
Copyright © 2019 Oracle and/or its affiliates.

Code vectorization in the JVM:
Auto-vectorization, intrinsics, Vector API

Kishor Kharbas

Software Engineer
Intel Corp.

Vladimir Ivanov

September 17, 2019

HotSpot JVM Compilers
Java Platform Group
Oracle Corp.

The following is intended to outline our general product direction. It is intended for information purposes
only, and may not be incorporated into any contract. It is not a commitment to deliver any material, code,
or functionality, and should not be relied upon in making purchasing decisions. The development,
release, timing, and pricing of any features or functionality described for Oracle’s products may change
and remains at the sole discretion of Oracle Corporation.

Statements in this presentation relating to Oracle’s future plans, expectations, beliefs, intentions and
prospects are “forward-looking statements” and are subject to material risks and uncertainties. A detailed
discussion of these factors and other risks that affect our business is contained in Oracle’s Securities and
Exchange Commission (SEC) filings, including our most recent reports on Form 10-K and Form 10-Q
under the heading “Risk Factors.” These filings are available on the SEC’s website or on Oracle’s website
at http://www.oracle.com/investor. All information in this presentation is current as of September 2019
and Oracle undertakes no duty to update any statement in light of new information or future events.

Safe Harbor

Copyright © 2019 Oracle and/or its affiliates.

http://www.oracle.com/investor

Intel processors of the same SKU may vary in frequency or power as a result of natural variability in the production process.

For more complete information about performance and benchmark results, visit www.intel.com/benchmarks.

Results have been estimated or simulated using internal Intel analysis or architecture simulation or modeling, and provided to you for informational purposes. Any differences in your system
hardware, software or configuration may affect your actual performance.

The cost reduction scenarios described are intended to enable you to get a better understanding of how the purchase of a given Intel based product, combined with a number of situation-specific
variables, might affect future costs and savings. Circumstances will vary and there may be unaccounted-for costs related to the use and deployment of a given product. Nothing in this document
should be interpreted as either a promise of or contract for a given level of costs or cost reduction.

Intel does not control or audit third-party benchmark data or the web sites referenced in this document. You should visit the referenced web site and confirm whether referenced data are accurate.

Performance results are based on testing by Intel as of September 16, 2019 and may not reflect all publicly available security updates. See configuration disclosure for details. No product or
component can be absolutely secure.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured
using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and
performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more information go to
www.intel.com/benchmarks.

Optimization Notice: Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations
include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not
manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are
reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice. Notice
Revision #20110804.

© 2019 Intel Corporation. Intel, Intel Core, the Intel logo, Xeon and Xeon logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others.

Notices & Disclaimers

http://www.intel.com/benchmarks
http://www.intel.com/benchmarks

Copyright © 2019 Oracle and/or its affiliates.

“The Free Lunch Is Over”, Herb Sutter, 2005

Going Parallel

Machines
Hadoop (Map/Reduce), Apache Spark

Cores/hardware threads
Java Stream API
Fork/Join framework

CPU SIMD extensions
x86: SSE ..., AVX, …, AVX-512

5

< 10^3-10^6

< 10s-100s

< 10s

(servers)

(threads)

(elements)

Going Parallel: CPUs vs Co-processors
CPUs

SIMD ISA extensions (Single Instruction-Multiple Data)
threads (Multiple Instructions-Multiple Data)

Co-processors
GPUs, FPGAs, ASICs

6

SIMD vs MIMD
Machines

up to 12 cards / server

Intel® Xeon® Platinum 9282
2 threads x 56 cores

AVX-512
2 units / core

7

< 10^3-10^6 12x

< 10s-100s

< 10s

(servers)

112 (threads)

16 SP (elements)

SIMD vs MIMD
Machines

up to 12 cards / server

Intel® Xeon® Platinum 9282
2 threads x 56 cores

AVX-512
2 units / core

8

< 10^3-10^6 12x

< 10s-100s

< 10s

(servers)

112 (threads)

16 SP (elements)

1792-way

x86 SIMD Extensions
Wide (multi-word) registers

128-bit (xmm)
256-bit (ymm)
512-bit (zmm)

Instructions on packed vectors
packed in a register or memory location
short vectors of integer / FP numbers

2 x double, 4 x int, 8 x short
hard-coded vector size

9

0128256512

xmm0ymm0zmm0

xmm0
0326496128

intintintint

double double

short short short short short short short short

x86 SIMD Extensions

// Load A[i:i+3]

vmovdqu 0x10(%rcx,%rdx,4),%xmm0

// Load B[i:i+3]
vmovdqu 0x10(%r10,%rdx,4),%xmm1

// A[i:i+3] + B[i:i+3]
vpaddd %xmm0,%xmm1,%xmm2

// Store into C[i:i+3]

vmovdqu %xmm2,0x10(%r8,%rdx,4)

10

A[i+0]A[i+1]A[i+2]A[i+3]

B[i+0]B[i+1]B[i+2]B[i+3]

+ + + +

= = = =

C[i+3]C[i+2]C[i+1]C[i+0]

xmm0

xmm1

xmm2

memory int[]

A[i+3]A[i+2]A[i+1]A[i+0]
memory

int[]

B[i+3]B[i+2]B[i+1]B[i+0]int[]B[]

A[]

C[]

C[i+0]C[i+1]C[i+2]C[i+3]

3296128

registers

SIMD today
x86: MMX, SSE, AVX, AVX2, AVX-512

8 64-bit registers (MMX) to 32 512-bit registers (AVX-512)

ARM: NEON, SVE, SVE2
32 128-bit registers (NEON) to 32 128-2048-bit in SVE

POWER: VMX/AltiVec
32 128-bit registers

AVX-512 F, CD, ER, PF

4FMAPS, 4VNNIW

F, CD, BW, DQ

VBMI, IFMA VNNI

VBMI2, BITALG, VAES,
GFNI, VPOPCNTDQ

BF16

VP2INTERSECT

SKL-X

CNL CLX

ICL

TGL

2017

2019

2019

2020

2019
CPL

2018

KNL

KNM

(discontinued)

Copyright © 2019 Oracle and/or its affiliates.

How to utilize SIMD instructions?

Vectorization techniques
Automatic

sequential languages and practices gets in the way

Semi-automatic
Give your compiler/runtime hints and hope it vectorizes

OpenMP 4.0 #pragma omp simd

Code explicitly
SIMD instruction intrinsics

14

Problem

If the code is compiled for a particular instruction set then it
will be compatible with all CPUs that support this instruction
set or any higher instruction set, but possibly not with earlier

CPUs.

15

SSE 4.2 << AVX-512

JVM and SIMD today
JVM is in a good position:

1. Java bytecode is platform-agnostic

2. CPU probing at runtime (at startup)
knows everything about the hardware it executes at the moment

3. Dynamic code generation
only use instructions which are available on the host

JVM and SIMD today
Hotspot supports some of x86 SIMD instructions

Automatic vectorization of Java code
Superword optimizations in HotSpot C2 compiler to derive SIMD code from
sequential code

JVM intrinsics
e.g., Array copying, filling, and comparison

Copyright © 2019 Oracle and/or its affiliates.

JVM Intrinsics

JVM Intrinsics
“A method is intrinsified if the HotSpot VM replaces the

annotated method with hand-written assembly and/or hand-
written compiler IR -- a compiler intrinsic -- to improve
performance.”

@HotSpotIntrinsicCandidate JavaDoc

public final class java.lang.Class<T> implements … {
@HotSpotIntrinsicCandidate
public native boolean isInstance(Object obj);

http://hg.openjdk.java.net/jdk9/jdk9/jdk/file/tip/src/java.base/share/classes/jdk/internal/HotSpotIntrinsicCandidate.java

Vectorized JVM Intrinsics
Array copy

System.arraycopy(), Arrays.copyOf(), Arrays.equals()

Array mismatch (@since 9)
Arrays.mismatch(), Arrays.compare()
based on ArraysSupport.vectorizedMismatch()

Copyright © 2019 Oracle and/or its affiliates.

Auto-vectorization
by JVM JIT-compiler

Vectorization: Prerequisites
SuperWord optimization is:
1. implemented only in C2 JIT-compiler in HotSpot

hotspot/src/share/vm/opto/c2_globals.hpp:
product(bool, UseSuperWord, true,

"Transform scalar operations into superword operations”)

2. applied only to unrolled loops
unrolling is performed only for counted loops

25

…

// Main loop

vmovdqu 0x10(%rcx,%rdx,4),%xmm0
vpaddd 0x10(%r10,%rdx,4),%xmm0,%xmm0

vmovdqu %xmm0,0x10(%r8,%rdx,4)
add $0x4,%edx

cmp %r9d,%edx

jl 0x…
…

int[] A, B, C
for (int i = 0; i < MAX; i++) {

A[i] = B[i] + C[i];
}

A[i+2]A[i+1]A[i]A[0]int[] A[MAX-4]
+160

8 8 64 MAXPre-loop Main loop Post-loop
Header

mov mov vmovdqu vmovdqu mov mov

T not vectorized, 8u vectorized, 8u

byte 506 ±6 159 ±4

short 495 ±4 140 ±3

char 493 ±4 141 ±2

int 490 ±4 154 ±2

long 492 ±5 157 ±2

float 489 ±7 155 ±2

double 483 ±4 172 ±3

27

<any T> void add (T[] A, T[] B, T[] C) {
for (int i = 0; i < MAX; i++) {

A[i] = B[i] + C[i];
}

}

MAX = 1000

Core i7, 1x2x2, Haswell (AVX2), ns/op

T vectorized, 8u vectorized, 11u

byte 159 ±4 69 ±3

short 140 ±3 69 ±4

char 141 ±2 68 ±2

int 154 ±2 74 ±1

long 157 ±2 141 ±1

float 155 ±2 80 ±3

double 172 ±3 167 ±2

28

<any T> void add (T[] A, T[] B, T[] C) {
for (int i = 0; i < MAX; i++) {

A[i] = B[i] + C[i];
}

}

MAX = 1000

Core i7, 1x2x2, Haswell (AVX2), ns/op

Copyright © 2019 Oracle and/or its affiliates.

int dotProduct(int[] A, int[] B) {
int r = 0;
for (int i = 0; i < MAX; i++) {

r += A[i]*B[i];
}
return r;

}

// Vectorized post-loop

vmovdqu 0x10(%rdi,%r11,4),%ymm0

vmovdqu 0x10(%rbx,%r11,4),%ymm1

vpmulld %ymm0,%ymm1,%ymm0

vphaddd %ymm0,%ymm0,%ymm3

vphaddd %ymm1,%ymm3,%ymm3

vextracti128 $0x1,%ymm3,%xmm1

vpaddd %xmm1,%xmm3,%xmm3

vmovd %eax,%xmm1

vpaddd %xmm3,%xmm1,%xmm1

vmovd %xmm1,%eax

add $0x8,%r11d

cmp %r8d,%r11d

jl 0x117e23668

Copyright © 2019 Oracle and/or its affiliates.

public int sum(int[] A) {
int sum = 0;
for (int a : A) {

sum += a;
}
return sum;

}

…

add 0x10(%r8,%rcx,4),%eax

add 0x14(%r8,%rcx,4),%eax

add 0x18(%r8,%rcx,4),%eax

add 0x1c(%r8,%rcx,4),%eax

add 0x20(%r8,%rcx,4),%eax

add 0x24(%r8,%rcx,4),%eax

add 0x28(%r8,%rcx,4),%eax

add 0x2c(%r8,%rcx,4),%eax

add $0x8,%ecx

cmp %r10d,%ecx

jl …

JVM and SIMD today
Superword optimizations can be very brittle

doesn’t (and can’t) cover all the use cases

Intrinsics are point fixes, not general
powerful, lightweight, and flexible
high development costs

JNI is hard to develop and maintain
interoperability overhead between Java & native code
CPU dispatching is required

Copyright © 2019 Oracle and/or its affiliates.

Vector API
Embrace explicit vectorization

Copyright © 2019 Oracle and/or its affiliates.

DEV-6764: “Vector API”

Vladimir Ivanov, Oracle
Kishor Kharbas, Intel Corp.

Monday, September 16,
04:00 PM - 04:45 PM
Moscone South - Room 303

https://youtu.be/tR0mXPMOUjw?t=12800

https://youtu.be/tR0mXPMOUjw?t=12800

Copyright © 2019 Oracle and/or its affiliates.

Vector API: Goals
Expressive and portable API
• “principle of least astonishment”
• uniform coverage operations and data types
• type-safe

Performant
• High quality of generated code
• Competitive with existing facilities for auto-vectorization

Graceful performance degradation
• fallback for "holes" in native architectures

Copyright © 2019 Oracle and/or its affiliates.

int[] A, B, C

for (int i = 0; i < MAX; i++) {
A[i] = B[i] + C[i];

}

var S = IntVector.SPECIES_PREFERRED;
for (int i = 0; i < MAX; i += S.length()) {

var va = IntVector.fromArray(S, A, i);
var vb = IntVector.fromArray(S, B, i);
var vc = va.add(vb);
vc.intoArray(C, i);

}

Copyright © 2019 Oracle and/or its affiliates.

Arrays.mismatch()
…
var S = IntVector.SPECIES_PREFERRED;

for (int i = 0; i < MAX; i += S.length()) {
var va = IntVector.fromArray(S, A, i);
var vb = IntVector.fromArray(S, B, i);
if (va.compare(NE, vb).anyTrue()) {

break; // mismatch found
}

}
…

0,0x

0,5x

1,0x

1,5x

2,0x

2,5x

3,0x

3,5x

Scalar Vector API Arrays.mismatch()

Speedup

For more complete information about performance and benchmark results, visit www.intel.com/benchmarks.
See slide #72 for configurations.

MAX = 1000

for (int i = 0; i < MAX; i++) {
if (a[i] != b[i])

return i;
}

vs

OpenJDK Panama project, parent: 56355:4ca845a25642, branch: vectorIntrinsics
Intel(R) Core(TM) i7-6700 CPU @ 3.40GHz, 32 GB RAM, Windows 10, 64-bit

0x
2x
4x
6x
8x

10x
12x
14x
16x
18x

Scalar 512-bit Vector 512-bit Vector Unrolled

Speedup

Dot Product

For more complete information about performance and benchmark results, visit www.intel.com/benchmarks.
See slide #72 for configurations.

OpenJDK Panama project, parent: 56355:4ca845a25642, branch: vectorIntrinsics
Red Hat Enterprise Linux Server release 7.6
Intel(R) Xeon(R) Platinum 8280L CPU @ 2.70GHz, 768 GB RAM

float[128]

0x

1x

2x

3x

4x

5x

6x

Scalar Vector (256-bit) Vector (512-bit)

Speedup

Matrix Multiplication

For more complete information about performance and benchmark results, visit www.intel.com/benchmarks.
See slide #72 for configurations.

OpenJDK Panama project, parent: 56355:4ca845a25642, branch: vectorIntrinsics
Red Hat Enterprise Linux Server release 7.6
Intel(R) Xeon(R) Platinum 8280L CPU @ 2.70GHz, 768 GB RAM

float[128][128]

Current Status (September, 2019)
JEP 338: “Vector API (Incubator)”

in Candidate state

First version of API is in CSR
• https://bugs.openjdk.java.net/browse/JDK-8223348
• To be delivered in an upcoming OpenJDK release
• Will be an incubator project, pending integration with

Valhalla
• Ongoing basic experimentation, including machine

learning kernels
• Who uses it? What’s built on top of it? … is TBD. Ideas

solicited.

Lots of work on productizing the
implementation went in during last year

https://bugs.openjdk.java.net/browse/JDK-8223348

Copyright © 2019 Oracle and/or its affiliates.

Summary
SIMD ISA extensions

very irregular on x86
hard to utilize in cross-platform manner

JVM
auto-vectorization

brittle
can’t cover all the cases

intrinsics
pros: powerful, lightweight, and flexible
cons: point fixes, high development costs

Copyright © 2019 Oracle and/or its affiliates.

Future
SIMD ISA extensions

will continue to evolve

JVM
better auto-vectorization
more intrinsics

Vector API
reliable way to write performant vectorized code
next iterations of the API

easier to use
closer to hardware

Thank You!

Copyright © 2019 Oracle and/or its affiliates.

Configuration
OpenJDK Panama project, parent: 56355:4ca845a25642, branch: vectorIntrinsics

Intel(R) Xeon(R) Platinum 8280L CPU:

2-socket Intel(R) Xeon(R) Platinum 8280L CPU @ 2.70GHz, 28 cores HT On Turbo ON Total Memory 768 GB (24
slots/ 32GB/ 2666 MHz), BIOS: SE5C620.86B.0X.02.0001.051420190324 (ucode:0x5000024), Red Hat Enterprise
Linux Server 7.6 (Maipo)

All benchmarks are run in a single thread.

Intel(R) Core(TM) i7-6700 CPU:

Intel(R) Core(TM) i7-6700 CPU @ 3.40GHz, 3401 Mhz, 4 cores, HT ON, Total Memory 768 GB, BIOS Version/Date,
BIOS: American Megatrends Inc. F4, 10/21/2015, Microsoft Windows 10 Pro 10.0.18362 Build 18362

