1 /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/javaClasses.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "gc/shared/collectedHeap.hpp"
  29 #include "gc/shared/collectedHeap.inline.hpp"
  30 #include "gc/shared/gcTimer.hpp"
  31 #include "gc/shared/gcTraceTime.hpp"
  32 #include "gc/shared/referencePolicy.hpp"
  33 #include "gc/shared/referenceProcessor.hpp"
  34 #include "oops/oop.inline.hpp"
  35 #include "runtime/java.hpp"
  36 #include "runtime/jniHandles.hpp"
  37 
  38 ReferencePolicy* ReferenceProcessor::_always_clear_soft_ref_policy = NULL;
  39 ReferencePolicy* ReferenceProcessor::_default_soft_ref_policy      = NULL;
  40 jlong            ReferenceProcessor::_soft_ref_timestamp_clock = 0;
  41 
  42 void referenceProcessor_init() {
  43   ReferenceProcessor::init_statics();
  44 }
  45 
  46 void ReferenceProcessor::init_statics() {
  47   // We need a monotonically non-decreasing time in ms but
  48   // os::javaTimeMillis() does not guarantee monotonicity.
  49   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
  50 
  51   // Initialize the soft ref timestamp clock.
  52   _soft_ref_timestamp_clock = now;
  53   // Also update the soft ref clock in j.l.r.SoftReference
  54   java_lang_ref_SoftReference::set_clock(_soft_ref_timestamp_clock);
  55 
  56   _always_clear_soft_ref_policy = new AlwaysClearPolicy();
  57 #if defined(COMPILER2) || INCLUDE_JVMCI
  58   _default_soft_ref_policy      = new LRUMaxHeapPolicy();
  59 #else
  60   _default_soft_ref_policy      = new LRUCurrentHeapPolicy();
  61 #endif
  62   if (_always_clear_soft_ref_policy == NULL || _default_soft_ref_policy == NULL) {
  63     vm_exit_during_initialization("Could not allocate reference policy object");
  64   }
  65   guarantee(RefDiscoveryPolicy == ReferenceBasedDiscovery ||
  66             RefDiscoveryPolicy == ReferentBasedDiscovery,
  67             "Unrecognized RefDiscoveryPolicy");
  68 }
  69 
  70 void ReferenceProcessor::enable_discovery(bool check_no_refs) {
  71 #ifdef ASSERT
  72   // Verify that we're not currently discovering refs
  73   assert(!_discovering_refs, "nested call?");
  74 
  75   if (check_no_refs) {
  76     // Verify that the discovered lists are empty
  77     verify_no_references_recorded();
  78   }
  79 #endif // ASSERT
  80 
  81   // Someone could have modified the value of the static
  82   // field in the j.l.r.SoftReference class that holds the
  83   // soft reference timestamp clock using reflection or
  84   // Unsafe between GCs. Unconditionally update the static
  85   // field in ReferenceProcessor here so that we use the new
  86   // value during reference discovery.
  87 
  88   _soft_ref_timestamp_clock = java_lang_ref_SoftReference::clock();
  89   _discovering_refs = true;
  90 }
  91 
  92 ReferenceProcessor::ReferenceProcessor(MemRegion span,
  93                                        bool      mt_processing,
  94                                        uint      mt_processing_degree,
  95                                        bool      mt_discovery,
  96                                        uint      mt_discovery_degree,
  97                                        bool      atomic_discovery,
  98                                        BoolObjectClosure* is_alive_non_header)  :
  99   _discovering_refs(false),
 100   _enqueuing_is_done(false),
 101   _is_alive_non_header(is_alive_non_header),
 102   _processing_is_mt(mt_processing),
 103   _next_id(0)
 104 {
 105   _span = span;
 106   _discovery_is_atomic = atomic_discovery;
 107   _discovery_is_mt     = mt_discovery;
 108   _num_q               = MAX2(1U, mt_processing_degree);
 109   _max_num_q           = MAX2(_num_q, mt_discovery_degree);
 110   _discovered_refs     = NEW_C_HEAP_ARRAY(DiscoveredList,
 111             _max_num_q * number_of_subclasses_of_ref(), mtGC);
 112 
 113   if (_discovered_refs == NULL) {
 114     vm_exit_during_initialization("Could not allocated RefProc Array");
 115   }
 116   _discoveredSoftRefs    = &_discovered_refs[0];
 117   _discoveredWeakRefs    = &_discoveredSoftRefs[_max_num_q];
 118   _discoveredFinalRefs   = &_discoveredWeakRefs[_max_num_q];
 119   _discoveredPhantomRefs = &_discoveredFinalRefs[_max_num_q];
 120   _discoveredCleanerRefs = &_discoveredPhantomRefs[_max_num_q];
 121 
 122   // Initialize all entries to NULL
 123   for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
 124     _discovered_refs[i].set_head(NULL);
 125     _discovered_refs[i].set_length(0);
 126   }
 127 
 128   setup_policy(false /* default soft ref policy */);
 129 }
 130 
 131 #ifndef PRODUCT
 132 void ReferenceProcessor::verify_no_references_recorded() {
 133   guarantee(!_discovering_refs, "Discovering refs?");
 134   for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
 135     guarantee(_discovered_refs[i].is_empty(),
 136               "Found non-empty discovered list");
 137   }
 138 }
 139 #endif
 140 
 141 void ReferenceProcessor::weak_oops_do(OopClosure* f) {
 142   for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
 143     if (UseCompressedOops) {
 144       f->do_oop((narrowOop*)_discovered_refs[i].adr_head());
 145     } else {
 146       f->do_oop((oop*)_discovered_refs[i].adr_head());
 147     }
 148   }
 149 }
 150 
 151 void ReferenceProcessor::update_soft_ref_master_clock() {
 152   // Update (advance) the soft ref master clock field. This must be done
 153   // after processing the soft ref list.
 154 
 155   // We need a monotonically non-decreasing time in ms but
 156   // os::javaTimeMillis() does not guarantee monotonicity.
 157   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
 158   jlong soft_ref_clock = java_lang_ref_SoftReference::clock();
 159   assert(soft_ref_clock == _soft_ref_timestamp_clock, "soft ref clocks out of sync");
 160 
 161   NOT_PRODUCT(
 162   if (now < _soft_ref_timestamp_clock) {
 163     warning("time warp: " JLONG_FORMAT " to " JLONG_FORMAT,
 164             _soft_ref_timestamp_clock, now);
 165   }
 166   )
 167   // The values of now and _soft_ref_timestamp_clock are set using
 168   // javaTimeNanos(), which is guaranteed to be monotonically
 169   // non-decreasing provided the underlying platform provides such
 170   // a time source (and it is bug free).
 171   // In product mode, however, protect ourselves from non-monotonicity.
 172   if (now > _soft_ref_timestamp_clock) {
 173     _soft_ref_timestamp_clock = now;
 174     java_lang_ref_SoftReference::set_clock(now);
 175   }
 176   // Else leave clock stalled at its old value until time progresses
 177   // past clock value.
 178 }
 179 
 180 size_t ReferenceProcessor::total_count(DiscoveredList lists[]) {
 181   size_t total = 0;
 182   for (uint i = 0; i < _max_num_q; ++i) {
 183     total += lists[i].length();
 184   }
 185   return total;
 186 }
 187 
 188 ReferenceProcessorStats ReferenceProcessor::process_discovered_references(
 189   BoolObjectClosure*           is_alive,
 190   OopClosure*                  keep_alive,
 191   VoidClosure*                 complete_gc,
 192   AbstractRefProcTaskExecutor* task_executor,
 193   GCTimer*                     gc_timer,
 194   GCId                         gc_id) {
 195 
 196   assert(!enqueuing_is_done(), "If here enqueuing should not be complete");
 197   // Stop treating discovered references specially.
 198   disable_discovery();
 199 
 200   // If discovery was concurrent, someone could have modified
 201   // the value of the static field in the j.l.r.SoftReference
 202   // class that holds the soft reference timestamp clock using
 203   // reflection or Unsafe between when discovery was enabled and
 204   // now. Unconditionally update the static field in ReferenceProcessor
 205   // here so that we use the new value during processing of the
 206   // discovered soft refs.
 207 
 208   _soft_ref_timestamp_clock = java_lang_ref_SoftReference::clock();
 209 
 210   bool trace_time = PrintGCDetails && PrintReferenceGC;
 211 
 212   // Soft references
 213   size_t soft_count = 0;
 214   {
 215     GCTraceTime tt("SoftReference", trace_time, false, gc_timer, gc_id);
 216     soft_count =
 217       process_discovered_reflist(_discoveredSoftRefs, _current_soft_ref_policy, true,
 218                                  is_alive, keep_alive, complete_gc, task_executor);
 219   }
 220 
 221   update_soft_ref_master_clock();
 222 
 223   // Weak references
 224   size_t weak_count = 0;
 225   {
 226     GCTraceTime tt("WeakReference", trace_time, false, gc_timer, gc_id);
 227     weak_count =
 228       process_discovered_reflist(_discoveredWeakRefs, NULL, true,
 229                                  is_alive, keep_alive, complete_gc, task_executor);
 230   }
 231 
 232   // Final references
 233   size_t final_count = 0;
 234   {
 235     GCTraceTime tt("FinalReference", trace_time, false, gc_timer, gc_id);
 236     final_count =
 237       process_discovered_reflist(_discoveredFinalRefs, NULL, false,
 238                                  is_alive, keep_alive, complete_gc, task_executor);
 239   }
 240 
 241   // Phantom references
 242   size_t phantom_count = 0;
 243   {
 244     GCTraceTime tt("PhantomReference", trace_time, false, gc_timer, gc_id);
 245     phantom_count =
 246       process_discovered_reflist(_discoveredPhantomRefs, NULL, false,
 247                                  is_alive, keep_alive, complete_gc, task_executor);
 248 
 249     // Process cleaners, but include them in phantom statistics.  We expect
 250     // Cleaner references to be temporary, and don't want to deal with
 251     // possible incompatibilities arising from making it more visible.
 252     phantom_count +=
 253       process_discovered_reflist(_discoveredCleanerRefs, NULL, true,
 254                                  is_alive, keep_alive, complete_gc, task_executor);
 255   }
 256 
 257   // Weak global JNI references. It would make more sense (semantically) to
 258   // traverse these simultaneously with the regular weak references above, but
 259   // that is not how the JDK1.2 specification is. See #4126360. Native code can
 260   // thus use JNI weak references to circumvent the phantom references and
 261   // resurrect a "post-mortem" object.
 262   {
 263     GCTraceTime tt("JNI Weak Reference", trace_time, false, gc_timer, gc_id);
 264     if (task_executor != NULL) {
 265       task_executor->set_single_threaded_mode();
 266     }
 267     process_phaseJNI(is_alive, keep_alive, complete_gc);
 268   }
 269 
 270   return ReferenceProcessorStats(soft_count, weak_count, final_count, phantom_count);
 271 }
 272 
 273 #ifndef PRODUCT
 274 // Calculate the number of jni handles.
 275 uint ReferenceProcessor::count_jni_refs() {
 276   class AlwaysAliveClosure: public BoolObjectClosure {
 277   public:
 278     virtual bool do_object_b(oop obj) { return true; }
 279   };
 280 
 281   class CountHandleClosure: public OopClosure {
 282   private:
 283     int _count;
 284   public:
 285     CountHandleClosure(): _count(0) {}
 286     void do_oop(oop* unused)       { _count++; }
 287     void do_oop(narrowOop* unused) { ShouldNotReachHere(); }
 288     int count() { return _count; }
 289   };
 290   CountHandleClosure global_handle_count;
 291   AlwaysAliveClosure always_alive;
 292   JNIHandles::weak_oops_do(&always_alive, &global_handle_count);
 293   return global_handle_count.count();
 294 }
 295 #endif
 296 
 297 void ReferenceProcessor::process_phaseJNI(BoolObjectClosure* is_alive,
 298                                           OopClosure*        keep_alive,
 299                                           VoidClosure*       complete_gc) {
 300 #ifndef PRODUCT
 301   if (PrintGCDetails && PrintReferenceGC) {
 302     unsigned int count = count_jni_refs();
 303     gclog_or_tty->print(", %u refs", count);
 304   }
 305 #endif
 306   JNIHandles::weak_oops_do(is_alive, keep_alive);
 307   complete_gc->do_void();
 308 }
 309 
 310 
 311 template <class T>
 312 bool enqueue_discovered_ref_helper(ReferenceProcessor* ref,
 313                                    AbstractRefProcTaskExecutor* task_executor) {
 314 
 315   // Remember old value of pending references list
 316   T* pending_list_addr = (T*)java_lang_ref_Reference::pending_list_addr();
 317   T old_pending_list_value = *pending_list_addr;
 318 
 319   // Enqueue references that are not made active again, and
 320   // clear the decks for the next collection (cycle).
 321   ref->enqueue_discovered_reflists((HeapWord*)pending_list_addr, task_executor);
 322   // Do the post-barrier on pending_list_addr missed in
 323   // enqueue_discovered_reflist.
 324   oopDesc::bs()->write_ref_field(pending_list_addr, oopDesc::load_decode_heap_oop(pending_list_addr));
 325 
 326   // Stop treating discovered references specially.
 327   ref->disable_discovery();
 328 
 329   // Return true if new pending references were added
 330   return old_pending_list_value != *pending_list_addr;
 331 }
 332 
 333 bool ReferenceProcessor::enqueue_discovered_references(AbstractRefProcTaskExecutor* task_executor) {
 334   if (UseCompressedOops) {
 335     return enqueue_discovered_ref_helper<narrowOop>(this, task_executor);
 336   } else {
 337     return enqueue_discovered_ref_helper<oop>(this, task_executor);
 338   }
 339 }
 340 
 341 void ReferenceProcessor::enqueue_discovered_reflist(DiscoveredList& refs_list,
 342                                                     HeapWord* pending_list_addr) {
 343   // Given a list of refs linked through the "discovered" field
 344   // (java.lang.ref.Reference.discovered), self-loop their "next" field
 345   // thus distinguishing them from active References, then
 346   // prepend them to the pending list.
 347   //
 348   // The Java threads will see the Reference objects linked together through
 349   // the discovered field. Instead of trying to do the write barrier updates
 350   // in all places in the reference processor where we manipulate the discovered
 351   // field we make sure to do the barrier here where we anyway iterate through
 352   // all linked Reference objects. Note that it is important to not dirty any
 353   // cards during reference processing since this will cause card table
 354   // verification to fail for G1.
 355   if (TraceReferenceGC && PrintGCDetails) {
 356     gclog_or_tty->print_cr("ReferenceProcessor::enqueue_discovered_reflist list "
 357                            INTPTR_FORMAT, p2i(refs_list.head()));
 358   }
 359 
 360   oop obj = NULL;
 361   oop next_d = refs_list.head();
 362   // Walk down the list, self-looping the next field
 363   // so that the References are not considered active.
 364   while (obj != next_d) {
 365     obj = next_d;
 366     assert(obj->is_instanceRef(), "should be reference object");
 367     next_d = java_lang_ref_Reference::discovered(obj);
 368     if (TraceReferenceGC && PrintGCDetails) {
 369       gclog_or_tty->print_cr("        obj " INTPTR_FORMAT "/next_d " INTPTR_FORMAT,
 370                              p2i(obj), p2i(next_d));
 371     }
 372     assert(java_lang_ref_Reference::next(obj) == NULL,
 373            "Reference not active; should not be discovered");
 374     // Self-loop next, so as to make Ref not active.
 375     java_lang_ref_Reference::set_next_raw(obj, obj);
 376     if (next_d != obj) {
 377       oopDesc::bs()->write_ref_field(java_lang_ref_Reference::discovered_addr(obj), next_d);
 378     } else {
 379       // This is the last object.
 380       // Swap refs_list into pending_list_addr and
 381       // set obj's discovered to what we read from pending_list_addr.
 382       oop old = oopDesc::atomic_exchange_oop(refs_list.head(), pending_list_addr);
 383       // Need post-barrier on pending_list_addr. See enqueue_discovered_ref_helper() above.
 384       java_lang_ref_Reference::set_discovered_raw(obj, old); // old may be NULL
 385       oopDesc::bs()->write_ref_field(java_lang_ref_Reference::discovered_addr(obj), old);
 386     }
 387   }
 388 }
 389 
 390 // Parallel enqueue task
 391 class RefProcEnqueueTask: public AbstractRefProcTaskExecutor::EnqueueTask {
 392 public:
 393   RefProcEnqueueTask(ReferenceProcessor& ref_processor,
 394                      DiscoveredList      discovered_refs[],
 395                      HeapWord*           pending_list_addr,
 396                      int                 n_queues)
 397     : EnqueueTask(ref_processor, discovered_refs,
 398                   pending_list_addr, n_queues)
 399   { }
 400 
 401   virtual void work(unsigned int work_id) {
 402     assert(work_id < (unsigned int)_ref_processor.max_num_q(), "Index out-of-bounds");
 403     // Simplest first cut: static partitioning.
 404     int index = work_id;
 405     // The increment on "index" must correspond to the maximum number of queues
 406     // (n_queues) with which that ReferenceProcessor was created.  That
 407     // is because of the "clever" way the discovered references lists were
 408     // allocated and are indexed into.
 409     assert(_n_queues == (int) _ref_processor.max_num_q(), "Different number not expected");
 410     for (int j = 0;
 411          j < ReferenceProcessor::number_of_subclasses_of_ref();
 412          j++, index += _n_queues) {
 413       _ref_processor.enqueue_discovered_reflist(
 414         _refs_lists[index], _pending_list_addr);
 415       _refs_lists[index].set_head(NULL);
 416       _refs_lists[index].set_length(0);
 417     }
 418   }
 419 };
 420 
 421 // Enqueue references that are not made active again
 422 void ReferenceProcessor::enqueue_discovered_reflists(HeapWord* pending_list_addr,
 423   AbstractRefProcTaskExecutor* task_executor) {
 424   if (_processing_is_mt && task_executor != NULL) {
 425     // Parallel code
 426     RefProcEnqueueTask tsk(*this, _discovered_refs,
 427                            pending_list_addr, _max_num_q);
 428     task_executor->execute(tsk);
 429   } else {
 430     // Serial code: call the parent class's implementation
 431     for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
 432       enqueue_discovered_reflist(_discovered_refs[i], pending_list_addr);
 433       _discovered_refs[i].set_head(NULL);
 434       _discovered_refs[i].set_length(0);
 435     }
 436   }
 437 }
 438 
 439 void DiscoveredListIterator::load_ptrs(DEBUG_ONLY(bool allow_null_referent)) {
 440   _discovered_addr = java_lang_ref_Reference::discovered_addr(_ref);
 441   oop discovered = java_lang_ref_Reference::discovered(_ref);
 442   assert(_discovered_addr && discovered->is_oop_or_null(),
 443          err_msg("Expected an oop or NULL for discovered field at " PTR_FORMAT, p2i(discovered)));
 444   _next = discovered;
 445   _referent_addr = java_lang_ref_Reference::referent_addr(_ref);
 446   _referent = java_lang_ref_Reference::referent(_ref);
 447   assert(Universe::heap()->is_in_reserved_or_null(_referent),
 448          "Wrong oop found in java.lang.Reference object");
 449   assert(allow_null_referent ?
 450              _referent->is_oop_or_null()
 451            : _referent->is_oop(),
 452          err_msg("Expected an oop%s for referent field at " PTR_FORMAT,
 453                  (allow_null_referent ? " or NULL" : ""),
 454                  p2i(_referent)));
 455 }
 456 
 457 void DiscoveredListIterator::remove() {
 458   assert(_ref->is_oop(), "Dropping a bad reference");
 459   oop_store_raw(_discovered_addr, NULL);
 460 
 461   // First _prev_next ref actually points into DiscoveredList (gross).
 462   oop new_next;
 463   if (_next == _ref) {
 464     // At the end of the list, we should make _prev point to itself.
 465     // If _ref is the first ref, then _prev_next will be in the DiscoveredList,
 466     // and _prev will be NULL.
 467     new_next = _prev;
 468   } else {
 469     new_next = _next;
 470   }
 471   // Remove Reference object from discovered list. Note that G1 does not need a
 472   // pre-barrier here because we know the Reference has already been found/marked,
 473   // that's how it ended up in the discovered list in the first place.
 474   oop_store_raw(_prev_next, new_next);
 475   NOT_PRODUCT(_removed++);
 476   _refs_list.dec_length(1);
 477 }
 478 
 479 void DiscoveredListIterator::clear_referent() {
 480   oop_store_raw(_referent_addr, NULL);
 481 }
 482 
 483 // NOTE: process_phase*() are largely similar, and at a high level
 484 // merely iterate over the extant list applying a predicate to
 485 // each of its elements and possibly removing that element from the
 486 // list and applying some further closures to that element.
 487 // We should consider the possibility of replacing these
 488 // process_phase*() methods by abstracting them into
 489 // a single general iterator invocation that receives appropriate
 490 // closures that accomplish this work.
 491 
 492 // (SoftReferences only) Traverse the list and remove any SoftReferences whose
 493 // referents are not alive, but that should be kept alive for policy reasons.
 494 // Keep alive the transitive closure of all such referents.
 495 void
 496 ReferenceProcessor::process_phase1(DiscoveredList&    refs_list,
 497                                    ReferencePolicy*   policy,
 498                                    BoolObjectClosure* is_alive,
 499                                    OopClosure*        keep_alive,
 500                                    VoidClosure*       complete_gc) {
 501   assert(policy != NULL, "Must have a non-NULL policy");
 502   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
 503   // Decide which softly reachable refs should be kept alive.
 504   while (iter.has_next()) {
 505     iter.load_ptrs(DEBUG_ONLY(!discovery_is_atomic() /* allow_null_referent */));
 506     bool referent_is_dead = (iter.referent() != NULL) && !iter.is_referent_alive();
 507     if (referent_is_dead &&
 508         !policy->should_clear_reference(iter.obj(), _soft_ref_timestamp_clock)) {
 509       if (TraceReferenceGC) {
 510         gclog_or_tty->print_cr("Dropping reference (" INTPTR_FORMAT ": %s"  ") by policy",
 511                                p2i(iter.obj()), iter.obj()->klass()->internal_name());
 512       }
 513       // Remove Reference object from list
 514       iter.remove();
 515       // keep the referent around
 516       iter.make_referent_alive();
 517       iter.move_to_next();
 518     } else {
 519       iter.next();
 520     }
 521   }
 522   // Close the reachable set
 523   complete_gc->do_void();
 524   NOT_PRODUCT(
 525     if (PrintGCDetails && TraceReferenceGC) {
 526       gclog_or_tty->print_cr(" Dropped " SIZE_FORMAT " dead Refs out of " SIZE_FORMAT
 527         " discovered Refs by policy, from list " INTPTR_FORMAT,
 528         iter.removed(), iter.processed(), p2i(refs_list.head()));
 529     }
 530   )
 531 }
 532 
 533 // Traverse the list and remove any Refs that are not active, or
 534 // whose referents are either alive or NULL.
 535 void
 536 ReferenceProcessor::pp2_work(DiscoveredList&    refs_list,
 537                              BoolObjectClosure* is_alive,
 538                              OopClosure*        keep_alive) {
 539   assert(discovery_is_atomic(), "Error");
 540   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
 541   while (iter.has_next()) {
 542     iter.load_ptrs(DEBUG_ONLY(false /* allow_null_referent */));
 543     DEBUG_ONLY(oop next = java_lang_ref_Reference::next(iter.obj());)
 544     assert(next == NULL, "Should not discover inactive Reference");
 545     if (iter.is_referent_alive()) {
 546       if (TraceReferenceGC) {
 547         gclog_or_tty->print_cr("Dropping strongly reachable reference (" INTPTR_FORMAT ": %s)",
 548                                p2i(iter.obj()), iter.obj()->klass()->internal_name());
 549       }
 550       // The referent is reachable after all.
 551       // Remove Reference object from list.
 552       iter.remove();
 553       // Update the referent pointer as necessary: Note that this
 554       // should not entail any recursive marking because the
 555       // referent must already have been traversed.
 556       iter.make_referent_alive();
 557       iter.move_to_next();
 558     } else {
 559       iter.next();
 560     }
 561   }
 562   NOT_PRODUCT(
 563     if (PrintGCDetails && TraceReferenceGC && (iter.processed() > 0)) {
 564       gclog_or_tty->print_cr(" Dropped " SIZE_FORMAT " active Refs out of " SIZE_FORMAT
 565         " Refs in discovered list " INTPTR_FORMAT,
 566         iter.removed(), iter.processed(), p2i(refs_list.head()));
 567     }
 568   )
 569 }
 570 
 571 void
 572 ReferenceProcessor::pp2_work_concurrent_discovery(DiscoveredList&    refs_list,
 573                                                   BoolObjectClosure* is_alive,
 574                                                   OopClosure*        keep_alive,
 575                                                   VoidClosure*       complete_gc) {
 576   assert(!discovery_is_atomic(), "Error");
 577   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
 578   while (iter.has_next()) {
 579     iter.load_ptrs(DEBUG_ONLY(true /* allow_null_referent */));
 580     HeapWord* next_addr = java_lang_ref_Reference::next_addr(iter.obj());
 581     oop next = java_lang_ref_Reference::next(iter.obj());
 582     if ((iter.referent() == NULL || iter.is_referent_alive() ||
 583          next != NULL)) {
 584       assert(next->is_oop_or_null(), err_msg("Expected an oop or NULL for next field at " PTR_FORMAT, p2i(next)));
 585       // Remove Reference object from list
 586       iter.remove();
 587       // Trace the cohorts
 588       iter.make_referent_alive();
 589       if (UseCompressedOops) {
 590         keep_alive->do_oop((narrowOop*)next_addr);
 591       } else {
 592         keep_alive->do_oop((oop*)next_addr);
 593       }
 594       iter.move_to_next();
 595     } else {
 596       iter.next();
 597     }
 598   }
 599   // Now close the newly reachable set
 600   complete_gc->do_void();
 601   NOT_PRODUCT(
 602     if (PrintGCDetails && TraceReferenceGC && (iter.processed() > 0)) {
 603       gclog_or_tty->print_cr(" Dropped " SIZE_FORMAT " active Refs out of " SIZE_FORMAT
 604         " Refs in discovered list " INTPTR_FORMAT,
 605         iter.removed(), iter.processed(), p2i(refs_list.head()));
 606     }
 607   )
 608 }
 609 
 610 // Traverse the list and process the referents, by either
 611 // clearing them or keeping them (and their reachable
 612 // closure) alive.
 613 void
 614 ReferenceProcessor::process_phase3(DiscoveredList&    refs_list,
 615                                    bool               clear_referent,
 616                                    BoolObjectClosure* is_alive,
 617                                    OopClosure*        keep_alive,
 618                                    VoidClosure*       complete_gc) {
 619   ResourceMark rm;
 620   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
 621   while (iter.has_next()) {
 622     iter.load_ptrs(DEBUG_ONLY(false /* allow_null_referent */));
 623     if (clear_referent) {
 624       // NULL out referent pointer
 625       iter.clear_referent();
 626     } else {
 627       // keep the referent around
 628       iter.make_referent_alive();
 629     }
 630     if (TraceReferenceGC) {
 631       gclog_or_tty->print_cr("Adding %sreference (" INTPTR_FORMAT ": %s) as pending",
 632                              clear_referent ? "cleared " : "",
 633                              p2i(iter.obj()), iter.obj()->klass()->internal_name());
 634     }
 635     assert(iter.obj()->is_oop(UseConcMarkSweepGC), "Adding a bad reference");
 636     iter.next();
 637   }
 638   // Close the reachable set
 639   complete_gc->do_void();
 640 }
 641 
 642 void
 643 ReferenceProcessor::clear_discovered_references(DiscoveredList& refs_list) {
 644   oop obj = NULL;
 645   oop next = refs_list.head();
 646   while (next != obj) {
 647     obj = next;
 648     next = java_lang_ref_Reference::discovered(obj);
 649     java_lang_ref_Reference::set_discovered_raw(obj, NULL);
 650   }
 651   refs_list.set_head(NULL);
 652   refs_list.set_length(0);
 653 }
 654 
 655 void ReferenceProcessor::abandon_partial_discovery() {
 656   // loop over the lists
 657   for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
 658     if (TraceReferenceGC && PrintGCDetails && ((i % _max_num_q) == 0)) {
 659       gclog_or_tty->print_cr("\nAbandoning %s discovered list", list_name(i));
 660     }
 661     clear_discovered_references(_discovered_refs[i]);
 662   }
 663 }
 664 
 665 class RefProcPhase1Task: public AbstractRefProcTaskExecutor::ProcessTask {
 666 public:
 667   RefProcPhase1Task(ReferenceProcessor& ref_processor,
 668                     DiscoveredList      refs_lists[],
 669                     ReferencePolicy*    policy,
 670                     bool                marks_oops_alive)
 671     : ProcessTask(ref_processor, refs_lists, marks_oops_alive),
 672       _policy(policy)
 673   { }
 674   virtual void work(unsigned int i, BoolObjectClosure& is_alive,
 675                     OopClosure& keep_alive,
 676                     VoidClosure& complete_gc)
 677   {
 678     Thread* thr = Thread::current();
 679     int refs_list_index = ((WorkerThread*)thr)->id();
 680     _ref_processor.process_phase1(_refs_lists[refs_list_index], _policy,
 681                                   &is_alive, &keep_alive, &complete_gc);
 682   }
 683 private:
 684   ReferencePolicy* _policy;
 685 };
 686 
 687 class RefProcPhase2Task: public AbstractRefProcTaskExecutor::ProcessTask {
 688 public:
 689   RefProcPhase2Task(ReferenceProcessor& ref_processor,
 690                     DiscoveredList      refs_lists[],
 691                     bool                marks_oops_alive)
 692     : ProcessTask(ref_processor, refs_lists, marks_oops_alive)
 693   { }
 694   virtual void work(unsigned int i, BoolObjectClosure& is_alive,
 695                     OopClosure& keep_alive,
 696                     VoidClosure& complete_gc)
 697   {
 698     _ref_processor.process_phase2(_refs_lists[i],
 699                                   &is_alive, &keep_alive, &complete_gc);
 700   }
 701 };
 702 
 703 class RefProcPhase3Task: public AbstractRefProcTaskExecutor::ProcessTask {
 704 public:
 705   RefProcPhase3Task(ReferenceProcessor& ref_processor,
 706                     DiscoveredList      refs_lists[],
 707                     bool                clear_referent,
 708                     bool                marks_oops_alive)
 709     : ProcessTask(ref_processor, refs_lists, marks_oops_alive),
 710       _clear_referent(clear_referent)
 711   { }
 712   virtual void work(unsigned int i, BoolObjectClosure& is_alive,
 713                     OopClosure& keep_alive,
 714                     VoidClosure& complete_gc)
 715   {
 716     // Don't use "refs_list_index" calculated in this way because
 717     // balance_queues() has moved the Ref's into the first n queues.
 718     // Thread* thr = Thread::current();
 719     // int refs_list_index = ((WorkerThread*)thr)->id();
 720     // _ref_processor.process_phase3(_refs_lists[refs_list_index], _clear_referent,
 721     _ref_processor.process_phase3(_refs_lists[i], _clear_referent,
 722                                   &is_alive, &keep_alive, &complete_gc);
 723   }
 724 private:
 725   bool _clear_referent;
 726 };
 727 
 728 // Balances reference queues.
 729 // Move entries from all queues[0, 1, ..., _max_num_q-1] to
 730 // queues[0, 1, ..., _num_q-1] because only the first _num_q
 731 // corresponding to the active workers will be processed.
 732 void ReferenceProcessor::balance_queues(DiscoveredList ref_lists[])
 733 {
 734   // calculate total length
 735   size_t total_refs = 0;
 736   if (TraceReferenceGC && PrintGCDetails) {
 737     gclog_or_tty->print_cr("\nBalance ref_lists ");
 738   }
 739 
 740   for (uint i = 0; i < _max_num_q; ++i) {
 741     total_refs += ref_lists[i].length();
 742     if (TraceReferenceGC && PrintGCDetails) {
 743       gclog_or_tty->print(SIZE_FORMAT " ", ref_lists[i].length());
 744     }
 745   }
 746   if (TraceReferenceGC && PrintGCDetails) {
 747     gclog_or_tty->print_cr(" = " SIZE_FORMAT, total_refs);
 748   }
 749   size_t avg_refs = total_refs / _num_q + 1;
 750   uint to_idx = 0;
 751   for (uint from_idx = 0; from_idx < _max_num_q; from_idx++) {
 752     bool move_all = false;
 753     if (from_idx >= _num_q) {
 754       move_all = ref_lists[from_idx].length() > 0;
 755     }
 756     while ((ref_lists[from_idx].length() > avg_refs) ||
 757            move_all) {
 758       assert(to_idx < _num_q, "Sanity Check!");
 759       if (ref_lists[to_idx].length() < avg_refs) {
 760         // move superfluous refs
 761         size_t refs_to_move;
 762         // Move all the Ref's if the from queue will not be processed.
 763         if (move_all) {
 764           refs_to_move = MIN2(ref_lists[from_idx].length(),
 765                               avg_refs - ref_lists[to_idx].length());
 766         } else {
 767           refs_to_move = MIN2(ref_lists[from_idx].length() - avg_refs,
 768                               avg_refs - ref_lists[to_idx].length());
 769         }
 770 
 771         assert(refs_to_move > 0, "otherwise the code below will fail");
 772 
 773         oop move_head = ref_lists[from_idx].head();
 774         oop move_tail = move_head;
 775         oop new_head  = move_head;
 776         // find an element to split the list on
 777         for (size_t j = 0; j < refs_to_move; ++j) {
 778           move_tail = new_head;
 779           new_head = java_lang_ref_Reference::discovered(new_head);
 780         }
 781 
 782         // Add the chain to the to list.
 783         if (ref_lists[to_idx].head() == NULL) {
 784           // to list is empty. Make a loop at the end.
 785           java_lang_ref_Reference::set_discovered_raw(move_tail, move_tail);
 786         } else {
 787           java_lang_ref_Reference::set_discovered_raw(move_tail, ref_lists[to_idx].head());
 788         }
 789         ref_lists[to_idx].set_head(move_head);
 790         ref_lists[to_idx].inc_length(refs_to_move);
 791 
 792         // Remove the chain from the from list.
 793         if (move_tail == new_head) {
 794           // We found the end of the from list.
 795           ref_lists[from_idx].set_head(NULL);
 796         } else {
 797           ref_lists[from_idx].set_head(new_head);
 798         }
 799         ref_lists[from_idx].dec_length(refs_to_move);
 800         if (ref_lists[from_idx].length() == 0) {
 801           break;
 802         }
 803       } else {
 804         to_idx = (to_idx + 1) % _num_q;
 805       }
 806     }
 807   }
 808 #ifdef ASSERT
 809   size_t balanced_total_refs = 0;
 810   for (uint i = 0; i < _max_num_q; ++i) {
 811     balanced_total_refs += ref_lists[i].length();
 812     if (TraceReferenceGC && PrintGCDetails) {
 813       gclog_or_tty->print(SIZE_FORMAT " ", ref_lists[i].length());
 814     }
 815   }
 816   if (TraceReferenceGC && PrintGCDetails) {
 817     gclog_or_tty->print_cr(" = " SIZE_FORMAT, balanced_total_refs);
 818     gclog_or_tty->flush();
 819   }
 820   assert(total_refs == balanced_total_refs, "Balancing was incomplete");
 821 #endif
 822 }
 823 
 824 void ReferenceProcessor::balance_all_queues() {
 825   balance_queues(_discoveredSoftRefs);
 826   balance_queues(_discoveredWeakRefs);
 827   balance_queues(_discoveredFinalRefs);
 828   balance_queues(_discoveredPhantomRefs);
 829   balance_queues(_discoveredCleanerRefs);
 830 }
 831 
 832 size_t
 833 ReferenceProcessor::process_discovered_reflist(
 834   DiscoveredList               refs_lists[],
 835   ReferencePolicy*             policy,
 836   bool                         clear_referent,
 837   BoolObjectClosure*           is_alive,
 838   OopClosure*                  keep_alive,
 839   VoidClosure*                 complete_gc,
 840   AbstractRefProcTaskExecutor* task_executor)
 841 {
 842   bool mt_processing = task_executor != NULL && _processing_is_mt;
 843   // If discovery used MT and a dynamic number of GC threads, then
 844   // the queues must be balanced for correctness if fewer than the
 845   // maximum number of queues were used.  The number of queue used
 846   // during discovery may be different than the number to be used
 847   // for processing so don't depend of _num_q < _max_num_q as part
 848   // of the test.
 849   bool must_balance = _discovery_is_mt;
 850 
 851   if ((mt_processing && ParallelRefProcBalancingEnabled) ||
 852       must_balance) {
 853     balance_queues(refs_lists);
 854   }
 855 
 856   size_t total_list_count = total_count(refs_lists);
 857 
 858   if (PrintReferenceGC && PrintGCDetails) {
 859     gclog_or_tty->print(", " SIZE_FORMAT " refs", total_list_count);
 860   }
 861 
 862   // Phase 1 (soft refs only):
 863   // . Traverse the list and remove any SoftReferences whose
 864   //   referents are not alive, but that should be kept alive for
 865   //   policy reasons. Keep alive the transitive closure of all
 866   //   such referents.
 867   if (policy != NULL) {
 868     if (mt_processing) {
 869       RefProcPhase1Task phase1(*this, refs_lists, policy, true /*marks_oops_alive*/);
 870       task_executor->execute(phase1);
 871     } else {
 872       for (uint i = 0; i < _max_num_q; i++) {
 873         process_phase1(refs_lists[i], policy,
 874                        is_alive, keep_alive, complete_gc);
 875       }
 876     }
 877   } else { // policy == NULL
 878     assert(refs_lists != _discoveredSoftRefs,
 879            "Policy must be specified for soft references.");
 880   }
 881 
 882   // Phase 2:
 883   // . Traverse the list and remove any refs whose referents are alive.
 884   if (mt_processing) {
 885     RefProcPhase2Task phase2(*this, refs_lists, !discovery_is_atomic() /*marks_oops_alive*/);
 886     task_executor->execute(phase2);
 887   } else {
 888     for (uint i = 0; i < _max_num_q; i++) {
 889       process_phase2(refs_lists[i], is_alive, keep_alive, complete_gc);
 890     }
 891   }
 892 
 893   // Phase 3:
 894   // . Traverse the list and process referents as appropriate.
 895   if (mt_processing) {
 896     RefProcPhase3Task phase3(*this, refs_lists, clear_referent, true /*marks_oops_alive*/);
 897     task_executor->execute(phase3);
 898   } else {
 899     for (uint i = 0; i < _max_num_q; i++) {
 900       process_phase3(refs_lists[i], clear_referent,
 901                      is_alive, keep_alive, complete_gc);
 902     }
 903   }
 904 
 905   return total_list_count;
 906 }
 907 
 908 inline DiscoveredList* ReferenceProcessor::get_discovered_list(ReferenceType rt) {
 909   uint id = 0;
 910   // Determine the queue index to use for this object.
 911   if (_discovery_is_mt) {
 912     // During a multi-threaded discovery phase,
 913     // each thread saves to its "own" list.
 914     Thread* thr = Thread::current();
 915     id = thr->as_Worker_thread()->id();
 916   } else {
 917     // single-threaded discovery, we save in round-robin
 918     // fashion to each of the lists.
 919     if (_processing_is_mt) {
 920       id = next_id();
 921     }
 922   }
 923   assert(id < _max_num_q, "Id is out-of-bounds (call Freud?)");
 924 
 925   // Get the discovered queue to which we will add
 926   DiscoveredList* list = NULL;
 927   switch (rt) {
 928     case REF_OTHER:
 929       // Unknown reference type, no special treatment
 930       break;
 931     case REF_SOFT:
 932       list = &_discoveredSoftRefs[id];
 933       break;
 934     case REF_WEAK:
 935       list = &_discoveredWeakRefs[id];
 936       break;
 937     case REF_FINAL:
 938       list = &_discoveredFinalRefs[id];
 939       break;
 940     case REF_PHANTOM:
 941       list = &_discoveredPhantomRefs[id];
 942       break;
 943     case REF_CLEANER:
 944       list = &_discoveredCleanerRefs[id];
 945       break;
 946     case REF_NONE:
 947       // we should not reach here if we are an InstanceRefKlass
 948     default:
 949       ShouldNotReachHere();
 950   }
 951   if (TraceReferenceGC && PrintGCDetails) {
 952     gclog_or_tty->print_cr("Thread %d gets list " INTPTR_FORMAT, id, p2i(list));
 953   }
 954   return list;
 955 }
 956 
 957 inline void
 958 ReferenceProcessor::add_to_discovered_list_mt(DiscoveredList& refs_list,
 959                                               oop             obj,
 960                                               HeapWord*       discovered_addr) {
 961   assert(_discovery_is_mt, "!_discovery_is_mt should have been handled by caller");
 962   // First we must make sure this object is only enqueued once. CAS in a non null
 963   // discovered_addr.
 964   oop current_head = refs_list.head();
 965   // The last ref must have its discovered field pointing to itself.
 966   oop next_discovered = (current_head != NULL) ? current_head : obj;
 967 
 968   oop retest = oopDesc::atomic_compare_exchange_oop(next_discovered, discovered_addr,
 969                                                     NULL);
 970   if (retest == NULL) {
 971     // This thread just won the right to enqueue the object.
 972     // We have separate lists for enqueueing, so no synchronization
 973     // is necessary.
 974     refs_list.set_head(obj);
 975     refs_list.inc_length(1);
 976 
 977     if (TraceReferenceGC) {
 978       gclog_or_tty->print_cr("Discovered reference (mt) (" INTPTR_FORMAT ": %s)",
 979                              p2i(obj), obj->klass()->internal_name());
 980     }
 981   } else {
 982     // If retest was non NULL, another thread beat us to it:
 983     // The reference has already been discovered...
 984     if (TraceReferenceGC) {
 985       gclog_or_tty->print_cr("Already discovered reference (" INTPTR_FORMAT ": %s)",
 986                              p2i(obj), obj->klass()->internal_name());
 987     }
 988   }
 989 }
 990 
 991 #ifndef PRODUCT
 992 // Non-atomic (i.e. concurrent) discovery might allow us
 993 // to observe j.l.References with NULL referents, being those
 994 // cleared concurrently by mutators during (or after) discovery.
 995 void ReferenceProcessor::verify_referent(oop obj) {
 996   bool da = discovery_is_atomic();
 997   oop referent = java_lang_ref_Reference::referent(obj);
 998   assert(da ? referent->is_oop() : referent->is_oop_or_null(),
 999          err_msg("Bad referent " INTPTR_FORMAT " found in Reference "
1000                  INTPTR_FORMAT " during %satomic discovery ",
1001                  p2i(referent), p2i(obj), da ? "" : "non-"));
1002 }
1003 #endif
1004 
1005 // We mention two of several possible choices here:
1006 // #0: if the reference object is not in the "originating generation"
1007 //     (or part of the heap being collected, indicated by our "span"
1008 //     we don't treat it specially (i.e. we scan it as we would
1009 //     a normal oop, treating its references as strong references).
1010 //     This means that references can't be discovered unless their
1011 //     referent is also in the same span. This is the simplest,
1012 //     most "local" and most conservative approach, albeit one
1013 //     that may cause weak references to be enqueued least promptly.
1014 //     We call this choice the "ReferenceBasedDiscovery" policy.
1015 // #1: the reference object may be in any generation (span), but if
1016 //     the referent is in the generation (span) being currently collected
1017 //     then we can discover the reference object, provided
1018 //     the object has not already been discovered by
1019 //     a different concurrently running collector (as may be the
1020 //     case, for instance, if the reference object is in CMS and
1021 //     the referent in DefNewGeneration), and provided the processing
1022 //     of this reference object by the current collector will
1023 //     appear atomic to every other collector in the system.
1024 //     (Thus, for instance, a concurrent collector may not
1025 //     discover references in other generations even if the
1026 //     referent is in its own generation). This policy may,
1027 //     in certain cases, enqueue references somewhat sooner than
1028 //     might Policy #0 above, but at marginally increased cost
1029 //     and complexity in processing these references.
1030 //     We call this choice the "RefeferentBasedDiscovery" policy.
1031 bool ReferenceProcessor::discover_reference(oop obj, ReferenceType rt) {
1032   // Make sure we are discovering refs (rather than processing discovered refs).
1033   if (!_discovering_refs || !RegisterReferences) {
1034     return false;
1035   }
1036   // We only discover active references.
1037   oop next = java_lang_ref_Reference::next(obj);
1038   if (next != NULL) {   // Ref is no longer active
1039     return false;
1040   }
1041 
1042   HeapWord* obj_addr = (HeapWord*)obj;
1043   if (RefDiscoveryPolicy == ReferenceBasedDiscovery &&
1044       !_span.contains(obj_addr)) {
1045     // Reference is not in the originating generation;
1046     // don't treat it specially (i.e. we want to scan it as a normal
1047     // object with strong references).
1048     return false;
1049   }
1050 
1051   // We only discover references whose referents are not (yet)
1052   // known to be strongly reachable.
1053   if (is_alive_non_header() != NULL) {
1054     verify_referent(obj);
1055     if (is_alive_non_header()->do_object_b(java_lang_ref_Reference::referent(obj))) {
1056       return false;  // referent is reachable
1057     }
1058   }
1059   if (rt == REF_SOFT) {
1060     // For soft refs we can decide now if these are not
1061     // current candidates for clearing, in which case we
1062     // can mark through them now, rather than delaying that
1063     // to the reference-processing phase. Since all current
1064     // time-stamp policies advance the soft-ref clock only
1065     // at a full collection cycle, this is always currently
1066     // accurate.
1067     if (!_current_soft_ref_policy->should_clear_reference(obj, _soft_ref_timestamp_clock)) {
1068       return false;
1069     }
1070   }
1071 
1072   ResourceMark rm;      // Needed for tracing.
1073 
1074   HeapWord* const discovered_addr = java_lang_ref_Reference::discovered_addr(obj);
1075   const oop  discovered = java_lang_ref_Reference::discovered(obj);
1076   assert(discovered->is_oop_or_null(), err_msg("Expected an oop or NULL for discovered field at " PTR_FORMAT, p2i(discovered)));
1077   if (discovered != NULL) {
1078     // The reference has already been discovered...
1079     if (TraceReferenceGC) {
1080       gclog_or_tty->print_cr("Already discovered reference (" INTPTR_FORMAT ": %s)",
1081                              p2i(obj), obj->klass()->internal_name());
1082     }
1083     if (RefDiscoveryPolicy == ReferentBasedDiscovery) {
1084       // assumes that an object is not processed twice;
1085       // if it's been already discovered it must be on another
1086       // generation's discovered list; so we won't discover it.
1087       return false;
1088     } else {
1089       assert(RefDiscoveryPolicy == ReferenceBasedDiscovery,
1090              "Unrecognized policy");
1091       // Check assumption that an object is not potentially
1092       // discovered twice except by concurrent collectors that potentially
1093       // trace the same Reference object twice.
1094       assert(UseConcMarkSweepGC || UseG1GC,
1095              "Only possible with a concurrent marking collector");
1096       return true;
1097     }
1098   }
1099 
1100   if (RefDiscoveryPolicy == ReferentBasedDiscovery) {
1101     verify_referent(obj);
1102     // Discover if and only if EITHER:
1103     // .. reference is in our span, OR
1104     // .. we are an atomic collector and referent is in our span
1105     if (_span.contains(obj_addr) ||
1106         (discovery_is_atomic() &&
1107          _span.contains(java_lang_ref_Reference::referent(obj)))) {
1108       // should_enqueue = true;
1109     } else {
1110       return false;
1111     }
1112   } else {
1113     assert(RefDiscoveryPolicy == ReferenceBasedDiscovery &&
1114            _span.contains(obj_addr), "code inconsistency");
1115   }
1116 
1117   // Get the right type of discovered queue head.
1118   DiscoveredList* list = get_discovered_list(rt);
1119   if (list == NULL) {
1120     return false;   // nothing special needs to be done
1121   }
1122 
1123   if (_discovery_is_mt) {
1124     add_to_discovered_list_mt(*list, obj, discovered_addr);
1125   } else {
1126     // We do a raw store here: the field will be visited later when processing
1127     // the discovered references.
1128     oop current_head = list->head();
1129     // The last ref must have its discovered field pointing to itself.
1130     oop next_discovered = (current_head != NULL) ? current_head : obj;
1131 
1132     assert(discovered == NULL, "control point invariant");
1133     oop_store_raw(discovered_addr, next_discovered);
1134     list->set_head(obj);
1135     list->inc_length(1);
1136 
1137     if (TraceReferenceGC) {
1138       gclog_or_tty->print_cr("Discovered reference (" INTPTR_FORMAT ": %s)",
1139                                 p2i(obj), obj->klass()->internal_name());
1140     }
1141   }
1142   assert(obj->is_oop(), "Discovered a bad reference");
1143   verify_referent(obj);
1144   return true;
1145 }
1146 
1147 // Preclean the discovered references by removing those
1148 // whose referents are alive, and by marking from those that
1149 // are not active. These lists can be handled here
1150 // in any order and, indeed, concurrently.
1151 void ReferenceProcessor::preclean_discovered_references(
1152   BoolObjectClosure* is_alive,
1153   OopClosure* keep_alive,
1154   VoidClosure* complete_gc,
1155   YieldClosure* yield,
1156   GCTimer* gc_timer,
1157   GCId     gc_id) {
1158 
1159   // Soft references
1160   {
1161     GCTraceTime tt("Preclean SoftReferences", PrintGCDetails && PrintReferenceGC,
1162               false, gc_timer, gc_id);
1163     for (uint i = 0; i < _max_num_q; i++) {
1164       if (yield->should_return()) {
1165         return;
1166       }
1167       preclean_discovered_reflist(_discoveredSoftRefs[i], is_alive,
1168                                   keep_alive, complete_gc, yield);
1169     }
1170   }
1171 
1172   // Weak references
1173   {
1174     GCTraceTime tt("Preclean WeakReferences", PrintGCDetails && PrintReferenceGC,
1175               false, gc_timer, gc_id);
1176     for (uint i = 0; i < _max_num_q; i++) {
1177       if (yield->should_return()) {
1178         return;
1179       }
1180       preclean_discovered_reflist(_discoveredWeakRefs[i], is_alive,
1181                                   keep_alive, complete_gc, yield);
1182     }
1183   }
1184 
1185   // Final references
1186   {
1187     GCTraceTime tt("Preclean FinalReferences", PrintGCDetails && PrintReferenceGC,
1188               false, gc_timer, gc_id);
1189     for (uint i = 0; i < _max_num_q; i++) {
1190       if (yield->should_return()) {
1191         return;
1192       }
1193       preclean_discovered_reflist(_discoveredFinalRefs[i], is_alive,
1194                                   keep_alive, complete_gc, yield);
1195     }
1196   }
1197 
1198   // Phantom references
1199   {
1200     GCTraceTime tt("Preclean PhantomReferences", PrintGCDetails && PrintReferenceGC,
1201               false, gc_timer, gc_id);
1202     for (uint i = 0; i < _max_num_q; i++) {
1203       if (yield->should_return()) {
1204         return;
1205       }
1206       preclean_discovered_reflist(_discoveredPhantomRefs[i], is_alive,
1207                                   keep_alive, complete_gc, yield);
1208     }
1209 
1210     // Cleaner references.  Included in timing for phantom references.  We
1211     // expect Cleaner references to be temporary, and don't want to deal with
1212     // possible incompatibilities arising from making it more visible.
1213     for (uint i = 0; i < _max_num_q; i++) {
1214       if (yield->should_return()) {
1215         return;
1216       }
1217       preclean_discovered_reflist(_discoveredCleanerRefs[i], is_alive,
1218                                   keep_alive, complete_gc, yield);
1219     }
1220   }
1221 }
1222 
1223 // Walk the given discovered ref list, and remove all reference objects
1224 // whose referents are still alive, whose referents are NULL or which
1225 // are not active (have a non-NULL next field). NOTE: When we are
1226 // thus precleaning the ref lists (which happens single-threaded today),
1227 // we do not disable refs discovery to honor the correct semantics of
1228 // java.lang.Reference. As a result, we need to be careful below
1229 // that ref removal steps interleave safely with ref discovery steps
1230 // (in this thread).
1231 void
1232 ReferenceProcessor::preclean_discovered_reflist(DiscoveredList&    refs_list,
1233                                                 BoolObjectClosure* is_alive,
1234                                                 OopClosure*        keep_alive,
1235                                                 VoidClosure*       complete_gc,
1236                                                 YieldClosure*      yield) {
1237   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
1238   while (iter.has_next()) {
1239     iter.load_ptrs(DEBUG_ONLY(true /* allow_null_referent */));
1240     oop obj = iter.obj();
1241     oop next = java_lang_ref_Reference::next(obj);
1242     if (iter.referent() == NULL || iter.is_referent_alive() ||
1243         next != NULL) {
1244       // The referent has been cleared, or is alive, or the Reference is not
1245       // active; we need to trace and mark its cohort.
1246       if (TraceReferenceGC) {
1247         gclog_or_tty->print_cr("Precleaning Reference (" INTPTR_FORMAT ": %s)",
1248                                p2i(iter.obj()), iter.obj()->klass()->internal_name());
1249       }
1250       // Remove Reference object from list
1251       iter.remove();
1252       // Keep alive its cohort.
1253       iter.make_referent_alive();
1254       if (UseCompressedOops) {
1255         narrowOop* next_addr = (narrowOop*)java_lang_ref_Reference::next_addr(obj);
1256         keep_alive->do_oop(next_addr);
1257       } else {
1258         oop* next_addr = (oop*)java_lang_ref_Reference::next_addr(obj);
1259         keep_alive->do_oop(next_addr);
1260       }
1261       iter.move_to_next();
1262     } else {
1263       iter.next();
1264     }
1265   }
1266   // Close the reachable set
1267   complete_gc->do_void();
1268 
1269   NOT_PRODUCT(
1270     if (PrintGCDetails && PrintReferenceGC && (iter.processed() > 0)) {
1271       gclog_or_tty->print_cr(" Dropped " SIZE_FORMAT " Refs out of " SIZE_FORMAT
1272         " Refs in discovered list " INTPTR_FORMAT,
1273         iter.removed(), iter.processed(), p2i(refs_list.head()));
1274     }
1275   )
1276 }
1277 
1278 const char* ReferenceProcessor::list_name(uint i) {
1279    assert(i <= _max_num_q * number_of_subclasses_of_ref(),
1280           "Out of bounds index");
1281 
1282    int j = i / _max_num_q;
1283    switch (j) {
1284      case 0: return "SoftRef";
1285      case 1: return "WeakRef";
1286      case 2: return "FinalRef";
1287      case 3: return "PhantomRef";
1288      case 4: return "CleanerRef";
1289    }
1290    ShouldNotReachHere();
1291    return NULL;
1292 }
1293