1 /* 2 * Copyright (c) 2005, 2019, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "c1/c1_CFGPrinter.hpp" 27 #include "c1/c1_CodeStubs.hpp" 28 #include "c1/c1_Compilation.hpp" 29 #include "c1/c1_FrameMap.hpp" 30 #include "c1/c1_IR.hpp" 31 #include "c1/c1_LIRGenerator.hpp" 32 #include "c1/c1_LinearScan.hpp" 33 #include "c1/c1_ValueStack.hpp" 34 #include "code/vmreg.inline.hpp" 35 #include "runtime/timerTrace.hpp" 36 #include "utilities/bitMap.inline.hpp" 37 38 #ifndef PRODUCT 39 40 static LinearScanStatistic _stat_before_alloc; 41 static LinearScanStatistic _stat_after_asign; 42 static LinearScanStatistic _stat_final; 43 44 static LinearScanTimers _total_timer; 45 46 // helper macro for short definition of timer 47 #define TIME_LINEAR_SCAN(timer_name) TraceTime _block_timer("", _total_timer.timer(LinearScanTimers::timer_name), TimeLinearScan || TimeEachLinearScan, Verbose); 48 49 // helper macro for short definition of trace-output inside code 50 #define TRACE_LINEAR_SCAN(level, code) \ 51 if (TraceLinearScanLevel >= level) { \ 52 code; \ 53 } 54 55 #else 56 57 #define TIME_LINEAR_SCAN(timer_name) 58 #define TRACE_LINEAR_SCAN(level, code) 59 60 #endif 61 62 // Map BasicType to spill size in 32-bit words, matching VMReg's notion of words 63 #ifdef _LP64 64 static int type2spill_size[T_CONFLICT+1]={ -1, 0, 0, 0, 1, 1, 1, 2, 1, 1, 1, 2, 2, 2, 0, 2, 1, 2, 1, -1}; 65 #else 66 static int type2spill_size[T_CONFLICT+1]={ -1, 0, 0, 0, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 0, 1, -1, 1, 1, -1}; 67 #endif 68 69 70 // Implementation of LinearScan 71 72 LinearScan::LinearScan(IR* ir, LIRGenerator* gen, FrameMap* frame_map) 73 : _compilation(ir->compilation()) 74 , _ir(ir) 75 , _gen(gen) 76 , _frame_map(frame_map) 77 , _cached_blocks(*ir->linear_scan_order()) 78 , _num_virtual_regs(gen->max_virtual_register_number()) 79 , _has_fpu_registers(false) 80 , _num_calls(-1) 81 , _max_spills(0) 82 , _unused_spill_slot(-1) 83 , _intervals(0) // initialized later with correct length 84 , _new_intervals_from_allocation(NULL) 85 , _sorted_intervals(NULL) 86 , _needs_full_resort(false) 87 , _lir_ops(0) // initialized later with correct length 88 , _block_of_op(0) // initialized later with correct length 89 , _has_info(0) 90 , _has_call(0) 91 , _interval_in_loop(0) // initialized later with correct length 92 , _scope_value_cache(0) // initialized later with correct length 93 #ifdef IA32 94 , _fpu_stack_allocator(NULL) 95 #endif 96 { 97 assert(this->ir() != NULL, "check if valid"); 98 assert(this->compilation() != NULL, "check if valid"); 99 assert(this->gen() != NULL, "check if valid"); 100 assert(this->frame_map() != NULL, "check if valid"); 101 } 102 103 104 // ********** functions for converting LIR-Operands to register numbers 105 // 106 // Emulate a flat register file comprising physical integer registers, 107 // physical floating-point registers and virtual registers, in that order. 108 // Virtual registers already have appropriate numbers, since V0 is 109 // the number of physical registers. 110 // Returns -1 for hi word if opr is a single word operand. 111 // 112 // Note: the inverse operation (calculating an operand for register numbers) 113 // is done in calc_operand_for_interval() 114 115 int LinearScan::reg_num(LIR_Opr opr) { 116 assert(opr->is_register(), "should not call this otherwise"); 117 118 if (opr->is_virtual_register()) { 119 assert(opr->vreg_number() >= nof_regs, "found a virtual register with a fixed-register number"); 120 return opr->vreg_number(); 121 } else if (opr->is_single_cpu()) { 122 return opr->cpu_regnr(); 123 } else if (opr->is_double_cpu()) { 124 return opr->cpu_regnrLo(); 125 #ifdef X86 126 } else if (opr->is_single_xmm()) { 127 return opr->fpu_regnr() + pd_first_xmm_reg; 128 } else if (opr->is_double_xmm()) { 129 return opr->fpu_regnrLo() + pd_first_xmm_reg; 130 #endif 131 } else if (opr->is_single_fpu()) { 132 return opr->fpu_regnr() + pd_first_fpu_reg; 133 } else if (opr->is_double_fpu()) { 134 return opr->fpu_regnrLo() + pd_first_fpu_reg; 135 } else { 136 ShouldNotReachHere(); 137 return -1; 138 } 139 } 140 141 int LinearScan::reg_numHi(LIR_Opr opr) { 142 assert(opr->is_register(), "should not call this otherwise"); 143 144 if (opr->is_virtual_register()) { 145 return -1; 146 } else if (opr->is_single_cpu()) { 147 return -1; 148 } else if (opr->is_double_cpu()) { 149 return opr->cpu_regnrHi(); 150 #ifdef X86 151 } else if (opr->is_single_xmm()) { 152 return -1; 153 } else if (opr->is_double_xmm()) { 154 return -1; 155 #endif 156 } else if (opr->is_single_fpu()) { 157 return -1; 158 } else if (opr->is_double_fpu()) { 159 return opr->fpu_regnrHi() + pd_first_fpu_reg; 160 } else { 161 ShouldNotReachHere(); 162 return -1; 163 } 164 } 165 166 167 // ********** functions for classification of intervals 168 169 bool LinearScan::is_precolored_interval(const Interval* i) { 170 return i->reg_num() < LinearScan::nof_regs; 171 } 172 173 bool LinearScan::is_virtual_interval(const Interval* i) { 174 return i->reg_num() >= LIR_OprDesc::vreg_base; 175 } 176 177 bool LinearScan::is_precolored_cpu_interval(const Interval* i) { 178 return i->reg_num() < LinearScan::nof_cpu_regs; 179 } 180 181 bool LinearScan::is_virtual_cpu_interval(const Interval* i) { 182 #if defined(__SOFTFP__) || defined(E500V2) 183 return i->reg_num() >= LIR_OprDesc::vreg_base; 184 #else 185 return i->reg_num() >= LIR_OprDesc::vreg_base && (i->type() != T_FLOAT && i->type() != T_DOUBLE); 186 #endif // __SOFTFP__ or E500V2 187 } 188 189 bool LinearScan::is_precolored_fpu_interval(const Interval* i) { 190 return i->reg_num() >= LinearScan::nof_cpu_regs && i->reg_num() < LinearScan::nof_regs; 191 } 192 193 bool LinearScan::is_virtual_fpu_interval(const Interval* i) { 194 #if defined(__SOFTFP__) || defined(E500V2) 195 return false; 196 #else 197 return i->reg_num() >= LIR_OprDesc::vreg_base && (i->type() == T_FLOAT || i->type() == T_DOUBLE); 198 #endif // __SOFTFP__ or E500V2 199 } 200 201 bool LinearScan::is_in_fpu_register(const Interval* i) { 202 // fixed intervals not needed for FPU stack allocation 203 return i->reg_num() >= nof_regs && pd_first_fpu_reg <= i->assigned_reg() && i->assigned_reg() <= pd_last_fpu_reg; 204 } 205 206 bool LinearScan::is_oop_interval(const Interval* i) { 207 // fixed intervals never contain oops 208 return i->reg_num() >= nof_regs && i->type() == T_OBJECT; 209 } 210 211 212 // ********** General helper functions 213 214 // compute next unused stack index that can be used for spilling 215 int LinearScan::allocate_spill_slot(bool double_word) { 216 int spill_slot; 217 if (double_word) { 218 if ((_max_spills & 1) == 1) { 219 // alignment of double-word values 220 // the hole because of the alignment is filled with the next single-word value 221 assert(_unused_spill_slot == -1, "wasting a spill slot"); 222 _unused_spill_slot = _max_spills; 223 _max_spills++; 224 } 225 spill_slot = _max_spills; 226 _max_spills += 2; 227 228 } else if (_unused_spill_slot != -1) { 229 // re-use hole that was the result of a previous double-word alignment 230 spill_slot = _unused_spill_slot; 231 _unused_spill_slot = -1; 232 233 } else { 234 spill_slot = _max_spills; 235 _max_spills++; 236 } 237 238 int result = spill_slot + LinearScan::nof_regs + frame_map()->argcount(); 239 240 // the class OopMapValue uses only 11 bits for storing the name of the 241 // oop location. So a stack slot bigger than 2^11 leads to an overflow 242 // that is not reported in product builds. Prevent this by checking the 243 // spill slot here (altough this value and the later used location name 244 // are slightly different) 245 if (result > 2000) { 246 bailout("too many stack slots used"); 247 } 248 249 return result; 250 } 251 252 void LinearScan::assign_spill_slot(Interval* it) { 253 // assign the canonical spill slot of the parent (if a part of the interval 254 // is already spilled) or allocate a new spill slot 255 if (it->canonical_spill_slot() >= 0) { 256 it->assign_reg(it->canonical_spill_slot()); 257 } else { 258 int spill = allocate_spill_slot(type2spill_size[it->type()] == 2); 259 it->set_canonical_spill_slot(spill); 260 it->assign_reg(spill); 261 } 262 } 263 264 void LinearScan::propagate_spill_slots() { 265 if (!frame_map()->finalize_frame(max_spills())) { 266 bailout("frame too large"); 267 } 268 } 269 270 // create a new interval with a predefined reg_num 271 // (only used for parent intervals that are created during the building phase) 272 Interval* LinearScan::create_interval(int reg_num) { 273 assert(_intervals.at(reg_num) == NULL, "overwriting exisiting interval"); 274 275 Interval* interval = new Interval(reg_num); 276 _intervals.at_put(reg_num, interval); 277 278 // assign register number for precolored intervals 279 if (reg_num < LIR_OprDesc::vreg_base) { 280 interval->assign_reg(reg_num); 281 } 282 return interval; 283 } 284 285 // assign a new reg_num to the interval and append it to the list of intervals 286 // (only used for child intervals that are created during register allocation) 287 void LinearScan::append_interval(Interval* it) { 288 it->set_reg_num(_intervals.length()); 289 _intervals.append(it); 290 IntervalList* new_intervals = _new_intervals_from_allocation; 291 if (new_intervals == NULL) { 292 new_intervals = _new_intervals_from_allocation = new IntervalList(); 293 } 294 new_intervals->append(it); 295 } 296 297 // copy the vreg-flags if an interval is split 298 void LinearScan::copy_register_flags(Interval* from, Interval* to) { 299 if (gen()->is_vreg_flag_set(from->reg_num(), LIRGenerator::byte_reg)) { 300 gen()->set_vreg_flag(to->reg_num(), LIRGenerator::byte_reg); 301 } 302 if (gen()->is_vreg_flag_set(from->reg_num(), LIRGenerator::callee_saved)) { 303 gen()->set_vreg_flag(to->reg_num(), LIRGenerator::callee_saved); 304 } 305 306 // Note: do not copy the must_start_in_memory flag because it is not necessary for child 307 // intervals (only the very beginning of the interval must be in memory) 308 } 309 310 311 // ********** spill move optimization 312 // eliminate moves from register to stack if stack slot is known to be correct 313 314 // called during building of intervals 315 void LinearScan::change_spill_definition_pos(Interval* interval, int def_pos) { 316 assert(interval->is_split_parent(), "can only be called for split parents"); 317 318 switch (interval->spill_state()) { 319 case noDefinitionFound: 320 assert(interval->spill_definition_pos() == -1, "must no be set before"); 321 interval->set_spill_definition_pos(def_pos); 322 interval->set_spill_state(oneDefinitionFound); 323 break; 324 325 case oneDefinitionFound: 326 assert(def_pos <= interval->spill_definition_pos(), "positions are processed in reverse order when intervals are created"); 327 if (def_pos < interval->spill_definition_pos() - 2) { 328 // second definition found, so no spill optimization possible for this interval 329 interval->set_spill_state(noOptimization); 330 } else { 331 // two consecutive definitions (because of two-operand LIR form) 332 assert(block_of_op_with_id(def_pos) == block_of_op_with_id(interval->spill_definition_pos()), "block must be equal"); 333 } 334 break; 335 336 case noOptimization: 337 // nothing to do 338 break; 339 340 default: 341 assert(false, "other states not allowed at this time"); 342 } 343 } 344 345 // called during register allocation 346 void LinearScan::change_spill_state(Interval* interval, int spill_pos) { 347 switch (interval->spill_state()) { 348 case oneDefinitionFound: { 349 int def_loop_depth = block_of_op_with_id(interval->spill_definition_pos())->loop_depth(); 350 int spill_loop_depth = block_of_op_with_id(spill_pos)->loop_depth(); 351 352 if (def_loop_depth < spill_loop_depth) { 353 // the loop depth of the spilling position is higher then the loop depth 354 // at the definition of the interval -> move write to memory out of loop 355 // by storing at definitin of the interval 356 interval->set_spill_state(storeAtDefinition); 357 } else { 358 // the interval is currently spilled only once, so for now there is no 359 // reason to store the interval at the definition 360 interval->set_spill_state(oneMoveInserted); 361 } 362 break; 363 } 364 365 case oneMoveInserted: { 366 // the interval is spilled more then once, so it is better to store it to 367 // memory at the definition 368 interval->set_spill_state(storeAtDefinition); 369 break; 370 } 371 372 case storeAtDefinition: 373 case startInMemory: 374 case noOptimization: 375 case noDefinitionFound: 376 // nothing to do 377 break; 378 379 default: 380 assert(false, "other states not allowed at this time"); 381 } 382 } 383 384 385 bool LinearScan::must_store_at_definition(const Interval* i) { 386 return i->is_split_parent() && i->spill_state() == storeAtDefinition; 387 } 388 389 // called once before asignment of register numbers 390 void LinearScan::eliminate_spill_moves() { 391 TIME_LINEAR_SCAN(timer_eliminate_spill_moves); 392 TRACE_LINEAR_SCAN(3, tty->print_cr("***** Eliminating unnecessary spill moves")); 393 394 // collect all intervals that must be stored after their definion. 395 // the list is sorted by Interval::spill_definition_pos 396 Interval* interval; 397 Interval* temp_list; 398 create_unhandled_lists(&interval, &temp_list, must_store_at_definition, NULL); 399 400 #ifdef ASSERT 401 Interval* prev = NULL; 402 Interval* temp = interval; 403 while (temp != Interval::end()) { 404 assert(temp->spill_definition_pos() > 0, "invalid spill definition pos"); 405 if (prev != NULL) { 406 assert(temp->from() >= prev->from(), "intervals not sorted"); 407 assert(temp->spill_definition_pos() >= prev->spill_definition_pos(), "when intervals are sorted by from, then they must also be sorted by spill_definition_pos"); 408 } 409 410 assert(temp->canonical_spill_slot() >= LinearScan::nof_regs, "interval has no spill slot assigned"); 411 assert(temp->spill_definition_pos() >= temp->from(), "invalid order"); 412 assert(temp->spill_definition_pos() <= temp->from() + 2, "only intervals defined once at their start-pos can be optimized"); 413 414 TRACE_LINEAR_SCAN(4, tty->print_cr("interval %d (from %d to %d) must be stored at %d", temp->reg_num(), temp->from(), temp->to(), temp->spill_definition_pos())); 415 416 temp = temp->next(); 417 } 418 #endif 419 420 LIR_InsertionBuffer insertion_buffer; 421 int num_blocks = block_count(); 422 for (int i = 0; i < num_blocks; i++) { 423 BlockBegin* block = block_at(i); 424 LIR_OpList* instructions = block->lir()->instructions_list(); 425 int num_inst = instructions->length(); 426 bool has_new = false; 427 428 // iterate all instructions of the block. skip the first because it is always a label 429 for (int j = 1; j < num_inst; j++) { 430 LIR_Op* op = instructions->at(j); 431 int op_id = op->id(); 432 433 if (op_id == -1) { 434 // remove move from register to stack if the stack slot is guaranteed to be correct. 435 // only moves that have been inserted by LinearScan can be removed. 436 assert(op->code() == lir_move, "only moves can have a op_id of -1"); 437 assert(op->as_Op1() != NULL, "move must be LIR_Op1"); 438 assert(op->as_Op1()->result_opr()->is_virtual(), "LinearScan inserts only moves to virtual registers"); 439 440 LIR_Op1* op1 = (LIR_Op1*)op; 441 Interval* interval = interval_at(op1->result_opr()->vreg_number()); 442 443 if (interval->assigned_reg() >= LinearScan::nof_regs && interval->always_in_memory()) { 444 // move target is a stack slot that is always correct, so eliminate instruction 445 TRACE_LINEAR_SCAN(4, tty->print_cr("eliminating move from interval %d to %d", op1->in_opr()->vreg_number(), op1->result_opr()->vreg_number())); 446 instructions->at_put(j, NULL); // NULL-instructions are deleted by assign_reg_num 447 } 448 449 } else { 450 // insert move from register to stack just after the beginning of the interval 451 assert(interval == Interval::end() || interval->spill_definition_pos() >= op_id, "invalid order"); 452 assert(interval == Interval::end() || (interval->is_split_parent() && interval->spill_state() == storeAtDefinition), "invalid interval"); 453 454 while (interval != Interval::end() && interval->spill_definition_pos() == op_id) { 455 if (!has_new) { 456 // prepare insertion buffer (appended when all instructions of the block are processed) 457 insertion_buffer.init(block->lir()); 458 has_new = true; 459 } 460 461 LIR_Opr from_opr = operand_for_interval(interval); 462 LIR_Opr to_opr = canonical_spill_opr(interval); 463 assert(from_opr->is_fixed_cpu() || from_opr->is_fixed_fpu(), "from operand must be a register"); 464 assert(to_opr->is_stack(), "to operand must be a stack slot"); 465 466 insertion_buffer.move(j, from_opr, to_opr); 467 TRACE_LINEAR_SCAN(4, tty->print_cr("inserting move after definition of interval %d to stack slot %d at op_id %d", interval->reg_num(), interval->canonical_spill_slot() - LinearScan::nof_regs, op_id)); 468 469 interval = interval->next(); 470 } 471 } 472 } // end of instruction iteration 473 474 if (has_new) { 475 block->lir()->append(&insertion_buffer); 476 } 477 } // end of block iteration 478 479 assert(interval == Interval::end(), "missed an interval"); 480 } 481 482 483 // ********** Phase 1: number all instructions in all blocks 484 // Compute depth-first and linear scan block orders, and number LIR_Op nodes for linear scan. 485 486 void LinearScan::number_instructions() { 487 { 488 // dummy-timer to measure the cost of the timer itself 489 // (this time is then subtracted from all other timers to get the real value) 490 TIME_LINEAR_SCAN(timer_do_nothing); 491 } 492 TIME_LINEAR_SCAN(timer_number_instructions); 493 494 // Assign IDs to LIR nodes and build a mapping, lir_ops, from ID to LIR_Op node. 495 int num_blocks = block_count(); 496 int num_instructions = 0; 497 int i; 498 for (i = 0; i < num_blocks; i++) { 499 num_instructions += block_at(i)->lir()->instructions_list()->length(); 500 } 501 502 // initialize with correct length 503 _lir_ops = LIR_OpArray(num_instructions, num_instructions, NULL); 504 _block_of_op = BlockBeginArray(num_instructions, num_instructions, NULL); 505 506 int op_id = 0; 507 int idx = 0; 508 509 for (i = 0; i < num_blocks; i++) { 510 BlockBegin* block = block_at(i); 511 block->set_first_lir_instruction_id(op_id); 512 LIR_OpList* instructions = block->lir()->instructions_list(); 513 514 int num_inst = instructions->length(); 515 for (int j = 0; j < num_inst; j++) { 516 LIR_Op* op = instructions->at(j); 517 op->set_id(op_id); 518 519 _lir_ops.at_put(idx, op); 520 _block_of_op.at_put(idx, block); 521 assert(lir_op_with_id(op_id) == op, "must match"); 522 523 idx++; 524 op_id += 2; // numbering of lir_ops by two 525 } 526 block->set_last_lir_instruction_id(op_id - 2); 527 } 528 assert(idx == num_instructions, "must match"); 529 assert(idx * 2 == op_id, "must match"); 530 531 _has_call.initialize(num_instructions); 532 _has_info.initialize(num_instructions); 533 } 534 535 536 // ********** Phase 2: compute local live sets separately for each block 537 // (sets live_gen and live_kill for each block) 538 539 void LinearScan::set_live_gen_kill(Value value, LIR_Op* op, BitMap& live_gen, BitMap& live_kill) { 540 LIR_Opr opr = value->operand(); 541 Constant* con = value->as_Constant(); 542 543 // check some asumptions about debug information 544 assert(!value->type()->is_illegal(), "if this local is used by the interpreter it shouldn't be of indeterminate type"); 545 assert(con == NULL || opr->is_virtual() || opr->is_constant() || opr->is_illegal(), "asumption: Constant instructions have only constant operands"); 546 assert(con != NULL || opr->is_virtual(), "asumption: non-Constant instructions have only virtual operands"); 547 548 if ((con == NULL || con->is_pinned()) && opr->is_register()) { 549 assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below"); 550 int reg = opr->vreg_number(); 551 if (!live_kill.at(reg)) { 552 live_gen.set_bit(reg); 553 TRACE_LINEAR_SCAN(4, tty->print_cr(" Setting live_gen for value %c%d, LIR op_id %d, register number %d", value->type()->tchar(), value->id(), op->id(), reg)); 554 } 555 } 556 } 557 558 559 void LinearScan::compute_local_live_sets() { 560 TIME_LINEAR_SCAN(timer_compute_local_live_sets); 561 562 int num_blocks = block_count(); 563 int live_size = live_set_size(); 564 bool local_has_fpu_registers = false; 565 int local_num_calls = 0; 566 LIR_OpVisitState visitor; 567 568 BitMap2D local_interval_in_loop = BitMap2D(_num_virtual_regs, num_loops()); 569 570 // iterate all blocks 571 for (int i = 0; i < num_blocks; i++) { 572 BlockBegin* block = block_at(i); 573 574 ResourceBitMap live_gen(live_size); 575 ResourceBitMap live_kill(live_size); 576 577 if (block->is_set(BlockBegin::exception_entry_flag)) { 578 // Phi functions at the begin of an exception handler are 579 // implicitly defined (= killed) at the beginning of the block. 580 for_each_phi_fun(block, phi, 581 if (!phi->is_illegal()) { live_kill.set_bit(phi->operand()->vreg_number()); } 582 ); 583 } 584 585 LIR_OpList* instructions = block->lir()->instructions_list(); 586 int num_inst = instructions->length(); 587 588 // iterate all instructions of the block. skip the first because it is always a label 589 assert(visitor.no_operands(instructions->at(0)), "first operation must always be a label"); 590 for (int j = 1; j < num_inst; j++) { 591 LIR_Op* op = instructions->at(j); 592 593 // visit operation to collect all operands 594 visitor.visit(op); 595 596 if (visitor.has_call()) { 597 _has_call.set_bit(op->id() >> 1); 598 local_num_calls++; 599 } 600 if (visitor.info_count() > 0) { 601 _has_info.set_bit(op->id() >> 1); 602 } 603 604 // iterate input operands of instruction 605 int k, n, reg; 606 n = visitor.opr_count(LIR_OpVisitState::inputMode); 607 for (k = 0; k < n; k++) { 608 LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::inputMode, k); 609 assert(opr->is_register(), "visitor should only return register operands"); 610 611 if (opr->is_virtual_register()) { 612 assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below"); 613 reg = opr->vreg_number(); 614 if (!live_kill.at(reg)) { 615 live_gen.set_bit(reg); 616 TRACE_LINEAR_SCAN(4, tty->print_cr(" Setting live_gen for register %d at instruction %d", reg, op->id())); 617 } 618 if (block->loop_index() >= 0) { 619 local_interval_in_loop.set_bit(reg, block->loop_index()); 620 } 621 local_has_fpu_registers = local_has_fpu_registers || opr->is_virtual_fpu(); 622 } 623 624 #ifdef ASSERT 625 // fixed intervals are never live at block boundaries, so 626 // they need not be processed in live sets. 627 // this is checked by these assertions to be sure about it. 628 // the entry block may have incoming values in registers, which is ok. 629 if (!opr->is_virtual_register() && block != ir()->start()) { 630 reg = reg_num(opr); 631 if (is_processed_reg_num(reg)) { 632 assert(live_kill.at(reg), "using fixed register that is not defined in this block"); 633 } 634 reg = reg_numHi(opr); 635 if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) { 636 assert(live_kill.at(reg), "using fixed register that is not defined in this block"); 637 } 638 } 639 #endif 640 } 641 642 // Add uses of live locals from interpreter's point of view for proper debug information generation 643 n = visitor.info_count(); 644 for (k = 0; k < n; k++) { 645 CodeEmitInfo* info = visitor.info_at(k); 646 ValueStack* stack = info->stack(); 647 for_each_state_value(stack, value, 648 set_live_gen_kill(value, op, live_gen, live_kill) 649 ); 650 } 651 652 // iterate temp operands of instruction 653 n = visitor.opr_count(LIR_OpVisitState::tempMode); 654 for (k = 0; k < n; k++) { 655 LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::tempMode, k); 656 assert(opr->is_register(), "visitor should only return register operands"); 657 658 if (opr->is_virtual_register()) { 659 assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below"); 660 reg = opr->vreg_number(); 661 live_kill.set_bit(reg); 662 if (block->loop_index() >= 0) { 663 local_interval_in_loop.set_bit(reg, block->loop_index()); 664 } 665 local_has_fpu_registers = local_has_fpu_registers || opr->is_virtual_fpu(); 666 } 667 668 #ifdef ASSERT 669 // fixed intervals are never live at block boundaries, so 670 // they need not be processed in live sets 671 // process them only in debug mode so that this can be checked 672 if (!opr->is_virtual_register()) { 673 reg = reg_num(opr); 674 if (is_processed_reg_num(reg)) { 675 live_kill.set_bit(reg_num(opr)); 676 } 677 reg = reg_numHi(opr); 678 if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) { 679 live_kill.set_bit(reg); 680 } 681 } 682 #endif 683 } 684 685 // iterate output operands of instruction 686 n = visitor.opr_count(LIR_OpVisitState::outputMode); 687 for (k = 0; k < n; k++) { 688 LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::outputMode, k); 689 assert(opr->is_register(), "visitor should only return register operands"); 690 691 if (opr->is_virtual_register()) { 692 assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below"); 693 reg = opr->vreg_number(); 694 live_kill.set_bit(reg); 695 if (block->loop_index() >= 0) { 696 local_interval_in_loop.set_bit(reg, block->loop_index()); 697 } 698 local_has_fpu_registers = local_has_fpu_registers || opr->is_virtual_fpu(); 699 } 700 701 #ifdef ASSERT 702 // fixed intervals are never live at block boundaries, so 703 // they need not be processed in live sets 704 // process them only in debug mode so that this can be checked 705 if (!opr->is_virtual_register()) { 706 reg = reg_num(opr); 707 if (is_processed_reg_num(reg)) { 708 live_kill.set_bit(reg_num(opr)); 709 } 710 reg = reg_numHi(opr); 711 if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) { 712 live_kill.set_bit(reg); 713 } 714 } 715 #endif 716 } 717 } // end of instruction iteration 718 719 block->set_live_gen (live_gen); 720 block->set_live_kill(live_kill); 721 block->set_live_in (ResourceBitMap(live_size)); 722 block->set_live_out (ResourceBitMap(live_size)); 723 724 TRACE_LINEAR_SCAN(4, tty->print("live_gen B%d ", block->block_id()); print_bitmap(block->live_gen())); 725 TRACE_LINEAR_SCAN(4, tty->print("live_kill B%d ", block->block_id()); print_bitmap(block->live_kill())); 726 } // end of block iteration 727 728 // propagate local calculated information into LinearScan object 729 _has_fpu_registers = local_has_fpu_registers; 730 compilation()->set_has_fpu_code(local_has_fpu_registers); 731 732 _num_calls = local_num_calls; 733 _interval_in_loop = local_interval_in_loop; 734 } 735 736 737 // ********** Phase 3: perform a backward dataflow analysis to compute global live sets 738 // (sets live_in and live_out for each block) 739 740 void LinearScan::compute_global_live_sets() { 741 TIME_LINEAR_SCAN(timer_compute_global_live_sets); 742 743 int num_blocks = block_count(); 744 bool change_occurred; 745 bool change_occurred_in_block; 746 int iteration_count = 0; 747 ResourceBitMap live_out(live_set_size()); // scratch set for calculations 748 749 // Perform a backward dataflow analysis to compute live_out and live_in for each block. 750 // The loop is executed until a fixpoint is reached (no changes in an iteration) 751 // Exception handlers must be processed because not all live values are 752 // present in the state array, e.g. because of global value numbering 753 do { 754 change_occurred = false; 755 756 // iterate all blocks in reverse order 757 for (int i = num_blocks - 1; i >= 0; i--) { 758 BlockBegin* block = block_at(i); 759 760 change_occurred_in_block = false; 761 762 // live_out(block) is the union of live_in(sux), for successors sux of block 763 int n = block->number_of_sux(); 764 int e = block->number_of_exception_handlers(); 765 if (n + e > 0) { 766 // block has successors 767 if (n > 0) { 768 live_out.set_from(block->sux_at(0)->live_in()); 769 for (int j = 1; j < n; j++) { 770 live_out.set_union(block->sux_at(j)->live_in()); 771 } 772 } else { 773 live_out.clear(); 774 } 775 for (int j = 0; j < e; j++) { 776 live_out.set_union(block->exception_handler_at(j)->live_in()); 777 } 778 779 if (!block->live_out().is_same(live_out)) { 780 // A change occurred. Swap the old and new live out sets to avoid copying. 781 ResourceBitMap temp = block->live_out(); 782 block->set_live_out(live_out); 783 live_out = temp; 784 785 change_occurred = true; 786 change_occurred_in_block = true; 787 } 788 } 789 790 if (iteration_count == 0 || change_occurred_in_block) { 791 // live_in(block) is the union of live_gen(block) with (live_out(block) & !live_kill(block)) 792 // note: live_in has to be computed only in first iteration or if live_out has changed! 793 ResourceBitMap live_in = block->live_in(); 794 live_in.set_from(block->live_out()); 795 live_in.set_difference(block->live_kill()); 796 live_in.set_union(block->live_gen()); 797 } 798 799 #ifndef PRODUCT 800 if (TraceLinearScanLevel >= 4) { 801 char c = ' '; 802 if (iteration_count == 0 || change_occurred_in_block) { 803 c = '*'; 804 } 805 tty->print("(%d) live_in%c B%d ", iteration_count, c, block->block_id()); print_bitmap(block->live_in()); 806 tty->print("(%d) live_out%c B%d ", iteration_count, c, block->block_id()); print_bitmap(block->live_out()); 807 } 808 #endif 809 } 810 iteration_count++; 811 812 if (change_occurred && iteration_count > 50) { 813 BAILOUT("too many iterations in compute_global_live_sets"); 814 } 815 } while (change_occurred); 816 817 818 #ifdef ASSERT 819 // check that fixed intervals are not live at block boundaries 820 // (live set must be empty at fixed intervals) 821 for (int i = 0; i < num_blocks; i++) { 822 BlockBegin* block = block_at(i); 823 for (int j = 0; j < LIR_OprDesc::vreg_base; j++) { 824 assert(block->live_in().at(j) == false, "live_in set of fixed register must be empty"); 825 assert(block->live_out().at(j) == false, "live_out set of fixed register must be empty"); 826 assert(block->live_gen().at(j) == false, "live_gen set of fixed register must be empty"); 827 } 828 } 829 #endif 830 831 // check that the live_in set of the first block is empty 832 ResourceBitMap live_in_args(ir()->start()->live_in().size()); 833 if (!ir()->start()->live_in().is_same(live_in_args)) { 834 #ifdef ASSERT 835 tty->print_cr("Error: live_in set of first block must be empty (when this fails, virtual registers are used before they are defined)"); 836 tty->print_cr("affected registers:"); 837 print_bitmap(ir()->start()->live_in()); 838 839 // print some additional information to simplify debugging 840 for (unsigned int i = 0; i < ir()->start()->live_in().size(); i++) { 841 if (ir()->start()->live_in().at(i)) { 842 Instruction* instr = gen()->instruction_for_vreg(i); 843 tty->print_cr("* vreg %d (HIR instruction %c%d)", i, instr == NULL ? ' ' : instr->type()->tchar(), instr == NULL ? 0 : instr->id()); 844 845 for (int j = 0; j < num_blocks; j++) { 846 BlockBegin* block = block_at(j); 847 if (block->live_gen().at(i)) { 848 tty->print_cr(" used in block B%d", block->block_id()); 849 } 850 if (block->live_kill().at(i)) { 851 tty->print_cr(" defined in block B%d", block->block_id()); 852 } 853 } 854 } 855 } 856 857 #endif 858 // when this fails, virtual registers are used before they are defined. 859 assert(false, "live_in set of first block must be empty"); 860 // bailout of if this occurs in product mode. 861 bailout("live_in set of first block not empty"); 862 } 863 } 864 865 866 // ********** Phase 4: build intervals 867 // (fills the list _intervals) 868 869 void LinearScan::add_use(Value value, int from, int to, IntervalUseKind use_kind) { 870 assert(!value->type()->is_illegal(), "if this value is used by the interpreter it shouldn't be of indeterminate type"); 871 LIR_Opr opr = value->operand(); 872 Constant* con = value->as_Constant(); 873 874 if ((con == NULL || con->is_pinned()) && opr->is_register()) { 875 assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below"); 876 add_use(opr, from, to, use_kind); 877 } 878 } 879 880 881 void LinearScan::add_def(LIR_Opr opr, int def_pos, IntervalUseKind use_kind) { 882 TRACE_LINEAR_SCAN(2, tty->print(" def "); opr->print(tty); tty->print_cr(" def_pos %d (%d)", def_pos, use_kind)); 883 assert(opr->is_register(), "should not be called otherwise"); 884 885 if (opr->is_virtual_register()) { 886 assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below"); 887 add_def(opr->vreg_number(), def_pos, use_kind, opr->type_register()); 888 889 } else { 890 int reg = reg_num(opr); 891 if (is_processed_reg_num(reg)) { 892 add_def(reg, def_pos, use_kind, opr->type_register()); 893 } 894 reg = reg_numHi(opr); 895 if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) { 896 add_def(reg, def_pos, use_kind, opr->type_register()); 897 } 898 } 899 } 900 901 void LinearScan::add_use(LIR_Opr opr, int from, int to, IntervalUseKind use_kind) { 902 TRACE_LINEAR_SCAN(2, tty->print(" use "); opr->print(tty); tty->print_cr(" from %d to %d (%d)", from, to, use_kind)); 903 assert(opr->is_register(), "should not be called otherwise"); 904 905 if (opr->is_virtual_register()) { 906 assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below"); 907 add_use(opr->vreg_number(), from, to, use_kind, opr->type_register()); 908 909 } else { 910 int reg = reg_num(opr); 911 if (is_processed_reg_num(reg)) { 912 add_use(reg, from, to, use_kind, opr->type_register()); 913 } 914 reg = reg_numHi(opr); 915 if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) { 916 add_use(reg, from, to, use_kind, opr->type_register()); 917 } 918 } 919 } 920 921 void LinearScan::add_temp(LIR_Opr opr, int temp_pos, IntervalUseKind use_kind) { 922 TRACE_LINEAR_SCAN(2, tty->print(" temp "); opr->print(tty); tty->print_cr(" temp_pos %d (%d)", temp_pos, use_kind)); 923 assert(opr->is_register(), "should not be called otherwise"); 924 925 if (opr->is_virtual_register()) { 926 assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below"); 927 add_temp(opr->vreg_number(), temp_pos, use_kind, opr->type_register()); 928 929 } else { 930 int reg = reg_num(opr); 931 if (is_processed_reg_num(reg)) { 932 add_temp(reg, temp_pos, use_kind, opr->type_register()); 933 } 934 reg = reg_numHi(opr); 935 if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) { 936 add_temp(reg, temp_pos, use_kind, opr->type_register()); 937 } 938 } 939 } 940 941 942 void LinearScan::add_def(int reg_num, int def_pos, IntervalUseKind use_kind, BasicType type) { 943 Interval* interval = interval_at(reg_num); 944 if (interval != NULL) { 945 assert(interval->reg_num() == reg_num, "wrong interval"); 946 947 if (type != T_ILLEGAL) { 948 interval->set_type(type); 949 } 950 951 Range* r = interval->first(); 952 if (r->from() <= def_pos) { 953 // Update the starting point (when a range is first created for a use, its 954 // start is the beginning of the current block until a def is encountered.) 955 r->set_from(def_pos); 956 interval->add_use_pos(def_pos, use_kind); 957 958 } else { 959 // Dead value - make vacuous interval 960 // also add use_kind for dead intervals 961 interval->add_range(def_pos, def_pos + 1); 962 interval->add_use_pos(def_pos, use_kind); 963 TRACE_LINEAR_SCAN(2, tty->print_cr("Warning: def of reg %d at %d occurs without use", reg_num, def_pos)); 964 } 965 966 } else { 967 // Dead value - make vacuous interval 968 // also add use_kind for dead intervals 969 interval = create_interval(reg_num); 970 if (type != T_ILLEGAL) { 971 interval->set_type(type); 972 } 973 974 interval->add_range(def_pos, def_pos + 1); 975 interval->add_use_pos(def_pos, use_kind); 976 TRACE_LINEAR_SCAN(2, tty->print_cr("Warning: dead value %d at %d in live intervals", reg_num, def_pos)); 977 } 978 979 change_spill_definition_pos(interval, def_pos); 980 if (use_kind == noUse && interval->spill_state() <= startInMemory) { 981 // detection of method-parameters and roundfp-results 982 // TODO: move this directly to position where use-kind is computed 983 interval->set_spill_state(startInMemory); 984 } 985 } 986 987 void LinearScan::add_use(int reg_num, int from, int to, IntervalUseKind use_kind, BasicType type) { 988 Interval* interval = interval_at(reg_num); 989 if (interval == NULL) { 990 interval = create_interval(reg_num); 991 } 992 assert(interval->reg_num() == reg_num, "wrong interval"); 993 994 if (type != T_ILLEGAL) { 995 interval->set_type(type); 996 } 997 998 interval->add_range(from, to); 999 interval->add_use_pos(to, use_kind); 1000 } 1001 1002 void LinearScan::add_temp(int reg_num, int temp_pos, IntervalUseKind use_kind, BasicType type) { 1003 Interval* interval = interval_at(reg_num); 1004 if (interval == NULL) { 1005 interval = create_interval(reg_num); 1006 } 1007 assert(interval->reg_num() == reg_num, "wrong interval"); 1008 1009 if (type != T_ILLEGAL) { 1010 interval->set_type(type); 1011 } 1012 1013 interval->add_range(temp_pos, temp_pos + 1); 1014 interval->add_use_pos(temp_pos, use_kind); 1015 } 1016 1017 1018 // the results of this functions are used for optimizing spilling and reloading 1019 // if the functions return shouldHaveRegister and the interval is spilled, 1020 // it is not reloaded to a register. 1021 IntervalUseKind LinearScan::use_kind_of_output_operand(LIR_Op* op, LIR_Opr opr) { 1022 if (op->code() == lir_move) { 1023 assert(op->as_Op1() != NULL, "lir_move must be LIR_Op1"); 1024 LIR_Op1* move = (LIR_Op1*)op; 1025 LIR_Opr res = move->result_opr(); 1026 bool result_in_memory = res->is_virtual() && gen()->is_vreg_flag_set(res->vreg_number(), LIRGenerator::must_start_in_memory); 1027 1028 if (result_in_memory) { 1029 // Begin of an interval with must_start_in_memory set. 1030 // This interval will always get a stack slot first, so return noUse. 1031 return noUse; 1032 1033 } else if (move->in_opr()->is_stack()) { 1034 // method argument (condition must be equal to handle_method_arguments) 1035 return noUse; 1036 1037 } else if (move->in_opr()->is_register() && move->result_opr()->is_register()) { 1038 // Move from register to register 1039 if (block_of_op_with_id(op->id())->is_set(BlockBegin::osr_entry_flag)) { 1040 // special handling of phi-function moves inside osr-entry blocks 1041 // input operand must have a register instead of output operand (leads to better register allocation) 1042 return shouldHaveRegister; 1043 } 1044 } 1045 } 1046 1047 if (opr->is_virtual() && 1048 gen()->is_vreg_flag_set(opr->vreg_number(), LIRGenerator::must_start_in_memory)) { 1049 // result is a stack-slot, so prevent immediate reloading 1050 return noUse; 1051 } 1052 1053 // all other operands require a register 1054 return mustHaveRegister; 1055 } 1056 1057 IntervalUseKind LinearScan::use_kind_of_input_operand(LIR_Op* op, LIR_Opr opr) { 1058 if (op->code() == lir_move) { 1059 assert(op->as_Op1() != NULL, "lir_move must be LIR_Op1"); 1060 LIR_Op1* move = (LIR_Op1*)op; 1061 LIR_Opr res = move->result_opr(); 1062 bool result_in_memory = res->is_virtual() && gen()->is_vreg_flag_set(res->vreg_number(), LIRGenerator::must_start_in_memory); 1063 1064 if (result_in_memory) { 1065 // Move to an interval with must_start_in_memory set. 1066 // To avoid moves from stack to stack (not allowed) force the input operand to a register 1067 return mustHaveRegister; 1068 1069 } else if (move->in_opr()->is_register() && move->result_opr()->is_register()) { 1070 // Move from register to register 1071 if (block_of_op_with_id(op->id())->is_set(BlockBegin::osr_entry_flag)) { 1072 // special handling of phi-function moves inside osr-entry blocks 1073 // input operand must have a register instead of output operand (leads to better register allocation) 1074 return mustHaveRegister; 1075 } 1076 1077 // The input operand is not forced to a register (moves from stack to register are allowed), 1078 // but it is faster if the input operand is in a register 1079 return shouldHaveRegister; 1080 } 1081 } 1082 1083 1084 #if defined(X86) || defined(S390) 1085 if (op->code() == lir_cmove) { 1086 // conditional moves can handle stack operands 1087 assert(op->result_opr()->is_register(), "result must always be in a register"); 1088 return shouldHaveRegister; 1089 } 1090 1091 // optimizations for second input operand of arithmehtic operations on Intel 1092 // this operand is allowed to be on the stack in some cases 1093 BasicType opr_type = opr->type_register(); 1094 if (opr_type == T_FLOAT || opr_type == T_DOUBLE) { 1095 if (IA32_ONLY( (UseSSE == 1 && opr_type == T_FLOAT) || UseSSE >= 2 ) NOT_IA32( true )) { 1096 // SSE float instruction (T_DOUBLE only supported with SSE2) 1097 switch (op->code()) { 1098 case lir_cmp: 1099 case lir_add: 1100 case lir_sub: 1101 case lir_mul: 1102 case lir_div: 1103 { 1104 assert(op->as_Op2() != NULL, "must be LIR_Op2"); 1105 LIR_Op2* op2 = (LIR_Op2*)op; 1106 if (op2->in_opr1() != op2->in_opr2() && op2->in_opr2() == opr) { 1107 assert((op2->result_opr()->is_register() || op->code() == lir_cmp) && op2->in_opr1()->is_register(), "cannot mark second operand as stack if others are not in register"); 1108 return shouldHaveRegister; 1109 } 1110 } 1111 default: 1112 break; 1113 } 1114 } else { 1115 // FPU stack float instruction 1116 switch (op->code()) { 1117 case lir_add: 1118 case lir_sub: 1119 case lir_mul: 1120 case lir_div: 1121 { 1122 assert(op->as_Op2() != NULL, "must be LIR_Op2"); 1123 LIR_Op2* op2 = (LIR_Op2*)op; 1124 if (op2->in_opr1() != op2->in_opr2() && op2->in_opr2() == opr) { 1125 assert((op2->result_opr()->is_register() || op->code() == lir_cmp) && op2->in_opr1()->is_register(), "cannot mark second operand as stack if others are not in register"); 1126 return shouldHaveRegister; 1127 } 1128 } 1129 default: 1130 break; 1131 } 1132 } 1133 // We want to sometimes use logical operations on pointers, in particular in GC barriers. 1134 // Since 64bit logical operations do not current support operands on stack, we have to make sure 1135 // T_OBJECT doesn't get spilled along with T_LONG. 1136 } else if (opr_type != T_LONG LP64_ONLY(&& opr_type != T_OBJECT)) { 1137 // integer instruction (note: long operands must always be in register) 1138 switch (op->code()) { 1139 case lir_cmp: 1140 case lir_add: 1141 case lir_sub: 1142 case lir_logic_and: 1143 case lir_logic_or: 1144 case lir_logic_xor: 1145 { 1146 assert(op->as_Op2() != NULL, "must be LIR_Op2"); 1147 LIR_Op2* op2 = (LIR_Op2*)op; 1148 if (op2->in_opr1() != op2->in_opr2() && op2->in_opr2() == opr) { 1149 assert((op2->result_opr()->is_register() || op->code() == lir_cmp) && op2->in_opr1()->is_register(), "cannot mark second operand as stack if others are not in register"); 1150 return shouldHaveRegister; 1151 } 1152 } 1153 default: 1154 break; 1155 } 1156 } 1157 #endif // X86 || S390 1158 1159 // all other operands require a register 1160 return mustHaveRegister; 1161 } 1162 1163 1164 void LinearScan::handle_method_arguments(LIR_Op* op) { 1165 // special handling for method arguments (moves from stack to virtual register): 1166 // the interval gets no register assigned, but the stack slot. 1167 // it is split before the first use by the register allocator. 1168 1169 if (op->code() == lir_move) { 1170 assert(op->as_Op1() != NULL, "must be LIR_Op1"); 1171 LIR_Op1* move = (LIR_Op1*)op; 1172 1173 if (move->in_opr()->is_stack()) { 1174 #ifdef ASSERT 1175 int arg_size = compilation()->method()->arg_size(); 1176 LIR_Opr o = move->in_opr(); 1177 if (o->is_single_stack()) { 1178 assert(o->single_stack_ix() >= 0 && o->single_stack_ix() < arg_size, "out of range"); 1179 } else if (o->is_double_stack()) { 1180 assert(o->double_stack_ix() >= 0 && o->double_stack_ix() < arg_size, "out of range"); 1181 } else { 1182 ShouldNotReachHere(); 1183 } 1184 1185 assert(move->id() > 0, "invalid id"); 1186 assert(block_of_op_with_id(move->id())->number_of_preds() == 0, "move from stack must be in first block"); 1187 assert(move->result_opr()->is_virtual(), "result of move must be a virtual register"); 1188 1189 TRACE_LINEAR_SCAN(4, tty->print_cr("found move from stack slot %d to vreg %d", o->is_single_stack() ? o->single_stack_ix() : o->double_stack_ix(), reg_num(move->result_opr()))); 1190 #endif 1191 1192 Interval* interval = interval_at(reg_num(move->result_opr())); 1193 1194 int stack_slot = LinearScan::nof_regs + (move->in_opr()->is_single_stack() ? move->in_opr()->single_stack_ix() : move->in_opr()->double_stack_ix()); 1195 interval->set_canonical_spill_slot(stack_slot); 1196 interval->assign_reg(stack_slot); 1197 } 1198 } 1199 } 1200 1201 void LinearScan::handle_doubleword_moves(LIR_Op* op) { 1202 // special handling for doubleword move from memory to register: 1203 // in this case the registers of the input address and the result 1204 // registers must not overlap -> add a temp range for the input registers 1205 if (op->code() == lir_move) { 1206 assert(op->as_Op1() != NULL, "must be LIR_Op1"); 1207 LIR_Op1* move = (LIR_Op1*)op; 1208 1209 if (move->result_opr()->is_double_cpu() && move->in_opr()->is_pointer()) { 1210 LIR_Address* address = move->in_opr()->as_address_ptr(); 1211 if (address != NULL) { 1212 if (address->base()->is_valid()) { 1213 add_temp(address->base(), op->id(), noUse); 1214 } 1215 if (address->index()->is_valid()) { 1216 add_temp(address->index(), op->id(), noUse); 1217 } 1218 } 1219 } 1220 } 1221 } 1222 1223 void LinearScan::add_register_hints(LIR_Op* op) { 1224 switch (op->code()) { 1225 case lir_move: // fall through 1226 case lir_convert: { 1227 assert(op->as_Op1() != NULL, "lir_move, lir_convert must be LIR_Op1"); 1228 LIR_Op1* move = (LIR_Op1*)op; 1229 1230 LIR_Opr move_from = move->in_opr(); 1231 LIR_Opr move_to = move->result_opr(); 1232 1233 if (move_to->is_register() && move_from->is_register()) { 1234 Interval* from = interval_at(reg_num(move_from)); 1235 Interval* to = interval_at(reg_num(move_to)); 1236 if (from != NULL && to != NULL) { 1237 to->set_register_hint(from); 1238 TRACE_LINEAR_SCAN(4, tty->print_cr("operation at op_id %d: added hint from interval %d to %d", move->id(), from->reg_num(), to->reg_num())); 1239 } 1240 } 1241 break; 1242 } 1243 case lir_cmove: { 1244 assert(op->as_Op2() != NULL, "lir_cmove must be LIR_Op2"); 1245 LIR_Op2* cmove = (LIR_Op2*)op; 1246 1247 LIR_Opr move_from = cmove->in_opr1(); 1248 LIR_Opr move_to = cmove->result_opr(); 1249 1250 if (move_to->is_register() && move_from->is_register()) { 1251 Interval* from = interval_at(reg_num(move_from)); 1252 Interval* to = interval_at(reg_num(move_to)); 1253 if (from != NULL && to != NULL) { 1254 to->set_register_hint(from); 1255 TRACE_LINEAR_SCAN(4, tty->print_cr("operation at op_id %d: added hint from interval %d to %d", cmove->id(), from->reg_num(), to->reg_num())); 1256 } 1257 } 1258 break; 1259 } 1260 default: 1261 break; 1262 } 1263 } 1264 1265 1266 void LinearScan::build_intervals() { 1267 TIME_LINEAR_SCAN(timer_build_intervals); 1268 1269 // initialize interval list with expected number of intervals 1270 // (32 is added to have some space for split children without having to resize the list) 1271 _intervals = IntervalList(num_virtual_regs() + 32); 1272 // initialize all slots that are used by build_intervals 1273 _intervals.at_put_grow(num_virtual_regs() - 1, NULL, NULL); 1274 1275 // create a list with all caller-save registers (cpu, fpu, xmm) 1276 // when an instruction is a call, a temp range is created for all these registers 1277 int num_caller_save_registers = 0; 1278 int caller_save_registers[LinearScan::nof_regs]; 1279 1280 int i; 1281 for (i = 0; i < FrameMap::nof_caller_save_cpu_regs(); i++) { 1282 LIR_Opr opr = FrameMap::caller_save_cpu_reg_at(i); 1283 assert(opr->is_valid() && opr->is_register(), "FrameMap should not return invalid operands"); 1284 assert(reg_numHi(opr) == -1, "missing addition of range for hi-register"); 1285 caller_save_registers[num_caller_save_registers++] = reg_num(opr); 1286 } 1287 1288 // temp ranges for fpu registers are only created when the method has 1289 // virtual fpu operands. Otherwise no allocation for fpu registers is 1290 // performed and so the temp ranges would be useless 1291 if (has_fpu_registers()) { 1292 #ifdef IA32 1293 if (UseSSE < 2) { 1294 #endif // IA32 1295 for (i = 0; i < FrameMap::nof_caller_save_fpu_regs; i++) { 1296 LIR_Opr opr = FrameMap::caller_save_fpu_reg_at(i); 1297 assert(opr->is_valid() && opr->is_register(), "FrameMap should not return invalid operands"); 1298 assert(reg_numHi(opr) == -1, "missing addition of range for hi-register"); 1299 caller_save_registers[num_caller_save_registers++] = reg_num(opr); 1300 } 1301 #ifdef IA32 1302 } 1303 #endif// IA32 1304 1305 #ifdef X86 1306 if (UseSSE > 0) { 1307 int num_caller_save_xmm_regs = FrameMap::get_num_caller_save_xmms(); 1308 for (i = 0; i < num_caller_save_xmm_regs; i ++) { 1309 LIR_Opr opr = FrameMap::caller_save_xmm_reg_at(i); 1310 assert(opr->is_valid() && opr->is_register(), "FrameMap should not return invalid operands"); 1311 assert(reg_numHi(opr) == -1, "missing addition of range for hi-register"); 1312 caller_save_registers[num_caller_save_registers++] = reg_num(opr); 1313 } 1314 } 1315 #endif // X86 1316 } 1317 assert(num_caller_save_registers <= LinearScan::nof_regs, "out of bounds"); 1318 1319 1320 LIR_OpVisitState visitor; 1321 1322 // iterate all blocks in reverse order 1323 for (i = block_count() - 1; i >= 0; i--) { 1324 BlockBegin* block = block_at(i); 1325 LIR_OpList* instructions = block->lir()->instructions_list(); 1326 int block_from = block->first_lir_instruction_id(); 1327 int block_to = block->last_lir_instruction_id(); 1328 1329 assert(block_from == instructions->at(0)->id(), "must be"); 1330 assert(block_to == instructions->at(instructions->length() - 1)->id(), "must be"); 1331 1332 // Update intervals for registers live at the end of this block; 1333 ResourceBitMap live = block->live_out(); 1334 int size = (int)live.size(); 1335 for (int number = (int)live.get_next_one_offset(0, size); number < size; number = (int)live.get_next_one_offset(number + 1, size)) { 1336 assert(live.at(number), "should not stop here otherwise"); 1337 assert(number >= LIR_OprDesc::vreg_base, "fixed intervals must not be live on block bounds"); 1338 TRACE_LINEAR_SCAN(2, tty->print_cr("live in %d to %d", number, block_to + 2)); 1339 1340 add_use(number, block_from, block_to + 2, noUse, T_ILLEGAL); 1341 1342 // add special use positions for loop-end blocks when the 1343 // interval is used anywhere inside this loop. It's possible 1344 // that the block was part of a non-natural loop, so it might 1345 // have an invalid loop index. 1346 if (block->is_set(BlockBegin::linear_scan_loop_end_flag) && 1347 block->loop_index() != -1 && 1348 is_interval_in_loop(number, block->loop_index())) { 1349 interval_at(number)->add_use_pos(block_to + 1, loopEndMarker); 1350 } 1351 } 1352 1353 // iterate all instructions of the block in reverse order. 1354 // skip the first instruction because it is always a label 1355 // definitions of intervals are processed before uses 1356 assert(visitor.no_operands(instructions->at(0)), "first operation must always be a label"); 1357 for (int j = instructions->length() - 1; j >= 1; j--) { 1358 LIR_Op* op = instructions->at(j); 1359 int op_id = op->id(); 1360 1361 // visit operation to collect all operands 1362 visitor.visit(op); 1363 1364 // add a temp range for each register if operation destroys caller-save registers 1365 if (visitor.has_call()) { 1366 for (int k = 0; k < num_caller_save_registers; k++) { 1367 add_temp(caller_save_registers[k], op_id, noUse, T_ILLEGAL); 1368 } 1369 TRACE_LINEAR_SCAN(4, tty->print_cr("operation destroys all caller-save registers")); 1370 } 1371 1372 // Add any platform dependent temps 1373 pd_add_temps(op); 1374 1375 // visit definitions (output and temp operands) 1376 int k, n; 1377 n = visitor.opr_count(LIR_OpVisitState::outputMode); 1378 for (k = 0; k < n; k++) { 1379 LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::outputMode, k); 1380 assert(opr->is_register(), "visitor should only return register operands"); 1381 add_def(opr, op_id, use_kind_of_output_operand(op, opr)); 1382 } 1383 1384 n = visitor.opr_count(LIR_OpVisitState::tempMode); 1385 for (k = 0; k < n; k++) { 1386 LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::tempMode, k); 1387 assert(opr->is_register(), "visitor should only return register operands"); 1388 add_temp(opr, op_id, mustHaveRegister); 1389 } 1390 1391 // visit uses (input operands) 1392 n = visitor.opr_count(LIR_OpVisitState::inputMode); 1393 for (k = 0; k < n; k++) { 1394 LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::inputMode, k); 1395 assert(opr->is_register(), "visitor should only return register operands"); 1396 add_use(opr, block_from, op_id, use_kind_of_input_operand(op, opr)); 1397 } 1398 1399 // Add uses of live locals from interpreter's point of view for proper 1400 // debug information generation 1401 // Treat these operands as temp values (if the life range is extended 1402 // to a call site, the value would be in a register at the call otherwise) 1403 n = visitor.info_count(); 1404 for (k = 0; k < n; k++) { 1405 CodeEmitInfo* info = visitor.info_at(k); 1406 ValueStack* stack = info->stack(); 1407 for_each_state_value(stack, value, 1408 add_use(value, block_from, op_id + 1, noUse); 1409 ); 1410 } 1411 1412 // special steps for some instructions (especially moves) 1413 handle_method_arguments(op); 1414 handle_doubleword_moves(op); 1415 add_register_hints(op); 1416 1417 } // end of instruction iteration 1418 } // end of block iteration 1419 1420 1421 // add the range [0, 1[ to all fixed intervals 1422 // -> the register allocator need not handle unhandled fixed intervals 1423 for (int n = 0; n < LinearScan::nof_regs; n++) { 1424 Interval* interval = interval_at(n); 1425 if (interval != NULL) { 1426 interval->add_range(0, 1); 1427 } 1428 } 1429 } 1430 1431 1432 // ********** Phase 5: actual register allocation 1433 1434 int LinearScan::interval_cmp(Interval** a, Interval** b) { 1435 if (*a != NULL) { 1436 if (*b != NULL) { 1437 return (*a)->from() - (*b)->from(); 1438 } else { 1439 return -1; 1440 } 1441 } else { 1442 if (*b != NULL) { 1443 return 1; 1444 } else { 1445 return 0; 1446 } 1447 } 1448 } 1449 1450 #ifndef PRODUCT 1451 int interval_cmp(Interval* const& l, Interval* const& r) { 1452 return l->from() - r->from(); 1453 } 1454 1455 bool find_interval(Interval* interval, IntervalArray* intervals) { 1456 bool found; 1457 int idx = intervals->find_sorted<Interval*, interval_cmp>(interval, found); 1458 1459 if (!found) { 1460 return false; 1461 } 1462 1463 int from = interval->from(); 1464 1465 // The index we've found using binary search is pointing to an interval 1466 // that is defined in the same place as the interval we were looking for. 1467 // So now we have to look around that index and find exact interval. 1468 for (int i = idx; i >= 0; i--) { 1469 if (intervals->at(i) == interval) { 1470 return true; 1471 } 1472 if (intervals->at(i)->from() != from) { 1473 break; 1474 } 1475 } 1476 1477 for (int i = idx + 1; i < intervals->length(); i++) { 1478 if (intervals->at(i) == interval) { 1479 return true; 1480 } 1481 if (intervals->at(i)->from() != from) { 1482 break; 1483 } 1484 } 1485 1486 return false; 1487 } 1488 1489 bool LinearScan::is_sorted(IntervalArray* intervals) { 1490 int from = -1; 1491 int null_count = 0; 1492 1493 for (int i = 0; i < intervals->length(); i++) { 1494 Interval* it = intervals->at(i); 1495 if (it != NULL) { 1496 assert(from <= it->from(), "Intervals are unordered"); 1497 from = it->from(); 1498 } else { 1499 null_count++; 1500 } 1501 } 1502 1503 assert(null_count == 0, "Sorted intervals should not contain nulls"); 1504 1505 null_count = 0; 1506 1507 for (int i = 0; i < interval_count(); i++) { 1508 Interval* interval = interval_at(i); 1509 if (interval != NULL) { 1510 assert(find_interval(interval, intervals), "Lists do not contain same intervals"); 1511 } else { 1512 null_count++; 1513 } 1514 } 1515 1516 assert(interval_count() - null_count == intervals->length(), 1517 "Sorted list should contain the same amount of non-NULL intervals as unsorted list"); 1518 1519 return true; 1520 } 1521 #endif 1522 1523 void LinearScan::add_to_list(Interval** first, Interval** prev, Interval* interval) { 1524 if (*prev != NULL) { 1525 (*prev)->set_next(interval); 1526 } else { 1527 *first = interval; 1528 } 1529 *prev = interval; 1530 } 1531 1532 void LinearScan::create_unhandled_lists(Interval** list1, Interval** list2, bool (is_list1)(const Interval* i), bool (is_list2)(const Interval* i)) { 1533 assert(is_sorted(_sorted_intervals), "interval list is not sorted"); 1534 1535 *list1 = *list2 = Interval::end(); 1536 1537 Interval* list1_prev = NULL; 1538 Interval* list2_prev = NULL; 1539 Interval* v; 1540 1541 const int n = _sorted_intervals->length(); 1542 for (int i = 0; i < n; i++) { 1543 v = _sorted_intervals->at(i); 1544 if (v == NULL) continue; 1545 1546 if (is_list1(v)) { 1547 add_to_list(list1, &list1_prev, v); 1548 } else if (is_list2 == NULL || is_list2(v)) { 1549 add_to_list(list2, &list2_prev, v); 1550 } 1551 } 1552 1553 if (list1_prev != NULL) list1_prev->set_next(Interval::end()); 1554 if (list2_prev != NULL) list2_prev->set_next(Interval::end()); 1555 1556 assert(list1_prev == NULL || list1_prev->next() == Interval::end(), "linear list ends not with sentinel"); 1557 assert(list2_prev == NULL || list2_prev->next() == Interval::end(), "linear list ends not with sentinel"); 1558 } 1559 1560 1561 void LinearScan::sort_intervals_before_allocation() { 1562 TIME_LINEAR_SCAN(timer_sort_intervals_before); 1563 1564 if (_needs_full_resort) { 1565 // There is no known reason why this should occur but just in case... 1566 assert(false, "should never occur"); 1567 // Re-sort existing interval list because an Interval::from() has changed 1568 _sorted_intervals->sort(interval_cmp); 1569 _needs_full_resort = false; 1570 } 1571 1572 IntervalList* unsorted_list = &_intervals; 1573 int unsorted_len = unsorted_list->length(); 1574 int sorted_len = 0; 1575 int unsorted_idx; 1576 int sorted_idx = 0; 1577 int sorted_from_max = -1; 1578 1579 // calc number of items for sorted list (sorted list must not contain NULL values) 1580 for (unsorted_idx = 0; unsorted_idx < unsorted_len; unsorted_idx++) { 1581 if (unsorted_list->at(unsorted_idx) != NULL) { 1582 sorted_len++; 1583 } 1584 } 1585 IntervalArray* sorted_list = new IntervalArray(sorted_len, sorted_len, NULL); 1586 1587 // special sorting algorithm: the original interval-list is almost sorted, 1588 // only some intervals are swapped. So this is much faster than a complete QuickSort 1589 for (unsorted_idx = 0; unsorted_idx < unsorted_len; unsorted_idx++) { 1590 Interval* cur_interval = unsorted_list->at(unsorted_idx); 1591 1592 if (cur_interval != NULL) { 1593 int cur_from = cur_interval->from(); 1594 1595 if (sorted_from_max <= cur_from) { 1596 sorted_list->at_put(sorted_idx++, cur_interval); 1597 sorted_from_max = cur_interval->from(); 1598 } else { 1599 // the asumption that the intervals are already sorted failed, 1600 // so this interval must be sorted in manually 1601 int j; 1602 for (j = sorted_idx - 1; j >= 0 && cur_from < sorted_list->at(j)->from(); j--) { 1603 sorted_list->at_put(j + 1, sorted_list->at(j)); 1604 } 1605 sorted_list->at_put(j + 1, cur_interval); 1606 sorted_idx++; 1607 } 1608 } 1609 } 1610 _sorted_intervals = sorted_list; 1611 assert(is_sorted(_sorted_intervals), "intervals unsorted"); 1612 } 1613 1614 void LinearScan::sort_intervals_after_allocation() { 1615 TIME_LINEAR_SCAN(timer_sort_intervals_after); 1616 1617 if (_needs_full_resort) { 1618 // Re-sort existing interval list because an Interval::from() has changed 1619 _sorted_intervals->sort(interval_cmp); 1620 _needs_full_resort = false; 1621 } 1622 1623 IntervalArray* old_list = _sorted_intervals; 1624 IntervalList* new_list = _new_intervals_from_allocation; 1625 int old_len = old_list->length(); 1626 int new_len = new_list == NULL ? 0 : new_list->length(); 1627 1628 if (new_len == 0) { 1629 // no intervals have been added during allocation, so sorted list is already up to date 1630 assert(is_sorted(_sorted_intervals), "intervals unsorted"); 1631 return; 1632 } 1633 1634 // conventional sort-algorithm for new intervals 1635 new_list->sort(interval_cmp); 1636 1637 // merge old and new list (both already sorted) into one combined list 1638 int combined_list_len = old_len + new_len; 1639 IntervalArray* combined_list = new IntervalArray(combined_list_len, combined_list_len, NULL); 1640 int old_idx = 0; 1641 int new_idx = 0; 1642 1643 while (old_idx + new_idx < old_len + new_len) { 1644 if (new_idx >= new_len || (old_idx < old_len && old_list->at(old_idx)->from() <= new_list->at(new_idx)->from())) { 1645 combined_list->at_put(old_idx + new_idx, old_list->at(old_idx)); 1646 old_idx++; 1647 } else { 1648 combined_list->at_put(old_idx + new_idx, new_list->at(new_idx)); 1649 new_idx++; 1650 } 1651 } 1652 1653 _sorted_intervals = combined_list; 1654 assert(is_sorted(_sorted_intervals), "intervals unsorted"); 1655 } 1656 1657 1658 void LinearScan::allocate_registers() { 1659 TIME_LINEAR_SCAN(timer_allocate_registers); 1660 1661 Interval* precolored_cpu_intervals, *not_precolored_cpu_intervals; 1662 Interval* precolored_fpu_intervals, *not_precolored_fpu_intervals; 1663 1664 // allocate cpu registers 1665 create_unhandled_lists(&precolored_cpu_intervals, ¬_precolored_cpu_intervals, 1666 is_precolored_cpu_interval, is_virtual_cpu_interval); 1667 1668 // allocate fpu registers 1669 create_unhandled_lists(&precolored_fpu_intervals, ¬_precolored_fpu_intervals, 1670 is_precolored_fpu_interval, is_virtual_fpu_interval); 1671 1672 // the fpu interval allocation cannot be moved down below with the fpu section as 1673 // the cpu_lsw.walk() changes interval positions. 1674 1675 LinearScanWalker cpu_lsw(this, precolored_cpu_intervals, not_precolored_cpu_intervals); 1676 cpu_lsw.walk(); 1677 cpu_lsw.finish_allocation(); 1678 1679 if (has_fpu_registers()) { 1680 LinearScanWalker fpu_lsw(this, precolored_fpu_intervals, not_precolored_fpu_intervals); 1681 fpu_lsw.walk(); 1682 fpu_lsw.finish_allocation(); 1683 } 1684 } 1685 1686 1687 // ********** Phase 6: resolve data flow 1688 // (insert moves at edges between blocks if intervals have been split) 1689 1690 // wrapper for Interval::split_child_at_op_id that performs a bailout in product mode 1691 // instead of returning NULL 1692 Interval* LinearScan::split_child_at_op_id(Interval* interval, int op_id, LIR_OpVisitState::OprMode mode) { 1693 Interval* result = interval->split_child_at_op_id(op_id, mode); 1694 if (result != NULL) { 1695 return result; 1696 } 1697 1698 assert(false, "must find an interval, but do a clean bailout in product mode"); 1699 result = new Interval(LIR_OprDesc::vreg_base); 1700 result->assign_reg(0); 1701 result->set_type(T_INT); 1702 BAILOUT_("LinearScan: interval is NULL", result); 1703 } 1704 1705 1706 Interval* LinearScan::interval_at_block_begin(BlockBegin* block, int reg_num) { 1707 assert(LinearScan::nof_regs <= reg_num && reg_num < num_virtual_regs(), "register number out of bounds"); 1708 assert(interval_at(reg_num) != NULL, "no interval found"); 1709 1710 return split_child_at_op_id(interval_at(reg_num), block->first_lir_instruction_id(), LIR_OpVisitState::outputMode); 1711 } 1712 1713 Interval* LinearScan::interval_at_block_end(BlockBegin* block, int reg_num) { 1714 assert(LinearScan::nof_regs <= reg_num && reg_num < num_virtual_regs(), "register number out of bounds"); 1715 assert(interval_at(reg_num) != NULL, "no interval found"); 1716 1717 return split_child_at_op_id(interval_at(reg_num), block->last_lir_instruction_id() + 1, LIR_OpVisitState::outputMode); 1718 } 1719 1720 Interval* LinearScan::interval_at_op_id(int reg_num, int op_id) { 1721 assert(LinearScan::nof_regs <= reg_num && reg_num < num_virtual_regs(), "register number out of bounds"); 1722 assert(interval_at(reg_num) != NULL, "no interval found"); 1723 1724 return split_child_at_op_id(interval_at(reg_num), op_id, LIR_OpVisitState::inputMode); 1725 } 1726 1727 1728 void LinearScan::resolve_collect_mappings(BlockBegin* from_block, BlockBegin* to_block, MoveResolver &move_resolver) { 1729 DEBUG_ONLY(move_resolver.check_empty()); 1730 1731 const int size = live_set_size(); 1732 const ResourceBitMap live_at_edge = to_block->live_in(); 1733 1734 // visit all registers where the live_at_edge bit is set 1735 for (int r = (int)live_at_edge.get_next_one_offset(0, size); r < size; r = (int)live_at_edge.get_next_one_offset(r + 1, size)) { 1736 assert(r < num_virtual_regs(), "live information set for not exisiting interval"); 1737 assert(from_block->live_out().at(r) && to_block->live_in().at(r), "interval not live at this edge"); 1738 1739 Interval* from_interval = interval_at_block_end(from_block, r); 1740 Interval* to_interval = interval_at_block_begin(to_block, r); 1741 1742 if (from_interval != to_interval && (from_interval->assigned_reg() != to_interval->assigned_reg() || from_interval->assigned_regHi() != to_interval->assigned_regHi())) { 1743 // need to insert move instruction 1744 move_resolver.add_mapping(from_interval, to_interval); 1745 } 1746 } 1747 } 1748 1749 1750 void LinearScan::resolve_find_insert_pos(BlockBegin* from_block, BlockBegin* to_block, MoveResolver &move_resolver) { 1751 if (from_block->number_of_sux() <= 1) { 1752 TRACE_LINEAR_SCAN(4, tty->print_cr("inserting moves at end of from_block B%d", from_block->block_id())); 1753 1754 LIR_OpList* instructions = from_block->lir()->instructions_list(); 1755 LIR_OpBranch* branch = instructions->last()->as_OpBranch(); 1756 if (branch != NULL) { 1757 // insert moves before branch 1758 assert(branch->cond() == lir_cond_always, "block does not end with an unconditional jump"); 1759 move_resolver.set_insert_position(from_block->lir(), instructions->length() - 2); 1760 } else { 1761 move_resolver.set_insert_position(from_block->lir(), instructions->length() - 1); 1762 } 1763 1764 } else { 1765 TRACE_LINEAR_SCAN(4, tty->print_cr("inserting moves at beginning of to_block B%d", to_block->block_id())); 1766 #ifdef ASSERT 1767 assert(from_block->lir()->instructions_list()->at(0)->as_OpLabel() != NULL, "block does not start with a label"); 1768 1769 // because the number of predecessor edges matches the number of 1770 // successor edges, blocks which are reached by switch statements 1771 // may have be more than one predecessor but it will be guaranteed 1772 // that all predecessors will be the same. 1773 for (int i = 0; i < to_block->number_of_preds(); i++) { 1774 assert(from_block == to_block->pred_at(i), "all critical edges must be broken"); 1775 } 1776 #endif 1777 1778 move_resolver.set_insert_position(to_block->lir(), 0); 1779 } 1780 } 1781 1782 1783 // insert necessary moves (spilling or reloading) at edges between blocks if interval has been split 1784 void LinearScan::resolve_data_flow() { 1785 TIME_LINEAR_SCAN(timer_resolve_data_flow); 1786 1787 int num_blocks = block_count(); 1788 MoveResolver move_resolver(this); 1789 ResourceBitMap block_completed(num_blocks); 1790 ResourceBitMap already_resolved(num_blocks); 1791 1792 int i; 1793 for (i = 0; i < num_blocks; i++) { 1794 BlockBegin* block = block_at(i); 1795 1796 // check if block has only one predecessor and only one successor 1797 if (block->number_of_preds() == 1 && block->number_of_sux() == 1 && block->number_of_exception_handlers() == 0) { 1798 LIR_OpList* instructions = block->lir()->instructions_list(); 1799 assert(instructions->at(0)->code() == lir_label, "block must start with label"); 1800 assert(instructions->last()->code() == lir_branch, "block with successors must end with branch"); 1801 assert(instructions->last()->as_OpBranch()->cond() == lir_cond_always, "block with successor must end with unconditional branch"); 1802 1803 // check if block is empty (only label and branch) 1804 if (instructions->length() == 2) { 1805 BlockBegin* pred = block->pred_at(0); 1806 BlockBegin* sux = block->sux_at(0); 1807 1808 // prevent optimization of two consecutive blocks 1809 if (!block_completed.at(pred->linear_scan_number()) && !block_completed.at(sux->linear_scan_number())) { 1810 TRACE_LINEAR_SCAN(3, tty->print_cr("**** optimizing empty block B%d (pred: B%d, sux: B%d)", block->block_id(), pred->block_id(), sux->block_id())); 1811 block_completed.set_bit(block->linear_scan_number()); 1812 1813 // directly resolve between pred and sux (without looking at the empty block between) 1814 resolve_collect_mappings(pred, sux, move_resolver); 1815 if (move_resolver.has_mappings()) { 1816 move_resolver.set_insert_position(block->lir(), 0); 1817 move_resolver.resolve_and_append_moves(); 1818 } 1819 } 1820 } 1821 } 1822 } 1823 1824 1825 for (i = 0; i < num_blocks; i++) { 1826 if (!block_completed.at(i)) { 1827 BlockBegin* from_block = block_at(i); 1828 already_resolved.set_from(block_completed); 1829 1830 int num_sux = from_block->number_of_sux(); 1831 for (int s = 0; s < num_sux; s++) { 1832 BlockBegin* to_block = from_block->sux_at(s); 1833 1834 // check for duplicate edges between the same blocks (can happen with switch blocks) 1835 if (!already_resolved.at(to_block->linear_scan_number())) { 1836 TRACE_LINEAR_SCAN(3, tty->print_cr("**** processing edge between B%d and B%d", from_block->block_id(), to_block->block_id())); 1837 already_resolved.set_bit(to_block->linear_scan_number()); 1838 1839 // collect all intervals that have been split between from_block and to_block 1840 resolve_collect_mappings(from_block, to_block, move_resolver); 1841 if (move_resolver.has_mappings()) { 1842 resolve_find_insert_pos(from_block, to_block, move_resolver); 1843 move_resolver.resolve_and_append_moves(); 1844 } 1845 } 1846 } 1847 } 1848 } 1849 } 1850 1851 1852 void LinearScan::resolve_exception_entry(BlockBegin* block, int reg_num, MoveResolver &move_resolver) { 1853 if (interval_at(reg_num) == NULL) { 1854 // if a phi function is never used, no interval is created -> ignore this 1855 return; 1856 } 1857 1858 Interval* interval = interval_at_block_begin(block, reg_num); 1859 int reg = interval->assigned_reg(); 1860 int regHi = interval->assigned_regHi(); 1861 1862 if ((reg < nof_regs && interval->always_in_memory()) || 1863 (use_fpu_stack_allocation() && reg >= pd_first_fpu_reg && reg <= pd_last_fpu_reg)) { 1864 // the interval is split to get a short range that is located on the stack 1865 // in the following two cases: 1866 // * the interval started in memory (e.g. method parameter), but is currently in a register 1867 // this is an optimization for exception handling that reduces the number of moves that 1868 // are necessary for resolving the states when an exception uses this exception handler 1869 // * the interval would be on the fpu stack at the begin of the exception handler 1870 // this is not allowed because of the complicated fpu stack handling on Intel 1871 1872 // range that will be spilled to memory 1873 int from_op_id = block->first_lir_instruction_id(); 1874 int to_op_id = from_op_id + 1; // short live range of length 1 1875 assert(interval->from() <= from_op_id && interval->to() >= to_op_id, 1876 "no split allowed between exception entry and first instruction"); 1877 1878 if (interval->from() != from_op_id) { 1879 // the part before from_op_id is unchanged 1880 interval = interval->split(from_op_id); 1881 interval->assign_reg(reg, regHi); 1882 append_interval(interval); 1883 } else { 1884 _needs_full_resort = true; 1885 } 1886 assert(interval->from() == from_op_id, "must be true now"); 1887 1888 Interval* spilled_part = interval; 1889 if (interval->to() != to_op_id) { 1890 // the part after to_op_id is unchanged 1891 spilled_part = interval->split_from_start(to_op_id); 1892 append_interval(spilled_part); 1893 move_resolver.add_mapping(spilled_part, interval); 1894 } 1895 assign_spill_slot(spilled_part); 1896 1897 assert(spilled_part->from() == from_op_id && spilled_part->to() == to_op_id, "just checking"); 1898 } 1899 } 1900 1901 void LinearScan::resolve_exception_entry(BlockBegin* block, MoveResolver &move_resolver) { 1902 assert(block->is_set(BlockBegin::exception_entry_flag), "should not call otherwise"); 1903 DEBUG_ONLY(move_resolver.check_empty()); 1904 1905 // visit all registers where the live_in bit is set 1906 int size = live_set_size(); 1907 for (int r = (int)block->live_in().get_next_one_offset(0, size); r < size; r = (int)block->live_in().get_next_one_offset(r + 1, size)) { 1908 resolve_exception_entry(block, r, move_resolver); 1909 } 1910 1911 // the live_in bits are not set for phi functions of the xhandler entry, so iterate them separately 1912 for_each_phi_fun(block, phi, 1913 if (!phi->is_illegal()) { resolve_exception_entry(block, phi->operand()->vreg_number(), move_resolver); } 1914 ); 1915 1916 if (move_resolver.has_mappings()) { 1917 // insert moves after first instruction 1918 move_resolver.set_insert_position(block->lir(), 0); 1919 move_resolver.resolve_and_append_moves(); 1920 } 1921 } 1922 1923 1924 void LinearScan::resolve_exception_edge(XHandler* handler, int throwing_op_id, int reg_num, Phi* phi, MoveResolver &move_resolver) { 1925 if (interval_at(reg_num) == NULL) { 1926 // if a phi function is never used, no interval is created -> ignore this 1927 return; 1928 } 1929 1930 // the computation of to_interval is equal to resolve_collect_mappings, 1931 // but from_interval is more complicated because of phi functions 1932 BlockBegin* to_block = handler->entry_block(); 1933 Interval* to_interval = interval_at_block_begin(to_block, reg_num); 1934 1935 if (phi != NULL) { 1936 // phi function of the exception entry block 1937 // no moves are created for this phi function in the LIR_Generator, so the 1938 // interval at the throwing instruction must be searched using the operands 1939 // of the phi function 1940 Value from_value = phi->operand_at(handler->phi_operand()); 1941 1942 // with phi functions it can happen that the same from_value is used in 1943 // multiple mappings, so notify move-resolver that this is allowed 1944 move_resolver.set_multiple_reads_allowed(); 1945 1946 Constant* con = from_value->as_Constant(); 1947 if (con != NULL && !con->is_pinned()) { 1948 // unpinned constants may have no register, so add mapping from constant to interval 1949 move_resolver.add_mapping(LIR_OprFact::value_type(con->type()), to_interval); 1950 } else { 1951 // search split child at the throwing op_id 1952 Interval* from_interval = interval_at_op_id(from_value->operand()->vreg_number(), throwing_op_id); 1953 move_resolver.add_mapping(from_interval, to_interval); 1954 } 1955 1956 } else { 1957 // no phi function, so use reg_num also for from_interval 1958 // search split child at the throwing op_id 1959 Interval* from_interval = interval_at_op_id(reg_num, throwing_op_id); 1960 if (from_interval != to_interval) { 1961 // optimization to reduce number of moves: when to_interval is on stack and 1962 // the stack slot is known to be always correct, then no move is necessary 1963 if (!from_interval->always_in_memory() || from_interval->canonical_spill_slot() != to_interval->assigned_reg()) { 1964 move_resolver.add_mapping(from_interval, to_interval); 1965 } 1966 } 1967 } 1968 } 1969 1970 void LinearScan::resolve_exception_edge(XHandler* handler, int throwing_op_id, MoveResolver &move_resolver) { 1971 TRACE_LINEAR_SCAN(4, tty->print_cr("resolving exception handler B%d: throwing_op_id=%d", handler->entry_block()->block_id(), throwing_op_id)); 1972 1973 DEBUG_ONLY(move_resolver.check_empty()); 1974 assert(handler->lir_op_id() == -1, "already processed this xhandler"); 1975 DEBUG_ONLY(handler->set_lir_op_id(throwing_op_id)); 1976 assert(handler->entry_code() == NULL, "code already present"); 1977 1978 // visit all registers where the live_in bit is set 1979 BlockBegin* block = handler->entry_block(); 1980 int size = live_set_size(); 1981 for (int r = (int)block->live_in().get_next_one_offset(0, size); r < size; r = (int)block->live_in().get_next_one_offset(r + 1, size)) { 1982 resolve_exception_edge(handler, throwing_op_id, r, NULL, move_resolver); 1983 } 1984 1985 // the live_in bits are not set for phi functions of the xhandler entry, so iterate them separately 1986 for_each_phi_fun(block, phi, 1987 if (!phi->is_illegal()) { resolve_exception_edge(handler, throwing_op_id, phi->operand()->vreg_number(), phi, move_resolver); } 1988 ); 1989 1990 if (move_resolver.has_mappings()) { 1991 LIR_List* entry_code = new LIR_List(compilation()); 1992 move_resolver.set_insert_position(entry_code, 0); 1993 move_resolver.resolve_and_append_moves(); 1994 1995 entry_code->jump(handler->entry_block()); 1996 handler->set_entry_code(entry_code); 1997 } 1998 } 1999 2000 2001 void LinearScan::resolve_exception_handlers() { 2002 MoveResolver move_resolver(this); 2003 LIR_OpVisitState visitor; 2004 int num_blocks = block_count(); 2005 2006 int i; 2007 for (i = 0; i < num_blocks; i++) { 2008 BlockBegin* block = block_at(i); 2009 if (block->is_set(BlockBegin::exception_entry_flag)) { 2010 resolve_exception_entry(block, move_resolver); 2011 } 2012 } 2013 2014 for (i = 0; i < num_blocks; i++) { 2015 BlockBegin* block = block_at(i); 2016 LIR_List* ops = block->lir(); 2017 int num_ops = ops->length(); 2018 2019 // iterate all instructions of the block. skip the first because it is always a label 2020 assert(visitor.no_operands(ops->at(0)), "first operation must always be a label"); 2021 for (int j = 1; j < num_ops; j++) { 2022 LIR_Op* op = ops->at(j); 2023 int op_id = op->id(); 2024 2025 if (op_id != -1 && has_info(op_id)) { 2026 // visit operation to collect all operands 2027 visitor.visit(op); 2028 assert(visitor.info_count() > 0, "should not visit otherwise"); 2029 2030 XHandlers* xhandlers = visitor.all_xhandler(); 2031 int n = xhandlers->length(); 2032 for (int k = 0; k < n; k++) { 2033 resolve_exception_edge(xhandlers->handler_at(k), op_id, move_resolver); 2034 } 2035 2036 #ifdef ASSERT 2037 } else { 2038 visitor.visit(op); 2039 assert(visitor.all_xhandler()->length() == 0, "missed exception handler"); 2040 #endif 2041 } 2042 } 2043 } 2044 } 2045 2046 2047 // ********** Phase 7: assign register numbers back to LIR 2048 // (includes computation of debug information and oop maps) 2049 2050 VMReg LinearScan::vm_reg_for_interval(Interval* interval) { 2051 VMReg reg = interval->cached_vm_reg(); 2052 if (!reg->is_valid() ) { 2053 reg = vm_reg_for_operand(operand_for_interval(interval)); 2054 interval->set_cached_vm_reg(reg); 2055 } 2056 assert(reg == vm_reg_for_operand(operand_for_interval(interval)), "wrong cached value"); 2057 return reg; 2058 } 2059 2060 VMReg LinearScan::vm_reg_for_operand(LIR_Opr opr) { 2061 assert(opr->is_oop(), "currently only implemented for oop operands"); 2062 return frame_map()->regname(opr); 2063 } 2064 2065 2066 LIR_Opr LinearScan::operand_for_interval(Interval* interval) { 2067 LIR_Opr opr = interval->cached_opr(); 2068 if (opr->is_illegal()) { 2069 opr = calc_operand_for_interval(interval); 2070 interval->set_cached_opr(opr); 2071 } 2072 2073 assert(opr == calc_operand_for_interval(interval), "wrong cached value"); 2074 return opr; 2075 } 2076 2077 LIR_Opr LinearScan::calc_operand_for_interval(const Interval* interval) { 2078 int assigned_reg = interval->assigned_reg(); 2079 BasicType type = interval->type(); 2080 2081 if (assigned_reg >= nof_regs) { 2082 // stack slot 2083 assert(interval->assigned_regHi() == any_reg, "must not have hi register"); 2084 return LIR_OprFact::stack(assigned_reg - nof_regs, type); 2085 2086 } else { 2087 // register 2088 switch (type) { 2089 case T_OBJECT: { 2090 assert(assigned_reg >= pd_first_cpu_reg && assigned_reg <= pd_last_cpu_reg, "no cpu register"); 2091 assert(interval->assigned_regHi() == any_reg, "must not have hi register"); 2092 return LIR_OprFact::single_cpu_oop(assigned_reg); 2093 } 2094 2095 case T_ADDRESS: { 2096 assert(assigned_reg >= pd_first_cpu_reg && assigned_reg <= pd_last_cpu_reg, "no cpu register"); 2097 assert(interval->assigned_regHi() == any_reg, "must not have hi register"); 2098 return LIR_OprFact::single_cpu_address(assigned_reg); 2099 } 2100 2101 case T_METADATA: { 2102 assert(assigned_reg >= pd_first_cpu_reg && assigned_reg <= pd_last_cpu_reg, "no cpu register"); 2103 assert(interval->assigned_regHi() == any_reg, "must not have hi register"); 2104 return LIR_OprFact::single_cpu_metadata(assigned_reg); 2105 } 2106 2107 #ifdef __SOFTFP__ 2108 case T_FLOAT: // fall through 2109 #endif // __SOFTFP__ 2110 case T_INT: { 2111 assert(assigned_reg >= pd_first_cpu_reg && assigned_reg <= pd_last_cpu_reg, "no cpu register"); 2112 assert(interval->assigned_regHi() == any_reg, "must not have hi register"); 2113 return LIR_OprFact::single_cpu(assigned_reg); 2114 } 2115 2116 #ifdef __SOFTFP__ 2117 case T_DOUBLE: // fall through 2118 #endif // __SOFTFP__ 2119 case T_LONG: { 2120 int assigned_regHi = interval->assigned_regHi(); 2121 assert(assigned_reg >= pd_first_cpu_reg && assigned_reg <= pd_last_cpu_reg, "no cpu register"); 2122 assert(num_physical_regs(T_LONG) == 1 || 2123 (assigned_regHi >= pd_first_cpu_reg && assigned_regHi <= pd_last_cpu_reg), "no cpu register"); 2124 2125 assert(assigned_reg != assigned_regHi, "invalid allocation"); 2126 assert(num_physical_regs(T_LONG) == 1 || assigned_reg < assigned_regHi, 2127 "register numbers must be sorted (ensure that e.g. a move from eax,ebx to ebx,eax can not occur)"); 2128 assert((assigned_regHi != any_reg) ^ (num_physical_regs(T_LONG) == 1), "must be match"); 2129 if (requires_adjacent_regs(T_LONG)) { 2130 assert(assigned_reg % 2 == 0 && assigned_reg + 1 == assigned_regHi, "must be sequential and even"); 2131 } 2132 2133 #ifdef _LP64 2134 return LIR_OprFact::double_cpu(assigned_reg, assigned_reg); 2135 #else 2136 #if defined(SPARC) || defined(PPC32) 2137 return LIR_OprFact::double_cpu(assigned_regHi, assigned_reg); 2138 #else 2139 return LIR_OprFact::double_cpu(assigned_reg, assigned_regHi); 2140 #endif // SPARC 2141 #endif // LP64 2142 } 2143 2144 #ifndef __SOFTFP__ 2145 case T_FLOAT: { 2146 #ifdef X86 2147 if (UseSSE >= 1) { 2148 int last_xmm_reg = pd_last_xmm_reg; 2149 #ifdef _LP64 2150 if (UseAVX < 3) { 2151 last_xmm_reg = pd_first_xmm_reg + (pd_nof_xmm_regs_frame_map / 2) - 1; 2152 } 2153 #endif 2154 assert(assigned_reg >= pd_first_xmm_reg && assigned_reg <= last_xmm_reg, "no xmm register"); 2155 assert(interval->assigned_regHi() == any_reg, "must not have hi register"); 2156 return LIR_OprFact::single_xmm(assigned_reg - pd_first_xmm_reg); 2157 } 2158 #endif 2159 2160 assert(assigned_reg >= pd_first_fpu_reg && assigned_reg <= pd_last_fpu_reg, "no fpu register"); 2161 assert(interval->assigned_regHi() == any_reg, "must not have hi register"); 2162 return LIR_OprFact::single_fpu(assigned_reg - pd_first_fpu_reg); 2163 } 2164 2165 case T_DOUBLE: { 2166 #ifdef X86 2167 if (UseSSE >= 2) { 2168 int last_xmm_reg = pd_last_xmm_reg; 2169 #ifdef _LP64 2170 if (UseAVX < 3) { 2171 last_xmm_reg = pd_first_xmm_reg + (pd_nof_xmm_regs_frame_map / 2) - 1; 2172 } 2173 #endif 2174 assert(assigned_reg >= pd_first_xmm_reg && assigned_reg <= last_xmm_reg, "no xmm register"); 2175 assert(interval->assigned_regHi() == any_reg, "must not have hi register (double xmm values are stored in one register)"); 2176 return LIR_OprFact::double_xmm(assigned_reg - pd_first_xmm_reg); 2177 } 2178 #endif 2179 2180 #ifdef SPARC 2181 assert(assigned_reg >= pd_first_fpu_reg && assigned_reg <= pd_last_fpu_reg, "no fpu register"); 2182 assert(interval->assigned_regHi() >= pd_first_fpu_reg && interval->assigned_regHi() <= pd_last_fpu_reg, "no fpu register"); 2183 assert(assigned_reg % 2 == 0 && assigned_reg + 1 == interval->assigned_regHi(), "must be sequential and even"); 2184 LIR_Opr result = LIR_OprFact::double_fpu(interval->assigned_regHi() - pd_first_fpu_reg, assigned_reg - pd_first_fpu_reg); 2185 #elif defined(ARM32) 2186 assert(assigned_reg >= pd_first_fpu_reg && assigned_reg <= pd_last_fpu_reg, "no fpu register"); 2187 assert(interval->assigned_regHi() >= pd_first_fpu_reg && interval->assigned_regHi() <= pd_last_fpu_reg, "no fpu register"); 2188 assert(assigned_reg % 2 == 0 && assigned_reg + 1 == interval->assigned_regHi(), "must be sequential and even"); 2189 LIR_Opr result = LIR_OprFact::double_fpu(assigned_reg - pd_first_fpu_reg, interval->assigned_regHi() - pd_first_fpu_reg); 2190 #else 2191 assert(assigned_reg >= pd_first_fpu_reg && assigned_reg <= pd_last_fpu_reg, "no fpu register"); 2192 assert(interval->assigned_regHi() == any_reg, "must not have hi register (double fpu values are stored in one register on Intel)"); 2193 LIR_Opr result = LIR_OprFact::double_fpu(assigned_reg - pd_first_fpu_reg); 2194 #endif 2195 return result; 2196 } 2197 #endif // __SOFTFP__ 2198 2199 default: { 2200 ShouldNotReachHere(); 2201 return LIR_OprFact::illegalOpr; 2202 } 2203 } 2204 } 2205 } 2206 2207 LIR_Opr LinearScan::canonical_spill_opr(Interval* interval) { 2208 assert(interval->canonical_spill_slot() >= nof_regs, "canonical spill slot not set"); 2209 return LIR_OprFact::stack(interval->canonical_spill_slot() - nof_regs, interval->type()); 2210 } 2211 2212 LIR_Opr LinearScan::color_lir_opr(LIR_Opr opr, int op_id, LIR_OpVisitState::OprMode mode) { 2213 assert(opr->is_virtual(), "should not call this otherwise"); 2214 2215 Interval* interval = interval_at(opr->vreg_number()); 2216 assert(interval != NULL, "interval must exist"); 2217 2218 if (op_id != -1) { 2219 #ifdef ASSERT 2220 BlockBegin* block = block_of_op_with_id(op_id); 2221 if (block->number_of_sux() <= 1 && op_id == block->last_lir_instruction_id()) { 2222 // check if spill moves could have been appended at the end of this block, but 2223 // before the branch instruction. So the split child information for this branch would 2224 // be incorrect. 2225 LIR_OpBranch* branch = block->lir()->instructions_list()->last()->as_OpBranch(); 2226 if (branch != NULL) { 2227 if (block->live_out().at(opr->vreg_number())) { 2228 assert(branch->cond() == lir_cond_always, "block does not end with an unconditional jump"); 2229 assert(false, "can't get split child for the last branch of a block because the information would be incorrect (moves are inserted before the branch in resolve_data_flow)"); 2230 } 2231 } 2232 } 2233 #endif 2234 2235 // operands are not changed when an interval is split during allocation, 2236 // so search the right interval here 2237 interval = split_child_at_op_id(interval, op_id, mode); 2238 } 2239 2240 LIR_Opr res = operand_for_interval(interval); 2241 2242 #ifdef X86 2243 // new semantic for is_last_use: not only set on definite end of interval, 2244 // but also before hole 2245 // This may still miss some cases (e.g. for dead values), but it is not necessary that the 2246 // last use information is completely correct 2247 // information is only needed for fpu stack allocation 2248 if (res->is_fpu_register()) { 2249 if (opr->is_last_use() || op_id == interval->to() || (op_id != -1 && interval->has_hole_between(op_id, op_id + 1))) { 2250 assert(op_id == -1 || !is_block_begin(op_id), "holes at begin of block may also result from control flow"); 2251 res = res->make_last_use(); 2252 } 2253 } 2254 #endif 2255 2256 assert(!gen()->is_vreg_flag_set(opr->vreg_number(), LIRGenerator::callee_saved) || !FrameMap::is_caller_save_register(res), "bad allocation"); 2257 2258 return res; 2259 } 2260 2261 2262 #ifdef ASSERT 2263 // some methods used to check correctness of debug information 2264 2265 void assert_no_register_values(GrowableArray<ScopeValue*>* values) { 2266 if (values == NULL) { 2267 return; 2268 } 2269 2270 for (int i = 0; i < values->length(); i++) { 2271 ScopeValue* value = values->at(i); 2272 2273 if (value->is_location()) { 2274 Location location = ((LocationValue*)value)->location(); 2275 assert(location.where() == Location::on_stack, "value is in register"); 2276 } 2277 } 2278 } 2279 2280 void assert_no_register_values(GrowableArray<MonitorValue*>* values) { 2281 if (values == NULL) { 2282 return; 2283 } 2284 2285 for (int i = 0; i < values->length(); i++) { 2286 MonitorValue* value = values->at(i); 2287 2288 if (value->owner()->is_location()) { 2289 Location location = ((LocationValue*)value->owner())->location(); 2290 assert(location.where() == Location::on_stack, "owner is in register"); 2291 } 2292 assert(value->basic_lock().where() == Location::on_stack, "basic_lock is in register"); 2293 } 2294 } 2295 2296 void assert_equal(Location l1, Location l2) { 2297 assert(l1.where() == l2.where() && l1.type() == l2.type() && l1.offset() == l2.offset(), ""); 2298 } 2299 2300 void assert_equal(ScopeValue* v1, ScopeValue* v2) { 2301 if (v1->is_location()) { 2302 assert(v2->is_location(), ""); 2303 assert_equal(((LocationValue*)v1)->location(), ((LocationValue*)v2)->location()); 2304 } else if (v1->is_constant_int()) { 2305 assert(v2->is_constant_int(), ""); 2306 assert(((ConstantIntValue*)v1)->value() == ((ConstantIntValue*)v2)->value(), ""); 2307 } else if (v1->is_constant_double()) { 2308 assert(v2->is_constant_double(), ""); 2309 assert(((ConstantDoubleValue*)v1)->value() == ((ConstantDoubleValue*)v2)->value(), ""); 2310 } else if (v1->is_constant_long()) { 2311 assert(v2->is_constant_long(), ""); 2312 assert(((ConstantLongValue*)v1)->value() == ((ConstantLongValue*)v2)->value(), ""); 2313 } else if (v1->is_constant_oop()) { 2314 assert(v2->is_constant_oop(), ""); 2315 assert(((ConstantOopWriteValue*)v1)->value() == ((ConstantOopWriteValue*)v2)->value(), ""); 2316 } else { 2317 ShouldNotReachHere(); 2318 } 2319 } 2320 2321 void assert_equal(MonitorValue* m1, MonitorValue* m2) { 2322 assert_equal(m1->owner(), m2->owner()); 2323 assert_equal(m1->basic_lock(), m2->basic_lock()); 2324 } 2325 2326 void assert_equal(IRScopeDebugInfo* d1, IRScopeDebugInfo* d2) { 2327 assert(d1->scope() == d2->scope(), "not equal"); 2328 assert(d1->bci() == d2->bci(), "not equal"); 2329 2330 if (d1->locals() != NULL) { 2331 assert(d1->locals() != NULL && d2->locals() != NULL, "not equal"); 2332 assert(d1->locals()->length() == d2->locals()->length(), "not equal"); 2333 for (int i = 0; i < d1->locals()->length(); i++) { 2334 assert_equal(d1->locals()->at(i), d2->locals()->at(i)); 2335 } 2336 } else { 2337 assert(d1->locals() == NULL && d2->locals() == NULL, "not equal"); 2338 } 2339 2340 if (d1->expressions() != NULL) { 2341 assert(d1->expressions() != NULL && d2->expressions() != NULL, "not equal"); 2342 assert(d1->expressions()->length() == d2->expressions()->length(), "not equal"); 2343 for (int i = 0; i < d1->expressions()->length(); i++) { 2344 assert_equal(d1->expressions()->at(i), d2->expressions()->at(i)); 2345 } 2346 } else { 2347 assert(d1->expressions() == NULL && d2->expressions() == NULL, "not equal"); 2348 } 2349 2350 if (d1->monitors() != NULL) { 2351 assert(d1->monitors() != NULL && d2->monitors() != NULL, "not equal"); 2352 assert(d1->monitors()->length() == d2->monitors()->length(), "not equal"); 2353 for (int i = 0; i < d1->monitors()->length(); i++) { 2354 assert_equal(d1->monitors()->at(i), d2->monitors()->at(i)); 2355 } 2356 } else { 2357 assert(d1->monitors() == NULL && d2->monitors() == NULL, "not equal"); 2358 } 2359 2360 if (d1->caller() != NULL) { 2361 assert(d1->caller() != NULL && d2->caller() != NULL, "not equal"); 2362 assert_equal(d1->caller(), d2->caller()); 2363 } else { 2364 assert(d1->caller() == NULL && d2->caller() == NULL, "not equal"); 2365 } 2366 } 2367 2368 void check_stack_depth(CodeEmitInfo* info, int stack_end) { 2369 if (info->stack()->bci() != SynchronizationEntryBCI && !info->scope()->method()->is_native()) { 2370 Bytecodes::Code code = info->scope()->method()->java_code_at_bci(info->stack()->bci()); 2371 switch (code) { 2372 case Bytecodes::_ifnull : // fall through 2373 case Bytecodes::_ifnonnull : // fall through 2374 case Bytecodes::_ifeq : // fall through 2375 case Bytecodes::_ifne : // fall through 2376 case Bytecodes::_iflt : // fall through 2377 case Bytecodes::_ifge : // fall through 2378 case Bytecodes::_ifgt : // fall through 2379 case Bytecodes::_ifle : // fall through 2380 case Bytecodes::_if_icmpeq : // fall through 2381 case Bytecodes::_if_icmpne : // fall through 2382 case Bytecodes::_if_icmplt : // fall through 2383 case Bytecodes::_if_icmpge : // fall through 2384 case Bytecodes::_if_icmpgt : // fall through 2385 case Bytecodes::_if_icmple : // fall through 2386 case Bytecodes::_if_acmpeq : // fall through 2387 case Bytecodes::_if_acmpne : 2388 assert(stack_end >= -Bytecodes::depth(code), "must have non-empty expression stack at if bytecode"); 2389 break; 2390 default: 2391 break; 2392 } 2393 } 2394 } 2395 2396 #endif // ASSERT 2397 2398 2399 IntervalWalker* LinearScan::init_compute_oop_maps() { 2400 // setup lists of potential oops for walking 2401 Interval* oop_intervals; 2402 Interval* non_oop_intervals; 2403 2404 create_unhandled_lists(&oop_intervals, &non_oop_intervals, is_oop_interval, NULL); 2405 2406 // intervals that have no oops inside need not to be processed 2407 // to ensure a walking until the last instruction id, add a dummy interval 2408 // with a high operation id 2409 non_oop_intervals = new Interval(any_reg); 2410 non_oop_intervals->add_range(max_jint - 2, max_jint - 1); 2411 2412 return new IntervalWalker(this, oop_intervals, non_oop_intervals); 2413 } 2414 2415 2416 OopMap* LinearScan::compute_oop_map(IntervalWalker* iw, LIR_Op* op, CodeEmitInfo* info, bool is_call_site) { 2417 TRACE_LINEAR_SCAN(3, tty->print_cr("creating oop map at op_id %d", op->id())); 2418 2419 // walk before the current operation -> intervals that start at 2420 // the operation (= output operands of the operation) are not 2421 // included in the oop map 2422 iw->walk_before(op->id()); 2423 2424 int frame_size = frame_map()->framesize(); 2425 int arg_count = frame_map()->oop_map_arg_count(); 2426 OopMap* map = new OopMap(frame_size, arg_count); 2427 2428 // Iterate through active intervals 2429 for (Interval* interval = iw->active_first(fixedKind); interval != Interval::end(); interval = interval->next()) { 2430 int assigned_reg = interval->assigned_reg(); 2431 2432 assert(interval->current_from() <= op->id() && op->id() <= interval->current_to(), "interval should not be active otherwise"); 2433 assert(interval->assigned_regHi() == any_reg, "oop must be single word"); 2434 assert(interval->reg_num() >= LIR_OprDesc::vreg_base, "fixed interval found"); 2435 2436 // Check if this range covers the instruction. Intervals that 2437 // start or end at the current operation are not included in the 2438 // oop map, except in the case of patching moves. For patching 2439 // moves, any intervals which end at this instruction are included 2440 // in the oop map since we may safepoint while doing the patch 2441 // before we've consumed the inputs. 2442 if (op->is_patching() || op->id() < interval->current_to()) { 2443 2444 // caller-save registers must not be included into oop-maps at calls 2445 assert(!is_call_site || assigned_reg >= nof_regs || !is_caller_save(assigned_reg), "interval is in a caller-save register at a call -> register will be overwritten"); 2446 2447 VMReg name = vm_reg_for_interval(interval); 2448 set_oop(map, name); 2449 2450 // Spill optimization: when the stack value is guaranteed to be always correct, 2451 // then it must be added to the oop map even if the interval is currently in a register 2452 if (interval->always_in_memory() && 2453 op->id() > interval->spill_definition_pos() && 2454 interval->assigned_reg() != interval->canonical_spill_slot()) { 2455 assert(interval->spill_definition_pos() > 0, "position not set correctly"); 2456 assert(interval->canonical_spill_slot() >= LinearScan::nof_regs, "no spill slot assigned"); 2457 assert(interval->assigned_reg() < LinearScan::nof_regs, "interval is on stack, so stack slot is registered twice"); 2458 2459 set_oop(map, frame_map()->slot_regname(interval->canonical_spill_slot() - LinearScan::nof_regs)); 2460 } 2461 } 2462 } 2463 2464 // add oops from lock stack 2465 assert(info->stack() != NULL, "CodeEmitInfo must always have a stack"); 2466 int locks_count = info->stack()->total_locks_size(); 2467 for (int i = 0; i < locks_count; i++) { 2468 set_oop(map, frame_map()->monitor_object_regname(i)); 2469 } 2470 2471 return map; 2472 } 2473 2474 2475 void LinearScan::compute_oop_map(IntervalWalker* iw, const LIR_OpVisitState &visitor, LIR_Op* op) { 2476 assert(visitor.info_count() > 0, "no oop map needed"); 2477 2478 // compute oop_map only for first CodeEmitInfo 2479 // because it is (in most cases) equal for all other infos of the same operation 2480 CodeEmitInfo* first_info = visitor.info_at(0); 2481 OopMap* first_oop_map = compute_oop_map(iw, op, first_info, visitor.has_call()); 2482 2483 for (int i = 0; i < visitor.info_count(); i++) { 2484 CodeEmitInfo* info = visitor.info_at(i); 2485 OopMap* oop_map = first_oop_map; 2486 2487 // compute worst case interpreter size in case of a deoptimization 2488 _compilation->update_interpreter_frame_size(info->interpreter_frame_size()); 2489 2490 if (info->stack()->locks_size() != first_info->stack()->locks_size()) { 2491 // this info has a different number of locks then the precomputed oop map 2492 // (possible for lock and unlock instructions) -> compute oop map with 2493 // correct lock information 2494 oop_map = compute_oop_map(iw, op, info, visitor.has_call()); 2495 } 2496 2497 if (info->_oop_map == NULL) { 2498 info->_oop_map = oop_map; 2499 } else { 2500 // a CodeEmitInfo can not be shared between different LIR-instructions 2501 // because interval splitting can occur anywhere between two instructions 2502 // and so the oop maps must be different 2503 // -> check if the already set oop_map is exactly the one calculated for this operation 2504 assert(info->_oop_map == oop_map, "same CodeEmitInfo used for multiple LIR instructions"); 2505 } 2506 } 2507 } 2508 2509 2510 // frequently used constants 2511 // Allocate them with new so they are never destroyed (otherwise, a 2512 // forced exit could destroy these objects while they are still in 2513 // use). 2514 ConstantOopWriteValue* LinearScan::_oop_null_scope_value = new (ResourceObj::C_HEAP, mtCompiler) ConstantOopWriteValue(NULL); 2515 ConstantIntValue* LinearScan::_int_m1_scope_value = new (ResourceObj::C_HEAP, mtCompiler) ConstantIntValue(-1); 2516 ConstantIntValue* LinearScan::_int_0_scope_value = new (ResourceObj::C_HEAP, mtCompiler) ConstantIntValue((jint)0); 2517 ConstantIntValue* LinearScan::_int_1_scope_value = new (ResourceObj::C_HEAP, mtCompiler) ConstantIntValue(1); 2518 ConstantIntValue* LinearScan::_int_2_scope_value = new (ResourceObj::C_HEAP, mtCompiler) ConstantIntValue(2); 2519 LocationValue* _illegal_value = new (ResourceObj::C_HEAP, mtCompiler) LocationValue(Location()); 2520 2521 void LinearScan::init_compute_debug_info() { 2522 // cache for frequently used scope values 2523 // (cpu registers and stack slots) 2524 int cache_size = (LinearScan::nof_cpu_regs + frame_map()->argcount() + max_spills()) * 2; 2525 _scope_value_cache = ScopeValueArray(cache_size, cache_size, NULL); 2526 } 2527 2528 MonitorValue* LinearScan::location_for_monitor_index(int monitor_index) { 2529 Location loc; 2530 if (!frame_map()->location_for_monitor_object(monitor_index, &loc)) { 2531 bailout("too large frame"); 2532 } 2533 ScopeValue* object_scope_value = new LocationValue(loc); 2534 2535 if (!frame_map()->location_for_monitor_lock(monitor_index, &loc)) { 2536 bailout("too large frame"); 2537 } 2538 return new MonitorValue(object_scope_value, loc); 2539 } 2540 2541 LocationValue* LinearScan::location_for_name(int name, Location::Type loc_type) { 2542 Location loc; 2543 if (!frame_map()->locations_for_slot(name, loc_type, &loc)) { 2544 bailout("too large frame"); 2545 } 2546 return new LocationValue(loc); 2547 } 2548 2549 2550 int LinearScan::append_scope_value_for_constant(LIR_Opr opr, GrowableArray<ScopeValue*>* scope_values) { 2551 assert(opr->is_constant(), "should not be called otherwise"); 2552 2553 LIR_Const* c = opr->as_constant_ptr(); 2554 BasicType t = c->type(); 2555 switch (t) { 2556 case T_OBJECT: { 2557 jobject value = c->as_jobject(); 2558 if (value == NULL) { 2559 scope_values->append(_oop_null_scope_value); 2560 } else { 2561 scope_values->append(new ConstantOopWriteValue(c->as_jobject())); 2562 } 2563 return 1; 2564 } 2565 2566 case T_INT: // fall through 2567 case T_FLOAT: { 2568 int value = c->as_jint_bits(); 2569 switch (value) { 2570 case -1: scope_values->append(_int_m1_scope_value); break; 2571 case 0: scope_values->append(_int_0_scope_value); break; 2572 case 1: scope_values->append(_int_1_scope_value); break; 2573 case 2: scope_values->append(_int_2_scope_value); break; 2574 default: scope_values->append(new ConstantIntValue(c->as_jint_bits())); break; 2575 } 2576 return 1; 2577 } 2578 2579 case T_LONG: // fall through 2580 case T_DOUBLE: { 2581 #ifdef _LP64 2582 scope_values->append(_int_0_scope_value); 2583 scope_values->append(new ConstantLongValue(c->as_jlong_bits())); 2584 #else 2585 if (hi_word_offset_in_bytes > lo_word_offset_in_bytes) { 2586 scope_values->append(new ConstantIntValue(c->as_jint_hi_bits())); 2587 scope_values->append(new ConstantIntValue(c->as_jint_lo_bits())); 2588 } else { 2589 scope_values->append(new ConstantIntValue(c->as_jint_lo_bits())); 2590 scope_values->append(new ConstantIntValue(c->as_jint_hi_bits())); 2591 } 2592 #endif 2593 return 2; 2594 } 2595 2596 case T_ADDRESS: { 2597 #ifdef _LP64 2598 scope_values->append(new ConstantLongValue(c->as_jint())); 2599 #else 2600 scope_values->append(new ConstantIntValue(c->as_jint())); 2601 #endif 2602 return 1; 2603 } 2604 2605 default: 2606 ShouldNotReachHere(); 2607 return -1; 2608 } 2609 } 2610 2611 int LinearScan::append_scope_value_for_operand(LIR_Opr opr, GrowableArray<ScopeValue*>* scope_values) { 2612 if (opr->is_single_stack()) { 2613 int stack_idx = opr->single_stack_ix(); 2614 bool is_oop = opr->is_oop_register(); 2615 int cache_idx = (stack_idx + LinearScan::nof_cpu_regs) * 2 + (is_oop ? 1 : 0); 2616 2617 ScopeValue* sv = _scope_value_cache.at(cache_idx); 2618 if (sv == NULL) { 2619 Location::Type loc_type = is_oop ? Location::oop : Location::normal; 2620 sv = location_for_name(stack_idx, loc_type); 2621 _scope_value_cache.at_put(cache_idx, sv); 2622 } 2623 2624 // check if cached value is correct 2625 DEBUG_ONLY(assert_equal(sv, location_for_name(stack_idx, is_oop ? Location::oop : Location::normal))); 2626 2627 scope_values->append(sv); 2628 return 1; 2629 2630 } else if (opr->is_single_cpu()) { 2631 bool is_oop = opr->is_oop_register(); 2632 int cache_idx = opr->cpu_regnr() * 2 + (is_oop ? 1 : 0); 2633 Location::Type int_loc_type = NOT_LP64(Location::normal) LP64_ONLY(Location::int_in_long); 2634 2635 ScopeValue* sv = _scope_value_cache.at(cache_idx); 2636 if (sv == NULL) { 2637 Location::Type loc_type = is_oop ? Location::oop : int_loc_type; 2638 VMReg rname = frame_map()->regname(opr); 2639 sv = new LocationValue(Location::new_reg_loc(loc_type, rname)); 2640 _scope_value_cache.at_put(cache_idx, sv); 2641 } 2642 2643 // check if cached value is correct 2644 DEBUG_ONLY(assert_equal(sv, new LocationValue(Location::new_reg_loc(is_oop ? Location::oop : int_loc_type, frame_map()->regname(opr))))); 2645 2646 scope_values->append(sv); 2647 return 1; 2648 2649 #ifdef X86 2650 } else if (opr->is_single_xmm()) { 2651 VMReg rname = opr->as_xmm_float_reg()->as_VMReg(); 2652 LocationValue* sv = new LocationValue(Location::new_reg_loc(Location::normal, rname)); 2653 2654 scope_values->append(sv); 2655 return 1; 2656 #endif 2657 2658 } else if (opr->is_single_fpu()) { 2659 #ifdef IA32 2660 // the exact location of fpu stack values is only known 2661 // during fpu stack allocation, so the stack allocator object 2662 // must be present 2663 assert(use_fpu_stack_allocation(), "should not have float stack values without fpu stack allocation (all floats must be SSE2)"); 2664 assert(_fpu_stack_allocator != NULL, "must be present"); 2665 opr = _fpu_stack_allocator->to_fpu_stack(opr); 2666 #elif defined(AMD64) 2667 assert(false, "FPU not used on x86-64"); 2668 #endif 2669 2670 Location::Type loc_type = float_saved_as_double ? Location::float_in_dbl : Location::normal; 2671 VMReg rname = frame_map()->fpu_regname(opr->fpu_regnr()); 2672 #ifndef __SOFTFP__ 2673 #ifndef VM_LITTLE_ENDIAN 2674 // On S390 a (single precision) float value occupies only the high 2675 // word of the full double register. So when the double register is 2676 // stored to memory (e.g. by the RegisterSaver), then the float value 2677 // is found at offset 0. I.e. the code below is not needed on S390. 2678 #ifndef S390 2679 if (! float_saved_as_double) { 2680 // On big endian system, we may have an issue if float registers use only 2681 // the low half of the (same) double registers. 2682 // Both the float and the double could have the same regnr but would correspond 2683 // to two different addresses once saved. 2684 2685 // get next safely (no assertion checks) 2686 VMReg next = VMRegImpl::as_VMReg(1+rname->value()); 2687 if (next->is_reg() && 2688 (next->as_FloatRegister() == rname->as_FloatRegister())) { 2689 // the back-end does use the same numbering for the double and the float 2690 rname = next; // VMReg for the low bits, e.g. the real VMReg for the float 2691 } 2692 } 2693 #endif // !S390 2694 #endif 2695 #endif 2696 LocationValue* sv = new LocationValue(Location::new_reg_loc(loc_type, rname)); 2697 2698 scope_values->append(sv); 2699 return 1; 2700 2701 } else { 2702 // double-size operands 2703 2704 ScopeValue* first; 2705 ScopeValue* second; 2706 2707 if (opr->is_double_stack()) { 2708 #ifdef _LP64 2709 Location loc1; 2710 Location::Type loc_type = opr->type() == T_LONG ? Location::lng : Location::dbl; 2711 if (!frame_map()->locations_for_slot(opr->double_stack_ix(), loc_type, &loc1, NULL)) { 2712 bailout("too large frame"); 2713 } 2714 // Does this reverse on x86 vs. sparc? 2715 first = new LocationValue(loc1); 2716 second = _int_0_scope_value; 2717 #else 2718 Location loc1, loc2; 2719 if (!frame_map()->locations_for_slot(opr->double_stack_ix(), Location::normal, &loc1, &loc2)) { 2720 bailout("too large frame"); 2721 } 2722 first = new LocationValue(loc1); 2723 second = new LocationValue(loc2); 2724 #endif // _LP64 2725 2726 } else if (opr->is_double_cpu()) { 2727 #ifdef _LP64 2728 VMReg rname_first = opr->as_register_lo()->as_VMReg(); 2729 first = new LocationValue(Location::new_reg_loc(Location::lng, rname_first)); 2730 second = _int_0_scope_value; 2731 #else 2732 VMReg rname_first = opr->as_register_lo()->as_VMReg(); 2733 VMReg rname_second = opr->as_register_hi()->as_VMReg(); 2734 2735 if (hi_word_offset_in_bytes < lo_word_offset_in_bytes) { 2736 // lo/hi and swapped relative to first and second, so swap them 2737 VMReg tmp = rname_first; 2738 rname_first = rname_second; 2739 rname_second = tmp; 2740 } 2741 2742 first = new LocationValue(Location::new_reg_loc(Location::normal, rname_first)); 2743 second = new LocationValue(Location::new_reg_loc(Location::normal, rname_second)); 2744 #endif //_LP64 2745 2746 2747 #ifdef X86 2748 } else if (opr->is_double_xmm()) { 2749 assert(opr->fpu_regnrLo() == opr->fpu_regnrHi(), "assumed in calculation"); 2750 VMReg rname_first = opr->as_xmm_double_reg()->as_VMReg(); 2751 # ifdef _LP64 2752 first = new LocationValue(Location::new_reg_loc(Location::dbl, rname_first)); 2753 second = _int_0_scope_value; 2754 # else 2755 first = new LocationValue(Location::new_reg_loc(Location::normal, rname_first)); 2756 // %%% This is probably a waste but we'll keep things as they were for now 2757 if (true) { 2758 VMReg rname_second = rname_first->next(); 2759 second = new LocationValue(Location::new_reg_loc(Location::normal, rname_second)); 2760 } 2761 # endif 2762 #endif 2763 2764 } else if (opr->is_double_fpu()) { 2765 // On SPARC, fpu_regnrLo/fpu_regnrHi represents the two halves of 2766 // the double as float registers in the native ordering. On X86, 2767 // fpu_regnrLo is a FPU stack slot whose VMReg represents 2768 // the low-order word of the double and fpu_regnrLo + 1 is the 2769 // name for the other half. *first and *second must represent the 2770 // least and most significant words, respectively. 2771 2772 #ifdef IA32 2773 // the exact location of fpu stack values is only known 2774 // during fpu stack allocation, so the stack allocator object 2775 // must be present 2776 assert(use_fpu_stack_allocation(), "should not have float stack values without fpu stack allocation (all floats must be SSE2)"); 2777 assert(_fpu_stack_allocator != NULL, "must be present"); 2778 opr = _fpu_stack_allocator->to_fpu_stack(opr); 2779 2780 assert(opr->fpu_regnrLo() == opr->fpu_regnrHi(), "assumed in calculation (only fpu_regnrLo is used)"); 2781 #endif 2782 #ifdef IA64 2783 assert(false, "FPU not used on x86-64"); 2784 #endif 2785 #ifdef SPARC 2786 assert(opr->fpu_regnrLo() == opr->fpu_regnrHi() + 1, "assumed in calculation (only fpu_regnrHi is used)"); 2787 #endif 2788 #ifdef ARM32 2789 assert(opr->fpu_regnrHi() == opr->fpu_regnrLo() + 1, "assumed in calculation (only fpu_regnrLo is used)"); 2790 #endif 2791 #ifdef PPC32 2792 assert(opr->fpu_regnrLo() == opr->fpu_regnrHi(), "assumed in calculation (only fpu_regnrHi is used)"); 2793 #endif 2794 2795 #ifdef VM_LITTLE_ENDIAN 2796 VMReg rname_first = frame_map()->fpu_regname(opr->fpu_regnrLo()); 2797 #else 2798 VMReg rname_first = frame_map()->fpu_regname(opr->fpu_regnrHi()); 2799 #endif 2800 2801 #ifdef _LP64 2802 first = new LocationValue(Location::new_reg_loc(Location::dbl, rname_first)); 2803 second = _int_0_scope_value; 2804 #else 2805 first = new LocationValue(Location::new_reg_loc(Location::normal, rname_first)); 2806 // %%% This is probably a waste but we'll keep things as they were for now 2807 if (true) { 2808 VMReg rname_second = rname_first->next(); 2809 second = new LocationValue(Location::new_reg_loc(Location::normal, rname_second)); 2810 } 2811 #endif 2812 2813 } else { 2814 ShouldNotReachHere(); 2815 first = NULL; 2816 second = NULL; 2817 } 2818 2819 assert(first != NULL && second != NULL, "must be set"); 2820 // The convention the interpreter uses is that the second local 2821 // holds the first raw word of the native double representation. 2822 // This is actually reasonable, since locals and stack arrays 2823 // grow downwards in all implementations. 2824 // (If, on some machine, the interpreter's Java locals or stack 2825 // were to grow upwards, the embedded doubles would be word-swapped.) 2826 scope_values->append(second); 2827 scope_values->append(first); 2828 return 2; 2829 } 2830 } 2831 2832 2833 int LinearScan::append_scope_value(int op_id, Value value, GrowableArray<ScopeValue*>* scope_values) { 2834 if (value != NULL) { 2835 LIR_Opr opr = value->operand(); 2836 Constant* con = value->as_Constant(); 2837 2838 assert(con == NULL || opr->is_virtual() || opr->is_constant() || opr->is_illegal(), "asumption: Constant instructions have only constant operands (or illegal if constant is optimized away)"); 2839 assert(con != NULL || opr->is_virtual(), "asumption: non-Constant instructions have only virtual operands"); 2840 2841 if (con != NULL && !con->is_pinned() && !opr->is_constant()) { 2842 // Unpinned constants may have a virtual operand for a part of the lifetime 2843 // or may be illegal when it was optimized away, 2844 // so always use a constant operand 2845 opr = LIR_OprFact::value_type(con->type()); 2846 } 2847 assert(opr->is_virtual() || opr->is_constant(), "other cases not allowed here"); 2848 2849 if (opr->is_virtual()) { 2850 LIR_OpVisitState::OprMode mode = LIR_OpVisitState::inputMode; 2851 2852 BlockBegin* block = block_of_op_with_id(op_id); 2853 if (block->number_of_sux() == 1 && op_id == block->last_lir_instruction_id()) { 2854 // generating debug information for the last instruction of a block. 2855 // if this instruction is a branch, spill moves are inserted before this branch 2856 // and so the wrong operand would be returned (spill moves at block boundaries are not 2857 // considered in the live ranges of intervals) 2858 // Solution: use the first op_id of the branch target block instead. 2859 if (block->lir()->instructions_list()->last()->as_OpBranch() != NULL) { 2860 if (block->live_out().at(opr->vreg_number())) { 2861 op_id = block->sux_at(0)->first_lir_instruction_id(); 2862 mode = LIR_OpVisitState::outputMode; 2863 } 2864 } 2865 } 2866 2867 // Get current location of operand 2868 // The operand must be live because debug information is considered when building the intervals 2869 // if the interval is not live, color_lir_opr will cause an assertion failure 2870 opr = color_lir_opr(opr, op_id, mode); 2871 assert(!has_call(op_id) || opr->is_stack() || !is_caller_save(reg_num(opr)), "can not have caller-save register operands at calls"); 2872 2873 // Append to ScopeValue array 2874 return append_scope_value_for_operand(opr, scope_values); 2875 2876 } else { 2877 assert(value->as_Constant() != NULL, "all other instructions have only virtual operands"); 2878 assert(opr->is_constant(), "operand must be constant"); 2879 2880 return append_scope_value_for_constant(opr, scope_values); 2881 } 2882 } else { 2883 // append a dummy value because real value not needed 2884 scope_values->append(_illegal_value); 2885 return 1; 2886 } 2887 } 2888 2889 2890 IRScopeDebugInfo* LinearScan::compute_debug_info_for_scope(int op_id, IRScope* cur_scope, ValueStack* cur_state, ValueStack* innermost_state) { 2891 IRScopeDebugInfo* caller_debug_info = NULL; 2892 2893 ValueStack* caller_state = cur_state->caller_state(); 2894 if (caller_state != NULL) { 2895 // process recursively to compute outermost scope first 2896 caller_debug_info = compute_debug_info_for_scope(op_id, cur_scope->caller(), caller_state, innermost_state); 2897 } 2898 2899 // initialize these to null. 2900 // If we don't need deopt info or there are no locals, expressions or monitors, 2901 // then these get recorded as no information and avoids the allocation of 0 length arrays. 2902 GrowableArray<ScopeValue*>* locals = NULL; 2903 GrowableArray<ScopeValue*>* expressions = NULL; 2904 GrowableArray<MonitorValue*>* monitors = NULL; 2905 2906 // describe local variable values 2907 int nof_locals = cur_state->locals_size(); 2908 if (nof_locals > 0) { 2909 locals = new GrowableArray<ScopeValue*>(nof_locals); 2910 2911 int pos = 0; 2912 while (pos < nof_locals) { 2913 assert(pos < cur_state->locals_size(), "why not?"); 2914 2915 Value local = cur_state->local_at(pos); 2916 pos += append_scope_value(op_id, local, locals); 2917 2918 assert(locals->length() == pos, "must match"); 2919 } 2920 assert(locals->length() == cur_scope->method()->max_locals(), "wrong number of locals"); 2921 assert(locals->length() == cur_state->locals_size(), "wrong number of locals"); 2922 } else if (cur_scope->method()->max_locals() > 0) { 2923 assert(cur_state->kind() == ValueStack::EmptyExceptionState, "should be"); 2924 nof_locals = cur_scope->method()->max_locals(); 2925 locals = new GrowableArray<ScopeValue*>(nof_locals); 2926 for(int i = 0; i < nof_locals; i++) { 2927 locals->append(_illegal_value); 2928 } 2929 } 2930 2931 // describe expression stack 2932 int nof_stack = cur_state->stack_size(); 2933 if (nof_stack > 0) { 2934 expressions = new GrowableArray<ScopeValue*>(nof_stack); 2935 2936 int pos = 0; 2937 while (pos < nof_stack) { 2938 Value expression = cur_state->stack_at_inc(pos); 2939 append_scope_value(op_id, expression, expressions); 2940 2941 assert(expressions->length() == pos, "must match"); 2942 } 2943 assert(expressions->length() == cur_state->stack_size(), "wrong number of stack entries"); 2944 } 2945 2946 // describe monitors 2947 int nof_locks = cur_state->locks_size(); 2948 if (nof_locks > 0) { 2949 int lock_offset = cur_state->caller_state() != NULL ? cur_state->caller_state()->total_locks_size() : 0; 2950 monitors = new GrowableArray<MonitorValue*>(nof_locks); 2951 for (int i = 0; i < nof_locks; i++) { 2952 monitors->append(location_for_monitor_index(lock_offset + i)); 2953 } 2954 } 2955 2956 return new IRScopeDebugInfo(cur_scope, cur_state->bci(), locals, expressions, monitors, caller_debug_info); 2957 } 2958 2959 2960 void LinearScan::compute_debug_info(CodeEmitInfo* info, int op_id) { 2961 TRACE_LINEAR_SCAN(3, tty->print_cr("creating debug information at op_id %d", op_id)); 2962 2963 IRScope* innermost_scope = info->scope(); 2964 ValueStack* innermost_state = info->stack(); 2965 2966 assert(innermost_scope != NULL && innermost_state != NULL, "why is it missing?"); 2967 2968 DEBUG_ONLY(check_stack_depth(info, innermost_state->stack_size())); 2969 2970 if (info->_scope_debug_info == NULL) { 2971 // compute debug information 2972 info->_scope_debug_info = compute_debug_info_for_scope(op_id, innermost_scope, innermost_state, innermost_state); 2973 } else { 2974 // debug information already set. Check that it is correct from the current point of view 2975 DEBUG_ONLY(assert_equal(info->_scope_debug_info, compute_debug_info_for_scope(op_id, innermost_scope, innermost_state, innermost_state))); 2976 } 2977 } 2978 2979 2980 void LinearScan::assign_reg_num(LIR_OpList* instructions, IntervalWalker* iw) { 2981 LIR_OpVisitState visitor; 2982 int num_inst = instructions->length(); 2983 bool has_dead = false; 2984 2985 for (int j = 0; j < num_inst; j++) { 2986 LIR_Op* op = instructions->at(j); 2987 if (op == NULL) { // this can happen when spill-moves are removed in eliminate_spill_moves 2988 has_dead = true; 2989 continue; 2990 } 2991 int op_id = op->id(); 2992 2993 // visit instruction to get list of operands 2994 visitor.visit(op); 2995 2996 // iterate all modes of the visitor and process all virtual operands 2997 for_each_visitor_mode(mode) { 2998 int n = visitor.opr_count(mode); 2999 for (int k = 0; k < n; k++) { 3000 LIR_Opr opr = visitor.opr_at(mode, k); 3001 if (opr->is_virtual_register()) { 3002 visitor.set_opr_at(mode, k, color_lir_opr(opr, op_id, mode)); 3003 } 3004 } 3005 } 3006 3007 if (visitor.info_count() > 0) { 3008 // exception handling 3009 if (compilation()->has_exception_handlers()) { 3010 XHandlers* xhandlers = visitor.all_xhandler(); 3011 int n = xhandlers->length(); 3012 for (int k = 0; k < n; k++) { 3013 XHandler* handler = xhandlers->handler_at(k); 3014 if (handler->entry_code() != NULL) { 3015 assign_reg_num(handler->entry_code()->instructions_list(), NULL); 3016 } 3017 } 3018 } else { 3019 assert(visitor.all_xhandler()->length() == 0, "missed exception handler"); 3020 } 3021 3022 // compute oop map 3023 assert(iw != NULL, "needed for compute_oop_map"); 3024 compute_oop_map(iw, visitor, op); 3025 3026 // compute debug information 3027 if (!use_fpu_stack_allocation()) { 3028 // compute debug information if fpu stack allocation is not needed. 3029 // when fpu stack allocation is needed, the debug information can not 3030 // be computed here because the exact location of fpu operands is not known 3031 // -> debug information is created inside the fpu stack allocator 3032 int n = visitor.info_count(); 3033 for (int k = 0; k < n; k++) { 3034 compute_debug_info(visitor.info_at(k), op_id); 3035 } 3036 } 3037 } 3038 3039 #ifdef ASSERT 3040 // make sure we haven't made the op invalid. 3041 op->verify(); 3042 #endif 3043 3044 // remove useless moves 3045 if (op->code() == lir_move) { 3046 assert(op->as_Op1() != NULL, "move must be LIR_Op1"); 3047 LIR_Op1* move = (LIR_Op1*)op; 3048 LIR_Opr src = move->in_opr(); 3049 LIR_Opr dst = move->result_opr(); 3050 if (dst == src || 3051 (!dst->is_pointer() && !src->is_pointer() && 3052 src->is_same_register(dst))) { 3053 instructions->at_put(j, NULL); 3054 has_dead = true; 3055 } 3056 } 3057 } 3058 3059 if (has_dead) { 3060 // iterate all instructions of the block and remove all null-values. 3061 int insert_point = 0; 3062 for (int j = 0; j < num_inst; j++) { 3063 LIR_Op* op = instructions->at(j); 3064 if (op != NULL) { 3065 if (insert_point != j) { 3066 instructions->at_put(insert_point, op); 3067 } 3068 insert_point++; 3069 } 3070 } 3071 instructions->trunc_to(insert_point); 3072 } 3073 } 3074 3075 void LinearScan::assign_reg_num() { 3076 TIME_LINEAR_SCAN(timer_assign_reg_num); 3077 3078 init_compute_debug_info(); 3079 IntervalWalker* iw = init_compute_oop_maps(); 3080 3081 int num_blocks = block_count(); 3082 for (int i = 0; i < num_blocks; i++) { 3083 BlockBegin* block = block_at(i); 3084 assign_reg_num(block->lir()->instructions_list(), iw); 3085 } 3086 } 3087 3088 3089 void LinearScan::do_linear_scan() { 3090 NOT_PRODUCT(_total_timer.begin_method()); 3091 3092 number_instructions(); 3093 3094 NOT_PRODUCT(print_lir(1, "Before Register Allocation")); 3095 3096 compute_local_live_sets(); 3097 compute_global_live_sets(); 3098 CHECK_BAILOUT(); 3099 3100 build_intervals(); 3101 CHECK_BAILOUT(); 3102 sort_intervals_before_allocation(); 3103 3104 NOT_PRODUCT(print_intervals("Before Register Allocation")); 3105 NOT_PRODUCT(LinearScanStatistic::compute(this, _stat_before_alloc)); 3106 3107 allocate_registers(); 3108 CHECK_BAILOUT(); 3109 3110 resolve_data_flow(); 3111 if (compilation()->has_exception_handlers()) { 3112 resolve_exception_handlers(); 3113 } 3114 // fill in number of spill slots into frame_map 3115 propagate_spill_slots(); 3116 CHECK_BAILOUT(); 3117 3118 NOT_PRODUCT(print_intervals("After Register Allocation")); 3119 NOT_PRODUCT(print_lir(2, "LIR after register allocation:")); 3120 3121 sort_intervals_after_allocation(); 3122 3123 DEBUG_ONLY(verify()); 3124 3125 eliminate_spill_moves(); 3126 assign_reg_num(); 3127 CHECK_BAILOUT(); 3128 3129 NOT_PRODUCT(print_lir(2, "LIR after assignment of register numbers:")); 3130 NOT_PRODUCT(LinearScanStatistic::compute(this, _stat_after_asign)); 3131 3132 { TIME_LINEAR_SCAN(timer_allocate_fpu_stack); 3133 3134 if (use_fpu_stack_allocation()) { 3135 allocate_fpu_stack(); // Only has effect on Intel 3136 NOT_PRODUCT(print_lir(2, "LIR after FPU stack allocation:")); 3137 } 3138 } 3139 3140 { TIME_LINEAR_SCAN(timer_optimize_lir); 3141 3142 EdgeMoveOptimizer::optimize(ir()->code()); 3143 ControlFlowOptimizer::optimize(ir()->code()); 3144 // check that cfg is still correct after optimizations 3145 ir()->verify(); 3146 } 3147 3148 NOT_PRODUCT(print_lir(1, "Before Code Generation", false)); 3149 NOT_PRODUCT(LinearScanStatistic::compute(this, _stat_final)); 3150 NOT_PRODUCT(_total_timer.end_method(this)); 3151 } 3152 3153 3154 // ********** Printing functions 3155 3156 #ifndef PRODUCT 3157 3158 void LinearScan::print_timers(double total) { 3159 _total_timer.print(total); 3160 } 3161 3162 void LinearScan::print_statistics() { 3163 _stat_before_alloc.print("before allocation"); 3164 _stat_after_asign.print("after assignment of register"); 3165 _stat_final.print("after optimization"); 3166 } 3167 3168 void LinearScan::print_bitmap(BitMap& b) { 3169 for (unsigned int i = 0; i < b.size(); i++) { 3170 if (b.at(i)) tty->print("%d ", i); 3171 } 3172 tty->cr(); 3173 } 3174 3175 void LinearScan::print_intervals(const char* label) { 3176 if (TraceLinearScanLevel >= 1) { 3177 int i; 3178 tty->cr(); 3179 tty->print_cr("%s", label); 3180 3181 for (i = 0; i < interval_count(); i++) { 3182 Interval* interval = interval_at(i); 3183 if (interval != NULL) { 3184 interval->print(); 3185 } 3186 } 3187 3188 tty->cr(); 3189 tty->print_cr("--- Basic Blocks ---"); 3190 for (i = 0; i < block_count(); i++) { 3191 BlockBegin* block = block_at(i); 3192 tty->print("B%d [%d, %d, %d, %d] ", block->block_id(), block->first_lir_instruction_id(), block->last_lir_instruction_id(), block->loop_index(), block->loop_depth()); 3193 } 3194 tty->cr(); 3195 tty->cr(); 3196 } 3197 3198 if (PrintCFGToFile) { 3199 CFGPrinter::print_intervals(&_intervals, label); 3200 } 3201 } 3202 3203 void LinearScan::print_lir(int level, const char* label, bool hir_valid) { 3204 if (TraceLinearScanLevel >= level) { 3205 tty->cr(); 3206 tty->print_cr("%s", label); 3207 print_LIR(ir()->linear_scan_order()); 3208 tty->cr(); 3209 } 3210 3211 if (level == 1 && PrintCFGToFile) { 3212 CFGPrinter::print_cfg(ir()->linear_scan_order(), label, hir_valid, true); 3213 } 3214 } 3215 3216 #endif //PRODUCT 3217 3218 3219 // ********** verification functions for allocation 3220 // (check that all intervals have a correct register and that no registers are overwritten) 3221 #ifdef ASSERT 3222 3223 void LinearScan::verify() { 3224 TRACE_LINEAR_SCAN(2, tty->print_cr("********* verifying intervals ******************************************")); 3225 verify_intervals(); 3226 3227 TRACE_LINEAR_SCAN(2, tty->print_cr("********* verifying that no oops are in fixed intervals ****************")); 3228 verify_no_oops_in_fixed_intervals(); 3229 3230 TRACE_LINEAR_SCAN(2, tty->print_cr("********* verifying that unpinned constants are not alive across block boundaries")); 3231 verify_constants(); 3232 3233 TRACE_LINEAR_SCAN(2, tty->print_cr("********* verifying register allocation ********************************")); 3234 verify_registers(); 3235 3236 TRACE_LINEAR_SCAN(2, tty->print_cr("********* no errors found **********************************************")); 3237 } 3238 3239 void LinearScan::verify_intervals() { 3240 int len = interval_count(); 3241 bool has_error = false; 3242 3243 for (int i = 0; i < len; i++) { 3244 Interval* i1 = interval_at(i); 3245 if (i1 == NULL) continue; 3246 3247 i1->check_split_children(); 3248 3249 if (i1->reg_num() != i) { 3250 tty->print_cr("Interval %d is on position %d in list", i1->reg_num(), i); i1->print(); tty->cr(); 3251 has_error = true; 3252 } 3253 3254 if (i1->reg_num() >= LIR_OprDesc::vreg_base && i1->type() == T_ILLEGAL) { 3255 tty->print_cr("Interval %d has no type assigned", i1->reg_num()); i1->print(); tty->cr(); 3256 has_error = true; 3257 } 3258 3259 if (i1->assigned_reg() == any_reg) { 3260 tty->print_cr("Interval %d has no register assigned", i1->reg_num()); i1->print(); tty->cr(); 3261 has_error = true; 3262 } 3263 3264 if (i1->assigned_reg() == i1->assigned_regHi()) { 3265 tty->print_cr("Interval %d: low and high register equal", i1->reg_num()); i1->print(); tty->cr(); 3266 has_error = true; 3267 } 3268 3269 if (!is_processed_reg_num(i1->assigned_reg())) { 3270 tty->print_cr("Can not have an Interval for an ignored register"); i1->print(); tty->cr(); 3271 has_error = true; 3272 } 3273 3274 // special intervals that are created in MoveResolver 3275 // -> ignore them because the range information has no meaning there 3276 if (i1->from() == 1 && i1->to() == 2) continue; 3277 3278 if (i1->first() == Range::end()) { 3279 tty->print_cr("Interval %d has no Range", i1->reg_num()); i1->print(); tty->cr(); 3280 has_error = true; 3281 } 3282 3283 for (Range* r = i1->first(); r != Range::end(); r = r->next()) { 3284 if (r->from() >= r->to()) { 3285 tty->print_cr("Interval %d has zero length range", i1->reg_num()); i1->print(); tty->cr(); 3286 has_error = true; 3287 } 3288 } 3289 3290 for (int j = i + 1; j < len; j++) { 3291 Interval* i2 = interval_at(j); 3292 if (i2 == NULL || (i2->from() == 1 && i2->to() == 2)) continue; 3293 3294 int r1 = i1->assigned_reg(); 3295 int r1Hi = i1->assigned_regHi(); 3296 int r2 = i2->assigned_reg(); 3297 int r2Hi = i2->assigned_regHi(); 3298 if ((r1 == r2 || r1 == r2Hi || (r1Hi != any_reg && (r1Hi == r2 || r1Hi == r2Hi))) && i1->intersects(i2)) { 3299 tty->print_cr("Intervals %d and %d overlap and have the same register assigned", i1->reg_num(), i2->reg_num()); 3300 i1->print(); tty->cr(); 3301 i2->print(); tty->cr(); 3302 has_error = true; 3303 } 3304 } 3305 } 3306 3307 assert(has_error == false, "register allocation invalid"); 3308 } 3309 3310 3311 void LinearScan::verify_no_oops_in_fixed_intervals() { 3312 Interval* fixed_intervals; 3313 Interval* other_intervals; 3314 create_unhandled_lists(&fixed_intervals, &other_intervals, is_precolored_cpu_interval, NULL); 3315 3316 // to ensure a walking until the last instruction id, add a dummy interval 3317 // with a high operation id 3318 other_intervals = new Interval(any_reg); 3319 other_intervals->add_range(max_jint - 2, max_jint - 1); 3320 IntervalWalker* iw = new IntervalWalker(this, fixed_intervals, other_intervals); 3321 3322 LIR_OpVisitState visitor; 3323 for (int i = 0; i < block_count(); i++) { 3324 BlockBegin* block = block_at(i); 3325 3326 LIR_OpList* instructions = block->lir()->instructions_list(); 3327 3328 for (int j = 0; j < instructions->length(); j++) { 3329 LIR_Op* op = instructions->at(j); 3330 int op_id = op->id(); 3331 3332 visitor.visit(op); 3333 3334 if (visitor.info_count() > 0) { 3335 iw->walk_before(op->id()); 3336 bool check_live = true; 3337 if (op->code() == lir_move) { 3338 LIR_Op1* move = (LIR_Op1*)op; 3339 check_live = (move->patch_code() == lir_patch_none); 3340 } 3341 LIR_OpBranch* branch = op->as_OpBranch(); 3342 if (branch != NULL && branch->stub() != NULL && branch->stub()->is_exception_throw_stub()) { 3343 // Don't bother checking the stub in this case since the 3344 // exception stub will never return to normal control flow. 3345 check_live = false; 3346 } 3347 3348 // Make sure none of the fixed registers is live across an 3349 // oopmap since we can't handle that correctly. 3350 if (check_live) { 3351 for (Interval* interval = iw->active_first(fixedKind); 3352 interval != Interval::end(); 3353 interval = interval->next()) { 3354 if (interval->current_to() > op->id() + 1) { 3355 // This interval is live out of this op so make sure 3356 // that this interval represents some value that's 3357 // referenced by this op either as an input or output. 3358 bool ok = false; 3359 for_each_visitor_mode(mode) { 3360 int n = visitor.opr_count(mode); 3361 for (int k = 0; k < n; k++) { 3362 LIR_Opr opr = visitor.opr_at(mode, k); 3363 if (opr->is_fixed_cpu()) { 3364 if (interval_at(reg_num(opr)) == interval) { 3365 ok = true; 3366 break; 3367 } 3368 int hi = reg_numHi(opr); 3369 if (hi != -1 && interval_at(hi) == interval) { 3370 ok = true; 3371 break; 3372 } 3373 } 3374 } 3375 } 3376 assert(ok, "fixed intervals should never be live across an oopmap point"); 3377 } 3378 } 3379 } 3380 } 3381 3382 // oop-maps at calls do not contain registers, so check is not needed 3383 if (!visitor.has_call()) { 3384 3385 for_each_visitor_mode(mode) { 3386 int n = visitor.opr_count(mode); 3387 for (int k = 0; k < n; k++) { 3388 LIR_Opr opr = visitor.opr_at(mode, k); 3389 3390 if (opr->is_fixed_cpu() && opr->is_oop()) { 3391 // operand is a non-virtual cpu register and contains an oop 3392 TRACE_LINEAR_SCAN(4, op->print_on(tty); tty->print("checking operand "); opr->print(); tty->cr()); 3393 3394 Interval* interval = interval_at(reg_num(opr)); 3395 assert(interval != NULL, "no interval"); 3396 3397 if (mode == LIR_OpVisitState::inputMode) { 3398 if (interval->to() >= op_id + 1) { 3399 assert(interval->to() < op_id + 2 || 3400 interval->has_hole_between(op_id, op_id + 2), 3401 "oop input operand live after instruction"); 3402 } 3403 } else if (mode == LIR_OpVisitState::outputMode) { 3404 if (interval->from() <= op_id - 1) { 3405 assert(interval->has_hole_between(op_id - 1, op_id), 3406 "oop input operand live after instruction"); 3407 } 3408 } 3409 } 3410 } 3411 } 3412 } 3413 } 3414 } 3415 } 3416 3417 3418 void LinearScan::verify_constants() { 3419 int num_regs = num_virtual_regs(); 3420 int size = live_set_size(); 3421 int num_blocks = block_count(); 3422 3423 for (int i = 0; i < num_blocks; i++) { 3424 BlockBegin* block = block_at(i); 3425 ResourceBitMap live_at_edge = block->live_in(); 3426 3427 // visit all registers where the live_at_edge bit is set 3428 for (int r = (int)live_at_edge.get_next_one_offset(0, size); r < size; r = (int)live_at_edge.get_next_one_offset(r + 1, size)) { 3429 TRACE_LINEAR_SCAN(4, tty->print("checking interval %d of block B%d", r, block->block_id())); 3430 3431 Value value = gen()->instruction_for_vreg(r); 3432 3433 assert(value != NULL, "all intervals live across block boundaries must have Value"); 3434 assert(value->operand()->is_register() && value->operand()->is_virtual(), "value must have virtual operand"); 3435 assert(value->operand()->vreg_number() == r, "register number must match"); 3436 // TKR assert(value->as_Constant() == NULL || value->is_pinned(), "only pinned constants can be alive accross block boundaries"); 3437 } 3438 } 3439 } 3440 3441 3442 class RegisterVerifier: public StackObj { 3443 private: 3444 LinearScan* _allocator; 3445 BlockList _work_list; // all blocks that must be processed 3446 IntervalsList _saved_states; // saved information of previous check 3447 3448 // simplified access to methods of LinearScan 3449 Compilation* compilation() const { return _allocator->compilation(); } 3450 Interval* interval_at(int reg_num) const { return _allocator->interval_at(reg_num); } 3451 int reg_num(LIR_Opr opr) const { return _allocator->reg_num(opr); } 3452 3453 // currently, only registers are processed 3454 int state_size() { return LinearScan::nof_regs; } 3455 3456 // accessors 3457 IntervalList* state_for_block(BlockBegin* block) { return _saved_states.at(block->block_id()); } 3458 void set_state_for_block(BlockBegin* block, IntervalList* saved_state) { _saved_states.at_put(block->block_id(), saved_state); } 3459 void add_to_work_list(BlockBegin* block) { if (!_work_list.contains(block)) _work_list.append(block); } 3460 3461 // helper functions 3462 IntervalList* copy(IntervalList* input_state); 3463 void state_put(IntervalList* input_state, int reg, Interval* interval); 3464 bool check_state(IntervalList* input_state, int reg, Interval* interval); 3465 3466 void process_block(BlockBegin* block); 3467 void process_xhandler(XHandler* xhandler, IntervalList* input_state); 3468 void process_successor(BlockBegin* block, IntervalList* input_state); 3469 void process_operations(LIR_List* ops, IntervalList* input_state); 3470 3471 public: 3472 RegisterVerifier(LinearScan* allocator) 3473 : _allocator(allocator) 3474 , _work_list(16) 3475 , _saved_states(BlockBegin::number_of_blocks(), BlockBegin::number_of_blocks(), NULL) 3476 { } 3477 3478 void verify(BlockBegin* start); 3479 }; 3480 3481 3482 // entry function from LinearScan that starts the verification 3483 void LinearScan::verify_registers() { 3484 RegisterVerifier verifier(this); 3485 verifier.verify(block_at(0)); 3486 } 3487 3488 3489 void RegisterVerifier::verify(BlockBegin* start) { 3490 // setup input registers (method arguments) for first block 3491 int input_state_len = state_size(); 3492 IntervalList* input_state = new IntervalList(input_state_len, input_state_len, NULL); 3493 CallingConvention* args = compilation()->frame_map()->incoming_arguments(); 3494 for (int n = 0; n < args->length(); n++) { 3495 LIR_Opr opr = args->at(n); 3496 if (opr->is_register()) { 3497 Interval* interval = interval_at(reg_num(opr)); 3498 3499 if (interval->assigned_reg() < state_size()) { 3500 input_state->at_put(interval->assigned_reg(), interval); 3501 } 3502 if (interval->assigned_regHi() != LinearScan::any_reg && interval->assigned_regHi() < state_size()) { 3503 input_state->at_put(interval->assigned_regHi(), interval); 3504 } 3505 } 3506 } 3507 3508 set_state_for_block(start, input_state); 3509 add_to_work_list(start); 3510 3511 // main loop for verification 3512 do { 3513 BlockBegin* block = _work_list.at(0); 3514 _work_list.remove_at(0); 3515 3516 process_block(block); 3517 } while (!_work_list.is_empty()); 3518 } 3519 3520 void RegisterVerifier::process_block(BlockBegin* block) { 3521 TRACE_LINEAR_SCAN(2, tty->cr(); tty->print_cr("process_block B%d", block->block_id())); 3522 3523 // must copy state because it is modified 3524 IntervalList* input_state = copy(state_for_block(block)); 3525 3526 if (TraceLinearScanLevel >= 4) { 3527 tty->print_cr("Input-State of intervals:"); 3528 tty->print(" "); 3529 for (int i = 0; i < state_size(); i++) { 3530 if (input_state->at(i) != NULL) { 3531 tty->print(" %4d", input_state->at(i)->reg_num()); 3532 } else { 3533 tty->print(" __"); 3534 } 3535 } 3536 tty->cr(); 3537 tty->cr(); 3538 } 3539 3540 // process all operations of the block 3541 process_operations(block->lir(), input_state); 3542 3543 // iterate all successors 3544 for (int i = 0; i < block->number_of_sux(); i++) { 3545 process_successor(block->sux_at(i), input_state); 3546 } 3547 } 3548 3549 void RegisterVerifier::process_xhandler(XHandler* xhandler, IntervalList* input_state) { 3550 TRACE_LINEAR_SCAN(2, tty->print_cr("process_xhandler B%d", xhandler->entry_block()->block_id())); 3551 3552 // must copy state because it is modified 3553 input_state = copy(input_state); 3554 3555 if (xhandler->entry_code() != NULL) { 3556 process_operations(xhandler->entry_code(), input_state); 3557 } 3558 process_successor(xhandler->entry_block(), input_state); 3559 } 3560 3561 void RegisterVerifier::process_successor(BlockBegin* block, IntervalList* input_state) { 3562 IntervalList* saved_state = state_for_block(block); 3563 3564 if (saved_state != NULL) { 3565 // this block was already processed before. 3566 // check if new input_state is consistent with saved_state 3567 3568 bool saved_state_correct = true; 3569 for (int i = 0; i < state_size(); i++) { 3570 if (input_state->at(i) != saved_state->at(i)) { 3571 // current input_state and previous saved_state assume a different 3572 // interval in this register -> assume that this register is invalid 3573 if (saved_state->at(i) != NULL) { 3574 // invalidate old calculation only if it assumed that 3575 // register was valid. when the register was already invalid, 3576 // then the old calculation was correct. 3577 saved_state_correct = false; 3578 saved_state->at_put(i, NULL); 3579 3580 TRACE_LINEAR_SCAN(4, tty->print_cr("process_successor B%d: invalidating slot %d", block->block_id(), i)); 3581 } 3582 } 3583 } 3584 3585 if (saved_state_correct) { 3586 // already processed block with correct input_state 3587 TRACE_LINEAR_SCAN(2, tty->print_cr("process_successor B%d: previous visit already correct", block->block_id())); 3588 } else { 3589 // must re-visit this block 3590 TRACE_LINEAR_SCAN(2, tty->print_cr("process_successor B%d: must re-visit because input state changed", block->block_id())); 3591 add_to_work_list(block); 3592 } 3593 3594 } else { 3595 // block was not processed before, so set initial input_state 3596 TRACE_LINEAR_SCAN(2, tty->print_cr("process_successor B%d: initial visit", block->block_id())); 3597 3598 set_state_for_block(block, copy(input_state)); 3599 add_to_work_list(block); 3600 } 3601 } 3602 3603 3604 IntervalList* RegisterVerifier::copy(IntervalList* input_state) { 3605 IntervalList* copy_state = new IntervalList(input_state->length()); 3606 copy_state->appendAll(input_state); 3607 return copy_state; 3608 } 3609 3610 void RegisterVerifier::state_put(IntervalList* input_state, int reg, Interval* interval) { 3611 if (reg != LinearScan::any_reg && reg < state_size()) { 3612 if (interval != NULL) { 3613 TRACE_LINEAR_SCAN(4, tty->print_cr(" reg[%d] = %d", reg, interval->reg_num())); 3614 } else if (input_state->at(reg) != NULL) { 3615 TRACE_LINEAR_SCAN(4, tty->print_cr(" reg[%d] = NULL", reg)); 3616 } 3617 3618 input_state->at_put(reg, interval); 3619 } 3620 } 3621 3622 bool RegisterVerifier::check_state(IntervalList* input_state, int reg, Interval* interval) { 3623 if (reg != LinearScan::any_reg && reg < state_size()) { 3624 if (input_state->at(reg) != interval) { 3625 tty->print_cr("!! Error in register allocation: register %d does not contain interval %d", reg, interval->reg_num()); 3626 return true; 3627 } 3628 } 3629 return false; 3630 } 3631 3632 void RegisterVerifier::process_operations(LIR_List* ops, IntervalList* input_state) { 3633 // visit all instructions of the block 3634 LIR_OpVisitState visitor; 3635 bool has_error = false; 3636 3637 for (int i = 0; i < ops->length(); i++) { 3638 LIR_Op* op = ops->at(i); 3639 visitor.visit(op); 3640 3641 TRACE_LINEAR_SCAN(4, op->print_on(tty)); 3642 3643 // check if input operands are correct 3644 int j; 3645 int n = visitor.opr_count(LIR_OpVisitState::inputMode); 3646 for (j = 0; j < n; j++) { 3647 LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::inputMode, j); 3648 if (opr->is_register() && LinearScan::is_processed_reg_num(reg_num(opr))) { 3649 Interval* interval = interval_at(reg_num(opr)); 3650 if (op->id() != -1) { 3651 interval = interval->split_child_at_op_id(op->id(), LIR_OpVisitState::inputMode); 3652 } 3653 3654 has_error |= check_state(input_state, interval->assigned_reg(), interval->split_parent()); 3655 has_error |= check_state(input_state, interval->assigned_regHi(), interval->split_parent()); 3656 3657 // When an operand is marked with is_last_use, then the fpu stack allocator 3658 // removes the register from the fpu stack -> the register contains no value 3659 if (opr->is_last_use()) { 3660 state_put(input_state, interval->assigned_reg(), NULL); 3661 state_put(input_state, interval->assigned_regHi(), NULL); 3662 } 3663 } 3664 } 3665 3666 // invalidate all caller save registers at calls 3667 if (visitor.has_call()) { 3668 for (j = 0; j < FrameMap::nof_caller_save_cpu_regs(); j++) { 3669 state_put(input_state, reg_num(FrameMap::caller_save_cpu_reg_at(j)), NULL); 3670 } 3671 for (j = 0; j < FrameMap::nof_caller_save_fpu_regs; j++) { 3672 state_put(input_state, reg_num(FrameMap::caller_save_fpu_reg_at(j)), NULL); 3673 } 3674 3675 #ifdef X86 3676 int num_caller_save_xmm_regs = FrameMap::get_num_caller_save_xmms(); 3677 for (j = 0; j < num_caller_save_xmm_regs; j++) { 3678 state_put(input_state, reg_num(FrameMap::caller_save_xmm_reg_at(j)), NULL); 3679 } 3680 #endif 3681 } 3682 3683 // process xhandler before output and temp operands 3684 XHandlers* xhandlers = visitor.all_xhandler(); 3685 n = xhandlers->length(); 3686 for (int k = 0; k < n; k++) { 3687 process_xhandler(xhandlers->handler_at(k), input_state); 3688 } 3689 3690 // set temp operands (some operations use temp operands also as output operands, so can't set them NULL) 3691 n = visitor.opr_count(LIR_OpVisitState::tempMode); 3692 for (j = 0; j < n; j++) { 3693 LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::tempMode, j); 3694 if (opr->is_register() && LinearScan::is_processed_reg_num(reg_num(opr))) { 3695 Interval* interval = interval_at(reg_num(opr)); 3696 if (op->id() != -1) { 3697 interval = interval->split_child_at_op_id(op->id(), LIR_OpVisitState::tempMode); 3698 } 3699 3700 state_put(input_state, interval->assigned_reg(), interval->split_parent()); 3701 state_put(input_state, interval->assigned_regHi(), interval->split_parent()); 3702 } 3703 } 3704 3705 // set output operands 3706 n = visitor.opr_count(LIR_OpVisitState::outputMode); 3707 for (j = 0; j < n; j++) { 3708 LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::outputMode, j); 3709 if (opr->is_register() && LinearScan::is_processed_reg_num(reg_num(opr))) { 3710 Interval* interval = interval_at(reg_num(opr)); 3711 if (op->id() != -1) { 3712 interval = interval->split_child_at_op_id(op->id(), LIR_OpVisitState::outputMode); 3713 } 3714 3715 state_put(input_state, interval->assigned_reg(), interval->split_parent()); 3716 state_put(input_state, interval->assigned_regHi(), interval->split_parent()); 3717 } 3718 } 3719 } 3720 assert(has_error == false, "Error in register allocation"); 3721 } 3722 3723 #endif // ASSERT 3724 3725 3726 3727 // **** Implementation of MoveResolver ****************************** 3728 3729 MoveResolver::MoveResolver(LinearScan* allocator) : 3730 _allocator(allocator), 3731 _insert_list(NULL), 3732 _insert_idx(-1), 3733 _insertion_buffer(), 3734 _mapping_from(8), 3735 _mapping_from_opr(8), 3736 _mapping_to(8), 3737 _multiple_reads_allowed(false) 3738 { 3739 for (int i = 0; i < LinearScan::nof_regs; i++) { 3740 _register_blocked[i] = 0; 3741 } 3742 DEBUG_ONLY(check_empty()); 3743 } 3744 3745 3746 #ifdef ASSERT 3747 3748 void MoveResolver::check_empty() { 3749 assert(_mapping_from.length() == 0 && _mapping_from_opr.length() == 0 && _mapping_to.length() == 0, "list must be empty before and after processing"); 3750 for (int i = 0; i < LinearScan::nof_regs; i++) { 3751 assert(register_blocked(i) == 0, "register map must be empty before and after processing"); 3752 } 3753 assert(_multiple_reads_allowed == false, "must have default value"); 3754 } 3755 3756 void MoveResolver::verify_before_resolve() { 3757 assert(_mapping_from.length() == _mapping_from_opr.length(), "length must be equal"); 3758 assert(_mapping_from.length() == _mapping_to.length(), "length must be equal"); 3759 assert(_insert_list != NULL && _insert_idx != -1, "insert position not set"); 3760 3761 int i, j; 3762 if (!_multiple_reads_allowed) { 3763 for (i = 0; i < _mapping_from.length(); i++) { 3764 for (j = i + 1; j < _mapping_from.length(); j++) { 3765 assert(_mapping_from.at(i) == NULL || _mapping_from.at(i) != _mapping_from.at(j), "cannot read from same interval twice"); 3766 } 3767 } 3768 } 3769 3770 for (i = 0; i < _mapping_to.length(); i++) { 3771 for (j = i + 1; j < _mapping_to.length(); j++) { 3772 assert(_mapping_to.at(i) != _mapping_to.at(j), "cannot write to same interval twice"); 3773 } 3774 } 3775 3776 3777 ResourceBitMap used_regs(LinearScan::nof_regs + allocator()->frame_map()->argcount() + allocator()->max_spills()); 3778 if (!_multiple_reads_allowed) { 3779 for (i = 0; i < _mapping_from.length(); i++) { 3780 Interval* it = _mapping_from.at(i); 3781 if (it != NULL) { 3782 assert(!used_regs.at(it->assigned_reg()), "cannot read from same register twice"); 3783 used_regs.set_bit(it->assigned_reg()); 3784 3785 if (it->assigned_regHi() != LinearScan::any_reg) { 3786 assert(!used_regs.at(it->assigned_regHi()), "cannot read from same register twice"); 3787 used_regs.set_bit(it->assigned_regHi()); 3788 } 3789 } 3790 } 3791 } 3792 3793 used_regs.clear(); 3794 for (i = 0; i < _mapping_to.length(); i++) { 3795 Interval* it = _mapping_to.at(i); 3796 assert(!used_regs.at(it->assigned_reg()), "cannot write to same register twice"); 3797 used_regs.set_bit(it->assigned_reg()); 3798 3799 if (it->assigned_regHi() != LinearScan::any_reg) { 3800 assert(!used_regs.at(it->assigned_regHi()), "cannot write to same register twice"); 3801 used_regs.set_bit(it->assigned_regHi()); 3802 } 3803 } 3804 3805 used_regs.clear(); 3806 for (i = 0; i < _mapping_from.length(); i++) { 3807 Interval* it = _mapping_from.at(i); 3808 if (it != NULL && it->assigned_reg() >= LinearScan::nof_regs) { 3809 used_regs.set_bit(it->assigned_reg()); 3810 } 3811 } 3812 for (i = 0; i < _mapping_to.length(); i++) { 3813 Interval* it = _mapping_to.at(i); 3814 assert(!used_regs.at(it->assigned_reg()) || it->assigned_reg() == _mapping_from.at(i)->assigned_reg(), "stack slots used in _mapping_from must be disjoint to _mapping_to"); 3815 } 3816 } 3817 3818 #endif // ASSERT 3819 3820 3821 // mark assigned_reg and assigned_regHi of the interval as blocked 3822 void MoveResolver::block_registers(Interval* it) { 3823 int reg = it->assigned_reg(); 3824 if (reg < LinearScan::nof_regs) { 3825 assert(_multiple_reads_allowed || register_blocked(reg) == 0, "register already marked as used"); 3826 set_register_blocked(reg, 1); 3827 } 3828 reg = it->assigned_regHi(); 3829 if (reg != LinearScan::any_reg && reg < LinearScan::nof_regs) { 3830 assert(_multiple_reads_allowed || register_blocked(reg) == 0, "register already marked as used"); 3831 set_register_blocked(reg, 1); 3832 } 3833 } 3834 3835 // mark assigned_reg and assigned_regHi of the interval as unblocked 3836 void MoveResolver::unblock_registers(Interval* it) { 3837 int reg = it->assigned_reg(); 3838 if (reg < LinearScan::nof_regs) { 3839 assert(register_blocked(reg) > 0, "register already marked as unused"); 3840 set_register_blocked(reg, -1); 3841 } 3842 reg = it->assigned_regHi(); 3843 if (reg != LinearScan::any_reg && reg < LinearScan::nof_regs) { 3844 assert(register_blocked(reg) > 0, "register already marked as unused"); 3845 set_register_blocked(reg, -1); 3846 } 3847 } 3848 3849 // check if assigned_reg and assigned_regHi of the to-interval are not blocked (or only blocked by from) 3850 bool MoveResolver::save_to_process_move(Interval* from, Interval* to) { 3851 int from_reg = -1; 3852 int from_regHi = -1; 3853 if (from != NULL) { 3854 from_reg = from->assigned_reg(); 3855 from_regHi = from->assigned_regHi(); 3856 } 3857 3858 int reg = to->assigned_reg(); 3859 if (reg < LinearScan::nof_regs) { 3860 if (register_blocked(reg) > 1 || (register_blocked(reg) == 1 && reg != from_reg && reg != from_regHi)) { 3861 return false; 3862 } 3863 } 3864 reg = to->assigned_regHi(); 3865 if (reg != LinearScan::any_reg && reg < LinearScan::nof_regs) { 3866 if (register_blocked(reg) > 1 || (register_blocked(reg) == 1 && reg != from_reg && reg != from_regHi)) { 3867 return false; 3868 } 3869 } 3870 3871 return true; 3872 } 3873 3874 3875 void MoveResolver::create_insertion_buffer(LIR_List* list) { 3876 assert(!_insertion_buffer.initialized(), "overwriting existing buffer"); 3877 _insertion_buffer.init(list); 3878 } 3879 3880 void MoveResolver::append_insertion_buffer() { 3881 if (_insertion_buffer.initialized()) { 3882 _insertion_buffer.lir_list()->append(&_insertion_buffer); 3883 } 3884 assert(!_insertion_buffer.initialized(), "must be uninitialized now"); 3885 3886 _insert_list = NULL; 3887 _insert_idx = -1; 3888 } 3889 3890 void MoveResolver::insert_move(Interval* from_interval, Interval* to_interval) { 3891 assert(from_interval->reg_num() != to_interval->reg_num(), "from and to interval equal"); 3892 assert(from_interval->type() == to_interval->type(), "move between different types"); 3893 assert(_insert_list != NULL && _insert_idx != -1, "must setup insert position first"); 3894 assert(_insertion_buffer.lir_list() == _insert_list, "wrong insertion buffer"); 3895 3896 LIR_Opr from_opr = LIR_OprFact::virtual_register(from_interval->reg_num(), from_interval->type()); 3897 LIR_Opr to_opr = LIR_OprFact::virtual_register(to_interval->reg_num(), to_interval->type()); 3898 3899 if (!_multiple_reads_allowed) { 3900 // the last_use flag is an optimization for FPU stack allocation. When the same 3901 // input interval is used in more than one move, then it is too difficult to determine 3902 // if this move is really the last use. 3903 from_opr = from_opr->make_last_use(); 3904 } 3905 _insertion_buffer.move(_insert_idx, from_opr, to_opr); 3906 3907 TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: inserted move from register %d (%d, %d) to %d (%d, %d)", from_interval->reg_num(), from_interval->assigned_reg(), from_interval->assigned_regHi(), to_interval->reg_num(), to_interval->assigned_reg(), to_interval->assigned_regHi())); 3908 } 3909 3910 void MoveResolver::insert_move(LIR_Opr from_opr, Interval* to_interval) { 3911 assert(from_opr->type() == to_interval->type(), "move between different types"); 3912 assert(_insert_list != NULL && _insert_idx != -1, "must setup insert position first"); 3913 assert(_insertion_buffer.lir_list() == _insert_list, "wrong insertion buffer"); 3914 3915 LIR_Opr to_opr = LIR_OprFact::virtual_register(to_interval->reg_num(), to_interval->type()); 3916 _insertion_buffer.move(_insert_idx, from_opr, to_opr); 3917 3918 TRACE_LINEAR_SCAN(4, tty->print("MoveResolver: inserted move from constant "); from_opr->print(); tty->print_cr(" to %d (%d, %d)", to_interval->reg_num(), to_interval->assigned_reg(), to_interval->assigned_regHi())); 3919 } 3920 3921 3922 void MoveResolver::resolve_mappings() { 3923 TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: resolving mappings for Block B%d, index %d", _insert_list->block() != NULL ? _insert_list->block()->block_id() : -1, _insert_idx)); 3924 DEBUG_ONLY(verify_before_resolve()); 3925 3926 // Block all registers that are used as input operands of a move. 3927 // When a register is blocked, no move to this register is emitted. 3928 // This is necessary for detecting cycles in moves. 3929 int i; 3930 for (i = _mapping_from.length() - 1; i >= 0; i--) { 3931 Interval* from_interval = _mapping_from.at(i); 3932 if (from_interval != NULL) { 3933 block_registers(from_interval); 3934 } 3935 } 3936 3937 int spill_candidate = -1; 3938 while (_mapping_from.length() > 0) { 3939 bool processed_interval = false; 3940 3941 for (i = _mapping_from.length() - 1; i >= 0; i--) { 3942 Interval* from_interval = _mapping_from.at(i); 3943 Interval* to_interval = _mapping_to.at(i); 3944 3945 if (save_to_process_move(from_interval, to_interval)) { 3946 // this inverval can be processed because target is free 3947 if (from_interval != NULL) { 3948 insert_move(from_interval, to_interval); 3949 unblock_registers(from_interval); 3950 } else { 3951 insert_move(_mapping_from_opr.at(i), to_interval); 3952 } 3953 _mapping_from.remove_at(i); 3954 _mapping_from_opr.remove_at(i); 3955 _mapping_to.remove_at(i); 3956 3957 processed_interval = true; 3958 } else if (from_interval != NULL && from_interval->assigned_reg() < LinearScan::nof_regs) { 3959 // this interval cannot be processed now because target is not free 3960 // it starts in a register, so it is a possible candidate for spilling 3961 spill_candidate = i; 3962 } 3963 } 3964 3965 if (!processed_interval) { 3966 // no move could be processed because there is a cycle in the move list 3967 // (e.g. r1 -> r2, r2 -> r1), so one interval must be spilled to memory 3968 guarantee(spill_candidate != -1, "no interval in register for spilling found"); 3969 3970 // create a new spill interval and assign a stack slot to it 3971 Interval* from_interval = _mapping_from.at(spill_candidate); 3972 Interval* spill_interval = new Interval(-1); 3973 spill_interval->set_type(from_interval->type()); 3974 3975 // add a dummy range because real position is difficult to calculate 3976 // Note: this range is a special case when the integrity of the allocation is checked 3977 spill_interval->add_range(1, 2); 3978 3979 // do not allocate a new spill slot for temporary interval, but 3980 // use spill slot assigned to from_interval. Otherwise moves from 3981 // one stack slot to another can happen (not allowed by LIR_Assembler 3982 int spill_slot = from_interval->canonical_spill_slot(); 3983 if (spill_slot < 0) { 3984 spill_slot = allocator()->allocate_spill_slot(type2spill_size[spill_interval->type()] == 2); 3985 from_interval->set_canonical_spill_slot(spill_slot); 3986 } 3987 spill_interval->assign_reg(spill_slot); 3988 allocator()->append_interval(spill_interval); 3989 3990 TRACE_LINEAR_SCAN(4, tty->print_cr("created new Interval %d for spilling", spill_interval->reg_num())); 3991 3992 // insert a move from register to stack and update the mapping 3993 insert_move(from_interval, spill_interval); 3994 _mapping_from.at_put(spill_candidate, spill_interval); 3995 unblock_registers(from_interval); 3996 } 3997 } 3998 3999 // reset to default value 4000 _multiple_reads_allowed = false; 4001 4002 // check that all intervals have been processed 4003 DEBUG_ONLY(check_empty()); 4004 } 4005 4006 4007 void MoveResolver::set_insert_position(LIR_List* insert_list, int insert_idx) { 4008 TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: setting insert position to Block B%d, index %d", insert_list->block() != NULL ? insert_list->block()->block_id() : -1, insert_idx)); 4009 assert(_insert_list == NULL && _insert_idx == -1, "use move_insert_position instead of set_insert_position when data already set"); 4010 4011 create_insertion_buffer(insert_list); 4012 _insert_list = insert_list; 4013 _insert_idx = insert_idx; 4014 } 4015 4016 void MoveResolver::move_insert_position(LIR_List* insert_list, int insert_idx) { 4017 TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: moving insert position to Block B%d, index %d", insert_list->block() != NULL ? insert_list->block()->block_id() : -1, insert_idx)); 4018 4019 if (_insert_list != NULL && (insert_list != _insert_list || insert_idx != _insert_idx)) { 4020 // insert position changed -> resolve current mappings 4021 resolve_mappings(); 4022 } 4023 4024 if (insert_list != _insert_list) { 4025 // block changed -> append insertion_buffer because it is 4026 // bound to a specific block and create a new insertion_buffer 4027 append_insertion_buffer(); 4028 create_insertion_buffer(insert_list); 4029 } 4030 4031 _insert_list = insert_list; 4032 _insert_idx = insert_idx; 4033 } 4034 4035 void MoveResolver::add_mapping(Interval* from_interval, Interval* to_interval) { 4036 TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: adding mapping from %d (%d, %d) to %d (%d, %d)", from_interval->reg_num(), from_interval->assigned_reg(), from_interval->assigned_regHi(), to_interval->reg_num(), to_interval->assigned_reg(), to_interval->assigned_regHi())); 4037 4038 _mapping_from.append(from_interval); 4039 _mapping_from_opr.append(LIR_OprFact::illegalOpr); 4040 _mapping_to.append(to_interval); 4041 } 4042 4043 4044 void MoveResolver::add_mapping(LIR_Opr from_opr, Interval* to_interval) { 4045 TRACE_LINEAR_SCAN(4, tty->print("MoveResolver: adding mapping from "); from_opr->print(); tty->print_cr(" to %d (%d, %d)", to_interval->reg_num(), to_interval->assigned_reg(), to_interval->assigned_regHi())); 4046 assert(from_opr->is_constant(), "only for constants"); 4047 4048 _mapping_from.append(NULL); 4049 _mapping_from_opr.append(from_opr); 4050 _mapping_to.append(to_interval); 4051 } 4052 4053 void MoveResolver::resolve_and_append_moves() { 4054 if (has_mappings()) { 4055 resolve_mappings(); 4056 } 4057 append_insertion_buffer(); 4058 } 4059 4060 4061 4062 // **** Implementation of Range ************************************* 4063 4064 Range::Range(int from, int to, Range* next) : 4065 _from(from), 4066 _to(to), 4067 _next(next) 4068 { 4069 } 4070 4071 // initialize sentinel 4072 Range* Range::_end = NULL; 4073 void Range::initialize(Arena* arena) { 4074 _end = new (arena) Range(max_jint, max_jint, NULL); 4075 } 4076 4077 int Range::intersects_at(Range* r2) const { 4078 const Range* r1 = this; 4079 4080 assert(r1 != NULL && r2 != NULL, "null ranges not allowed"); 4081 assert(r1 != _end && r2 != _end, "empty ranges not allowed"); 4082 4083 do { 4084 if (r1->from() < r2->from()) { 4085 if (r1->to() <= r2->from()) { 4086 r1 = r1->next(); if (r1 == _end) return -1; 4087 } else { 4088 return r2->from(); 4089 } 4090 } else if (r2->from() < r1->from()) { 4091 if (r2->to() <= r1->from()) { 4092 r2 = r2->next(); if (r2 == _end) return -1; 4093 } else { 4094 return r1->from(); 4095 } 4096 } else { // r1->from() == r2->from() 4097 if (r1->from() == r1->to()) { 4098 r1 = r1->next(); if (r1 == _end) return -1; 4099 } else if (r2->from() == r2->to()) { 4100 r2 = r2->next(); if (r2 == _end) return -1; 4101 } else { 4102 return r1->from(); 4103 } 4104 } 4105 } while (true); 4106 } 4107 4108 #ifndef PRODUCT 4109 void Range::print(outputStream* out) const { 4110 out->print("[%d, %d[ ", _from, _to); 4111 } 4112 #endif 4113 4114 4115 4116 // **** Implementation of Interval ********************************** 4117 4118 // initialize sentinel 4119 Interval* Interval::_end = NULL; 4120 void Interval::initialize(Arena* arena) { 4121 Range::initialize(arena); 4122 _end = new (arena) Interval(-1); 4123 } 4124 4125 Interval::Interval(int reg_num) : 4126 _reg_num(reg_num), 4127 _type(T_ILLEGAL), 4128 _first(Range::end()), 4129 _use_pos_and_kinds(12), 4130 _current(Range::end()), 4131 _next(_end), 4132 _state(invalidState), 4133 _assigned_reg(LinearScan::any_reg), 4134 _assigned_regHi(LinearScan::any_reg), 4135 _cached_to(-1), 4136 _cached_opr(LIR_OprFact::illegalOpr), 4137 _cached_vm_reg(VMRegImpl::Bad()), 4138 _split_children(NULL), 4139 _canonical_spill_slot(-1), 4140 _insert_move_when_activated(false), 4141 _spill_state(noDefinitionFound), 4142 _spill_definition_pos(-1), 4143 _register_hint(NULL) 4144 { 4145 _split_parent = this; 4146 _current_split_child = this; 4147 } 4148 4149 int Interval::calc_to() { 4150 assert(_first != Range::end(), "interval has no range"); 4151 4152 Range* r = _first; 4153 while (r->next() != Range::end()) { 4154 r = r->next(); 4155 } 4156 return r->to(); 4157 } 4158 4159 4160 #ifdef ASSERT 4161 // consistency check of split-children 4162 void Interval::check_split_children() { 4163 if (_split_children != NULL && _split_children->length() > 0) { 4164 assert(is_split_parent(), "only split parents can have children"); 4165 4166 for (int i = 0; i < _split_children->length(); i++) { 4167 Interval* i1 = _split_children->at(i); 4168 4169 assert(i1->split_parent() == this, "not a split child of this interval"); 4170 assert(i1->type() == type(), "must be equal for all split children"); 4171 assert(i1->canonical_spill_slot() == canonical_spill_slot(), "must be equal for all split children"); 4172 4173 for (int j = i + 1; j < _split_children->length(); j++) { 4174 Interval* i2 = _split_children->at(j); 4175 4176 assert(i1->reg_num() != i2->reg_num(), "same register number"); 4177 4178 if (i1->from() < i2->from()) { 4179 assert(i1->to() <= i2->from() && i1->to() < i2->to(), "intervals overlapping"); 4180 } else { 4181 assert(i2->from() < i1->from(), "intervals start at same op_id"); 4182 assert(i2->to() <= i1->from() && i2->to() < i1->to(), "intervals overlapping"); 4183 } 4184 } 4185 } 4186 } 4187 } 4188 #endif // ASSERT 4189 4190 Interval* Interval::register_hint(bool search_split_child) const { 4191 if (!search_split_child) { 4192 return _register_hint; 4193 } 4194 4195 if (_register_hint != NULL) { 4196 assert(_register_hint->is_split_parent(), "ony split parents are valid hint registers"); 4197 4198 if (_register_hint->assigned_reg() >= 0 && _register_hint->assigned_reg() < LinearScan::nof_regs) { 4199 return _register_hint; 4200 4201 } else if (_register_hint->_split_children != NULL && _register_hint->_split_children->length() > 0) { 4202 // search the first split child that has a register assigned 4203 int len = _register_hint->_split_children->length(); 4204 for (int i = 0; i < len; i++) { 4205 Interval* cur = _register_hint->_split_children->at(i); 4206 4207 if (cur->assigned_reg() >= 0 && cur->assigned_reg() < LinearScan::nof_regs) { 4208 return cur; 4209 } 4210 } 4211 } 4212 } 4213 4214 // no hint interval found that has a register assigned 4215 return NULL; 4216 } 4217 4218 4219 Interval* Interval::split_child_at_op_id(int op_id, LIR_OpVisitState::OprMode mode) { 4220 assert(is_split_parent(), "can only be called for split parents"); 4221 assert(op_id >= 0, "invalid op_id (method can not be called for spill moves)"); 4222 4223 Interval* result; 4224 if (_split_children == NULL || _split_children->length() == 0) { 4225 result = this; 4226 } else { 4227 result = NULL; 4228 int len = _split_children->length(); 4229 4230 // in outputMode, the end of the interval (op_id == cur->to()) is not valid 4231 int to_offset = (mode == LIR_OpVisitState::outputMode ? 0 : 1); 4232 4233 int i; 4234 for (i = 0; i < len; i++) { 4235 Interval* cur = _split_children->at(i); 4236 if (cur->from() <= op_id && op_id < cur->to() + to_offset) { 4237 if (i > 0) { 4238 // exchange current split child to start of list (faster access for next call) 4239 _split_children->at_put(i, _split_children->at(0)); 4240 _split_children->at_put(0, cur); 4241 } 4242 4243 // interval found 4244 result = cur; 4245 break; 4246 } 4247 } 4248 4249 #ifdef ASSERT 4250 for (i = 0; i < len; i++) { 4251 Interval* tmp = _split_children->at(i); 4252 if (tmp != result && tmp->from() <= op_id && op_id < tmp->to() + to_offset) { 4253 tty->print_cr("two valid result intervals found for op_id %d: %d and %d", op_id, result->reg_num(), tmp->reg_num()); 4254 result->print(); 4255 tmp->print(); 4256 assert(false, "two valid result intervals found"); 4257 } 4258 } 4259 #endif 4260 } 4261 4262 assert(result != NULL, "no matching interval found"); 4263 assert(result->covers(op_id, mode), "op_id not covered by interval"); 4264 4265 return result; 4266 } 4267 4268 4269 // returns the last split child that ends before the given op_id 4270 Interval* Interval::split_child_before_op_id(int op_id) { 4271 assert(op_id >= 0, "invalid op_id"); 4272 4273 Interval* parent = split_parent(); 4274 Interval* result = NULL; 4275 4276 assert(parent->_split_children != NULL, "no split children available"); 4277 int len = parent->_split_children->length(); 4278 assert(len > 0, "no split children available"); 4279 4280 for (int i = len - 1; i >= 0; i--) { 4281 Interval* cur = parent->_split_children->at(i); 4282 if (cur->to() <= op_id && (result == NULL || result->to() < cur->to())) { 4283 result = cur; 4284 } 4285 } 4286 4287 assert(result != NULL, "no split child found"); 4288 return result; 4289 } 4290 4291 4292 // Note: use positions are sorted descending -> first use has highest index 4293 int Interval::first_usage(IntervalUseKind min_use_kind) const { 4294 assert(LinearScan::is_virtual_interval(this), "cannot access use positions for fixed intervals"); 4295 4296 for (int i = _use_pos_and_kinds.length() - 2; i >= 0; i -= 2) { 4297 if (_use_pos_and_kinds.at(i + 1) >= min_use_kind) { 4298 return _use_pos_and_kinds.at(i); 4299 } 4300 } 4301 return max_jint; 4302 } 4303 4304 int Interval::next_usage(IntervalUseKind min_use_kind, int from) const { 4305 assert(LinearScan::is_virtual_interval(this), "cannot access use positions for fixed intervals"); 4306 4307 for (int i = _use_pos_and_kinds.length() - 2; i >= 0; i -= 2) { 4308 if (_use_pos_and_kinds.at(i) >= from && _use_pos_and_kinds.at(i + 1) >= min_use_kind) { 4309 return _use_pos_and_kinds.at(i); 4310 } 4311 } 4312 return max_jint; 4313 } 4314 4315 int Interval::next_usage_exact(IntervalUseKind exact_use_kind, int from) const { 4316 assert(LinearScan::is_virtual_interval(this), "cannot access use positions for fixed intervals"); 4317 4318 for (int i = _use_pos_and_kinds.length() - 2; i >= 0; i -= 2) { 4319 if (_use_pos_and_kinds.at(i) >= from && _use_pos_and_kinds.at(i + 1) == exact_use_kind) { 4320 return _use_pos_and_kinds.at(i); 4321 } 4322 } 4323 return max_jint; 4324 } 4325 4326 int Interval::previous_usage(IntervalUseKind min_use_kind, int from) const { 4327 assert(LinearScan::is_virtual_interval(this), "cannot access use positions for fixed intervals"); 4328 4329 int prev = 0; 4330 for (int i = _use_pos_and_kinds.length() - 2; i >= 0; i -= 2) { 4331 if (_use_pos_and_kinds.at(i) > from) { 4332 return prev; 4333 } 4334 if (_use_pos_and_kinds.at(i + 1) >= min_use_kind) { 4335 prev = _use_pos_and_kinds.at(i); 4336 } 4337 } 4338 return prev; 4339 } 4340 4341 void Interval::add_use_pos(int pos, IntervalUseKind use_kind) { 4342 assert(covers(pos, LIR_OpVisitState::inputMode), "use position not covered by live range"); 4343 4344 // do not add use positions for precolored intervals because 4345 // they are never used 4346 if (use_kind != noUse && reg_num() >= LIR_OprDesc::vreg_base) { 4347 #ifdef ASSERT 4348 assert(_use_pos_and_kinds.length() % 2 == 0, "must be"); 4349 for (int i = 0; i < _use_pos_and_kinds.length(); i += 2) { 4350 assert(pos <= _use_pos_and_kinds.at(i), "already added a use-position with lower position"); 4351 assert(_use_pos_and_kinds.at(i + 1) >= firstValidKind && _use_pos_and_kinds.at(i + 1) <= lastValidKind, "invalid use kind"); 4352 if (i > 0) { 4353 assert(_use_pos_and_kinds.at(i) < _use_pos_and_kinds.at(i - 2), "not sorted descending"); 4354 } 4355 } 4356 #endif 4357 4358 // Note: add_use is called in descending order, so list gets sorted 4359 // automatically by just appending new use positions 4360 int len = _use_pos_and_kinds.length(); 4361 if (len == 0 || _use_pos_and_kinds.at(len - 2) > pos) { 4362 _use_pos_and_kinds.append(pos); 4363 _use_pos_and_kinds.append(use_kind); 4364 } else if (_use_pos_and_kinds.at(len - 1) < use_kind) { 4365 assert(_use_pos_and_kinds.at(len - 2) == pos, "list not sorted correctly"); 4366 _use_pos_and_kinds.at_put(len - 1, use_kind); 4367 } 4368 } 4369 } 4370 4371 void Interval::add_range(int from, int to) { 4372 assert(from < to, "invalid range"); 4373 assert(first() == Range::end() || to < first()->next()->from(), "not inserting at begin of interval"); 4374 assert(from <= first()->to(), "not inserting at begin of interval"); 4375 4376 if (first()->from() <= to) { 4377 // join intersecting ranges 4378 first()->set_from(MIN2(from, first()->from())); 4379 first()->set_to (MAX2(to, first()->to())); 4380 } else { 4381 // insert new range 4382 _first = new Range(from, to, first()); 4383 } 4384 } 4385 4386 Interval* Interval::new_split_child() { 4387 // allocate new interval 4388 Interval* result = new Interval(-1); 4389 result->set_type(type()); 4390 4391 Interval* parent = split_parent(); 4392 result->_split_parent = parent; 4393 result->set_register_hint(parent); 4394 4395 // insert new interval in children-list of parent 4396 if (parent->_split_children == NULL) { 4397 assert(is_split_parent(), "list must be initialized at first split"); 4398 4399 parent->_split_children = new IntervalList(4); 4400 parent->_split_children->append(this); 4401 } 4402 parent->_split_children->append(result); 4403 4404 return result; 4405 } 4406 4407 // split this interval at the specified position and return 4408 // the remainder as a new interval. 4409 // 4410 // when an interval is split, a bi-directional link is established between the original interval 4411 // (the split parent) and the intervals that are split off this interval (the split children) 4412 // When a split child is split again, the new created interval is also a direct child 4413 // of the original parent (there is no tree of split children stored, but a flat list) 4414 // All split children are spilled to the same stack slot (stored in _canonical_spill_slot) 4415 // 4416 // Note: The new interval has no valid reg_num 4417 Interval* Interval::split(int split_pos) { 4418 assert(LinearScan::is_virtual_interval(this), "cannot split fixed intervals"); 4419 4420 // allocate new interval 4421 Interval* result = new_split_child(); 4422 4423 // split the ranges 4424 Range* prev = NULL; 4425 Range* cur = _first; 4426 while (cur != Range::end() && cur->to() <= split_pos) { 4427 prev = cur; 4428 cur = cur->next(); 4429 } 4430 assert(cur != Range::end(), "split interval after end of last range"); 4431 4432 if (cur->from() < split_pos) { 4433 result->_first = new Range(split_pos, cur->to(), cur->next()); 4434 cur->set_to(split_pos); 4435 cur->set_next(Range::end()); 4436 4437 } else { 4438 assert(prev != NULL, "split before start of first range"); 4439 result->_first = cur; 4440 prev->set_next(Range::end()); 4441 } 4442 result->_current = result->_first; 4443 _cached_to = -1; // clear cached value 4444 4445 // split list of use positions 4446 int total_len = _use_pos_and_kinds.length(); 4447 int start_idx = total_len - 2; 4448 while (start_idx >= 0 && _use_pos_and_kinds.at(start_idx) < split_pos) { 4449 start_idx -= 2; 4450 } 4451 4452 intStack new_use_pos_and_kinds(total_len - start_idx); 4453 int i; 4454 for (i = start_idx + 2; i < total_len; i++) { 4455 new_use_pos_and_kinds.append(_use_pos_and_kinds.at(i)); 4456 } 4457 4458 _use_pos_and_kinds.trunc_to(start_idx + 2); 4459 result->_use_pos_and_kinds = _use_pos_and_kinds; 4460 _use_pos_and_kinds = new_use_pos_and_kinds; 4461 4462 #ifdef ASSERT 4463 assert(_use_pos_and_kinds.length() % 2 == 0, "must have use kind for each use pos"); 4464 assert(result->_use_pos_and_kinds.length() % 2 == 0, "must have use kind for each use pos"); 4465 assert(_use_pos_and_kinds.length() + result->_use_pos_and_kinds.length() == total_len, "missed some entries"); 4466 4467 for (i = 0; i < _use_pos_and_kinds.length(); i += 2) { 4468 assert(_use_pos_and_kinds.at(i) < split_pos, "must be"); 4469 assert(_use_pos_and_kinds.at(i + 1) >= firstValidKind && _use_pos_and_kinds.at(i + 1) <= lastValidKind, "invalid use kind"); 4470 } 4471 for (i = 0; i < result->_use_pos_and_kinds.length(); i += 2) { 4472 assert(result->_use_pos_and_kinds.at(i) >= split_pos, "must be"); 4473 assert(result->_use_pos_and_kinds.at(i + 1) >= firstValidKind && result->_use_pos_and_kinds.at(i + 1) <= lastValidKind, "invalid use kind"); 4474 } 4475 #endif 4476 4477 return result; 4478 } 4479 4480 // split this interval at the specified position and return 4481 // the head as a new interval (the original interval is the tail) 4482 // 4483 // Currently, only the first range can be split, and the new interval 4484 // must not have split positions 4485 Interval* Interval::split_from_start(int split_pos) { 4486 assert(LinearScan::is_virtual_interval(this), "cannot split fixed intervals"); 4487 assert(split_pos > from() && split_pos < to(), "can only split inside interval"); 4488 assert(split_pos > _first->from() && split_pos <= _first->to(), "can only split inside first range"); 4489 assert(first_usage(noUse) > split_pos, "can not split when use positions are present"); 4490 4491 // allocate new interval 4492 Interval* result = new_split_child(); 4493 4494 // the new created interval has only one range (checked by assertion above), 4495 // so the splitting of the ranges is very simple 4496 result->add_range(_first->from(), split_pos); 4497 4498 if (split_pos == _first->to()) { 4499 assert(_first->next() != Range::end(), "must not be at end"); 4500 _first = _first->next(); 4501 } else { 4502 _first->set_from(split_pos); 4503 } 4504 4505 return result; 4506 } 4507 4508 4509 // returns true if the op_id is inside the interval 4510 bool Interval::covers(int op_id, LIR_OpVisitState::OprMode mode) const { 4511 Range* cur = _first; 4512 4513 while (cur != Range::end() && cur->to() < op_id) { 4514 cur = cur->next(); 4515 } 4516 if (cur != Range::end()) { 4517 assert(cur->to() != cur->next()->from(), "ranges not separated"); 4518 4519 if (mode == LIR_OpVisitState::outputMode) { 4520 return cur->from() <= op_id && op_id < cur->to(); 4521 } else { 4522 return cur->from() <= op_id && op_id <= cur->to(); 4523 } 4524 } 4525 return false; 4526 } 4527 4528 // returns true if the interval has any hole between hole_from and hole_to 4529 // (even if the hole has only the length 1) 4530 bool Interval::has_hole_between(int hole_from, int hole_to) { 4531 assert(hole_from < hole_to, "check"); 4532 assert(from() <= hole_from && hole_to <= to(), "index out of interval"); 4533 4534 Range* cur = _first; 4535 while (cur != Range::end()) { 4536 assert(cur->to() < cur->next()->from(), "no space between ranges"); 4537 4538 // hole-range starts before this range -> hole 4539 if (hole_from < cur->from()) { 4540 return true; 4541 4542 // hole-range completely inside this range -> no hole 4543 } else if (hole_to <= cur->to()) { 4544 return false; 4545 4546 // overlapping of hole-range with this range -> hole 4547 } else if (hole_from <= cur->to()) { 4548 return true; 4549 } 4550 4551 cur = cur->next(); 4552 } 4553 4554 return false; 4555 } 4556 4557 4558 #ifndef PRODUCT 4559 void Interval::print(outputStream* out) const { 4560 const char* SpillState2Name[] = { "no definition", "no spill store", "one spill store", "store at definition", "start in memory", "no optimization" }; 4561 const char* UseKind2Name[] = { "N", "L", "S", "M" }; 4562 4563 const char* type_name; 4564 LIR_Opr opr = LIR_OprFact::illegal(); 4565 if (reg_num() < LIR_OprDesc::vreg_base) { 4566 type_name = "fixed"; 4567 // need a temporary operand for fixed intervals because type() cannot be called 4568 #ifdef X86 4569 int last_xmm_reg = pd_last_xmm_reg; 4570 #ifdef _LP64 4571 if (UseAVX < 3) { 4572 last_xmm_reg = pd_first_xmm_reg + (pd_nof_xmm_regs_frame_map / 2) - 1; 4573 } 4574 #endif 4575 #endif 4576 if (assigned_reg() >= pd_first_cpu_reg && assigned_reg() <= pd_last_cpu_reg) { 4577 opr = LIR_OprFact::single_cpu(assigned_reg()); 4578 } else if (assigned_reg() >= pd_first_fpu_reg && assigned_reg() <= pd_last_fpu_reg) { 4579 opr = LIR_OprFact::single_fpu(assigned_reg() - pd_first_fpu_reg); 4580 #ifdef X86 4581 } else if (assigned_reg() >= pd_first_xmm_reg && assigned_reg() <= last_xmm_reg) { 4582 opr = LIR_OprFact::single_xmm(assigned_reg() - pd_first_xmm_reg); 4583 #endif 4584 } else { 4585 ShouldNotReachHere(); 4586 } 4587 } else { 4588 type_name = type2name(type()); 4589 if (assigned_reg() != -1 && 4590 (LinearScan::num_physical_regs(type()) == 1 || assigned_regHi() != -1)) { 4591 opr = LinearScan::calc_operand_for_interval(this); 4592 } 4593 } 4594 4595 out->print("%d %s ", reg_num(), type_name); 4596 if (opr->is_valid()) { 4597 out->print("\""); 4598 opr->print(out); 4599 out->print("\" "); 4600 } 4601 out->print("%d %d ", split_parent()->reg_num(), (register_hint(false) != NULL ? register_hint(false)->reg_num() : -1)); 4602 4603 // print ranges 4604 Range* cur = _first; 4605 while (cur != Range::end()) { 4606 cur->print(out); 4607 cur = cur->next(); 4608 assert(cur != NULL, "range list not closed with range sentinel"); 4609 } 4610 4611 // print use positions 4612 int prev = 0; 4613 assert(_use_pos_and_kinds.length() % 2 == 0, "must be"); 4614 for (int i =_use_pos_and_kinds.length() - 2; i >= 0; i -= 2) { 4615 assert(_use_pos_and_kinds.at(i + 1) >= firstValidKind && _use_pos_and_kinds.at(i + 1) <= lastValidKind, "invalid use kind"); 4616 assert(prev < _use_pos_and_kinds.at(i), "use positions not sorted"); 4617 4618 out->print("%d %s ", _use_pos_and_kinds.at(i), UseKind2Name[_use_pos_and_kinds.at(i + 1)]); 4619 prev = _use_pos_and_kinds.at(i); 4620 } 4621 4622 out->print(" \"%s\"", SpillState2Name[spill_state()]); 4623 out->cr(); 4624 } 4625 #endif 4626 4627 4628 4629 // **** Implementation of IntervalWalker **************************** 4630 4631 IntervalWalker::IntervalWalker(LinearScan* allocator, Interval* unhandled_fixed_first, Interval* unhandled_any_first) 4632 : _compilation(allocator->compilation()) 4633 , _allocator(allocator) 4634 { 4635 _unhandled_first[fixedKind] = unhandled_fixed_first; 4636 _unhandled_first[anyKind] = unhandled_any_first; 4637 _active_first[fixedKind] = Interval::end(); 4638 _inactive_first[fixedKind] = Interval::end(); 4639 _active_first[anyKind] = Interval::end(); 4640 _inactive_first[anyKind] = Interval::end(); 4641 _current_position = -1; 4642 _current = NULL; 4643 next_interval(); 4644 } 4645 4646 4647 // append interval in order of current range from() 4648 void IntervalWalker::append_sorted(Interval** list, Interval* interval) { 4649 Interval* prev = NULL; 4650 Interval* cur = *list; 4651 while (cur->current_from() < interval->current_from()) { 4652 prev = cur; cur = cur->next(); 4653 } 4654 if (prev == NULL) { 4655 *list = interval; 4656 } else { 4657 prev->set_next(interval); 4658 } 4659 interval->set_next(cur); 4660 } 4661 4662 void IntervalWalker::append_to_unhandled(Interval** list, Interval* interval) { 4663 assert(interval->from() >= current()->current_from(), "cannot append new interval before current walk position"); 4664 4665 Interval* prev = NULL; 4666 Interval* cur = *list; 4667 while (cur->from() < interval->from() || (cur->from() == interval->from() && cur->first_usage(noUse) < interval->first_usage(noUse))) { 4668 prev = cur; cur = cur->next(); 4669 } 4670 if (prev == NULL) { 4671 *list = interval; 4672 } else { 4673 prev->set_next(interval); 4674 } 4675 interval->set_next(cur); 4676 } 4677 4678 4679 inline bool IntervalWalker::remove_from_list(Interval** list, Interval* i) { 4680 while (*list != Interval::end() && *list != i) { 4681 list = (*list)->next_addr(); 4682 } 4683 if (*list != Interval::end()) { 4684 assert(*list == i, "check"); 4685 *list = (*list)->next(); 4686 return true; 4687 } else { 4688 return false; 4689 } 4690 } 4691 4692 void IntervalWalker::remove_from_list(Interval* i) { 4693 bool deleted; 4694 4695 if (i->state() == activeState) { 4696 deleted = remove_from_list(active_first_addr(anyKind), i); 4697 } else { 4698 assert(i->state() == inactiveState, "invalid state"); 4699 deleted = remove_from_list(inactive_first_addr(anyKind), i); 4700 } 4701 4702 assert(deleted, "interval has not been found in list"); 4703 } 4704 4705 4706 void IntervalWalker::walk_to(IntervalState state, int from) { 4707 assert (state == activeState || state == inactiveState, "wrong state"); 4708 for_each_interval_kind(kind) { 4709 Interval** prev = state == activeState ? active_first_addr(kind) : inactive_first_addr(kind); 4710 Interval* next = *prev; 4711 while (next->current_from() <= from) { 4712 Interval* cur = next; 4713 next = cur->next(); 4714 4715 bool range_has_changed = false; 4716 while (cur->current_to() <= from) { 4717 cur->next_range(); 4718 range_has_changed = true; 4719 } 4720 4721 // also handle move from inactive list to active list 4722 range_has_changed = range_has_changed || (state == inactiveState && cur->current_from() <= from); 4723 4724 if (range_has_changed) { 4725 // remove cur from list 4726 *prev = next; 4727 if (cur->current_at_end()) { 4728 // move to handled state (not maintained as a list) 4729 cur->set_state(handledState); 4730 interval_moved(cur, kind, state, handledState); 4731 } else if (cur->current_from() <= from){ 4732 // sort into active list 4733 append_sorted(active_first_addr(kind), cur); 4734 cur->set_state(activeState); 4735 if (*prev == cur) { 4736 assert(state == activeState, "check"); 4737 prev = cur->next_addr(); 4738 } 4739 interval_moved(cur, kind, state, activeState); 4740 } else { 4741 // sort into inactive list 4742 append_sorted(inactive_first_addr(kind), cur); 4743 cur->set_state(inactiveState); 4744 if (*prev == cur) { 4745 assert(state == inactiveState, "check"); 4746 prev = cur->next_addr(); 4747 } 4748 interval_moved(cur, kind, state, inactiveState); 4749 } 4750 } else { 4751 prev = cur->next_addr(); 4752 continue; 4753 } 4754 } 4755 } 4756 } 4757 4758 4759 void IntervalWalker::next_interval() { 4760 IntervalKind kind; 4761 Interval* any = _unhandled_first[anyKind]; 4762 Interval* fixed = _unhandled_first[fixedKind]; 4763 4764 if (any != Interval::end()) { 4765 // intervals may start at same position -> prefer fixed interval 4766 kind = fixed != Interval::end() && fixed->from() <= any->from() ? fixedKind : anyKind; 4767 4768 assert (kind == fixedKind && fixed->from() <= any->from() || 4769 kind == anyKind && any->from() <= fixed->from(), "wrong interval!!!"); 4770 assert(any == Interval::end() || fixed == Interval::end() || any->from() != fixed->from() || kind == fixedKind, "if fixed and any-Interval start at same position, fixed must be processed first"); 4771 4772 } else if (fixed != Interval::end()) { 4773 kind = fixedKind; 4774 } else { 4775 _current = NULL; return; 4776 } 4777 _current_kind = kind; 4778 _current = _unhandled_first[kind]; 4779 _unhandled_first[kind] = _current->next(); 4780 _current->set_next(Interval::end()); 4781 _current->rewind_range(); 4782 } 4783 4784 4785 void IntervalWalker::walk_to(int lir_op_id) { 4786 assert(_current_position <= lir_op_id, "can not walk backwards"); 4787 while (current() != NULL) { 4788 bool is_active = current()->from() <= lir_op_id; 4789 int id = is_active ? current()->from() : lir_op_id; 4790 4791 TRACE_LINEAR_SCAN(2, if (_current_position < id) { tty->cr(); tty->print_cr("walk_to(%d) **************************************************************", id); }) 4792 4793 // set _current_position prior to call of walk_to 4794 _current_position = id; 4795 4796 // call walk_to even if _current_position == id 4797 walk_to(activeState, id); 4798 walk_to(inactiveState, id); 4799 4800 if (is_active) { 4801 current()->set_state(activeState); 4802 if (activate_current()) { 4803 append_sorted(active_first_addr(current_kind()), current()); 4804 interval_moved(current(), current_kind(), unhandledState, activeState); 4805 } 4806 4807 next_interval(); 4808 } else { 4809 return; 4810 } 4811 } 4812 } 4813 4814 void IntervalWalker::interval_moved(Interval* interval, IntervalKind kind, IntervalState from, IntervalState to) { 4815 #ifndef PRODUCT 4816 if (TraceLinearScanLevel >= 4) { 4817 #define print_state(state) \ 4818 switch(state) {\ 4819 case unhandledState: tty->print("unhandled"); break;\ 4820 case activeState: tty->print("active"); break;\ 4821 case inactiveState: tty->print("inactive"); break;\ 4822 case handledState: tty->print("handled"); break;\ 4823 default: ShouldNotReachHere(); \ 4824 } 4825 4826 print_state(from); tty->print(" to "); print_state(to); 4827 tty->fill_to(23); 4828 interval->print(); 4829 4830 #undef print_state 4831 } 4832 #endif 4833 } 4834 4835 4836 4837 // **** Implementation of LinearScanWalker ************************** 4838 4839 LinearScanWalker::LinearScanWalker(LinearScan* allocator, Interval* unhandled_fixed_first, Interval* unhandled_any_first) 4840 : IntervalWalker(allocator, unhandled_fixed_first, unhandled_any_first) 4841 , _move_resolver(allocator) 4842 { 4843 for (int i = 0; i < LinearScan::nof_regs; i++) { 4844 _spill_intervals[i] = new IntervalList(2); 4845 } 4846 } 4847 4848 4849 inline void LinearScanWalker::init_use_lists(bool only_process_use_pos) { 4850 for (int i = _first_reg; i <= _last_reg; i++) { 4851 _use_pos[i] = max_jint; 4852 4853 if (!only_process_use_pos) { 4854 _block_pos[i] = max_jint; 4855 _spill_intervals[i]->clear(); 4856 } 4857 } 4858 } 4859 4860 inline void LinearScanWalker::exclude_from_use(int reg) { 4861 assert(reg < LinearScan::nof_regs, "interval must have a register assigned (stack slots not allowed)"); 4862 if (reg >= _first_reg && reg <= _last_reg) { 4863 _use_pos[reg] = 0; 4864 } 4865 } 4866 inline void LinearScanWalker::exclude_from_use(Interval* i) { 4867 assert(i->assigned_reg() != any_reg, "interval has no register assigned"); 4868 4869 exclude_from_use(i->assigned_reg()); 4870 exclude_from_use(i->assigned_regHi()); 4871 } 4872 4873 inline void LinearScanWalker::set_use_pos(int reg, Interval* i, int use_pos, bool only_process_use_pos) { 4874 assert(use_pos != 0, "must use exclude_from_use to set use_pos to 0"); 4875 4876 if (reg >= _first_reg && reg <= _last_reg) { 4877 if (_use_pos[reg] > use_pos) { 4878 _use_pos[reg] = use_pos; 4879 } 4880 if (!only_process_use_pos) { 4881 _spill_intervals[reg]->append(i); 4882 } 4883 } 4884 } 4885 inline void LinearScanWalker::set_use_pos(Interval* i, int use_pos, bool only_process_use_pos) { 4886 assert(i->assigned_reg() != any_reg, "interval has no register assigned"); 4887 if (use_pos != -1) { 4888 set_use_pos(i->assigned_reg(), i, use_pos, only_process_use_pos); 4889 set_use_pos(i->assigned_regHi(), i, use_pos, only_process_use_pos); 4890 } 4891 } 4892 4893 inline void LinearScanWalker::set_block_pos(int reg, Interval* i, int block_pos) { 4894 if (reg >= _first_reg && reg <= _last_reg) { 4895 if (_block_pos[reg] > block_pos) { 4896 _block_pos[reg] = block_pos; 4897 } 4898 if (_use_pos[reg] > block_pos) { 4899 _use_pos[reg] = block_pos; 4900 } 4901 } 4902 } 4903 inline void LinearScanWalker::set_block_pos(Interval* i, int block_pos) { 4904 assert(i->assigned_reg() != any_reg, "interval has no register assigned"); 4905 if (block_pos != -1) { 4906 set_block_pos(i->assigned_reg(), i, block_pos); 4907 set_block_pos(i->assigned_regHi(), i, block_pos); 4908 } 4909 } 4910 4911 4912 void LinearScanWalker::free_exclude_active_fixed() { 4913 Interval* list = active_first(fixedKind); 4914 while (list != Interval::end()) { 4915 assert(list->assigned_reg() < LinearScan::nof_regs, "active interval must have a register assigned"); 4916 exclude_from_use(list); 4917 list = list->next(); 4918 } 4919 } 4920 4921 void LinearScanWalker::free_exclude_active_any() { 4922 Interval* list = active_first(anyKind); 4923 while (list != Interval::end()) { 4924 exclude_from_use(list); 4925 list = list->next(); 4926 } 4927 } 4928 4929 void LinearScanWalker::free_collect_inactive_fixed(Interval* cur) { 4930 Interval* list = inactive_first(fixedKind); 4931 while (list != Interval::end()) { 4932 if (cur->to() <= list->current_from()) { 4933 assert(list->current_intersects_at(cur) == -1, "must not intersect"); 4934 set_use_pos(list, list->current_from(), true); 4935 } else { 4936 set_use_pos(list, list->current_intersects_at(cur), true); 4937 } 4938 list = list->next(); 4939 } 4940 } 4941 4942 void LinearScanWalker::free_collect_inactive_any(Interval* cur) { 4943 Interval* list = inactive_first(anyKind); 4944 while (list != Interval::end()) { 4945 set_use_pos(list, list->current_intersects_at(cur), true); 4946 list = list->next(); 4947 } 4948 } 4949 4950 void LinearScanWalker::spill_exclude_active_fixed() { 4951 Interval* list = active_first(fixedKind); 4952 while (list != Interval::end()) { 4953 exclude_from_use(list); 4954 list = list->next(); 4955 } 4956 } 4957 4958 void LinearScanWalker::spill_block_inactive_fixed(Interval* cur) { 4959 Interval* list = inactive_first(fixedKind); 4960 while (list != Interval::end()) { 4961 if (cur->to() > list->current_from()) { 4962 set_block_pos(list, list->current_intersects_at(cur)); 4963 } else { 4964 assert(list->current_intersects_at(cur) == -1, "invalid optimization: intervals intersect"); 4965 } 4966 4967 list = list->next(); 4968 } 4969 } 4970 4971 void LinearScanWalker::spill_collect_active_any() { 4972 Interval* list = active_first(anyKind); 4973 while (list != Interval::end()) { 4974 set_use_pos(list, MIN2(list->next_usage(loopEndMarker, _current_position), list->to()), false); 4975 list = list->next(); 4976 } 4977 } 4978 4979 void LinearScanWalker::spill_collect_inactive_any(Interval* cur) { 4980 Interval* list = inactive_first(anyKind); 4981 while (list != Interval::end()) { 4982 if (list->current_intersects(cur)) { 4983 set_use_pos(list, MIN2(list->next_usage(loopEndMarker, _current_position), list->to()), false); 4984 } 4985 list = list->next(); 4986 } 4987 } 4988 4989 4990 void LinearScanWalker::insert_move(int op_id, Interval* src_it, Interval* dst_it) { 4991 // output all moves here. When source and target are equal, the move is 4992 // optimized away later in assign_reg_nums 4993 4994 op_id = (op_id + 1) & ~1; 4995 BlockBegin* op_block = allocator()->block_of_op_with_id(op_id); 4996 assert(op_id > 0 && allocator()->block_of_op_with_id(op_id - 2) == op_block, "cannot insert move at block boundary"); 4997 4998 // calculate index of instruction inside instruction list of current block 4999 // the minimal index (for a block with no spill moves) can be calculated because the 5000 // numbering of instructions is known. 5001 // When the block already contains spill moves, the index must be increased until the 5002 // correct index is reached. 5003 LIR_OpList* list = op_block->lir()->instructions_list(); 5004 int index = (op_id - list->at(0)->id()) / 2; 5005 assert(list->at(index)->id() <= op_id, "error in calculation"); 5006 5007 while (list->at(index)->id() != op_id) { 5008 index++; 5009 assert(0 <= index && index < list->length(), "index out of bounds"); 5010 } 5011 assert(1 <= index && index < list->length(), "index out of bounds"); 5012 assert(list->at(index)->id() == op_id, "error in calculation"); 5013 5014 // insert new instruction before instruction at position index 5015 _move_resolver.move_insert_position(op_block->lir(), index - 1); 5016 _move_resolver.add_mapping(src_it, dst_it); 5017 } 5018 5019 5020 int LinearScanWalker::find_optimal_split_pos(BlockBegin* min_block, BlockBegin* max_block, int max_split_pos) { 5021 int from_block_nr = min_block->linear_scan_number(); 5022 int to_block_nr = max_block->linear_scan_number(); 5023 5024 assert(0 <= from_block_nr && from_block_nr < block_count(), "out of range"); 5025 assert(0 <= to_block_nr && to_block_nr < block_count(), "out of range"); 5026 assert(from_block_nr < to_block_nr, "must cross block boundary"); 5027 5028 // Try to split at end of max_block. If this would be after 5029 // max_split_pos, then use the begin of max_block 5030 int optimal_split_pos = max_block->last_lir_instruction_id() + 2; 5031 if (optimal_split_pos > max_split_pos) { 5032 optimal_split_pos = max_block->first_lir_instruction_id(); 5033 } 5034 5035 int min_loop_depth = max_block->loop_depth(); 5036 for (int i = to_block_nr - 1; i >= from_block_nr; i--) { 5037 BlockBegin* cur = block_at(i); 5038 5039 if (cur->loop_depth() < min_loop_depth) { 5040 // block with lower loop-depth found -> split at the end of this block 5041 min_loop_depth = cur->loop_depth(); 5042 optimal_split_pos = cur->last_lir_instruction_id() + 2; 5043 } 5044 } 5045 assert(optimal_split_pos > allocator()->max_lir_op_id() || allocator()->is_block_begin(optimal_split_pos), "algorithm must move split pos to block boundary"); 5046 5047 return optimal_split_pos; 5048 } 5049 5050 5051 int LinearScanWalker::find_optimal_split_pos(Interval* it, int min_split_pos, int max_split_pos, bool do_loop_optimization) { 5052 int optimal_split_pos = -1; 5053 if (min_split_pos == max_split_pos) { 5054 // trivial case, no optimization of split position possible 5055 TRACE_LINEAR_SCAN(4, tty->print_cr(" min-pos and max-pos are equal, no optimization possible")); 5056 optimal_split_pos = min_split_pos; 5057 5058 } else { 5059 assert(min_split_pos < max_split_pos, "must be true then"); 5060 assert(min_split_pos > 0, "cannot access min_split_pos - 1 otherwise"); 5061 5062 // reason for using min_split_pos - 1: when the minimal split pos is exactly at the 5063 // beginning of a block, then min_split_pos is also a possible split position. 5064 // Use the block before as min_block, because then min_block->last_lir_instruction_id() + 2 == min_split_pos 5065 BlockBegin* min_block = allocator()->block_of_op_with_id(min_split_pos - 1); 5066 5067 // reason for using max_split_pos - 1: otherwise there would be an assertion failure 5068 // when an interval ends at the end of the last block of the method 5069 // (in this case, max_split_pos == allocator()->max_lir_op_id() + 2, and there is no 5070 // block at this op_id) 5071 BlockBegin* max_block = allocator()->block_of_op_with_id(max_split_pos - 1); 5072 5073 assert(min_block->linear_scan_number() <= max_block->linear_scan_number(), "invalid order"); 5074 if (min_block == max_block) { 5075 // split position cannot be moved to block boundary, so split as late as possible 5076 TRACE_LINEAR_SCAN(4, tty->print_cr(" cannot move split pos to block boundary because min_pos and max_pos are in same block")); 5077 optimal_split_pos = max_split_pos; 5078 5079 } else if (it->has_hole_between(max_split_pos - 1, max_split_pos) && !allocator()->is_block_begin(max_split_pos)) { 5080 // Do not move split position if the interval has a hole before max_split_pos. 5081 // Intervals resulting from Phi-Functions have more than one definition (marked 5082 // as mustHaveRegister) with a hole before each definition. When the register is needed 5083 // for the second definition, an earlier reloading is unnecessary. 5084 TRACE_LINEAR_SCAN(4, tty->print_cr(" interval has hole just before max_split_pos, so splitting at max_split_pos")); 5085 optimal_split_pos = max_split_pos; 5086 5087 } else { 5088 // seach optimal block boundary between min_split_pos and max_split_pos 5089 TRACE_LINEAR_SCAN(4, tty->print_cr(" moving split pos to optimal block boundary between block B%d and B%d", min_block->block_id(), max_block->block_id())); 5090 5091 if (do_loop_optimization) { 5092 // Loop optimization: if a loop-end marker is found between min- and max-position, 5093 // then split before this loop 5094 int loop_end_pos = it->next_usage_exact(loopEndMarker, min_block->last_lir_instruction_id() + 2); 5095 TRACE_LINEAR_SCAN(4, tty->print_cr(" loop optimization: loop end found at pos %d", loop_end_pos)); 5096 5097 assert(loop_end_pos > min_split_pos, "invalid order"); 5098 if (loop_end_pos < max_split_pos) { 5099 // loop-end marker found between min- and max-position 5100 // if it is not the end marker for the same loop as the min-position, then move 5101 // the max-position to this loop block. 5102 // Desired result: uses tagged as shouldHaveRegister inside a loop cause a reloading 5103 // of the interval (normally, only mustHaveRegister causes a reloading) 5104 BlockBegin* loop_block = allocator()->block_of_op_with_id(loop_end_pos); 5105 5106 TRACE_LINEAR_SCAN(4, tty->print_cr(" interval is used in loop that ends in block B%d, so trying to move max_block back from B%d to B%d", loop_block->block_id(), max_block->block_id(), loop_block->block_id())); 5107 assert(loop_block != min_block, "loop_block and min_block must be different because block boundary is needed between"); 5108 5109 optimal_split_pos = find_optimal_split_pos(min_block, loop_block, loop_block->last_lir_instruction_id() + 2); 5110 if (optimal_split_pos == loop_block->last_lir_instruction_id() + 2) { 5111 optimal_split_pos = -1; 5112 TRACE_LINEAR_SCAN(4, tty->print_cr(" loop optimization not necessary")); 5113 } else { 5114 TRACE_LINEAR_SCAN(4, tty->print_cr(" loop optimization successful")); 5115 } 5116 } 5117 } 5118 5119 if (optimal_split_pos == -1) { 5120 // not calculated by loop optimization 5121 optimal_split_pos = find_optimal_split_pos(min_block, max_block, max_split_pos); 5122 } 5123 } 5124 } 5125 TRACE_LINEAR_SCAN(4, tty->print_cr(" optimal split position: %d", optimal_split_pos)); 5126 5127 return optimal_split_pos; 5128 } 5129 5130 5131 /* 5132 split an interval at the optimal position between min_split_pos and 5133 max_split_pos in two parts: 5134 1) the left part has already a location assigned 5135 2) the right part is sorted into to the unhandled-list 5136 */ 5137 void LinearScanWalker::split_before_usage(Interval* it, int min_split_pos, int max_split_pos) { 5138 TRACE_LINEAR_SCAN(2, tty->print ("----- splitting interval: "); it->print()); 5139 TRACE_LINEAR_SCAN(2, tty->print_cr(" between %d and %d", min_split_pos, max_split_pos)); 5140 5141 assert(it->from() < min_split_pos, "cannot split at start of interval"); 5142 assert(current_position() < min_split_pos, "cannot split before current position"); 5143 assert(min_split_pos <= max_split_pos, "invalid order"); 5144 assert(max_split_pos <= it->to(), "cannot split after end of interval"); 5145 5146 int optimal_split_pos = find_optimal_split_pos(it, min_split_pos, max_split_pos, true); 5147 5148 assert(min_split_pos <= optimal_split_pos && optimal_split_pos <= max_split_pos, "out of range"); 5149 assert(optimal_split_pos <= it->to(), "cannot split after end of interval"); 5150 assert(optimal_split_pos > it->from(), "cannot split at start of interval"); 5151 5152 if (optimal_split_pos == it->to() && it->next_usage(mustHaveRegister, min_split_pos) == max_jint) { 5153 // the split position would be just before the end of the interval 5154 // -> no split at all necessary 5155 TRACE_LINEAR_SCAN(4, tty->print_cr(" no split necessary because optimal split position is at end of interval")); 5156 return; 5157 } 5158 5159 // must calculate this before the actual split is performed and before split position is moved to odd op_id 5160 bool move_necessary = !allocator()->is_block_begin(optimal_split_pos) && !it->has_hole_between(optimal_split_pos - 1, optimal_split_pos); 5161 5162 if (!allocator()->is_block_begin(optimal_split_pos)) { 5163 // move position before actual instruction (odd op_id) 5164 optimal_split_pos = (optimal_split_pos - 1) | 1; 5165 } 5166 5167 TRACE_LINEAR_SCAN(4, tty->print_cr(" splitting at position %d", optimal_split_pos)); 5168 assert(allocator()->is_block_begin(optimal_split_pos) || (optimal_split_pos % 2 == 1), "split pos must be odd when not on block boundary"); 5169 assert(!allocator()->is_block_begin(optimal_split_pos) || (optimal_split_pos % 2 == 0), "split pos must be even on block boundary"); 5170 5171 Interval* split_part = it->split(optimal_split_pos); 5172 5173 allocator()->append_interval(split_part); 5174 allocator()->copy_register_flags(it, split_part); 5175 split_part->set_insert_move_when_activated(move_necessary); 5176 append_to_unhandled(unhandled_first_addr(anyKind), split_part); 5177 5178 TRACE_LINEAR_SCAN(2, tty->print_cr(" split interval in two parts (insert_move_when_activated: %d)", move_necessary)); 5179 TRACE_LINEAR_SCAN(2, tty->print (" "); it->print()); 5180 TRACE_LINEAR_SCAN(2, tty->print (" "); split_part->print()); 5181 } 5182 5183 /* 5184 split an interval at the optimal position between min_split_pos and 5185 max_split_pos in two parts: 5186 1) the left part has already a location assigned 5187 2) the right part is always on the stack and therefore ignored in further processing 5188 */ 5189 void LinearScanWalker::split_for_spilling(Interval* it) { 5190 // calculate allowed range of splitting position 5191 int max_split_pos = current_position(); 5192 int min_split_pos = MAX2(it->previous_usage(shouldHaveRegister, max_split_pos) + 1, it->from()); 5193 5194 TRACE_LINEAR_SCAN(2, tty->print ("----- splitting and spilling interval: "); it->print()); 5195 TRACE_LINEAR_SCAN(2, tty->print_cr(" between %d and %d", min_split_pos, max_split_pos)); 5196 5197 assert(it->state() == activeState, "why spill interval that is not active?"); 5198 assert(it->from() <= min_split_pos, "cannot split before start of interval"); 5199 assert(min_split_pos <= max_split_pos, "invalid order"); 5200 assert(max_split_pos < it->to(), "cannot split at end end of interval"); 5201 assert(current_position() < it->to(), "interval must not end before current position"); 5202 5203 if (min_split_pos == it->from()) { 5204 // the whole interval is never used, so spill it entirely to memory 5205 TRACE_LINEAR_SCAN(2, tty->print_cr(" spilling entire interval because split pos is at beginning of interval")); 5206 assert(it->first_usage(shouldHaveRegister) > current_position(), "interval must not have use position before current_position"); 5207 5208 allocator()->assign_spill_slot(it); 5209 allocator()->change_spill_state(it, min_split_pos); 5210 5211 // Also kick parent intervals out of register to memory when they have no use 5212 // position. This avoids short interval in register surrounded by intervals in 5213 // memory -> avoid useless moves from memory to register and back 5214 Interval* parent = it; 5215 while (parent != NULL && parent->is_split_child()) { 5216 parent = parent->split_child_before_op_id(parent->from()); 5217 5218 if (parent->assigned_reg() < LinearScan::nof_regs) { 5219 if (parent->first_usage(shouldHaveRegister) == max_jint) { 5220 // parent is never used, so kick it out of its assigned register 5221 TRACE_LINEAR_SCAN(4, tty->print_cr(" kicking out interval %d out of its register because it is never used", parent->reg_num())); 5222 allocator()->assign_spill_slot(parent); 5223 } else { 5224 // do not go further back because the register is actually used by the interval 5225 parent = NULL; 5226 } 5227 } 5228 } 5229 5230 } else { 5231 // search optimal split pos, split interval and spill only the right hand part 5232 int optimal_split_pos = find_optimal_split_pos(it, min_split_pos, max_split_pos, false); 5233 5234 assert(min_split_pos <= optimal_split_pos && optimal_split_pos <= max_split_pos, "out of range"); 5235 assert(optimal_split_pos < it->to(), "cannot split at end of interval"); 5236 assert(optimal_split_pos >= it->from(), "cannot split before start of interval"); 5237 5238 if (!allocator()->is_block_begin(optimal_split_pos)) { 5239 // move position before actual instruction (odd op_id) 5240 optimal_split_pos = (optimal_split_pos - 1) | 1; 5241 } 5242 5243 TRACE_LINEAR_SCAN(4, tty->print_cr(" splitting at position %d", optimal_split_pos)); 5244 assert(allocator()->is_block_begin(optimal_split_pos) || (optimal_split_pos % 2 == 1), "split pos must be odd when not on block boundary"); 5245 assert(!allocator()->is_block_begin(optimal_split_pos) || (optimal_split_pos % 2 == 0), "split pos must be even on block boundary"); 5246 5247 Interval* spilled_part = it->split(optimal_split_pos); 5248 allocator()->append_interval(spilled_part); 5249 allocator()->assign_spill_slot(spilled_part); 5250 allocator()->change_spill_state(spilled_part, optimal_split_pos); 5251 5252 if (!allocator()->is_block_begin(optimal_split_pos)) { 5253 TRACE_LINEAR_SCAN(4, tty->print_cr(" inserting move from interval %d to %d", it->reg_num(), spilled_part->reg_num())); 5254 insert_move(optimal_split_pos, it, spilled_part); 5255 } 5256 5257 // the current_split_child is needed later when moves are inserted for reloading 5258 assert(spilled_part->current_split_child() == it, "overwriting wrong current_split_child"); 5259 spilled_part->make_current_split_child(); 5260 5261 TRACE_LINEAR_SCAN(2, tty->print_cr(" split interval in two parts")); 5262 TRACE_LINEAR_SCAN(2, tty->print (" "); it->print()); 5263 TRACE_LINEAR_SCAN(2, tty->print (" "); spilled_part->print()); 5264 } 5265 } 5266 5267 5268 void LinearScanWalker::split_stack_interval(Interval* it) { 5269 int min_split_pos = current_position() + 1; 5270 int max_split_pos = MIN2(it->first_usage(shouldHaveRegister), it->to()); 5271 5272 split_before_usage(it, min_split_pos, max_split_pos); 5273 } 5274 5275 void LinearScanWalker::split_when_partial_register_available(Interval* it, int register_available_until) { 5276 int min_split_pos = MAX2(it->previous_usage(shouldHaveRegister, register_available_until), it->from() + 1); 5277 int max_split_pos = register_available_until; 5278 5279 split_before_usage(it, min_split_pos, max_split_pos); 5280 } 5281 5282 void LinearScanWalker::split_and_spill_interval(Interval* it) { 5283 assert(it->state() == activeState || it->state() == inactiveState, "other states not allowed"); 5284 5285 int current_pos = current_position(); 5286 if (it->state() == inactiveState) { 5287 // the interval is currently inactive, so no spill slot is needed for now. 5288 // when the split part is activated, the interval has a new chance to get a register, 5289 // so in the best case no stack slot is necessary 5290 assert(it->has_hole_between(current_pos - 1, current_pos + 1), "interval can not be inactive otherwise"); 5291 split_before_usage(it, current_pos + 1, current_pos + 1); 5292 5293 } else { 5294 // search the position where the interval must have a register and split 5295 // at the optimal position before. 5296 // The new created part is added to the unhandled list and will get a register 5297 // when it is activated 5298 int min_split_pos = current_pos + 1; 5299 int max_split_pos = MIN2(it->next_usage(mustHaveRegister, min_split_pos), it->to()); 5300 5301 split_before_usage(it, min_split_pos, max_split_pos); 5302 5303 assert(it->next_usage(mustHaveRegister, current_pos) == max_jint, "the remaining part is spilled to stack and therefore has no register"); 5304 split_for_spilling(it); 5305 } 5306 } 5307 5308 5309 int LinearScanWalker::find_free_reg(int reg_needed_until, int interval_to, int hint_reg, int ignore_reg, bool* need_split) { 5310 int min_full_reg = any_reg; 5311 int max_partial_reg = any_reg; 5312 5313 for (int i = _first_reg; i <= _last_reg; i++) { 5314 if (i == ignore_reg) { 5315 // this register must be ignored 5316 5317 } else if (_use_pos[i] >= interval_to) { 5318 // this register is free for the full interval 5319 if (min_full_reg == any_reg || i == hint_reg || (_use_pos[i] < _use_pos[min_full_reg] && min_full_reg != hint_reg)) { 5320 min_full_reg = i; 5321 } 5322 } else if (_use_pos[i] > reg_needed_until) { 5323 // this register is at least free until reg_needed_until 5324 if (max_partial_reg == any_reg || i == hint_reg || (_use_pos[i] > _use_pos[max_partial_reg] && max_partial_reg != hint_reg)) { 5325 max_partial_reg = i; 5326 } 5327 } 5328 } 5329 5330 if (min_full_reg != any_reg) { 5331 return min_full_reg; 5332 } else if (max_partial_reg != any_reg) { 5333 *need_split = true; 5334 return max_partial_reg; 5335 } else { 5336 return any_reg; 5337 } 5338 } 5339 5340 int LinearScanWalker::find_free_double_reg(int reg_needed_until, int interval_to, int hint_reg, bool* need_split) { 5341 assert((_last_reg - _first_reg + 1) % 2 == 0, "adjust algorithm"); 5342 5343 int min_full_reg = any_reg; 5344 int max_partial_reg = any_reg; 5345 5346 for (int i = _first_reg; i < _last_reg; i+=2) { 5347 if (_use_pos[i] >= interval_to && _use_pos[i + 1] >= interval_to) { 5348 // this register is free for the full interval 5349 if (min_full_reg == any_reg || i == hint_reg || (_use_pos[i] < _use_pos[min_full_reg] && min_full_reg != hint_reg)) { 5350 min_full_reg = i; 5351 } 5352 } else if (_use_pos[i] > reg_needed_until && _use_pos[i + 1] > reg_needed_until) { 5353 // this register is at least free until reg_needed_until 5354 if (max_partial_reg == any_reg || i == hint_reg || (_use_pos[i] > _use_pos[max_partial_reg] && max_partial_reg != hint_reg)) { 5355 max_partial_reg = i; 5356 } 5357 } 5358 } 5359 5360 if (min_full_reg != any_reg) { 5361 return min_full_reg; 5362 } else if (max_partial_reg != any_reg) { 5363 *need_split = true; 5364 return max_partial_reg; 5365 } else { 5366 return any_reg; 5367 } 5368 } 5369 5370 5371 bool LinearScanWalker::alloc_free_reg(Interval* cur) { 5372 TRACE_LINEAR_SCAN(2, tty->print("trying to find free register for "); cur->print()); 5373 5374 init_use_lists(true); 5375 free_exclude_active_fixed(); 5376 free_exclude_active_any(); 5377 free_collect_inactive_fixed(cur); 5378 free_collect_inactive_any(cur); 5379 assert(unhandled_first(fixedKind) == Interval::end(), "must not have unhandled fixed intervals because all fixed intervals have a use at position 0"); 5380 5381 // _use_pos contains the start of the next interval that has this register assigned 5382 // (either as a fixed register or a normal allocated register in the past) 5383 // only intervals overlapping with cur are processed, non-overlapping invervals can be ignored safely 5384 TRACE_LINEAR_SCAN(4, tty->print_cr(" state of registers:")); 5385 TRACE_LINEAR_SCAN(4, for (int i = _first_reg; i <= _last_reg; i++) tty->print_cr(" reg %d: use_pos: %d", i, _use_pos[i])); 5386 5387 int hint_reg, hint_regHi; 5388 Interval* register_hint = cur->register_hint(); 5389 if (register_hint != NULL) { 5390 hint_reg = register_hint->assigned_reg(); 5391 hint_regHi = register_hint->assigned_regHi(); 5392 5393 if (allocator()->is_precolored_cpu_interval(register_hint)) { 5394 assert(hint_reg != any_reg && hint_regHi == any_reg, "must be for fixed intervals"); 5395 hint_regHi = hint_reg + 1; // connect e.g. eax-edx 5396 } 5397 TRACE_LINEAR_SCAN(4, tty->print(" hint registers %d, %d from interval ", hint_reg, hint_regHi); register_hint->print()); 5398 5399 } else { 5400 hint_reg = any_reg; 5401 hint_regHi = any_reg; 5402 } 5403 assert(hint_reg == any_reg || hint_reg != hint_regHi, "hint reg and regHi equal"); 5404 assert(cur->assigned_reg() == any_reg && cur->assigned_regHi() == any_reg, "register already assigned to interval"); 5405 5406 // the register must be free at least until this position 5407 int reg_needed_until = cur->from() + 1; 5408 int interval_to = cur->to(); 5409 5410 bool need_split = false; 5411 int split_pos; 5412 int reg; 5413 int regHi = any_reg; 5414 5415 if (_adjacent_regs) { 5416 reg = find_free_double_reg(reg_needed_until, interval_to, hint_reg, &need_split); 5417 regHi = reg + 1; 5418 if (reg == any_reg) { 5419 return false; 5420 } 5421 split_pos = MIN2(_use_pos[reg], _use_pos[regHi]); 5422 5423 } else { 5424 reg = find_free_reg(reg_needed_until, interval_to, hint_reg, any_reg, &need_split); 5425 if (reg == any_reg) { 5426 return false; 5427 } 5428 split_pos = _use_pos[reg]; 5429 5430 if (_num_phys_regs == 2) { 5431 regHi = find_free_reg(reg_needed_until, interval_to, hint_regHi, reg, &need_split); 5432 5433 if (_use_pos[reg] < interval_to && regHi == any_reg) { 5434 // do not split interval if only one register can be assigned until the split pos 5435 // (when one register is found for the whole interval, split&spill is only 5436 // performed for the hi register) 5437 return false; 5438 5439 } else if (regHi != any_reg) { 5440 split_pos = MIN2(split_pos, _use_pos[regHi]); 5441 5442 // sort register numbers to prevent e.g. a move from eax,ebx to ebx,eax 5443 if (reg > regHi) { 5444 int temp = reg; 5445 reg = regHi; 5446 regHi = temp; 5447 } 5448 } 5449 } 5450 } 5451 5452 cur->assign_reg(reg, regHi); 5453 TRACE_LINEAR_SCAN(2, tty->print_cr("selected register %d, %d", reg, regHi)); 5454 5455 assert(split_pos > 0, "invalid split_pos"); 5456 if (need_split) { 5457 // register not available for full interval, so split it 5458 split_when_partial_register_available(cur, split_pos); 5459 } 5460 5461 // only return true if interval is completely assigned 5462 return _num_phys_regs == 1 || regHi != any_reg; 5463 } 5464 5465 5466 int LinearScanWalker::find_locked_reg(int reg_needed_until, int interval_to, int ignore_reg, bool* need_split) { 5467 int max_reg = any_reg; 5468 5469 for (int i = _first_reg; i <= _last_reg; i++) { 5470 if (i == ignore_reg) { 5471 // this register must be ignored 5472 5473 } else if (_use_pos[i] > reg_needed_until) { 5474 if (max_reg == any_reg || _use_pos[i] > _use_pos[max_reg]) { 5475 max_reg = i; 5476 } 5477 } 5478 } 5479 5480 if (max_reg != any_reg && _block_pos[max_reg] <= interval_to) { 5481 *need_split = true; 5482 } 5483 5484 return max_reg; 5485 } 5486 5487 int LinearScanWalker::find_locked_double_reg(int reg_needed_until, int interval_to, bool* need_split) { 5488 assert((_last_reg - _first_reg + 1) % 2 == 0, "adjust algorithm"); 5489 5490 int max_reg = any_reg; 5491 5492 for (int i = _first_reg; i < _last_reg; i+=2) { 5493 if (_use_pos[i] > reg_needed_until && _use_pos[i + 1] > reg_needed_until) { 5494 if (max_reg == any_reg || _use_pos[i] > _use_pos[max_reg]) { 5495 max_reg = i; 5496 } 5497 } 5498 } 5499 5500 if (max_reg != any_reg && 5501 (_block_pos[max_reg] <= interval_to || _block_pos[max_reg + 1] <= interval_to)) { 5502 *need_split = true; 5503 } 5504 5505 return max_reg; 5506 } 5507 5508 void LinearScanWalker::split_and_spill_intersecting_intervals(int reg, int regHi) { 5509 assert(reg != any_reg, "no register assigned"); 5510 5511 for (int i = 0; i < _spill_intervals[reg]->length(); i++) { 5512 Interval* it = _spill_intervals[reg]->at(i); 5513 remove_from_list(it); 5514 split_and_spill_interval(it); 5515 } 5516 5517 if (regHi != any_reg) { 5518 IntervalList* processed = _spill_intervals[reg]; 5519 for (int i = 0; i < _spill_intervals[regHi]->length(); i++) { 5520 Interval* it = _spill_intervals[regHi]->at(i); 5521 if (processed->find(it) == -1) { 5522 remove_from_list(it); 5523 split_and_spill_interval(it); 5524 } 5525 } 5526 } 5527 } 5528 5529 5530 // Split an Interval and spill it to memory so that cur can be placed in a register 5531 void LinearScanWalker::alloc_locked_reg(Interval* cur) { 5532 TRACE_LINEAR_SCAN(2, tty->print("need to split and spill to get register for "); cur->print()); 5533 5534 // collect current usage of registers 5535 init_use_lists(false); 5536 spill_exclude_active_fixed(); 5537 assert(unhandled_first(fixedKind) == Interval::end(), "must not have unhandled fixed intervals because all fixed intervals have a use at position 0"); 5538 spill_block_inactive_fixed(cur); 5539 spill_collect_active_any(); 5540 spill_collect_inactive_any(cur); 5541 5542 #ifndef PRODUCT 5543 if (TraceLinearScanLevel >= 4) { 5544 tty->print_cr(" state of registers:"); 5545 for (int i = _first_reg; i <= _last_reg; i++) { 5546 tty->print(" reg %d: use_pos: %d, block_pos: %d, intervals: ", i, _use_pos[i], _block_pos[i]); 5547 for (int j = 0; j < _spill_intervals[i]->length(); j++) { 5548 tty->print("%d ", _spill_intervals[i]->at(j)->reg_num()); 5549 } 5550 tty->cr(); 5551 } 5552 } 5553 #endif 5554 5555 // the register must be free at least until this position 5556 int reg_needed_until = MIN2(cur->first_usage(mustHaveRegister), cur->from() + 1); 5557 int interval_to = cur->to(); 5558 assert (reg_needed_until > 0 && reg_needed_until < max_jint, "interval has no use"); 5559 5560 int split_pos = 0; 5561 int use_pos = 0; 5562 bool need_split = false; 5563 int reg, regHi; 5564 5565 if (_adjacent_regs) { 5566 reg = find_locked_double_reg(reg_needed_until, interval_to, &need_split); 5567 regHi = reg + 1; 5568 5569 if (reg != any_reg) { 5570 use_pos = MIN2(_use_pos[reg], _use_pos[regHi]); 5571 split_pos = MIN2(_block_pos[reg], _block_pos[regHi]); 5572 } 5573 } else { 5574 reg = find_locked_reg(reg_needed_until, interval_to, cur->assigned_reg(), &need_split); 5575 regHi = any_reg; 5576 5577 if (reg != any_reg) { 5578 use_pos = _use_pos[reg]; 5579 split_pos = _block_pos[reg]; 5580 5581 if (_num_phys_regs == 2) { 5582 if (cur->assigned_reg() != any_reg) { 5583 regHi = reg; 5584 reg = cur->assigned_reg(); 5585 } else { 5586 regHi = find_locked_reg(reg_needed_until, interval_to, reg, &need_split); 5587 if (regHi != any_reg) { 5588 use_pos = MIN2(use_pos, _use_pos[regHi]); 5589 split_pos = MIN2(split_pos, _block_pos[regHi]); 5590 } 5591 } 5592 5593 if (regHi != any_reg && reg > regHi) { 5594 // sort register numbers to prevent e.g. a move from eax,ebx to ebx,eax 5595 int temp = reg; 5596 reg = regHi; 5597 regHi = temp; 5598 } 5599 } 5600 } 5601 } 5602 5603 if (reg == any_reg || (_num_phys_regs == 2 && regHi == any_reg) || use_pos <= cur->first_usage(mustHaveRegister)) { 5604 // the first use of cur is later than the spilling position -> spill cur 5605 TRACE_LINEAR_SCAN(4, tty->print_cr("able to spill current interval. first_usage(register): %d, use_pos: %d", cur->first_usage(mustHaveRegister), use_pos)); 5606 5607 if (cur->first_usage(mustHaveRegister) <= cur->from() + 1) { 5608 assert(false, "cannot spill interval that is used in first instruction (possible reason: no register found)"); 5609 // assign a reasonable register and do a bailout in product mode to avoid errors 5610 allocator()->assign_spill_slot(cur); 5611 BAILOUT("LinearScan: no register found"); 5612 } 5613 5614 split_and_spill_interval(cur); 5615 } else { 5616 TRACE_LINEAR_SCAN(4, tty->print_cr("decided to use register %d, %d", reg, regHi)); 5617 assert(reg != any_reg && (_num_phys_regs == 1 || regHi != any_reg), "no register found"); 5618 assert(split_pos > 0, "invalid split_pos"); 5619 assert(need_split == false || split_pos > cur->from(), "splitting interval at from"); 5620 5621 cur->assign_reg(reg, regHi); 5622 if (need_split) { 5623 // register not available for full interval, so split it 5624 split_when_partial_register_available(cur, split_pos); 5625 } 5626 5627 // perform splitting and spilling for all affected intervalls 5628 split_and_spill_intersecting_intervals(reg, regHi); 5629 } 5630 } 5631 5632 bool LinearScanWalker::no_allocation_possible(Interval* cur) { 5633 #ifdef X86 5634 // fast calculation of intervals that can never get a register because the 5635 // the next instruction is a call that blocks all registers 5636 // Note: this does not work if callee-saved registers are available (e.g. on Sparc) 5637 5638 // check if this interval is the result of a split operation 5639 // (an interval got a register until this position) 5640 int pos = cur->from(); 5641 if ((pos & 1) == 1) { 5642 // the current instruction is a call that blocks all registers 5643 if (pos < allocator()->max_lir_op_id() && allocator()->has_call(pos + 1)) { 5644 TRACE_LINEAR_SCAN(4, tty->print_cr(" free register cannot be available because all registers blocked by following call")); 5645 5646 // safety check that there is really no register available 5647 assert(alloc_free_reg(cur) == false, "found a register for this interval"); 5648 return true; 5649 } 5650 5651 } 5652 #endif 5653 return false; 5654 } 5655 5656 void LinearScanWalker::init_vars_for_alloc(Interval* cur) { 5657 BasicType type = cur->type(); 5658 _num_phys_regs = LinearScan::num_physical_regs(type); 5659 _adjacent_regs = LinearScan::requires_adjacent_regs(type); 5660 5661 if (pd_init_regs_for_alloc(cur)) { 5662 // the appropriate register range was selected. 5663 } else if (type == T_FLOAT || type == T_DOUBLE) { 5664 _first_reg = pd_first_fpu_reg; 5665 _last_reg = pd_last_fpu_reg; 5666 } else { 5667 _first_reg = pd_first_cpu_reg; 5668 _last_reg = FrameMap::last_cpu_reg(); 5669 } 5670 5671 assert(0 <= _first_reg && _first_reg < LinearScan::nof_regs, "out of range"); 5672 assert(0 <= _last_reg && _last_reg < LinearScan::nof_regs, "out of range"); 5673 } 5674 5675 5676 bool LinearScanWalker::is_move(LIR_Op* op, Interval* from, Interval* to) { 5677 if (op->code() != lir_move) { 5678 return false; 5679 } 5680 assert(op->as_Op1() != NULL, "move must be LIR_Op1"); 5681 5682 LIR_Opr in = ((LIR_Op1*)op)->in_opr(); 5683 LIR_Opr res = ((LIR_Op1*)op)->result_opr(); 5684 return in->is_virtual() && res->is_virtual() && in->vreg_number() == from->reg_num() && res->vreg_number() == to->reg_num(); 5685 } 5686 5687 // optimization (especially for phi functions of nested loops): 5688 // assign same spill slot to non-intersecting intervals 5689 void LinearScanWalker::combine_spilled_intervals(Interval* cur) { 5690 if (cur->is_split_child()) { 5691 // optimization is only suitable for split parents 5692 return; 5693 } 5694 5695 Interval* register_hint = cur->register_hint(false); 5696 if (register_hint == NULL) { 5697 // cur is not the target of a move, otherwise register_hint would be set 5698 return; 5699 } 5700 assert(register_hint->is_split_parent(), "register hint must be split parent"); 5701 5702 if (cur->spill_state() != noOptimization || register_hint->spill_state() != noOptimization) { 5703 // combining the stack slots for intervals where spill move optimization is applied 5704 // is not benefitial and would cause problems 5705 return; 5706 } 5707 5708 int begin_pos = cur->from(); 5709 int end_pos = cur->to(); 5710 if (end_pos > allocator()->max_lir_op_id() || (begin_pos & 1) != 0 || (end_pos & 1) != 0) { 5711 // safety check that lir_op_with_id is allowed 5712 return; 5713 } 5714 5715 if (!is_move(allocator()->lir_op_with_id(begin_pos), register_hint, cur) || !is_move(allocator()->lir_op_with_id(end_pos), cur, register_hint)) { 5716 // cur and register_hint are not connected with two moves 5717 return; 5718 } 5719 5720 Interval* begin_hint = register_hint->split_child_at_op_id(begin_pos, LIR_OpVisitState::inputMode); 5721 Interval* end_hint = register_hint->split_child_at_op_id(end_pos, LIR_OpVisitState::outputMode); 5722 if (begin_hint == end_hint || begin_hint->to() != begin_pos || end_hint->from() != end_pos) { 5723 // register_hint must be split, otherwise the re-writing of use positions does not work 5724 return; 5725 } 5726 5727 assert(begin_hint->assigned_reg() != any_reg, "must have register assigned"); 5728 assert(end_hint->assigned_reg() == any_reg, "must not have register assigned"); 5729 assert(cur->first_usage(mustHaveRegister) == begin_pos, "must have use position at begin of interval because of move"); 5730 assert(end_hint->first_usage(mustHaveRegister) == end_pos, "must have use position at begin of interval because of move"); 5731 5732 if (begin_hint->assigned_reg() < LinearScan::nof_regs) { 5733 // register_hint is not spilled at begin_pos, so it would not be benefitial to immediately spill cur 5734 return; 5735 } 5736 assert(register_hint->canonical_spill_slot() != -1, "must be set when part of interval was spilled"); 5737 5738 // modify intervals such that cur gets the same stack slot as register_hint 5739 // delete use positions to prevent the intervals to get a register at beginning 5740 cur->set_canonical_spill_slot(register_hint->canonical_spill_slot()); 5741 cur->remove_first_use_pos(); 5742 end_hint->remove_first_use_pos(); 5743 } 5744 5745 5746 // allocate a physical register or memory location to an interval 5747 bool LinearScanWalker::activate_current() { 5748 Interval* cur = current(); 5749 bool result = true; 5750 5751 TRACE_LINEAR_SCAN(2, tty->print ("+++++ activating interval "); cur->print()); 5752 TRACE_LINEAR_SCAN(4, tty->print_cr(" split_parent: %d, insert_move_when_activated: %d", cur->split_parent()->reg_num(), cur->insert_move_when_activated())); 5753 5754 if (cur->assigned_reg() >= LinearScan::nof_regs) { 5755 // activating an interval that has a stack slot assigned -> split it at first use position 5756 // used for method parameters 5757 TRACE_LINEAR_SCAN(4, tty->print_cr(" interval has spill slot assigned (method parameter) -> split it before first use")); 5758 5759 split_stack_interval(cur); 5760 result = false; 5761 5762 } else if (allocator()->gen()->is_vreg_flag_set(cur->reg_num(), LIRGenerator::must_start_in_memory)) { 5763 // activating an interval that must start in a stack slot, but may get a register later 5764 // used for lir_roundfp: rounding is done by store to stack and reload later 5765 TRACE_LINEAR_SCAN(4, tty->print_cr(" interval must start in stack slot -> split it before first use")); 5766 assert(cur->assigned_reg() == any_reg && cur->assigned_regHi() == any_reg, "register already assigned"); 5767 5768 allocator()->assign_spill_slot(cur); 5769 split_stack_interval(cur); 5770 result = false; 5771 5772 } else if (cur->assigned_reg() == any_reg) { 5773 // interval has not assigned register -> normal allocation 5774 // (this is the normal case for most intervals) 5775 TRACE_LINEAR_SCAN(4, tty->print_cr(" normal allocation of register")); 5776 5777 // assign same spill slot to non-intersecting intervals 5778 combine_spilled_intervals(cur); 5779 5780 init_vars_for_alloc(cur); 5781 if (no_allocation_possible(cur) || !alloc_free_reg(cur)) { 5782 // no empty register available. 5783 // split and spill another interval so that this interval gets a register 5784 alloc_locked_reg(cur); 5785 } 5786 5787 // spilled intervals need not be move to active-list 5788 if (cur->assigned_reg() >= LinearScan::nof_regs) { 5789 result = false; 5790 } 5791 } 5792 5793 // load spilled values that become active from stack slot to register 5794 if (cur->insert_move_when_activated()) { 5795 assert(cur->is_split_child(), "must be"); 5796 assert(cur->current_split_child() != NULL, "must be"); 5797 assert(cur->current_split_child()->reg_num() != cur->reg_num(), "cannot insert move between same interval"); 5798 TRACE_LINEAR_SCAN(4, tty->print_cr("Inserting move from interval %d to %d because insert_move_when_activated is set", cur->current_split_child()->reg_num(), cur->reg_num())); 5799 5800 insert_move(cur->from(), cur->current_split_child(), cur); 5801 } 5802 cur->make_current_split_child(); 5803 5804 return result; // true = interval is moved to active list 5805 } 5806 5807 5808 // Implementation of EdgeMoveOptimizer 5809 5810 EdgeMoveOptimizer::EdgeMoveOptimizer() : 5811 _edge_instructions(4), 5812 _edge_instructions_idx(4) 5813 { 5814 } 5815 5816 void EdgeMoveOptimizer::optimize(BlockList* code) { 5817 EdgeMoveOptimizer optimizer = EdgeMoveOptimizer(); 5818 5819 // ignore the first block in the list (index 0 is not processed) 5820 for (int i = code->length() - 1; i >= 1; i--) { 5821 BlockBegin* block = code->at(i); 5822 5823 if (block->number_of_preds() > 1 && !block->is_set(BlockBegin::exception_entry_flag)) { 5824 optimizer.optimize_moves_at_block_end(block); 5825 } 5826 if (block->number_of_sux() == 2) { 5827 optimizer.optimize_moves_at_block_begin(block); 5828 } 5829 } 5830 } 5831 5832 5833 // clear all internal data structures 5834 void EdgeMoveOptimizer::init_instructions() { 5835 _edge_instructions.clear(); 5836 _edge_instructions_idx.clear(); 5837 } 5838 5839 // append a lir-instruction-list and the index of the current operation in to the list 5840 void EdgeMoveOptimizer::append_instructions(LIR_OpList* instructions, int instructions_idx) { 5841 _edge_instructions.append(instructions); 5842 _edge_instructions_idx.append(instructions_idx); 5843 } 5844 5845 // return the current operation of the given edge (predecessor or successor) 5846 LIR_Op* EdgeMoveOptimizer::instruction_at(int edge) { 5847 LIR_OpList* instructions = _edge_instructions.at(edge); 5848 int idx = _edge_instructions_idx.at(edge); 5849 5850 if (idx < instructions->length()) { 5851 return instructions->at(idx); 5852 } else { 5853 return NULL; 5854 } 5855 } 5856 5857 // removes the current operation of the given edge (predecessor or successor) 5858 void EdgeMoveOptimizer::remove_cur_instruction(int edge, bool decrement_index) { 5859 LIR_OpList* instructions = _edge_instructions.at(edge); 5860 int idx = _edge_instructions_idx.at(edge); 5861 instructions->remove_at(idx); 5862 5863 if (decrement_index) { 5864 _edge_instructions_idx.at_put(edge, idx - 1); 5865 } 5866 } 5867 5868 5869 bool EdgeMoveOptimizer::operations_different(LIR_Op* op1, LIR_Op* op2) { 5870 if (op1 == NULL || op2 == NULL) { 5871 // at least one block is already empty -> no optimization possible 5872 return true; 5873 } 5874 5875 if (op1->code() == lir_move && op2->code() == lir_move) { 5876 assert(op1->as_Op1() != NULL, "move must be LIR_Op1"); 5877 assert(op2->as_Op1() != NULL, "move must be LIR_Op1"); 5878 LIR_Op1* move1 = (LIR_Op1*)op1; 5879 LIR_Op1* move2 = (LIR_Op1*)op2; 5880 if (move1->info() == move2->info() && move1->in_opr() == move2->in_opr() && move1->result_opr() == move2->result_opr()) { 5881 // these moves are exactly equal and can be optimized 5882 return false; 5883 } 5884 5885 } else if (op1->code() == lir_fxch && op2->code() == lir_fxch) { 5886 assert(op1->as_Op1() != NULL, "fxch must be LIR_Op1"); 5887 assert(op2->as_Op1() != NULL, "fxch must be LIR_Op1"); 5888 LIR_Op1* fxch1 = (LIR_Op1*)op1; 5889 LIR_Op1* fxch2 = (LIR_Op1*)op2; 5890 if (fxch1->in_opr()->as_jint() == fxch2->in_opr()->as_jint()) { 5891 // equal FPU stack operations can be optimized 5892 return false; 5893 } 5894 5895 } else if (op1->code() == lir_fpop_raw && op2->code() == lir_fpop_raw) { 5896 // equal FPU stack operations can be optimized 5897 return false; 5898 } 5899 5900 // no optimization possible 5901 return true; 5902 } 5903 5904 void EdgeMoveOptimizer::optimize_moves_at_block_end(BlockBegin* block) { 5905 TRACE_LINEAR_SCAN(4, tty->print_cr("optimizing moves at end of block B%d", block->block_id())); 5906 5907 if (block->is_predecessor(block)) { 5908 // currently we can't handle this correctly. 5909 return; 5910 } 5911 5912 init_instructions(); 5913 int num_preds = block->number_of_preds(); 5914 assert(num_preds > 1, "do not call otherwise"); 5915 assert(!block->is_set(BlockBegin::exception_entry_flag), "exception handlers not allowed"); 5916 5917 // setup a list with the lir-instructions of all predecessors 5918 int i; 5919 for (i = 0; i < num_preds; i++) { 5920 BlockBegin* pred = block->pred_at(i); 5921 LIR_OpList* pred_instructions = pred->lir()->instructions_list(); 5922 5923 if (pred->number_of_sux() != 1) { 5924 // this can happen with switch-statements where multiple edges are between 5925 // the same blocks. 5926 return; 5927 } 5928 5929 assert(pred->number_of_sux() == 1, "can handle only one successor"); 5930 assert(pred->sux_at(0) == block, "invalid control flow"); 5931 assert(pred_instructions->last()->code() == lir_branch, "block with successor must end with branch"); 5932 assert(pred_instructions->last()->as_OpBranch() != NULL, "branch must be LIR_OpBranch"); 5933 assert(pred_instructions->last()->as_OpBranch()->cond() == lir_cond_always, "block must end with unconditional branch"); 5934 5935 if (pred_instructions->last()->info() != NULL) { 5936 // can not optimize instructions when debug info is needed 5937 return; 5938 } 5939 5940 // ignore the unconditional branch at the end of the block 5941 append_instructions(pred_instructions, pred_instructions->length() - 2); 5942 } 5943 5944 5945 // process lir-instructions while all predecessors end with the same instruction 5946 while (true) { 5947 LIR_Op* op = instruction_at(0); 5948 for (i = 1; i < num_preds; i++) { 5949 if (operations_different(op, instruction_at(i))) { 5950 // these instructions are different and cannot be optimized -> 5951 // no further optimization possible 5952 return; 5953 } 5954 } 5955 5956 TRACE_LINEAR_SCAN(4, tty->print("found instruction that is equal in all %d predecessors: ", num_preds); op->print()); 5957 5958 // insert the instruction at the beginning of the current block 5959 block->lir()->insert_before(1, op); 5960 5961 // delete the instruction at the end of all predecessors 5962 for (i = 0; i < num_preds; i++) { 5963 remove_cur_instruction(i, true); 5964 } 5965 } 5966 } 5967 5968 5969 void EdgeMoveOptimizer::optimize_moves_at_block_begin(BlockBegin* block) { 5970 TRACE_LINEAR_SCAN(4, tty->print_cr("optimization moves at begin of block B%d", block->block_id())); 5971 5972 init_instructions(); 5973 int num_sux = block->number_of_sux(); 5974 5975 LIR_OpList* cur_instructions = block->lir()->instructions_list(); 5976 5977 assert(num_sux == 2, "method should not be called otherwise"); 5978 assert(cur_instructions->last()->code() == lir_branch, "block with successor must end with branch"); 5979 assert(cur_instructions->last()->as_OpBranch() != NULL, "branch must be LIR_OpBranch"); 5980 assert(cur_instructions->last()->as_OpBranch()->cond() == lir_cond_always, "block must end with unconditional branch"); 5981 5982 if (cur_instructions->last()->info() != NULL) { 5983 // can no optimize instructions when debug info is needed 5984 return; 5985 } 5986 5987 LIR_Op* branch = cur_instructions->at(cur_instructions->length() - 2); 5988 if (branch->info() != NULL || (branch->code() != lir_branch && branch->code() != lir_cond_float_branch)) { 5989 // not a valid case for optimization 5990 // currently, only blocks that end with two branches (conditional branch followed 5991 // by unconditional branch) are optimized 5992 return; 5993 } 5994 5995 // now it is guaranteed that the block ends with two branch instructions. 5996 // the instructions are inserted at the end of the block before these two branches 5997 int insert_idx = cur_instructions->length() - 2; 5998 5999 int i; 6000 #ifdef ASSERT 6001 for (i = insert_idx - 1; i >= 0; i--) { 6002 LIR_Op* op = cur_instructions->at(i); 6003 if ((op->code() == lir_branch || op->code() == lir_cond_float_branch) && ((LIR_OpBranch*)op)->block() != NULL) { 6004 assert(false, "block with two successors can have only two branch instructions"); 6005 } 6006 } 6007 #endif 6008 6009 // setup a list with the lir-instructions of all successors 6010 for (i = 0; i < num_sux; i++) { 6011 BlockBegin* sux = block->sux_at(i); 6012 LIR_OpList* sux_instructions = sux->lir()->instructions_list(); 6013 6014 assert(sux_instructions->at(0)->code() == lir_label, "block must start with label"); 6015 6016 if (sux->number_of_preds() != 1) { 6017 // this can happen with switch-statements where multiple edges are between 6018 // the same blocks. 6019 return; 6020 } 6021 assert(sux->pred_at(0) == block, "invalid control flow"); 6022 assert(!sux->is_set(BlockBegin::exception_entry_flag), "exception handlers not allowed"); 6023 6024 // ignore the label at the beginning of the block 6025 append_instructions(sux_instructions, 1); 6026 } 6027 6028 // process lir-instructions while all successors begin with the same instruction 6029 while (true) { 6030 LIR_Op* op = instruction_at(0); 6031 for (i = 1; i < num_sux; i++) { 6032 if (operations_different(op, instruction_at(i))) { 6033 // these instructions are different and cannot be optimized -> 6034 // no further optimization possible 6035 return; 6036 } 6037 } 6038 6039 TRACE_LINEAR_SCAN(4, tty->print("----- found instruction that is equal in all %d successors: ", num_sux); op->print()); 6040 6041 // insert instruction at end of current block 6042 block->lir()->insert_before(insert_idx, op); 6043 insert_idx++; 6044 6045 // delete the instructions at the beginning of all successors 6046 for (i = 0; i < num_sux; i++) { 6047 remove_cur_instruction(i, false); 6048 } 6049 } 6050 } 6051 6052 6053 // Implementation of ControlFlowOptimizer 6054 6055 ControlFlowOptimizer::ControlFlowOptimizer() : 6056 _original_preds(4) 6057 { 6058 } 6059 6060 void ControlFlowOptimizer::optimize(BlockList* code) { 6061 ControlFlowOptimizer optimizer = ControlFlowOptimizer(); 6062 6063 // push the OSR entry block to the end so that we're not jumping over it. 6064 BlockBegin* osr_entry = code->at(0)->end()->as_Base()->osr_entry(); 6065 if (osr_entry) { 6066 int index = osr_entry->linear_scan_number(); 6067 assert(code->at(index) == osr_entry, "wrong index"); 6068 code->remove_at(index); 6069 code->append(osr_entry); 6070 } 6071 6072 optimizer.reorder_short_loops(code); 6073 optimizer.delete_empty_blocks(code); 6074 optimizer.delete_unnecessary_jumps(code); 6075 optimizer.delete_jumps_to_return(code); 6076 } 6077 6078 void ControlFlowOptimizer::reorder_short_loop(BlockList* code, BlockBegin* header_block, int header_idx) { 6079 int i = header_idx + 1; 6080 int max_end = MIN2(header_idx + ShortLoopSize, code->length()); 6081 while (i < max_end && code->at(i)->loop_depth() >= header_block->loop_depth()) { 6082 i++; 6083 } 6084 6085 if (i == code->length() || code->at(i)->loop_depth() < header_block->loop_depth()) { 6086 int end_idx = i - 1; 6087 BlockBegin* end_block = code->at(end_idx); 6088 6089 if (end_block->number_of_sux() == 1 && end_block->sux_at(0) == header_block) { 6090 // short loop from header_idx to end_idx found -> reorder blocks such that 6091 // the header_block is the last block instead of the first block of the loop 6092 TRACE_LINEAR_SCAN(1, tty->print_cr("Reordering short loop: length %d, header B%d, end B%d", 6093 end_idx - header_idx + 1, 6094 header_block->block_id(), end_block->block_id())); 6095 6096 for (int j = header_idx; j < end_idx; j++) { 6097 code->at_put(j, code->at(j + 1)); 6098 } 6099 code->at_put(end_idx, header_block); 6100 6101 // correct the flags so that any loop alignment occurs in the right place. 6102 assert(code->at(end_idx)->is_set(BlockBegin::backward_branch_target_flag), "must be backward branch target"); 6103 code->at(end_idx)->clear(BlockBegin::backward_branch_target_flag); 6104 code->at(header_idx)->set(BlockBegin::backward_branch_target_flag); 6105 } 6106 } 6107 } 6108 6109 void ControlFlowOptimizer::reorder_short_loops(BlockList* code) { 6110 for (int i = code->length() - 1; i >= 0; i--) { 6111 BlockBegin* block = code->at(i); 6112 6113 if (block->is_set(BlockBegin::linear_scan_loop_header_flag)) { 6114 reorder_short_loop(code, block, i); 6115 } 6116 } 6117 6118 DEBUG_ONLY(verify(code)); 6119 } 6120 6121 // only blocks with exactly one successor can be deleted. Such blocks 6122 // must always end with an unconditional branch to this successor 6123 bool ControlFlowOptimizer::can_delete_block(BlockBegin* block) { 6124 if (block->number_of_sux() != 1 || block->number_of_exception_handlers() != 0 || block->is_entry_block()) { 6125 return false; 6126 } 6127 6128 LIR_OpList* instructions = block->lir()->instructions_list(); 6129 6130 assert(instructions->length() >= 2, "block must have label and branch"); 6131 assert(instructions->at(0)->code() == lir_label, "first instruction must always be a label"); 6132 assert(instructions->last()->as_OpBranch() != NULL, "last instrcution must always be a branch"); 6133 assert(instructions->last()->as_OpBranch()->cond() == lir_cond_always, "branch must be unconditional"); 6134 assert(instructions->last()->as_OpBranch()->block() == block->sux_at(0), "branch target must be the successor"); 6135 6136 // block must have exactly one successor 6137 6138 if (instructions->length() == 2 && instructions->last()->info() == NULL) { 6139 return true; 6140 } 6141 return false; 6142 } 6143 6144 // substitute branch targets in all branch-instructions of this blocks 6145 void ControlFlowOptimizer::substitute_branch_target(BlockBegin* block, BlockBegin* target_from, BlockBegin* target_to) { 6146 TRACE_LINEAR_SCAN(3, tty->print_cr("Deleting empty block: substituting from B%d to B%d inside B%d", target_from->block_id(), target_to->block_id(), block->block_id())); 6147 6148 LIR_OpList* instructions = block->lir()->instructions_list(); 6149 6150 assert(instructions->at(0)->code() == lir_label, "first instruction must always be a label"); 6151 for (int i = instructions->length() - 1; i >= 1; i--) { 6152 LIR_Op* op = instructions->at(i); 6153 6154 if (op->code() == lir_branch || op->code() == lir_cond_float_branch) { 6155 assert(op->as_OpBranch() != NULL, "branch must be of type LIR_OpBranch"); 6156 LIR_OpBranch* branch = (LIR_OpBranch*)op; 6157 6158 if (branch->block() == target_from) { 6159 branch->change_block(target_to); 6160 } 6161 if (branch->ublock() == target_from) { 6162 branch->change_ublock(target_to); 6163 } 6164 } 6165 } 6166 } 6167 6168 void ControlFlowOptimizer::delete_empty_blocks(BlockList* code) { 6169 int old_pos = 0; 6170 int new_pos = 0; 6171 int num_blocks = code->length(); 6172 6173 while (old_pos < num_blocks) { 6174 BlockBegin* block = code->at(old_pos); 6175 6176 if (can_delete_block(block)) { 6177 BlockBegin* new_target = block->sux_at(0); 6178 6179 // propagate backward branch target flag for correct code alignment 6180 if (block->is_set(BlockBegin::backward_branch_target_flag)) { 6181 new_target->set(BlockBegin::backward_branch_target_flag); 6182 } 6183 6184 // collect a list with all predecessors that contains each predecessor only once 6185 // the predecessors of cur are changed during the substitution, so a copy of the 6186 // predecessor list is necessary 6187 int j; 6188 _original_preds.clear(); 6189 for (j = block->number_of_preds() - 1; j >= 0; j--) { 6190 BlockBegin* pred = block->pred_at(j); 6191 if (_original_preds.find(pred) == -1) { 6192 _original_preds.append(pred); 6193 } 6194 } 6195 6196 for (j = _original_preds.length() - 1; j >= 0; j--) { 6197 BlockBegin* pred = _original_preds.at(j); 6198 substitute_branch_target(pred, block, new_target); 6199 pred->substitute_sux(block, new_target); 6200 } 6201 } else { 6202 // adjust position of this block in the block list if blocks before 6203 // have been deleted 6204 if (new_pos != old_pos) { 6205 code->at_put(new_pos, code->at(old_pos)); 6206 } 6207 new_pos++; 6208 } 6209 old_pos++; 6210 } 6211 code->trunc_to(new_pos); 6212 6213 DEBUG_ONLY(verify(code)); 6214 } 6215 6216 void ControlFlowOptimizer::delete_unnecessary_jumps(BlockList* code) { 6217 // skip the last block because there a branch is always necessary 6218 for (int i = code->length() - 2; i >= 0; i--) { 6219 BlockBegin* block = code->at(i); 6220 LIR_OpList* instructions = block->lir()->instructions_list(); 6221 6222 LIR_Op* last_op = instructions->last(); 6223 if (last_op->code() == lir_branch) { 6224 assert(last_op->as_OpBranch() != NULL, "branch must be of type LIR_OpBranch"); 6225 LIR_OpBranch* last_branch = (LIR_OpBranch*)last_op; 6226 6227 assert(last_branch->block() != NULL, "last branch must always have a block as target"); 6228 assert(last_branch->label() == last_branch->block()->label(), "must be equal"); 6229 6230 if (last_branch->info() == NULL) { 6231 if (last_branch->block() == code->at(i + 1)) { 6232 6233 TRACE_LINEAR_SCAN(3, tty->print_cr("Deleting unconditional branch at end of block B%d", block->block_id())); 6234 6235 // delete last branch instruction 6236 instructions->trunc_to(instructions->length() - 1); 6237 6238 } else { 6239 LIR_Op* prev_op = instructions->at(instructions->length() - 2); 6240 if (prev_op->code() == lir_branch || prev_op->code() == lir_cond_float_branch) { 6241 assert(prev_op->as_OpBranch() != NULL, "branch must be of type LIR_OpBranch"); 6242 LIR_OpBranch* prev_branch = (LIR_OpBranch*)prev_op; 6243 6244 if (prev_branch->stub() == NULL) { 6245 6246 LIR_Op2* prev_cmp = NULL; 6247 // There might be a cmove inserted for profiling which depends on the same 6248 // compare. If we change the condition of the respective compare, we have 6249 // to take care of this cmove as well. 6250 LIR_Op2* prev_cmove = NULL; 6251 6252 for(int j = instructions->length() - 3; j >= 0 && prev_cmp == NULL; j--) { 6253 prev_op = instructions->at(j); 6254 // check for the cmove 6255 if (prev_op->code() == lir_cmove) { 6256 assert(prev_op->as_Op2() != NULL, "cmove must be of type LIR_Op2"); 6257 prev_cmove = (LIR_Op2*)prev_op; 6258 assert(prev_branch->cond() == prev_cmove->condition(), "should be the same"); 6259 } 6260 if (prev_op->code() == lir_cmp) { 6261 assert(prev_op->as_Op2() != NULL, "branch must be of type LIR_Op2"); 6262 prev_cmp = (LIR_Op2*)prev_op; 6263 assert(prev_branch->cond() == prev_cmp->condition(), "should be the same"); 6264 } 6265 } 6266 // Guarantee because it is dereferenced below. 6267 guarantee(prev_cmp != NULL, "should have found comp instruction for branch"); 6268 if (prev_branch->block() == code->at(i + 1) && prev_branch->info() == NULL) { 6269 6270 TRACE_LINEAR_SCAN(3, tty->print_cr("Negating conditional branch and deleting unconditional branch at end of block B%d", block->block_id())); 6271 6272 // eliminate a conditional branch to the immediate successor 6273 prev_branch->change_block(last_branch->block()); 6274 prev_branch->negate_cond(); 6275 prev_cmp->set_condition(prev_branch->cond()); 6276 instructions->trunc_to(instructions->length() - 1); 6277 // if we do change the condition, we have to change the cmove as well 6278 if (prev_cmove != NULL) { 6279 prev_cmove->set_condition(prev_branch->cond()); 6280 LIR_Opr t = prev_cmove->in_opr1(); 6281 prev_cmove->set_in_opr1(prev_cmove->in_opr2()); 6282 prev_cmove->set_in_opr2(t); 6283 } 6284 } 6285 } 6286 } 6287 } 6288 } 6289 } 6290 } 6291 6292 DEBUG_ONLY(verify(code)); 6293 } 6294 6295 void ControlFlowOptimizer::delete_jumps_to_return(BlockList* code) { 6296 #ifdef ASSERT 6297 ResourceBitMap return_converted(BlockBegin::number_of_blocks()); 6298 #endif 6299 6300 for (int i = code->length() - 1; i >= 0; i--) { 6301 BlockBegin* block = code->at(i); 6302 LIR_OpList* cur_instructions = block->lir()->instructions_list(); 6303 LIR_Op* cur_last_op = cur_instructions->last(); 6304 6305 assert(cur_instructions->at(0)->code() == lir_label, "first instruction must always be a label"); 6306 if (cur_instructions->length() == 2 && cur_last_op->code() == lir_return) { 6307 // the block contains only a label and a return 6308 // if a predecessor ends with an unconditional jump to this block, then the jump 6309 // can be replaced with a return instruction 6310 // 6311 // Note: the original block with only a return statement cannot be deleted completely 6312 // because the predecessors might have other (conditional) jumps to this block 6313 // -> this may lead to unnecesary return instructions in the final code 6314 6315 assert(cur_last_op->info() == NULL, "return instructions do not have debug information"); 6316 assert(block->number_of_sux() == 0 || 6317 (return_converted.at(block->block_id()) && block->number_of_sux() == 1), 6318 "blocks that end with return must not have successors"); 6319 6320 assert(cur_last_op->as_Op1() != NULL, "return must be LIR_Op1"); 6321 LIR_Opr return_opr = ((LIR_Op1*)cur_last_op)->in_opr(); 6322 6323 for (int j = block->number_of_preds() - 1; j >= 0; j--) { 6324 BlockBegin* pred = block->pred_at(j); 6325 LIR_OpList* pred_instructions = pred->lir()->instructions_list(); 6326 LIR_Op* pred_last_op = pred_instructions->last(); 6327 6328 if (pred_last_op->code() == lir_branch) { 6329 assert(pred_last_op->as_OpBranch() != NULL, "branch must be LIR_OpBranch"); 6330 LIR_OpBranch* pred_last_branch = (LIR_OpBranch*)pred_last_op; 6331 6332 if (pred_last_branch->block() == block && pred_last_branch->cond() == lir_cond_always && pred_last_branch->info() == NULL) { 6333 // replace the jump to a return with a direct return 6334 // Note: currently the edge between the blocks is not deleted 6335 pred_instructions->at_put(pred_instructions->length() - 1, new LIR_Op1(lir_return, return_opr)); 6336 #ifdef ASSERT 6337 return_converted.set_bit(pred->block_id()); 6338 #endif 6339 } 6340 } 6341 } 6342 } 6343 } 6344 } 6345 6346 6347 #ifdef ASSERT 6348 void ControlFlowOptimizer::verify(BlockList* code) { 6349 for (int i = 0; i < code->length(); i++) { 6350 BlockBegin* block = code->at(i); 6351 LIR_OpList* instructions = block->lir()->instructions_list(); 6352 6353 int j; 6354 for (j = 0; j < instructions->length(); j++) { 6355 LIR_OpBranch* op_branch = instructions->at(j)->as_OpBranch(); 6356 6357 if (op_branch != NULL) { 6358 assert(op_branch->block() == NULL || code->find(op_branch->block()) != -1, "branch target not valid"); 6359 assert(op_branch->ublock() == NULL || code->find(op_branch->ublock()) != -1, "branch target not valid"); 6360 } 6361 } 6362 6363 for (j = 0; j < block->number_of_sux() - 1; j++) { 6364 BlockBegin* sux = block->sux_at(j); 6365 assert(code->find(sux) != -1, "successor not valid"); 6366 } 6367 6368 for (j = 0; j < block->number_of_preds() - 1; j++) { 6369 BlockBegin* pred = block->pred_at(j); 6370 assert(code->find(pred) != -1, "successor not valid"); 6371 } 6372 } 6373 } 6374 #endif 6375 6376 6377 #ifndef PRODUCT 6378 6379 // Implementation of LinearStatistic 6380 6381 const char* LinearScanStatistic::counter_name(int counter_idx) { 6382 switch (counter_idx) { 6383 case counter_method: return "compiled methods"; 6384 case counter_fpu_method: return "methods using fpu"; 6385 case counter_loop_method: return "methods with loops"; 6386 case counter_exception_method:return "methods with xhandler"; 6387 6388 case counter_loop: return "loops"; 6389 case counter_block: return "blocks"; 6390 case counter_loop_block: return "blocks inside loop"; 6391 case counter_exception_block: return "exception handler entries"; 6392 case counter_interval: return "intervals"; 6393 case counter_fixed_interval: return "fixed intervals"; 6394 case counter_range: return "ranges"; 6395 case counter_fixed_range: return "fixed ranges"; 6396 case counter_use_pos: return "use positions"; 6397 case counter_fixed_use_pos: return "fixed use positions"; 6398 case counter_spill_slots: return "spill slots"; 6399 6400 // counter for classes of lir instructions 6401 case counter_instruction: return "total instructions"; 6402 case counter_label: return "labels"; 6403 case counter_entry: return "method entries"; 6404 case counter_return: return "method returns"; 6405 case counter_call: return "method calls"; 6406 case counter_move: return "moves"; 6407 case counter_cmp: return "compare"; 6408 case counter_cond_branch: return "conditional branches"; 6409 case counter_uncond_branch: return "unconditional branches"; 6410 case counter_stub_branch: return "branches to stub"; 6411 case counter_alu: return "artithmetic + logic"; 6412 case counter_alloc: return "allocations"; 6413 case counter_sync: return "synchronisation"; 6414 case counter_throw: return "throw"; 6415 case counter_unwind: return "unwind"; 6416 case counter_typecheck: return "type+null-checks"; 6417 case counter_fpu_stack: return "fpu-stack"; 6418 case counter_misc_inst: return "other instructions"; 6419 case counter_other_inst: return "misc. instructions"; 6420 6421 // counter for different types of moves 6422 case counter_move_total: return "total moves"; 6423 case counter_move_reg_reg: return "register->register"; 6424 case counter_move_reg_stack: return "register->stack"; 6425 case counter_move_stack_reg: return "stack->register"; 6426 case counter_move_stack_stack:return "stack->stack"; 6427 case counter_move_reg_mem: return "register->memory"; 6428 case counter_move_mem_reg: return "memory->register"; 6429 case counter_move_const_any: return "constant->any"; 6430 6431 case blank_line_1: return ""; 6432 case blank_line_2: return ""; 6433 6434 default: ShouldNotReachHere(); return ""; 6435 } 6436 } 6437 6438 LinearScanStatistic::Counter LinearScanStatistic::base_counter(int counter_idx) { 6439 if (counter_idx == counter_fpu_method || counter_idx == counter_loop_method || counter_idx == counter_exception_method) { 6440 return counter_method; 6441 } else if (counter_idx == counter_loop_block || counter_idx == counter_exception_block) { 6442 return counter_block; 6443 } else if (counter_idx >= counter_instruction && counter_idx <= counter_other_inst) { 6444 return counter_instruction; 6445 } else if (counter_idx >= counter_move_total && counter_idx <= counter_move_const_any) { 6446 return counter_move_total; 6447 } 6448 return invalid_counter; 6449 } 6450 6451 LinearScanStatistic::LinearScanStatistic() { 6452 for (int i = 0; i < number_of_counters; i++) { 6453 _counters_sum[i] = 0; 6454 _counters_max[i] = -1; 6455 } 6456 6457 } 6458 6459 // add the method-local numbers to the total sum 6460 void LinearScanStatistic::sum_up(LinearScanStatistic &method_statistic) { 6461 for (int i = 0; i < number_of_counters; i++) { 6462 _counters_sum[i] += method_statistic._counters_sum[i]; 6463 _counters_max[i] = MAX2(_counters_max[i], method_statistic._counters_sum[i]); 6464 } 6465 } 6466 6467 void LinearScanStatistic::print(const char* title) { 6468 if (CountLinearScan || TraceLinearScanLevel > 0) { 6469 tty->cr(); 6470 tty->print_cr("***** LinearScan statistic - %s *****", title); 6471 6472 for (int i = 0; i < number_of_counters; i++) { 6473 if (_counters_sum[i] > 0 || _counters_max[i] >= 0) { 6474 tty->print("%25s: %8d", counter_name(i), _counters_sum[i]); 6475 6476 LinearScanStatistic::Counter cntr = base_counter(i); 6477 if (cntr != invalid_counter) { 6478 tty->print(" (%5.1f%%) ", _counters_sum[i] * 100.0 / _counters_sum[cntr]); 6479 } else { 6480 tty->print(" "); 6481 } 6482 6483 if (_counters_max[i] >= 0) { 6484 tty->print("%8d", _counters_max[i]); 6485 } 6486 } 6487 tty->cr(); 6488 } 6489 } 6490 } 6491 6492 void LinearScanStatistic::collect(LinearScan* allocator) { 6493 inc_counter(counter_method); 6494 if (allocator->has_fpu_registers()) { 6495 inc_counter(counter_fpu_method); 6496 } 6497 if (allocator->num_loops() > 0) { 6498 inc_counter(counter_loop_method); 6499 } 6500 inc_counter(counter_loop, allocator->num_loops()); 6501 inc_counter(counter_spill_slots, allocator->max_spills()); 6502 6503 int i; 6504 for (i = 0; i < allocator->interval_count(); i++) { 6505 Interval* cur = allocator->interval_at(i); 6506 6507 if (cur != NULL) { 6508 inc_counter(counter_interval); 6509 inc_counter(counter_use_pos, cur->num_use_positions()); 6510 if (LinearScan::is_precolored_interval(cur)) { 6511 inc_counter(counter_fixed_interval); 6512 inc_counter(counter_fixed_use_pos, cur->num_use_positions()); 6513 } 6514 6515 Range* range = cur->first(); 6516 while (range != Range::end()) { 6517 inc_counter(counter_range); 6518 if (LinearScan::is_precolored_interval(cur)) { 6519 inc_counter(counter_fixed_range); 6520 } 6521 range = range->next(); 6522 } 6523 } 6524 } 6525 6526 bool has_xhandlers = false; 6527 // Note: only count blocks that are in code-emit order 6528 for (i = 0; i < allocator->ir()->code()->length(); i++) { 6529 BlockBegin* cur = allocator->ir()->code()->at(i); 6530 6531 inc_counter(counter_block); 6532 if (cur->loop_depth() > 0) { 6533 inc_counter(counter_loop_block); 6534 } 6535 if (cur->is_set(BlockBegin::exception_entry_flag)) { 6536 inc_counter(counter_exception_block); 6537 has_xhandlers = true; 6538 } 6539 6540 LIR_OpList* instructions = cur->lir()->instructions_list(); 6541 for (int j = 0; j < instructions->length(); j++) { 6542 LIR_Op* op = instructions->at(j); 6543 6544 inc_counter(counter_instruction); 6545 6546 switch (op->code()) { 6547 case lir_label: inc_counter(counter_label); break; 6548 case lir_std_entry: 6549 case lir_osr_entry: inc_counter(counter_entry); break; 6550 case lir_return: inc_counter(counter_return); break; 6551 6552 case lir_rtcall: 6553 case lir_static_call: 6554 case lir_optvirtual_call: 6555 case lir_virtual_call: inc_counter(counter_call); break; 6556 6557 case lir_move: { 6558 inc_counter(counter_move); 6559 inc_counter(counter_move_total); 6560 6561 LIR_Opr in = op->as_Op1()->in_opr(); 6562 LIR_Opr res = op->as_Op1()->result_opr(); 6563 if (in->is_register()) { 6564 if (res->is_register()) { 6565 inc_counter(counter_move_reg_reg); 6566 } else if (res->is_stack()) { 6567 inc_counter(counter_move_reg_stack); 6568 } else if (res->is_address()) { 6569 inc_counter(counter_move_reg_mem); 6570 } else { 6571 ShouldNotReachHere(); 6572 } 6573 } else if (in->is_stack()) { 6574 if (res->is_register()) { 6575 inc_counter(counter_move_stack_reg); 6576 } else { 6577 inc_counter(counter_move_stack_stack); 6578 } 6579 } else if (in->is_address()) { 6580 assert(res->is_register(), "must be"); 6581 inc_counter(counter_move_mem_reg); 6582 } else if (in->is_constant()) { 6583 inc_counter(counter_move_const_any); 6584 } else { 6585 ShouldNotReachHere(); 6586 } 6587 break; 6588 } 6589 6590 case lir_cmp: inc_counter(counter_cmp); break; 6591 6592 case lir_branch: 6593 case lir_cond_float_branch: { 6594 LIR_OpBranch* branch = op->as_OpBranch(); 6595 if (branch->block() == NULL) { 6596 inc_counter(counter_stub_branch); 6597 } else if (branch->cond() == lir_cond_always) { 6598 inc_counter(counter_uncond_branch); 6599 } else { 6600 inc_counter(counter_cond_branch); 6601 } 6602 break; 6603 } 6604 6605 case lir_neg: 6606 case lir_add: 6607 case lir_sub: 6608 case lir_mul: 6609 case lir_mul_strictfp: 6610 case lir_div: 6611 case lir_div_strictfp: 6612 case lir_rem: 6613 case lir_sqrt: 6614 case lir_abs: 6615 case lir_log10: 6616 case lir_logic_and: 6617 case lir_logic_or: 6618 case lir_logic_xor: 6619 case lir_shl: 6620 case lir_shr: 6621 case lir_ushr: inc_counter(counter_alu); break; 6622 6623 case lir_alloc_object: 6624 case lir_alloc_array: inc_counter(counter_alloc); break; 6625 6626 case lir_monaddr: 6627 case lir_lock: 6628 case lir_unlock: inc_counter(counter_sync); break; 6629 6630 case lir_throw: inc_counter(counter_throw); break; 6631 6632 case lir_unwind: inc_counter(counter_unwind); break; 6633 6634 case lir_null_check: 6635 case lir_leal: 6636 case lir_instanceof: 6637 case lir_checkcast: 6638 case lir_store_check: inc_counter(counter_typecheck); break; 6639 6640 case lir_fpop_raw: 6641 case lir_fxch: 6642 case lir_fld: inc_counter(counter_fpu_stack); break; 6643 6644 case lir_nop: 6645 case lir_push: 6646 case lir_pop: 6647 case lir_convert: 6648 case lir_roundfp: 6649 case lir_cmove: inc_counter(counter_misc_inst); break; 6650 6651 default: inc_counter(counter_other_inst); break; 6652 } 6653 } 6654 } 6655 6656 if (has_xhandlers) { 6657 inc_counter(counter_exception_method); 6658 } 6659 } 6660 6661 void LinearScanStatistic::compute(LinearScan* allocator, LinearScanStatistic &global_statistic) { 6662 if (CountLinearScan || TraceLinearScanLevel > 0) { 6663 6664 LinearScanStatistic local_statistic = LinearScanStatistic(); 6665 6666 local_statistic.collect(allocator); 6667 global_statistic.sum_up(local_statistic); 6668 6669 if (TraceLinearScanLevel > 2) { 6670 local_statistic.print("current local statistic"); 6671 } 6672 } 6673 } 6674 6675 6676 // Implementation of LinearTimers 6677 6678 LinearScanTimers::LinearScanTimers() { 6679 for (int i = 0; i < number_of_timers; i++) { 6680 timer(i)->reset(); 6681 } 6682 } 6683 6684 const char* LinearScanTimers::timer_name(int idx) { 6685 switch (idx) { 6686 case timer_do_nothing: return "Nothing (Time Check)"; 6687 case timer_number_instructions: return "Number Instructions"; 6688 case timer_compute_local_live_sets: return "Local Live Sets"; 6689 case timer_compute_global_live_sets: return "Global Live Sets"; 6690 case timer_build_intervals: return "Build Intervals"; 6691 case timer_sort_intervals_before: return "Sort Intervals Before"; 6692 case timer_allocate_registers: return "Allocate Registers"; 6693 case timer_resolve_data_flow: return "Resolve Data Flow"; 6694 case timer_sort_intervals_after: return "Sort Intervals After"; 6695 case timer_eliminate_spill_moves: return "Spill optimization"; 6696 case timer_assign_reg_num: return "Assign Reg Num"; 6697 case timer_allocate_fpu_stack: return "Allocate FPU Stack"; 6698 case timer_optimize_lir: return "Optimize LIR"; 6699 default: ShouldNotReachHere(); return ""; 6700 } 6701 } 6702 6703 void LinearScanTimers::begin_method() { 6704 if (TimeEachLinearScan) { 6705 // reset all timers to measure only current method 6706 for (int i = 0; i < number_of_timers; i++) { 6707 timer(i)->reset(); 6708 } 6709 } 6710 } 6711 6712 void LinearScanTimers::end_method(LinearScan* allocator) { 6713 if (TimeEachLinearScan) { 6714 6715 double c = timer(timer_do_nothing)->seconds(); 6716 double total = 0; 6717 for (int i = 1; i < number_of_timers; i++) { 6718 total += timer(i)->seconds() - c; 6719 } 6720 6721 if (total >= 0.0005) { 6722 // print all information in one line for automatic processing 6723 tty->print("@"); allocator->compilation()->method()->print_name(); 6724 6725 tty->print("@ %d ", allocator->compilation()->method()->code_size()); 6726 tty->print("@ %d ", allocator->block_at(allocator->block_count() - 1)->last_lir_instruction_id() / 2); 6727 tty->print("@ %d ", allocator->block_count()); 6728 tty->print("@ %d ", allocator->num_virtual_regs()); 6729 tty->print("@ %d ", allocator->interval_count()); 6730 tty->print("@ %d ", allocator->_num_calls); 6731 tty->print("@ %d ", allocator->num_loops()); 6732 6733 tty->print("@ %6.6f ", total); 6734 for (int i = 1; i < number_of_timers; i++) { 6735 tty->print("@ %4.1f ", ((timer(i)->seconds() - c) / total) * 100); 6736 } 6737 tty->cr(); 6738 } 6739 } 6740 } 6741 6742 void LinearScanTimers::print(double total_time) { 6743 if (TimeLinearScan) { 6744 // correction value: sum of dummy-timer that only measures the time that 6745 // is necesary to start and stop itself 6746 double c = timer(timer_do_nothing)->seconds(); 6747 6748 for (int i = 0; i < number_of_timers; i++) { 6749 double t = timer(i)->seconds(); 6750 tty->print_cr(" %25s: %6.3f s (%4.1f%%) corrected: %6.3f s (%4.1f%%)", timer_name(i), t, (t / total_time) * 100.0, t - c, (t - c) / (total_time - 2 * number_of_timers * c) * 100); 6751 } 6752 } 6753 } 6754 6755 #endif // #ifndef PRODUCT