i]->reset(_next_mark_bitmap);
 509   }
 510 
 511   // we need this to make sure that the flag is on during the evac
 512   // pause with initial mark piggy-backed
 513   set_concurrent_marking_in_progress();
 514 }
 515 
 516 
 517 void G1ConcurrentMark::reset_marking_state() {
 518   _global_mark_stack.set_empty();
 519 
 520   // Expand the marking stack, if we have to and if we can.
 521   if (has_overflown()) {
 522     _global_mark_stack.expand();
 523   }
 524 
 525   clear_has_overflown();
 526   _finger = _heap_start;
 527 
 528   for (uint i = 0; i < _max_num_tasks; ++i) {
 529     G1CMTaskQueue* queue = _task_queues->queue(i);
 530     queue->set_empty();
 531   }
 532 }
 533 
 534 void G1ConcurrentMark::set_concurrency(uint active_tasks) {
 535   assert(active_tasks <= _max_num_tasks, "we should not have more");
 536 
 537   _num_active_tasks = active_tasks;
 538   // Need to update the three data structures below according to the
 539   // number of active threads for this phase.
 540   _terminator   = ParallelTaskTerminator((int) active_tasks, _task_queues);
 541   _first_overflow_barrier_sync.set_n_workers((int) active_tasks);
 542   _second_overflow_barrier_sync.set_n_workers((int) active_tasks);
 543 }
 544 
 545 void G1ConcurrentMark::set_concurrency_and_phase(uint active_tasks, bool concurrent) {
 546   set_concurrency(active_tasks);
 547 
 548   _concurrent = concurrent;
 549   // We propagate this to all tasks, not just the active ones.
 550   for (uint i = 0; i < _max_num_tasks; ++i) {
 551     _tasks[i]->set_concurrent(concurrent);
 552   }
 553 
 554   if (concurrent) {
 555     set_concurrent_marking_in_progress();
 556   } else {
 557     // We currently assume that the concurrent flag has been set to
 558     // false before we start remark. At this point we should also be
 559     // in a STW phase.
 560     assert(!concurrent_marking_in_progress(), "invariant");
 561     assert(out_of_regions(),
 562            "only way to get here: _finger: " PTR_FORMAT ", _heap_end: " PTR_FORMAT,
 563            p2i(_finger), p2i(_heap_end));
 564   }
 565 }
 566 
 567 void G1ConcurrentMark::set_non_marking_state() {
 568   // We set the global marking state to some default values when we're
 569   // not doing marking.
 570   reset_marking_state();
 571   _num_active_tasks = 0;
 572   clear_concurrent_marking_in_progress();
 573 }
 574 
 575 G1ConcurrentMark::~G1ConcurrentMark() {
 576   // The G1ConcurrentMark instance is never freed.
 577   ShouldNotReachHere();
 578 }
 579 
 580 class G1ClearBitMapTask : public AbstractGangTask {
 581 public:
 582   static size_t chunk_size() { return M; }
 583 
 584 private:
 585   // Heap region closure used for clearing the given mark bitmap.
 586   class G1ClearBitmapHRClosure : public HeapRegionClosure {
 587   private:
 588     G1CMBitMap* _bitmap;
 589     G1ConcurrentMark* _cm;
 590   public:
 591     G1ClearBitmapHRClosure(G1CMBitMap* bitmap, G1ConcurrentMark* cm) : HeapRegionClosure(), _cm(cm), _bitmap(bitmap) {
 592     }
 593 
 594     virtual bool do_heap_region(HeapRegion* r) {
 595       size_t const chunk_size_in_words = G1ClearBitMapTask::chunk_size() / HeapWordSize;
 596 
 597       HeapWord* cur = r->bottom();
 598       HeapWord* const end = r->end();
 599 
 600       while (cur < end) {
 601         MemRegion mr(cur, MIN2(cur + chunk_size_in_words, end));
 602         _bitmap->clear_range(mr);
 603 
 604         cur += chunk_size_in_words;
 605 
 606         // Abort iteration if after yielding the marking has been aborted.
 607         if (_cm != NULL && _cm->do_yield_check() && _cm->has_aborted()) {
 608           return true;
 609         }
 610         // Repeat the asserts from before the start of the closure. We will do them
 611         // as asserts here to minimize their overhead on the product. However, we
 612         // will have them as guarantees at the beginning / end of the bitmap
 613         // clearing to get some checking in the product.
 614         assert(_cm == NULL || _cm->cm_thread()->during_cycle(), "invariant");
 615         assert(_cm == NULL || !G1CollectedHeap::heap()->collector_state()->mark_in_progress(), "invariant");
 616       }
 617       assert(cur == end, "Must have completed iteration over the bitmap for region %u.", r->hrm_index());
 618 
 619       return false;
 620     }
 621   };
 622 
 623   G1ClearBitmapHRClosure _cl;
 624   HeapRegionClaimer _hr_claimer;
 625   bool _suspendible; // If the task is suspendible, workers must join the STS.
 626 
 627 public:
 628   G1ClearBitMapTask(G1CMBitMap* bitmap, G1ConcurrentMark* cm, uint n_workers, bool suspendible) :
 629     AbstractGangTask("G1 Clear Bitmap"),
 630     _cl(bitmap, suspendible ? cm : NULL),
 631     _hr_claimer(n_workers),
 632     _suspendible(suspendible)
 633   { }
 634 
 635   void work(uint worker_id) {
 636     SuspendibleThreadSetJoiner sts_join(_suspendible);
 637     G1CollectedHeap::heap()->heap_region_par_iterate_from_worker_offset(&_cl, &_hr_claimer, worker_id);
 638   }
 639 
 640   bool is_complete() {
 641     return _cl.is_complete();
 642   }
 643 };
 644 
 645 void G1ConcurrentMark::clear_bitmap(G1CMBitMap* bitmap, WorkGang* workers, bool may_yield) {
 646   assert(may_yield || SafepointSynchronize::is_at_safepoint(), "Non-yielding bitmap clear only allowed at safepoint.");
 647 
 648   size_t const num_bytes_to_clear = (HeapRegion::GrainBytes * _g1h->num_regions()) / G1CMBitMap::heap_map_factor();
 649   size_t const num_chunks = align_up(num_bytes_to_clear, G1ClearBitMapTask::chunk_size()) / G1ClearBitMapTask::chunk_size();
 650 
 651   uint const num_workers = (uint)MIN2(num_chunks, (size_t)workers->active_workers());
 652 
 653   G1ClearBitMapTask cl(bitmap, this, num_workers, may_yield);
 654 
 655   log_debug(gc, ergo)("Running %s with %u workers for " SIZE_FORMAT " work units.", cl.name(), num_workers, num_chunks);
 656   workers->run_task(&cl, num_workers);
 657   guarantee(!may_yield || cl.is_complete(), "Must have completed iteration when not yielding.");
 658 }
 659 
 660 void G1ConcurrentMark::cleanup_for_next_mark() {
 661   // Make sure that the concurrent mark thread looks to still be in
 662   // the current cycle.
 663   guarantee(cm_thread()->during_cycle(), "invariant");
 664 
 665   // We are finishing up the current cycle by clearing the next
 666   // marking bitmap and getting it ready for the next cycle. During
 667   // this time no other cycle can start. So, let's make sure that this
 668   // is the case.
 669   guarantee(!_g1h->collector_state()->mark_in_progress(), "invariant");
 670 
 671   clear_bitmap(_next_mark_bitmap, _concurrent_workers, true);
 672 
 673   // Clear the live count data. If the marking has been aborted, the abort()
 674   // call already did that.
 675   if (!has_aborted()) {
 676     clear_live_data(_concurrent_workers);
 677     DEBUG_ONLY(verify_live_data_clear());
 678   }
 679 
 680   // Repeat the asserts from above.
 681   guarantee(cm_thread()->during_cycle(), "invariant");
 682   guarantee(!_g1h->collector_state()->mark_in_progress(), "invariant");
 683 }
 684 
 685 void G1ConcurrentMark::clear_prev_bitmap(WorkGang* workers) {
 686   assert(SafepointSynchronize::is_at_safepoint(), "Should only clear the entire prev bitmap at a safepoint.");
 687   clear_bitmap(_prev_mark_bitmap, workers, false);
 688 }
 689 
 690 class CheckBitmapClearHRClosure : public HeapRegionClosure {
 691   G1CMBitMap* _bitmap;
 692   bool _error;
 693  public:
 694   CheckBitmapClearHRClosure(G1CMBitMap* bitmap) : _bitmap(bitmap) {
 695   }
 696 
 697   virtual bool do_heap_region(HeapRegion* r) {
 698     // This closure can be called concurrently to the mutator, so we must make sure
 699     // that the result of the getNextMarkedWordAddress() call is compared to the
 700     // value passed to it as limit to detect any found bits.
 701     // end never changes in G1.
 702     HeapWord* end = r->end();
 703     return _bitmap->get_next_marked_addr(r->bottom(), end) != end;
 704   }
 705 };
 706 
 707 bool G1ConcurrentMark::next_mark_bitmap_is_clear() {
 708   CheckBitmapClearHRClosure cl(_next_mark_bitmap);
 709   _g1h->heap_region_iterate(&cl);
 710   return cl.is_complete();
 711 }
 712 
 713 class NoteStartOfMarkHRClosure: public HeapRegionClosure {
 714 public:
 715   bool do_heap_region(HeapRegion* r) {
 716     r->note_start_of_marking();
 717     return false;
 718   }
 719 };
 720 
 721 void G1ConcurrentMark::checkpoint_roots_initial_pre() {
 722   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 723 
 724   _has_aborted = false;
 725 
 726   // Initialize marking structures. This has to be done in a STW phase.
 727   reset();
 728 
 729   // For each region note start of marking.
 730   NoteStartOfMarkHRClosure startcl;
 731   g1h->heap_region_iterate(&startcl);
 732 }
 733 
 734 
 735 void G1ConcurrentMark::checkpoint_roots_initial_post() {
 736   G1CollectedHeap*   g1h = G1CollectedHeap::heap();
 737 
 738   // Start Concurrent Marking weak-reference discovery.
 739   ReferenceProcessor* rp = g1h->ref_processor_cm();
 740   // enable ("weak") refs discovery
 741   rp->enable_discovery();
 742   rp->setup_policy(false); // snapshot the soft ref policy to be used in this cycle
 743 
 744   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
 745   // This is the start of  the marking cycle, we're expected all
 746   // threads to have SATB queues with active set to false.
 747   satb_mq_set.set_active_all_threads(true, /* new active value */
 748                                      false /* expected_active */);
 749 
 750   _root_regions.prepare_for_scan();
 751 
 752   // update_g1_committed() will be called at the end of an evac pause
 753   // when marking is on. So, it's also called at the end of the
 754   // initial-mark pause to update the heap end, if the heap expands
 755   // during it. No need to call it here.
 756 }
 757 
 758 /*
 759  * Notice that in the next two methods, we actually leave the STS
 760  * during the barrier sync and join it immediately afterwards. If we
 761  * do not do this, the following deadlock can occur: one thread could
 762  * be in the barrier sync code, waiting for the other thread to also
 763  * sync up, whereas another one could be trying to yield, while also
 764  * waiting for the other threads to sync up too.
 765  *
 766  * Note, however, that this code is also used during remark and in
 767  * this case we should not attempt to leave / enter the STS, otherwise
 768  * we'll either hit an assert (debug / fastdebug) or deadlock
 769  * (product). So we should only leave / enter the STS if we are
 770  * operating concurrently.
 771  *
 772  * Because the thread that does the sync barrier has left the STS, it
 773  * is possible to be suspended for a Full GC or an evacuation pause
 774  * could occur. This is actually safe, since the entering the sync
 775  * barrier is one of the last things do_marking_step() does, and it
 776  * doesn't manipulate any data structures afterwards.
 777  */
 778 
 779 void G1ConcurrentMark::enter_first_sync_barrier(uint worker_id) {
 780   bool barrier_aborted;
 781   {
 782     SuspendibleThreadSetLeaver sts_leave(concurrent());
 783     barrier_aborted = !_first_overflow_barrier_sync.enter();
 784   }
 785 
 786   // at this point everyone should have synced up and not be doing any
 787   // more work
 788 
 789   if (barrier_aborted) {
 790     // If the barrier aborted we ignore the overflow condition and
 791     // just abort the whole marking phase as quickly as possible.
 792     return;
 793   }
 794 
 795   // If we're executing the concurrent phase of marking, reset the marking
 796   // state; otherwise the marking state is reset after reference processing,
 797   // during the remark pause.
 798   // If we reset here as a result of an overflow during the remark we will
 799   // see assertion failures from any subsequent set_concurrency_and_phase()
 800   // calls.
 801   if (concurrent()) {
 802     // let the task associated with with worker 0 do this
 803     if (worker_id == 0) {
 804       // task 0 is responsible for clearing the global data structures
 805       // We should be here because of an overflow. During STW we should
 806       // not clear the overflow flag since we rely on it being true when
 807       // we exit this method to abort the pause and restart concurrent
 808       // marking.
 809       reset_marking_state();
 810 
 811       log_info(gc, marking)("Concurrent Mark reset for overflow");
 812     }
 813   }
 814 
 815   // after this, each task should reset its own data structures then
 816   // then go into the second barrier
 817 }
 818 
 819 void G1ConcurrentMark::enter_second_sync_barrier(uint worker_id) {
 820   SuspendibleThreadSetLeaver sts_leave(concurrent());
 821   _second_overflow_barrier_sync.enter();
 822 
 823   // at this point everything should be re-initialized and ready to go
 824 }
 825 
 826 class G1CMConcurrentMarkingTask: public AbstractGangTask {
 827 private:
 828   G1ConcurrentMark*     _cm;
 829   ConcurrentMarkThread* _cmt;
 830 
 831 public:
 832   void work(uint worker_id) {
 833     assert(Thread::current()->is_ConcurrentGC_thread(), "Not a concurrent GC thread");
 834     ResourceMark rm;
 835 
 836     double start_vtime = os::elapsedVTime();
 837 
 838     {
 839       SuspendibleThreadSetJoiner sts_join;
 840 
 841       assert(worker_id < _cm->active_tasks(), "invariant");
 842 
 843       G1CMTask* task = _cm->task(worker_id);
 844       task->record_start_time();
 845       if (!_cm->has_aborted()) {
 846         do {
 847           task->do_marking_step(G1ConcMarkStepDurationMillis,
 848                                 true  /* do_termination */,
 849                                 false /* is_serial*/);
 850 
 851           _cm->do_yield_check();
 852         } while (!_cm->has_aborted() && task->has_aborted());
 853       }
 854       task->record_end_time();
 855       guarantee(!task->has_aborted() || _cm->has_aborted(), "invariant");
 856     }
 857 
 858     double end_vtime = os::elapsedVTime();
 859     _cm->update_accum_task_vtime(worker_id, end_vtime - start_vtime);
 860   }
 861 
 862   G1CMConcurrentMarkingTask(G1ConcurrentMark* cm,
 863                             ConcurrentMarkThread* cmt) :
 864       AbstractGangTask("Concurrent Mark"), _cm(cm), _cmt(cmt) { }
 865 
 866   ~G1CMConcurrentMarkingTask() { }
 867 };
 868 
 869 uint G1ConcurrentMark::calc_active_marking_workers() {
 870   uint result = 0;
 871   if (!UseDynamicNumberOfGCThreads ||
 872       (!FLAG_IS_DEFAULT(ConcGCThreads) &&
 873        !ForceDynamicNumberOfGCThreads)) {
 874     result = _max_concurrent_workers;
 875   } else {
 876     result =
 877       AdaptiveSizePolicy::calc_default_active_workers(_max_concurrent_workers,
 878                                                       1, /* Minimum workers */
 879                                                       _num_concurrent_workers,
 880                                                       Threads::number_of_non_daemon_threads());
 881     // Don't scale the result down by scale_concurrent_workers() because
 882     // that scaling has already gone into "_max_concurrent_workers".
 883   }
 884   assert(result > 0 && result <= _max_concurrent_workers,
 885          "Calculated number of marking workers must be larger than zero and at most the maximum %u, but is %u",
 886          _max_concurrent_workers, result);
 887   return result;
 888 }
 889 
 890 void G1ConcurrentMark::scan_root_region(HeapRegion* hr) {
 891   // Currently, only survivors can be root regions.
 892   assert(hr->next_top_at_mark_start() == hr->bottom(), "invariant");
 893   G1RootRegionScanClosure cl(_g1h, this);
 894 
 895   const uintx interval = PrefetchScanIntervalInBytes;
 896   HeapWord* curr = hr->bottom();
 897   const HeapWord* end = hr->top();
 898   while (curr < end) {
 899     Prefetch::read(curr, interval);
 900     oop obj = oop(curr);
 901     int size = obj->oop_iterate_size(&cl);
 902     assert(size == obj->size(), "sanity");
 903     curr += size;
 904   }
 905 }
 906 
 907 class G1CMRootRegionScanTask : public AbstractGangTask {
 908 private:
 909   G1ConcurrentMark* _cm;
 910 
 911 public:
 912   G1CMRootRegionScanTask(G1ConcurrentMark* cm) :
 913     AbstractGangTask("G1 Root Region Scan"), _cm(cm) { }
 914 
 915   void work(uint worker_id) {
 916     assert(Thread::current()->is_ConcurrentGC_thread(),
 917            "this should only be done by a conc GC thread");
 918 
 919     G1CMRootRegions* root_regions = _cm->root_regions();
 920     HeapRegion* hr = root_regions->claim_next();
 921     while (hr != NULL) {
 922       _cm->scan_root_region(hr);
 923       hr = root_regions->claim_next();
 924     }
 925   }
 926 };
 927 
 928 void G1ConcurrentMark::scan_root_regions() {
 929   // scan_in_progress() will have been set to true only if there was
 930   // at least one root region to scan. So, if it's false, we
 931   // should not attempt to do any further work.
 932   if (root_regions()->scan_in_progress()) {
 933     assert(!has_aborted(), "Aborting before root region scanning is finished not supported.");
 934 
 935     _num_concurrent_workers = MIN2(calc_active_marking_workers(),
 936                                    // We distribute work on a per-region basis, so starting
 937                                    // more threads than that is useless.
 938                                    root_regions()->num_root_regions());
 939     assert(_num_concurrent_workers <= _max_concurrent_workers,
 940            "Maximum number of marking threads exceeded");
 941 
 942     G1CMRootRegionScanTask task(this);
 943     log_debug(gc, ergo)("Running %s using %u workers for %u work units.",
 944                         task.name(), _num_concurrent_workers, root_regions()->num_root_regions());
 945     _concurrent_workers->run_task(&task, _num_concurrent_workers);
 946 
 947     // It's possible that has_aborted() is true here without actually
 948     // aborting the survivor scan earlier. This is OK as it's
 949     // mainly used for sanity checking.
 950     root_regions()->scan_finished();
 951   }
 952 }
 953 
 954 void G1ConcurrentMark::concurrent_cycle_start() {
 955   _gc_timer_cm->register_gc_start();
 956 
 957   _gc_tracer_cm->report_gc_start(GCCause::_no_gc /* first parameter is not used */, _gc_timer_cm->gc_start());
 958 
 959   _g1h->trace_heap_before_gc(_gc_tracer_cm);
 960 }
 961 
 962 void G1ConcurrentMark::concurrent_cycle_end() {
 963   _g1h->trace_heap_after_gc(_gc_tracer_cm);
 964 
 965   if (has_aborted()) {
 966     _gc_tracer_cm->report_concurrent_mode_failure();
 967   }
 968 
 969   _gc_timer_cm->register_gc_end();
 970 
 971   _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
 972 }
 973 
 974 void G1ConcurrentMark::mark_from_roots() {
 975   // we might be tempted to assert that:
 976   // assert(asynch == !SafepointSynchronize::is_at_safepoint(),
 977   //        "inconsistent argument?");
 978   // However that wouldn't be right, because it's possible that
 979   // a safepoint is indeed in progress as a younger generation
 980   // stop-the-world GC happens even as we mark in this generation.
 981 
 982   _restart_for_overflow = false;
 983 
 984   _num_concurrent_workers = calc_active_marking_workers();
 985 
 986   uint active_workers = MAX2(1U, _num_concurrent_workers);
 987 
 988   // Setting active workers is not guaranteed since fewer
 989   // worker threads may currently exist and more may not be
 990   // available.
 991   active_workers = _concurrent_workers->update_active_workers(active_workers);
 992   log_info(gc, task)("Using %u workers of %u for marking", active_workers, _concurrent_workers->total_workers());
 993 
 994   // Parallel task terminator is set in "set_concurrency_and_phase()"
 995   set_concurrency_and_phase(active_workers, true /* concurrent */);
 996 
 997   G1CMConcurrentMarkingTask marking_task(this, cm_thread());
 998   _concurrent_workers->run_task(&marking_task);
 999   print_stats();
1000 }
1001 
1002 void G1ConcurrentMark::checkpoint_roots_final(bool clear_all_soft_refs) {
1003   // world is stopped at this checkpoint
1004   assert(SafepointSynchronize::is_at_safepoint(),
1005          "world should be stopped");
1006 
1007   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1008 
1009   // If a full collection has happened, we shouldn't do this.
1010   if (has_aborted()) {
1011     g1h->collector_state()->set_mark_in_progress(false); // So bitmap clearing isn't confused
1012     return;
1013   }
1014 
1015   if (VerifyDuringGC) {
1016     g1h->verifier()->verify(G1HeapVerifier::G1VerifyRemark, VerifyOption_G1UsePrevMarking, "During GC (before)");
1017   }
1018   g1h->verifier()->check_bitmaps("Remark Start");
1019 
1020   G1Policy* g1p = g1h->g1_policy();
1021   g1p->record_concurrent_mark_remark_start();
1022 
1023   double start = os::elapsedTime();
1024 
1025   checkpoint_roots_final_work();
1026 
1027   double mark_work_end = os::elapsedTime();
1028 
1029   weak_refs_work(clear_all_soft_refs);
1030 
1031   if (has_overflown()) {
1032     // We overflowed.  Restart concurrent marking.
1033     _restart_for_overflow = true;
1034 
1035     // Verify the heap w.r.t. the previous marking bitmap.
1036     if (VerifyDuringGC) {
1037       g1h->verifier()->verify(G1HeapVerifier::G1VerifyRemark, VerifyOption_G1UsePrevMarking, "During GC (overflow)");
1038     }
1039 
1040     // Clear the marking state because we will be restarting
1041     // marking due to overflowing the global mark stack.
1042     reset_marking_state();
1043   } else {
1044     SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
1045     // We're done with marking.
1046     // This is the end of  the marking cycle, we're expected all
1047     // threads to have SATB queues with active set to true.
1048     satb_mq_set.set_active_all_threads(false, /* new active value */
1049                                        true /* expected_active */);
1050 
1051     if (VerifyDuringGC) {
1052       g1h->verifier()->verify(G1HeapVerifier::G1VerifyRemark, VerifyOption_G1UseNextMarking, "During GC (after)");
1053     }
1054     g1h->verifier()->check_bitmaps("Remark End");
1055     assert(!restart_for_overflow(), "sanity");
1056     // Completely reset the marking state since marking completed
1057     set_non_marking_state();
1058   }
1059 
1060   // Statistics
1061   double now = os::elapsedTime();
1062   _remark_mark_times.add((mark_work_end - start) * 1000.0);
1063   _remark_weak_ref_times.add((now - mark_work_end) * 1000.0);
1064   _remark_times.add((now - start) * 1000.0);
1065 
1066   g1p->record_concurrent_mark_remark_end();
1067 
1068   G1CMIsAliveClosure is_alive(g1h);
1069   _gc_tracer_cm->report_object_count_after_gc(&is_alive);
1070 }
1071 
1072 class G1NoteEndOfConcMarkClosure : public HeapRegionClosure {
1073   G1CollectedHeap* _g1;
1074   size_t _freed_bytes;
1075   FreeRegionList* _local_cleanup_list;
1076   uint _old_regions_removed;
1077   uint _humongous_regions_removed;
1078   HRRSCleanupTask* _hrrs_cleanup_task;
1079 
1080 public:
1081   G1NoteEndOfConcMarkClosure(G1CollectedHeap* g1,
1082                              FreeRegionList* local_cleanup_list,
1083                              HRRSCleanupTask* hrrs_cleanup_task) :
1084     _g1(g1),
1085     _freed_bytes(0),
1086     _local_cleanup_list(local_cleanup_list),
1087     _old_regions_removed(0),
1088     _humongous_regions_removed(0),
1089     _hrrs_cleanup_task(hrrs_cleanup_task) { }
1090 
1091   size_t freed_bytes() { return _freed_bytes; }
1092   const uint old_regions_removed() { return _old_regions_removed; }
1093   const uint humongous_regions_removed() { return _humongous_regions_removed; }
1094 
1095   bool do_heap_region(HeapRegion *hr) {
1096     _g1->reset_gc_time_stamps(hr);
1097     hr->note_end_of_marking();
1098 
1099     if (hr->used() > 0 && hr->max_live_bytes() == 0 && !hr->is_young() && !hr->is_archive()) {
1100       _freed_bytes += hr->used();
1101       hr->set_containing_set(NULL);
1102       if (hr->is_humongous()) {
1103         _humongous_regions_removed++;
1104         _g1->free_humongous_region(hr, _local_cleanup_list, true /* skip_remset */);
1105       } else {
1106         _old_regions_removed++;
1107         _g1->free_region(hr, _local_cleanup_list, true /* skip_remset */);
1108       }
1109     } else {
1110       hr->rem_set()->do_cleanup_work(_hrrs_cleanup_task);
1111     }
1112 
1113     return false;
1114   }
1115 };
1116 
1117 class G1ParNoteEndTask: public AbstractGangTask {
1118   friend class G1NoteEndOfConcMarkClosure;
1119 
1120 protected:
1121   G1CollectedHeap* _g1h;
1122   FreeRegionList* _cleanup_list;
1123   HeapRegionClaimer _hrclaimer;
1124 
1125 public:
1126   G1ParNoteEndTask(G1CollectedHeap* g1h, FreeRegionList* cleanup_list, uint n_workers) :
1127       AbstractGangTask("G1 note end"), _g1h(g1h), _cleanup_list(cleanup_list), _hrclaimer(n_workers) {
1128   }
1129 
1130   void work(uint worker_id) {
1131     FreeRegionList local_cleanup_list("Local Cleanup List");
1132     HRRSCleanupTask hrrs_cleanup_task;
1133     G1NoteEndOfConcMarkClosure g1_note_end(_g1h, &local_cleanup_list,
1134                                            &hrrs_cleanup_task);
1135     _g1h->heap_region_par_iterate_from_worker_offset(&g1_note_end, &_hrclaimer, worker_id);
1136     assert(g1_note_end.is_complete(), "Shouldn't have yielded!");
1137 
1138     // Now update the lists
1139     _g1h->remove_from_old_sets(g1_note_end.old_regions_removed(), g1_note_end.humongous_regions_removed());
1140     {
1141       MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
1142       _g1h->decrement_summary_bytes(g1_note_end.freed_bytes());
1143 
1144       // If we iterate over the global cleanup list at the end of
1145       // cleanup to do this printing we will not guarantee to only
1146       // generate output for the newly-reclaimed regions (the list
1147       // might not be empty at the beginning of cleanup; we might
1148       // still be working on its previous contents). So we do the
1149       // printing here, before we append the new regions to the global
1150       // cleanup list.
1151 
1152       G1HRPrinter* hr_printer = _g1h->hr_printer();
1153       if (hr_printer->is_active()) {
1154         FreeRegionListIterator iter(&local_cleanup_list);
1155         while (iter.more_available()) {
1156           HeapRegion* hr = iter.get_next();
1157           hr_printer->cleanup(hr);
1158         }
1159       }
1160 
1161       _cleanup_list->add_ordered(&local_cleanup_list);
1162       assert(local_cleanup_list.is_empty(), "post-condition");
1163 
1164       HeapRegionRemSet::finish_cleanup_task(&hrrs_cleanup_task);
1165     }
1166   }
1167 };
1168 
1169 void G1ConcurrentMark::cleanup() {
1170   // world is stopped at this checkpoint
1171   assert(SafepointSynchronize::is_at_safepoint(),
1172          "world should be stopped");
1173   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1174 
1175   // If a full collection has happened, we shouldn't do this.
1176   if (has_aborted()) {
1177     g1h->collector_state()->set_mark_in_progress(false); // So bitmap clearing isn't confused
1178     return;
1179   }
1180 
1181   g1h->verifier()->verify_region_sets_optional();
1182 
1183   if (VerifyDuringGC) {
1184     g1h->verifier()->verify(G1HeapVerifier::G1VerifyCleanup, VerifyOption_G1UsePrevMarking, "During GC (before)");
1185   }
1186   g1h->verifier()->check_bitmaps("Cleanup Start");
1187 
1188   G1Policy* g1p = g1h->g1_policy();
1189   g1p->record_concurrent_mark_cleanup_start();
1190 
1191   double start = os::elapsedTime();
1192 
1193   HeapRegionRemSet::reset_for_cleanup_tasks();
1194 
1195   {
1196     GCTraceTime(Debug, gc)("Finalize Live Data");
1197     finalize_live_data();
1198   }
1199 
1200   if (VerifyDuringGC) {
1201     GCTraceTime(Debug, gc)("Verify Live Data");
1202     verify_live_data();
1203   }
1204 
1205   g1h->collector_state()->set_mark_in_progress(false);
1206 
1207   double count_end = os::elapsedTime();
1208   double this_final_counting_time = (count_end - start);
1209   _total_counting_time += this_final_counting_time;
1210 
1211   if (log_is_enabled(Trace, gc, liveness)) {
1212     G1PrintRegionLivenessInfoClosure cl("Post-Marking");
1213     _g1h->heap_region_iterate(&cl);
1214   }
1215 
1216   // Install newly created mark bitMap as "prev".
1217   swap_mark_bitmaps();
1218 
1219   g1h->reset_gc_time_stamp();
1220 
1221   uint n_workers = _g1h->workers()->active_workers();
1222 
1223   // Note end of marking in all heap regions.
1224   G1ParNoteEndTask g1_par_note_end_task(g1h, &_cleanup_list, n_workers);
1225   g1h->workers()->run_task(&g1_par_note_end_task);
1226   g1h->check_gc_time_stamps();
1227 
1228   if (!cleanup_list_is_empty()) {
1229     // The cleanup list is not empty, so we'll have to process it
1230     // concurrently. Notify anyone else that might be wanting free
1231     // regions that there will be more free regions coming soon.
1232     g1h->set_free_regions_coming();
1233   }
1234 
1235   // call below, since it affects the metric by which we sort the heap
1236   // regions.
1237   if (G1ScrubRemSets) {
1238     double rs_scrub_start = os::elapsedTime();
1239     g1h->scrub_rem_set();
1240     _total_rs_scrub_time += (os::elapsedTime() - rs_scrub_start);
1241   }
1242 
1243   // this will also free any regions totally full of garbage objects,
1244   // and sort the regions.
1245   g1h->g1_policy()->record_concurrent_mark_cleanup_end();
1246 
1247   // Statistics.
1248   double end = os::elapsedTime();
1249   _cleanup_times.add((end - start) * 1000.0);
1250 
1251   // Clean up will have freed any regions completely full of garbage.
1252   // Update the soft reference policy with the new heap occupancy.
1253   Universe::update_heap_info_at_gc();
1254 
1255   if (VerifyDuringGC) {
1256     g1h->verifier()->verify(G1HeapVerifier::G1VerifyCleanup, VerifyOption_G1UsePrevMarking, "During GC (after)");
1257   }
1258 
1259   g1h->verifier()->check_bitmaps("Cleanup End");
1260 
1261   g1h->verifier()->verify_region_sets_optional();
1262 
1263   // We need to make this be a "collection" so any collection pause that
1264   // races with it goes around and waits for completeCleanup to finish.
1265   g1h->increment_total_collections();
1266 
1267   // Clean out dead classes and update Metaspace sizes.
1268   if (ClassUnloadingWithConcurrentMark) {
1269     ClassLoaderDataGraph::purge();
1270   }
1271   MetaspaceGC::compute_new_size();
1272 
1273   // We reclaimed old regions so we should calculate the sizes to make
1274   // sure we update the old gen/space data.
1275   g1h->g1mm()->update_sizes();
1276   g1h->allocation_context_stats().update_after_mark();
1277 }
1278 
1279 void G1ConcurrentMark::complete_cleanup() {
1280   if (has_aborted()) return;
1281 
1282   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1283 
1284   _cleanup_list.verify_optional();
1285   FreeRegionList tmp_free_list("Tmp Free List");
1286 
1287   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [complete cleanup] : "
1288                                   "cleanup list has %u entries",
1289                                   _cleanup_list.length());
1290 
1291   // No one else should be accessing the _cleanup_list at this point,
1292   // so it is not necessary to take any locks
1293   while (!_cleanup_list.is_empty()) {
1294     HeapRegion* hr = _cleanup_list.remove_region(true /* from_head */);
1295     assert(hr != NULL, "Got NULL from a non-empty list");
1296     hr->par_clear();
1297     tmp_free_list.add_ordered(hr);
1298 
1299     // Instead of adding one region at a time to the secondary_free_list,
1300     // we accumulate them in the local list and move them a few at a
1301     // time. This also cuts down on the number of notify_all() calls
1302     // we do during this process. We'll also append the local list when
1303     // _cleanup_list is empty (which means we just removed the last
1304     // region from the _cleanup_list).
1305     if ((tmp_free_list.length() % G1SecondaryFreeListAppendLength == 0) ||
1306         _cleanup_list.is_empty()) {
1307       log_develop_trace(gc, freelist)("G1ConcRegionFreeing [complete cleanup] : "
1308                                       "appending %u entries to the secondary_free_list, "
1309                                       "cleanup list still has %u entries",
1310                                       tmp_free_list.length(),
1311                                       _cleanup_list.length());
1312 
1313       {
1314         MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
1315         g1h->secondary_free_list_add(&tmp_free_list);
1316         SecondaryFreeList_lock->notify_all();
1317       }
1318 #ifndef PRODUCT
1319       if (G1StressConcRegionFreeing) {
1320         for (uintx i = 0; i < G1StressConcRegionFreeingDelayMillis; ++i) {
1321           os::sleep(Thread::current(), (jlong) 1, false);
1322         }
1323       }
1324 #endif
1325     }
1326   }
1327   assert(tmp_free_list.is_empty(), "post-condition");
1328 }
1329 
1330 // Supporting Object and Oop closures for reference discovery
1331 // and processing in during marking
1332 
1333 bool G1CMIsAliveClosure::do_object_b(oop obj) {
1334   HeapWord* addr = (HeapWord*)obj;
1335   return addr != NULL &&
1336          (!_g1->is_in_g1_reserved(addr) || !_g1->is_obj_ill(obj));
1337 }
1338 
1339 // 'Keep Alive' oop closure used by both serial parallel reference processing.
1340 // Uses the G1CMTask associated with a worker thread (for serial reference
1341 // processing the G1CMTask for worker 0 is used) to preserve (mark) and
1342 // trace referent objects.
1343 //
1344 // Using the G1CMTask and embedded local queues avoids having the worker
1345 // threads operating on the global mark stack. This reduces the risk
1346 // of overflowing the stack - which we would rather avoid at this late
1347 // state. Also using the tasks' local queues removes the potential
1348 // of the workers interfering with each other that could occur if
1349 // operating on the global stack.
1350 
1351 class G1CMKeepAliveAndDrainClosure: public OopClosure {
1352   G1ConcurrentMark* _cm;
1353   G1CMTask*         _task;
1354   int               _ref_counter_limit;
1355   int               _ref_counter;
1356   bool              _is_serial;
1357  public:
1358   G1CMKeepAliveAndDrainClosure(G1ConcurrentMark* cm, G1CMTask* task, bool is_serial) :
1359     _cm(cm), _task(task), _is_serial(is_serial),
1360     _ref_counter_limit(G1RefProcDrainInterval) {
1361     assert(_ref_counter_limit > 0, "sanity");
1362     assert(!_is_serial || _task->worker_id() == 0, "only task 0 for serial code");
1363     _ref_counter = _ref_counter_limit;
1364   }
1365 
1366   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
1367   virtual void do_oop(      oop* p) { do_oop_work(p); }
1368 
1369   template <class T> void do_oop_work(T* p) {
1370     if (!_cm->has_overflown()) {
1371       oop obj = oopDesc::load_decode_heap_oop(p);
1372       _task->deal_with_reference(obj);
1373       _ref_counter--;
1374 
1375       if (_ref_counter == 0) {
1376         // We have dealt with _ref_counter_limit references, pushing them
1377         // and objects reachable from them on to the local stack (and
1378         // possibly the global stack). Call G1CMTask::do_marking_step() to
1379         // process these entries.
1380         //
1381         // We call G1CMTask::do_marking_step() in a loop, which we'll exit if
1382         // there's nothing more to do (i.e. we're done with the entries that
1383         // were pushed as a result of the G1CMTask::deal_with_reference() calls
1384         // above) or we overflow.
1385         //
1386         // Note: G1CMTask::do_marking_step() can set the G1CMTask::has_aborted()
1387         // flag while there may still be some work to do. (See the comment at
1388         // the beginning of G1CMTask::do_marking_step() for those conditions -
1389         // one of which is reaching the specified time target.) It is only
1390         // when G1CMTask::do_marking_step() returns without setting the
1391         // has_aborted() flag that the marking step has completed.
1392         do {
1393           double mark_step_duration_ms = G1ConcMarkStepDurationMillis;
1394           _task->do_marking_step(mark_step_duration_ms,
1395                                  false      /* do_termination */,
1396                                  _is_serial);
1397         } while (_task->has_aborted() && !_cm->has_overflown());
1398         _ref_counter = _ref_counter_limit;
1399       }
1400     }
1401   }
1402 };
1403 
1404 // 'Drain' oop closure used by both serial and parallel reference processing.
1405 // Uses the G1CMTask associated with a given worker thread (for serial
1406 // reference processing the G1CMtask for worker 0 is used). Calls the
1407 // do_marking_step routine, with an unbelievably large timeout value,
1408 // to drain the marking data structures of the remaining entries
1409 // added by the 'keep alive' oop closure above.
1410 
1411 class G1CMDrainMarkingStackClosure: public VoidClosure {
1412   G1ConcurrentMark* _cm;
1413   G1CMTask*         _task;
1414   bool              _is_serial;
1415  public:
1416   G1CMDrainMarkingStackClosure(G1ConcurrentMark* cm, G1CMTask* task, bool is_serial) :
1417     _cm(cm), _task(task), _is_serial(is_serial) {
1418     assert(!_is_serial || _task->worker_id() == 0, "only task 0 for serial code");
1419   }
1420 
1421   void do_void() {
1422     do {
1423       // We call G1CMTask::do_marking_step() to completely drain the local
1424       // and global marking stacks of entries pushed by the 'keep alive'
1425       // oop closure (an instance of G1CMKeepAliveAndDrainClosure above).
1426       //
1427       // G1CMTask::do_marking_step() is called in a loop, which we'll exit
1428       // if there's nothing more to do (i.e. we've completely drained the
1429       // entries that were pushed as a a result of applying the 'keep alive'
1430       // closure to the entries on the discovered ref lists) or we overflow
1431       // the global marking stack.
1432       //
1433       // Note: G1CMTask::do_marking_step() can set the G1CMTask::has_aborted()
1434       // flag while there may still be some work to do. (See the comment at
1435       // the beginning of G1CMTask::do_marking_step() for those conditions -
1436       // one of which is reaching the specified time target.) It is only
1437       // when G1CMTask::do_marking_step() returns without setting the
1438       // has_aborted() flag that the marking step has completed.
1439 
1440       _task->do_marking_step(1000000000.0 /* something very large */,
1441                              true         /* do_termination */,
1442                              _is_serial);
1443     } while (_task->has_aborted() && !_cm->has_overflown());
1444   }
1445 };
1446 
1447 // Implementation of AbstractRefProcTaskExecutor for parallel
1448 // reference processing at the end of G1 concurrent marking
1449 
1450 class G1CMRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
1451 private:
1452   G1CollectedHeap*  _g1h;
1453   G1ConcurrentMark* _cm;
1454   WorkGang*         _workers;
1455   uint              _active_workers;
1456 
1457 public:
1458   G1CMRefProcTaskExecutor(G1CollectedHeap* g1h,
1459                           G1ConcurrentMark* cm,
1460                           WorkGang* workers,
1461                           uint n_workers) :
1462     _g1h(g1h), _cm(cm),
1463     _workers(workers), _active_workers(n_workers) { }
1464 
1465   // Executes the given task using concurrent marking worker threads.
1466   virtual void execute(ProcessTask& task);
1467   virtual void execute(EnqueueTask& task);
1468 };
1469 
1470 class G1CMRefProcTaskProxy: public AbstractGangTask {
1471   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
1472   ProcessTask&      _proc_task;
1473   G1CollectedHeap*  _g1h;
1474   G1ConcurrentMark* _cm;
1475 
1476 public:
1477   G1CMRefProcTaskProxy(ProcessTask& proc_task,
1478                        G1CollectedHeap* g1h,
1479                        G1ConcurrentMark* cm) :
1480     AbstractGangTask("Process reference objects in parallel"),
1481     _proc_task(proc_task), _g1h(g1h), _cm(cm) {
1482     ReferenceProcessor* rp = _g1h->ref_processor_cm();
1483     assert(rp->processing_is_mt(), "shouldn't be here otherwise");
1484   }
1485 
1486   virtual void work(uint worker_id) {
1487     ResourceMark rm;
1488     HandleMark hm;
1489     G1CMTask* task = _cm->task(worker_id);
1490     G1CMIsAliveClosure g1_is_alive(_g1h);
1491     G1CMKeepAliveAndDrainClosure g1_par_keep_alive(_cm, task, false /* is_serial */);
1492     G1CMDrainMarkingStackClosure g1_par_drain(_cm, task, false /* is_serial */);
1493 
1494     _proc_task.work(worker_id, g1_is_alive, g1_par_keep_alive, g1_par_drain);
1495   }
1496 };
1497 
1498 void G1CMRefProcTaskExecutor::execute(ProcessTask& proc_task) {
1499   assert(_workers != NULL, "Need parallel worker threads.");
1500   assert(_g1h->ref_processor_cm()->processing_is_mt(), "processing is not MT");
1501 
1502   G1CMRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _cm);
1503 
1504   // We need to reset the concurrency level before each
1505   // proxy task execution, so that the termination protocol
1506   // and overflow handling in G1CMTask::do_marking_step() knows
1507   // how many workers to wait for.
1508   _cm->set_concurrency(_active_workers);
1509   _workers->run_task(&proc_task_proxy);
1510 }
1511 
1512 class G1CMRefEnqueueTaskProxy: public AbstractGangTask {
1513   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
1514   EnqueueTask& _enq_task;
1515 
1516 public:
1517   G1CMRefEnqueueTaskProxy(EnqueueTask& enq_task) :
1518     AbstractGangTask("Enqueue reference objects in parallel"),
1519     _enq_task(enq_task) { }
1520 
1521   virtual void work(uint worker_id) {
1522     _enq_task.work(worker_id);
1523   }
1524 };
1525 
1526 void G1CMRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
1527   assert(_workers != NULL, "Need parallel worker threads.");
1528   assert(_g1h->ref_processor_cm()->processing_is_mt(), "processing is not MT");
1529 
1530   G1CMRefEnqueueTaskProxy enq_task_proxy(enq_task);
1531 
1532   // Not strictly necessary but...
1533   //
1534   // We need to reset the concurrency level before each
1535   // proxy task execution, so that the termination protocol
1536   // and overflow handling in G1CMTask::do_marking_step() knows
1537   // how many workers to wait for.
1538   _cm->set_concurrency(_active_workers);
1539   _workers->run_task(&enq_task_proxy);
1540 }
1541 
1542 void G1ConcurrentMark::weak_refs_work(bool clear_all_soft_refs) {
1543   if (has_overflown()) {
1544     // Skip processing the discovered references if we have
1545     // overflown the global marking stack. Reference objects
1546     // only get discovered once so it is OK to not
1547     // de-populate the discovered reference lists. We could have,
1548     // but the only benefit would be that, when marking restarts,
1549     // less reference objects are discovered.
1550     return;
1551   }
1552 
1553   ResourceMark rm;
1554   HandleMark   hm;
1555 
1556   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1557 
1558   // Is alive closure.
1559   G1CMIsAliveClosure g1_is_alive(g1h);
1560 
1561   // Inner scope to exclude the cleaning of the string and symbol
1562   // tables from the displayed time.
1563   {
1564     GCTraceTime(Debug, gc, phases) trace("Reference Processing", _gc_timer_cm);
1565 
1566     ReferenceProcessor* rp = g1h->ref_processor_cm();
1567 
1568     // See the comment in G1CollectedHeap::ref_processing_init()
1569     // about how reference processing currently works in G1.
1570 
1571     // Set the soft reference policy
1572     rp->setup_policy(clear_all_soft_refs);
1573     assert(_global_mark_stack.is_empty(), "mark stack should be empty");
1574 
1575     // Instances of the 'Keep Alive' and 'Complete GC' closures used
1576     // in serial reference processing. Note these closures are also
1577     // used for serially processing (by the the current thread) the
1578     // JNI references during parallel reference processing.
1579     //
1580     // These closures do not need to synchronize with the worker
1581     // threads involved in parallel reference processing as these
1582     // instances are executed serially by the current thread (e.g.
1583     // reference processing is not multi-threaded and is thus
1584     // performed by the current thread instead of a gang worker).
1585     //
1586     // The gang tasks involved in parallel reference processing create
1587     // their own instances of these closures, which do their own
1588     // synchronization among themselves.
1589     G1CMKeepAliveAndDrainClosure g1_keep_alive(this, task(0), true /* is_serial */);
1590     G1CMDrainMarkingStackClosure g1_drain_mark_stack(this, task(0), true /* is_serial */);
1591 
1592     // We need at least one active thread. If reference processing
1593     // is not multi-threaded we use the current (VMThread) thread,
1594     // otherwise we use the work gang from the G1CollectedHeap and
1595     // we utilize all the worker threads we can.
1596     bool processing_is_mt = rp->processing_is_mt();
1597     uint active_workers = (processing_is_mt ? g1h->workers()->active_workers() : 1U);
1598     active_workers = MAX2(MIN2(active_workers, _max_num_tasks), 1U);
1599 
1600     // Parallel processing task executor.
1601     G1CMRefProcTaskExecutor par_task_executor(g1h, this,
1602                                               g1h->workers(), active_workers);
1603     AbstractRefProcTaskExecutor* executor = (processing_is_mt ? &par_task_executor : NULL);
1604 
1605     // Set the concurrency level. The phase was already set prior to
1606     // executing the remark task.
1607     set_concurrency(active_workers);
1608 
1609     // Set the degree of MT processing here.  If the discovery was done MT,
1610     // the number of threads involved during discovery could differ from
1611     // the number of active workers.  This is OK as long as the discovered
1612     // Reference lists are balanced (see balance_all_queues() and balance_queues()).
1613     rp->set_active_mt_degree(active_workers);
1614 
1615     ReferenceProcessorPhaseTimes pt(_gc_timer_cm, rp->num_q());
1616 
1617     // Process the weak references.
1618     const ReferenceProcessorStats& stats =
1619         rp->process_discovered_references(&g1_is_alive,
1620                                           &g1_keep_alive,
1621                                           &g1_drain_mark_stack,
1622                                           executor,
1623                                           &pt);
1624     _gc_tracer_cm->report_gc_reference_stats(stats);
1625     pt.print_all_references();
1626 
1627     // The do_oop work routines of the keep_alive and drain_marking_stack
1628     // oop closures will set the has_overflown flag if we overflow the
1629     // global marking stack.
1630 
1631     assert(has_overflown() || _global_mark_stack.is_empty(),
1632             "Mark stack should be empty (unless it has overflown)");
1633 
1634     assert(rp->num_q() == active_workers, "why not");
1635 
1636     rp->enqueue_discovered_references(executor, &pt);
1637 
1638     rp->verify_no_references_recorded();
1639 
1640     pt.print_enqueue_phase();
1641 
1642     assert(!rp->discovery_enabled(), "Post condition");
1643   }
1644 
1645   assert(has_overflown() || _global_mark_stack.is_empty(),
1646           "Mark stack should be empty (unless it has overflown)");
1647 
1648   {
1649     GCTraceTime(Debug, gc, phases) debug("Weak Processing", _gc_timer_cm);
1650     WeakProcessor::weak_oops_do(&g1_is_alive, &do_nothing_cl);
1651   }
1652 
1653   if (has_overflown()) {
1654     // We can not trust g1_is_alive if the marking stack overflowed
1655     return;
1656   }
1657 
1658   assert(_global_mark_stack.is_empty(), "Marking should have completed");
1659 
1660   // Unload Klasses, String, Symbols, Code Cache, etc.
1661   if (ClassUnloadingWithConcurrentMark) {
1662     GCTraceTime(Debug, gc, phases) debug("Class Unloading", _gc_timer_cm);
1663     bool purged_classes = SystemDictionary::do_unloading(&g1_is_alive, _gc_timer_cm, false /* Defer cleaning */);
1664     g1h->complete_cleaning(&g1_is_alive, purged_classes);
1665   } else {
1666     GCTraceTime(Debug, gc, phases) debug("Cleanup", _gc_timer_cm);
1667     // No need to clean string table and symbol table as they are treated as strong roots when
1668     // class unloading is disabled.
1669     g1h->partial_cleaning(&g1_is_alive, false, false, G1StringDedup::is_enabled());
1670 
1671   }
1672 }
1673 
1674 void G1ConcurrentMark::swap_mark_bitmaps() {
1675   G1CMBitMap* temp = _prev_mark_bitmap;
1676   _prev_mark_bitmap = _next_mark_bitmap;
1677   _next_mark_bitmap = temp;
1678 }
1679 
1680 // Closure for marking entries in SATB buffers.
1681 class G1CMSATBBufferClosure : public SATBBufferClosure {
1682 private:
1683   G1CMTask* _task;
1684   G1CollectedHeap* _g1h;
1685 
1686   // This is very similar to G1CMTask::deal_with_reference, but with
1687   // more relaxed requirements for the argument, so this must be more
1688   // circumspect about treating the argument as an object.
1689   void do_entry(void* entry) const {
1690     _task->increment_refs_reached();
1691     oop const obj = static_cast<oop>(entry);
1692     _task->make_reference_grey(obj);
1693   }
1694 
1695 public:
1696   G1CMSATBBufferClosure(G1CMTask* task, G1CollectedHeap* g1h)
1697     : _task(task), _g1h(g1h) { }
1698 
1699   virtual void do_buffer(void** buffer, size_t size) {
1700     for (size_t i = 0; i < size; ++i) {
1701       do_entry(buffer[i]);
1702     }
1703   }
1704 };
1705 
1706 class G1RemarkThreadsClosure : public ThreadClosure {
1707   G1CMSATBBufferClosure _cm_satb_cl;
1708   G1CMOopClosure _cm_cl;
1709   MarkingCodeBlobClosure _code_cl;
1710   int _thread_parity;
1711 
1712  public:
1713   G1RemarkThreadsClosure(G1CollectedHeap* g1h, G1CMTask* task) :
1714     _cm_satb_cl(task, g1h),
1715     _cm_cl(g1h, g1h->concurrent_mark(), task),
1716     _code_cl(&_cm_cl, !CodeBlobToOopClosure::FixRelocations),
1717     _thread_parity(Threads::thread_claim_parity()) {}
1718 
1719   void do_thread(Thread* thread) {
1720     if (thread->is_Java_thread()) {
1721       if (thread->claim_oops_do(true, _thread_parity)) {
1722         JavaThread* jt = (JavaThread*)thread;
1723 
1724         // In theory it should not be neccessary to explicitly walk the nmethods to find roots for concurrent marking
1725         // however the liveness of oops reachable from nmethods have very complex lifecycles:
1726         // * Alive if on the stack of an executing method
1727         // * Weakly reachable otherwise
1728         // Some objects reachable from nmethods, such as the class loader (or klass_holder) of the receiver should be
1729         // live by the SATB invariant but other oops recorded in nmethods may behave differently.
1730         jt->nmethods_do(&_code_cl);
1731 
1732         jt->satb_mark_queue().apply_closure_and_empty(&_cm_satb_cl);
1733       }
1734     } else if (thread->is_VM_thread()) {
1735       if (thread->claim_oops_do(true, _thread_parity)) {
1736         JavaThread::satb_mark_queue_set().shared_satb_queue()->apply_closure_and_empty(&_cm_satb_cl);
1737       }
1738     }
1739   }
1740 };
1741 
1742 class G1CMRemarkTask: public AbstractGangTask {
1743 private:
1744   G1ConcurrentMark* _cm;
1745 public:
1746   void work(uint worker_id) {
1747     G1CMTask* task = _cm->task(worker_id);
1748     task->record_start_time();
1749     {
1750       ResourceMark rm;
1751       HandleMark hm;
1752 
1753       G1RemarkThreadsClosure threads_f(G1CollectedHeap::heap(), task);
1754       Threads::threads_do(&threads_f);
1755     }
1756 
1757     do {
1758       task->do_marking_step(1000000000.0 /* something very large */,
1759                             true         /* do_termination       */,
1760                             false        /* is_serial            */);
1761     } while (task->has_aborted() && !_cm->has_overflown());
1762     // If we overflow, then we do not want to restart. We instead
1763     // want to abort remark and do concurrent marking again.
1764     task->record_end_time();
1765   }
1766 
1767   G1CMRemarkTask(G1ConcurrentMark* cm, uint active_workers) :
1768     AbstractGangTask("Par Remark"), _cm(cm) {
1769     _cm->terminator()->reset_for_reuse(active_workers);
1770   }
1771 };
1772 
1773 void G1ConcurrentMark::checkpoint_roots_final_work() {
1774   ResourceMark rm;
1775   HandleMark   hm;
1776   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1777 
1778   GCTraceTime(Debug, gc, phases) trace("Finalize Marking", _gc_timer_cm);
1779 
1780   g1h->ensure_parsability(false);
1781 
1782   // this is remark, so we'll use up all active threads
1783   uint active_workers = g1h->workers()->active_workers();
1784   set_concurrency_and_phase(active_workers, false /* concurrent */);
1785   // Leave _parallel_marking_threads at it's
1786   // value originally calculated in the G1ConcurrentMark
1787   // constructor and pass values of the active workers
1788   // through the gang in the task.
1789 
1790   {
1791     StrongRootsScope srs(active_workers);
1792 
1793     G1CMRemarkTask remarkTask(this, active_workers);
1794     // We will start all available threads, even if we decide that the
1795     // active_workers will be fewer. The extra ones will just bail out
1796     // immediately.
1797     g1h->workers()->run_task(&remarkTask);
1798   }
1799 
1800   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
1801   guarantee(has_overflown() ||
1802             satb_mq_set.completed_buffers_num() == 0,
1803             "Invariant: has_overflown = %s, num buffers = " SIZE_FORMAT,
1804             BOOL_TO_STR(has_overflown()),
1805             satb_mq_set.completed_buffers_num());
1806 
1807   print_stats();
1808 }
1809 
1810 void G1ConcurrentMark::clear_range_in_prev_bitmap(MemRegion mr) {
1811   _prev_mark_bitmap->clear_range(mr);
1812 }
1813 
1814 HeapRegion*
1815 G1ConcurrentMark::claim_region(uint worker_id) {
1816   // "checkpoint" the finger
1817   HeapWord* finger = _finger;
1818 
1819   // _heap_end will not change underneath our feet; it only changes at
1820   // yield points.
1821   while (finger < _heap_end) {
1822     assert(_g1h->is_in_g1_reserved(finger), "invariant");
1823 
1824     HeapRegion* curr_region = _g1h->heap_region_containing(finger);
1825     // Make sure that the reads below do not float before loading curr_region.
1826     OrderAccess::loadload();
1827     // Above heap_region_containing may return NULL as we always scan claim
1828     // until the end of the heap. In this case, just jump to the next region.
1829     HeapWord* end = curr_region != NULL ? curr_region->end() : finger + HeapRegion::GrainWords;
1830 
1831     // Is the gap between reading the finger and doing the CAS too long?
1832     HeapWord* res = Atomic::cmpxchg(end, &_finger, finger);
1833     if (res == finger && curr_region != NULL) {
1834       // we succeeded
1835       HeapWord*   bottom        = curr_region->bottom();
1836       HeapWord*   limit         = curr_region->next_top_at_mark_start();
1837 
1838       // notice that _finger == end cannot be guaranteed here since,
1839       // someone else might have moved the finger even further
1840       assert(_finger >= end, "the finger should have moved forward");
1841 
1842       if (limit > bottom) {
1843         return curr_region;
1844       } else {
1845         assert(limit == bottom,
1846                "the region limit should be at bottom");
1847         // we return NULL and the caller should try calling
1848         // claim_region() again.
1849         return NULL;
1850       }
1851     } else {
1852       assert(_finger > finger, "the finger should have moved forward");
1853       // read it again
1854       finger = _finger;
1855     }
1856   }
1857 
1858   return NULL;
1859 }
1860 
1861 #ifndef PRODUCT
1862 class VerifyNoCSetOops VALUE_OBJ_CLASS_SPEC {
1863 private:
1864   G1CollectedHeap* _g1h;
1865   const char* _phase;
1866   int _info;
1867 
1868 public:
1869   VerifyNoCSetOops(const char* phase, int info = -1) :
1870     _g1h(G1CollectedHeap::heap()),
1871     _phase(phase),
1872     _info(info)
1873   { }
1874 
1875   void operator()(G1TaskQueueEntry task_entry) const {
1876     if (task_entry.is_array_slice()) {
1877       guarantee(_g1h->is_in_reserved(task_entry.slice()), "Slice " PTR_FORMAT " must be in heap.", p2i(task_entry.slice()));
1878       return;
1879     }
1880     guarantee(oopDesc::is_oop(task_entry.obj()),
1881               "Non-oop " PTR_FORMAT ", phase: %s, info: %d",
1882               p2i(task_entry.obj()), _phase, _info);
1883     guarantee(!_g1h->is_in_cset(task_entry.obj()),
1884               "obj: " PTR_FORMAT " in CSet, phase: %s, info: %d",
1885               p2i(task_entry.obj()), _phase, _info);
1886   }
1887 };
1888 
1889 void G1ConcurrentMark::verify_no_cset_oops() {
1890   assert(SafepointSynchronize::is_at_safepoint(), "should be at a safepoint");
1891   if (!G1CollectedHeap::heap()->collector_state()->mark_in_progress()) {
1892     return;
1893   }
1894 
1895   // Verify entries on the global mark stack
1896   _global_mark_stack.iterate(VerifyNoCSetOops("Stack"));
1897 
1898   // Verify entries on the task queues
1899   for (uint i = 0; i < _max_num_tasks; ++i) {
1900     G1CMTaskQueue* queue = _task_queues->queue(i);
1901     queue->iterate(VerifyNoCSetOops("Queue", i));
1902   }
1903 
1904   // Verify the global finger
1905   HeapWord* global_finger = finger();
1906   if (global_finger != NULL && global_finger < _heap_end) {
1907     // Since we always iterate over all regions, we might get a NULL HeapRegion
1908     // here.
1909     HeapRegion* global_hr = _g1h->heap_region_containing(global_finger);
1910     guarantee(global_hr == NULL || global_finger == global_hr->bottom(),
1911               "global finger: " PTR_FORMAT " region: " HR_FORMAT,
1912               p2i(global_finger), HR_FORMAT_PARAMS(global_hr));
1913   }
1914 
1915   // Verify the task fingers
1916   assert(_num_concurrent_workers <= _max_num_tasks, "sanity");
1917   for (uint i = 0; i < _num_concurrent_workers; ++i) {
1918     G1CMTask* task = _tasks[i];
1919     HeapWord* task_finger = task->finger();
1920     if (task_finger != NULL && task_finger < _heap_end) {
1921       // See above note on the global finger verification.
1922       HeapRegion* task_hr = _g1h->heap_region_containing(task_finger);
1923       guarantee(task_hr == NULL || task_finger == task_hr->bottom() ||
1924                 !task_hr->in_collection_set(),
1925                 "task finger: " PTR_FORMAT " region: " HR_FORMAT,
1926                 p2i(task_finger), HR_FORMAT_PARAMS(task_hr));
1927     }
1928   }
1929 }
1930 #endif // PRODUCT
1931 void G1ConcurrentMark::create_live_data() {
1932   _g1h->g1_rem_set()->create_card_live_data(_concurrent_workers, _next_mark_bitmap);
1933 }
1934 
1935 void G1ConcurrentMark::finalize_live_data() {
1936   _g1h->g1_rem_set()->finalize_card_live_data(_g1h->workers(), _next_mark_bitmap);
1937 }
1938 
1939 void G1ConcurrentMark::verify_live_data() {
1940   _g1h->g1_rem_set()->verify_card_live_data(_g1h->workers(), _next_mark_bitmap);
1941 }
1942 
1943 void G1ConcurrentMark::clear_live_data(WorkGang* workers) {
1944   _g1h->g1_rem_set()->clear_card_live_data(workers);
1945 }
1946 
1947 #ifdef ASSERT
1948 void G1ConcurrentMark::verify_live_data_clear() {
1949   _g1h->g1_rem_set()->verify_card_live_data_is_clear();
1950 }
1951 #endif
1952 
1953 void G1ConcurrentMark::print_stats() {
1954   if (!log_is_enabled(Debug, gc, stats)) {
1955     return;
1956   }
1957   log_debug(gc, stats)("---------------------------------------------------------------------");
1958   for (size_t i = 0; i < _num_active_tasks; ++i) {
1959     _tasks[i]->print_stats();
1960     log_debug(gc, stats)("---------------------------------------------------------------------");
1961   }
1962 }
1963 
1964 void G1ConcurrentMark::abort() {
1965   if (!cm_thread()->during_cycle() || _has_aborted) {
1966     // We haven't started a concurrent cycle or we have already aborted it. No need to do anything.
1967     return;
1968   }
1969 
1970   // Clear all marks in the next bitmap for the next marking cycle. This will allow us to skip the next
1971   // concurrent bitmap clearing.
1972   {
1973     GCTraceTime(Debug, gc)("Clear Next Bitmap");
1974     clear_bitmap(_next_mark_bitmap, _g1h->workers(), false);
1975   }
1976   // Note we cannot clear the previous marking bitmap here
1977   // since VerifyDuringGC verifies the objects marked during
1978   // a full GC against the previous bitmap.
1979 
1980   {
1981     GCTraceTime(Debug, gc)("Clear Live Data");
1982     clear_live_data(_g1h->workers());
1983   }
1984   DEBUG_ONLY({
1985     GCTraceTime(Debug, gc)("Verify Live Data Clear");
1986     verify_live_data_clear();
1987   })
1988   // Empty mark stack
1989   reset_marking_state();
1990   for (uint i = 0; i < _max_num_tasks; ++i) {
1991     _tasks[i]->clear_region_fields();
1992   }
1993   _first_overflow_barrier_sync.abort();
1994   _second_overflow_barrier_sync.abort();
1995   _has_aborted = true;
1996 
1997   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
1998   satb_mq_set.abandon_partial_marking();
1999   // This can be called either during or outside marking, we'll read
2000   // the expected_active value from the SATB queue set.
2001   satb_mq_set.set_active_all_threads(
2002                                  false, /* new active value */
2003                                  satb_mq_set.is_active() /* expected_active */);
2004 }
2005 
2006 static void print_ms_time_info(const char* prefix, const char* name,
2007                                NumberSeq& ns) {
2008   log_trace(gc, marking)("%s%5d %12s: total time = %8.2f s (avg = %8.2f ms).",
2009                          prefix, ns.num(), name, ns.sum()/1000.0, ns.avg());
2010   if (ns.num() > 0) {
2011     log_trace(gc, marking)("%s         [std. dev = %8.2f ms, max = %8.2f ms]",
2012                            prefix, ns.sd(), ns.maximum());
2013   }
2014 }
2015 
2016 void G1ConcurrentMark::print_summary_info() {
2017   Log(gc, marking) log;
2018   if (!log.is_trace()) {
2019     return;
2020   }
2021 
2022   log.trace(" Concurrent marking:");
2023   print_ms_time_info("  ", "init marks", _init_times);
2024   print_ms_time_info("  ", "remarks", _remark_times);
2025   {
2026     print_ms_time_info("     ", "final marks", _remark_mark_times);
2027     print_ms_time_info("     ", "weak refs", _remark_weak_ref_times);
2028 
2029   }
2030   print_ms_time_info("  ", "cleanups", _cleanup_times);
2031   log.trace("    Finalize live data total time = %8.2f s (avg = %8.2f ms).",
2032             _total_counting_time, (_cleanup_times.num() > 0 ? _total_counting_time * 1000.0 / (double)_cleanup_times.num() : 0.0));
2033   if (G1ScrubRemSets) {
2034     log.trace("    RS scrub total time = %8.2f s (avg = %8.2f ms).",
2035               _total_rs_scrub_time, (_cleanup_times.num() > 0 ? _total_rs_scrub_time * 1000.0 / (double)_cleanup_times.num() : 0.0));
2036   }
2037   log.trace("  Total stop_world time = %8.2f s.",
2038             (_init_times.sum() + _remark_times.sum() + _cleanup_times.sum())/1000.0);
2039   log.trace("  Total concurrent time = %8.2f s (%8.2f s marking).",
2040             cm_thread()->vtime_accum(), cm_thread()->vtime_mark_accum());
2041 }
2042 
2043 void G1ConcurrentMark::print_worker_threads_on(outputStream* st) const {
2044   _concurrent_workers->print_worker_threads_on(st);
2045 }
2046 
2047 void G1ConcurrentMark::threads_do(ThreadClosure* tc) const {
2048   _concurrent_workers->threads_do(tc);
2049 }
2050 
2051 void G1ConcurrentMark::print_on_error(outputStream* st) const {
2052   st->print_cr("Marking Bits (Prev, Next): (CMBitMap*) " PTR_FORMAT ", (CMBitMap*) " PTR_FORMAT,
2053                p2i(_prev_mark_bitmap), p2i(_next_mark_bitmap));
2054   _prev_mark_bitmap->print_on_error(st, " Prev Bits: ");
2055   _next_mark_bitmap->print_on_error(st, " Next Bits: ");
2056 }
2057 
2058 static ReferenceProcessor* get_cm_oop_closure_ref_processor(G1CollectedHeap* g1h) {
2059   ReferenceProcessor* result = g1h->ref_processor_cm();
2060   assert(result != NULL, "CM reference processor should not be NULL");
2061   return result;
2062 }
2063 
2064 G1CMOopClosure::G1CMOopClosure(G1CollectedHeap* g1h,
2065                                G1ConcurrentMark* cm,
2066                                G1CMTask* task)
2067   : MetadataAwareOopClosure(get_cm_oop_closure_ref_processor(g1h)),
2068     _g1h(g1h), _cm(cm), _task(task)
2069 { }
2070 
2071 void G1CMTask::setup_for_region(HeapRegion* hr) {
2072   assert(hr != NULL,
2073         "claim_region() should have filtered out NULL regions");
2074   _curr_region  = hr;
2075   _finger       = hr->bottom();
2076   update_region_limit();
2077 }
2078 
2079 void G1CMTask::update_region_limit() {
2080   HeapRegion* hr            = _curr_region;
2081   HeapWord* bottom          = hr->bottom();
2082   HeapWord* limit           = hr->next_top_at_mark_start();
2083 
2084   if (limit == bottom) {
2085     // The region was collected underneath our feet.
2086     // We set the finger to bottom to ensure that the bitmap
2087     // iteration that will follow this will not do anything.
2088     // (this is not a condition that holds when we set the region up,
2089     // as the region is not supposed to be empty in the first place)
2090     _finger = bottom;
2091   } else if (limit >= _region_limit) {
2092     assert(limit >= _finger, "peace of mind");
2093   } else {
2094     assert(limit < _region_limit, "only way to get here");
2095     // This can happen under some pretty unusual circumstances.  An
2096     // evacuation pause empties the region underneath our feet (NTAMS
2097     // at bottom). We then do some allocation in the region (NTAMS
2098     // stays at bottom), followed by the region being used as a GC
2099     // alloc region (NTAMS will move to top() and the objects
2100     // originally below it will be grayed). All objects now marked in
2101     // the region are explicitly grayed, if below the global finger,
2102     // and we do not need in fact to scan anything else. So, we simply
2103     // set _finger to be limit to ensure that the bitmap iteration
2104     // doesn't do anything.
2105     _finger = limit;
2106   }
2107 
2108   _region_limit = limit;
2109 }
2110 
2111 void G1CMTask::giveup_current_region() {
2112   assert(_curr_region != NULL, "invariant");
2113   clear_region_fields();
2114 }
2115 
2116 void G1CMTask::clear_region_fields() {
2117   // Values for these three fields that indicate that we're not
2118   // holding on to a region.
2119   _curr_region   = NULL;
2120   _finger        = NULL;
2121   _region_limit  = NULL;
2122 }
2123 
2124 void G1CMTask::set_cm_oop_closure(G1CMOopClosure* cm_oop_closure) {
2125   if (cm_oop_closure == NULL) {
2126     assert(_cm_oop_closure != NULL, "invariant");
2127   } else {
2128     assert(_cm_oop_closure == NULL, "invariant");
2129   }
2130   _cm_oop_closure = cm_oop_closure;
2131 }
2132 
2133 void G1CMTask::reset(G1CMBitMap* next_mark_bitmap) {
2134   guarantee(next_mark_bitmap != NULL, "invariant");
2135   _next_mark_bitmap              = next_mark_bitmap;
2136   clear_region_fields();
2137 
2138   _calls                         = 0;
2139   _elapsed_time_ms               = 0.0;
2140   _termination_time_ms           = 0.0;
2141   _termination_start_time_ms     = 0.0;
2142 }
2143 
2144 bool G1CMTask::should_exit_termination() {
2145   regular_clock_call();
2146   // This is called when we are in the termination protocol. We should
2147   // quit if, for some reason, this task wants to abort or the global
2148   // stack is not empty (this means that we can get work from it).
2149   return !_cm->mark_stack_empty() || has_aborted();
2150 }
2151 
2152 void G1CMTask::reached_limit() {
2153   assert(_words_scanned >= _words_scanned_limit ||
2154          _refs_reached >= _refs_reached_limit ,
2155          "shouldn't have been called otherwise");
2156   regular_clock_call();
2157 }
2158 
2159 void G1CMTask::regular_clock_call() {
2160   if (has_aborted()) return;
2161 
2162   // First, we need to recalculate the words scanned and refs reached
2163   // limits for the next clock call.
2164   recalculate_limits();
2165 
2166   // During the regular clock call we do the following
2167 
2168   // (1) If an overflow has been flagged, then we abort.
2169   if (_cm->has_overflown()) {
2170     set_has_aborted();
2171     return;
2172   }
2173 
2174   // If we are not concurrent (i.e. we're doing remark) we don't need
2175   // to check anything else. The other steps are only needed during
2176   // the concurrent marking phase.
2177   if (!_concurrent) {
2178     return;
2179   }
2180 
2181   // (2) If marking has been aborted for Full GC, then we also abort.
2182   if (_cm->has_aborted()) {
2183     set_has_aborted();
2184     return;
2185   }
2186 
2187   double curr_time_ms = os::elapsedVTime() * 1000.0;
2188 
2189   // (4) We check whether we should yield. If we have to, then we abort.
2190   if (SuspendibleThreadSet::should_yield()) {
2191     // We should yield. To do this we abort the task. The caller is
2192     // responsible for yielding.
2193     set_has_aborted();
2194     return;
2195   }
2196 
2197   // (5) We check whether we've reached our time quota. If we have,
2198   // then we abort.
2199   double elapsed_time_ms = curr_time_ms - _start_time_ms;
2200   if (elapsed_time_ms > _time_target_ms) {
2201     set_has_aborted();
2202     _has_timed_out = true;
2203     return;
2204   }
2205 
2206   // (6) Finally, we check whether there are enough completed STAB
2207   // buffers available for processing. If there are, we abort.
2208   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
2209   if (!_draining_satb_buffers && satb_mq_set.process_completed_buffers()) {
2210     // we do need to process SATB buffers, we'll abort and restart
2211     // the marking task to do so
2212     set_has_aborted();
2213     return;
2214   }
2215 }
2216 
2217 void G1CMTask::recalculate_limits() {
2218   _real_words_scanned_limit = _words_scanned + words_scanned_period;
2219   _words_scanned_limit      = _real_words_scanned_limit;
2220 
2221   _real_refs_reached_limit  = _refs_reached  + refs_reached_period;
2222   _refs_reached_limit       = _real_refs_reached_limit;
2223 }
2224 
2225 void G1CMTask::decrease_limits() {
2226   // This is called when we believe that we're going to do an infrequent
2227   // operation which will increase the per byte scanned cost (i.e. move
2228   // entries to/from the global stack). It basically tries to decrease the
2229   // scanning limit so that the clock is called earlier.
2230 
2231   _words_scanned_limit = _real_words_scanned_limit - 3 * words_scanned_period / 4;
2232   _refs_reached_limit  = _real_refs_reached_limit - 3 * refs_reached_period / 4;
2233 }
2234 
2235 void G1CMTask::move_entries_to_global_stack() {
2236   // Local array where we'll store the entries that will be popped
2237   // from the local queue.
2238   G1TaskQueueEntry buffer[G1CMMarkStack::EntriesPerChunk];
2239 
2240   size_t n = 0;
2241   G1TaskQueueEntry task_entry;
2242   while (n < G1CMMarkStack::EntriesPerChunk && _task_queue->pop_local(task_entry)) {
2243     buffer[n] = task_entry;
2244     ++n;
2245   }
2246   if (n < G1CMMarkStack::EntriesPerChunk) {
2247     buffer[n] = G1TaskQueueEntry();
2248   }
2249 
2250   if (n > 0) {
2251     if (!_cm->mark_stack_push(buffer)) {
2252       set_has_aborted();
2253     }
2254   }
2255 
2256   // This operation was quite expensive, so decrease the limits.
2257   decrease_limits();
2258 }
2259 
2260 bool G1CMTask::get_entries_from_global_stack() {
2261   // Local array where we'll store the entries that will be popped
2262   // from the global stack.
2263   G1TaskQueueEntry buffer[G1CMMarkStack::EntriesPerChunk];
2264 
2265   if (!_cm->mark_stack_pop(buffer)) {
2266     return false;
2267   }
2268 
2269   // We did actually pop at least one entry.
2270   for (size_t i = 0; i < G1CMMarkStack::EntriesPerChunk; ++i) {
2271     G1TaskQueueEntry task_entry = buffer[i];
2272     if (task_entry.is_null()) {
2273       break;
2274     }
2275     assert(task_entry.is_array_slice() || oopDesc::is_oop(task_entry.obj()), "Element " PTR_FORMAT " must be an array slice or oop", p2i(task_entry.obj()));
2276     bool success = _task_queue->push(task_entry);
2277     // We only call this when the local queue is empty or under a
2278     // given target limit. So, we do not expect this push to fail.
2279     assert(success, "invariant");
2280   }
2281 
2282   // This operation was quite expensive, so decrease the limits
2283   decrease_limits();
2284   return true;
2285 }
2286 
2287 void G1CMTask::drain_local_queue(bool partially) {
2288   if (has_aborted()) {
2289     return;
2290   }
2291 
2292   // Decide what the target size is, depending whether we're going to
2293   // drain it partially (so that other tasks can steal if they run out
2294   // of things to do) or totally (at the very end).
2295   size_t target_size;
2296   if (partially) {
2297     target_size = MIN2((size_t)_task_queue->max_elems()/3, GCDrainStackTargetSize);
2298   } else {
2299     target_size = 0;
2300   }
2301 
2302   if (_task_queue->size() > target_size) {
2303     G1TaskQueueEntry entry;
2304     bool ret = _task_queue->pop_local(entry);
2305     while (ret) {
2306       scan_task_entry(entry);
2307       if (_task_queue->size() <= target_size || has_aborted()) {
2308         ret = false;
2309       } else {
2310         ret = _task_queue->pop_local(entry);
2311       }
2312     }
2313   }
2314 }
2315 
2316 void G1CMTask::drain_global_stack(bool partially) {
2317   if (has_aborted()) return;
2318 
2319   // We have a policy to drain the local queue before we attempt to
2320   // drain the global stack.
2321   assert(partially || _task_queue->size() == 0, "invariant");
2322 
2323   // Decide what the target size is, depending whether we're going to
2324   // drain it partially (so that other tasks can steal if they run out
2325   // of things to do) or totally (at the very end).
2326   // Notice that when draining the global mark stack partially, due to the racyness
2327   // of the mark stack size update we might in fact drop below the target. But,
2328   // this is not a problem.
2329   // In case of total draining, we simply process until the global mark stack is
2330   // totally empty, disregarding the size counter.
2331   if (partially) {
2332     size_t const target_size = _cm->partial_mark_stack_size_target();
2333     while (!has_aborted() && _cm->mark_stack_size() > target_size) {
2334       if (get_entries_from_global_stack()) {
2335         drain_local_queue(partially);
2336       }
2337     }
2338   } else {
2339     while (!has_aborted() && get_entries_from_global_stack()) {
2340       drain_local_queue(partially);
2341     }
2342   }
2343 }
2344 
2345 // SATB Queue has several assumptions on whether to call the par or
2346 // non-par versions of the methods. this is why some of the code is
2347 // replicated. We should really get rid of the single-threaded version
2348 // of the code to simplify things.
2349 void G1CMTask::drain_satb_buffers() {
2350   if (has_aborted()) return;
2351 
2352   // We set this so that the regular clock knows that we're in the
2353   // middle of draining buffers and doesn't set the abort flag when it
2354   // notices that SATB buffers are available for draining. It'd be
2355   // very counter productive if it did that. :-)
2356   _draining_satb_buffers = true;
2357 
2358   G1CMSATBBufferClosure satb_cl(this, _g1h);
2359   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
2360 
2361   // This keeps claiming and applying the closure to completed buffers
2362   // until we run out of buffers or we need to abort.
2363   while (!has_aborted() &&
2364          satb_mq_set.apply_closure_to_completed_buffer(&satb_cl)) {
2365     regular_clock_call();
2366   }
2367 
2368   _draining_satb_buffers = false;
2369 
2370   assert(has_aborted() ||
2371          _concurrent ||
2372          satb_mq_set.completed_buffers_num() == 0, "invariant");
2373 
2374   // again, this was a potentially expensive operation, decrease the
2375   // limits to get the regular clock call early
2376   decrease_limits();
2377 }
2378 
2379 void G1CMTask::print_stats() {
2380   log_debug(gc, stats)("Marking Stats, task = %u, calls = %u",
2381                        _worker_id, _calls);
2382   log_debug(gc, stats)("  Elapsed time = %1.2lfms, Termination time = %1.2lfms",
2383                        _elapsed_time_ms, _termination_time_ms);
2384   log_debug(gc, stats)("  Step Times (cum): num = %d, avg = %1.2lfms, sd = %1.2lfms",
2385                        _step_times_ms.num(), _step_times_ms.avg(),
2386                        _step_times_ms.sd());
2387   log_debug(gc, stats)("                    max = %1.2lfms, total = %1.2lfms",
2388                        _step_times_ms.maximum(), _step_times_ms.sum());
2389 }
2390 
2391 bool G1ConcurrentMark::try_stealing(uint worker_id, int* hash_seed, G1TaskQueueEntry& task_entry) {
2392   return _task_queues->steal(worker_id, hash_seed, task_entry);
2393 }
2394 
2395 /*****************************************************************************
2396 
2397     The do_marking_step(time_target_ms, ...) method is the building
2398     block of the parallel marking framework. It can be called in parallel
2399     with other invocations of do_marking_step() on different tasks
2400     (but only one per task, obviously) and concurrently with the
2401     mutator threads, or during remark, hence it eliminates the need
2402     for two versions of the code. When called during remark, it will
2403     pick up from where the task left off during the concurrent marking
2404     phase. Interestingly, tasks are also claimable during evacuation
2405     pauses too, since do_marking_step() ensures that it aborts before
2406     it needs to yield.
2407 
2408     The data structures that it uses to do marking work are the
2409     following:
2410 
2411       (1) Marking Bitmap. If there are gray objects that appear only
2412       on the bitmap (this happens either when dealing with an overflow
2413       or when the initial marking phase has simply marked the roots
2414       and didn't push them on the stack), then tasks claim heap
2415       regions whose bitmap they then scan to find gray objects. A
2416       global finger indicates where the end of the last claimed region
2417       is. A local finger indicates how far into the region a task has
2418       scanned. The two fingers are used to determine how to gray an
2419       object (i.e. whether simply marking it is OK, as it will be
2420       visited by a task in the future, or whether it needs to be also
2421       pushed on a stack).
2422 
2423       (2) Local Queue. The local queue of the task which is accessed
2424       reasonably efficiently by the task. Other tasks can steal from
2425       it when they run out of work. Throughout the marking phase, a
2426       task attempts to keep its local queue short but not totally
2427       empty, so that entries are available for stealing by other
2428       tasks. Only when there is no more work, a task will totally
2429       drain its local queue.
2430 
2431       (3) Global Mark Stack. This handles local queue overflow. During
2432       marking only sets of entries are moved between it and the local
2433       queues, as access to it requires a mutex and more fine-grain
2434       interaction with it which might cause contention. If it
2435       overflows, then the marking phase should restart and iterate
2436       over the bitmap to identify gray objects. Throughout the marking
2437       phase, tasks attempt to keep the global mark stack at a small
2438       length but not totally empty, so that entries are available for
2439       popping by other tasks. Only when there is no more work, tasks
2440       will totally drain the global mark stack.
2441 
2442       (4) SATB Buffer Queue. This is where completed SATB buffers are
2443       made available. Buffers are regularly removed from this queue
2444       and scanned for roots, so that the queue doesn't get too
2445       long. During remark, all completed buffers are processed, as
2446       well as the filled in parts of any uncompleted buffers.
2447 
2448     The do_marking_step() method tries to abort when the time target
2449     has been reached. There are a few other cases when the
2450     do_marking_step() method also aborts:
2451 
2452       (1) When the marking phase has been aborted (after a Full GC).
2453 
2454       (2) When a global overflow (on the global stack) has been
2455       triggered. Before the task aborts, it will actually sync up with
2456       the other tasks to ensure that all the marking data structures
2457       (local queues, stacks, fingers etc.)  are re-initialized so that
2458       when do_marking_step() completes, the marking phase can
2459       immediately restart.
2460 
2461       (3) When enough completed SATB buffers are available. The
2462       do_marking_step() method only tries to drain SATB buffers right
2463       at the beginning. So, if enough buffers are available, the
2464       marking step aborts and the SATB buffers are processed at
2465       the beginning of the next invocation.
2466 
2467       (4) To yield. when we have to yield then we abort and yield
2468       right at the end of do_marking_step(). This saves us from a lot
2469       of hassle as, by yielding we might allow a Full GC. If this
2470       happens then objects will be compacted underneath our feet, the
2471       heap might shrink, etc. We save checking for this by just
2472       aborting and doing the yield right at the end.
2473 
2474     From the above it follows that the do_marking_step() method should
2475     be called in a loop (or, otherwise, regularly) until it completes.
2476 
2477     If a marking step completes without its has_aborted() flag being
2478     true, it means it has completed the current marking phase (and
2479     also all other marking tasks have done so and have all synced up).
2480 
2481     A method called regular_clock_call() is invoked "regularly" (in
2482     sub ms intervals) throughout marking. It is this clock method that
2483     checks all the abort conditions which were mentioned above and
2484     decides when the task should abort. A work-based scheme is used to
2485     trigger this clock method: when the number of object words the
2486     marking phase has scanned or the number of references the marking
2487     phase has visited reach a given limit. Additional invocations to
2488     the method clock have been planted in a few other strategic places
2489     too. The initial reason for the clock method was to avoid calling
2490     vtime too regularly, as it is quite expensive. So, once it was in
2491     place, it was natural to piggy-back all the other conditions on it
2492     too and not constantly check them throughout the code.
2493 
2494     If do_termination is true then do_marking_step will enter its
2495     termination protocol.
2496 
2497     The value of is_serial must be true when do_marking_step is being
2498     called serially (i.e. by the VMThread) and do_marking_step should
2499     skip any synchronization in the termination and overflow code.
2500     Examples include the serial remark code and the serial reference
2501     processing closures.
2502 
2503     The value of is_serial must be false when do_marking_step is
2504     being called by any of the worker threads in a work gang.
2505     Examples include the concurrent marking code (CMMarkingTask),
2506     the MT remark code, and the MT reference processing closures.
2507 
2508  *****************************************************************************/
2509 
2510 void G1CMTask::do_marking_step(double time_target_ms,
2511                                bool do_termination,
2512                                bool is_serial) {
2513   assert(time_target_ms >= 1.0, "minimum granularity is 1ms");
2514   assert(_concurrent == _cm->concurrent(), "they should be the same");
2515 
2516   _start_time_ms = os::elapsedVTime() * 1000.0;
2517 
2518   // If do_stealing is true then do_marking_step will attempt to
2519   // steal work from the other G1CMTasks. It only makes sense to
2520   // enable stealing when the termination protocol is enabled
2521   // and do_marking_step() is not being called serially.
2522   bool do_stealing = do_termination && !is_serial;
2523 
2524   double diff_prediction_ms = _g1h->g1_policy()->predictor().get_new_prediction(&_marking_step_diffs_ms);
2525   _time_target_ms = time_target_ms - diff_prediction_ms;
2526 
2527   // set up the variables that are used in the work-based scheme to
2528   // call the regular clock method
2529   _words_scanned = 0;
2530   _refs_reached  = 0;
2531   recalculate_limits();
2532 
2533   // clear all flags
2534   clear_has_aborted();
2535   _has_timed_out = false;
2536   _draining_satb_buffers = false;
2537 
2538   ++_calls;
2539 
2540   // Set up the bitmap and oop closures. Anything that uses them is
2541   // eventually called from this method, so it is OK to allocate these
2542   // statically.
2543   G1CMBitMapClosure bitmap_closure(this, _cm);
2544   G1CMOopClosure    cm_oop_closure(_g1h, _cm, this);
2545   set_cm_oop_closure(&cm_oop_closure);
2546 
2547   if (_cm->has_overflown()) {
2548     // This can happen if the mark stack overflows during a GC pause
2549     // and this task, after a yield point, restarts. We have to abort
2550     // as we need to get into the overflow protocol which happens
2551     // right at the end of this task.
2552     set_has_aborted();
2553   }
2554 
2555   // First drain any available SATB buffers. After this, we will not
2556   // look at SATB buffers before the next invocation of this method.
2557   // If enough completed SATB buffers are queued up, the regular clock
2558   // will abort this task so that it restarts.
2559   drain_satb_buffers();
2560   // ...then partially drain the local queue and the global stack
2561   drain_local_queue(true);
2562   drain_global_stack(true);
2563 
2564   do {
2565     if (!has_aborted() && _curr_region != NULL) {
2566       // This means that we're already holding on to a region.
2567       assert(_finger != NULL, "if region is not NULL, then the finger "
2568              "should not be NULL either");
2569 
2570       // We might have restarted this task after an evacuation pause
2571       // which might have evacuated the region we're holding on to
2572       // underneath our feet. Let's read its limit again to make sure
2573       // that we do not iterate over a region of the heap that
2574       // contains garbage (update_region_limit() will also move
2575       // _finger to the start of the region if it is found empty).
2576       update_region_limit();
2577       // We will start from _finger not from the start of the region,
2578       // as we might be restarting this task after aborting half-way
2579       // through scanning this region. In this case, _finger points to
2580       // the address where we last found a marked object. If this is a
2581       // fresh region, _finger points to start().
2582       MemRegion mr = MemRegion(_finger, _region_limit);
2583 
2584       assert(!_curr_region->is_humongous() || mr.start() == _curr_region->bottom(),
2585              "humongous regions should go around loop once only");
2586 
2587       // Some special cases:
2588       // If the memory region is empty, we can just give up the region.
2589       // If the current region is humongous then we only need to check
2590       // the bitmap for the bit associated with the start of the object,
2591       // scan the object if it's live, and give up the region.
2592       // Otherwise, let's iterate over the bitmap of the part of the region
2593       // that is left.
2594       // If the iteration is successful, give up the region.
2595       if (mr.is_empty()) {
2596         giveup_current_region();
2597         regular_clock_call();
2598       } else if (_curr_region->is_humongous() && mr.start() == _curr_region->bottom()) {
2599         if (_next_mark_bitmap->is_marked(mr.start())) {
2600           // The object is marked - apply the closure
2601           bitmap_closure.do_addr(mr.start());
2602         }
2603         // Even if this task aborted while scanning the humongous object
2604         // we can (and should) give up the current region.
2605         giveup_current_region();
2606         regular_clock_call();
2607       } else if (_next_mark_bitmap->iterate(&bitmap_closure, mr)) {
2608         giveup_current_region();
2609         regular_clock_call();
2610       } else {
2611         assert(has_aborted(), "currently the only way to do so");
2612         // The only way to abort the bitmap iteration is to return
2613         // false from the do_bit() method. However, inside the
2614         // do_bit() method we move the _finger to point to the
2615         // object currently being looked at. So, if we bail out, we
2616         // have definitely set _finger to something non-null.
2617         assert(_finger != NULL, "invariant");
2618 
2619         // Region iteration was actually aborted. So now _finger
2620         // points to the address of the object we last scanned. If we
2621         // leave it there, when we restart this task, we will rescan
2622         // the object. It is easy to avoid this. We move the finger by
2623         // enough to point to the next possible object header.
2624         assert(_finger < _region_limit, "invariant");
2625         HeapWord* const new_finger = _finger + ((oop)_finger)->size();
2626         // Check if bitmap iteration was aborted while scanning the last object
2627         if (new_finger >= _region_limit) {
2628           giveup_current_region();
2629         } else {
2630           move_finger_to(new_finger);
2631         }
2632       }
2633     }
2634     // At this point we have either completed iterating over the
2635     // region we were holding on to, or we have aborted.
2636 
2637     // We then partially drain the local queue and the global stack.
2638     // (Do we really need this?)
2639     drain_local_queue(true);
2640     drain_global_stack(true);
2641 
2642     // Read the note on the claim_region() method on why it might
2643     // return NULL with potentially more regions available for
2644     // claiming and why we have to check out_of_regions() to determine
2645     // whether we're done or not.
2646     while (!has_aborted() && _curr_region == NULL && !_cm->out_of_regions()) {
2647       // We are going to try to claim a new region. We should have
2648       // given up on the previous one.
2649       // Separated the asserts so that we know which one fires.
2650       assert(_curr_region  == NULL, "invariant");
2651       assert(_finger       == NULL, "invariant");
2652       assert(_region_limit == NULL, "invariant");
2653       HeapRegion* claimed_region = _cm->claim_region(_worker_id);
2654       if (claimed_region != NULL) {
2655         // Yes, we managed to claim one
2656         setup_for_region(claimed_region);
2657         assert(_curr_region == claimed_region, "invariant");
2658       }
2659       // It is important to call the regular clock here. It might take
2660       // a while to claim a region if, for example, we hit a large
2661       // block of empty regions. So we need to call the regular clock
2662       // method once round the loop to make sure it's called
2663       // frequently enough.
2664       regular_clock_call();
2665     }
2666 
2667     if (!has_aborted() && _curr_region == NULL) {
2668       assert(_cm->out_of_regions(),
2669              "at this point we should be out of regions");
2670     }
2671   } while ( _curr_region != NULL && !has_aborted());
2672 
2673   if (!has_aborted()) {
2674     // We cannot check whether the global stack is empty, since other
2675     // tasks might be pushing objects to it concurrently.
2676     assert(_cm->out_of_regions(),
2677            "at this point we should be out of regions");
2678     // Try to reduce the number of available SATB buffers so that
2679     // remark has less work to do.
2680     drain_satb_buffers();
2681   }
2682 
2683   // Since we've done everything else, we can now totally drain the
2684   // local queue and global stack.
2685   drain_local_queue(false);
2686   drain_global_stack(false);
2687 
2688   // Attempt at work stealing from other task's queues.
2689   if (do_stealing && !has_aborted()) {
2690     // We have not aborted. This means that we have finished all that
2691     // we could. Let's try to do some stealing...
2692 
2693     // We cannot check whether the global stack is empty, since other
2694     // tasks might be pushing objects to it concurrently.
2695     assert(_cm->out_of_regions() && _task_queue->size() == 0,
2696            "only way to reach here");
2697     while (!has_aborted()) {
2698       G1TaskQueueEntry entry;
2699       if (_cm->try_stealing(_worker_id, &_hash_seed, entry)) {
2700         scan_task_entry(entry);
2701 
2702         // And since we're towards the end, let's totally drain the
2703         // local queue and global stack.
2704         drain_local_queue(false);
2705         drain_global_stack(false);
2706       } else {
2707         break;
2708       }
2709     }
2710   }
2711 
2712   // We still haven't aborted. Now, let's try to get into the
2713   // termination protocol.
2714   if (do_termination && !has_aborted()) {
2715     // We cannot check whether the global stack is empty, since other
2716     // tasks might be concurrently pushing objects on it.
2717     // Separated the asserts so that we know which one fires.
2718     assert(_cm->out_of_regions(), "only way to reach here");
2719     assert(_task_queue->size() == 0, "only way to reach here");
2720     _termination_start_time_ms = os::elapsedVTime() * 1000.0;
2721 
2722     // The G1CMTask class also extends the TerminatorTerminator class,
2723     // hence its should_exit_termination() method will also decide
2724     // whether to exit the termination protocol or not.
2725     bool finished = (is_serial ||
2726                      _cm->terminator()->offer_termination(this));
2727     double termination_end_time_ms = os::elapsedVTime() * 1000.0;
2728     _termination_time_ms +=
2729       termination_end_time_ms - _termination_start_time_ms;
2730 
2731     if (finished) {
2732       // We're all done.
2733 
2734       if (_worker_id == 0) {
2735         // Let's allow task 0 to do this
2736         if (_concurrent) {
2737           assert(_cm->concurrent_marking_in_progress(), "invariant");
2738           // We need to set this to false before the next
2739           // safepoint. This way we ensure that the marking phase
2740           // doesn't observe any more heap expansions.
2741           _cm->clear_concurrent_marking_in_progress();
2742         }
2743       }
2744 
2745       // We can now guarantee that the global stack is empty, since
2746       // all other tasks have finished. We separated the guarantees so
2747       // that, if a condition is false, we can immediately find out
2748       // which one.
2749       guarantee(_cm->out_of_regions(), "only way to reach here");
2750       guarantee(_cm->mark_stack_empty(), "only way to reach here");
2751       guarantee(_task_queue->size() == 0, "only way to reach here");
2752       guarantee(!_cm->has_overflown(), "only way to reach here");
2753     } else {
2754       // Apparently there's more work to do. Let's abort this task. It
2755       // will restart it and we can hopefully find more things to do.
2756       set_has_aborted();
2757     }
2758   }
2759 
2760   // Mainly for debugging purposes to make sure that a pointer to the
2761   // closure which was statically allocated in this frame doesn't
2762   // escape it by accident.
2763   set_cm_oop_closure(NULL);
2764   double end_time_ms = os::elapsedVTime() * 1000.0;
2765   double elapsed_time_ms = end_time_ms - _start_time_ms;
2766   // Update the step history.
2767   _step_times_ms.add(elapsed_time_ms);
2768 
2769   if (has_aborted()) {
2770     // The task was aborted for some reason.
2771     if (_has_timed_out) {
2772       double diff_ms = elapsed_time_ms - _time_target_ms;
2773       // Keep statistics of how well we did with respect to hitting
2774       // our target only if we actually timed out (if we aborted for
2775       // other reasons, then the results might get skewed).
2776       _marking_step_diffs_ms.add(diff_ms);
2777     }
2778 
2779     if (_cm->has_overflown()) {
2780       // This is the interesting one. We aborted because a global
2781       // overflow was raised. This means we have to restart the
2782       // marking phase and start iterating over regions. However, in
2783       // order to do this we have to make sure that all tasks stop
2784       // what they are doing and re-initialize in a safe manner. We
2785       // will achieve this with the use of two barrier sync points.
2786 
2787       if (!is_serial) {
2788         // We only need to enter the sync barrier if being called
2789         // from a parallel context
2790         _cm->enter_first_sync_barrier(_worker_id);
2791 
2792         // When we exit this sync barrier we know that all tasks have
2793         // stopped doing marking work. So, it's now safe to
2794         // re-initialize our data structures. At the end of this method,
2795         // task 0 will clear the global data structures.
2796       }
2797 
2798       // We clear the local state of this task...
2799       clear_region_fields();
2800 
2801       if (!is_serial) {
2802         // ...and enter the second barrier.
2803         _cm->enter_second_sync_barrier(_worker_id);
2804       }
2805       // At this point, if we're during the concurrent phase of
2806       // marking, everything has been re-initialized and we're
2807       // ready to restart.
2808     }
2809   }
2810 }
2811 
2812 G1CMTask::G1CMTask(uint worker_id, G1ConcurrentMark* cm, G1CMTaskQueue* task_queue) :
2813   _objArray_processor(this),
2814   _worker_id(worker_id),
2815   _g1h(G1CollectedHeap::heap()),
2816   _cm(cm),
2817   _next_mark_bitmap(NULL),
2818   _task_queue(task_queue),
2819   _calls(0),
2820   _time_target_ms(0.0),
2821   _start_time_ms(0.0),
2822   _cm_oop_closure(NULL),
2823   _curr_region(NULL),
2824   _finger(NULL),
2825   _region_limit(NULL),
2826   _words_scanned(0),
2827   _words_scanned_limit(0),
2828   _real_words_scanned_limit(0),
2829   _refs_reached(0),
2830   _refs_reached_limit(0),
2831   _real_refs_reached_limit(0),
2832   _hash_seed(17),
2833   _has_aborted(false),
2834   _has_timed_out(false),
2835   _draining_satb_buffers(false),
2836   _step_times_ms(),
2837   _elapsed_time_ms(0.0),
2838   _termination_time_ms(0.0),
2839   _termination_start_time_ms(0.0),
2840   _concurrent(false),
2841   _marking_step_diffs_ms()
2842 {
2843   guarantee(task_queue != NULL, "invariant");
2844 
2845   _marking_step_diffs_ms.add(0.5);
2846 }
2847 
2848 // These are formatting macros that are used below to ensure
2849 // consistent formatting. The *_H_* versions are used to format the
2850 // header for a particular value and they should be kept consistent
2851 // with the corresponding macro. Also note that most of the macros add
2852 // the necessary white space (as a prefix) which makes them a bit
2853 // easier to compose.
2854 
2855 // All the output lines are prefixed with this string to be able to
2856 // identify them easily in a large log file.
2857 #define G1PPRL_LINE_PREFIX            "###"
2858 
2859 #define G1PPRL_ADDR_BASE_FORMAT    " " PTR_FORMAT "-" PTR_FORMAT
2860 #ifdef _LP64
2861 #define G1PPRL_ADDR_BASE_H_FORMAT  " %37s"
2862 #else // _LP64
2863 #define G1PPRL_ADDR_BASE_H_FORMAT  " %21s"
2864 #endif // _LP64
2865 
2866 // For per-region info
2867 #define G1PPRL_TYPE_FORMAT            "   %-4s"
2868 #define G1PPRL_TYPE_H_FORMAT          "   %4s"
2869 #define G1PPRL_BYTE_FORMAT            "  " SIZE_FORMAT_W(9)
2870 #define G1PPRL_BYTE_H_FORMAT          "  %9s"
2871 #define G1PPRL_DOUBLE_FORMAT          "  %14.1f"
2872 #define G1PPRL_DOUBLE_H_FORMAT        "  %14s"
2873 
2874 // For summary info
2875 #define G1PPRL_SUM_ADDR_FORMAT(tag)    "  " tag ":" G1PPRL_ADDR_BASE_FORMAT
2876 #define G1PPRL_SUM_BYTE_FORMAT(tag)    "  " tag ": " SIZE_FORMAT
2877 #define G1PPRL_SUM_MB_FORMAT(tag)      "  " tag ": %1.2f MB"
2878 #define G1PPRL_SUM_MB_PERC_FORMAT(tag) G1PPRL_SUM_MB_FORMAT(tag) " / %1.2f %%"
2879 
2880 G1PrintRegionLivenessInfoClosure::G1PrintRegionLivenessInfoClosure(const char* phase_name) :
2881   _total_used_bytes(0), _total_capacity_bytes(0),
2882   _total_prev_live_bytes(0), _total_next_live_bytes(0),
2883   _total_remset_bytes(0), _total_strong_code_roots_bytes(0)
2884 {
2885   G1CollectedHeap* g1h = G1CollectedHeap::heap();
2886   MemRegion g1_reserved = g1h->g1_reserved();
2887   double now = os::elapsedTime();
2888 
2889   // Print the header of the output.
2890   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX" PHASE %s @ %1.3f", phase_name, now);
2891   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX" HEAP"
2892                           G1PPRL_SUM_ADDR_FORMAT("reserved")
2893                           G1PPRL_SUM_BYTE_FORMAT("region-size"),
2894                           p2i(g1_reserved.start()), p2i(g1_reserved.end()),
2895                           HeapRegion::GrainBytes);
2896   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX);
2897   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX
2898                           G1PPRL_TYPE_H_FORMAT
2899                           G1PPRL_ADDR_BASE_H_FORMAT
2900                           G1PPRL_BYTE_H_FORMAT
2901                           G1PPRL_BYTE_H_FORMAT
2902                           G1PPRL_BYTE_H_FORMAT
2903                           G1PPRL_DOUBLE_H_FORMAT
2904                           G1PPRL_BYTE_H_FORMAT
2905                           G1PPRL_BYTE_H_FORMAT,
2906                           "type", "address-range",
2907                           "used", "prev-live", "next-live", "gc-eff",
2908                           "remset", "code-roots");
2909   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX
2910                           G1PPRL_TYPE_H_FORMAT
2911                           G1PPRL_ADDR_BASE_H_FORMAT
2912                           G1PPRL_BYTE_H_FORMAT
2913                           G1PPRL_BYTE_H_FORMAT
2914                           G1PPRL_BYTE_H_FORMAT
2915                           G1PPRL_DOUBLE_H_FORMAT
2916                           G1PPRL_BYTE_H_FORMAT
2917                           G1PPRL_BYTE_H_FORMAT,
2918                           "", "",
2919                           "(bytes)", "(bytes)", "(bytes)", "(bytes/ms)",
2920                           "(bytes)", "(bytes)");
2921 }
2922 
2923 bool G1PrintRegionLivenessInfoClosure::do_heap_region(HeapRegion* r) {
2924   const char* type       = r->get_type_str();
2925   HeapWord* bottom       = r->bottom();
2926   HeapWord* end          = r->end();
2927   size_t capacity_bytes  = r->capacity();
2928   size_t used_bytes      = r->used();
2929   size_t prev_live_bytes = r->live_bytes();
2930   size_t next_live_bytes = r->next_live_bytes();
2931   double gc_eff          = r->gc_efficiency();
2932   size_t remset_bytes    = r->rem_set()->mem_size();
2933   size_t strong_code_roots_bytes = r->rem_set()->strong_code_roots_mem_size();
2934 
2935   _total_used_bytes      += used_bytes;
2936   _total_capacity_bytes  += capacity_bytes;
2937   _total_prev_live_bytes += prev_live_bytes;
2938   _total_next_live_bytes += next_live_bytes;
2939   _total_remset_bytes    += remset_bytes;
2940   _total_strong_code_roots_bytes += strong_code_roots_bytes;
2941 
2942   // Print a line for this particular region.
2943   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX
2944                           G1PPRL_TYPE_FORMAT
2945                           G1PPRL_ADDR_BASE_FORMAT
2946                           G1PPRL_BYTE_FORMAT
2947                           G1PPRL_BYTE_FORMAT
2948                           G1PPRL_BYTE_FORMAT
2949                           G1PPRL_DOUBLE_FORMAT
2950                           G1PPRL_BYTE_FORMAT
2951                           G1PPRL_BYTE_FORMAT,
2952                           type, p2i(bottom), p2i(end),
2953                           used_bytes, prev_live_bytes, next_live_bytes, gc_eff,
2954                           remset_bytes, strong_code_roots_bytes);
2955 
2956   return false;
2957 }
2958 
2959 G1PrintRegionLivenessInfoClosure::~G1PrintRegionLivenessInfoClosure() {
2960   // add static memory usages to remembered set sizes
2961   _total_remset_bytes += HeapRegionRemSet::fl_mem_size() + HeapRegionRemSet::static_mem_size();
2962   // Print the footer of the output.
2963   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX);
2964   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX
2965                          " SUMMARY"
2966                          G1PPRL_SUM_MB_FORMAT("capacity")
2967                          G1PPRL_SUM_MB_PERC_FORMAT("used")
2968                          G1PPRL_SUM_MB_PERC_FORMAT("prev-live")
2969                          G1PPRL_SUM_MB_PERC_FORMAT("next-live")
2970                          G1PPRL_SUM_MB_FORMAT("remset")
2971                          G1PPRL_SUM_MB_FORMAT("code-roots"),
2972                          bytes_to_mb(_total_capacity_bytes),
2973                          bytes_to_mb(_total_used_bytes),
2974                          percent_of(_total_used_bytes, _total_capacity_bytes),
2975                          bytes_to_mb(_total_prev_live_bytes),
2976                          percent_of(_total_prev_live_bytes, _total_capacity_bytes),
2977                          bytes_to_mb(_total_next_live_bytes),
2978                          percent_of(_total_next_live_bytes, _total_capacity_bytes),
2979                          bytes_to_mb(_total_remset_bytes),
2980                          bytes_to_mb(_total_strong_code_roots_bytes));
2981 }