1 /* 2 * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "asm/macroAssembler.hpp" 27 #include "asm/macroAssembler.inline.hpp" 28 #include "ci/ciReplay.hpp" 29 #include "classfile/systemDictionary.hpp" 30 #include "code/exceptionHandlerTable.hpp" 31 #include "code/nmethod.hpp" 32 #include "compiler/compileBroker.hpp" 33 #include "compiler/compileLog.hpp" 34 #include "compiler/disassembler.hpp" 35 #include "compiler/oopMap.hpp" 36 #include "gc/shared/barrierSet.hpp" 37 #include "gc/shared/c2/barrierSetC2.hpp" 38 #include "memory/resourceArea.hpp" 39 #include "opto/addnode.hpp" 40 #include "opto/block.hpp" 41 #include "opto/c2compiler.hpp" 42 #include "opto/callGenerator.hpp" 43 #include "opto/callnode.hpp" 44 #include "opto/castnode.hpp" 45 #include "opto/cfgnode.hpp" 46 #include "opto/chaitin.hpp" 47 #include "opto/compile.hpp" 48 #include "opto/connode.hpp" 49 #include "opto/convertnode.hpp" 50 #include "opto/divnode.hpp" 51 #include "opto/escape.hpp" 52 #include "opto/idealGraphPrinter.hpp" 53 #include "opto/loopnode.hpp" 54 #include "opto/machnode.hpp" 55 #include "opto/macro.hpp" 56 #include "opto/matcher.hpp" 57 #include "opto/mathexactnode.hpp" 58 #include "opto/memnode.hpp" 59 #include "opto/mulnode.hpp" 60 #include "opto/narrowptrnode.hpp" 61 #include "opto/node.hpp" 62 #include "opto/opcodes.hpp" 63 #include "opto/output.hpp" 64 #include "opto/parse.hpp" 65 #include "opto/phaseX.hpp" 66 #include "opto/rootnode.hpp" 67 #include "opto/runtime.hpp" 68 #include "opto/stringopts.hpp" 69 #include "opto/type.hpp" 70 #include "opto/vector.hpp" 71 #include "opto/vectornode.hpp" 72 #include "runtime/arguments.hpp" 73 #include "runtime/sharedRuntime.hpp" 74 #include "runtime/signature.hpp" 75 #include "runtime/stubRoutines.hpp" 76 #include "runtime/timer.hpp" 77 #include "utilities/align.hpp" 78 #include "utilities/copy.hpp" 79 #include "utilities/macros.hpp" 80 81 82 // -------------------- Compile::mach_constant_base_node ----------------------- 83 // Constant table base node singleton. 84 MachConstantBaseNode* Compile::mach_constant_base_node() { 85 if (_mach_constant_base_node == NULL) { 86 _mach_constant_base_node = new MachConstantBaseNode(); 87 _mach_constant_base_node->add_req(C->root()); 88 } 89 return _mach_constant_base_node; 90 } 91 92 93 /// Support for intrinsics. 94 95 // Return the index at which m must be inserted (or already exists). 96 // The sort order is by the address of the ciMethod, with is_virtual as minor key. 97 class IntrinsicDescPair { 98 private: 99 ciMethod* _m; 100 bool _is_virtual; 101 public: 102 IntrinsicDescPair(ciMethod* m, bool is_virtual) : _m(m), _is_virtual(is_virtual) {} 103 static int compare(IntrinsicDescPair* const& key, CallGenerator* const& elt) { 104 ciMethod* m= elt->method(); 105 ciMethod* key_m = key->_m; 106 if (key_m < m) return -1; 107 else if (key_m > m) return 1; 108 else { 109 bool is_virtual = elt->is_virtual(); 110 bool key_virtual = key->_is_virtual; 111 if (key_virtual < is_virtual) return -1; 112 else if (key_virtual > is_virtual) return 1; 113 else return 0; 114 } 115 } 116 }; 117 int Compile::intrinsic_insertion_index(ciMethod* m, bool is_virtual, bool& found) { 118 #ifdef ASSERT 119 for (int i = 1; i < _intrinsics->length(); i++) { 120 CallGenerator* cg1 = _intrinsics->at(i-1); 121 CallGenerator* cg2 = _intrinsics->at(i); 122 assert(cg1->method() != cg2->method() 123 ? cg1->method() < cg2->method() 124 : cg1->is_virtual() < cg2->is_virtual(), 125 "compiler intrinsics list must stay sorted"); 126 } 127 #endif 128 IntrinsicDescPair pair(m, is_virtual); 129 return _intrinsics->find_sorted<IntrinsicDescPair*, IntrinsicDescPair::compare>(&pair, found); 130 } 131 132 void Compile::register_intrinsic(CallGenerator* cg) { 133 if (_intrinsics == NULL) { 134 _intrinsics = new (comp_arena())GrowableArray<CallGenerator*>(comp_arena(), 60, 0, NULL); 135 } 136 int len = _intrinsics->length(); 137 bool found = false; 138 int index = intrinsic_insertion_index(cg->method(), cg->is_virtual(), found); 139 assert(!found, "registering twice"); 140 _intrinsics->insert_before(index, cg); 141 assert(find_intrinsic(cg->method(), cg->is_virtual()) == cg, "registration worked"); 142 } 143 144 CallGenerator* Compile::find_intrinsic(ciMethod* m, bool is_virtual) { 145 assert(m->is_loaded(), "don't try this on unloaded methods"); 146 if (_intrinsics != NULL) { 147 bool found = false; 148 int index = intrinsic_insertion_index(m, is_virtual, found); 149 if (found) { 150 return _intrinsics->at(index); 151 } 152 } 153 // Lazily create intrinsics for intrinsic IDs well-known in the runtime. 154 if (m->intrinsic_id() != vmIntrinsics::_none && 155 m->intrinsic_id() <= vmIntrinsics::LAST_COMPILER_INLINE) { 156 CallGenerator* cg = make_vm_intrinsic(m, is_virtual); 157 if (cg != NULL) { 158 // Save it for next time: 159 register_intrinsic(cg); 160 return cg; 161 } else { 162 gather_intrinsic_statistics(m->intrinsic_id(), is_virtual, _intrinsic_disabled); 163 } 164 } 165 return NULL; 166 } 167 168 // Compile:: register_library_intrinsics and make_vm_intrinsic are defined 169 // in library_call.cpp. 170 171 172 #ifndef PRODUCT 173 // statistics gathering... 174 175 juint Compile::_intrinsic_hist_count[vmIntrinsics::ID_LIMIT] = {0}; 176 jubyte Compile::_intrinsic_hist_flags[vmIntrinsics::ID_LIMIT] = {0}; 177 178 bool Compile::gather_intrinsic_statistics(vmIntrinsics::ID id, bool is_virtual, int flags) { 179 assert(id > vmIntrinsics::_none && id < vmIntrinsics::ID_LIMIT, "oob"); 180 int oflags = _intrinsic_hist_flags[id]; 181 assert(flags != 0, "what happened?"); 182 if (is_virtual) { 183 flags |= _intrinsic_virtual; 184 } 185 bool changed = (flags != oflags); 186 if ((flags & _intrinsic_worked) != 0) { 187 juint count = (_intrinsic_hist_count[id] += 1); 188 if (count == 1) { 189 changed = true; // first time 190 } 191 // increment the overall count also: 192 _intrinsic_hist_count[vmIntrinsics::_none] += 1; 193 } 194 if (changed) { 195 if (((oflags ^ flags) & _intrinsic_virtual) != 0) { 196 // Something changed about the intrinsic's virtuality. 197 if ((flags & _intrinsic_virtual) != 0) { 198 // This is the first use of this intrinsic as a virtual call. 199 if (oflags != 0) { 200 // We already saw it as a non-virtual, so note both cases. 201 flags |= _intrinsic_both; 202 } 203 } else if ((oflags & _intrinsic_both) == 0) { 204 // This is the first use of this intrinsic as a non-virtual 205 flags |= _intrinsic_both; 206 } 207 } 208 _intrinsic_hist_flags[id] = (jubyte) (oflags | flags); 209 } 210 // update the overall flags also: 211 _intrinsic_hist_flags[vmIntrinsics::_none] |= (jubyte) flags; 212 return changed; 213 } 214 215 static char* format_flags(int flags, char* buf) { 216 buf[0] = 0; 217 if ((flags & Compile::_intrinsic_worked) != 0) strcat(buf, ",worked"); 218 if ((flags & Compile::_intrinsic_failed) != 0) strcat(buf, ",failed"); 219 if ((flags & Compile::_intrinsic_disabled) != 0) strcat(buf, ",disabled"); 220 if ((flags & Compile::_intrinsic_virtual) != 0) strcat(buf, ",virtual"); 221 if ((flags & Compile::_intrinsic_both) != 0) strcat(buf, ",nonvirtual"); 222 if (buf[0] == 0) strcat(buf, ","); 223 assert(buf[0] == ',', "must be"); 224 return &buf[1]; 225 } 226 227 void Compile::print_intrinsic_statistics() { 228 char flagsbuf[100]; 229 ttyLocker ttyl; 230 if (xtty != NULL) xtty->head("statistics type='intrinsic'"); 231 tty->print_cr("Compiler intrinsic usage:"); 232 juint total = _intrinsic_hist_count[vmIntrinsics::_none]; 233 if (total == 0) total = 1; // avoid div0 in case of no successes 234 #define PRINT_STAT_LINE(name, c, f) \ 235 tty->print_cr(" %4d (%4.1f%%) %s (%s)", (int)(c), ((c) * 100.0) / total, name, f); 236 for (int index = 1 + (int)vmIntrinsics::_none; index < (int)vmIntrinsics::ID_LIMIT; index++) { 237 vmIntrinsics::ID id = (vmIntrinsics::ID) index; 238 int flags = _intrinsic_hist_flags[id]; 239 juint count = _intrinsic_hist_count[id]; 240 if ((flags | count) != 0) { 241 PRINT_STAT_LINE(vmIntrinsics::name_at(id), count, format_flags(flags, flagsbuf)); 242 } 243 } 244 PRINT_STAT_LINE("total", total, format_flags(_intrinsic_hist_flags[vmIntrinsics::_none], flagsbuf)); 245 if (xtty != NULL) xtty->tail("statistics"); 246 } 247 248 void Compile::print_statistics() { 249 { ttyLocker ttyl; 250 if (xtty != NULL) xtty->head("statistics type='opto'"); 251 Parse::print_statistics(); 252 PhaseCCP::print_statistics(); 253 PhaseRegAlloc::print_statistics(); 254 PhaseOutput::print_statistics(); 255 PhasePeephole::print_statistics(); 256 PhaseIdealLoop::print_statistics(); 257 if (xtty != NULL) xtty->tail("statistics"); 258 } 259 if (_intrinsic_hist_flags[vmIntrinsics::_none] != 0) { 260 // put this under its own <statistics> element. 261 print_intrinsic_statistics(); 262 } 263 } 264 #endif //PRODUCT 265 266 void Compile::gvn_replace_by(Node* n, Node* nn) { 267 for (DUIterator_Last imin, i = n->last_outs(imin); i >= imin; ) { 268 Node* use = n->last_out(i); 269 bool is_in_table = initial_gvn()->hash_delete(use); 270 uint uses_found = 0; 271 for (uint j = 0; j < use->len(); j++) { 272 if (use->in(j) == n) { 273 if (j < use->req()) 274 use->set_req(j, nn); 275 else 276 use->set_prec(j, nn); 277 uses_found++; 278 } 279 } 280 if (is_in_table) { 281 // reinsert into table 282 initial_gvn()->hash_find_insert(use); 283 } 284 record_for_igvn(use); 285 i -= uses_found; // we deleted 1 or more copies of this edge 286 } 287 } 288 289 290 static inline bool not_a_node(const Node* n) { 291 if (n == NULL) return true; 292 if (((intptr_t)n & 1) != 0) return true; // uninitialized, etc. 293 if (*(address*)n == badAddress) return true; // kill by Node::destruct 294 return false; 295 } 296 297 // Identify all nodes that are reachable from below, useful. 298 // Use breadth-first pass that records state in a Unique_Node_List, 299 // recursive traversal is slower. 300 void Compile::identify_useful_nodes(Unique_Node_List &useful) { 301 int estimated_worklist_size = live_nodes(); 302 useful.map( estimated_worklist_size, NULL ); // preallocate space 303 304 // Initialize worklist 305 if (root() != NULL) { useful.push(root()); } 306 // If 'top' is cached, declare it useful to preserve cached node 307 if( cached_top_node() ) { useful.push(cached_top_node()); } 308 309 // Push all useful nodes onto the list, breadthfirst 310 for( uint next = 0; next < useful.size(); ++next ) { 311 assert( next < unique(), "Unique useful nodes < total nodes"); 312 Node *n = useful.at(next); 313 uint max = n->len(); 314 for( uint i = 0; i < max; ++i ) { 315 Node *m = n->in(i); 316 if (not_a_node(m)) continue; 317 useful.push(m); 318 } 319 } 320 } 321 322 // Update dead_node_list with any missing dead nodes using useful 323 // list. Consider all non-useful nodes to be useless i.e., dead nodes. 324 void Compile::update_dead_node_list(Unique_Node_List &useful) { 325 uint max_idx = unique(); 326 VectorSet& useful_node_set = useful.member_set(); 327 328 for (uint node_idx = 0; node_idx < max_idx; node_idx++) { 329 // If node with index node_idx is not in useful set, 330 // mark it as dead in dead node list. 331 if (!useful_node_set.test(node_idx)) { 332 record_dead_node(node_idx); 333 } 334 } 335 } 336 337 void Compile::remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Unique_Node_List &useful) { 338 int shift = 0; 339 for (int i = 0; i < inlines->length(); i++) { 340 CallGenerator* cg = inlines->at(i); 341 CallNode* call = cg->call_node(); 342 if (shift > 0) { 343 inlines->at_put(i-shift, cg); 344 } 345 if (!useful.member(call)) { 346 shift++; 347 } 348 } 349 inlines->trunc_to(inlines->length()-shift); 350 } 351 352 // Disconnect all useless nodes by disconnecting those at the boundary. 353 void Compile::remove_useless_nodes(Unique_Node_List &useful) { 354 uint next = 0; 355 while (next < useful.size()) { 356 Node *n = useful.at(next++); 357 if (n->is_SafePoint()) { 358 // We're done with a parsing phase. Replaced nodes are not valid 359 // beyond that point. 360 n->as_SafePoint()->delete_replaced_nodes(); 361 } 362 // Use raw traversal of out edges since this code removes out edges 363 int max = n->outcnt(); 364 for (int j = 0; j < max; ++j) { 365 Node* child = n->raw_out(j); 366 if (! useful.member(child)) { 367 assert(!child->is_top() || child != top(), 368 "If top is cached in Compile object it is in useful list"); 369 // Only need to remove this out-edge to the useless node 370 n->raw_del_out(j); 371 --j; 372 --max; 373 } 374 } 375 if (n->outcnt() == 1 && n->has_special_unique_user()) { 376 record_for_igvn(n->unique_out()); 377 } 378 } 379 // Remove useless macro and predicate opaq nodes 380 for (int i = C->macro_count()-1; i >= 0; i--) { 381 Node* n = C->macro_node(i); 382 if (!useful.member(n)) { 383 remove_macro_node(n); 384 } 385 } 386 // Remove useless CastII nodes with range check dependency 387 for (int i = range_check_cast_count() - 1; i >= 0; i--) { 388 Node* cast = range_check_cast_node(i); 389 if (!useful.member(cast)) { 390 remove_range_check_cast(cast); 391 } 392 } 393 // Remove useless expensive nodes 394 for (int i = C->expensive_count()-1; i >= 0; i--) { 395 Node* n = C->expensive_node(i); 396 if (!useful.member(n)) { 397 remove_expensive_node(n); 398 } 399 } 400 // Remove useless Opaque4 nodes 401 for (int i = opaque4_count() - 1; i >= 0; i--) { 402 Node* opaq = opaque4_node(i); 403 if (!useful.member(opaq)) { 404 remove_opaque4_node(opaq); 405 } 406 } 407 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 408 bs->eliminate_useless_gc_barriers(useful, this); 409 // clean up the late inline lists 410 remove_useless_late_inlines(&_string_late_inlines, useful); 411 remove_useless_late_inlines(&_boxing_late_inlines, useful); 412 remove_useless_late_inlines(&_late_inlines, useful); 413 remove_useless_late_inlines(&_vector_reboxing_late_inlines, useful); 414 debug_only(verify_graph_edges(true/*check for no_dead_code*/);) 415 } 416 417 // ============================================================================ 418 //------------------------------CompileWrapper--------------------------------- 419 class CompileWrapper : public StackObj { 420 Compile *const _compile; 421 public: 422 CompileWrapper(Compile* compile); 423 424 ~CompileWrapper(); 425 }; 426 427 CompileWrapper::CompileWrapper(Compile* compile) : _compile(compile) { 428 // the Compile* pointer is stored in the current ciEnv: 429 ciEnv* env = compile->env(); 430 assert(env == ciEnv::current(), "must already be a ciEnv active"); 431 assert(env->compiler_data() == NULL, "compile already active?"); 432 env->set_compiler_data(compile); 433 assert(compile == Compile::current(), "sanity"); 434 435 compile->set_type_dict(NULL); 436 compile->set_clone_map(new Dict(cmpkey, hashkey, _compile->comp_arena())); 437 compile->clone_map().set_clone_idx(0); 438 compile->set_type_last_size(0); 439 compile->set_last_tf(NULL, NULL); 440 compile->set_indexSet_arena(NULL); 441 compile->set_indexSet_free_block_list(NULL); 442 compile->init_type_arena(); 443 Type::Initialize(compile); 444 _compile->begin_method(); 445 _compile->clone_map().set_debug(_compile->has_method() && _compile->directive()->CloneMapDebugOption); 446 } 447 CompileWrapper::~CompileWrapper() { 448 _compile->end_method(); 449 _compile->env()->set_compiler_data(NULL); 450 } 451 452 453 //----------------------------print_compile_messages--------------------------- 454 void Compile::print_compile_messages() { 455 #ifndef PRODUCT 456 // Check if recompiling 457 if (_subsume_loads == false && PrintOpto) { 458 // Recompiling without allowing machine instructions to subsume loads 459 tty->print_cr("*********************************************************"); 460 tty->print_cr("** Bailout: Recompile without subsuming loads **"); 461 tty->print_cr("*********************************************************"); 462 } 463 if (_do_escape_analysis != DoEscapeAnalysis && PrintOpto) { 464 // Recompiling without escape analysis 465 tty->print_cr("*********************************************************"); 466 tty->print_cr("** Bailout: Recompile without escape analysis **"); 467 tty->print_cr("*********************************************************"); 468 } 469 if (_eliminate_boxing != EliminateAutoBox && PrintOpto) { 470 // Recompiling without boxing elimination 471 tty->print_cr("*********************************************************"); 472 tty->print_cr("** Bailout: Recompile without boxing elimination **"); 473 tty->print_cr("*********************************************************"); 474 } 475 if (C->directive()->BreakAtCompileOption) { 476 // Open the debugger when compiling this method. 477 tty->print("### Breaking when compiling: "); 478 method()->print_short_name(); 479 tty->cr(); 480 BREAKPOINT; 481 } 482 483 if( PrintOpto ) { 484 if (is_osr_compilation()) { 485 tty->print("[OSR]%3d", _compile_id); 486 } else { 487 tty->print("%3d", _compile_id); 488 } 489 } 490 #endif 491 } 492 493 // ============================================================================ 494 //------------------------------Compile standard------------------------------- 495 debug_only( int Compile::_debug_idx = 100000; ) 496 497 // Compile a method. entry_bci is -1 for normal compilations and indicates 498 // the continuation bci for on stack replacement. 499 500 501 Compile::Compile( ciEnv* ci_env, ciMethod* target, int osr_bci, 502 bool subsume_loads, bool do_escape_analysis, bool eliminate_boxing, DirectiveSet* directive) 503 : Phase(Compiler), 504 _compile_id(ci_env->compile_id()), 505 _save_argument_registers(false), 506 _subsume_loads(subsume_loads), 507 _do_escape_analysis(do_escape_analysis), 508 _eliminate_boxing(eliminate_boxing), 509 _method(target), 510 _entry_bci(osr_bci), 511 _stub_function(NULL), 512 _stub_name(NULL), 513 _stub_entry_point(NULL), 514 _max_node_limit(MaxNodeLimit), 515 _inlining_progress(false), 516 _inlining_incrementally(false), 517 _do_cleanup(false), 518 _has_reserved_stack_access(target->has_reserved_stack_access()), 519 #ifndef PRODUCT 520 _trace_opto_output(directive->TraceOptoOutputOption), 521 _print_ideal(directive->PrintIdealOption), 522 #endif 523 _has_method_handle_invokes(false), 524 _clinit_barrier_on_entry(false), 525 _comp_arena(mtCompiler), 526 _barrier_set_state(BarrierSet::barrier_set()->barrier_set_c2()->create_barrier_state(comp_arena())), 527 _env(ci_env), 528 _directive(directive), 529 _log(ci_env->log()), 530 _failure_reason(NULL), 531 _congraph(NULL), 532 #ifndef PRODUCT 533 _printer(IdealGraphPrinter::printer()), 534 #endif 535 _dead_node_list(comp_arena()), 536 _dead_node_count(0), 537 _node_arena(mtCompiler), 538 _old_arena(mtCompiler), 539 _mach_constant_base_node(NULL), 540 _Compile_types(mtCompiler), 541 _initial_gvn(NULL), 542 _for_igvn(NULL), 543 _warm_calls(NULL), 544 _late_inlines(comp_arena(), 2, 0, NULL), 545 _string_late_inlines(comp_arena(), 2, 0, NULL), 546 _boxing_late_inlines(comp_arena(), 2, 0, NULL), 547 _vector_reboxing_late_inlines(comp_arena(), 2, 0, NULL), 548 _late_inlines_pos(0), 549 _number_of_mh_late_inlines(0), 550 _print_inlining_stream(NULL), 551 _print_inlining_list(NULL), 552 _print_inlining_idx(0), 553 _print_inlining_output(NULL), 554 _replay_inline_data(NULL), 555 _java_calls(0), 556 _inner_loops(0), 557 _interpreter_frame_size(0) 558 #ifndef PRODUCT 559 , _in_dump_cnt(0) 560 #endif 561 { 562 C = this; 563 #ifndef PRODUCT 564 if (_printer != NULL) { 565 _printer->set_compile(this); 566 } 567 #endif 568 CompileWrapper cw(this); 569 570 if (CITimeVerbose) { 571 tty->print(" "); 572 target->holder()->name()->print(); 573 tty->print("."); 574 target->print_short_name(); 575 tty->print(" "); 576 } 577 TraceTime t1("Total compilation time", &_t_totalCompilation, CITime, CITimeVerbose); 578 TraceTime t2(NULL, &_t_methodCompilation, CITime, false); 579 580 #if defined(SUPPORT_ASSEMBLY) || defined(SUPPORT_ABSTRACT_ASSEMBLY) 581 bool print_opto_assembly = directive->PrintOptoAssemblyOption; 582 // We can always print a disassembly, either abstract (hex dump) or 583 // with the help of a suitable hsdis library. Thus, we should not 584 // couple print_assembly and print_opto_assembly controls. 585 // But: always print opto and regular assembly on compile command 'print'. 586 bool print_assembly = directive->PrintAssemblyOption; 587 set_print_assembly(print_opto_assembly || print_assembly); 588 #else 589 set_print_assembly(false); // must initialize. 590 #endif 591 592 #ifndef PRODUCT 593 set_parsed_irreducible_loop(false); 594 595 if (directive->ReplayInlineOption) { 596 _replay_inline_data = ciReplay::load_inline_data(method(), entry_bci(), ci_env->comp_level()); 597 } 598 #endif 599 set_print_inlining(directive->PrintInliningOption || PrintOptoInlining); 600 set_print_intrinsics(directive->PrintIntrinsicsOption); 601 set_has_irreducible_loop(true); // conservative until build_loop_tree() reset it 602 603 if (ProfileTraps RTM_OPT_ONLY( || UseRTMLocking )) { 604 // Make sure the method being compiled gets its own MDO, 605 // so we can at least track the decompile_count(). 606 // Need MDO to record RTM code generation state. 607 method()->ensure_method_data(); 608 } 609 610 Init(::AliasLevel); 611 612 613 print_compile_messages(); 614 615 _ilt = InlineTree::build_inline_tree_root(); 616 617 // Even if NO memory addresses are used, MergeMem nodes must have at least 1 slice 618 assert(num_alias_types() >= AliasIdxRaw, ""); 619 620 #define MINIMUM_NODE_HASH 1023 621 // Node list that Iterative GVN will start with 622 Unique_Node_List for_igvn(comp_arena()); 623 set_for_igvn(&for_igvn); 624 625 // GVN that will be run immediately on new nodes 626 uint estimated_size = method()->code_size()*4+64; 627 estimated_size = (estimated_size < MINIMUM_NODE_HASH ? MINIMUM_NODE_HASH : estimated_size); 628 PhaseGVN gvn(node_arena(), estimated_size); 629 set_initial_gvn(&gvn); 630 631 print_inlining_init(); 632 { // Scope for timing the parser 633 TracePhase tp("parse", &timers[_t_parser]); 634 635 // Put top into the hash table ASAP. 636 initial_gvn()->transform_no_reclaim(top()); 637 638 // Set up tf(), start(), and find a CallGenerator. 639 CallGenerator* cg = NULL; 640 if (is_osr_compilation()) { 641 const TypeTuple *domain = StartOSRNode::osr_domain(); 642 const TypeTuple *range = TypeTuple::make_range(method()->signature()); 643 init_tf(TypeFunc::make(domain, range)); 644 StartNode* s = new StartOSRNode(root(), domain); 645 initial_gvn()->set_type_bottom(s); 646 init_start(s); 647 cg = CallGenerator::for_osr(method(), entry_bci()); 648 } else { 649 // Normal case. 650 init_tf(TypeFunc::make(method())); 651 StartNode* s = new StartNode(root(), tf()->domain()); 652 initial_gvn()->set_type_bottom(s); 653 init_start(s); 654 if (method()->intrinsic_id() == vmIntrinsics::_Reference_get) { 655 // With java.lang.ref.reference.get() we must go through the 656 // intrinsic - even when get() is the root 657 // method of the compile - so that, if necessary, the value in 658 // the referent field of the reference object gets recorded by 659 // the pre-barrier code. 660 cg = find_intrinsic(method(), false); 661 } 662 if (cg == NULL) { 663 float past_uses = method()->interpreter_invocation_count(); 664 float expected_uses = past_uses; 665 cg = CallGenerator::for_inline(method(), expected_uses); 666 } 667 } 668 if (failing()) return; 669 if (cg == NULL) { 670 record_method_not_compilable("cannot parse method"); 671 return; 672 } 673 JVMState* jvms = build_start_state(start(), tf()); 674 if ((jvms = cg->generate(jvms)) == NULL) { 675 if (!failure_reason_is(C2Compiler::retry_class_loading_during_parsing())) { 676 record_method_not_compilable("method parse failed"); 677 } 678 return; 679 } 680 GraphKit kit(jvms); 681 682 if (!kit.stopped()) { 683 // Accept return values, and transfer control we know not where. 684 // This is done by a special, unique ReturnNode bound to root. 685 return_values(kit.jvms()); 686 } 687 688 if (kit.has_exceptions()) { 689 // Any exceptions that escape from this call must be rethrown 690 // to whatever caller is dynamically above us on the stack. 691 // This is done by a special, unique RethrowNode bound to root. 692 rethrow_exceptions(kit.transfer_exceptions_into_jvms()); 693 } 694 695 assert(IncrementalInline || (_late_inlines.length() == 0 && !has_mh_late_inlines()), "incremental inlining is off"); 696 697 if (_late_inlines.length() == 0 && !has_mh_late_inlines() && !failing() && has_stringbuilder()) { 698 inline_string_calls(true); 699 } 700 701 if (failing()) return; 702 703 print_method(PHASE_BEFORE_REMOVEUSELESS, 3); 704 705 // Remove clutter produced by parsing. 706 if (!failing()) { 707 ResourceMark rm; 708 PhaseRemoveUseless pru(initial_gvn(), &for_igvn); 709 } 710 } 711 712 // Note: Large methods are capped off in do_one_bytecode(). 713 if (failing()) return; 714 715 // After parsing, node notes are no longer automagic. 716 // They must be propagated by register_new_node_with_optimizer(), 717 // clone(), or the like. 718 set_default_node_notes(NULL); 719 720 for (;;) { 721 int successes = Inline_Warm(); 722 if (failing()) return; 723 if (successes == 0) break; 724 } 725 726 // Drain the list. 727 Finish_Warm(); 728 #ifndef PRODUCT 729 if (_printer && _printer->should_print(1)) { 730 _printer->print_inlining(); 731 } 732 #endif 733 734 if (failing()) return; 735 NOT_PRODUCT( verify_graph_edges(); ) 736 737 // Now optimize 738 Optimize(); 739 if (failing()) return; 740 NOT_PRODUCT( verify_graph_edges(); ) 741 742 #ifndef PRODUCT 743 if (print_ideal()) { 744 ttyLocker ttyl; // keep the following output all in one block 745 // This output goes directly to the tty, not the compiler log. 746 // To enable tools to match it up with the compilation activity, 747 // be sure to tag this tty output with the compile ID. 748 if (xtty != NULL) { 749 xtty->head("ideal compile_id='%d'%s", compile_id(), 750 is_osr_compilation() ? " compile_kind='osr'" : 751 ""); 752 } 753 root()->dump(9999); 754 if (xtty != NULL) { 755 xtty->tail("ideal"); 756 } 757 } 758 #endif 759 760 #ifdef ASSERT 761 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 762 bs->verify_gc_barriers(this, BarrierSetC2::BeforeCodeGen); 763 #endif 764 765 // Dump compilation data to replay it. 766 if (directive->DumpReplayOption) { 767 env()->dump_replay_data(_compile_id); 768 } 769 if (directive->DumpInlineOption && (ilt() != NULL)) { 770 env()->dump_inline_data(_compile_id); 771 } 772 773 // Now that we know the size of all the monitors we can add a fixed slot 774 // for the original deopt pc. 775 int next_slot = fixed_slots() + (sizeof(address) / VMRegImpl::stack_slot_size); 776 set_fixed_slots(next_slot); 777 778 // Compute when to use implicit null checks. Used by matching trap based 779 // nodes and NullCheck optimization. 780 set_allowed_deopt_reasons(); 781 782 // Now generate code 783 Code_Gen(); 784 } 785 786 //------------------------------Compile---------------------------------------- 787 // Compile a runtime stub 788 Compile::Compile( ciEnv* ci_env, 789 TypeFunc_generator generator, 790 address stub_function, 791 const char *stub_name, 792 int is_fancy_jump, 793 bool pass_tls, 794 bool save_arg_registers, 795 bool return_pc, 796 DirectiveSet* directive) 797 : Phase(Compiler), 798 _compile_id(0), 799 _save_argument_registers(save_arg_registers), 800 _subsume_loads(true), 801 _do_escape_analysis(false), 802 _eliminate_boxing(false), 803 _method(NULL), 804 _entry_bci(InvocationEntryBci), 805 _stub_function(stub_function), 806 _stub_name(stub_name), 807 _stub_entry_point(NULL), 808 _max_node_limit(MaxNodeLimit), 809 _inlining_progress(false), 810 _inlining_incrementally(false), 811 _has_reserved_stack_access(false), 812 #ifndef PRODUCT 813 _trace_opto_output(directive->TraceOptoOutputOption), 814 _print_ideal(directive->PrintIdealOption), 815 #endif 816 _has_method_handle_invokes(false), 817 _clinit_barrier_on_entry(false), 818 _comp_arena(mtCompiler), 819 _barrier_set_state(BarrierSet::barrier_set()->barrier_set_c2()->create_barrier_state(comp_arena())), 820 _env(ci_env), 821 _directive(directive), 822 _log(ci_env->log()), 823 _failure_reason(NULL), 824 _congraph(NULL), 825 #ifndef PRODUCT 826 _printer(NULL), 827 #endif 828 _dead_node_list(comp_arena()), 829 _dead_node_count(0), 830 _node_arena(mtCompiler), 831 _old_arena(mtCompiler), 832 _mach_constant_base_node(NULL), 833 _Compile_types(mtCompiler), 834 _initial_gvn(NULL), 835 _for_igvn(NULL), 836 _warm_calls(NULL), 837 _number_of_mh_late_inlines(0), 838 _print_inlining_stream(NULL), 839 _print_inlining_list(NULL), 840 _print_inlining_idx(0), 841 _print_inlining_output(NULL), 842 _replay_inline_data(NULL), 843 _java_calls(0), 844 _inner_loops(0), 845 _interpreter_frame_size(0), 846 #ifndef PRODUCT 847 _in_dump_cnt(0), 848 #endif 849 _allowed_reasons(0) { 850 C = this; 851 852 TraceTime t1(NULL, &_t_totalCompilation, CITime, false); 853 TraceTime t2(NULL, &_t_stubCompilation, CITime, false); 854 855 #ifndef PRODUCT 856 set_print_assembly(PrintFrameConverterAssembly); 857 set_parsed_irreducible_loop(false); 858 #else 859 set_print_assembly(false); // Must initialize. 860 #endif 861 set_has_irreducible_loop(false); // no loops 862 863 CompileWrapper cw(this); 864 Init(/*AliasLevel=*/ 0); 865 init_tf((*generator)()); 866 867 { 868 // The following is a dummy for the sake of GraphKit::gen_stub 869 Unique_Node_List for_igvn(comp_arena()); 870 set_for_igvn(&for_igvn); // not used, but some GraphKit guys push on this 871 PhaseGVN gvn(Thread::current()->resource_area(),255); 872 set_initial_gvn(&gvn); // not significant, but GraphKit guys use it pervasively 873 gvn.transform_no_reclaim(top()); 874 875 GraphKit kit; 876 kit.gen_stub(stub_function, stub_name, is_fancy_jump, pass_tls, return_pc); 877 } 878 879 NOT_PRODUCT( verify_graph_edges(); ) 880 881 Code_Gen(); 882 } 883 884 //------------------------------Init------------------------------------------- 885 // Prepare for a single compilation 886 void Compile::Init(int aliaslevel) { 887 _unique = 0; 888 _regalloc = NULL; 889 890 _tf = NULL; // filled in later 891 _top = NULL; // cached later 892 _matcher = NULL; // filled in later 893 _cfg = NULL; // filled in later 894 895 IA32_ONLY( set_24_bit_selection_and_mode(true, false); ) 896 897 _node_note_array = NULL; 898 _default_node_notes = NULL; 899 DEBUG_ONLY( _modified_nodes = NULL; ) // Used in Optimize() 900 901 _immutable_memory = NULL; // filled in at first inquiry 902 903 // Globally visible Nodes 904 // First set TOP to NULL to give safe behavior during creation of RootNode 905 set_cached_top_node(NULL); 906 set_root(new RootNode()); 907 // Now that you have a Root to point to, create the real TOP 908 set_cached_top_node( new ConNode(Type::TOP) ); 909 set_recent_alloc(NULL, NULL); 910 911 // Create Debug Information Recorder to record scopes, oopmaps, etc. 912 env()->set_oop_recorder(new OopRecorder(env()->arena())); 913 env()->set_debug_info(new DebugInformationRecorder(env()->oop_recorder())); 914 env()->set_dependencies(new Dependencies(env())); 915 916 _fixed_slots = 0; 917 set_has_split_ifs(false); 918 set_has_loops(has_method() && method()->has_loops()); // first approximation 919 set_has_stringbuilder(false); 920 set_has_boxed_value(false); 921 _trap_can_recompile = false; // no traps emitted yet 922 _major_progress = true; // start out assuming good things will happen 923 set_has_unsafe_access(false); 924 set_max_vector_size(0); 925 set_clear_upper_avx(false); //false as default for clear upper bits of ymm registers 926 Copy::zero_to_bytes(_trap_hist, sizeof(_trap_hist)); 927 set_decompile_count(0); 928 929 set_do_freq_based_layout(_directive->BlockLayoutByFrequencyOption); 930 _loop_opts_cnt = LoopOptsCount; 931 set_do_inlining(Inline); 932 set_max_inline_size(MaxInlineSize); 933 set_freq_inline_size(FreqInlineSize); 934 set_do_scheduling(OptoScheduling); 935 set_do_count_invocations(false); 936 set_do_method_data_update(false); 937 938 set_do_vector_loop(false); 939 940 if (AllowVectorizeOnDemand) { 941 if (has_method() && (_directive->VectorizeOption || _directive->VectorizeDebugOption)) { 942 set_do_vector_loop(true); 943 NOT_PRODUCT(if (do_vector_loop() && Verbose) {tty->print("Compile::Init: do vectorized loops (SIMD like) for method %s\n", method()->name()->as_quoted_ascii());}) 944 } else if (has_method() && method()->name() != 0 && 945 method()->intrinsic_id() == vmIntrinsics::_forEachRemaining) { 946 set_do_vector_loop(true); 947 } 948 } 949 set_use_cmove(UseCMoveUnconditionally /* || do_vector_loop()*/); //TODO: consider do_vector_loop() mandate use_cmove unconditionally 950 NOT_PRODUCT(if (use_cmove() && Verbose && has_method()) {tty->print("Compile::Init: use CMove without profitability tests for method %s\n", method()->name()->as_quoted_ascii());}) 951 952 set_age_code(has_method() && method()->profile_aging()); 953 set_rtm_state(NoRTM); // No RTM lock eliding by default 954 _max_node_limit = _directive->MaxNodeLimitOption; 955 956 #if INCLUDE_RTM_OPT 957 if (UseRTMLocking && has_method() && (method()->method_data_or_null() != NULL)) { 958 int rtm_state = method()->method_data()->rtm_state(); 959 if (method_has_option("NoRTMLockEliding") || ((rtm_state & NoRTM) != 0)) { 960 // Don't generate RTM lock eliding code. 961 set_rtm_state(NoRTM); 962 } else if (method_has_option("UseRTMLockEliding") || ((rtm_state & UseRTM) != 0) || !UseRTMDeopt) { 963 // Generate RTM lock eliding code without abort ratio calculation code. 964 set_rtm_state(UseRTM); 965 } else if (UseRTMDeopt) { 966 // Generate RTM lock eliding code and include abort ratio calculation 967 // code if UseRTMDeopt is on. 968 set_rtm_state(ProfileRTM); 969 } 970 } 971 #endif 972 if (VM_Version::supports_fast_class_init_checks() && has_method() && !is_osr_compilation() && method()->needs_clinit_barrier()) { 973 set_clinit_barrier_on_entry(true); 974 } 975 if (debug_info()->recording_non_safepoints()) { 976 set_node_note_array(new(comp_arena()) GrowableArray<Node_Notes*> 977 (comp_arena(), 8, 0, NULL)); 978 set_default_node_notes(Node_Notes::make(this)); 979 } 980 981 // // -- Initialize types before each compile -- 982 // // Update cached type information 983 // if( _method && _method->constants() ) 984 // Type::update_loaded_types(_method, _method->constants()); 985 986 // Init alias_type map. 987 if (!_do_escape_analysis && aliaslevel == 3) 988 aliaslevel = 2; // No unique types without escape analysis 989 _AliasLevel = aliaslevel; 990 const int grow_ats = 16; 991 _max_alias_types = grow_ats; 992 _alias_types = NEW_ARENA_ARRAY(comp_arena(), AliasType*, grow_ats); 993 AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType, grow_ats); 994 Copy::zero_to_bytes(ats, sizeof(AliasType)*grow_ats); 995 { 996 for (int i = 0; i < grow_ats; i++) _alias_types[i] = &ats[i]; 997 } 998 // Initialize the first few types. 999 _alias_types[AliasIdxTop]->Init(AliasIdxTop, NULL); 1000 _alias_types[AliasIdxBot]->Init(AliasIdxBot, TypePtr::BOTTOM); 1001 _alias_types[AliasIdxRaw]->Init(AliasIdxRaw, TypeRawPtr::BOTTOM); 1002 _num_alias_types = AliasIdxRaw+1; 1003 // Zero out the alias type cache. 1004 Copy::zero_to_bytes(_alias_cache, sizeof(_alias_cache)); 1005 // A NULL adr_type hits in the cache right away. Preload the right answer. 1006 probe_alias_cache(NULL)->_index = AliasIdxTop; 1007 1008 _intrinsics = NULL; 1009 _macro_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8, 0, NULL); 1010 _predicate_opaqs = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8, 0, NULL); 1011 _expensive_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8, 0, NULL); 1012 _range_check_casts = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8, 0, NULL); 1013 _opaque4_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8, 0, NULL); 1014 register_library_intrinsics(); 1015 #ifdef ASSERT 1016 _type_verify_symmetry = true; 1017 #endif 1018 } 1019 1020 //---------------------------init_start---------------------------------------- 1021 // Install the StartNode on this compile object. 1022 void Compile::init_start(StartNode* s) { 1023 if (failing()) 1024 return; // already failing 1025 assert(s == start(), ""); 1026 } 1027 1028 /** 1029 * Return the 'StartNode'. We must not have a pending failure, since the ideal graph 1030 * can be in an inconsistent state, i.e., we can get segmentation faults when traversing 1031 * the ideal graph. 1032 */ 1033 StartNode* Compile::start() const { 1034 assert (!failing(), "Must not have pending failure. Reason is: %s", failure_reason()); 1035 for (DUIterator_Fast imax, i = root()->fast_outs(imax); i < imax; i++) { 1036 Node* start = root()->fast_out(i); 1037 if (start->is_Start()) { 1038 return start->as_Start(); 1039 } 1040 } 1041 fatal("Did not find Start node!"); 1042 return NULL; 1043 } 1044 1045 //-------------------------------immutable_memory------------------------------------- 1046 // Access immutable memory 1047 Node* Compile::immutable_memory() { 1048 if (_immutable_memory != NULL) { 1049 return _immutable_memory; 1050 } 1051 StartNode* s = start(); 1052 for (DUIterator_Fast imax, i = s->fast_outs(imax); true; i++) { 1053 Node *p = s->fast_out(i); 1054 if (p != s && p->as_Proj()->_con == TypeFunc::Memory) { 1055 _immutable_memory = p; 1056 return _immutable_memory; 1057 } 1058 } 1059 ShouldNotReachHere(); 1060 return NULL; 1061 } 1062 1063 //----------------------set_cached_top_node------------------------------------ 1064 // Install the cached top node, and make sure Node::is_top works correctly. 1065 void Compile::set_cached_top_node(Node* tn) { 1066 if (tn != NULL) verify_top(tn); 1067 Node* old_top = _top; 1068 _top = tn; 1069 // Calling Node::setup_is_top allows the nodes the chance to adjust 1070 // their _out arrays. 1071 if (_top != NULL) _top->setup_is_top(); 1072 if (old_top != NULL) old_top->setup_is_top(); 1073 assert(_top == NULL || top()->is_top(), ""); 1074 } 1075 1076 #ifdef ASSERT 1077 uint Compile::count_live_nodes_by_graph_walk() { 1078 Unique_Node_List useful(comp_arena()); 1079 // Get useful node list by walking the graph. 1080 identify_useful_nodes(useful); 1081 return useful.size(); 1082 } 1083 1084 void Compile::print_missing_nodes() { 1085 1086 // Return if CompileLog is NULL and PrintIdealNodeCount is false. 1087 if ((_log == NULL) && (! PrintIdealNodeCount)) { 1088 return; 1089 } 1090 1091 // This is an expensive function. It is executed only when the user 1092 // specifies VerifyIdealNodeCount option or otherwise knows the 1093 // additional work that needs to be done to identify reachable nodes 1094 // by walking the flow graph and find the missing ones using 1095 // _dead_node_list. 1096 1097 Unique_Node_List useful(comp_arena()); 1098 // Get useful node list by walking the graph. 1099 identify_useful_nodes(useful); 1100 1101 uint l_nodes = C->live_nodes(); 1102 uint l_nodes_by_walk = useful.size(); 1103 1104 if (l_nodes != l_nodes_by_walk) { 1105 if (_log != NULL) { 1106 _log->begin_head("mismatched_nodes count='%d'", abs((int) (l_nodes - l_nodes_by_walk))); 1107 _log->stamp(); 1108 _log->end_head(); 1109 } 1110 VectorSet& useful_member_set = useful.member_set(); 1111 int last_idx = l_nodes_by_walk; 1112 for (int i = 0; i < last_idx; i++) { 1113 if (useful_member_set.test(i)) { 1114 if (_dead_node_list.test(i)) { 1115 if (_log != NULL) { 1116 _log->elem("mismatched_node_info node_idx='%d' type='both live and dead'", i); 1117 } 1118 if (PrintIdealNodeCount) { 1119 // Print the log message to tty 1120 tty->print_cr("mismatched_node idx='%d' both live and dead'", i); 1121 useful.at(i)->dump(); 1122 } 1123 } 1124 } 1125 else if (! _dead_node_list.test(i)) { 1126 if (_log != NULL) { 1127 _log->elem("mismatched_node_info node_idx='%d' type='neither live nor dead'", i); 1128 } 1129 if (PrintIdealNodeCount) { 1130 // Print the log message to tty 1131 tty->print_cr("mismatched_node idx='%d' type='neither live nor dead'", i); 1132 } 1133 } 1134 } 1135 if (_log != NULL) { 1136 _log->tail("mismatched_nodes"); 1137 } 1138 } 1139 } 1140 void Compile::record_modified_node(Node* n) { 1141 if (_modified_nodes != NULL && !_inlining_incrementally && 1142 n->outcnt() != 0 && !n->is_Con()) { 1143 _modified_nodes->push(n); 1144 } 1145 } 1146 1147 void Compile::remove_modified_node(Node* n) { 1148 if (_modified_nodes != NULL) { 1149 _modified_nodes->remove(n); 1150 } 1151 } 1152 #endif 1153 1154 #ifndef PRODUCT 1155 void Compile::verify_top(Node* tn) const { 1156 if (tn != NULL) { 1157 assert(tn->is_Con(), "top node must be a constant"); 1158 assert(((ConNode*)tn)->type() == Type::TOP, "top node must have correct type"); 1159 assert(tn->in(0) != NULL, "must have live top node"); 1160 } 1161 } 1162 #endif 1163 1164 1165 ///-------------------Managing Per-Node Debug & Profile Info------------------- 1166 1167 void Compile::grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by) { 1168 guarantee(arr != NULL, ""); 1169 int num_blocks = arr->length(); 1170 if (grow_by < num_blocks) grow_by = num_blocks; 1171 int num_notes = grow_by * _node_notes_block_size; 1172 Node_Notes* notes = NEW_ARENA_ARRAY(node_arena(), Node_Notes, num_notes); 1173 Copy::zero_to_bytes(notes, num_notes * sizeof(Node_Notes)); 1174 while (num_notes > 0) { 1175 arr->append(notes); 1176 notes += _node_notes_block_size; 1177 num_notes -= _node_notes_block_size; 1178 } 1179 assert(num_notes == 0, "exact multiple, please"); 1180 } 1181 1182 bool Compile::copy_node_notes_to(Node* dest, Node* source) { 1183 if (source == NULL || dest == NULL) return false; 1184 1185 if (dest->is_Con()) 1186 return false; // Do not push debug info onto constants. 1187 1188 #ifdef ASSERT 1189 // Leave a bread crumb trail pointing to the original node: 1190 if (dest != NULL && dest != source && dest->debug_orig() == NULL) { 1191 dest->set_debug_orig(source); 1192 } 1193 #endif 1194 1195 if (node_note_array() == NULL) 1196 return false; // Not collecting any notes now. 1197 1198 // This is a copy onto a pre-existing node, which may already have notes. 1199 // If both nodes have notes, do not overwrite any pre-existing notes. 1200 Node_Notes* source_notes = node_notes_at(source->_idx); 1201 if (source_notes == NULL || source_notes->is_clear()) return false; 1202 Node_Notes* dest_notes = node_notes_at(dest->_idx); 1203 if (dest_notes == NULL || dest_notes->is_clear()) { 1204 return set_node_notes_at(dest->_idx, source_notes); 1205 } 1206 1207 Node_Notes merged_notes = (*source_notes); 1208 // The order of operations here ensures that dest notes will win... 1209 merged_notes.update_from(dest_notes); 1210 return set_node_notes_at(dest->_idx, &merged_notes); 1211 } 1212 1213 1214 //--------------------------allow_range_check_smearing------------------------- 1215 // Gating condition for coalescing similar range checks. 1216 // Sometimes we try 'speculatively' replacing a series of a range checks by a 1217 // single covering check that is at least as strong as any of them. 1218 // If the optimization succeeds, the simplified (strengthened) range check 1219 // will always succeed. If it fails, we will deopt, and then give up 1220 // on the optimization. 1221 bool Compile::allow_range_check_smearing() const { 1222 // If this method has already thrown a range-check, 1223 // assume it was because we already tried range smearing 1224 // and it failed. 1225 uint already_trapped = trap_count(Deoptimization::Reason_range_check); 1226 return !already_trapped; 1227 } 1228 1229 1230 //------------------------------flatten_alias_type----------------------------- 1231 const TypePtr *Compile::flatten_alias_type( const TypePtr *tj ) const { 1232 int offset = tj->offset(); 1233 TypePtr::PTR ptr = tj->ptr(); 1234 1235 // Known instance (scalarizable allocation) alias only with itself. 1236 bool is_known_inst = tj->isa_oopptr() != NULL && 1237 tj->is_oopptr()->is_known_instance(); 1238 1239 // Process weird unsafe references. 1240 if (offset == Type::OffsetBot && (tj->isa_instptr() /*|| tj->isa_klassptr()*/)) { 1241 assert(InlineUnsafeOps, "indeterminate pointers come only from unsafe ops"); 1242 assert(!is_known_inst, "scalarizable allocation should not have unsafe references"); 1243 tj = TypeOopPtr::BOTTOM; 1244 ptr = tj->ptr(); 1245 offset = tj->offset(); 1246 } 1247 1248 // Array pointers need some flattening 1249 const TypeAryPtr *ta = tj->isa_aryptr(); 1250 if (ta && ta->is_stable()) { 1251 // Erase stability property for alias analysis. 1252 tj = ta = ta->cast_to_stable(false); 1253 } 1254 if( ta && is_known_inst ) { 1255 if ( offset != Type::OffsetBot && 1256 offset > arrayOopDesc::length_offset_in_bytes() ) { 1257 offset = Type::OffsetBot; // Flatten constant access into array body only 1258 tj = ta = TypeAryPtr::make(ptr, ta->ary(), ta->klass(), true, offset, ta->instance_id()); 1259 } 1260 } else if( ta && _AliasLevel >= 2 ) { 1261 // For arrays indexed by constant indices, we flatten the alias 1262 // space to include all of the array body. Only the header, klass 1263 // and array length can be accessed un-aliased. 1264 if( offset != Type::OffsetBot ) { 1265 if( ta->const_oop() ) { // MethodData* or Method* 1266 offset = Type::OffsetBot; // Flatten constant access into array body 1267 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),ta->ary(),ta->klass(),false,offset); 1268 } else if( offset == arrayOopDesc::length_offset_in_bytes() ) { 1269 // range is OK as-is. 1270 tj = ta = TypeAryPtr::RANGE; 1271 } else if( offset == oopDesc::klass_offset_in_bytes() ) { 1272 tj = TypeInstPtr::KLASS; // all klass loads look alike 1273 ta = TypeAryPtr::RANGE; // generic ignored junk 1274 ptr = TypePtr::BotPTR; 1275 } else if( offset == oopDesc::mark_offset_in_bytes() ) { 1276 tj = TypeInstPtr::MARK; 1277 ta = TypeAryPtr::RANGE; // generic ignored junk 1278 ptr = TypePtr::BotPTR; 1279 } else { // Random constant offset into array body 1280 offset = Type::OffsetBot; // Flatten constant access into array body 1281 tj = ta = TypeAryPtr::make(ptr,ta->ary(),ta->klass(),false,offset); 1282 } 1283 } 1284 // Arrays of fixed size alias with arrays of unknown size. 1285 if (ta->size() != TypeInt::POS) { 1286 const TypeAry *tary = TypeAry::make(ta->elem(), TypeInt::POS); 1287 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,ta->klass(),false,offset); 1288 } 1289 // Arrays of known objects become arrays of unknown objects. 1290 if (ta->elem()->isa_narrowoop() && ta->elem() != TypeNarrowOop::BOTTOM) { 1291 const TypeAry *tary = TypeAry::make(TypeNarrowOop::BOTTOM, ta->size()); 1292 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset); 1293 } 1294 if (ta->elem()->isa_oopptr() && ta->elem() != TypeInstPtr::BOTTOM) { 1295 const TypeAry *tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size()); 1296 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset); 1297 } 1298 // Arrays of bytes and of booleans both use 'bastore' and 'baload' so 1299 // cannot be distinguished by bytecode alone. 1300 if (ta->elem() == TypeInt::BOOL) { 1301 const TypeAry *tary = TypeAry::make(TypeInt::BYTE, ta->size()); 1302 ciKlass* aklass = ciTypeArrayKlass::make(T_BYTE); 1303 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,aklass,false,offset); 1304 } 1305 // During the 2nd round of IterGVN, NotNull castings are removed. 1306 // Make sure the Bottom and NotNull variants alias the same. 1307 // Also, make sure exact and non-exact variants alias the same. 1308 if (ptr == TypePtr::NotNull || ta->klass_is_exact() || ta->speculative() != NULL) { 1309 tj = ta = TypeAryPtr::make(TypePtr::BotPTR,ta->ary(),ta->klass(),false,offset); 1310 } 1311 } 1312 1313 // Oop pointers need some flattening 1314 const TypeInstPtr *to = tj->isa_instptr(); 1315 if( to && _AliasLevel >= 2 && to != TypeOopPtr::BOTTOM ) { 1316 ciInstanceKlass *k = to->klass()->as_instance_klass(); 1317 if( ptr == TypePtr::Constant ) { 1318 if (to->klass() != ciEnv::current()->Class_klass() || 1319 offset < k->size_helper() * wordSize) { 1320 // No constant oop pointers (such as Strings); they alias with 1321 // unknown strings. 1322 assert(!is_known_inst, "not scalarizable allocation"); 1323 tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset); 1324 } 1325 } else if( is_known_inst ) { 1326 tj = to; // Keep NotNull and klass_is_exact for instance type 1327 } else if( ptr == TypePtr::NotNull || to->klass_is_exact() ) { 1328 // During the 2nd round of IterGVN, NotNull castings are removed. 1329 // Make sure the Bottom and NotNull variants alias the same. 1330 // Also, make sure exact and non-exact variants alias the same. 1331 tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset); 1332 } 1333 if (to->speculative() != NULL) { 1334 tj = to = TypeInstPtr::make(to->ptr(),to->klass(),to->klass_is_exact(),to->const_oop(),to->offset(), to->instance_id()); 1335 } 1336 // Canonicalize the holder of this field 1337 if (offset >= 0 && offset < instanceOopDesc::base_offset_in_bytes()) { 1338 // First handle header references such as a LoadKlassNode, even if the 1339 // object's klass is unloaded at compile time (4965979). 1340 if (!is_known_inst) { // Do it only for non-instance types 1341 tj = to = TypeInstPtr::make(TypePtr::BotPTR, env()->Object_klass(), false, NULL, offset); 1342 } 1343 } else if (offset < 0 || offset >= k->size_helper() * wordSize) { 1344 // Static fields are in the space above the normal instance 1345 // fields in the java.lang.Class instance. 1346 if (to->klass() != ciEnv::current()->Class_klass()) { 1347 to = NULL; 1348 tj = TypeOopPtr::BOTTOM; 1349 offset = tj->offset(); 1350 } 1351 } else { 1352 ciInstanceKlass *canonical_holder = k->get_canonical_holder(offset); 1353 if (!k->equals(canonical_holder) || tj->offset() != offset) { 1354 if( is_known_inst ) { 1355 tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, true, NULL, offset, to->instance_id()); 1356 } else { 1357 tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, false, NULL, offset); 1358 } 1359 } 1360 } 1361 } 1362 1363 // Klass pointers to object array klasses need some flattening 1364 const TypeKlassPtr *tk = tj->isa_klassptr(); 1365 if( tk ) { 1366 // If we are referencing a field within a Klass, we need 1367 // to assume the worst case of an Object. Both exact and 1368 // inexact types must flatten to the same alias class so 1369 // use NotNull as the PTR. 1370 if ( offset == Type::OffsetBot || (offset >= 0 && (size_t)offset < sizeof(Klass)) ) { 1371 1372 tj = tk = TypeKlassPtr::make(TypePtr::NotNull, 1373 TypeKlassPtr::OBJECT->klass(), 1374 offset); 1375 } 1376 1377 ciKlass* klass = tk->klass(); 1378 if( klass->is_obj_array_klass() ) { 1379 ciKlass* k = TypeAryPtr::OOPS->klass(); 1380 if( !k || !k->is_loaded() ) // Only fails for some -Xcomp runs 1381 k = TypeInstPtr::BOTTOM->klass(); 1382 tj = tk = TypeKlassPtr::make( TypePtr::NotNull, k, offset ); 1383 } 1384 1385 // Check for precise loads from the primary supertype array and force them 1386 // to the supertype cache alias index. Check for generic array loads from 1387 // the primary supertype array and also force them to the supertype cache 1388 // alias index. Since the same load can reach both, we need to merge 1389 // these 2 disparate memories into the same alias class. Since the 1390 // primary supertype array is read-only, there's no chance of confusion 1391 // where we bypass an array load and an array store. 1392 int primary_supers_offset = in_bytes(Klass::primary_supers_offset()); 1393 if (offset == Type::OffsetBot || 1394 (offset >= primary_supers_offset && 1395 offset < (int)(primary_supers_offset + Klass::primary_super_limit() * wordSize)) || 1396 offset == (int)in_bytes(Klass::secondary_super_cache_offset())) { 1397 offset = in_bytes(Klass::secondary_super_cache_offset()); 1398 tj = tk = TypeKlassPtr::make( TypePtr::NotNull, tk->klass(), offset ); 1399 } 1400 } 1401 1402 // Flatten all Raw pointers together. 1403 if (tj->base() == Type::RawPtr) 1404 tj = TypeRawPtr::BOTTOM; 1405 1406 if (tj->base() == Type::AnyPtr) 1407 tj = TypePtr::BOTTOM; // An error, which the caller must check for. 1408 1409 // Flatten all to bottom for now 1410 switch( _AliasLevel ) { 1411 case 0: 1412 tj = TypePtr::BOTTOM; 1413 break; 1414 case 1: // Flatten to: oop, static, field or array 1415 switch (tj->base()) { 1416 //case Type::AryPtr: tj = TypeAryPtr::RANGE; break; 1417 case Type::RawPtr: tj = TypeRawPtr::BOTTOM; break; 1418 case Type::AryPtr: // do not distinguish arrays at all 1419 case Type::InstPtr: tj = TypeInstPtr::BOTTOM; break; 1420 case Type::KlassPtr: tj = TypeKlassPtr::OBJECT; break; 1421 case Type::AnyPtr: tj = TypePtr::BOTTOM; break; // caller checks it 1422 default: ShouldNotReachHere(); 1423 } 1424 break; 1425 case 2: // No collapsing at level 2; keep all splits 1426 case 3: // No collapsing at level 3; keep all splits 1427 break; 1428 default: 1429 Unimplemented(); 1430 } 1431 1432 offset = tj->offset(); 1433 assert( offset != Type::OffsetTop, "Offset has fallen from constant" ); 1434 1435 assert( (offset != Type::OffsetBot && tj->base() != Type::AryPtr) || 1436 (offset == Type::OffsetBot && tj->base() == Type::AryPtr) || 1437 (offset == Type::OffsetBot && tj == TypeOopPtr::BOTTOM) || 1438 (offset == Type::OffsetBot && tj == TypePtr::BOTTOM) || 1439 (offset == oopDesc::mark_offset_in_bytes() && tj->base() == Type::AryPtr) || 1440 (offset == oopDesc::klass_offset_in_bytes() && tj->base() == Type::AryPtr) || 1441 (offset == arrayOopDesc::length_offset_in_bytes() && tj->base() == Type::AryPtr), 1442 "For oops, klasses, raw offset must be constant; for arrays the offset is never known" ); 1443 assert( tj->ptr() != TypePtr::TopPTR && 1444 tj->ptr() != TypePtr::AnyNull && 1445 tj->ptr() != TypePtr::Null, "No imprecise addresses" ); 1446 // assert( tj->ptr() != TypePtr::Constant || 1447 // tj->base() == Type::RawPtr || 1448 // tj->base() == Type::KlassPtr, "No constant oop addresses" ); 1449 1450 return tj; 1451 } 1452 1453 void Compile::AliasType::Init(int i, const TypePtr* at) { 1454 assert(AliasIdxTop <= i && i < Compile::current()->_max_alias_types, "Invalid alias index"); 1455 _index = i; 1456 _adr_type = at; 1457 _field = NULL; 1458 _element = NULL; 1459 _is_rewritable = true; // default 1460 const TypeOopPtr *atoop = (at != NULL) ? at->isa_oopptr() : NULL; 1461 if (atoop != NULL && atoop->is_known_instance()) { 1462 const TypeOopPtr *gt = atoop->cast_to_instance_id(TypeOopPtr::InstanceBot); 1463 _general_index = Compile::current()->get_alias_index(gt); 1464 } else { 1465 _general_index = 0; 1466 } 1467 } 1468 1469 BasicType Compile::AliasType::basic_type() const { 1470 if (element() != NULL) { 1471 const Type* element = adr_type()->is_aryptr()->elem(); 1472 return element->isa_narrowoop() ? T_OBJECT : element->array_element_basic_type(); 1473 } if (field() != NULL) { 1474 return field()->layout_type(); 1475 } else { 1476 return T_ILLEGAL; // unknown 1477 } 1478 } 1479 1480 //---------------------------------print_on------------------------------------ 1481 #ifndef PRODUCT 1482 void Compile::AliasType::print_on(outputStream* st) { 1483 if (index() < 10) 1484 st->print("@ <%d> ", index()); 1485 else st->print("@ <%d>", index()); 1486 st->print(is_rewritable() ? " " : " RO"); 1487 int offset = adr_type()->offset(); 1488 if (offset == Type::OffsetBot) 1489 st->print(" +any"); 1490 else st->print(" +%-3d", offset); 1491 st->print(" in "); 1492 adr_type()->dump_on(st); 1493 const TypeOopPtr* tjp = adr_type()->isa_oopptr(); 1494 if (field() != NULL && tjp) { 1495 if (tjp->klass() != field()->holder() || 1496 tjp->offset() != field()->offset_in_bytes()) { 1497 st->print(" != "); 1498 field()->print(); 1499 st->print(" ***"); 1500 } 1501 } 1502 } 1503 1504 void print_alias_types() { 1505 Compile* C = Compile::current(); 1506 tty->print_cr("--- Alias types, AliasIdxBot .. %d", C->num_alias_types()-1); 1507 for (int idx = Compile::AliasIdxBot; idx < C->num_alias_types(); idx++) { 1508 C->alias_type(idx)->print_on(tty); 1509 tty->cr(); 1510 } 1511 } 1512 #endif 1513 1514 1515 //----------------------------probe_alias_cache-------------------------------- 1516 Compile::AliasCacheEntry* Compile::probe_alias_cache(const TypePtr* adr_type) { 1517 intptr_t key = (intptr_t) adr_type; 1518 key ^= key >> logAliasCacheSize; 1519 return &_alias_cache[key & right_n_bits(logAliasCacheSize)]; 1520 } 1521 1522 1523 //-----------------------------grow_alias_types-------------------------------- 1524 void Compile::grow_alias_types() { 1525 const int old_ats = _max_alias_types; // how many before? 1526 const int new_ats = old_ats; // how many more? 1527 const int grow_ats = old_ats+new_ats; // how many now? 1528 _max_alias_types = grow_ats; 1529 _alias_types = REALLOC_ARENA_ARRAY(comp_arena(), AliasType*, _alias_types, old_ats, grow_ats); 1530 AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType, new_ats); 1531 Copy::zero_to_bytes(ats, sizeof(AliasType)*new_ats); 1532 for (int i = 0; i < new_ats; i++) _alias_types[old_ats+i] = &ats[i]; 1533 } 1534 1535 1536 //--------------------------------find_alias_type------------------------------ 1537 Compile::AliasType* Compile::find_alias_type(const TypePtr* adr_type, bool no_create, ciField* original_field) { 1538 if (_AliasLevel == 0) 1539 return alias_type(AliasIdxBot); 1540 1541 AliasCacheEntry* ace = probe_alias_cache(adr_type); 1542 if (ace->_adr_type == adr_type) { 1543 return alias_type(ace->_index); 1544 } 1545 1546 // Handle special cases. 1547 if (adr_type == NULL) return alias_type(AliasIdxTop); 1548 if (adr_type == TypePtr::BOTTOM) return alias_type(AliasIdxBot); 1549 1550 // Do it the slow way. 1551 const TypePtr* flat = flatten_alias_type(adr_type); 1552 1553 #ifdef ASSERT 1554 { 1555 ResourceMark rm; 1556 assert(flat == flatten_alias_type(flat), "not idempotent: adr_type = %s; flat = %s => %s", 1557 Type::str(adr_type), Type::str(flat), Type::str(flatten_alias_type(flat))); 1558 assert(flat != TypePtr::BOTTOM, "cannot alias-analyze an untyped ptr: adr_type = %s", 1559 Type::str(adr_type)); 1560 if (flat->isa_oopptr() && !flat->isa_klassptr()) { 1561 const TypeOopPtr* foop = flat->is_oopptr(); 1562 // Scalarizable allocations have exact klass always. 1563 bool exact = !foop->klass_is_exact() || foop->is_known_instance(); 1564 const TypePtr* xoop = foop->cast_to_exactness(exact)->is_ptr(); 1565 assert(foop == flatten_alias_type(xoop), "exactness must not affect alias type: foop = %s; xoop = %s", 1566 Type::str(foop), Type::str(xoop)); 1567 } 1568 } 1569 #endif 1570 1571 int idx = AliasIdxTop; 1572 for (int i = 0; i < num_alias_types(); i++) { 1573 if (alias_type(i)->adr_type() == flat) { 1574 idx = i; 1575 break; 1576 } 1577 } 1578 1579 if (idx == AliasIdxTop) { 1580 if (no_create) return NULL; 1581 // Grow the array if necessary. 1582 if (_num_alias_types == _max_alias_types) grow_alias_types(); 1583 // Add a new alias type. 1584 idx = _num_alias_types++; 1585 _alias_types[idx]->Init(idx, flat); 1586 if (flat == TypeInstPtr::KLASS) alias_type(idx)->set_rewritable(false); 1587 if (flat == TypeAryPtr::RANGE) alias_type(idx)->set_rewritable(false); 1588 if (flat->isa_instptr()) { 1589 if (flat->offset() == java_lang_Class::klass_offset_in_bytes() 1590 && flat->is_instptr()->klass() == env()->Class_klass()) 1591 alias_type(idx)->set_rewritable(false); 1592 } 1593 if (flat->isa_aryptr()) { 1594 #ifdef ASSERT 1595 const int header_size_min = arrayOopDesc::base_offset_in_bytes(T_BYTE); 1596 // (T_BYTE has the weakest alignment and size restrictions...) 1597 assert(flat->offset() < header_size_min, "array body reference must be OffsetBot"); 1598 #endif 1599 if (flat->offset() == TypePtr::OffsetBot) { 1600 alias_type(idx)->set_element(flat->is_aryptr()->elem()); 1601 } 1602 } 1603 if (flat->isa_klassptr()) { 1604 if (flat->offset() == in_bytes(Klass::super_check_offset_offset())) 1605 alias_type(idx)->set_rewritable(false); 1606 if (flat->offset() == in_bytes(Klass::modifier_flags_offset())) 1607 alias_type(idx)->set_rewritable(false); 1608 if (flat->offset() == in_bytes(Klass::access_flags_offset())) 1609 alias_type(idx)->set_rewritable(false); 1610 if (flat->offset() == in_bytes(Klass::java_mirror_offset())) 1611 alias_type(idx)->set_rewritable(false); 1612 if (flat->offset() == in_bytes(Klass::secondary_super_cache_offset())) 1613 alias_type(idx)->set_rewritable(false); 1614 } 1615 // %%% (We would like to finalize JavaThread::threadObj_offset(), 1616 // but the base pointer type is not distinctive enough to identify 1617 // references into JavaThread.) 1618 1619 // Check for final fields. 1620 const TypeInstPtr* tinst = flat->isa_instptr(); 1621 if (tinst && tinst->offset() >= instanceOopDesc::base_offset_in_bytes()) { 1622 ciField* field; 1623 if (tinst->const_oop() != NULL && 1624 tinst->klass() == ciEnv::current()->Class_klass() && 1625 tinst->offset() >= (tinst->klass()->as_instance_klass()->size_helper() * wordSize)) { 1626 // static field 1627 ciInstanceKlass* k = tinst->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass(); 1628 field = k->get_field_by_offset(tinst->offset(), true); 1629 } else { 1630 ciInstanceKlass *k = tinst->klass()->as_instance_klass(); 1631 field = k->get_field_by_offset(tinst->offset(), false); 1632 } 1633 assert(field == NULL || 1634 original_field == NULL || 1635 (field->holder() == original_field->holder() && 1636 field->offset() == original_field->offset() && 1637 field->is_static() == original_field->is_static()), "wrong field?"); 1638 // Set field() and is_rewritable() attributes. 1639 if (field != NULL) alias_type(idx)->set_field(field); 1640 } 1641 } 1642 1643 // Fill the cache for next time. 1644 ace->_adr_type = adr_type; 1645 ace->_index = idx; 1646 assert(alias_type(adr_type) == alias_type(idx), "type must be installed"); 1647 1648 // Might as well try to fill the cache for the flattened version, too. 1649 AliasCacheEntry* face = probe_alias_cache(flat); 1650 if (face->_adr_type == NULL) { 1651 face->_adr_type = flat; 1652 face->_index = idx; 1653 assert(alias_type(flat) == alias_type(idx), "flat type must work too"); 1654 } 1655 1656 return alias_type(idx); 1657 } 1658 1659 1660 Compile::AliasType* Compile::alias_type(ciField* field) { 1661 const TypeOopPtr* t; 1662 if (field->is_static()) 1663 t = TypeInstPtr::make(field->holder()->java_mirror()); 1664 else 1665 t = TypeOopPtr::make_from_klass_raw(field->holder()); 1666 AliasType* atp = alias_type(t->add_offset(field->offset_in_bytes()), field); 1667 assert((field->is_final() || field->is_stable()) == !atp->is_rewritable(), "must get the rewritable bits correct"); 1668 return atp; 1669 } 1670 1671 1672 //------------------------------have_alias_type-------------------------------- 1673 bool Compile::have_alias_type(const TypePtr* adr_type) { 1674 AliasCacheEntry* ace = probe_alias_cache(adr_type); 1675 if (ace->_adr_type == adr_type) { 1676 return true; 1677 } 1678 1679 // Handle special cases. 1680 if (adr_type == NULL) return true; 1681 if (adr_type == TypePtr::BOTTOM) return true; 1682 1683 return find_alias_type(adr_type, true, NULL) != NULL; 1684 } 1685 1686 //-----------------------------must_alias-------------------------------------- 1687 // True if all values of the given address type are in the given alias category. 1688 bool Compile::must_alias(const TypePtr* adr_type, int alias_idx) { 1689 if (alias_idx == AliasIdxBot) return true; // the universal category 1690 if (adr_type == NULL) return true; // NULL serves as TypePtr::TOP 1691 if (alias_idx == AliasIdxTop) return false; // the empty category 1692 if (adr_type->base() == Type::AnyPtr) return false; // TypePtr::BOTTOM or its twins 1693 1694 // the only remaining possible overlap is identity 1695 int adr_idx = get_alias_index(adr_type); 1696 assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, ""); 1697 assert(adr_idx == alias_idx || 1698 (alias_type(alias_idx)->adr_type() != TypeOopPtr::BOTTOM 1699 && adr_type != TypeOopPtr::BOTTOM), 1700 "should not be testing for overlap with an unsafe pointer"); 1701 return adr_idx == alias_idx; 1702 } 1703 1704 //------------------------------can_alias-------------------------------------- 1705 // True if any values of the given address type are in the given alias category. 1706 bool Compile::can_alias(const TypePtr* adr_type, int alias_idx) { 1707 if (alias_idx == AliasIdxTop) return false; // the empty category 1708 if (adr_type == NULL) return false; // NULL serves as TypePtr::TOP 1709 // Known instance doesn't alias with bottom memory 1710 if (alias_idx == AliasIdxBot) return !adr_type->is_known_instance(); // the universal category 1711 if (adr_type->base() == Type::AnyPtr) return !C->get_adr_type(alias_idx)->is_known_instance(); // TypePtr::BOTTOM or its twins 1712 1713 // the only remaining possible overlap is identity 1714 int adr_idx = get_alias_index(adr_type); 1715 assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, ""); 1716 return adr_idx == alias_idx; 1717 } 1718 1719 1720 1721 //---------------------------pop_warm_call------------------------------------- 1722 WarmCallInfo* Compile::pop_warm_call() { 1723 WarmCallInfo* wci = _warm_calls; 1724 if (wci != NULL) _warm_calls = wci->remove_from(wci); 1725 return wci; 1726 } 1727 1728 //----------------------------Inline_Warm-------------------------------------- 1729 int Compile::Inline_Warm() { 1730 // If there is room, try to inline some more warm call sites. 1731 // %%% Do a graph index compaction pass when we think we're out of space? 1732 if (!InlineWarmCalls) return 0; 1733 1734 int calls_made_hot = 0; 1735 int room_to_grow = NodeCountInliningCutoff - unique(); 1736 int amount_to_grow = MIN2(room_to_grow, (int)NodeCountInliningStep); 1737 int amount_grown = 0; 1738 WarmCallInfo* call; 1739 while (amount_to_grow > 0 && (call = pop_warm_call()) != NULL) { 1740 int est_size = (int)call->size(); 1741 if (est_size > (room_to_grow - amount_grown)) { 1742 // This one won't fit anyway. Get rid of it. 1743 call->make_cold(); 1744 continue; 1745 } 1746 call->make_hot(); 1747 calls_made_hot++; 1748 amount_grown += est_size; 1749 amount_to_grow -= est_size; 1750 } 1751 1752 if (calls_made_hot > 0) set_major_progress(); 1753 return calls_made_hot; 1754 } 1755 1756 1757 //----------------------------Finish_Warm-------------------------------------- 1758 void Compile::Finish_Warm() { 1759 if (!InlineWarmCalls) return; 1760 if (failing()) return; 1761 if (warm_calls() == NULL) return; 1762 1763 // Clean up loose ends, if we are out of space for inlining. 1764 WarmCallInfo* call; 1765 while ((call = pop_warm_call()) != NULL) { 1766 call->make_cold(); 1767 } 1768 } 1769 1770 //---------------------cleanup_loop_predicates----------------------- 1771 // Remove the opaque nodes that protect the predicates so that all unused 1772 // checks and uncommon_traps will be eliminated from the ideal graph 1773 void Compile::cleanup_loop_predicates(PhaseIterGVN &igvn) { 1774 if (predicate_count()==0) return; 1775 for (int i = predicate_count(); i > 0; i--) { 1776 Node * n = predicate_opaque1_node(i-1); 1777 assert(n->Opcode() == Op_Opaque1, "must be"); 1778 igvn.replace_node(n, n->in(1)); 1779 } 1780 assert(predicate_count()==0, "should be clean!"); 1781 } 1782 1783 void Compile::add_range_check_cast(Node* n) { 1784 assert(n->isa_CastII()->has_range_check(), "CastII should have range check dependency"); 1785 assert(!_range_check_casts->contains(n), "duplicate entry in range check casts"); 1786 _range_check_casts->append(n); 1787 } 1788 1789 // Remove all range check dependent CastIINodes. 1790 void Compile::remove_range_check_casts(PhaseIterGVN &igvn) { 1791 for (int i = range_check_cast_count(); i > 0; i--) { 1792 Node* cast = range_check_cast_node(i-1); 1793 assert(cast->isa_CastII()->has_range_check(), "CastII should have range check dependency"); 1794 igvn.replace_node(cast, cast->in(1)); 1795 } 1796 assert(range_check_cast_count() == 0, "should be empty"); 1797 } 1798 1799 void Compile::add_opaque4_node(Node* n) { 1800 assert(n->Opcode() == Op_Opaque4, "Opaque4 only"); 1801 assert(!_opaque4_nodes->contains(n), "duplicate entry in Opaque4 list"); 1802 _opaque4_nodes->append(n); 1803 } 1804 1805 // Remove all Opaque4 nodes. 1806 void Compile::remove_opaque4_nodes(PhaseIterGVN &igvn) { 1807 for (int i = opaque4_count(); i > 0; i--) { 1808 Node* opaq = opaque4_node(i-1); 1809 assert(opaq->Opcode() == Op_Opaque4, "Opaque4 only"); 1810 igvn.replace_node(opaq, opaq->in(2)); 1811 } 1812 assert(opaque4_count() == 0, "should be empty"); 1813 } 1814 1815 // StringOpts and late inlining of string methods 1816 void Compile::inline_string_calls(bool parse_time) { 1817 { 1818 // remove useless nodes to make the usage analysis simpler 1819 ResourceMark rm; 1820 PhaseRemoveUseless pru(initial_gvn(), for_igvn()); 1821 } 1822 1823 { 1824 ResourceMark rm; 1825 print_method(PHASE_BEFORE_STRINGOPTS, 3); 1826 PhaseStringOpts pso(initial_gvn(), for_igvn()); 1827 print_method(PHASE_AFTER_STRINGOPTS, 3); 1828 } 1829 1830 // now inline anything that we skipped the first time around 1831 if (!parse_time) { 1832 _late_inlines_pos = _late_inlines.length(); 1833 } 1834 1835 while (_string_late_inlines.length() > 0) { 1836 CallGenerator* cg = _string_late_inlines.pop(); 1837 cg->do_late_inline(); 1838 if (failing()) return; 1839 } 1840 _string_late_inlines.trunc_to(0); 1841 } 1842 1843 // Late inlining of boxing methods 1844 void Compile::inline_boxing_calls(PhaseIterGVN& igvn) { 1845 if (_boxing_late_inlines.length() > 0) { 1846 assert(has_boxed_value(), "inconsistent"); 1847 1848 PhaseGVN* gvn = initial_gvn(); 1849 set_inlining_incrementally(true); 1850 1851 assert( igvn._worklist.size() == 0, "should be done with igvn" ); 1852 for_igvn()->clear(); 1853 gvn->replace_with(&igvn); 1854 1855 _late_inlines_pos = _late_inlines.length(); 1856 1857 while (_boxing_late_inlines.length() > 0) { 1858 CallGenerator* cg = _boxing_late_inlines.pop(); 1859 cg->do_late_inline(); 1860 if (failing()) return; 1861 } 1862 _boxing_late_inlines.trunc_to(0); 1863 1864 inline_incrementally_cleanup(igvn); 1865 1866 set_inlining_incrementally(false); 1867 } 1868 } 1869 1870 bool Compile::inline_incrementally_one() { 1871 assert(IncrementalInline, "incremental inlining should be on"); 1872 1873 TracePhase tp("incrementalInline_inline", &timers[_t_incrInline_inline]); 1874 set_inlining_progress(false); 1875 set_do_cleanup(false); 1876 int i = 0; 1877 for (; i <_late_inlines.length() && !inlining_progress(); i++) { 1878 CallGenerator* cg = _late_inlines.at(i); 1879 _late_inlines_pos = i+1; 1880 cg->do_late_inline(); 1881 if (failing()) return false; 1882 } 1883 int j = 0; 1884 for (; i < _late_inlines.length(); i++, j++) { 1885 _late_inlines.at_put(j, _late_inlines.at(i)); 1886 } 1887 _late_inlines.trunc_to(j); 1888 assert(inlining_progress() || _late_inlines.length() == 0, ""); 1889 1890 bool needs_cleanup = true; 1891 1892 set_inlining_progress(false); 1893 set_do_cleanup(false); 1894 return (_late_inlines.length() > 0) && !needs_cleanup; 1895 } 1896 1897 void Compile::inline_incrementally_cleanup(PhaseIterGVN& igvn) { 1898 { 1899 TracePhase tp("incrementalInline_pru", &timers[_t_incrInline_pru]); 1900 ResourceMark rm; 1901 PhaseRemoveUseless pru(initial_gvn(), for_igvn()); 1902 } 1903 { 1904 TracePhase tp("incrementalInline_igvn", &timers[_t_incrInline_igvn]); 1905 igvn = PhaseIterGVN(initial_gvn()); 1906 igvn.optimize(); 1907 } 1908 } 1909 1910 // Perform incremental inlining until bound on number of live nodes is reached 1911 void Compile::inline_incrementally(PhaseIterGVN& igvn) { 1912 TracePhase tp("incrementalInline", &timers[_t_incrInline]); 1913 1914 set_inlining_incrementally(true); 1915 uint low_live_nodes = 0; 1916 1917 while (_late_inlines.length() > 0) { 1918 if (live_nodes() > (uint)LiveNodeCountInliningCutoff) { 1919 if (low_live_nodes < (uint)LiveNodeCountInliningCutoff * 8 / 10) { 1920 TracePhase tp("incrementalInline_ideal", &timers[_t_incrInline_ideal]); 1921 // PhaseIdealLoop is expensive so we only try it once we are 1922 // out of live nodes and we only try it again if the previous 1923 // helped got the number of nodes down significantly 1924 PhaseIdealLoop::optimize(igvn, LoopOptsNone); 1925 if (failing()) return; 1926 low_live_nodes = live_nodes(); 1927 _major_progress = true; 1928 } 1929 1930 if (live_nodes() > (uint)LiveNodeCountInliningCutoff) { 1931 break; // finish 1932 } 1933 } 1934 1935 for_igvn()->clear(); 1936 initial_gvn()->replace_with(&igvn); 1937 1938 while (inline_incrementally_one()) { 1939 assert(!failing(), "inconsistent"); 1940 } 1941 1942 if (failing()) return; 1943 1944 inline_incrementally_cleanup(igvn); 1945 1946 print_method(PHASE_INCREMENTAL_INLINE_STEP, 3); 1947 1948 1949 if (failing()) return; 1950 } 1951 assert( igvn._worklist.size() == 0, "should be done with igvn" ); 1952 1953 if (_string_late_inlines.length() > 0) { 1954 assert(has_stringbuilder(), "inconsistent"); 1955 for_igvn()->clear(); 1956 initial_gvn()->replace_with(&igvn); 1957 1958 inline_string_calls(false); 1959 1960 if (failing()) return; 1961 1962 inline_incrementally_cleanup(igvn); 1963 } 1964 1965 set_inlining_incrementally(false); 1966 } 1967 1968 1969 bool Compile::optimize_loops(PhaseIterGVN& igvn, LoopOptsMode mode) { 1970 if(_loop_opts_cnt > 0) { 1971 debug_only( int cnt = 0; ); 1972 while(major_progress() && (_loop_opts_cnt > 0)) { 1973 TracePhase tp("idealLoop", &timers[_t_idealLoop]); 1974 assert( cnt++ < 40, "infinite cycle in loop optimization" ); 1975 PhaseIdealLoop::optimize(igvn, mode); 1976 _loop_opts_cnt--; 1977 if (failing()) return false; 1978 if (major_progress()) print_method(PHASE_PHASEIDEALLOOP_ITERATIONS, 2); 1979 } 1980 } 1981 return true; 1982 } 1983 1984 // Remove edges from "root" to each SafePoint at a backward branch. 1985 // They were inserted during parsing (see add_safepoint()) to make 1986 // infinite loops without calls or exceptions visible to root, i.e., 1987 // useful. 1988 void Compile::remove_root_to_sfpts_edges(PhaseIterGVN& igvn) { 1989 Node *r = root(); 1990 if (r != NULL) { 1991 for (uint i = r->req(); i < r->len(); ++i) { 1992 Node *n = r->in(i); 1993 if (n != NULL && n->is_SafePoint()) { 1994 r->rm_prec(i); 1995 if (n->outcnt() == 0) { 1996 igvn.remove_dead_node(n); 1997 } 1998 --i; 1999 } 2000 } 2001 // Parsing may have added top inputs to the root node (Path 2002 // leading to the Halt node proven dead). Make sure we get a 2003 // chance to clean them up. 2004 igvn._worklist.push(r); 2005 igvn.optimize(); 2006 } 2007 } 2008 2009 //------------------------------Optimize--------------------------------------- 2010 // Given a graph, optimize it. 2011 void Compile::Optimize() { 2012 TracePhase tp("optimizer", &timers[_t_optimizer]); 2013 2014 #ifndef PRODUCT 2015 if (_directive->BreakAtCompileOption) { 2016 BREAKPOINT; 2017 } 2018 2019 #endif 2020 2021 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 2022 #ifdef ASSERT 2023 bs->verify_gc_barriers(this, BarrierSetC2::BeforeOptimize); 2024 #endif 2025 2026 ResourceMark rm; 2027 2028 print_inlining_reinit(); 2029 2030 NOT_PRODUCT( verify_graph_edges(); ) 2031 2032 print_method(PHASE_AFTER_PARSING); 2033 2034 { 2035 // Iterative Global Value Numbering, including ideal transforms 2036 // Initialize IterGVN with types and values from parse-time GVN 2037 PhaseIterGVN igvn(initial_gvn()); 2038 #ifdef ASSERT 2039 _modified_nodes = new (comp_arena()) Unique_Node_List(comp_arena()); 2040 #endif 2041 { 2042 TracePhase tp("iterGVN", &timers[_t_iterGVN]); 2043 igvn.optimize(); 2044 } 2045 2046 if (failing()) return; 2047 2048 print_method(PHASE_ITER_GVN1, 2); 2049 2050 inline_incrementally(igvn); 2051 2052 print_method(PHASE_INCREMENTAL_INLINE, 2); 2053 2054 if (failing()) return; 2055 2056 if (eliminate_boxing()) { 2057 // Inline valueOf() methods now. 2058 inline_boxing_calls(igvn); 2059 2060 if (AlwaysIncrementalInline) { 2061 inline_incrementally(igvn); 2062 } 2063 if (failing()) return; 2064 2065 print_method(PHASE_INCREMENTAL_BOXING_INLINE, 2); 2066 } 2067 2068 // Now that all inlining is over, cut edge from root to loop 2069 // safepoints 2070 remove_root_to_sfpts_edges(igvn); 2071 2072 // Remove the speculative part of types and clean up the graph from 2073 // the extra CastPP nodes whose only purpose is to carry them. Do 2074 // that early so that optimizations are not disrupted by the extra 2075 // CastPP nodes. 2076 remove_speculative_types(igvn); 2077 2078 // No more new expensive nodes will be added to the list from here 2079 // so keep only the actual candidates for optimizations. 2080 cleanup_expensive_nodes(igvn); 2081 2082 assert(EnableVectorSupport || !has_vbox_nodes(), "sanity"); 2083 if (EnableVectorSupport && has_vbox_nodes()) { 2084 TracePhase tp("", &timers[_t_vector]); 2085 PhaseVector pv(igvn); 2086 pv.optimize_vector_boxes(); 2087 2088 print_method(PHASE_ITER_GVN_AFTER_VECTOR, 2); 2089 } 2090 assert(!has_vbox_nodes(), "sanity"); 2091 2092 if (!failing() && RenumberLiveNodes && live_nodes() + NodeLimitFudgeFactor < unique()) { 2093 Compile::TracePhase tp("", &timers[_t_renumberLive]); 2094 initial_gvn()->replace_with(&igvn); 2095 for_igvn()->clear(); 2096 Unique_Node_List new_worklist(C->comp_arena()); 2097 { 2098 ResourceMark rm; 2099 PhaseRenumberLive prl = PhaseRenumberLive(initial_gvn(), for_igvn(), &new_worklist); 2100 } 2101 set_for_igvn(&new_worklist); 2102 igvn = PhaseIterGVN(initial_gvn()); 2103 igvn.optimize(); 2104 } 2105 2106 // FIXME for_igvn() is corrupted from here: new_worklist which is set_for_ignv() was allocated on stack. 2107 2108 // Perform escape analysis 2109 if (_do_escape_analysis && ConnectionGraph::has_candidates(this)) { 2110 if (has_loops()) { 2111 // Cleanup graph (remove dead nodes). 2112 TracePhase tp("idealLoop", &timers[_t_idealLoop]); 2113 PhaseIdealLoop::optimize(igvn, LoopOptsMaxUnroll); 2114 if (major_progress()) print_method(PHASE_PHASEIDEAL_BEFORE_EA, 2); 2115 if (failing()) return; 2116 } 2117 ConnectionGraph::do_analysis(this, &igvn); 2118 2119 if (failing()) return; 2120 2121 // Optimize out fields loads from scalar replaceable allocations. 2122 igvn.optimize(); 2123 print_method(PHASE_ITER_GVN_AFTER_EA, 2); 2124 2125 if (failing()) return; 2126 2127 if (congraph() != NULL && macro_count() > 0) { 2128 TracePhase tp("macroEliminate", &timers[_t_macroEliminate]); 2129 PhaseMacroExpand mexp(igvn); 2130 mexp.eliminate_macro_nodes(); 2131 igvn.set_delay_transform(false); 2132 2133 igvn.optimize(); 2134 print_method(PHASE_ITER_GVN_AFTER_ELIMINATION, 2); 2135 2136 if (failing()) return; 2137 } 2138 } 2139 2140 // Loop transforms on the ideal graph. Range Check Elimination, 2141 // peeling, unrolling, etc. 2142 2143 // Set loop opts counter 2144 if((_loop_opts_cnt > 0) && (has_loops() || has_split_ifs())) { 2145 { 2146 TracePhase tp("idealLoop", &timers[_t_idealLoop]); 2147 PhaseIdealLoop::optimize(igvn, LoopOptsDefault); 2148 _loop_opts_cnt--; 2149 if (major_progress()) print_method(PHASE_PHASEIDEALLOOP1, 2); 2150 if (failing()) return; 2151 } 2152 // Loop opts pass if partial peeling occurred in previous pass 2153 if(PartialPeelLoop && major_progress() && (_loop_opts_cnt > 0)) { 2154 TracePhase tp("idealLoop", &timers[_t_idealLoop]); 2155 PhaseIdealLoop::optimize(igvn, LoopOptsSkipSplitIf); 2156 _loop_opts_cnt--; 2157 if (major_progress()) print_method(PHASE_PHASEIDEALLOOP2, 2); 2158 if (failing()) return; 2159 } 2160 // Loop opts pass for loop-unrolling before CCP 2161 if(major_progress() && (_loop_opts_cnt > 0)) { 2162 TracePhase tp("idealLoop", &timers[_t_idealLoop]); 2163 PhaseIdealLoop::optimize(igvn, LoopOptsSkipSplitIf); 2164 _loop_opts_cnt--; 2165 if (major_progress()) print_method(PHASE_PHASEIDEALLOOP3, 2); 2166 } 2167 if (!failing()) { 2168 // Verify that last round of loop opts produced a valid graph 2169 TracePhase tp("idealLoopVerify", &timers[_t_idealLoopVerify]); 2170 PhaseIdealLoop::verify(igvn); 2171 } 2172 } 2173 if (failing()) return; 2174 2175 // Conditional Constant Propagation; 2176 PhaseCCP ccp( &igvn ); 2177 assert( true, "Break here to ccp.dump_nodes_and_types(_root,999,1)"); 2178 { 2179 TracePhase tp("ccp", &timers[_t_ccp]); 2180 ccp.do_transform(); 2181 } 2182 print_method(PHASE_CPP1, 2); 2183 2184 assert( true, "Break here to ccp.dump_old2new_map()"); 2185 2186 // Iterative Global Value Numbering, including ideal transforms 2187 { 2188 TracePhase tp("iterGVN2", &timers[_t_iterGVN2]); 2189 igvn = ccp; 2190 igvn.optimize(); 2191 } 2192 print_method(PHASE_ITER_GVN2, 2); 2193 2194 if (failing()) return; 2195 2196 // Loop transforms on the ideal graph. Range Check Elimination, 2197 // peeling, unrolling, etc. 2198 if (!optimize_loops(igvn, LoopOptsDefault)) { 2199 return; 2200 } 2201 2202 if (failing()) return; 2203 2204 // Ensure that major progress is now clear 2205 C->clear_major_progress(); 2206 2207 { 2208 // Verify that all previous optimizations produced a valid graph 2209 // at least to this point, even if no loop optimizations were done. 2210 TracePhase tp("idealLoopVerify", &timers[_t_idealLoopVerify]); 2211 PhaseIdealLoop::verify(igvn); 2212 } 2213 2214 if (range_check_cast_count() > 0) { 2215 // No more loop optimizations. Remove all range check dependent CastIINodes. 2216 C->remove_range_check_casts(igvn); 2217 igvn.optimize(); 2218 } 2219 2220 #ifdef ASSERT 2221 bs->verify_gc_barriers(this, BarrierSetC2::BeforeMacroExpand); 2222 #endif 2223 2224 { 2225 TracePhase tp("macroExpand", &timers[_t_macroExpand]); 2226 PhaseMacroExpand mex(igvn); 2227 if (mex.expand_macro_nodes()) { 2228 assert(failing(), "must bail out w/ explicit message"); 2229 return; 2230 } 2231 print_method(PHASE_MACRO_EXPANSION, 2); 2232 } 2233 2234 { 2235 TracePhase tp("barrierExpand", &timers[_t_barrierExpand]); 2236 if (bs->expand_barriers(this, igvn)) { 2237 assert(failing(), "must bail out w/ explicit message"); 2238 return; 2239 } 2240 print_method(PHASE_BARRIER_EXPANSION, 2); 2241 } 2242 2243 if (opaque4_count() > 0) { 2244 C->remove_opaque4_nodes(igvn); 2245 igvn.optimize(); 2246 } 2247 2248 DEBUG_ONLY( _modified_nodes = NULL; ) 2249 } // (End scope of igvn; run destructor if necessary for asserts.) 2250 2251 process_print_inlining(); 2252 // A method with only infinite loops has no edges entering loops from root 2253 { 2254 TracePhase tp("graphReshape", &timers[_t_graphReshaping]); 2255 if (final_graph_reshaping()) { 2256 assert(failing(), "must bail out w/ explicit message"); 2257 return; 2258 } 2259 } 2260 2261 print_method(PHASE_OPTIMIZE_FINISHED, 2); 2262 } 2263 2264 void Compile::print_method(CompilerPhaseType cpt, Node* n, int level) { 2265 ResourceMark rm; 2266 stringStream ss; 2267 ss.print_raw(CompilerPhaseTypeHelper::to_string(cpt)); 2268 if (n != NULL) { 2269 #ifndef PRODUCT 2270 ss.print(": %s %d", n->Name(), n->_idx); 2271 #else 2272 ss.print(": %d %d", n->Opcode(), n->_idx); 2273 #endif // !PRODUCT 2274 } else { 2275 ss.print_raw(": NULL"); 2276 } 2277 C->print_method(cpt, ss.as_string(), level); 2278 } 2279 2280 void Compile::inline_vector_reboxing_calls() { 2281 if (C->_vector_reboxing_late_inlines.length() > 0) { 2282 PhaseGVN* gvn = C->initial_gvn(); 2283 2284 _late_inlines_pos = C->_late_inlines.length(); 2285 while (_vector_reboxing_late_inlines.length() > 0) { 2286 CallGenerator* cg = _vector_reboxing_late_inlines.pop(); 2287 cg->do_late_inline(); 2288 if (failing()) return; 2289 print_method(PHASE_INLINE_VECTOR_REBOX, cg->call_node()); 2290 } 2291 _vector_reboxing_late_inlines.trunc_to(0); 2292 } 2293 } 2294 2295 bool Compile::has_vbox_nodes() { 2296 if (C->_vector_reboxing_late_inlines.length() > 0) { 2297 return true; 2298 } 2299 for (int macro_idx = C->macro_count() - 1; macro_idx >= 0; macro_idx--) { 2300 Node * n = C->macro_node(macro_idx); 2301 assert(n->is_macro(), "only macro nodes expected here"); 2302 if (n->Opcode() == Op_VectorUnbox || n->Opcode() == Op_VectorBox || n->Opcode() == Op_VectorBoxAllocate) { 2303 return true; 2304 } 2305 } 2306 return false; 2307 } 2308 2309 //------------------------------Code_Gen--------------------------------------- 2310 // Given a graph, generate code for it 2311 void Compile::Code_Gen() { 2312 if (failing()) { 2313 return; 2314 } 2315 2316 // Perform instruction selection. You might think we could reclaim Matcher 2317 // memory PDQ, but actually the Matcher is used in generating spill code. 2318 // Internals of the Matcher (including some VectorSets) must remain live 2319 // for awhile - thus I cannot reclaim Matcher memory lest a VectorSet usage 2320 // set a bit in reclaimed memory. 2321 2322 // In debug mode can dump m._nodes.dump() for mapping of ideal to machine 2323 // nodes. Mapping is only valid at the root of each matched subtree. 2324 NOT_PRODUCT( verify_graph_edges(); ) 2325 2326 Matcher matcher; 2327 _matcher = &matcher; 2328 { 2329 TracePhase tp("matcher", &timers[_t_matcher]); 2330 matcher.match(); 2331 if (failing()) { 2332 return; 2333 } 2334 print_method(PHASE_AFTER_MATCHING, 3); 2335 } 2336 // In debug mode can dump m._nodes.dump() for mapping of ideal to machine 2337 // nodes. Mapping is only valid at the root of each matched subtree. 2338 NOT_PRODUCT( verify_graph_edges(); ) 2339 2340 // If you have too many nodes, or if matching has failed, bail out 2341 check_node_count(0, "out of nodes matching instructions"); 2342 if (failing()) { 2343 return; 2344 } 2345 2346 print_method(PHASE_MATCHING, 2); 2347 2348 // Build a proper-looking CFG 2349 PhaseCFG cfg(node_arena(), root(), matcher); 2350 _cfg = &cfg; 2351 { 2352 TracePhase tp("scheduler", &timers[_t_scheduler]); 2353 bool success = cfg.do_global_code_motion(); 2354 if (!success) { 2355 return; 2356 } 2357 2358 print_method(PHASE_GLOBAL_CODE_MOTION, 2); 2359 NOT_PRODUCT( verify_graph_edges(); ) 2360 debug_only( cfg.verify(); ) 2361 } 2362 2363 PhaseChaitin regalloc(unique(), cfg, matcher, false); 2364 _regalloc = ®alloc; 2365 { 2366 TracePhase tp("regalloc", &timers[_t_registerAllocation]); 2367 // Perform register allocation. After Chaitin, use-def chains are 2368 // no longer accurate (at spill code) and so must be ignored. 2369 // Node->LRG->reg mappings are still accurate. 2370 _regalloc->Register_Allocate(); 2371 2372 // Bail out if the allocator builds too many nodes 2373 if (failing()) { 2374 return; 2375 } 2376 } 2377 2378 // Prior to register allocation we kept empty basic blocks in case the 2379 // the allocator needed a place to spill. After register allocation we 2380 // are not adding any new instructions. If any basic block is empty, we 2381 // can now safely remove it. 2382 { 2383 TracePhase tp("blockOrdering", &timers[_t_blockOrdering]); 2384 cfg.remove_empty_blocks(); 2385 if (do_freq_based_layout()) { 2386 PhaseBlockLayout layout(cfg); 2387 } else { 2388 cfg.set_loop_alignment(); 2389 } 2390 cfg.fixup_flow(); 2391 } 2392 2393 // Apply peephole optimizations 2394 if( OptoPeephole ) { 2395 TracePhase tp("peephole", &timers[_t_peephole]); 2396 PhasePeephole peep( _regalloc, cfg); 2397 peep.do_transform(); 2398 } 2399 2400 // Do late expand if CPU requires this. 2401 if (Matcher::require_postalloc_expand) { 2402 TracePhase tp("postalloc_expand", &timers[_t_postalloc_expand]); 2403 cfg.postalloc_expand(_regalloc); 2404 } 2405 2406 // Convert Nodes to instruction bits in a buffer 2407 { 2408 TracePhase tp("output", &timers[_t_output]); 2409 PhaseOutput output; 2410 output.Output(); 2411 if (failing()) return; 2412 output.install(); 2413 } 2414 2415 print_method(PHASE_FINAL_CODE); 2416 2417 // He's dead, Jim. 2418 _cfg = (PhaseCFG*)((intptr_t)0xdeadbeef); 2419 _regalloc = (PhaseChaitin*)((intptr_t)0xdeadbeef); 2420 } 2421 2422 //------------------------------Final_Reshape_Counts--------------------------- 2423 // This class defines counters to help identify when a method 2424 // may/must be executed using hardware with only 24-bit precision. 2425 struct Final_Reshape_Counts : public StackObj { 2426 int _call_count; // count non-inlined 'common' calls 2427 int _float_count; // count float ops requiring 24-bit precision 2428 int _double_count; // count double ops requiring more precision 2429 int _java_call_count; // count non-inlined 'java' calls 2430 int _inner_loop_count; // count loops which need alignment 2431 VectorSet _visited; // Visitation flags 2432 Node_List _tests; // Set of IfNodes & PCTableNodes 2433 2434 Final_Reshape_Counts() : 2435 _call_count(0), _float_count(0), _double_count(0), 2436 _java_call_count(0), _inner_loop_count(0), 2437 _visited( Thread::current()->resource_area() ) { } 2438 2439 void inc_call_count () { _call_count ++; } 2440 void inc_float_count () { _float_count ++; } 2441 void inc_double_count() { _double_count++; } 2442 void inc_java_call_count() { _java_call_count++; } 2443 void inc_inner_loop_count() { _inner_loop_count++; } 2444 2445 int get_call_count () const { return _call_count ; } 2446 int get_float_count () const { return _float_count ; } 2447 int get_double_count() const { return _double_count; } 2448 int get_java_call_count() const { return _java_call_count; } 2449 int get_inner_loop_count() const { return _inner_loop_count; } 2450 }; 2451 2452 #ifdef ASSERT 2453 static bool oop_offset_is_sane(const TypeInstPtr* tp) { 2454 ciInstanceKlass *k = tp->klass()->as_instance_klass(); 2455 // Make sure the offset goes inside the instance layout. 2456 return k->contains_field_offset(tp->offset()); 2457 // Note that OffsetBot and OffsetTop are very negative. 2458 } 2459 #endif 2460 2461 // Eliminate trivially redundant StoreCMs and accumulate their 2462 // precedence edges. 2463 void Compile::eliminate_redundant_card_marks(Node* n) { 2464 assert(n->Opcode() == Op_StoreCM, "expected StoreCM"); 2465 if (n->in(MemNode::Address)->outcnt() > 1) { 2466 // There are multiple users of the same address so it might be 2467 // possible to eliminate some of the StoreCMs 2468 Node* mem = n->in(MemNode::Memory); 2469 Node* adr = n->in(MemNode::Address); 2470 Node* val = n->in(MemNode::ValueIn); 2471 Node* prev = n; 2472 bool done = false; 2473 // Walk the chain of StoreCMs eliminating ones that match. As 2474 // long as it's a chain of single users then the optimization is 2475 // safe. Eliminating partially redundant StoreCMs would require 2476 // cloning copies down the other paths. 2477 while (mem->Opcode() == Op_StoreCM && mem->outcnt() == 1 && !done) { 2478 if (adr == mem->in(MemNode::Address) && 2479 val == mem->in(MemNode::ValueIn)) { 2480 // redundant StoreCM 2481 if (mem->req() > MemNode::OopStore) { 2482 // Hasn't been processed by this code yet. 2483 n->add_prec(mem->in(MemNode::OopStore)); 2484 } else { 2485 // Already converted to precedence edge 2486 for (uint i = mem->req(); i < mem->len(); i++) { 2487 // Accumulate any precedence edges 2488 if (mem->in(i) != NULL) { 2489 n->add_prec(mem->in(i)); 2490 } 2491 } 2492 // Everything above this point has been processed. 2493 done = true; 2494 } 2495 // Eliminate the previous StoreCM 2496 prev->set_req(MemNode::Memory, mem->in(MemNode::Memory)); 2497 assert(mem->outcnt() == 0, "should be dead"); 2498 mem->disconnect_inputs(NULL, this); 2499 } else { 2500 prev = mem; 2501 } 2502 mem = prev->in(MemNode::Memory); 2503 } 2504 } 2505 } 2506 2507 //------------------------------final_graph_reshaping_impl---------------------- 2508 // Implement items 1-5 from final_graph_reshaping below. 2509 void Compile::final_graph_reshaping_impl( Node *n, Final_Reshape_Counts &frc) { 2510 2511 if ( n->outcnt() == 0 ) return; // dead node 2512 uint nop = n->Opcode(); 2513 2514 // Check for 2-input instruction with "last use" on right input. 2515 // Swap to left input. Implements item (2). 2516 if( n->req() == 3 && // two-input instruction 2517 n->in(1)->outcnt() > 1 && // left use is NOT a last use 2518 (!n->in(1)->is_Phi() || n->in(1)->in(2) != n) && // it is not data loop 2519 n->in(2)->outcnt() == 1 &&// right use IS a last use 2520 !n->in(2)->is_Con() ) { // right use is not a constant 2521 // Check for commutative opcode 2522 switch( nop ) { 2523 case Op_AddI: case Op_AddF: case Op_AddD: case Op_AddL: 2524 case Op_MaxI: case Op_MaxL: case Op_MaxF: case Op_MaxD: 2525 case Op_MinI: case Op_MinL: case Op_MinF: case Op_MinD: 2526 case Op_MulI: case Op_MulF: case Op_MulD: case Op_MulL: 2527 case Op_AndL: case Op_XorL: case Op_OrL: 2528 case Op_AndI: case Op_XorI: case Op_OrI: { 2529 // Move "last use" input to left by swapping inputs 2530 n->swap_edges(1, 2); 2531 break; 2532 } 2533 default: 2534 break; 2535 } 2536 } 2537 2538 #ifdef ASSERT 2539 if( n->is_Mem() ) { 2540 int alias_idx = get_alias_index(n->as_Mem()->adr_type()); 2541 assert( n->in(0) != NULL || alias_idx != Compile::AliasIdxRaw || 2542 // oop will be recorded in oop map if load crosses safepoint 2543 n->is_Load() && (n->as_Load()->bottom_type()->isa_oopptr() || 2544 LoadNode::is_immutable_value(n->in(MemNode::Address))), 2545 "raw memory operations should have control edge"); 2546 } 2547 if (n->is_MemBar()) { 2548 MemBarNode* mb = n->as_MemBar(); 2549 if (mb->trailing_store() || mb->trailing_load_store()) { 2550 assert(mb->leading_membar()->trailing_membar() == mb, "bad membar pair"); 2551 Node* mem = BarrierSet::barrier_set()->barrier_set_c2()->step_over_gc_barrier(mb->in(MemBarNode::Precedent)); 2552 assert((mb->trailing_store() && mem->is_Store() && mem->as_Store()->is_release()) || 2553 (mb->trailing_load_store() && mem->is_LoadStore()), "missing mem op"); 2554 } else if (mb->leading()) { 2555 assert(mb->trailing_membar()->leading_membar() == mb, "bad membar pair"); 2556 } 2557 } 2558 #endif 2559 // Count FPU ops and common calls, implements item (3) 2560 bool gc_handled = BarrierSet::barrier_set()->barrier_set_c2()->final_graph_reshaping(this, n, nop); 2561 if (!gc_handled) { 2562 final_graph_reshaping_main_switch(n, frc, nop); 2563 } 2564 2565 // Collect CFG split points 2566 if (n->is_MultiBranch() && !n->is_RangeCheck()) { 2567 frc._tests.push(n); 2568 } 2569 } 2570 2571 void Compile::final_graph_reshaping_main_switch(Node* n, Final_Reshape_Counts& frc, uint nop) { 2572 switch( nop ) { 2573 // Count all float operations that may use FPU 2574 case Op_AddF: 2575 case Op_SubF: 2576 case Op_MulF: 2577 case Op_DivF: 2578 case Op_NegF: 2579 case Op_ModF: 2580 case Op_ConvI2F: 2581 case Op_ConF: 2582 case Op_CmpF: 2583 case Op_CmpF3: 2584 // case Op_ConvL2F: // longs are split into 32-bit halves 2585 frc.inc_float_count(); 2586 break; 2587 2588 case Op_ConvF2D: 2589 case Op_ConvD2F: 2590 frc.inc_float_count(); 2591 frc.inc_double_count(); 2592 break; 2593 2594 // Count all double operations that may use FPU 2595 case Op_AddD: 2596 case Op_SubD: 2597 case Op_MulD: 2598 case Op_DivD: 2599 case Op_NegD: 2600 case Op_ModD: 2601 case Op_ConvI2D: 2602 case Op_ConvD2I: 2603 // case Op_ConvL2D: // handled by leaf call 2604 // case Op_ConvD2L: // handled by leaf call 2605 case Op_ConD: 2606 case Op_CmpD: 2607 case Op_CmpD3: 2608 frc.inc_double_count(); 2609 break; 2610 case Op_Opaque1: // Remove Opaque Nodes before matching 2611 case Op_Opaque2: // Remove Opaque Nodes before matching 2612 case Op_Opaque3: 2613 n->subsume_by(n->in(1), this); 2614 break; 2615 case Op_CallStaticJava: 2616 case Op_CallJava: 2617 case Op_CallDynamicJava: 2618 frc.inc_java_call_count(); // Count java call site; 2619 case Op_CallRuntime: 2620 case Op_CallLeaf: 2621 case Op_CallLeafNoFP: { 2622 assert (n->is_Call(), ""); 2623 CallNode *call = n->as_Call(); 2624 // Count call sites where the FP mode bit would have to be flipped. 2625 // Do not count uncommon runtime calls: 2626 // uncommon_trap, _complete_monitor_locking, _complete_monitor_unlocking, 2627 // _new_Java, _new_typeArray, _new_objArray, _rethrow_Java, ... 2628 if (!call->is_CallStaticJava() || !call->as_CallStaticJava()->_name) { 2629 frc.inc_call_count(); // Count the call site 2630 } else { // See if uncommon argument is shared 2631 Node *n = call->in(TypeFunc::Parms); 2632 int nop = n->Opcode(); 2633 // Clone shared simple arguments to uncommon calls, item (1). 2634 if (n->outcnt() > 1 && 2635 !n->is_Proj() && 2636 nop != Op_CreateEx && 2637 nop != Op_CheckCastPP && 2638 nop != Op_DecodeN && 2639 nop != Op_DecodeNKlass && 2640 !n->is_Mem() && 2641 !n->is_Phi()) { 2642 Node *x = n->clone(); 2643 call->set_req(TypeFunc::Parms, x); 2644 } 2645 } 2646 break; 2647 } 2648 2649 case Op_StoreD: 2650 case Op_LoadD: 2651 case Op_LoadD_unaligned: 2652 frc.inc_double_count(); 2653 goto handle_mem; 2654 case Op_StoreF: 2655 case Op_LoadF: 2656 frc.inc_float_count(); 2657 goto handle_mem; 2658 2659 case Op_StoreCM: 2660 { 2661 // Convert OopStore dependence into precedence edge 2662 Node* prec = n->in(MemNode::OopStore); 2663 n->del_req(MemNode::OopStore); 2664 n->add_prec(prec); 2665 eliminate_redundant_card_marks(n); 2666 } 2667 2668 // fall through 2669 2670 case Op_StoreB: 2671 case Op_StoreC: 2672 case Op_StorePConditional: 2673 case Op_StoreI: 2674 case Op_StoreL: 2675 case Op_StoreIConditional: 2676 case Op_StoreLConditional: 2677 case Op_CompareAndSwapB: 2678 case Op_CompareAndSwapS: 2679 case Op_CompareAndSwapI: 2680 case Op_CompareAndSwapL: 2681 case Op_CompareAndSwapP: 2682 case Op_CompareAndSwapN: 2683 case Op_WeakCompareAndSwapB: 2684 case Op_WeakCompareAndSwapS: 2685 case Op_WeakCompareAndSwapI: 2686 case Op_WeakCompareAndSwapL: 2687 case Op_WeakCompareAndSwapP: 2688 case Op_WeakCompareAndSwapN: 2689 case Op_CompareAndExchangeB: 2690 case Op_CompareAndExchangeS: 2691 case Op_CompareAndExchangeI: 2692 case Op_CompareAndExchangeL: 2693 case Op_CompareAndExchangeP: 2694 case Op_CompareAndExchangeN: 2695 case Op_GetAndAddS: 2696 case Op_GetAndAddB: 2697 case Op_GetAndAddI: 2698 case Op_GetAndAddL: 2699 case Op_GetAndSetS: 2700 case Op_GetAndSetB: 2701 case Op_GetAndSetI: 2702 case Op_GetAndSetL: 2703 case Op_GetAndSetP: 2704 case Op_GetAndSetN: 2705 case Op_StoreP: 2706 case Op_StoreN: 2707 case Op_StoreNKlass: 2708 case Op_LoadB: 2709 case Op_LoadUB: 2710 case Op_LoadUS: 2711 case Op_LoadI: 2712 case Op_LoadKlass: 2713 case Op_LoadNKlass: 2714 case Op_LoadL: 2715 case Op_LoadL_unaligned: 2716 case Op_LoadPLocked: 2717 case Op_LoadP: 2718 case Op_LoadN: 2719 case Op_LoadRange: 2720 case Op_LoadS: { 2721 handle_mem: 2722 #ifdef ASSERT 2723 if( VerifyOptoOopOffsets ) { 2724 MemNode* mem = n->as_Mem(); 2725 // Check to see if address types have grounded out somehow. 2726 const TypeInstPtr *tp = mem->in(MemNode::Address)->bottom_type()->isa_instptr(); 2727 assert( !tp || oop_offset_is_sane(tp), "" ); 2728 } 2729 #endif 2730 break; 2731 } 2732 2733 case Op_AddP: { // Assert sane base pointers 2734 Node *addp = n->in(AddPNode::Address); 2735 assert( !addp->is_AddP() || 2736 addp->in(AddPNode::Base)->is_top() || // Top OK for allocation 2737 addp->in(AddPNode::Base) == n->in(AddPNode::Base), 2738 "Base pointers must match (addp %u)", addp->_idx ); 2739 #ifdef _LP64 2740 if ((UseCompressedOops || UseCompressedClassPointers) && 2741 addp->Opcode() == Op_ConP && 2742 addp == n->in(AddPNode::Base) && 2743 n->in(AddPNode::Offset)->is_Con()) { 2744 // If the transformation of ConP to ConN+DecodeN is beneficial depends 2745 // on the platform and on the compressed oops mode. 2746 // Use addressing with narrow klass to load with offset on x86. 2747 // Some platforms can use the constant pool to load ConP. 2748 // Do this transformation here since IGVN will convert ConN back to ConP. 2749 const Type* t = addp->bottom_type(); 2750 bool is_oop = t->isa_oopptr() != NULL; 2751 bool is_klass = t->isa_klassptr() != NULL; 2752 2753 if ((is_oop && Matcher::const_oop_prefer_decode() ) || 2754 (is_klass && Matcher::const_klass_prefer_decode())) { 2755 Node* nn = NULL; 2756 2757 int op = is_oop ? Op_ConN : Op_ConNKlass; 2758 2759 // Look for existing ConN node of the same exact type. 2760 Node* r = root(); 2761 uint cnt = r->outcnt(); 2762 for (uint i = 0; i < cnt; i++) { 2763 Node* m = r->raw_out(i); 2764 if (m!= NULL && m->Opcode() == op && 2765 m->bottom_type()->make_ptr() == t) { 2766 nn = m; 2767 break; 2768 } 2769 } 2770 if (nn != NULL) { 2771 // Decode a narrow oop to match address 2772 // [R12 + narrow_oop_reg<<3 + offset] 2773 if (is_oop) { 2774 nn = new DecodeNNode(nn, t); 2775 } else { 2776 nn = new DecodeNKlassNode(nn, t); 2777 } 2778 // Check for succeeding AddP which uses the same Base. 2779 // Otherwise we will run into the assertion above when visiting that guy. 2780 for (uint i = 0; i < n->outcnt(); ++i) { 2781 Node *out_i = n->raw_out(i); 2782 if (out_i && out_i->is_AddP() && out_i->in(AddPNode::Base) == addp) { 2783 out_i->set_req(AddPNode::Base, nn); 2784 #ifdef ASSERT 2785 for (uint j = 0; j < out_i->outcnt(); ++j) { 2786 Node *out_j = out_i->raw_out(j); 2787 assert(out_j == NULL || !out_j->is_AddP() || out_j->in(AddPNode::Base) != addp, 2788 "more than 2 AddP nodes in a chain (out_j %u)", out_j->_idx); 2789 } 2790 #endif 2791 } 2792 } 2793 n->set_req(AddPNode::Base, nn); 2794 n->set_req(AddPNode::Address, nn); 2795 if (addp->outcnt() == 0) { 2796 addp->disconnect_inputs(NULL, this); 2797 } 2798 } 2799 } 2800 } 2801 #endif 2802 // platform dependent reshaping of the address expression 2803 reshape_address(n->as_AddP()); 2804 break; 2805 } 2806 2807 case Op_CastPP: { 2808 // Remove CastPP nodes to gain more freedom during scheduling but 2809 // keep the dependency they encode as control or precedence edges 2810 // (if control is set already) on memory operations. Some CastPP 2811 // nodes don't have a control (don't carry a dependency): skip 2812 // those. 2813 if (n->in(0) != NULL) { 2814 ResourceMark rm; 2815 Unique_Node_List wq; 2816 wq.push(n); 2817 for (uint next = 0; next < wq.size(); ++next) { 2818 Node *m = wq.at(next); 2819 for (DUIterator_Fast imax, i = m->fast_outs(imax); i < imax; i++) { 2820 Node* use = m->fast_out(i); 2821 if (use->is_Mem() || use->is_EncodeNarrowPtr()) { 2822 use->ensure_control_or_add_prec(n->in(0)); 2823 } else { 2824 switch(use->Opcode()) { 2825 case Op_AddP: 2826 case Op_DecodeN: 2827 case Op_DecodeNKlass: 2828 case Op_CheckCastPP: 2829 case Op_CastPP: 2830 wq.push(use); 2831 break; 2832 } 2833 } 2834 } 2835 } 2836 } 2837 const bool is_LP64 = LP64_ONLY(true) NOT_LP64(false); 2838 if (is_LP64 && n->in(1)->is_DecodeN() && Matcher::gen_narrow_oop_implicit_null_checks()) { 2839 Node* in1 = n->in(1); 2840 const Type* t = n->bottom_type(); 2841 Node* new_in1 = in1->clone(); 2842 new_in1->as_DecodeN()->set_type(t); 2843 2844 if (!Matcher::narrow_oop_use_complex_address()) { 2845 // 2846 // x86, ARM and friends can handle 2 adds in addressing mode 2847 // and Matcher can fold a DecodeN node into address by using 2848 // a narrow oop directly and do implicit NULL check in address: 2849 // 2850 // [R12 + narrow_oop_reg<<3 + offset] 2851 // NullCheck narrow_oop_reg 2852 // 2853 // On other platforms (Sparc) we have to keep new DecodeN node and 2854 // use it to do implicit NULL check in address: 2855 // 2856 // decode_not_null narrow_oop_reg, base_reg 2857 // [base_reg + offset] 2858 // NullCheck base_reg 2859 // 2860 // Pin the new DecodeN node to non-null path on these platform (Sparc) 2861 // to keep the information to which NULL check the new DecodeN node 2862 // corresponds to use it as value in implicit_null_check(). 2863 // 2864 new_in1->set_req(0, n->in(0)); 2865 } 2866 2867 n->subsume_by(new_in1, this); 2868 if (in1->outcnt() == 0) { 2869 in1->disconnect_inputs(NULL, this); 2870 } 2871 } else { 2872 n->subsume_by(n->in(1), this); 2873 if (n->outcnt() == 0) { 2874 n->disconnect_inputs(NULL, this); 2875 } 2876 } 2877 break; 2878 } 2879 #ifdef _LP64 2880 case Op_CmpP: 2881 // Do this transformation here to preserve CmpPNode::sub() and 2882 // other TypePtr related Ideal optimizations (for example, ptr nullness). 2883 if (n->in(1)->is_DecodeNarrowPtr() || n->in(2)->is_DecodeNarrowPtr()) { 2884 Node* in1 = n->in(1); 2885 Node* in2 = n->in(2); 2886 if (!in1->is_DecodeNarrowPtr()) { 2887 in2 = in1; 2888 in1 = n->in(2); 2889 } 2890 assert(in1->is_DecodeNarrowPtr(), "sanity"); 2891 2892 Node* new_in2 = NULL; 2893 if (in2->is_DecodeNarrowPtr()) { 2894 assert(in2->Opcode() == in1->Opcode(), "must be same node type"); 2895 new_in2 = in2->in(1); 2896 } else if (in2->Opcode() == Op_ConP) { 2897 const Type* t = in2->bottom_type(); 2898 if (t == TypePtr::NULL_PTR) { 2899 assert(in1->is_DecodeN(), "compare klass to null?"); 2900 // Don't convert CmpP null check into CmpN if compressed 2901 // oops implicit null check is not generated. 2902 // This will allow to generate normal oop implicit null check. 2903 if (Matcher::gen_narrow_oop_implicit_null_checks()) 2904 new_in2 = ConNode::make(TypeNarrowOop::NULL_PTR); 2905 // 2906 // This transformation together with CastPP transformation above 2907 // will generated code for implicit NULL checks for compressed oops. 2908 // 2909 // The original code after Optimize() 2910 // 2911 // LoadN memory, narrow_oop_reg 2912 // decode narrow_oop_reg, base_reg 2913 // CmpP base_reg, NULL 2914 // CastPP base_reg // NotNull 2915 // Load [base_reg + offset], val_reg 2916 // 2917 // after these transformations will be 2918 // 2919 // LoadN memory, narrow_oop_reg 2920 // CmpN narrow_oop_reg, NULL 2921 // decode_not_null narrow_oop_reg, base_reg 2922 // Load [base_reg + offset], val_reg 2923 // 2924 // and the uncommon path (== NULL) will use narrow_oop_reg directly 2925 // since narrow oops can be used in debug info now (see the code in 2926 // final_graph_reshaping_walk()). 2927 // 2928 // At the end the code will be matched to 2929 // on x86: 2930 // 2931 // Load_narrow_oop memory, narrow_oop_reg 2932 // Load [R12 + narrow_oop_reg<<3 + offset], val_reg 2933 // NullCheck narrow_oop_reg 2934 // 2935 // and on sparc: 2936 // 2937 // Load_narrow_oop memory, narrow_oop_reg 2938 // decode_not_null narrow_oop_reg, base_reg 2939 // Load [base_reg + offset], val_reg 2940 // NullCheck base_reg 2941 // 2942 } else if (t->isa_oopptr()) { 2943 new_in2 = ConNode::make(t->make_narrowoop()); 2944 } else if (t->isa_klassptr()) { 2945 new_in2 = ConNode::make(t->make_narrowklass()); 2946 } 2947 } 2948 if (new_in2 != NULL) { 2949 Node* cmpN = new CmpNNode(in1->in(1), new_in2); 2950 n->subsume_by(cmpN, this); 2951 if (in1->outcnt() == 0) { 2952 in1->disconnect_inputs(NULL, this); 2953 } 2954 if (in2->outcnt() == 0) { 2955 in2->disconnect_inputs(NULL, this); 2956 } 2957 } 2958 } 2959 break; 2960 2961 case Op_DecodeN: 2962 case Op_DecodeNKlass: 2963 assert(!n->in(1)->is_EncodeNarrowPtr(), "should be optimized out"); 2964 // DecodeN could be pinned when it can't be fold into 2965 // an address expression, see the code for Op_CastPP above. 2966 assert(n->in(0) == NULL || (UseCompressedOops && !Matcher::narrow_oop_use_complex_address()), "no control"); 2967 break; 2968 2969 case Op_EncodeP: 2970 case Op_EncodePKlass: { 2971 Node* in1 = n->in(1); 2972 if (in1->is_DecodeNarrowPtr()) { 2973 n->subsume_by(in1->in(1), this); 2974 } else if (in1->Opcode() == Op_ConP) { 2975 const Type* t = in1->bottom_type(); 2976 if (t == TypePtr::NULL_PTR) { 2977 assert(t->isa_oopptr(), "null klass?"); 2978 n->subsume_by(ConNode::make(TypeNarrowOop::NULL_PTR), this); 2979 } else if (t->isa_oopptr()) { 2980 n->subsume_by(ConNode::make(t->make_narrowoop()), this); 2981 } else if (t->isa_klassptr()) { 2982 n->subsume_by(ConNode::make(t->make_narrowklass()), this); 2983 } 2984 } 2985 if (in1->outcnt() == 0) { 2986 in1->disconnect_inputs(NULL, this); 2987 } 2988 break; 2989 } 2990 2991 case Op_Proj: { 2992 if (OptimizeStringConcat) { 2993 ProjNode* p = n->as_Proj(); 2994 if (p->_is_io_use) { 2995 // Separate projections were used for the exception path which 2996 // are normally removed by a late inline. If it wasn't inlined 2997 // then they will hang around and should just be replaced with 2998 // the original one. 2999 Node* proj = NULL; 3000 // Replace with just one 3001 for (SimpleDUIterator i(p->in(0)); i.has_next(); i.next()) { 3002 Node *use = i.get(); 3003 if (use->is_Proj() && p != use && use->as_Proj()->_con == p->_con) { 3004 proj = use; 3005 break; 3006 } 3007 } 3008 assert(proj != NULL || p->_con == TypeFunc::I_O, "io may be dropped at an infinite loop"); 3009 if (proj != NULL) { 3010 p->subsume_by(proj, this); 3011 } 3012 } 3013 } 3014 break; 3015 } 3016 3017 case Op_Phi: 3018 if (n->as_Phi()->bottom_type()->isa_narrowoop() || n->as_Phi()->bottom_type()->isa_narrowklass()) { 3019 // The EncodeP optimization may create Phi with the same edges 3020 // for all paths. It is not handled well by Register Allocator. 3021 Node* unique_in = n->in(1); 3022 assert(unique_in != NULL, ""); 3023 uint cnt = n->req(); 3024 for (uint i = 2; i < cnt; i++) { 3025 Node* m = n->in(i); 3026 assert(m != NULL, ""); 3027 if (unique_in != m) 3028 unique_in = NULL; 3029 } 3030 if (unique_in != NULL) { 3031 n->subsume_by(unique_in, this); 3032 } 3033 } 3034 break; 3035 3036 #endif 3037 3038 #ifdef ASSERT 3039 case Op_CastII: 3040 // Verify that all range check dependent CastII nodes were removed. 3041 if (n->isa_CastII()->has_range_check()) { 3042 n->dump(3); 3043 assert(false, "Range check dependent CastII node was not removed"); 3044 } 3045 break; 3046 #endif 3047 3048 case Op_ModI: 3049 if (UseDivMod) { 3050 // Check if a%b and a/b both exist 3051 Node* d = n->find_similar(Op_DivI); 3052 if (d) { 3053 // Replace them with a fused divmod if supported 3054 if (Matcher::has_match_rule(Op_DivModI)) { 3055 DivModINode* divmod = DivModINode::make(n); 3056 d->subsume_by(divmod->div_proj(), this); 3057 n->subsume_by(divmod->mod_proj(), this); 3058 } else { 3059 // replace a%b with a-((a/b)*b) 3060 Node* mult = new MulINode(d, d->in(2)); 3061 Node* sub = new SubINode(d->in(1), mult); 3062 n->subsume_by(sub, this); 3063 } 3064 } 3065 } 3066 break; 3067 3068 case Op_ModL: 3069 if (UseDivMod) { 3070 // Check if a%b and a/b both exist 3071 Node* d = n->find_similar(Op_DivL); 3072 if (d) { 3073 // Replace them with a fused divmod if supported 3074 if (Matcher::has_match_rule(Op_DivModL)) { 3075 DivModLNode* divmod = DivModLNode::make(n); 3076 d->subsume_by(divmod->div_proj(), this); 3077 n->subsume_by(divmod->mod_proj(), this); 3078 } else { 3079 // replace a%b with a-((a/b)*b) 3080 Node* mult = new MulLNode(d, d->in(2)); 3081 Node* sub = new SubLNode(d->in(1), mult); 3082 n->subsume_by(sub, this); 3083 } 3084 } 3085 } 3086 break; 3087 3088 case Op_LoadVector: 3089 case Op_StoreVector: 3090 case Op_LoadVectorGather: 3091 case Op_StoreVectorScatter: 3092 break; 3093 3094 case Op_AddReductionVI: 3095 case Op_AddReductionVL: 3096 case Op_AddReductionVF: 3097 case Op_AddReductionVD: 3098 case Op_MulReductionVI: 3099 case Op_MulReductionVL: 3100 case Op_MulReductionVF: 3101 case Op_MulReductionVD: 3102 case Op_MinReductionV: 3103 case Op_MaxReductionV: 3104 case Op_AndReductionV: 3105 case Op_OrReductionV: 3106 case Op_XorReductionV: 3107 break; 3108 3109 case Op_PackB: 3110 case Op_PackS: 3111 case Op_PackI: 3112 case Op_PackF: 3113 case Op_PackL: 3114 case Op_PackD: 3115 if (n->req()-1 > 2) { 3116 // Replace many operand PackNodes with a binary tree for matching 3117 PackNode* p = (PackNode*) n; 3118 Node* btp = p->binary_tree_pack(1, n->req()); 3119 n->subsume_by(btp, this); 3120 } 3121 break; 3122 case Op_Loop: 3123 case Op_CountedLoop: 3124 case Op_OuterStripMinedLoop: 3125 if (n->as_Loop()->is_inner_loop()) { 3126 frc.inc_inner_loop_count(); 3127 } 3128 n->as_Loop()->verify_strip_mined(0); 3129 break; 3130 case Op_LShiftI: 3131 case Op_RShiftI: 3132 case Op_URShiftI: 3133 case Op_LShiftL: 3134 case Op_RShiftL: 3135 case Op_URShiftL: 3136 if (Matcher::need_masked_shift_count) { 3137 // The cpu's shift instructions don't restrict the count to the 3138 // lower 5/6 bits. We need to do the masking ourselves. 3139 Node* in2 = n->in(2); 3140 juint mask = (n->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1); 3141 const TypeInt* t = in2->find_int_type(); 3142 if (t != NULL && t->is_con()) { 3143 juint shift = t->get_con(); 3144 if (shift > mask) { // Unsigned cmp 3145 n->set_req(2, ConNode::make(TypeInt::make(shift & mask))); 3146 } 3147 } else { 3148 if (t == NULL || t->_lo < 0 || t->_hi > (int)mask) { 3149 Node* shift = new AndINode(in2, ConNode::make(TypeInt::make(mask))); 3150 n->set_req(2, shift); 3151 } 3152 } 3153 if (in2->outcnt() == 0) { // Remove dead node 3154 in2->disconnect_inputs(NULL, this); 3155 } 3156 } 3157 break; 3158 case Op_MemBarStoreStore: 3159 case Op_MemBarRelease: 3160 // Break the link with AllocateNode: it is no longer useful and 3161 // confuses register allocation. 3162 if (n->req() > MemBarNode::Precedent) { 3163 n->set_req(MemBarNode::Precedent, top()); 3164 } 3165 break; 3166 case Op_MemBarAcquire: { 3167 if (n->as_MemBar()->trailing_load() && n->req() > MemBarNode::Precedent) { 3168 // At parse time, the trailing MemBarAcquire for a volatile load 3169 // is created with an edge to the load. After optimizations, 3170 // that input may be a chain of Phis. If those phis have no 3171 // other use, then the MemBarAcquire keeps them alive and 3172 // register allocation can be confused. 3173 ResourceMark rm; 3174 Unique_Node_List wq; 3175 wq.push(n->in(MemBarNode::Precedent)); 3176 n->set_req(MemBarNode::Precedent, top()); 3177 while (wq.size() > 0) { 3178 Node* m = wq.pop(); 3179 if (m->outcnt() == 0) { 3180 for (uint j = 0; j < m->req(); j++) { 3181 Node* in = m->in(j); 3182 if (in != NULL) { 3183 wq.push(in); 3184 } 3185 } 3186 m->disconnect_inputs(NULL, this); 3187 } 3188 } 3189 } 3190 break; 3191 } 3192 case Op_RangeCheck: { 3193 RangeCheckNode* rc = n->as_RangeCheck(); 3194 Node* iff = new IfNode(rc->in(0), rc->in(1), rc->_prob, rc->_fcnt); 3195 n->subsume_by(iff, this); 3196 frc._tests.push(iff); 3197 break; 3198 } 3199 case Op_ConvI2L: { 3200 if (!Matcher::convi2l_type_required) { 3201 // Code generation on some platforms doesn't need accurate 3202 // ConvI2L types. Widening the type can help remove redundant 3203 // address computations. 3204 n->as_Type()->set_type(TypeLong::INT); 3205 ResourceMark rm; 3206 Unique_Node_List wq; 3207 wq.push(n); 3208 for (uint next = 0; next < wq.size(); next++) { 3209 Node *m = wq.at(next); 3210 3211 for(;;) { 3212 // Loop over all nodes with identical inputs edges as m 3213 Node* k = m->find_similar(m->Opcode()); 3214 if (k == NULL) { 3215 break; 3216 } 3217 // Push their uses so we get a chance to remove node made 3218 // redundant 3219 for (DUIterator_Fast imax, i = k->fast_outs(imax); i < imax; i++) { 3220 Node* u = k->fast_out(i); 3221 if (u->Opcode() == Op_LShiftL || 3222 u->Opcode() == Op_AddL || 3223 u->Opcode() == Op_SubL || 3224 u->Opcode() == Op_AddP) { 3225 wq.push(u); 3226 } 3227 } 3228 // Replace all nodes with identical edges as m with m 3229 k->subsume_by(m, this); 3230 } 3231 } 3232 } 3233 break; 3234 } 3235 case Op_CmpUL: { 3236 if (!Matcher::has_match_rule(Op_CmpUL)) { 3237 // No support for unsigned long comparisons 3238 ConINode* sign_pos = new ConINode(TypeInt::make(BitsPerLong - 1)); 3239 Node* sign_bit_mask = new RShiftLNode(n->in(1), sign_pos); 3240 Node* orl = new OrLNode(n->in(1), sign_bit_mask); 3241 ConLNode* remove_sign_mask = new ConLNode(TypeLong::make(max_jlong)); 3242 Node* andl = new AndLNode(orl, remove_sign_mask); 3243 Node* cmp = new CmpLNode(andl, n->in(2)); 3244 n->subsume_by(cmp, this); 3245 } 3246 break; 3247 } 3248 default: 3249 assert(!n->is_Call(), ""); 3250 assert(!n->is_Mem(), ""); 3251 assert(nop != Op_ProfileBoolean, "should be eliminated during IGVN"); 3252 break; 3253 } 3254 } 3255 3256 //------------------------------final_graph_reshaping_walk--------------------- 3257 // Replacing Opaque nodes with their input in final_graph_reshaping_impl(), 3258 // requires that the walk visits a node's inputs before visiting the node. 3259 void Compile::final_graph_reshaping_walk( Node_Stack &nstack, Node *root, Final_Reshape_Counts &frc ) { 3260 ResourceArea *area = Thread::current()->resource_area(); 3261 Unique_Node_List sfpt(area); 3262 3263 frc._visited.set(root->_idx); // first, mark node as visited 3264 uint cnt = root->req(); 3265 Node *n = root; 3266 uint i = 0; 3267 while (true) { 3268 if (i < cnt) { 3269 // Place all non-visited non-null inputs onto stack 3270 Node* m = n->in(i); 3271 ++i; 3272 if (m != NULL && !frc._visited.test_set(m->_idx)) { 3273 if (m->is_SafePoint() && m->as_SafePoint()->jvms() != NULL) { 3274 // compute worst case interpreter size in case of a deoptimization 3275 update_interpreter_frame_size(m->as_SafePoint()->jvms()->interpreter_frame_size()); 3276 3277 sfpt.push(m); 3278 } 3279 cnt = m->req(); 3280 nstack.push(n, i); // put on stack parent and next input's index 3281 n = m; 3282 i = 0; 3283 } 3284 } else { 3285 // Now do post-visit work 3286 final_graph_reshaping_impl( n, frc ); 3287 if (nstack.is_empty()) 3288 break; // finished 3289 n = nstack.node(); // Get node from stack 3290 cnt = n->req(); 3291 i = nstack.index(); 3292 nstack.pop(); // Shift to the next node on stack 3293 } 3294 } 3295 3296 // Skip next transformation if compressed oops are not used. 3297 if ((UseCompressedOops && !Matcher::gen_narrow_oop_implicit_null_checks()) || 3298 (!UseCompressedOops && !UseCompressedClassPointers)) 3299 return; 3300 3301 // Go over safepoints nodes to skip DecodeN/DecodeNKlass nodes for debug edges. 3302 // It could be done for an uncommon traps or any safepoints/calls 3303 // if the DecodeN/DecodeNKlass node is referenced only in a debug info. 3304 while (sfpt.size() > 0) { 3305 n = sfpt.pop(); 3306 JVMState *jvms = n->as_SafePoint()->jvms(); 3307 assert(jvms != NULL, "sanity"); 3308 int start = jvms->debug_start(); 3309 int end = n->req(); 3310 bool is_uncommon = (n->is_CallStaticJava() && 3311 n->as_CallStaticJava()->uncommon_trap_request() != 0); 3312 for (int j = start; j < end; j++) { 3313 Node* in = n->in(j); 3314 if (in->is_DecodeNarrowPtr()) { 3315 bool safe_to_skip = true; 3316 if (!is_uncommon ) { 3317 // Is it safe to skip? 3318 for (uint i = 0; i < in->outcnt(); i++) { 3319 Node* u = in->raw_out(i); 3320 if (!u->is_SafePoint() || 3321 (u->is_Call() && u->as_Call()->has_non_debug_use(n))) { 3322 safe_to_skip = false; 3323 } 3324 } 3325 } 3326 if (safe_to_skip) { 3327 n->set_req(j, in->in(1)); 3328 } 3329 if (in->outcnt() == 0) { 3330 in->disconnect_inputs(NULL, this); 3331 } 3332 } 3333 } 3334 } 3335 } 3336 3337 //------------------------------final_graph_reshaping-------------------------- 3338 // Final Graph Reshaping. 3339 // 3340 // (1) Clone simple inputs to uncommon calls, so they can be scheduled late 3341 // and not commoned up and forced early. Must come after regular 3342 // optimizations to avoid GVN undoing the cloning. Clone constant 3343 // inputs to Loop Phis; these will be split by the allocator anyways. 3344 // Remove Opaque nodes. 3345 // (2) Move last-uses by commutative operations to the left input to encourage 3346 // Intel update-in-place two-address operations and better register usage 3347 // on RISCs. Must come after regular optimizations to avoid GVN Ideal 3348 // calls canonicalizing them back. 3349 // (3) Count the number of double-precision FP ops, single-precision FP ops 3350 // and call sites. On Intel, we can get correct rounding either by 3351 // forcing singles to memory (requires extra stores and loads after each 3352 // FP bytecode) or we can set a rounding mode bit (requires setting and 3353 // clearing the mode bit around call sites). The mode bit is only used 3354 // if the relative frequency of single FP ops to calls is low enough. 3355 // This is a key transform for SPEC mpeg_audio. 3356 // (4) Detect infinite loops; blobs of code reachable from above but not 3357 // below. Several of the Code_Gen algorithms fail on such code shapes, 3358 // so we simply bail out. Happens a lot in ZKM.jar, but also happens 3359 // from time to time in other codes (such as -Xcomp finalizer loops, etc). 3360 // Detection is by looking for IfNodes where only 1 projection is 3361 // reachable from below or CatchNodes missing some targets. 3362 // (5) Assert for insane oop offsets in debug mode. 3363 3364 bool Compile::final_graph_reshaping() { 3365 // an infinite loop may have been eliminated by the optimizer, 3366 // in which case the graph will be empty. 3367 if (root()->req() == 1) { 3368 record_method_not_compilable("trivial infinite loop"); 3369 return true; 3370 } 3371 3372 // Expensive nodes have their control input set to prevent the GVN 3373 // from freely commoning them. There's no GVN beyond this point so 3374 // no need to keep the control input. We want the expensive nodes to 3375 // be freely moved to the least frequent code path by gcm. 3376 assert(OptimizeExpensiveOps || expensive_count() == 0, "optimization off but list non empty?"); 3377 for (int i = 0; i < expensive_count(); i++) { 3378 _expensive_nodes->at(i)->set_req(0, NULL); 3379 } 3380 3381 Final_Reshape_Counts frc; 3382 3383 // Visit everybody reachable! 3384 // Allocate stack of size C->live_nodes()/2 to avoid frequent realloc 3385 Node_Stack nstack(live_nodes() >> 1); 3386 final_graph_reshaping_walk(nstack, root(), frc); 3387 3388 // Check for unreachable (from below) code (i.e., infinite loops). 3389 for( uint i = 0; i < frc._tests.size(); i++ ) { 3390 MultiBranchNode *n = frc._tests[i]->as_MultiBranch(); 3391 // Get number of CFG targets. 3392 // Note that PCTables include exception targets after calls. 3393 uint required_outcnt = n->required_outcnt(); 3394 if (n->outcnt() != required_outcnt) { 3395 // Check for a few special cases. Rethrow Nodes never take the 3396 // 'fall-thru' path, so expected kids is 1 less. 3397 if (n->is_PCTable() && n->in(0) && n->in(0)->in(0)) { 3398 if (n->in(0)->in(0)->is_Call()) { 3399 CallNode *call = n->in(0)->in(0)->as_Call(); 3400 if (call->entry_point() == OptoRuntime::rethrow_stub()) { 3401 required_outcnt--; // Rethrow always has 1 less kid 3402 } else if (call->req() > TypeFunc::Parms && 3403 call->is_CallDynamicJava()) { 3404 // Check for null receiver. In such case, the optimizer has 3405 // detected that the virtual call will always result in a null 3406 // pointer exception. The fall-through projection of this CatchNode 3407 // will not be populated. 3408 Node *arg0 = call->in(TypeFunc::Parms); 3409 if (arg0->is_Type() && 3410 arg0->as_Type()->type()->higher_equal(TypePtr::NULL_PTR)) { 3411 required_outcnt--; 3412 } 3413 } else if (call->entry_point() == OptoRuntime::new_array_Java() && 3414 call->req() > TypeFunc::Parms+1 && 3415 call->is_CallStaticJava()) { 3416 // Check for negative array length. In such case, the optimizer has 3417 // detected that the allocation attempt will always result in an 3418 // exception. There is no fall-through projection of this CatchNode . 3419 Node *arg1 = call->in(TypeFunc::Parms+1); 3420 if (arg1->is_Type() && 3421 arg1->as_Type()->type()->join(TypeInt::POS)->empty()) { 3422 required_outcnt--; 3423 } 3424 } 3425 } 3426 } 3427 // Recheck with a better notion of 'required_outcnt' 3428 if (n->outcnt() != required_outcnt) { 3429 record_method_not_compilable("malformed control flow"); 3430 return true; // Not all targets reachable! 3431 } 3432 } 3433 // Check that I actually visited all kids. Unreached kids 3434 // must be infinite loops. 3435 for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) 3436 if (!frc._visited.test(n->fast_out(j)->_idx)) { 3437 record_method_not_compilable("infinite loop"); 3438 return true; // Found unvisited kid; must be unreach 3439 } 3440 3441 // Here so verification code in final_graph_reshaping_walk() 3442 // always see an OuterStripMinedLoopEnd 3443 if (n->is_OuterStripMinedLoopEnd()) { 3444 IfNode* init_iff = n->as_If(); 3445 Node* iff = new IfNode(init_iff->in(0), init_iff->in(1), init_iff->_prob, init_iff->_fcnt); 3446 n->subsume_by(iff, this); 3447 } 3448 } 3449 3450 #ifdef IA32 3451 // If original bytecodes contained a mixture of floats and doubles 3452 // check if the optimizer has made it homogenous, item (3). 3453 if (UseSSE == 0 && 3454 frc.get_float_count() > 32 && 3455 frc.get_double_count() == 0 && 3456 (10 * frc.get_call_count() < frc.get_float_count()) ) { 3457 set_24_bit_selection_and_mode(false, true); 3458 } 3459 #endif // IA32 3460 3461 set_java_calls(frc.get_java_call_count()); 3462 set_inner_loops(frc.get_inner_loop_count()); 3463 3464 // No infinite loops, no reason to bail out. 3465 return false; 3466 } 3467 3468 //-----------------------------too_many_traps---------------------------------- 3469 // Report if there are too many traps at the current method and bci. 3470 // Return true if there was a trap, and/or PerMethodTrapLimit is exceeded. 3471 bool Compile::too_many_traps(ciMethod* method, 3472 int bci, 3473 Deoptimization::DeoptReason reason) { 3474 ciMethodData* md = method->method_data(); 3475 if (md->is_empty()) { 3476 // Assume the trap has not occurred, or that it occurred only 3477 // because of a transient condition during start-up in the interpreter. 3478 return false; 3479 } 3480 ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : NULL; 3481 if (md->has_trap_at(bci, m, reason) != 0) { 3482 // Assume PerBytecodeTrapLimit==0, for a more conservative heuristic. 3483 // Also, if there are multiple reasons, or if there is no per-BCI record, 3484 // assume the worst. 3485 if (log()) 3486 log()->elem("observe trap='%s' count='%d'", 3487 Deoptimization::trap_reason_name(reason), 3488 md->trap_count(reason)); 3489 return true; 3490 } else { 3491 // Ignore method/bci and see if there have been too many globally. 3492 return too_many_traps(reason, md); 3493 } 3494 } 3495 3496 // Less-accurate variant which does not require a method and bci. 3497 bool Compile::too_many_traps(Deoptimization::DeoptReason reason, 3498 ciMethodData* logmd) { 3499 if (trap_count(reason) >= Deoptimization::per_method_trap_limit(reason)) { 3500 // Too many traps globally. 3501 // Note that we use cumulative trap_count, not just md->trap_count. 3502 if (log()) { 3503 int mcount = (logmd == NULL)? -1: (int)logmd->trap_count(reason); 3504 log()->elem("observe trap='%s' count='0' mcount='%d' ccount='%d'", 3505 Deoptimization::trap_reason_name(reason), 3506 mcount, trap_count(reason)); 3507 } 3508 return true; 3509 } else { 3510 // The coast is clear. 3511 return false; 3512 } 3513 } 3514 3515 //--------------------------too_many_recompiles-------------------------------- 3516 // Report if there are too many recompiles at the current method and bci. 3517 // Consults PerBytecodeRecompilationCutoff and PerMethodRecompilationCutoff. 3518 // Is not eager to return true, since this will cause the compiler to use 3519 // Action_none for a trap point, to avoid too many recompilations. 3520 bool Compile::too_many_recompiles(ciMethod* method, 3521 int bci, 3522 Deoptimization::DeoptReason reason) { 3523 ciMethodData* md = method->method_data(); 3524 if (md->is_empty()) { 3525 // Assume the trap has not occurred, or that it occurred only 3526 // because of a transient condition during start-up in the interpreter. 3527 return false; 3528 } 3529 // Pick a cutoff point well within PerBytecodeRecompilationCutoff. 3530 uint bc_cutoff = (uint) PerBytecodeRecompilationCutoff / 8; 3531 uint m_cutoff = (uint) PerMethodRecompilationCutoff / 2 + 1; // not zero 3532 Deoptimization::DeoptReason per_bc_reason 3533 = Deoptimization::reason_recorded_per_bytecode_if_any(reason); 3534 ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : NULL; 3535 if ((per_bc_reason == Deoptimization::Reason_none 3536 || md->has_trap_at(bci, m, reason) != 0) 3537 // The trap frequency measure we care about is the recompile count: 3538 && md->trap_recompiled_at(bci, m) 3539 && md->overflow_recompile_count() >= bc_cutoff) { 3540 // Do not emit a trap here if it has already caused recompilations. 3541 // Also, if there are multiple reasons, or if there is no per-BCI record, 3542 // assume the worst. 3543 if (log()) 3544 log()->elem("observe trap='%s recompiled' count='%d' recompiles2='%d'", 3545 Deoptimization::trap_reason_name(reason), 3546 md->trap_count(reason), 3547 md->overflow_recompile_count()); 3548 return true; 3549 } else if (trap_count(reason) != 0 3550 && decompile_count() >= m_cutoff) { 3551 // Too many recompiles globally, and we have seen this sort of trap. 3552 // Use cumulative decompile_count, not just md->decompile_count. 3553 if (log()) 3554 log()->elem("observe trap='%s' count='%d' mcount='%d' decompiles='%d' mdecompiles='%d'", 3555 Deoptimization::trap_reason_name(reason), 3556 md->trap_count(reason), trap_count(reason), 3557 md->decompile_count(), decompile_count()); 3558 return true; 3559 } else { 3560 // The coast is clear. 3561 return false; 3562 } 3563 } 3564 3565 // Compute when not to trap. Used by matching trap based nodes and 3566 // NullCheck optimization. 3567 void Compile::set_allowed_deopt_reasons() { 3568 _allowed_reasons = 0; 3569 if (is_method_compilation()) { 3570 for (int rs = (int)Deoptimization::Reason_none+1; rs < Compile::trapHistLength; rs++) { 3571 assert(rs < BitsPerInt, "recode bit map"); 3572 if (!too_many_traps((Deoptimization::DeoptReason) rs)) { 3573 _allowed_reasons |= nth_bit(rs); 3574 } 3575 } 3576 } 3577 } 3578 3579 bool Compile::needs_clinit_barrier(ciMethod* method, ciMethod* accessing_method) { 3580 return method->is_static() && needs_clinit_barrier(method->holder(), accessing_method); 3581 } 3582 3583 bool Compile::needs_clinit_barrier(ciField* field, ciMethod* accessing_method) { 3584 return field->is_static() && needs_clinit_barrier(field->holder(), accessing_method); 3585 } 3586 3587 bool Compile::needs_clinit_barrier(ciInstanceKlass* holder, ciMethod* accessing_method) { 3588 if (holder->is_initialized()) { 3589 return false; 3590 } 3591 if (holder->is_being_initialized()) { 3592 if (accessing_method->holder() == holder) { 3593 // Access inside a class. The barrier can be elided when access happens in <clinit>, 3594 // <init>, or a static method. In all those cases, there was an initialization 3595 // barrier on the holder klass passed. 3596 if (accessing_method->is_static_initializer() || 3597 accessing_method->is_object_initializer() || 3598 accessing_method->is_static()) { 3599 return false; 3600 } 3601 } else if (accessing_method->holder()->is_subclass_of(holder)) { 3602 // Access from a subclass. The barrier can be elided only when access happens in <clinit>. 3603 // In case of <init> or a static method, the barrier is on the subclass is not enough: 3604 // child class can become fully initialized while its parent class is still being initialized. 3605 if (accessing_method->is_static_initializer()) { 3606 return false; 3607 } 3608 } 3609 ciMethod* root = method(); // the root method of compilation 3610 if (root != accessing_method) { 3611 return needs_clinit_barrier(holder, root); // check access in the context of compilation root 3612 } 3613 } 3614 return true; 3615 } 3616 3617 #ifndef PRODUCT 3618 //------------------------------verify_graph_edges--------------------------- 3619 // Walk the Graph and verify that there is a one-to-one correspondence 3620 // between Use-Def edges and Def-Use edges in the graph. 3621 void Compile::verify_graph_edges(bool no_dead_code) { 3622 if (VerifyGraphEdges) { 3623 ResourceArea *area = Thread::current()->resource_area(); 3624 Unique_Node_List visited(area); 3625 // Call recursive graph walk to check edges 3626 _root->verify_edges(visited); 3627 if (no_dead_code) { 3628 // Now make sure that no visited node is used by an unvisited node. 3629 bool dead_nodes = false; 3630 Unique_Node_List checked(area); 3631 while (visited.size() > 0) { 3632 Node* n = visited.pop(); 3633 checked.push(n); 3634 for (uint i = 0; i < n->outcnt(); i++) { 3635 Node* use = n->raw_out(i); 3636 if (checked.member(use)) continue; // already checked 3637 if (visited.member(use)) continue; // already in the graph 3638 if (use->is_Con()) continue; // a dead ConNode is OK 3639 // At this point, we have found a dead node which is DU-reachable. 3640 if (!dead_nodes) { 3641 tty->print_cr("*** Dead nodes reachable via DU edges:"); 3642 dead_nodes = true; 3643 } 3644 use->dump(2); 3645 tty->print_cr("---"); 3646 checked.push(use); // No repeats; pretend it is now checked. 3647 } 3648 } 3649 assert(!dead_nodes, "using nodes must be reachable from root"); 3650 } 3651 } 3652 } 3653 #endif 3654 3655 // The Compile object keeps track of failure reasons separately from the ciEnv. 3656 // This is required because there is not quite a 1-1 relation between the 3657 // ciEnv and its compilation task and the Compile object. Note that one 3658 // ciEnv might use two Compile objects, if C2Compiler::compile_method decides 3659 // to backtrack and retry without subsuming loads. Other than this backtracking 3660 // behavior, the Compile's failure reason is quietly copied up to the ciEnv 3661 // by the logic in C2Compiler. 3662 void Compile::record_failure(const char* reason) { 3663 if (log() != NULL) { 3664 log()->elem("failure reason='%s' phase='compile'", reason); 3665 } 3666 if (_failure_reason == NULL) { 3667 // Record the first failure reason. 3668 _failure_reason = reason; 3669 } 3670 3671 if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) { 3672 C->print_method(PHASE_FAILURE); 3673 } 3674 _root = NULL; // flush the graph, too 3675 } 3676 3677 Compile::TracePhase::TracePhase(const char* name, elapsedTimer* accumulator) 3678 : TraceTime(name, accumulator, CITime, CITimeVerbose), 3679 _phase_name(name), _dolog(CITimeVerbose) 3680 { 3681 if (_dolog) { 3682 C = Compile::current(); 3683 _log = C->log(); 3684 } else { 3685 C = NULL; 3686 _log = NULL; 3687 } 3688 if (_log != NULL) { 3689 _log->begin_head("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes()); 3690 _log->stamp(); 3691 _log->end_head(); 3692 } 3693 } 3694 3695 Compile::TracePhase::~TracePhase() { 3696 3697 C = Compile::current(); 3698 if (_dolog) { 3699 _log = C->log(); 3700 } else { 3701 _log = NULL; 3702 } 3703 3704 #ifdef ASSERT 3705 if (PrintIdealNodeCount) { 3706 tty->print_cr("phase name='%s' nodes='%d' live='%d' live_graph_walk='%d'", 3707 _phase_name, C->unique(), C->live_nodes(), C->count_live_nodes_by_graph_walk()); 3708 } 3709 3710 if (VerifyIdealNodeCount) { 3711 Compile::current()->print_missing_nodes(); 3712 } 3713 #endif 3714 3715 if (_log != NULL) { 3716 _log->done("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes()); 3717 } 3718 } 3719 3720 //----------------------------static_subtype_check----------------------------- 3721 // Shortcut important common cases when superklass is exact: 3722 // (0) superklass is java.lang.Object (can occur in reflective code) 3723 // (1) subklass is already limited to a subtype of superklass => always ok 3724 // (2) subklass does not overlap with superklass => always fail 3725 // (3) superklass has NO subtypes and we can check with a simple compare. 3726 int Compile::static_subtype_check(ciKlass* superk, ciKlass* subk) { 3727 if (StressReflectiveCode) { 3728 return SSC_full_test; // Let caller generate the general case. 3729 } 3730 3731 if (superk == env()->Object_klass()) { 3732 return SSC_always_true; // (0) this test cannot fail 3733 } 3734 3735 ciType* superelem = superk; 3736 if (superelem->is_array_klass()) 3737 superelem = superelem->as_array_klass()->base_element_type(); 3738 3739 if (!subk->is_interface()) { // cannot trust static interface types yet 3740 if (subk->is_subtype_of(superk)) { 3741 return SSC_always_true; // (1) false path dead; no dynamic test needed 3742 } 3743 if (!(superelem->is_klass() && superelem->as_klass()->is_interface()) && 3744 !superk->is_subtype_of(subk)) { 3745 return SSC_always_false; 3746 } 3747 } 3748 3749 // If casting to an instance klass, it must have no subtypes 3750 if (superk->is_interface()) { 3751 // Cannot trust interfaces yet. 3752 // %%% S.B. superk->nof_implementors() == 1 3753 } else if (superelem->is_instance_klass()) { 3754 ciInstanceKlass* ik = superelem->as_instance_klass(); 3755 if (!ik->has_subklass() && !ik->is_interface()) { 3756 if (!ik->is_final()) { 3757 // Add a dependency if there is a chance of a later subclass. 3758 dependencies()->assert_leaf_type(ik); 3759 } 3760 return SSC_easy_test; // (3) caller can do a simple ptr comparison 3761 } 3762 } else { 3763 // A primitive array type has no subtypes. 3764 return SSC_easy_test; // (3) caller can do a simple ptr comparison 3765 } 3766 3767 return SSC_full_test; 3768 } 3769 3770 Node* Compile::conv_I2X_index(PhaseGVN* phase, Node* idx, const TypeInt* sizetype, Node* ctrl) { 3771 #ifdef _LP64 3772 // The scaled index operand to AddP must be a clean 64-bit value. 3773 // Java allows a 32-bit int to be incremented to a negative 3774 // value, which appears in a 64-bit register as a large 3775 // positive number. Using that large positive number as an 3776 // operand in pointer arithmetic has bad consequences. 3777 // On the other hand, 32-bit overflow is rare, and the possibility 3778 // can often be excluded, if we annotate the ConvI2L node with 3779 // a type assertion that its value is known to be a small positive 3780 // number. (The prior range check has ensured this.) 3781 // This assertion is used by ConvI2LNode::Ideal. 3782 int index_max = max_jint - 1; // array size is max_jint, index is one less 3783 if (sizetype != NULL) index_max = sizetype->_hi - 1; 3784 const TypeInt* iidxtype = TypeInt::make(0, index_max, Type::WidenMax); 3785 idx = constrained_convI2L(phase, idx, iidxtype, ctrl); 3786 #endif 3787 return idx; 3788 } 3789 3790 // Convert integer value to a narrowed long type dependent on ctrl (for example, a range check) 3791 Node* Compile::constrained_convI2L(PhaseGVN* phase, Node* value, const TypeInt* itype, Node* ctrl) { 3792 if (ctrl != NULL) { 3793 // Express control dependency by a CastII node with a narrow type. 3794 value = new CastIINode(value, itype, false, true /* range check dependency */); 3795 // Make the CastII node dependent on the control input to prevent the narrowed ConvI2L 3796 // node from floating above the range check during loop optimizations. Otherwise, the 3797 // ConvI2L node may be eliminated independently of the range check, causing the data path 3798 // to become TOP while the control path is still there (although it's unreachable). 3799 value->set_req(0, ctrl); 3800 // Save CastII node to remove it after loop optimizations. 3801 phase->C->add_range_check_cast(value); 3802 value = phase->transform(value); 3803 } 3804 const TypeLong* ltype = TypeLong::make(itype->_lo, itype->_hi, itype->_widen); 3805 return phase->transform(new ConvI2LNode(value, ltype)); 3806 } 3807 3808 void Compile::print_inlining_stream_free() { 3809 if (_print_inlining_stream != NULL) { 3810 _print_inlining_stream->~stringStream(); 3811 _print_inlining_stream = NULL; 3812 } 3813 } 3814 3815 // The message about the current inlining is accumulated in 3816 // _print_inlining_stream and transfered into the _print_inlining_list 3817 // once we know whether inlining succeeds or not. For regular 3818 // inlining, messages are appended to the buffer pointed by 3819 // _print_inlining_idx in the _print_inlining_list. For late inlining, 3820 // a new buffer is added after _print_inlining_idx in the list. This 3821 // way we can update the inlining message for late inlining call site 3822 // when the inlining is attempted again. 3823 void Compile::print_inlining_init() { 3824 if (print_inlining() || print_intrinsics()) { 3825 // print_inlining_init is actually called several times. 3826 print_inlining_stream_free(); 3827 _print_inlining_stream = new stringStream(); 3828 // Watch out: The memory initialized by the constructor call PrintInliningBuffer() 3829 // will be copied into the only initial element. The default destructor of 3830 // PrintInliningBuffer will be called when leaving the scope here. If it 3831 // would destuct the enclosed stringStream _print_inlining_list[0]->_ss 3832 // would be destructed, too! 3833 _print_inlining_list = new (comp_arena())GrowableArray<PrintInliningBuffer>(comp_arena(), 1, 1, PrintInliningBuffer()); 3834 } 3835 } 3836 3837 void Compile::print_inlining_reinit() { 3838 if (print_inlining() || print_intrinsics()) { 3839 print_inlining_stream_free(); 3840 // Re allocate buffer when we change ResourceMark 3841 _print_inlining_stream = new stringStream(); 3842 } 3843 } 3844 3845 void Compile::print_inlining_reset() { 3846 _print_inlining_stream->reset(); 3847 } 3848 3849 void Compile::print_inlining_commit() { 3850 assert(print_inlining() || print_intrinsics(), "PrintInlining off?"); 3851 // Transfer the message from _print_inlining_stream to the current 3852 // _print_inlining_list buffer and clear _print_inlining_stream. 3853 _print_inlining_list->at(_print_inlining_idx).ss()->write(_print_inlining_stream->base(), _print_inlining_stream->size()); 3854 print_inlining_reset(); 3855 } 3856 3857 void Compile::print_inlining_push() { 3858 // Add new buffer to the _print_inlining_list at current position 3859 _print_inlining_idx++; 3860 _print_inlining_list->insert_before(_print_inlining_idx, PrintInliningBuffer()); 3861 } 3862 3863 Compile::PrintInliningBuffer& Compile::print_inlining_current() { 3864 return _print_inlining_list->at(_print_inlining_idx); 3865 } 3866 3867 void Compile::print_inlining_update(CallGenerator* cg) { 3868 if (print_inlining() || print_intrinsics()) { 3869 if (!cg->is_late_inline()) { 3870 if (print_inlining_current().cg() != NULL) { 3871 print_inlining_push(); 3872 } 3873 print_inlining_commit(); 3874 } else { 3875 if (print_inlining_current().cg() != cg && 3876 (print_inlining_current().cg() != NULL || 3877 print_inlining_current().ss()->size() != 0)) { 3878 print_inlining_push(); 3879 } 3880 print_inlining_commit(); 3881 print_inlining_current().set_cg(cg); 3882 } 3883 } 3884 } 3885 3886 void Compile::print_inlining_move_to(CallGenerator* cg) { 3887 // We resume inlining at a late inlining call site. Locate the 3888 // corresponding inlining buffer so that we can update it. 3889 if (print_inlining()) { 3890 for (int i = 0; i < _print_inlining_list->length(); i++) { 3891 if (_print_inlining_list->adr_at(i)->cg() == cg) { 3892 _print_inlining_idx = i; 3893 return; 3894 } 3895 } 3896 ShouldNotReachHere(); 3897 } 3898 } 3899 3900 void Compile::print_inlining_update_delayed(CallGenerator* cg) { 3901 if (print_inlining()) { 3902 assert(_print_inlining_stream->size() > 0, "missing inlining msg"); 3903 assert(print_inlining_current().cg() == cg, "wrong entry"); 3904 // replace message with new message 3905 _print_inlining_list->at_put(_print_inlining_idx, PrintInliningBuffer()); 3906 print_inlining_commit(); 3907 print_inlining_current().set_cg(cg); 3908 } 3909 } 3910 3911 void Compile::print_inlining_assert_ready() { 3912 assert(!_print_inlining || _print_inlining_stream->size() == 0, "loosing data"); 3913 } 3914 3915 void Compile::process_print_inlining() { 3916 bool do_print_inlining = print_inlining() || print_intrinsics(); 3917 if (do_print_inlining || log() != NULL) { 3918 // Print inlining message for candidates that we couldn't inline 3919 // for lack of space 3920 for (int i = 0; i < _late_inlines.length(); i++) { 3921 CallGenerator* cg = _late_inlines.at(i); 3922 if (!cg->is_mh_late_inline()) { 3923 const char* msg = "live nodes > LiveNodeCountInliningCutoff"; 3924 if (do_print_inlining) { 3925 cg->print_inlining_late(msg); 3926 } 3927 log_late_inline_failure(cg, msg); 3928 } 3929 } 3930 } 3931 if (do_print_inlining) { 3932 ResourceMark rm; 3933 stringStream ss; 3934 assert(_print_inlining_list != NULL, "process_print_inlining should be called only once."); 3935 for (int i = 0; i < _print_inlining_list->length(); i++) { 3936 ss.print("%s", _print_inlining_list->adr_at(i)->ss()->as_string()); 3937 _print_inlining_list->at(i).freeStream(); 3938 } 3939 // Reset _print_inlining_list, it only contains destructed objects. 3940 // It is on the arena, so it will be freed when the arena is reset. 3941 _print_inlining_list = NULL; 3942 // _print_inlining_stream won't be used anymore, either. 3943 print_inlining_stream_free(); 3944 size_t end = ss.size(); 3945 _print_inlining_output = NEW_ARENA_ARRAY(comp_arena(), char, end+1); 3946 strncpy(_print_inlining_output, ss.base(), end+1); 3947 _print_inlining_output[end] = 0; 3948 } 3949 } 3950 3951 void Compile::dump_print_inlining() { 3952 if (_print_inlining_output != NULL) { 3953 tty->print_raw(_print_inlining_output); 3954 } 3955 } 3956 3957 void Compile::log_late_inline(CallGenerator* cg) { 3958 if (log() != NULL) { 3959 log()->head("late_inline method='%d' inline_id='" JLONG_FORMAT "'", log()->identify(cg->method()), 3960 cg->unique_id()); 3961 JVMState* p = cg->call_node()->jvms(); 3962 while (p != NULL) { 3963 log()->elem("jvms bci='%d' method='%d'", p->bci(), log()->identify(p->method())); 3964 p = p->caller(); 3965 } 3966 log()->tail("late_inline"); 3967 } 3968 } 3969 3970 void Compile::log_late_inline_failure(CallGenerator* cg, const char* msg) { 3971 log_late_inline(cg); 3972 if (log() != NULL) { 3973 log()->inline_fail(msg); 3974 } 3975 } 3976 3977 void Compile::log_inline_id(CallGenerator* cg) { 3978 if (log() != NULL) { 3979 // The LogCompilation tool needs a unique way to identify late 3980 // inline call sites. This id must be unique for this call site in 3981 // this compilation. Try to have it unique across compilations as 3982 // well because it can be convenient when grepping through the log 3983 // file. 3984 // Distinguish OSR compilations from others in case CICountOSR is 3985 // on. 3986 jlong id = ((jlong)unique()) + (((jlong)compile_id()) << 33) + (CICountOSR && is_osr_compilation() ? ((jlong)1) << 32 : 0); 3987 cg->set_unique_id(id); 3988 log()->elem("inline_id id='" JLONG_FORMAT "'", id); 3989 } 3990 } 3991 3992 void Compile::log_inline_failure(const char* msg) { 3993 if (C->log() != NULL) { 3994 C->log()->inline_fail(msg); 3995 } 3996 } 3997 3998 3999 // Dump inlining replay data to the stream. 4000 // Don't change thread state and acquire any locks. 4001 void Compile::dump_inline_data(outputStream* out) { 4002 InlineTree* inl_tree = ilt(); 4003 if (inl_tree != NULL) { 4004 out->print(" inline %d", inl_tree->count()); 4005 inl_tree->dump_replay_data(out); 4006 } 4007 } 4008 4009 int Compile::cmp_expensive_nodes(Node* n1, Node* n2) { 4010 if (n1->Opcode() < n2->Opcode()) return -1; 4011 else if (n1->Opcode() > n2->Opcode()) return 1; 4012 4013 assert(n1->req() == n2->req(), "can't compare %s nodes: n1->req() = %d, n2->req() = %d", NodeClassNames[n1->Opcode()], n1->req(), n2->req()); 4014 for (uint i = 1; i < n1->req(); i++) { 4015 if (n1->in(i) < n2->in(i)) return -1; 4016 else if (n1->in(i) > n2->in(i)) return 1; 4017 } 4018 4019 return 0; 4020 } 4021 4022 int Compile::cmp_expensive_nodes(Node** n1p, Node** n2p) { 4023 Node* n1 = *n1p; 4024 Node* n2 = *n2p; 4025 4026 return cmp_expensive_nodes(n1, n2); 4027 } 4028 4029 void Compile::sort_expensive_nodes() { 4030 if (!expensive_nodes_sorted()) { 4031 _expensive_nodes->sort(cmp_expensive_nodes); 4032 } 4033 } 4034 4035 bool Compile::expensive_nodes_sorted() const { 4036 for (int i = 1; i < _expensive_nodes->length(); i++) { 4037 if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i-1)) < 0) { 4038 return false; 4039 } 4040 } 4041 return true; 4042 } 4043 4044 bool Compile::should_optimize_expensive_nodes(PhaseIterGVN &igvn) { 4045 if (_expensive_nodes->length() == 0) { 4046 return false; 4047 } 4048 4049 assert(OptimizeExpensiveOps, "optimization off?"); 4050 4051 // Take this opportunity to remove dead nodes from the list 4052 int j = 0; 4053 for (int i = 0; i < _expensive_nodes->length(); i++) { 4054 Node* n = _expensive_nodes->at(i); 4055 if (!n->is_unreachable(igvn)) { 4056 assert(n->is_expensive(), "should be expensive"); 4057 _expensive_nodes->at_put(j, n); 4058 j++; 4059 } 4060 } 4061 _expensive_nodes->trunc_to(j); 4062 4063 // Then sort the list so that similar nodes are next to each other 4064 // and check for at least two nodes of identical kind with same data 4065 // inputs. 4066 sort_expensive_nodes(); 4067 4068 for (int i = 0; i < _expensive_nodes->length()-1; i++) { 4069 if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i+1)) == 0) { 4070 return true; 4071 } 4072 } 4073 4074 return false; 4075 } 4076 4077 void Compile::cleanup_expensive_nodes(PhaseIterGVN &igvn) { 4078 if (_expensive_nodes->length() == 0) { 4079 return; 4080 } 4081 4082 assert(OptimizeExpensiveOps, "optimization off?"); 4083 4084 // Sort to bring similar nodes next to each other and clear the 4085 // control input of nodes for which there's only a single copy. 4086 sort_expensive_nodes(); 4087 4088 int j = 0; 4089 int identical = 0; 4090 int i = 0; 4091 bool modified = false; 4092 for (; i < _expensive_nodes->length()-1; i++) { 4093 assert(j <= i, "can't write beyond current index"); 4094 if (_expensive_nodes->at(i)->Opcode() == _expensive_nodes->at(i+1)->Opcode()) { 4095 identical++; 4096 _expensive_nodes->at_put(j++, _expensive_nodes->at(i)); 4097 continue; 4098 } 4099 if (identical > 0) { 4100 _expensive_nodes->at_put(j++, _expensive_nodes->at(i)); 4101 identical = 0; 4102 } else { 4103 Node* n = _expensive_nodes->at(i); 4104 igvn.replace_input_of(n, 0, NULL); 4105 igvn.hash_insert(n); 4106 modified = true; 4107 } 4108 } 4109 if (identical > 0) { 4110 _expensive_nodes->at_put(j++, _expensive_nodes->at(i)); 4111 } else if (_expensive_nodes->length() >= 1) { 4112 Node* n = _expensive_nodes->at(i); 4113 igvn.replace_input_of(n, 0, NULL); 4114 igvn.hash_insert(n); 4115 modified = true; 4116 } 4117 _expensive_nodes->trunc_to(j); 4118 if (modified) { 4119 igvn.optimize(); 4120 } 4121 } 4122 4123 void Compile::add_expensive_node(Node * n) { 4124 assert(!_expensive_nodes->contains(n), "duplicate entry in expensive list"); 4125 assert(n->is_expensive(), "expensive nodes with non-null control here only"); 4126 assert(!n->is_CFG() && !n->is_Mem(), "no cfg or memory nodes here"); 4127 if (OptimizeExpensiveOps) { 4128 _expensive_nodes->append(n); 4129 } else { 4130 // Clear control input and let IGVN optimize expensive nodes if 4131 // OptimizeExpensiveOps is off. 4132 n->set_req(0, NULL); 4133 } 4134 } 4135 4136 /** 4137 * Remove the speculative part of types and clean up the graph 4138 */ 4139 void Compile::remove_speculative_types(PhaseIterGVN &igvn) { 4140 if (UseTypeSpeculation) { 4141 Unique_Node_List worklist; 4142 worklist.push(root()); 4143 int modified = 0; 4144 // Go over all type nodes that carry a speculative type, drop the 4145 // speculative part of the type and enqueue the node for an igvn 4146 // which may optimize it out. 4147 for (uint next = 0; next < worklist.size(); ++next) { 4148 Node *n = worklist.at(next); 4149 if (n->is_Type()) { 4150 TypeNode* tn = n->as_Type(); 4151 const Type* t = tn->type(); 4152 const Type* t_no_spec = t->remove_speculative(); 4153 if (t_no_spec != t) { 4154 bool in_hash = igvn.hash_delete(n); 4155 assert(in_hash, "node should be in igvn hash table"); 4156 tn->set_type(t_no_spec); 4157 igvn.hash_insert(n); 4158 igvn._worklist.push(n); // give it a chance to go away 4159 modified++; 4160 } 4161 } 4162 uint max = n->len(); 4163 for( uint i = 0; i < max; ++i ) { 4164 Node *m = n->in(i); 4165 if (not_a_node(m)) continue; 4166 worklist.push(m); 4167 } 4168 } 4169 // Drop the speculative part of all types in the igvn's type table 4170 igvn.remove_speculative_types(); 4171 if (modified > 0) { 4172 igvn.optimize(); 4173 } 4174 #ifdef ASSERT 4175 // Verify that after the IGVN is over no speculative type has resurfaced 4176 worklist.clear(); 4177 worklist.push(root()); 4178 for (uint next = 0; next < worklist.size(); ++next) { 4179 Node *n = worklist.at(next); 4180 const Type* t = igvn.type_or_null(n); 4181 assert((t == NULL) || (t == t->remove_speculative()), "no more speculative types"); 4182 if (n->is_Type()) { 4183 t = n->as_Type()->type(); 4184 assert(t == t->remove_speculative(), "no more speculative types"); 4185 } 4186 uint max = n->len(); 4187 for( uint i = 0; i < max; ++i ) { 4188 Node *m = n->in(i); 4189 if (not_a_node(m)) continue; 4190 worklist.push(m); 4191 } 4192 } 4193 igvn.check_no_speculative_types(); 4194 #endif 4195 } 4196 } 4197 4198 // Auxiliary method to support randomized stressing/fuzzing. 4199 // 4200 // This method can be called the arbitrary number of times, with current count 4201 // as the argument. The logic allows selecting a single candidate from the 4202 // running list of candidates as follows: 4203 // int count = 0; 4204 // Cand* selected = null; 4205 // while(cand = cand->next()) { 4206 // if (randomized_select(++count)) { 4207 // selected = cand; 4208 // } 4209 // } 4210 // 4211 // Including count equalizes the chances any candidate is "selected". 4212 // This is useful when we don't have the complete list of candidates to choose 4213 // from uniformly. In this case, we need to adjust the randomicity of the 4214 // selection, or else we will end up biasing the selection towards the latter 4215 // candidates. 4216 // 4217 // Quick back-envelope calculation shows that for the list of n candidates 4218 // the equal probability for the candidate to persist as "best" can be 4219 // achieved by replacing it with "next" k-th candidate with the probability 4220 // of 1/k. It can be easily shown that by the end of the run, the 4221 // probability for any candidate is converged to 1/n, thus giving the 4222 // uniform distribution among all the candidates. 4223 // 4224 // We don't care about the domain size as long as (RANDOMIZED_DOMAIN / count) is large. 4225 #define RANDOMIZED_DOMAIN_POW 29 4226 #define RANDOMIZED_DOMAIN (1 << RANDOMIZED_DOMAIN_POW) 4227 #define RANDOMIZED_DOMAIN_MASK ((1 << (RANDOMIZED_DOMAIN_POW + 1)) - 1) 4228 bool Compile::randomized_select(int count) { 4229 assert(count > 0, "only positive"); 4230 return (os::random() & RANDOMIZED_DOMAIN_MASK) < (RANDOMIZED_DOMAIN / count); 4231 } 4232 4233 CloneMap& Compile::clone_map() { return _clone_map; } 4234 void Compile::set_clone_map(Dict* d) { _clone_map._dict = d; } 4235 4236 void NodeCloneInfo::dump() const { 4237 tty->print(" {%d:%d} ", idx(), gen()); 4238 } 4239 4240 void CloneMap::clone(Node* old, Node* nnn, int gen) { 4241 uint64_t val = value(old->_idx); 4242 NodeCloneInfo cio(val); 4243 assert(val != 0, "old node should be in the map"); 4244 NodeCloneInfo cin(cio.idx(), gen + cio.gen()); 4245 insert(nnn->_idx, cin.get()); 4246 #ifndef PRODUCT 4247 if (is_debug()) { 4248 tty->print_cr("CloneMap::clone inserted node %d info {%d:%d} into CloneMap", nnn->_idx, cin.idx(), cin.gen()); 4249 } 4250 #endif 4251 } 4252 4253 void CloneMap::verify_insert_and_clone(Node* old, Node* nnn, int gen) { 4254 NodeCloneInfo cio(value(old->_idx)); 4255 if (cio.get() == 0) { 4256 cio.set(old->_idx, 0); 4257 insert(old->_idx, cio.get()); 4258 #ifndef PRODUCT 4259 if (is_debug()) { 4260 tty->print_cr("CloneMap::verify_insert_and_clone inserted node %d info {%d:%d} into CloneMap", old->_idx, cio.idx(), cio.gen()); 4261 } 4262 #endif 4263 } 4264 clone(old, nnn, gen); 4265 } 4266 4267 int CloneMap::max_gen() const { 4268 int g = 0; 4269 DictI di(_dict); 4270 for(; di.test(); ++di) { 4271 int t = gen(di._key); 4272 if (g < t) { 4273 g = t; 4274 #ifndef PRODUCT 4275 if (is_debug()) { 4276 tty->print_cr("CloneMap::max_gen() update max=%d from %d", g, _2_node_idx_t(di._key)); 4277 } 4278 #endif 4279 } 4280 } 4281 return g; 4282 } 4283 4284 void CloneMap::dump(node_idx_t key) const { 4285 uint64_t val = value(key); 4286 if (val != 0) { 4287 NodeCloneInfo ni(val); 4288 ni.dump(); 4289 } 4290 }