1 /*
   2  * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/vmSymbols.hpp"
  27 #include "code/vmreg.inline.hpp"
  28 #include "interpreter/bytecode.hpp"
  29 #include "interpreter/interpreter.hpp"
  30 #include "memory/allocation.inline.hpp"
  31 #include "memory/resourceArea.hpp"
  32 #include "memory/universe.inline.hpp"
  33 #include "oops/methodData.hpp"
  34 #include "oops/oop.inline.hpp"
  35 #include "prims/jvmtiThreadState.hpp"
  36 #include "runtime/handles.inline.hpp"
  37 #include "runtime/monitorChunk.hpp"
  38 #include "runtime/sharedRuntime.hpp"
  39 #include "runtime/vframe.hpp"
  40 #include "runtime/vframeArray.hpp"
  41 #include "runtime/vframe_hp.hpp"
  42 #include "utilities/events.hpp"
  43 #ifdef COMPILER2
  44 #include "opto/runtime.hpp"
  45 #endif
  46 
  47 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
  48 
  49 int vframeArrayElement:: bci(void) const { return (_bci == SynchronizationEntryBCI ? 0 : _bci); }
  50 
  51 void vframeArrayElement::free_monitors(JavaThread* jt) {
  52   if (_monitors != NULL) {
  53      MonitorChunk* chunk = _monitors;
  54      _monitors = NULL;
  55      jt->remove_monitor_chunk(chunk);
  56      delete chunk;
  57   }
  58 }
  59 
  60 void vframeArrayElement::fill_in(compiledVFrame* vf, bool realloc_failures) {
  61 
  62 // Copy the information from the compiled vframe to the
  63 // interpreter frame we will be creating to replace vf
  64 
  65   _method = vf->method();
  66   _bci    = vf->raw_bci();
  67   _reexecute = vf->should_reexecute();
  68 #ifdef ASSERT
  69   _removed_monitors = false;
  70 #endif
  71 
  72   int index;
  73 
  74   // Get the monitors off-stack
  75 
  76   GrowableArray<MonitorInfo*>* list = vf->monitors();
  77   if (list->is_empty()) {
  78     _monitors = NULL;
  79   } else {
  80 
  81     // Allocate monitor chunk
  82     _monitors = new MonitorChunk(list->length());
  83     vf->thread()->add_monitor_chunk(_monitors);
  84 
  85     // Migrate the BasicLocks from the stack to the monitor chunk
  86     for (index = 0; index < list->length(); index++) {
  87       MonitorInfo* monitor = list->at(index);
  88       assert(!monitor->owner_is_scalar_replaced() || realloc_failures, "object should be reallocated already");
  89       BasicObjectLock* dest = _monitors->at(index);
  90       if (monitor->owner_is_scalar_replaced()) {
  91         dest->set_obj(NULL);
  92       } else {
  93         assert(monitor->owner() == NULL || (!monitor->owner()->is_unlocked() && !monitor->owner()->has_bias_pattern()), "object must be null or locked, and unbiased");
  94         dest->set_obj(monitor->owner());
  95         monitor->lock()->move_to(monitor->owner(), dest->lock());
  96       }
  97     }
  98   }
  99 
 100   // Convert the vframe locals and expressions to off stack
 101   // values. Because we will not gc all oops can be converted to
 102   // intptr_t (i.e. a stack slot) and we are fine. This is
 103   // good since we are inside a HandleMark and the oops in our
 104   // collection would go away between packing them here and
 105   // unpacking them in unpack_on_stack.
 106 
 107   // First the locals go off-stack
 108 
 109   // FIXME this seems silly it creates a StackValueCollection
 110   // in order to get the size to then copy them and
 111   // convert the types to intptr_t size slots. Seems like it
 112   // could do it in place... Still uses less memory than the
 113   // old way though
 114 
 115   StackValueCollection *locs = vf->locals();
 116   _locals = new StackValueCollection(locs->size());
 117   for(index = 0; index < locs->size(); index++) {
 118     StackValue* value = locs->at(index);
 119     switch(value->type()) {
 120       case T_OBJECT:
 121         assert(!value->obj_is_scalar_replaced() || realloc_failures, "object should be reallocated already");
 122         // preserve object type
 123         _locals->add( new StackValue(cast_from_oop<intptr_t>((value->get_obj()())), T_OBJECT ));
 124         break;
 125       case T_CONFLICT:
 126         // A dead local.  Will be initialized to null/zero.
 127         _locals->add( new StackValue());
 128         break;
 129       case T_INT:
 130         _locals->add( new StackValue(value->get_int()));
 131         break;
 132       default:
 133         ShouldNotReachHere();
 134     }
 135   }
 136 
 137   // Now the expressions off-stack
 138   // Same silliness as above
 139 
 140   StackValueCollection *exprs = vf->expressions();
 141   _expressions = new StackValueCollection(exprs->size());
 142   for(index = 0; index < exprs->size(); index++) {
 143     StackValue* value = exprs->at(index);
 144     switch(value->type()) {
 145       case T_OBJECT:
 146         assert(!value->obj_is_scalar_replaced() || realloc_failures, "object should be reallocated already");
 147         // preserve object type
 148         _expressions->add( new StackValue(cast_from_oop<intptr_t>((value->get_obj()())), T_OBJECT ));
 149         break;
 150       case T_CONFLICT:
 151         // A dead stack element.  Will be initialized to null/zero.
 152         // This can occur when the compiler emits a state in which stack
 153         // elements are known to be dead (because of an imminent exception).
 154         _expressions->add( new StackValue());
 155         break;
 156       case T_INT:
 157         _expressions->add( new StackValue(value->get_int()));
 158         break;
 159       default:
 160         ShouldNotReachHere();
 161     }
 162   }
 163 }
 164 
 165 int unpack_counter = 0;
 166 
 167 void vframeArrayElement::unpack_on_stack(int caller_actual_parameters,
 168                                          int callee_parameters,
 169                                          int callee_locals,
 170                                          frame* caller,
 171                                          bool is_top_frame,
 172                                          bool is_bottom_frame,
 173                                          int exec_mode) {
 174   JavaThread* thread = (JavaThread*) Thread::current();
 175 
 176   // Look at bci and decide on bcp and continuation pc
 177   address bcp;
 178   // C++ interpreter doesn't need a pc since it will figure out what to do when it
 179   // begins execution
 180   address pc;
 181   bool use_next_mdp = false; // true if we should use the mdp associated with the next bci
 182                              // rather than the one associated with bcp
 183   if (raw_bci() == SynchronizationEntryBCI) {
 184     // We are deoptimizing while hanging in prologue code for synchronized method
 185     bcp = method()->bcp_from(0); // first byte code
 186     pc  = Interpreter::deopt_entry(vtos, 0); // step = 0 since we don't skip current bytecode
 187   } else if (should_reexecute()) { //reexecute this bytecode
 188     assert(is_top_frame, "reexecute allowed only for the top frame");
 189     bcp = method()->bcp_from(bci());
 190     pc  = Interpreter::deopt_reexecute_entry(method(), bcp);
 191   } else {
 192     bcp = method()->bcp_from(bci());
 193     pc  = Interpreter::deopt_continue_after_entry(method(), bcp, callee_parameters, is_top_frame);
 194     use_next_mdp = true;
 195   }
 196   assert(Bytecodes::is_defined(*bcp), "must be a valid bytecode");
 197 
 198   // Monitorenter and pending exceptions:
 199   //
 200   // For Compiler2, there should be no pending exception when deoptimizing at monitorenter
 201   // because there is no safepoint at the null pointer check (it is either handled explicitly
 202   // or prior to the monitorenter) and asynchronous exceptions are not made "pending" by the
 203   // runtime interface for the slow case (see JRT_ENTRY_FOR_MONITORENTER).  If an asynchronous
 204   // exception was processed, the bytecode pointer would have to be extended one bytecode beyond
 205   // the monitorenter to place it in the proper exception range.
 206   //
 207   // For Compiler1, deoptimization can occur while throwing a NullPointerException at monitorenter,
 208   // in which case bcp should point to the monitorenter since it is within the exception's range.
 209 
 210   assert(*bcp != Bytecodes::_monitorenter || is_top_frame, "a _monitorenter must be a top frame");
 211   assert(thread->deopt_nmethod() != NULL, "nmethod should be known");
 212   guarantee(!(thread->deopt_nmethod()->is_compiled_by_c2() &&
 213               *bcp == Bytecodes::_monitorenter             &&
 214               exec_mode == Deoptimization::Unpack_exception),
 215             "shouldn't get exception during monitorenter");
 216 
 217   int popframe_preserved_args_size_in_bytes = 0;
 218   int popframe_preserved_args_size_in_words = 0;
 219   if (is_top_frame) {
 220     JvmtiThreadState *state = thread->jvmti_thread_state();
 221     if (JvmtiExport::can_pop_frame() &&
 222         (thread->has_pending_popframe() || thread->popframe_forcing_deopt_reexecution())) {
 223       if (thread->has_pending_popframe()) {
 224         // Pop top frame after deoptimization
 225 #ifndef CC_INTERP
 226         pc = Interpreter::remove_activation_preserving_args_entry();
 227 #else
 228         // Do an uncommon trap type entry. c++ interpreter will know
 229         // to pop frame and preserve the args
 230         pc = Interpreter::deopt_entry(vtos, 0);
 231         use_next_mdp = false;
 232 #endif
 233       } else {
 234         // Reexecute invoke in top frame
 235         pc = Interpreter::deopt_entry(vtos, 0);
 236         use_next_mdp = false;
 237         popframe_preserved_args_size_in_bytes = in_bytes(thread->popframe_preserved_args_size());
 238         // Note: the PopFrame-related extension of the expression stack size is done in
 239         // Deoptimization::fetch_unroll_info_helper
 240         popframe_preserved_args_size_in_words = in_words(thread->popframe_preserved_args_size_in_words());
 241       }
 242     } else if (JvmtiExport::can_force_early_return() && state != NULL && state->is_earlyret_pending()) {
 243       // Force early return from top frame after deoptimization
 244 #ifndef CC_INTERP
 245       pc = Interpreter::remove_activation_early_entry(state->earlyret_tos());
 246 #endif
 247     } else {
 248       // Possibly override the previous pc computation of the top (youngest) frame
 249       switch (exec_mode) {
 250       case Deoptimization::Unpack_deopt:
 251         // use what we've got
 252         break;
 253       case Deoptimization::Unpack_exception:
 254         // exception is pending
 255         pc = SharedRuntime::raw_exception_handler_for_return_address(thread, pc);
 256         // [phh] We're going to end up in some handler or other, so it doesn't
 257         // matter what mdp we point to.  See exception_handler_for_exception()
 258         // in interpreterRuntime.cpp.
 259         break;
 260       case Deoptimization::Unpack_uncommon_trap:
 261       case Deoptimization::Unpack_reexecute:
 262         // redo last byte code
 263         pc  = Interpreter::deopt_entry(vtos, 0);
 264         use_next_mdp = false;
 265         break;
 266       default:
 267         ShouldNotReachHere();
 268       }
 269     }
 270   }
 271 
 272   // Setup the interpreter frame
 273 
 274   assert(method() != NULL, "method must exist");
 275   int temps = expressions()->size();
 276 
 277   int locks = monitors() == NULL ? 0 : monitors()->number_of_monitors();
 278 
 279   Interpreter::layout_activation(method(),
 280                                  temps + callee_parameters,
 281                                  popframe_preserved_args_size_in_words,
 282                                  locks,
 283                                  caller_actual_parameters,
 284                                  callee_parameters,
 285                                  callee_locals,
 286                                  caller,
 287                                  iframe(),
 288                                  is_top_frame,
 289                                  is_bottom_frame);
 290 
 291   // Update the pc in the frame object and overwrite the temporary pc
 292   // we placed in the skeletal frame now that we finally know the
 293   // exact interpreter address we should use.
 294 
 295   _frame.patch_pc(thread, pc);
 296 
 297   assert (!method()->is_synchronized() || locks > 0 || _removed_monitors, "synchronized methods must have monitors");
 298 
 299   BasicObjectLock* top = iframe()->interpreter_frame_monitor_begin();
 300   for (int index = 0; index < locks; index++) {
 301     top = iframe()->previous_monitor_in_interpreter_frame(top);
 302     BasicObjectLock* src = _monitors->at(index);
 303     top->set_obj(src->obj());
 304     src->lock()->move_to(src->obj(), top->lock());
 305   }
 306   if (ProfileInterpreter) {
 307     iframe()->interpreter_frame_set_mdp(0); // clear out the mdp.
 308   }
 309   iframe()->interpreter_frame_set_bcp(bcp);
 310   if (ProfileInterpreter) {
 311     MethodData* mdo = method()->method_data();
 312     if (mdo != NULL) {
 313       int bci = iframe()->interpreter_frame_bci();
 314       if (use_next_mdp) ++bci;
 315       address mdp = mdo->bci_to_dp(bci);
 316       iframe()->interpreter_frame_set_mdp(mdp);
 317     }
 318   }
 319 
 320   // Unpack expression stack
 321   // If this is an intermediate frame (i.e. not top frame) then this
 322   // only unpacks the part of the expression stack not used by callee
 323   // as parameters. The callee parameters are unpacked as part of the
 324   // callee locals.
 325   int i;
 326   for(i = 0; i < expressions()->size(); i++) {
 327     StackValue *value = expressions()->at(i);
 328     intptr_t*   addr  = iframe()->interpreter_frame_expression_stack_at(i);
 329     switch(value->type()) {
 330       case T_INT:
 331         *addr = value->get_int();
 332         break;
 333       case T_OBJECT:
 334         *addr = value->get_int(T_OBJECT);
 335         break;
 336       case T_CONFLICT:
 337         // A dead stack slot.  Initialize to null in case it is an oop.
 338         *addr = NULL_WORD;
 339         break;
 340       default:
 341         ShouldNotReachHere();
 342     }
 343   }
 344 
 345 
 346   // Unpack the locals
 347   for(i = 0; i < locals()->size(); i++) {
 348     StackValue *value = locals()->at(i);
 349     intptr_t* addr  = iframe()->interpreter_frame_local_at(i);
 350     switch(value->type()) {
 351       case T_INT:
 352         *addr = value->get_int();
 353         break;
 354       case T_OBJECT:
 355         *addr = value->get_int(T_OBJECT);
 356         break;
 357       case T_CONFLICT:
 358         // A dead location. If it is an oop then we need a NULL to prevent GC from following it
 359         *addr = NULL_WORD;
 360         break;
 361       default:
 362         ShouldNotReachHere();
 363     }
 364   }
 365 
 366   if (is_top_frame && JvmtiExport::can_pop_frame() && thread->popframe_forcing_deopt_reexecution()) {
 367     // An interpreted frame was popped but it returns to a deoptimized
 368     // frame. The incoming arguments to the interpreted activation
 369     // were preserved in thread-local storage by the
 370     // remove_activation_preserving_args_entry in the interpreter; now
 371     // we put them back into the just-unpacked interpreter frame.
 372     // Note that this assumes that the locals arena grows toward lower
 373     // addresses.
 374     if (popframe_preserved_args_size_in_words != 0) {
 375       void* saved_args = thread->popframe_preserved_args();
 376       assert(saved_args != NULL, "must have been saved by interpreter");
 377 #ifdef ASSERT
 378       assert(popframe_preserved_args_size_in_words <=
 379              iframe()->interpreter_frame_expression_stack_size()*Interpreter::stackElementWords,
 380              "expression stack size should have been extended");
 381 #endif // ASSERT
 382       int top_element = iframe()->interpreter_frame_expression_stack_size()-1;
 383       intptr_t* base;
 384       if (frame::interpreter_frame_expression_stack_direction() < 0) {
 385         base = iframe()->interpreter_frame_expression_stack_at(top_element);
 386       } else {
 387         base = iframe()->interpreter_frame_expression_stack();
 388       }
 389       Copy::conjoint_jbytes(saved_args,
 390                             base,
 391                             popframe_preserved_args_size_in_bytes);
 392       thread->popframe_free_preserved_args();
 393     }
 394   }
 395 
 396 #ifndef PRODUCT
 397   if (TraceDeoptimization && Verbose) {
 398     ttyLocker ttyl;
 399     tty->print_cr("[%d Interpreted Frame]", ++unpack_counter);
 400     iframe()->print_on(tty);
 401     RegisterMap map(thread);
 402     vframe* f = vframe::new_vframe(iframe(), &map, thread);
 403     f->print();
 404 
 405     tty->print_cr("locals size     %d", locals()->size());
 406     tty->print_cr("expression size %d", expressions()->size());
 407 
 408     method()->print_value();
 409     tty->cr();
 410     // method()->print_codes();
 411   } else if (TraceDeoptimization) {
 412     tty->print("     ");
 413     method()->print_value();
 414     Bytecodes::Code code = Bytecodes::java_code_at(method(), bcp);
 415     int bci = method()->bci_from(bcp);
 416     tty->print(" - %s", Bytecodes::name(code));
 417     tty->print(" @ bci %d ", bci);
 418     tty->print_cr("sp = " PTR_FORMAT, iframe()->sp());
 419   }
 420 #endif // PRODUCT
 421 
 422   // The expression stack and locals are in the resource area don't leave
 423   // a dangling pointer in the vframeArray we leave around for debug
 424   // purposes
 425 
 426   _locals = _expressions = NULL;
 427 
 428 }
 429 
 430 int vframeArrayElement::on_stack_size(int callee_parameters,
 431                                       int callee_locals,
 432                                       bool is_top_frame,
 433                                       int popframe_extra_stack_expression_els) const {
 434   assert(method()->max_locals() == locals()->size(), "just checking");
 435   int locks = monitors() == NULL ? 0 : monitors()->number_of_monitors();
 436   int temps = expressions()->size();
 437   return Interpreter::size_activation(method()->max_stack(),
 438                                       temps + callee_parameters,
 439                                       popframe_extra_stack_expression_els,
 440                                       locks,
 441                                       callee_parameters,
 442                                       callee_locals,
 443                                       is_top_frame);
 444 }
 445 
 446 
 447 
 448 vframeArray* vframeArray::allocate(JavaThread* thread, int frame_size, GrowableArray<compiledVFrame*>* chunk,
 449                                    RegisterMap *reg_map, frame sender, frame caller, frame self,
 450                                    bool realloc_failures) {
 451 
 452   // Allocate the vframeArray
 453   vframeArray * result = (vframeArray*) AllocateHeap(sizeof(vframeArray) + // fixed part
 454                                                      sizeof(vframeArrayElement) * (chunk->length() - 1), // variable part
 455                                                      mtCompiler);
 456   result->_frames = chunk->length();
 457   result->_owner_thread = thread;
 458   result->_sender = sender;
 459   result->_caller = caller;
 460   result->_original = self;
 461   result->set_unroll_block(NULL); // initialize it
 462   result->fill_in(thread, frame_size, chunk, reg_map, realloc_failures);
 463   return result;
 464 }
 465 
 466 void vframeArray::fill_in(JavaThread* thread,
 467                           int frame_size,
 468                           GrowableArray<compiledVFrame*>* chunk,
 469                           const RegisterMap *reg_map,
 470                           bool realloc_failures) {
 471   // Set owner first, it is used when adding monitor chunks
 472 
 473   _frame_size = frame_size;
 474   for(int i = 0; i < chunk->length(); i++) {
 475     element(i)->fill_in(chunk->at(i), realloc_failures);
 476   }
 477 
 478   // Copy registers for callee-saved registers
 479   if (reg_map != NULL) {
 480     for(int i = 0; i < RegisterMap::reg_count; i++) {
 481 #ifdef AMD64
 482       // The register map has one entry for every int (32-bit value), so
 483       // 64-bit physical registers have two entries in the map, one for
 484       // each half.  Ignore the high halves of 64-bit registers, just like
 485       // frame::oopmapreg_to_location does.
 486       //
 487       // [phh] FIXME: this is a temporary hack!  This code *should* work
 488       // correctly w/o this hack, possibly by changing RegisterMap::pd_location
 489       // in frame_amd64.cpp and the values of the phantom high half registers
 490       // in amd64.ad.
 491       //      if (VMReg::Name(i) < SharedInfo::stack0 && is_even(i)) {
 492         intptr_t* src = (intptr_t*) reg_map->location(VMRegImpl::as_VMReg(i));
 493         _callee_registers[i] = src != NULL ? *src : NULL_WORD;
 494         //      } else {
 495         //      jint* src = (jint*) reg_map->location(VMReg::Name(i));
 496         //      _callee_registers[i] = src != NULL ? *src : NULL_WORD;
 497         //      }
 498 #else
 499       jint* src = (jint*) reg_map->location(VMRegImpl::as_VMReg(i));
 500       _callee_registers[i] = src != NULL ? *src : NULL_WORD;
 501 #endif
 502       if (src == NULL) {
 503         set_location_valid(i, false);
 504       } else {
 505         set_location_valid(i, true);
 506         jint* dst = (jint*) register_location(i);
 507         *dst = *src;
 508       }
 509     }
 510   }
 511 }
 512 
 513 void vframeArray::unpack_to_stack(frame &unpack_frame, int exec_mode, int caller_actual_parameters) {
 514   // stack picture
 515   //   unpack_frame
 516   //   [new interpreter frames ] (frames are skeletal but walkable)
 517   //   caller_frame
 518   //
 519   //  This routine fills in the missing data for the skeletal interpreter frames
 520   //  in the above picture.
 521 
 522   // Find the skeletal interpreter frames to unpack into
 523   JavaThread* THREAD = JavaThread::current();
 524   RegisterMap map(THREAD, false);
 525   // Get the youngest frame we will unpack (last to be unpacked)
 526   frame me = unpack_frame.sender(&map);
 527   int index;
 528   for (index = 0; index < frames(); index++ ) {
 529     *element(index)->iframe() = me;
 530     // Get the caller frame (possibly skeletal)
 531     me = me.sender(&map);
 532   }
 533 
 534   // Do the unpacking of interpreter frames; the frame at index 0 represents the top activation, so it has no callee
 535   // Unpack the frames from the oldest (frames() -1) to the youngest (0)
 536   frame* caller_frame = &me;
 537   for (index = frames() - 1; index >= 0 ; index--) {
 538     vframeArrayElement* elem = element(index);  // caller
 539     int callee_parameters, callee_locals;
 540     if (index == 0) {
 541       callee_parameters = callee_locals = 0;
 542     } else {
 543       methodHandle caller = elem->method();
 544       methodHandle callee = element(index - 1)->method();
 545       Bytecode_invoke inv(caller, elem->bci());
 546       // invokedynamic instructions don't have a class but obviously don't have a MemberName appendix.
 547       // NOTE:  Use machinery here that avoids resolving of any kind.
 548       const bool has_member_arg =
 549           !inv.is_invokedynamic() && MethodHandles::has_member_arg(inv.klass(), inv.name());
 550       callee_parameters = callee->size_of_parameters() + (has_member_arg ? 1 : 0);
 551       callee_locals     = callee->max_locals();
 552     }
 553     elem->unpack_on_stack(caller_actual_parameters,
 554                           callee_parameters,
 555                           callee_locals,
 556                           caller_frame,
 557                           index == 0,
 558                           index == frames() - 1,
 559                           exec_mode);
 560     if (index == frames() - 1) {
 561       Deoptimization::unwind_callee_save_values(elem->iframe(), this);
 562     }
 563     caller_frame = elem->iframe();
 564     caller_actual_parameters = callee_parameters;
 565   }
 566   deallocate_monitor_chunks();
 567 }
 568 
 569 void vframeArray::deallocate_monitor_chunks() {
 570   JavaThread* jt = JavaThread::current();
 571   for (int index = 0; index < frames(); index++ ) {
 572      element(index)->free_monitors(jt);
 573   }
 574 }
 575 
 576 #ifndef PRODUCT
 577 
 578 bool vframeArray::structural_compare(JavaThread* thread, GrowableArray<compiledVFrame*>* chunk) {
 579   if (owner_thread() != thread) return false;
 580   int index = 0;
 581 #if 0 // FIXME can't do this comparison
 582 
 583   // Compare only within vframe array.
 584   for (deoptimizedVFrame* vf = deoptimizedVFrame::cast(vframe_at(first_index())); vf; vf = vf->deoptimized_sender_or_null()) {
 585     if (index >= chunk->length() || !vf->structural_compare(chunk->at(index))) return false;
 586     index++;
 587   }
 588   if (index != chunk->length()) return false;
 589 #endif
 590 
 591   return true;
 592 }
 593 
 594 #endif
 595 
 596 address vframeArray::register_location(int i) const {
 597   assert(0 <= i && i < RegisterMap::reg_count, "index out of bounds");
 598   return (address) & _callee_registers[i];
 599 }
 600 
 601 
 602 #ifndef PRODUCT
 603 
 604 // Printing
 605 
 606 // Note: we cannot have print_on as const, as we allocate inside the method
 607 void vframeArray::print_on_2(outputStream* st)  {
 608   st->print_cr(" - sp: " INTPTR_FORMAT, sp());
 609   st->print(" - thread: ");
 610   Thread::current()->print();
 611   st->print_cr(" - frame size: %d", frame_size());
 612   for (int index = 0; index < frames() ; index++ ) {
 613     element(index)->print(st);
 614   }
 615 }
 616 
 617 void vframeArrayElement::print(outputStream* st) {
 618   st->print_cr(" - interpreter_frame -> sp: " INTPTR_FORMAT, iframe()->sp());
 619 }
 620 
 621 void vframeArray::print_value_on(outputStream* st) const {
 622   st->print_cr("vframeArray [%d] ", frames());
 623 }
 624 
 625 
 626 #endif