1 /*
   2  * Copyright (c) 2003, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #ifndef _WINDOWS
  27 #include "alloca.h"
  28 #endif
  29 #include "asm/macroAssembler.hpp"
  30 #include "asm/macroAssembler.inline.hpp"
  31 #include "code/debugInfoRec.hpp"
  32 #include "code/icBuffer.hpp"
  33 #include "code/vtableStubs.hpp"
  34 #include "interpreter/interpreter.hpp"
  35 #include "oops/compiledICHolder.hpp"
  36 #include "prims/jvmtiRedefineClassesTrace.hpp"
  37 #include "runtime/sharedRuntime.hpp"
  38 #include "runtime/vframeArray.hpp"
  39 #include "vmreg_x86.inline.hpp"
  40 #ifdef COMPILER1
  41 #include "c1/c1_Runtime1.hpp"
  42 #endif
  43 #ifdef COMPILER2
  44 #include "opto/runtime.hpp"
  45 #endif
  46 
  47 #define __ masm->
  48 
  49 const int StackAlignmentInSlots = StackAlignmentInBytes / VMRegImpl::stack_slot_size;
  50 
  51 class SimpleRuntimeFrame {
  52 
  53   public:
  54 
  55   // Most of the runtime stubs have this simple frame layout.
  56   // This class exists to make the layout shared in one place.
  57   // Offsets are for compiler stack slots, which are jints.
  58   enum layout {
  59     // The frame sender code expects that rbp will be in the "natural" place and
  60     // will override any oopMap setting for it. We must therefore force the layout
  61     // so that it agrees with the frame sender code.
  62     rbp_off = frame::arg_reg_save_area_bytes/BytesPerInt,
  63     rbp_off2,
  64     return_off, return_off2,
  65     framesize
  66   };
  67 };
  68 
  69 class RegisterSaver {
  70   // Capture info about frame layout.  Layout offsets are in jint
  71   // units because compiler frame slots are jints.
  72 #define HALF_ZMM_BANK_WORDS 128
  73 #define DEF_XMM_OFFS(regnum) xmm ## regnum ## _off = xmm_off + (regnum)*16/BytesPerInt, xmm ## regnum ## H_off
  74 #define DEF_ZMM_OFFS(regnum) zmm ## regnum ## _off = zmm_off + (regnum-16)*64/BytesPerInt, zmm ## regnum ## H_off
  75   enum layout {
  76     fpu_state_off = frame::arg_reg_save_area_bytes/BytesPerInt, // fxsave save area
  77     xmm_off       = fpu_state_off + 160/BytesPerInt,            // offset in fxsave save area
  78     DEF_XMM_OFFS(0),
  79     DEF_XMM_OFFS(1),
  80     DEF_XMM_OFFS(2),
  81     DEF_XMM_OFFS(3),
  82     DEF_XMM_OFFS(4),
  83     DEF_XMM_OFFS(5),
  84     DEF_XMM_OFFS(6),
  85     DEF_XMM_OFFS(7),
  86     DEF_XMM_OFFS(8),
  87     DEF_XMM_OFFS(9),
  88     DEF_XMM_OFFS(10),
  89     DEF_XMM_OFFS(11),
  90     DEF_XMM_OFFS(12),
  91     DEF_XMM_OFFS(13),
  92     DEF_XMM_OFFS(14),
  93     DEF_XMM_OFFS(15),
  94     zmm_off = fpu_state_off + ((FPUStateSizeInWords - (HALF_ZMM_BANK_WORDS + 1))*wordSize / BytesPerInt),
  95     DEF_ZMM_OFFS(16),
  96     DEF_ZMM_OFFS(17),
  97     DEF_ZMM_OFFS(18),
  98     DEF_ZMM_OFFS(19),
  99     DEF_ZMM_OFFS(20),
 100     DEF_ZMM_OFFS(21),
 101     DEF_ZMM_OFFS(22),
 102     DEF_ZMM_OFFS(23),
 103     DEF_ZMM_OFFS(24),
 104     DEF_ZMM_OFFS(25),
 105     DEF_ZMM_OFFS(26),
 106     DEF_ZMM_OFFS(27),
 107     DEF_ZMM_OFFS(28),
 108     DEF_ZMM_OFFS(29),
 109     DEF_ZMM_OFFS(30),
 110     DEF_ZMM_OFFS(31),
 111     fpu_state_end = fpu_state_off + ((FPUStateSizeInWords-1)*wordSize / BytesPerInt),
 112     fpu_stateH_end,
 113     r15_off, r15H_off,
 114     r14_off, r14H_off,
 115     r13_off, r13H_off,
 116     r12_off, r12H_off,
 117     r11_off, r11H_off,
 118     r10_off, r10H_off,
 119     r9_off,  r9H_off,
 120     r8_off,  r8H_off,
 121     rdi_off, rdiH_off,
 122     rsi_off, rsiH_off,
 123     ignore_off, ignoreH_off,  // extra copy of rbp
 124     rsp_off, rspH_off,
 125     rbx_off, rbxH_off,
 126     rdx_off, rdxH_off,
 127     rcx_off, rcxH_off,
 128     rax_off, raxH_off,
 129     // 16-byte stack alignment fill word: see MacroAssembler::push/pop_IU_state
 130     align_off, alignH_off,
 131     flags_off, flagsH_off,
 132     // The frame sender code expects that rbp will be in the "natural" place and
 133     // will override any oopMap setting for it. We must therefore force the layout
 134     // so that it agrees with the frame sender code.
 135     rbp_off, rbpH_off,        // copy of rbp we will restore
 136     return_off, returnH_off,  // slot for return address
 137     reg_save_size             // size in compiler stack slots
 138   };
 139 
 140  public:
 141   static OopMap* save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words, bool save_vectors = false);
 142   static void restore_live_registers(MacroAssembler* masm, bool restore_vectors = false);
 143 
 144   // Offsets into the register save area
 145   // Used by deoptimization when it is managing result register
 146   // values on its own
 147 
 148   static int rax_offset_in_bytes(void)    { return BytesPerInt * rax_off; }
 149   static int rdx_offset_in_bytes(void)    { return BytesPerInt * rdx_off; }
 150   static int rbx_offset_in_bytes(void)    { return BytesPerInt * rbx_off; }
 151   static int xmm0_offset_in_bytes(void)   { return BytesPerInt * xmm0_off; }
 152   static int return_offset_in_bytes(void) { return BytesPerInt * return_off; }
 153 
 154   // During deoptimization only the result registers need to be restored,
 155   // all the other values have already been extracted.
 156   static void restore_result_registers(MacroAssembler* masm);
 157 };
 158 
 159 OopMap* RegisterSaver::save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words, bool save_vectors) {
 160   int vect_words = 0;
 161   int off = 0;
 162   int num_xmm_regs = XMMRegisterImpl::number_of_registers;
 163   if (UseAVX < 3) {
 164     num_xmm_regs = num_xmm_regs/2;
 165   }
 166 #ifdef COMPILER2
 167   if (save_vectors) {
 168     assert(UseAVX > 0, "512bit vectors are supported only with EVEX");
 169     assert(MaxVectorSize == 64, "only 512bit vectors are supported now");
 170     // Save upper half of YMM registers
 171     vect_words = 16 * num_xmm_regs / wordSize;
 172     if (UseAVX < 3) {
 173       additional_frame_words += vect_words;
 174     }
 175   }
 176 #else
 177   assert(!save_vectors, "vectors are generated only by C2");
 178 #endif
 179 
 180   // Always make the frame size 16-byte aligned
 181   int frame_size_in_bytes = round_to(additional_frame_words*wordSize +
 182                                      reg_save_size*BytesPerInt, num_xmm_regs);
 183   // OopMap frame size is in compiler stack slots (jint's) not bytes or words
 184   int frame_size_in_slots = frame_size_in_bytes / BytesPerInt;
 185   // The caller will allocate additional_frame_words
 186   int additional_frame_slots = additional_frame_words*wordSize / BytesPerInt;
 187   // CodeBlob frame size is in words.
 188   int frame_size_in_words = frame_size_in_bytes / wordSize;
 189   *total_frame_words = frame_size_in_words;
 190 
 191   // Save registers, fpu state, and flags.
 192   // We assume caller has already pushed the return address onto the
 193   // stack, so rsp is 8-byte aligned here.
 194   // We push rpb twice in this sequence because we want the real rbp
 195   // to be under the return like a normal enter.
 196 
 197   __ enter();          // rsp becomes 16-byte aligned here
 198   __ push_CPU_state(); // Push a multiple of 16 bytes
 199 
 200   // push cpu state handles this on EVEX enabled targets
 201   if ((vect_words > 0) && (UseAVX < 3)) {
 202     assert(vect_words*wordSize >= 256, "");
 203     // Save upper half of YMM registes(0..num_xmm_regs)
 204     __ subptr(rsp, num_xmm_regs*16);
 205     for (int n = 0; n < num_xmm_regs; n++) {
 206       __ vextractf128h(Address(rsp, off++*16), as_XMMRegister(n));
 207     }
 208   }
 209   if (frame::arg_reg_save_area_bytes != 0) {
 210     // Allocate argument register save area
 211     __ subptr(rsp, frame::arg_reg_save_area_bytes);
 212   }
 213 
 214   // Set an oopmap for the call site.  This oopmap will map all
 215   // oop-registers and debug-info registers as callee-saved.  This
 216   // will allow deoptimization at this safepoint to find all possible
 217   // debug-info recordings, as well as let GC find all oops.
 218 
 219   OopMapSet *oop_maps = new OopMapSet();
 220   OopMap* map = new OopMap(frame_size_in_slots, 0);
 221 
 222 #define STACK_OFFSET(x) VMRegImpl::stack2reg((x) + additional_frame_slots)
 223 
 224   map->set_callee_saved(STACK_OFFSET( rax_off ), rax->as_VMReg());
 225   map->set_callee_saved(STACK_OFFSET( rcx_off ), rcx->as_VMReg());
 226   map->set_callee_saved(STACK_OFFSET( rdx_off ), rdx->as_VMReg());
 227   map->set_callee_saved(STACK_OFFSET( rbx_off ), rbx->as_VMReg());
 228   // rbp location is known implicitly by the frame sender code, needs no oopmap
 229   // and the location where rbp was saved by is ignored
 230   map->set_callee_saved(STACK_OFFSET( rsi_off ), rsi->as_VMReg());
 231   map->set_callee_saved(STACK_OFFSET( rdi_off ), rdi->as_VMReg());
 232   map->set_callee_saved(STACK_OFFSET( r8_off  ), r8->as_VMReg());
 233   map->set_callee_saved(STACK_OFFSET( r9_off  ), r9->as_VMReg());
 234   map->set_callee_saved(STACK_OFFSET( r10_off ), r10->as_VMReg());
 235   map->set_callee_saved(STACK_OFFSET( r11_off ), r11->as_VMReg());
 236   map->set_callee_saved(STACK_OFFSET( r12_off ), r12->as_VMReg());
 237   map->set_callee_saved(STACK_OFFSET( r13_off ), r13->as_VMReg());
 238   map->set_callee_saved(STACK_OFFSET( r14_off ), r14->as_VMReg());
 239   map->set_callee_saved(STACK_OFFSET( r15_off ), r15->as_VMReg());
 240   // For both AVX and EVEX we will use the legacy FXSAVE area for xmm0..xmm15,
 241   // on EVEX enabled targets, we get it included in the xsave area
 242   off = xmm0_off;
 243   int delta = xmm1_off - off;
 244   for (int n = 0; n < 16; n++) {
 245     XMMRegister xmm_name = as_XMMRegister(n);
 246     map->set_callee_saved(STACK_OFFSET(off), xmm_name->as_VMReg());
 247     off += delta;
 248   }
 249   if(UseAVX > 2) {
 250     // Obtain xmm16..xmm31 from the XSAVE area on EVEX enabled targets
 251     off = zmm16_off;
 252     delta = zmm17_off - off;
 253     for (int n = 16; n < num_xmm_regs; n++) {
 254       XMMRegister xmm_name = as_XMMRegister(n);
 255       map->set_callee_saved(STACK_OFFSET(off), xmm_name->as_VMReg());
 256       off += delta;
 257     }
 258   }
 259 
 260   // %%% These should all be a waste but we'll keep things as they were for now
 261   if (true) {
 262     map->set_callee_saved(STACK_OFFSET( raxH_off ), rax->as_VMReg()->next());
 263     map->set_callee_saved(STACK_OFFSET( rcxH_off ), rcx->as_VMReg()->next());
 264     map->set_callee_saved(STACK_OFFSET( rdxH_off ), rdx->as_VMReg()->next());
 265     map->set_callee_saved(STACK_OFFSET( rbxH_off ), rbx->as_VMReg()->next());
 266     // rbp location is known implicitly by the frame sender code, needs no oopmap
 267     map->set_callee_saved(STACK_OFFSET( rsiH_off ), rsi->as_VMReg()->next());
 268     map->set_callee_saved(STACK_OFFSET( rdiH_off ), rdi->as_VMReg()->next());
 269     map->set_callee_saved(STACK_OFFSET( r8H_off  ), r8->as_VMReg()->next());
 270     map->set_callee_saved(STACK_OFFSET( r9H_off  ), r9->as_VMReg()->next());
 271     map->set_callee_saved(STACK_OFFSET( r10H_off ), r10->as_VMReg()->next());
 272     map->set_callee_saved(STACK_OFFSET( r11H_off ), r11->as_VMReg()->next());
 273     map->set_callee_saved(STACK_OFFSET( r12H_off ), r12->as_VMReg()->next());
 274     map->set_callee_saved(STACK_OFFSET( r13H_off ), r13->as_VMReg()->next());
 275     map->set_callee_saved(STACK_OFFSET( r14H_off ), r14->as_VMReg()->next());
 276     map->set_callee_saved(STACK_OFFSET( r15H_off ), r15->as_VMReg()->next());
 277     // For both AVX and EVEX we will use the legacy FXSAVE area for xmm0..xmm15,
 278     // on EVEX enabled targets, we get it included in the xsave area
 279     off = xmm0H_off;
 280     delta = xmm1H_off - off;
 281     for (int n = 0; n < 16; n++) {
 282       XMMRegister xmm_name = as_XMMRegister(n);
 283       map->set_callee_saved(STACK_OFFSET(off), xmm_name->as_VMReg()->next());
 284       off += delta;
 285     }
 286     if (UseAVX > 2) {
 287       // Obtain xmm16..xmm31 from the XSAVE area on EVEX enabled targets
 288       off = zmm16H_off;
 289       delta = zmm17H_off - off;
 290       for (int n = 16; n < num_xmm_regs; n++) {
 291         XMMRegister xmm_name = as_XMMRegister(n);
 292         map->set_callee_saved(STACK_OFFSET(off), xmm_name->as_VMReg()->next());
 293         off += delta;
 294       }
 295     }
 296   }
 297 
 298   return map;
 299 }
 300 
 301 void RegisterSaver::restore_live_registers(MacroAssembler* masm, bool restore_vectors) {
 302   int num_xmm_regs = XMMRegisterImpl::number_of_registers;
 303   if (UseAVX < 3) {
 304     num_xmm_regs = num_xmm_regs/2;
 305   }
 306   if (frame::arg_reg_save_area_bytes != 0) {
 307     // Pop arg register save area
 308     __ addptr(rsp, frame::arg_reg_save_area_bytes);
 309   }
 310 #ifdef COMPILER2
 311   // On EVEX enabled targets everything is handled in pop fpu state
 312   if ((restore_vectors) && (UseAVX < 3)) {
 313     assert(UseAVX > 0, "256/512-bit vectors are supported only with AVX");
 314     assert(MaxVectorSize == 64, "up to 512bit vectors are supported now");
 315     int off = 0;
 316     // Restore upper half of YMM registes (0..num_xmm_regs)
 317     for (int n = 0; n < num_xmm_regs; n++) {
 318       __ vinsertf128h(as_XMMRegister(n), Address(rsp,  off++*16));
 319     }
 320     __ addptr(rsp, num_xmm_regs*16);
 321   }
 322 #else
 323   assert(!restore_vectors, "vectors are generated only by C2");
 324 #endif
 325   // Recover CPU state
 326   __ pop_CPU_state();
 327   // Get the rbp described implicitly by the calling convention (no oopMap)
 328   __ pop(rbp);
 329 }
 330 
 331 void RegisterSaver::restore_result_registers(MacroAssembler* masm) {
 332 
 333   // Just restore result register. Only used by deoptimization. By
 334   // now any callee save register that needs to be restored to a c2
 335   // caller of the deoptee has been extracted into the vframeArray
 336   // and will be stuffed into the c2i adapter we create for later
 337   // restoration so only result registers need to be restored here.
 338 
 339   // Restore fp result register
 340   __ movdbl(xmm0, Address(rsp, xmm0_offset_in_bytes()));
 341   // Restore integer result register
 342   __ movptr(rax, Address(rsp, rax_offset_in_bytes()));
 343   __ movptr(rdx, Address(rsp, rdx_offset_in_bytes()));
 344 
 345   // Pop all of the register save are off the stack except the return address
 346   __ addptr(rsp, return_offset_in_bytes());
 347 }
 348 
 349 // Is vector's size (in bytes) bigger than a size saved by default?
 350 // 16 bytes XMM registers are saved by default using fxsave/fxrstor instructions.
 351 bool SharedRuntime::is_wide_vector(int size) {
 352   return size > 16;
 353 }
 354 
 355 // The java_calling_convention describes stack locations as ideal slots on
 356 // a frame with no abi restrictions. Since we must observe abi restrictions
 357 // (like the placement of the register window) the slots must be biased by
 358 // the following value.
 359 static int reg2offset_in(VMReg r) {
 360   // Account for saved rbp and return address
 361   // This should really be in_preserve_stack_slots
 362   return (r->reg2stack() + 4) * VMRegImpl::stack_slot_size;
 363 }
 364 
 365 static int reg2offset_out(VMReg r) {
 366   return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
 367 }
 368 
 369 // ---------------------------------------------------------------------------
 370 // Read the array of BasicTypes from a signature, and compute where the
 371 // arguments should go.  Values in the VMRegPair regs array refer to 4-byte
 372 // quantities.  Values less than VMRegImpl::stack0 are registers, those above
 373 // refer to 4-byte stack slots.  All stack slots are based off of the stack pointer
 374 // as framesizes are fixed.
 375 // VMRegImpl::stack0 refers to the first slot 0(sp).
 376 // and VMRegImpl::stack0+1 refers to the memory word 4-byes higher.  Register
 377 // up to RegisterImpl::number_of_registers) are the 64-bit
 378 // integer registers.
 379 
 380 // Note: the INPUTS in sig_bt are in units of Java argument words, which are
 381 // either 32-bit or 64-bit depending on the build.  The OUTPUTS are in 32-bit
 382 // units regardless of build. Of course for i486 there is no 64 bit build
 383 
 384 // The Java calling convention is a "shifted" version of the C ABI.
 385 // By skipping the first C ABI register we can call non-static jni methods
 386 // with small numbers of arguments without having to shuffle the arguments
 387 // at all. Since we control the java ABI we ought to at least get some
 388 // advantage out of it.
 389 
 390 int SharedRuntime::java_calling_convention(const BasicType *sig_bt,
 391                                            VMRegPair *regs,
 392                                            int total_args_passed,
 393                                            int is_outgoing) {
 394 
 395   // Create the mapping between argument positions and
 396   // registers.
 397   static const Register INT_ArgReg[Argument::n_int_register_parameters_j] = {
 398     j_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4, j_rarg5
 399   };
 400   static const XMMRegister FP_ArgReg[Argument::n_float_register_parameters_j] = {
 401     j_farg0, j_farg1, j_farg2, j_farg3,
 402     j_farg4, j_farg5, j_farg6, j_farg7
 403   };
 404 
 405 
 406   uint int_args = 0;
 407   uint fp_args = 0;
 408   uint stk_args = 0; // inc by 2 each time
 409 
 410   for (int i = 0; i < total_args_passed; i++) {
 411     switch (sig_bt[i]) {
 412     case T_BOOLEAN:
 413     case T_CHAR:
 414     case T_BYTE:
 415     case T_SHORT:
 416     case T_INT:
 417       if (int_args < Argument::n_int_register_parameters_j) {
 418         regs[i].set1(INT_ArgReg[int_args++]->as_VMReg());
 419       } else {
 420         regs[i].set1(VMRegImpl::stack2reg(stk_args));
 421         stk_args += 2;
 422       }
 423       break;
 424     case T_VOID:
 425       // halves of T_LONG or T_DOUBLE
 426       assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half");
 427       regs[i].set_bad();
 428       break;
 429     case T_LONG:
 430       assert(sig_bt[i + 1] == T_VOID, "expecting half");
 431       // fall through
 432     case T_OBJECT:
 433     case T_ARRAY:
 434     case T_ADDRESS:
 435       if (int_args < Argument::n_int_register_parameters_j) {
 436         regs[i].set2(INT_ArgReg[int_args++]->as_VMReg());
 437       } else {
 438         regs[i].set2(VMRegImpl::stack2reg(stk_args));
 439         stk_args += 2;
 440       }
 441       break;
 442     case T_FLOAT:
 443       if (fp_args < Argument::n_float_register_parameters_j) {
 444         regs[i].set1(FP_ArgReg[fp_args++]->as_VMReg());
 445       } else {
 446         regs[i].set1(VMRegImpl::stack2reg(stk_args));
 447         stk_args += 2;
 448       }
 449       break;
 450     case T_DOUBLE:
 451       assert(sig_bt[i + 1] == T_VOID, "expecting half");
 452       if (fp_args < Argument::n_float_register_parameters_j) {
 453         regs[i].set2(FP_ArgReg[fp_args++]->as_VMReg());
 454       } else {
 455         regs[i].set2(VMRegImpl::stack2reg(stk_args));
 456         stk_args += 2;
 457       }
 458       break;
 459     default:
 460       ShouldNotReachHere();
 461       break;
 462     }
 463   }
 464 
 465   return round_to(stk_args, 2);
 466 }
 467 
 468 // Patch the callers callsite with entry to compiled code if it exists.
 469 static void patch_callers_callsite(MacroAssembler *masm) {
 470   Label L;
 471   __ cmpptr(Address(rbx, in_bytes(Method::code_offset())), (int32_t)NULL_WORD);
 472   __ jcc(Assembler::equal, L);
 473 
 474   // Save the current stack pointer
 475   __ mov(r13, rsp);
 476   // Schedule the branch target address early.
 477   // Call into the VM to patch the caller, then jump to compiled callee
 478   // rax isn't live so capture return address while we easily can
 479   __ movptr(rax, Address(rsp, 0));
 480 
 481   // align stack so push_CPU_state doesn't fault
 482   __ andptr(rsp, -(StackAlignmentInBytes));
 483   __ push_CPU_state();
 484 
 485   // VM needs caller's callsite
 486   // VM needs target method
 487   // This needs to be a long call since we will relocate this adapter to
 488   // the codeBuffer and it may not reach
 489 
 490   // Allocate argument register save area
 491   if (frame::arg_reg_save_area_bytes != 0) {
 492     __ subptr(rsp, frame::arg_reg_save_area_bytes);
 493   }
 494   __ mov(c_rarg0, rbx);
 495   __ mov(c_rarg1, rax);
 496   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite)));
 497 
 498   // De-allocate argument register save area
 499   if (frame::arg_reg_save_area_bytes != 0) {
 500     __ addptr(rsp, frame::arg_reg_save_area_bytes);
 501   }
 502 
 503   __ pop_CPU_state();
 504   // restore sp
 505   __ mov(rsp, r13);
 506   __ bind(L);
 507 }
 508 
 509 
 510 static void gen_c2i_adapter(MacroAssembler *masm,
 511                             int total_args_passed,
 512                             int comp_args_on_stack,
 513                             const BasicType *sig_bt,
 514                             const VMRegPair *regs,
 515                             Label& skip_fixup) {
 516   // Before we get into the guts of the C2I adapter, see if we should be here
 517   // at all.  We've come from compiled code and are attempting to jump to the
 518   // interpreter, which means the caller made a static call to get here
 519   // (vcalls always get a compiled target if there is one).  Check for a
 520   // compiled target.  If there is one, we need to patch the caller's call.
 521   patch_callers_callsite(masm);
 522 
 523   __ bind(skip_fixup);
 524 
 525   // Since all args are passed on the stack, total_args_passed *
 526   // Interpreter::stackElementSize is the space we need. Plus 1 because
 527   // we also account for the return address location since
 528   // we store it first rather than hold it in rax across all the shuffling
 529 
 530   int extraspace = (total_args_passed * Interpreter::stackElementSize) + wordSize;
 531 
 532   // stack is aligned, keep it that way
 533   extraspace = round_to(extraspace, 2*wordSize);
 534 
 535   // Get return address
 536   __ pop(rax);
 537 
 538   // set senderSP value
 539   __ mov(r13, rsp);
 540 
 541   __ subptr(rsp, extraspace);
 542 
 543   // Store the return address in the expected location
 544   __ movptr(Address(rsp, 0), rax);
 545 
 546   // Now write the args into the outgoing interpreter space
 547   for (int i = 0; i < total_args_passed; i++) {
 548     if (sig_bt[i] == T_VOID) {
 549       assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
 550       continue;
 551     }
 552 
 553     // offset to start parameters
 554     int st_off   = (total_args_passed - i) * Interpreter::stackElementSize;
 555     int next_off = st_off - Interpreter::stackElementSize;
 556 
 557     // Say 4 args:
 558     // i   st_off
 559     // 0   32 T_LONG
 560     // 1   24 T_VOID
 561     // 2   16 T_OBJECT
 562     // 3    8 T_BOOL
 563     // -    0 return address
 564     //
 565     // However to make thing extra confusing. Because we can fit a long/double in
 566     // a single slot on a 64 bt vm and it would be silly to break them up, the interpreter
 567     // leaves one slot empty and only stores to a single slot. In this case the
 568     // slot that is occupied is the T_VOID slot. See I said it was confusing.
 569 
 570     VMReg r_1 = regs[i].first();
 571     VMReg r_2 = regs[i].second();
 572     if (!r_1->is_valid()) {
 573       assert(!r_2->is_valid(), "");
 574       continue;
 575     }
 576     if (r_1->is_stack()) {
 577       // memory to memory use rax
 578       int ld_off = r_1->reg2stack() * VMRegImpl::stack_slot_size + extraspace;
 579       if (!r_2->is_valid()) {
 580         // sign extend??
 581         __ movl(rax, Address(rsp, ld_off));
 582         __ movptr(Address(rsp, st_off), rax);
 583 
 584       } else {
 585 
 586         __ movq(rax, Address(rsp, ld_off));
 587 
 588         // Two VMREgs|OptoRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG
 589         // T_DOUBLE and T_LONG use two slots in the interpreter
 590         if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
 591           // ld_off == LSW, ld_off+wordSize == MSW
 592           // st_off == MSW, next_off == LSW
 593           __ movq(Address(rsp, next_off), rax);
 594 #ifdef ASSERT
 595           // Overwrite the unused slot with known junk
 596           __ mov64(rax, CONST64(0xdeadffffdeadaaaa));
 597           __ movptr(Address(rsp, st_off), rax);
 598 #endif /* ASSERT */
 599         } else {
 600           __ movq(Address(rsp, st_off), rax);
 601         }
 602       }
 603     } else if (r_1->is_Register()) {
 604       Register r = r_1->as_Register();
 605       if (!r_2->is_valid()) {
 606         // must be only an int (or less ) so move only 32bits to slot
 607         // why not sign extend??
 608         __ movl(Address(rsp, st_off), r);
 609       } else {
 610         // Two VMREgs|OptoRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG
 611         // T_DOUBLE and T_LONG use two slots in the interpreter
 612         if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
 613           // long/double in gpr
 614 #ifdef ASSERT
 615           // Overwrite the unused slot with known junk
 616           __ mov64(rax, CONST64(0xdeadffffdeadaaab));
 617           __ movptr(Address(rsp, st_off), rax);
 618 #endif /* ASSERT */
 619           __ movq(Address(rsp, next_off), r);
 620         } else {
 621           __ movptr(Address(rsp, st_off), r);
 622         }
 623       }
 624     } else {
 625       assert(r_1->is_XMMRegister(), "");
 626       if (!r_2->is_valid()) {
 627         // only a float use just part of the slot
 628         __ movflt(Address(rsp, st_off), r_1->as_XMMRegister());
 629       } else {
 630 #ifdef ASSERT
 631         // Overwrite the unused slot with known junk
 632         __ mov64(rax, CONST64(0xdeadffffdeadaaac));
 633         __ movptr(Address(rsp, st_off), rax);
 634 #endif /* ASSERT */
 635         __ movdbl(Address(rsp, next_off), r_1->as_XMMRegister());
 636       }
 637     }
 638   }
 639 
 640   // Schedule the branch target address early.
 641   __ movptr(rcx, Address(rbx, in_bytes(Method::interpreter_entry_offset())));
 642   __ jmp(rcx);
 643 }
 644 
 645 static void range_check(MacroAssembler* masm, Register pc_reg, Register temp_reg,
 646                         address code_start, address code_end,
 647                         Label& L_ok) {
 648   Label L_fail;
 649   __ lea(temp_reg, ExternalAddress(code_start));
 650   __ cmpptr(pc_reg, temp_reg);
 651   __ jcc(Assembler::belowEqual, L_fail);
 652   __ lea(temp_reg, ExternalAddress(code_end));
 653   __ cmpptr(pc_reg, temp_reg);
 654   __ jcc(Assembler::below, L_ok);
 655   __ bind(L_fail);
 656 }
 657 
 658 static void gen_i2c_adapter(MacroAssembler *masm,
 659                             int total_args_passed,
 660                             int comp_args_on_stack,
 661                             const BasicType *sig_bt,
 662                             const VMRegPair *regs) {
 663 
 664   // Note: r13 contains the senderSP on entry. We must preserve it since
 665   // we may do a i2c -> c2i transition if we lose a race where compiled
 666   // code goes non-entrant while we get args ready.
 667   // In addition we use r13 to locate all the interpreter args as
 668   // we must align the stack to 16 bytes on an i2c entry else we
 669   // lose alignment we expect in all compiled code and register
 670   // save code can segv when fxsave instructions find improperly
 671   // aligned stack pointer.
 672 
 673   // Adapters can be frameless because they do not require the caller
 674   // to perform additional cleanup work, such as correcting the stack pointer.
 675   // An i2c adapter is frameless because the *caller* frame, which is interpreted,
 676   // routinely repairs its own stack pointer (from interpreter_frame_last_sp),
 677   // even if a callee has modified the stack pointer.
 678   // A c2i adapter is frameless because the *callee* frame, which is interpreted,
 679   // routinely repairs its caller's stack pointer (from sender_sp, which is set
 680   // up via the senderSP register).
 681   // In other words, if *either* the caller or callee is interpreted, we can
 682   // get the stack pointer repaired after a call.
 683   // This is why c2i and i2c adapters cannot be indefinitely composed.
 684   // In particular, if a c2i adapter were to somehow call an i2c adapter,
 685   // both caller and callee would be compiled methods, and neither would
 686   // clean up the stack pointer changes performed by the two adapters.
 687   // If this happens, control eventually transfers back to the compiled
 688   // caller, but with an uncorrected stack, causing delayed havoc.
 689 
 690   // Pick up the return address
 691   __ movptr(rax, Address(rsp, 0));
 692 
 693   if (VerifyAdapterCalls &&
 694       (Interpreter::code() != NULL || StubRoutines::code1() != NULL)) {
 695     // So, let's test for cascading c2i/i2c adapters right now.
 696     //  assert(Interpreter::contains($return_addr) ||
 697     //         StubRoutines::contains($return_addr),
 698     //         "i2c adapter must return to an interpreter frame");
 699     __ block_comment("verify_i2c { ");
 700     Label L_ok;
 701     if (Interpreter::code() != NULL)
 702       range_check(masm, rax, r11,
 703                   Interpreter::code()->code_start(), Interpreter::code()->code_end(),
 704                   L_ok);
 705     if (StubRoutines::code1() != NULL)
 706       range_check(masm, rax, r11,
 707                   StubRoutines::code1()->code_begin(), StubRoutines::code1()->code_end(),
 708                   L_ok);
 709     if (StubRoutines::code2() != NULL)
 710       range_check(masm, rax, r11,
 711                   StubRoutines::code2()->code_begin(), StubRoutines::code2()->code_end(),
 712                   L_ok);
 713     const char* msg = "i2c adapter must return to an interpreter frame";
 714     __ block_comment(msg);
 715     __ stop(msg);
 716     __ bind(L_ok);
 717     __ block_comment("} verify_i2ce ");
 718   }
 719 
 720   // Must preserve original SP for loading incoming arguments because
 721   // we need to align the outgoing SP for compiled code.
 722   __ movptr(r11, rsp);
 723 
 724   // Cut-out for having no stack args.  Since up to 2 int/oop args are passed
 725   // in registers, we will occasionally have no stack args.
 726   int comp_words_on_stack = 0;
 727   if (comp_args_on_stack) {
 728     // Sig words on the stack are greater-than VMRegImpl::stack0.  Those in
 729     // registers are below.  By subtracting stack0, we either get a negative
 730     // number (all values in registers) or the maximum stack slot accessed.
 731 
 732     // Convert 4-byte c2 stack slots to words.
 733     comp_words_on_stack = round_to(comp_args_on_stack*VMRegImpl::stack_slot_size, wordSize)>>LogBytesPerWord;
 734     // Round up to miminum stack alignment, in wordSize
 735     comp_words_on_stack = round_to(comp_words_on_stack, 2);
 736     __ subptr(rsp, comp_words_on_stack * wordSize);
 737   }
 738 
 739 
 740   // Ensure compiled code always sees stack at proper alignment
 741   __ andptr(rsp, -16);
 742 
 743   // push the return address and misalign the stack that youngest frame always sees
 744   // as far as the placement of the call instruction
 745   __ push(rax);
 746 
 747   // Put saved SP in another register
 748   const Register saved_sp = rax;
 749   __ movptr(saved_sp, r11);
 750 
 751   // Will jump to the compiled code just as if compiled code was doing it.
 752   // Pre-load the register-jump target early, to schedule it better.
 753   __ movptr(r11, Address(rbx, in_bytes(Method::from_compiled_offset())));
 754 
 755   // Now generate the shuffle code.  Pick up all register args and move the
 756   // rest through the floating point stack top.
 757   for (int i = 0; i < total_args_passed; i++) {
 758     if (sig_bt[i] == T_VOID) {
 759       // Longs and doubles are passed in native word order, but misaligned
 760       // in the 32-bit build.
 761       assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
 762       continue;
 763     }
 764 
 765     // Pick up 0, 1 or 2 words from SP+offset.
 766 
 767     assert(!regs[i].second()->is_valid() || regs[i].first()->next() == regs[i].second(),
 768             "scrambled load targets?");
 769     // Load in argument order going down.
 770     int ld_off = (total_args_passed - i)*Interpreter::stackElementSize;
 771     // Point to interpreter value (vs. tag)
 772     int next_off = ld_off - Interpreter::stackElementSize;
 773     //
 774     //
 775     //
 776     VMReg r_1 = regs[i].first();
 777     VMReg r_2 = regs[i].second();
 778     if (!r_1->is_valid()) {
 779       assert(!r_2->is_valid(), "");
 780       continue;
 781     }
 782     if (r_1->is_stack()) {
 783       // Convert stack slot to an SP offset (+ wordSize to account for return address )
 784       int st_off = regs[i].first()->reg2stack()*VMRegImpl::stack_slot_size + wordSize;
 785 
 786       // We can use r13 as a temp here because compiled code doesn't need r13 as an input
 787       // and if we end up going thru a c2i because of a miss a reasonable value of r13
 788       // will be generated.
 789       if (!r_2->is_valid()) {
 790         // sign extend???
 791         __ movl(r13, Address(saved_sp, ld_off));
 792         __ movptr(Address(rsp, st_off), r13);
 793       } else {
 794         //
 795         // We are using two optoregs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE
 796         // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case
 797         // So we must adjust where to pick up the data to match the interpreter.
 798         //
 799         // Interpreter local[n] == MSW, local[n+1] == LSW however locals
 800         // are accessed as negative so LSW is at LOW address
 801 
 802         // ld_off is MSW so get LSW
 803         const int offset = (sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)?
 804                            next_off : ld_off;
 805         __ movq(r13, Address(saved_sp, offset));
 806         // st_off is LSW (i.e. reg.first())
 807         __ movq(Address(rsp, st_off), r13);
 808       }
 809     } else if (r_1->is_Register()) {  // Register argument
 810       Register r = r_1->as_Register();
 811       assert(r != rax, "must be different");
 812       if (r_2->is_valid()) {
 813         //
 814         // We are using two VMRegs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE
 815         // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case
 816         // So we must adjust where to pick up the data to match the interpreter.
 817 
 818         const int offset = (sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)?
 819                            next_off : ld_off;
 820 
 821         // this can be a misaligned move
 822         __ movq(r, Address(saved_sp, offset));
 823       } else {
 824         // sign extend and use a full word?
 825         __ movl(r, Address(saved_sp, ld_off));
 826       }
 827     } else {
 828       if (!r_2->is_valid()) {
 829         __ movflt(r_1->as_XMMRegister(), Address(saved_sp, ld_off));
 830       } else {
 831         __ movdbl(r_1->as_XMMRegister(), Address(saved_sp, next_off));
 832       }
 833     }
 834   }
 835 
 836   // 6243940 We might end up in handle_wrong_method if
 837   // the callee is deoptimized as we race thru here. If that
 838   // happens we don't want to take a safepoint because the
 839   // caller frame will look interpreted and arguments are now
 840   // "compiled" so it is much better to make this transition
 841   // invisible to the stack walking code. Unfortunately if
 842   // we try and find the callee by normal means a safepoint
 843   // is possible. So we stash the desired callee in the thread
 844   // and the vm will find there should this case occur.
 845 
 846   __ movptr(Address(r15_thread, JavaThread::callee_target_offset()), rbx);
 847 
 848   // put Method* where a c2i would expect should we end up there
 849   // only needed becaus eof c2 resolve stubs return Method* as a result in
 850   // rax
 851   __ mov(rax, rbx);
 852   __ jmp(r11);
 853 }
 854 
 855 // ---------------------------------------------------------------
 856 AdapterHandlerEntry* SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm,
 857                                                             int total_args_passed,
 858                                                             int comp_args_on_stack,
 859                                                             const BasicType *sig_bt,
 860                                                             const VMRegPair *regs,
 861                                                             AdapterFingerPrint* fingerprint) {
 862   address i2c_entry = __ pc();
 863 
 864   gen_i2c_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs);
 865 
 866   // -------------------------------------------------------------------------
 867   // Generate a C2I adapter.  On entry we know rbx holds the Method* during calls
 868   // to the interpreter.  The args start out packed in the compiled layout.  They
 869   // need to be unpacked into the interpreter layout.  This will almost always
 870   // require some stack space.  We grow the current (compiled) stack, then repack
 871   // the args.  We  finally end in a jump to the generic interpreter entry point.
 872   // On exit from the interpreter, the interpreter will restore our SP (lest the
 873   // compiled code, which relys solely on SP and not RBP, get sick).
 874 
 875   address c2i_unverified_entry = __ pc();
 876   Label skip_fixup;
 877   Label ok;
 878 
 879   Register holder = rax;
 880   Register receiver = j_rarg0;
 881   Register temp = rbx;
 882 
 883   {
 884     __ load_klass(temp, receiver);
 885     __ cmpptr(temp, Address(holder, CompiledICHolder::holder_klass_offset()));
 886     __ movptr(rbx, Address(holder, CompiledICHolder::holder_method_offset()));
 887     __ jcc(Assembler::equal, ok);
 888     __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
 889 
 890     __ bind(ok);
 891     // Method might have been compiled since the call site was patched to
 892     // interpreted if that is the case treat it as a miss so we can get
 893     // the call site corrected.
 894     __ cmpptr(Address(rbx, in_bytes(Method::code_offset())), (int32_t)NULL_WORD);
 895     __ jcc(Assembler::equal, skip_fixup);
 896     __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
 897   }
 898 
 899   address c2i_entry = __ pc();
 900 
 901   gen_c2i_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs, skip_fixup);
 902 
 903   __ flush();
 904   return AdapterHandlerLibrary::new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
 905 }
 906 
 907 int SharedRuntime::c_calling_convention(const BasicType *sig_bt,
 908                                          VMRegPair *regs,
 909                                          VMRegPair *regs2,
 910                                          int total_args_passed) {
 911   assert(regs2 == NULL, "not needed on x86");
 912 // We return the amount of VMRegImpl stack slots we need to reserve for all
 913 // the arguments NOT counting out_preserve_stack_slots.
 914 
 915 // NOTE: These arrays will have to change when c1 is ported
 916 #ifdef _WIN64
 917     static const Register INT_ArgReg[Argument::n_int_register_parameters_c] = {
 918       c_rarg0, c_rarg1, c_rarg2, c_rarg3
 919     };
 920     static const XMMRegister FP_ArgReg[Argument::n_float_register_parameters_c] = {
 921       c_farg0, c_farg1, c_farg2, c_farg3
 922     };
 923 #else
 924     static const Register INT_ArgReg[Argument::n_int_register_parameters_c] = {
 925       c_rarg0, c_rarg1, c_rarg2, c_rarg3, c_rarg4, c_rarg5
 926     };
 927     static const XMMRegister FP_ArgReg[Argument::n_float_register_parameters_c] = {
 928       c_farg0, c_farg1, c_farg2, c_farg3,
 929       c_farg4, c_farg5, c_farg6, c_farg7
 930     };
 931 #endif // _WIN64
 932 
 933 
 934     uint int_args = 0;
 935     uint fp_args = 0;
 936     uint stk_args = 0; // inc by 2 each time
 937 
 938     for (int i = 0; i < total_args_passed; i++) {
 939       switch (sig_bt[i]) {
 940       case T_BOOLEAN:
 941       case T_CHAR:
 942       case T_BYTE:
 943       case T_SHORT:
 944       case T_INT:
 945         if (int_args < Argument::n_int_register_parameters_c) {
 946           regs[i].set1(INT_ArgReg[int_args++]->as_VMReg());
 947 #ifdef _WIN64
 948           fp_args++;
 949           // Allocate slots for callee to stuff register args the stack.
 950           stk_args += 2;
 951 #endif
 952         } else {
 953           regs[i].set1(VMRegImpl::stack2reg(stk_args));
 954           stk_args += 2;
 955         }
 956         break;
 957       case T_LONG:
 958         assert(sig_bt[i + 1] == T_VOID, "expecting half");
 959         // fall through
 960       case T_OBJECT:
 961       case T_ARRAY:
 962       case T_ADDRESS:
 963       case T_METADATA:
 964         if (int_args < Argument::n_int_register_parameters_c) {
 965           regs[i].set2(INT_ArgReg[int_args++]->as_VMReg());
 966 #ifdef _WIN64
 967           fp_args++;
 968           stk_args += 2;
 969 #endif
 970         } else {
 971           regs[i].set2(VMRegImpl::stack2reg(stk_args));
 972           stk_args += 2;
 973         }
 974         break;
 975       case T_FLOAT:
 976         if (fp_args < Argument::n_float_register_parameters_c) {
 977           regs[i].set1(FP_ArgReg[fp_args++]->as_VMReg());
 978 #ifdef _WIN64
 979           int_args++;
 980           // Allocate slots for callee to stuff register args the stack.
 981           stk_args += 2;
 982 #endif
 983         } else {
 984           regs[i].set1(VMRegImpl::stack2reg(stk_args));
 985           stk_args += 2;
 986         }
 987         break;
 988       case T_DOUBLE:
 989         assert(sig_bt[i + 1] == T_VOID, "expecting half");
 990         if (fp_args < Argument::n_float_register_parameters_c) {
 991           regs[i].set2(FP_ArgReg[fp_args++]->as_VMReg());
 992 #ifdef _WIN64
 993           int_args++;
 994           // Allocate slots for callee to stuff register args the stack.
 995           stk_args += 2;
 996 #endif
 997         } else {
 998           regs[i].set2(VMRegImpl::stack2reg(stk_args));
 999           stk_args += 2;
1000         }
1001         break;
1002       case T_VOID: // Halves of longs and doubles
1003         assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half");
1004         regs[i].set_bad();
1005         break;
1006       default:
1007         ShouldNotReachHere();
1008         break;
1009       }
1010     }
1011 #ifdef _WIN64
1012   // windows abi requires that we always allocate enough stack space
1013   // for 4 64bit registers to be stored down.
1014   if (stk_args < 8) {
1015     stk_args = 8;
1016   }
1017 #endif // _WIN64
1018 
1019   return stk_args;
1020 }
1021 
1022 // On 64 bit we will store integer like items to the stack as
1023 // 64 bits items (sparc abi) even though java would only store
1024 // 32bits for a parameter. On 32bit it will simply be 32 bits
1025 // So this routine will do 32->32 on 32bit and 32->64 on 64bit
1026 static void move32_64(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1027   if (src.first()->is_stack()) {
1028     if (dst.first()->is_stack()) {
1029       // stack to stack
1030       __ movslq(rax, Address(rbp, reg2offset_in(src.first())));
1031       __ movq(Address(rsp, reg2offset_out(dst.first())), rax);
1032     } else {
1033       // stack to reg
1034       __ movslq(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first())));
1035     }
1036   } else if (dst.first()->is_stack()) {
1037     // reg to stack
1038     // Do we really have to sign extend???
1039     // __ movslq(src.first()->as_Register(), src.first()->as_Register());
1040     __ movq(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register());
1041   } else {
1042     // Do we really have to sign extend???
1043     // __ movslq(dst.first()->as_Register(), src.first()->as_Register());
1044     if (dst.first() != src.first()) {
1045       __ movq(dst.first()->as_Register(), src.first()->as_Register());
1046     }
1047   }
1048 }
1049 
1050 static void move_ptr(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1051   if (src.first()->is_stack()) {
1052     if (dst.first()->is_stack()) {
1053       // stack to stack
1054       __ movq(rax, Address(rbp, reg2offset_in(src.first())));
1055       __ movq(Address(rsp, reg2offset_out(dst.first())), rax);
1056     } else {
1057       // stack to reg
1058       __ movq(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first())));
1059     }
1060   } else if (dst.first()->is_stack()) {
1061     // reg to stack
1062     __ movq(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register());
1063   } else {
1064     if (dst.first() != src.first()) {
1065       __ movq(dst.first()->as_Register(), src.first()->as_Register());
1066     }
1067   }
1068 }
1069 
1070 // An oop arg. Must pass a handle not the oop itself
1071 static void object_move(MacroAssembler* masm,
1072                         OopMap* map,
1073                         int oop_handle_offset,
1074                         int framesize_in_slots,
1075                         VMRegPair src,
1076                         VMRegPair dst,
1077                         bool is_receiver,
1078                         int* receiver_offset) {
1079 
1080   // must pass a handle. First figure out the location we use as a handle
1081 
1082   Register rHandle = dst.first()->is_stack() ? rax : dst.first()->as_Register();
1083 
1084   // See if oop is NULL if it is we need no handle
1085 
1086   if (src.first()->is_stack()) {
1087 
1088     // Oop is already on the stack as an argument
1089     int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
1090     map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots));
1091     if (is_receiver) {
1092       *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size;
1093     }
1094 
1095     __ cmpptr(Address(rbp, reg2offset_in(src.first())), (int32_t)NULL_WORD);
1096     __ lea(rHandle, Address(rbp, reg2offset_in(src.first())));
1097     // conditionally move a NULL
1098     __ cmovptr(Assembler::equal, rHandle, Address(rbp, reg2offset_in(src.first())));
1099   } else {
1100 
1101     // Oop is in an a register we must store it to the space we reserve
1102     // on the stack for oop_handles and pass a handle if oop is non-NULL
1103 
1104     const Register rOop = src.first()->as_Register();
1105     int oop_slot;
1106     if (rOop == j_rarg0)
1107       oop_slot = 0;
1108     else if (rOop == j_rarg1)
1109       oop_slot = 1;
1110     else if (rOop == j_rarg2)
1111       oop_slot = 2;
1112     else if (rOop == j_rarg3)
1113       oop_slot = 3;
1114     else if (rOop == j_rarg4)
1115       oop_slot = 4;
1116     else {
1117       assert(rOop == j_rarg5, "wrong register");
1118       oop_slot = 5;
1119     }
1120 
1121     oop_slot = oop_slot * VMRegImpl::slots_per_word + oop_handle_offset;
1122     int offset = oop_slot*VMRegImpl::stack_slot_size;
1123 
1124     map->set_oop(VMRegImpl::stack2reg(oop_slot));
1125     // Store oop in handle area, may be NULL
1126     __ movptr(Address(rsp, offset), rOop);
1127     if (is_receiver) {
1128       *receiver_offset = offset;
1129     }
1130 
1131     __ cmpptr(rOop, (int32_t)NULL_WORD);
1132     __ lea(rHandle, Address(rsp, offset));
1133     // conditionally move a NULL from the handle area where it was just stored
1134     __ cmovptr(Assembler::equal, rHandle, Address(rsp, offset));
1135   }
1136 
1137   // If arg is on the stack then place it otherwise it is already in correct reg.
1138   if (dst.first()->is_stack()) {
1139     __ movptr(Address(rsp, reg2offset_out(dst.first())), rHandle);
1140   }
1141 }
1142 
1143 // A float arg may have to do float reg int reg conversion
1144 static void float_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1145   assert(!src.second()->is_valid() && !dst.second()->is_valid(), "bad float_move");
1146 
1147   // The calling conventions assures us that each VMregpair is either
1148   // all really one physical register or adjacent stack slots.
1149   // This greatly simplifies the cases here compared to sparc.
1150 
1151   if (src.first()->is_stack()) {
1152     if (dst.first()->is_stack()) {
1153       __ movl(rax, Address(rbp, reg2offset_in(src.first())));
1154       __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
1155     } else {
1156       // stack to reg
1157       assert(dst.first()->is_XMMRegister(), "only expect xmm registers as parameters");
1158       __ movflt(dst.first()->as_XMMRegister(), Address(rbp, reg2offset_in(src.first())));
1159     }
1160   } else if (dst.first()->is_stack()) {
1161     // reg to stack
1162     assert(src.first()->is_XMMRegister(), "only expect xmm registers as parameters");
1163     __ movflt(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister());
1164   } else {
1165     // reg to reg
1166     // In theory these overlap but the ordering is such that this is likely a nop
1167     if ( src.first() != dst.first()) {
1168       __ movdbl(dst.first()->as_XMMRegister(),  src.first()->as_XMMRegister());
1169     }
1170   }
1171 }
1172 
1173 // A long move
1174 static void long_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1175 
1176   // The calling conventions assures us that each VMregpair is either
1177   // all really one physical register or adjacent stack slots.
1178   // This greatly simplifies the cases here compared to sparc.
1179 
1180   if (src.is_single_phys_reg() ) {
1181     if (dst.is_single_phys_reg()) {
1182       if (dst.first() != src.first()) {
1183         __ mov(dst.first()->as_Register(), src.first()->as_Register());
1184       }
1185     } else {
1186       assert(dst.is_single_reg(), "not a stack pair");
1187       __ movq(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register());
1188     }
1189   } else if (dst.is_single_phys_reg()) {
1190     assert(src.is_single_reg(),  "not a stack pair");
1191     __ movq(dst.first()->as_Register(), Address(rbp, reg2offset_out(src.first())));
1192   } else {
1193     assert(src.is_single_reg() && dst.is_single_reg(), "not stack pairs");
1194     __ movq(rax, Address(rbp, reg2offset_in(src.first())));
1195     __ movq(Address(rsp, reg2offset_out(dst.first())), rax);
1196   }
1197 }
1198 
1199 // A double move
1200 static void double_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1201 
1202   // The calling conventions assures us that each VMregpair is either
1203   // all really one physical register or adjacent stack slots.
1204   // This greatly simplifies the cases here compared to sparc.
1205 
1206   if (src.is_single_phys_reg() ) {
1207     if (dst.is_single_phys_reg()) {
1208       // In theory these overlap but the ordering is such that this is likely a nop
1209       if ( src.first() != dst.first()) {
1210         __ movdbl(dst.first()->as_XMMRegister(), src.first()->as_XMMRegister());
1211       }
1212     } else {
1213       assert(dst.is_single_reg(), "not a stack pair");
1214       __ movdbl(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister());
1215     }
1216   } else if (dst.is_single_phys_reg()) {
1217     assert(src.is_single_reg(),  "not a stack pair");
1218     __ movdbl(dst.first()->as_XMMRegister(), Address(rbp, reg2offset_out(src.first())));
1219   } else {
1220     assert(src.is_single_reg() && dst.is_single_reg(), "not stack pairs");
1221     __ movq(rax, Address(rbp, reg2offset_in(src.first())));
1222     __ movq(Address(rsp, reg2offset_out(dst.first())), rax);
1223   }
1224 }
1225 
1226 
1227 void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
1228   // We always ignore the frame_slots arg and just use the space just below frame pointer
1229   // which by this time is free to use
1230   switch (ret_type) {
1231   case T_FLOAT:
1232     __ movflt(Address(rbp, -wordSize), xmm0);
1233     break;
1234   case T_DOUBLE:
1235     __ movdbl(Address(rbp, -wordSize), xmm0);
1236     break;
1237   case T_VOID:  break;
1238   default: {
1239     __ movptr(Address(rbp, -wordSize), rax);
1240     }
1241   }
1242 }
1243 
1244 void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
1245   // We always ignore the frame_slots arg and just use the space just below frame pointer
1246   // which by this time is free to use
1247   switch (ret_type) {
1248   case T_FLOAT:
1249     __ movflt(xmm0, Address(rbp, -wordSize));
1250     break;
1251   case T_DOUBLE:
1252     __ movdbl(xmm0, Address(rbp, -wordSize));
1253     break;
1254   case T_VOID:  break;
1255   default: {
1256     __ movptr(rax, Address(rbp, -wordSize));
1257     }
1258   }
1259 }
1260 
1261 static void save_args(MacroAssembler *masm, int arg_count, int first_arg, VMRegPair *args) {
1262     for ( int i = first_arg ; i < arg_count ; i++ ) {
1263       if (args[i].first()->is_Register()) {
1264         __ push(args[i].first()->as_Register());
1265       } else if (args[i].first()->is_XMMRegister()) {
1266         __ subptr(rsp, 2*wordSize);
1267         __ movdbl(Address(rsp, 0), args[i].first()->as_XMMRegister());
1268       }
1269     }
1270 }
1271 
1272 static void restore_args(MacroAssembler *masm, int arg_count, int first_arg, VMRegPair *args) {
1273     for ( int i = arg_count - 1 ; i >= first_arg ; i-- ) {
1274       if (args[i].first()->is_Register()) {
1275         __ pop(args[i].first()->as_Register());
1276       } else if (args[i].first()->is_XMMRegister()) {
1277         __ movdbl(args[i].first()->as_XMMRegister(), Address(rsp, 0));
1278         __ addptr(rsp, 2*wordSize);
1279       }
1280     }
1281 }
1282 
1283 
1284 static void save_or_restore_arguments(MacroAssembler* masm,
1285                                       const int stack_slots,
1286                                       const int total_in_args,
1287                                       const int arg_save_area,
1288                                       OopMap* map,
1289                                       VMRegPair* in_regs,
1290                                       BasicType* in_sig_bt) {
1291   // if map is non-NULL then the code should store the values,
1292   // otherwise it should load them.
1293   int slot = arg_save_area;
1294   // Save down double word first
1295   for ( int i = 0; i < total_in_args; i++) {
1296     if (in_regs[i].first()->is_XMMRegister() && in_sig_bt[i] == T_DOUBLE) {
1297       int offset = slot * VMRegImpl::stack_slot_size;
1298       slot += VMRegImpl::slots_per_word;
1299       assert(slot <= stack_slots, "overflow");
1300       if (map != NULL) {
1301         __ movdbl(Address(rsp, offset), in_regs[i].first()->as_XMMRegister());
1302       } else {
1303         __ movdbl(in_regs[i].first()->as_XMMRegister(), Address(rsp, offset));
1304       }
1305     }
1306     if (in_regs[i].first()->is_Register() &&
1307         (in_sig_bt[i] == T_LONG || in_sig_bt[i] == T_ARRAY)) {
1308       int offset = slot * VMRegImpl::stack_slot_size;
1309       if (map != NULL) {
1310         __ movq(Address(rsp, offset), in_regs[i].first()->as_Register());
1311         if (in_sig_bt[i] == T_ARRAY) {
1312           map->set_oop(VMRegImpl::stack2reg(slot));;
1313         }
1314       } else {
1315         __ movq(in_regs[i].first()->as_Register(), Address(rsp, offset));
1316       }
1317       slot += VMRegImpl::slots_per_word;
1318     }
1319   }
1320   // Save or restore single word registers
1321   for ( int i = 0; i < total_in_args; i++) {
1322     if (in_regs[i].first()->is_Register()) {
1323       int offset = slot * VMRegImpl::stack_slot_size;
1324       slot++;
1325       assert(slot <= stack_slots, "overflow");
1326 
1327       // Value is in an input register pass we must flush it to the stack
1328       const Register reg = in_regs[i].first()->as_Register();
1329       switch (in_sig_bt[i]) {
1330         case T_BOOLEAN:
1331         case T_CHAR:
1332         case T_BYTE:
1333         case T_SHORT:
1334         case T_INT:
1335           if (map != NULL) {
1336             __ movl(Address(rsp, offset), reg);
1337           } else {
1338             __ movl(reg, Address(rsp, offset));
1339           }
1340           break;
1341         case T_ARRAY:
1342         case T_LONG:
1343           // handled above
1344           break;
1345         case T_OBJECT:
1346         default: ShouldNotReachHere();
1347       }
1348     } else if (in_regs[i].first()->is_XMMRegister()) {
1349       if (in_sig_bt[i] == T_FLOAT) {
1350         int offset = slot * VMRegImpl::stack_slot_size;
1351         slot++;
1352         assert(slot <= stack_slots, "overflow");
1353         if (map != NULL) {
1354           __ movflt(Address(rsp, offset), in_regs[i].first()->as_XMMRegister());
1355         } else {
1356           __ movflt(in_regs[i].first()->as_XMMRegister(), Address(rsp, offset));
1357         }
1358       }
1359     } else if (in_regs[i].first()->is_stack()) {
1360       if (in_sig_bt[i] == T_ARRAY && map != NULL) {
1361         int offset_in_older_frame = in_regs[i].first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
1362         map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + stack_slots));
1363       }
1364     }
1365   }
1366 }
1367 
1368 
1369 // Check GC_locker::needs_gc and enter the runtime if it's true.  This
1370 // keeps a new JNI critical region from starting until a GC has been
1371 // forced.  Save down any oops in registers and describe them in an
1372 // OopMap.
1373 static void check_needs_gc_for_critical_native(MacroAssembler* masm,
1374                                                int stack_slots,
1375                                                int total_c_args,
1376                                                int total_in_args,
1377                                                int arg_save_area,
1378                                                OopMapSet* oop_maps,
1379                                                VMRegPair* in_regs,
1380                                                BasicType* in_sig_bt) {
1381   __ block_comment("check GC_locker::needs_gc");
1382   Label cont;
1383   __ cmp8(ExternalAddress((address)GC_locker::needs_gc_address()), false);
1384   __ jcc(Assembler::equal, cont);
1385 
1386   // Save down any incoming oops and call into the runtime to halt for a GC
1387 
1388   OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
1389   save_or_restore_arguments(masm, stack_slots, total_in_args,
1390                             arg_save_area, map, in_regs, in_sig_bt);
1391 
1392   address the_pc = __ pc();
1393   oop_maps->add_gc_map( __ offset(), map);
1394   __ set_last_Java_frame(rsp, noreg, the_pc);
1395 
1396   __ block_comment("block_for_jni_critical");
1397   __ movptr(c_rarg0, r15_thread);
1398   __ mov(r12, rsp); // remember sp
1399   __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
1400   __ andptr(rsp, -16); // align stack as required by ABI
1401   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::block_for_jni_critical)));
1402   __ mov(rsp, r12); // restore sp
1403   __ reinit_heapbase();
1404 
1405   __ reset_last_Java_frame(false, true);
1406 
1407   save_or_restore_arguments(masm, stack_slots, total_in_args,
1408                             arg_save_area, NULL, in_regs, in_sig_bt);
1409 
1410   __ bind(cont);
1411 #ifdef ASSERT
1412   if (StressCriticalJNINatives) {
1413     // Stress register saving
1414     OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
1415     save_or_restore_arguments(masm, stack_slots, total_in_args,
1416                               arg_save_area, map, in_regs, in_sig_bt);
1417     // Destroy argument registers
1418     for (int i = 0; i < total_in_args - 1; i++) {
1419       if (in_regs[i].first()->is_Register()) {
1420         const Register reg = in_regs[i].first()->as_Register();
1421         __ xorptr(reg, reg);
1422       } else if (in_regs[i].first()->is_XMMRegister()) {
1423         __ xorpd(in_regs[i].first()->as_XMMRegister(), in_regs[i].first()->as_XMMRegister());
1424       } else if (in_regs[i].first()->is_FloatRegister()) {
1425         ShouldNotReachHere();
1426       } else if (in_regs[i].first()->is_stack()) {
1427         // Nothing to do
1428       } else {
1429         ShouldNotReachHere();
1430       }
1431       if (in_sig_bt[i] == T_LONG || in_sig_bt[i] == T_DOUBLE) {
1432         i++;
1433       }
1434     }
1435 
1436     save_or_restore_arguments(masm, stack_slots, total_in_args,
1437                               arg_save_area, NULL, in_regs, in_sig_bt);
1438   }
1439 #endif
1440 }
1441 
1442 // Unpack an array argument into a pointer to the body and the length
1443 // if the array is non-null, otherwise pass 0 for both.
1444 static void unpack_array_argument(MacroAssembler* masm, VMRegPair reg, BasicType in_elem_type, VMRegPair body_arg, VMRegPair length_arg) {
1445   Register tmp_reg = rax;
1446   assert(!body_arg.first()->is_Register() || body_arg.first()->as_Register() != tmp_reg,
1447          "possible collision");
1448   assert(!length_arg.first()->is_Register() || length_arg.first()->as_Register() != tmp_reg,
1449          "possible collision");
1450 
1451   __ block_comment("unpack_array_argument {");
1452 
1453   // Pass the length, ptr pair
1454   Label is_null, done;
1455   VMRegPair tmp;
1456   tmp.set_ptr(tmp_reg->as_VMReg());
1457   if (reg.first()->is_stack()) {
1458     // Load the arg up from the stack
1459     move_ptr(masm, reg, tmp);
1460     reg = tmp;
1461   }
1462   __ testptr(reg.first()->as_Register(), reg.first()->as_Register());
1463   __ jccb(Assembler::equal, is_null);
1464   __ lea(tmp_reg, Address(reg.first()->as_Register(), arrayOopDesc::base_offset_in_bytes(in_elem_type)));
1465   move_ptr(masm, tmp, body_arg);
1466   // load the length relative to the body.
1467   __ movl(tmp_reg, Address(tmp_reg, arrayOopDesc::length_offset_in_bytes() -
1468                            arrayOopDesc::base_offset_in_bytes(in_elem_type)));
1469   move32_64(masm, tmp, length_arg);
1470   __ jmpb(done);
1471   __ bind(is_null);
1472   // Pass zeros
1473   __ xorptr(tmp_reg, tmp_reg);
1474   move_ptr(masm, tmp, body_arg);
1475   move32_64(masm, tmp, length_arg);
1476   __ bind(done);
1477 
1478   __ block_comment("} unpack_array_argument");
1479 }
1480 
1481 
1482 // Different signatures may require very different orders for the move
1483 // to avoid clobbering other arguments.  There's no simple way to
1484 // order them safely.  Compute a safe order for issuing stores and
1485 // break any cycles in those stores.  This code is fairly general but
1486 // it's not necessary on the other platforms so we keep it in the
1487 // platform dependent code instead of moving it into a shared file.
1488 // (See bugs 7013347 & 7145024.)
1489 // Note that this code is specific to LP64.
1490 class ComputeMoveOrder: public StackObj {
1491   class MoveOperation: public ResourceObj {
1492     friend class ComputeMoveOrder;
1493    private:
1494     VMRegPair        _src;
1495     VMRegPair        _dst;
1496     int              _src_index;
1497     int              _dst_index;
1498     bool             _processed;
1499     MoveOperation*  _next;
1500     MoveOperation*  _prev;
1501 
1502     static int get_id(VMRegPair r) {
1503       return r.first()->value();
1504     }
1505 
1506    public:
1507     MoveOperation(int src_index, VMRegPair src, int dst_index, VMRegPair dst):
1508       _src(src)
1509     , _src_index(src_index)
1510     , _dst(dst)
1511     , _dst_index(dst_index)
1512     , _next(NULL)
1513     , _prev(NULL)
1514     , _processed(false) {
1515     }
1516 
1517     VMRegPair src() const              { return _src; }
1518     int src_id() const                 { return get_id(src()); }
1519     int src_index() const              { return _src_index; }
1520     VMRegPair dst() const              { return _dst; }
1521     void set_dst(int i, VMRegPair dst) { _dst_index = i, _dst = dst; }
1522     int dst_index() const              { return _dst_index; }
1523     int dst_id() const                 { return get_id(dst()); }
1524     MoveOperation* next() const       { return _next; }
1525     MoveOperation* prev() const       { return _prev; }
1526     void set_processed()               { _processed = true; }
1527     bool is_processed() const          { return _processed; }
1528 
1529     // insert
1530     void break_cycle(VMRegPair temp_register) {
1531       // create a new store following the last store
1532       // to move from the temp_register to the original
1533       MoveOperation* new_store = new MoveOperation(-1, temp_register, dst_index(), dst());
1534 
1535       // break the cycle of links and insert new_store at the end
1536       // break the reverse link.
1537       MoveOperation* p = prev();
1538       assert(p->next() == this, "must be");
1539       _prev = NULL;
1540       p->_next = new_store;
1541       new_store->_prev = p;
1542 
1543       // change the original store to save it's value in the temp.
1544       set_dst(-1, temp_register);
1545     }
1546 
1547     void link(GrowableArray<MoveOperation*>& killer) {
1548       // link this store in front the store that it depends on
1549       MoveOperation* n = killer.at_grow(src_id(), NULL);
1550       if (n != NULL) {
1551         assert(_next == NULL && n->_prev == NULL, "shouldn't have been set yet");
1552         _next = n;
1553         n->_prev = this;
1554       }
1555     }
1556   };
1557 
1558  private:
1559   GrowableArray<MoveOperation*> edges;
1560 
1561  public:
1562   ComputeMoveOrder(int total_in_args, VMRegPair* in_regs, int total_c_args, VMRegPair* out_regs,
1563                     BasicType* in_sig_bt, GrowableArray<int>& arg_order, VMRegPair tmp_vmreg) {
1564     // Move operations where the dest is the stack can all be
1565     // scheduled first since they can't interfere with the other moves.
1566     for (int i = total_in_args - 1, c_arg = total_c_args - 1; i >= 0; i--, c_arg--) {
1567       if (in_sig_bt[i] == T_ARRAY) {
1568         c_arg--;
1569         if (out_regs[c_arg].first()->is_stack() &&
1570             out_regs[c_arg + 1].first()->is_stack()) {
1571           arg_order.push(i);
1572           arg_order.push(c_arg);
1573         } else {
1574           if (out_regs[c_arg].first()->is_stack() ||
1575               in_regs[i].first() == out_regs[c_arg].first()) {
1576             add_edge(i, in_regs[i].first(), c_arg, out_regs[c_arg + 1]);
1577           } else {
1578             add_edge(i, in_regs[i].first(), c_arg, out_regs[c_arg]);
1579           }
1580         }
1581       } else if (in_sig_bt[i] == T_VOID) {
1582         arg_order.push(i);
1583         arg_order.push(c_arg);
1584       } else {
1585         if (out_regs[c_arg].first()->is_stack() ||
1586             in_regs[i].first() == out_regs[c_arg].first()) {
1587           arg_order.push(i);
1588           arg_order.push(c_arg);
1589         } else {
1590           add_edge(i, in_regs[i].first(), c_arg, out_regs[c_arg]);
1591         }
1592       }
1593     }
1594     // Break any cycles in the register moves and emit the in the
1595     // proper order.
1596     GrowableArray<MoveOperation*>* stores = get_store_order(tmp_vmreg);
1597     for (int i = 0; i < stores->length(); i++) {
1598       arg_order.push(stores->at(i)->src_index());
1599       arg_order.push(stores->at(i)->dst_index());
1600     }
1601  }
1602 
1603   // Collected all the move operations
1604   void add_edge(int src_index, VMRegPair src, int dst_index, VMRegPair dst) {
1605     if (src.first() == dst.first()) return;
1606     edges.append(new MoveOperation(src_index, src, dst_index, dst));
1607   }
1608 
1609   // Walk the edges breaking cycles between moves.  The result list
1610   // can be walked in order to produce the proper set of loads
1611   GrowableArray<MoveOperation*>* get_store_order(VMRegPair temp_register) {
1612     // Record which moves kill which values
1613     GrowableArray<MoveOperation*> killer;
1614     for (int i = 0; i < edges.length(); i++) {
1615       MoveOperation* s = edges.at(i);
1616       assert(killer.at_grow(s->dst_id(), NULL) == NULL, "only one killer");
1617       killer.at_put_grow(s->dst_id(), s, NULL);
1618     }
1619     assert(killer.at_grow(MoveOperation::get_id(temp_register), NULL) == NULL,
1620            "make sure temp isn't in the registers that are killed");
1621 
1622     // create links between loads and stores
1623     for (int i = 0; i < edges.length(); i++) {
1624       edges.at(i)->link(killer);
1625     }
1626 
1627     // at this point, all the move operations are chained together
1628     // in a doubly linked list.  Processing it backwards finds
1629     // the beginning of the chain, forwards finds the end.  If there's
1630     // a cycle it can be broken at any point,  so pick an edge and walk
1631     // backward until the list ends or we end where we started.
1632     GrowableArray<MoveOperation*>* stores = new GrowableArray<MoveOperation*>();
1633     for (int e = 0; e < edges.length(); e++) {
1634       MoveOperation* s = edges.at(e);
1635       if (!s->is_processed()) {
1636         MoveOperation* start = s;
1637         // search for the beginning of the chain or cycle
1638         while (start->prev() != NULL && start->prev() != s) {
1639           start = start->prev();
1640         }
1641         if (start->prev() == s) {
1642           start->break_cycle(temp_register);
1643         }
1644         // walk the chain forward inserting to store list
1645         while (start != NULL) {
1646           stores->append(start);
1647           start->set_processed();
1648           start = start->next();
1649         }
1650       }
1651     }
1652     return stores;
1653   }
1654 };
1655 
1656 static void verify_oop_args(MacroAssembler* masm,
1657                             methodHandle method,
1658                             const BasicType* sig_bt,
1659                             const VMRegPair* regs) {
1660   Register temp_reg = rbx;  // not part of any compiled calling seq
1661   if (VerifyOops) {
1662     for (int i = 0; i < method->size_of_parameters(); i++) {
1663       if (sig_bt[i] == T_OBJECT ||
1664           sig_bt[i] == T_ARRAY) {
1665         VMReg r = regs[i].first();
1666         assert(r->is_valid(), "bad oop arg");
1667         if (r->is_stack()) {
1668           __ movptr(temp_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
1669           __ verify_oop(temp_reg);
1670         } else {
1671           __ verify_oop(r->as_Register());
1672         }
1673       }
1674     }
1675   }
1676 }
1677 
1678 static void gen_special_dispatch(MacroAssembler* masm,
1679                                  methodHandle method,
1680                                  const BasicType* sig_bt,
1681                                  const VMRegPair* regs) {
1682   verify_oop_args(masm, method, sig_bt, regs);
1683   vmIntrinsics::ID iid = method->intrinsic_id();
1684 
1685   // Now write the args into the outgoing interpreter space
1686   bool     has_receiver   = false;
1687   Register receiver_reg   = noreg;
1688   int      member_arg_pos = -1;
1689   Register member_reg     = noreg;
1690   int      ref_kind       = MethodHandles::signature_polymorphic_intrinsic_ref_kind(iid);
1691   if (ref_kind != 0) {
1692     member_arg_pos = method->size_of_parameters() - 1;  // trailing MemberName argument
1693     member_reg = rbx;  // known to be free at this point
1694     has_receiver = MethodHandles::ref_kind_has_receiver(ref_kind);
1695   } else if (iid == vmIntrinsics::_invokeBasic) {
1696     has_receiver = true;
1697   } else {
1698     fatal(err_msg_res("unexpected intrinsic id %d", iid));
1699   }
1700 
1701   if (member_reg != noreg) {
1702     // Load the member_arg into register, if necessary.
1703     SharedRuntime::check_member_name_argument_is_last_argument(method, sig_bt, regs);
1704     VMReg r = regs[member_arg_pos].first();
1705     if (r->is_stack()) {
1706       __ movptr(member_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
1707     } else {
1708       // no data motion is needed
1709       member_reg = r->as_Register();
1710     }
1711   }
1712 
1713   if (has_receiver) {
1714     // Make sure the receiver is loaded into a register.
1715     assert(method->size_of_parameters() > 0, "oob");
1716     assert(sig_bt[0] == T_OBJECT, "receiver argument must be an object");
1717     VMReg r = regs[0].first();
1718     assert(r->is_valid(), "bad receiver arg");
1719     if (r->is_stack()) {
1720       // Porting note:  This assumes that compiled calling conventions always
1721       // pass the receiver oop in a register.  If this is not true on some
1722       // platform, pick a temp and load the receiver from stack.
1723       fatal("receiver always in a register");
1724       receiver_reg = j_rarg0;  // known to be free at this point
1725       __ movptr(receiver_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
1726     } else {
1727       // no data motion is needed
1728       receiver_reg = r->as_Register();
1729     }
1730   }
1731 
1732   // Figure out which address we are really jumping to:
1733   MethodHandles::generate_method_handle_dispatch(masm, iid,
1734                                                  receiver_reg, member_reg, /*for_compiler_entry:*/ true);
1735 }
1736 
1737 // ---------------------------------------------------------------------------
1738 // Generate a native wrapper for a given method.  The method takes arguments
1739 // in the Java compiled code convention, marshals them to the native
1740 // convention (handlizes oops, etc), transitions to native, makes the call,
1741 // returns to java state (possibly blocking), unhandlizes any result and
1742 // returns.
1743 //
1744 // Critical native functions are a shorthand for the use of
1745 // GetPrimtiveArrayCritical and disallow the use of any other JNI
1746 // functions.  The wrapper is expected to unpack the arguments before
1747 // passing them to the callee and perform checks before and after the
1748 // native call to ensure that they GC_locker
1749 // lock_critical/unlock_critical semantics are followed.  Some other
1750 // parts of JNI setup are skipped like the tear down of the JNI handle
1751 // block and the check for pending exceptions it's impossible for them
1752 // to be thrown.
1753 //
1754 // They are roughly structured like this:
1755 //    if (GC_locker::needs_gc())
1756 //      SharedRuntime::block_for_jni_critical();
1757 //    tranistion to thread_in_native
1758 //    unpack arrray arguments and call native entry point
1759 //    check for safepoint in progress
1760 //    check if any thread suspend flags are set
1761 //      call into JVM and possible unlock the JNI critical
1762 //      if a GC was suppressed while in the critical native.
1763 //    transition back to thread_in_Java
1764 //    return to caller
1765 //
1766 nmethod* SharedRuntime::generate_native_wrapper(MacroAssembler* masm,
1767                                                 methodHandle method,
1768                                                 int compile_id,
1769                                                 BasicType* in_sig_bt,
1770                                                 VMRegPair* in_regs,
1771                                                 BasicType ret_type) {
1772   if (method->is_method_handle_intrinsic()) {
1773     vmIntrinsics::ID iid = method->intrinsic_id();
1774     intptr_t start = (intptr_t)__ pc();
1775     int vep_offset = ((intptr_t)__ pc()) - start;
1776     gen_special_dispatch(masm,
1777                          method,
1778                          in_sig_bt,
1779                          in_regs);
1780     int frame_complete = ((intptr_t)__ pc()) - start;  // not complete, period
1781     __ flush();
1782     int stack_slots = SharedRuntime::out_preserve_stack_slots();  // no out slots at all, actually
1783     return nmethod::new_native_nmethod(method,
1784                                        compile_id,
1785                                        masm->code(),
1786                                        vep_offset,
1787                                        frame_complete,
1788                                        stack_slots / VMRegImpl::slots_per_word,
1789                                        in_ByteSize(-1),
1790                                        in_ByteSize(-1),
1791                                        (OopMapSet*)NULL);
1792   }
1793   bool is_critical_native = true;
1794   address native_func = method->critical_native_function();
1795   if (native_func == NULL) {
1796     native_func = method->native_function();
1797     is_critical_native = false;
1798   }
1799   assert(native_func != NULL, "must have function");
1800 
1801   // An OopMap for lock (and class if static)
1802   OopMapSet *oop_maps = new OopMapSet();
1803   intptr_t start = (intptr_t)__ pc();
1804 
1805   // We have received a description of where all the java arg are located
1806   // on entry to the wrapper. We need to convert these args to where
1807   // the jni function will expect them. To figure out where they go
1808   // we convert the java signature to a C signature by inserting
1809   // the hidden arguments as arg[0] and possibly arg[1] (static method)
1810 
1811   const int total_in_args = method->size_of_parameters();
1812   int total_c_args = total_in_args;
1813   if (!is_critical_native) {
1814     total_c_args += 1;
1815     if (method->is_static()) {
1816       total_c_args++;
1817     }
1818   } else {
1819     for (int i = 0; i < total_in_args; i++) {
1820       if (in_sig_bt[i] == T_ARRAY) {
1821         total_c_args++;
1822       }
1823     }
1824   }
1825 
1826   BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args);
1827   VMRegPair* out_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_c_args);
1828   BasicType* in_elem_bt = NULL;
1829 
1830   int argc = 0;
1831   if (!is_critical_native) {
1832     out_sig_bt[argc++] = T_ADDRESS;
1833     if (method->is_static()) {
1834       out_sig_bt[argc++] = T_OBJECT;
1835     }
1836 
1837     for (int i = 0; i < total_in_args ; i++ ) {
1838       out_sig_bt[argc++] = in_sig_bt[i];
1839     }
1840   } else {
1841     Thread* THREAD = Thread::current();
1842     in_elem_bt = NEW_RESOURCE_ARRAY(BasicType, total_in_args);
1843     SignatureStream ss(method->signature());
1844     for (int i = 0; i < total_in_args ; i++ ) {
1845       if (in_sig_bt[i] == T_ARRAY) {
1846         // Arrays are passed as int, elem* pair
1847         out_sig_bt[argc++] = T_INT;
1848         out_sig_bt[argc++] = T_ADDRESS;
1849         Symbol* atype = ss.as_symbol(CHECK_NULL);
1850         const char* at = atype->as_C_string();
1851         if (strlen(at) == 2) {
1852           assert(at[0] == '[', "must be");
1853           switch (at[1]) {
1854             case 'B': in_elem_bt[i]  = T_BYTE; break;
1855             case 'C': in_elem_bt[i]  = T_CHAR; break;
1856             case 'D': in_elem_bt[i]  = T_DOUBLE; break;
1857             case 'F': in_elem_bt[i]  = T_FLOAT; break;
1858             case 'I': in_elem_bt[i]  = T_INT; break;
1859             case 'J': in_elem_bt[i]  = T_LONG; break;
1860             case 'S': in_elem_bt[i]  = T_SHORT; break;
1861             case 'Z': in_elem_bt[i]  = T_BOOLEAN; break;
1862             default: ShouldNotReachHere();
1863           }
1864         }
1865       } else {
1866         out_sig_bt[argc++] = in_sig_bt[i];
1867         in_elem_bt[i] = T_VOID;
1868       }
1869       if (in_sig_bt[i] != T_VOID) {
1870         assert(in_sig_bt[i] == ss.type(), "must match");
1871         ss.next();
1872       }
1873     }
1874   }
1875 
1876   // Now figure out where the args must be stored and how much stack space
1877   // they require.
1878   int out_arg_slots;
1879   out_arg_slots = c_calling_convention(out_sig_bt, out_regs, NULL, total_c_args);
1880 
1881   // Compute framesize for the wrapper.  We need to handlize all oops in
1882   // incoming registers
1883 
1884   // Calculate the total number of stack slots we will need.
1885 
1886   // First count the abi requirement plus all of the outgoing args
1887   int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
1888 
1889   // Now the space for the inbound oop handle area
1890   int total_save_slots = 6 * VMRegImpl::slots_per_word;  // 6 arguments passed in registers
1891   if (is_critical_native) {
1892     // Critical natives may have to call out so they need a save area
1893     // for register arguments.
1894     int double_slots = 0;
1895     int single_slots = 0;
1896     for ( int i = 0; i < total_in_args; i++) {
1897       if (in_regs[i].first()->is_Register()) {
1898         const Register reg = in_regs[i].first()->as_Register();
1899         switch (in_sig_bt[i]) {
1900           case T_BOOLEAN:
1901           case T_BYTE:
1902           case T_SHORT:
1903           case T_CHAR:
1904           case T_INT:  single_slots++; break;
1905           case T_ARRAY:  // specific to LP64 (7145024)
1906           case T_LONG: double_slots++; break;
1907           default:  ShouldNotReachHere();
1908         }
1909       } else if (in_regs[i].first()->is_XMMRegister()) {
1910         switch (in_sig_bt[i]) {
1911           case T_FLOAT:  single_slots++; break;
1912           case T_DOUBLE: double_slots++; break;
1913           default:  ShouldNotReachHere();
1914         }
1915       } else if (in_regs[i].first()->is_FloatRegister()) {
1916         ShouldNotReachHere();
1917       }
1918     }
1919     total_save_slots = double_slots * 2 + single_slots;
1920     // align the save area
1921     if (double_slots != 0) {
1922       stack_slots = round_to(stack_slots, 2);
1923     }
1924   }
1925 
1926   int oop_handle_offset = stack_slots;
1927   stack_slots += total_save_slots;
1928 
1929   // Now any space we need for handlizing a klass if static method
1930 
1931   int klass_slot_offset = 0;
1932   int klass_offset = -1;
1933   int lock_slot_offset = 0;
1934   bool is_static = false;
1935 
1936   if (method->is_static()) {
1937     klass_slot_offset = stack_slots;
1938     stack_slots += VMRegImpl::slots_per_word;
1939     klass_offset = klass_slot_offset * VMRegImpl::stack_slot_size;
1940     is_static = true;
1941   }
1942 
1943   // Plus a lock if needed
1944 
1945   if (method->is_synchronized()) {
1946     lock_slot_offset = stack_slots;
1947     stack_slots += VMRegImpl::slots_per_word;
1948   }
1949 
1950   // Now a place (+2) to save return values or temp during shuffling
1951   // + 4 for return address (which we own) and saved rbp
1952   stack_slots += 6;
1953 
1954   // Ok The space we have allocated will look like:
1955   //
1956   //
1957   // FP-> |                     |
1958   //      |---------------------|
1959   //      | 2 slots for moves   |
1960   //      |---------------------|
1961   //      | lock box (if sync)  |
1962   //      |---------------------| <- lock_slot_offset
1963   //      | klass (if static)   |
1964   //      |---------------------| <- klass_slot_offset
1965   //      | oopHandle area      |
1966   //      |---------------------| <- oop_handle_offset (6 java arg registers)
1967   //      | outbound memory     |
1968   //      | based arguments     |
1969   //      |                     |
1970   //      |---------------------|
1971   //      |                     |
1972   // SP-> | out_preserved_slots |
1973   //
1974   //
1975 
1976 
1977   // Now compute actual number of stack words we need rounding to make
1978   // stack properly aligned.
1979   stack_slots = round_to(stack_slots, StackAlignmentInSlots);
1980 
1981   int stack_size = stack_slots * VMRegImpl::stack_slot_size;
1982 
1983   // First thing make an ic check to see if we should even be here
1984 
1985   // We are free to use all registers as temps without saving them and
1986   // restoring them except rbp. rbp is the only callee save register
1987   // as far as the interpreter and the compiler(s) are concerned.
1988 
1989 
1990   const Register ic_reg = rax;
1991   const Register receiver = j_rarg0;
1992 
1993   Label hit;
1994   Label exception_pending;
1995 
1996   assert_different_registers(ic_reg, receiver, rscratch1);
1997   __ verify_oop(receiver);
1998   __ load_klass(rscratch1, receiver);
1999   __ cmpq(ic_reg, rscratch1);
2000   __ jcc(Assembler::equal, hit);
2001 
2002   __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
2003 
2004   // Verified entry point must be aligned
2005   __ align(8);
2006 
2007   __ bind(hit);
2008 
2009   int vep_offset = ((intptr_t)__ pc()) - start;
2010 
2011   // The instruction at the verified entry point must be 5 bytes or longer
2012   // because it can be patched on the fly by make_non_entrant. The stack bang
2013   // instruction fits that requirement.
2014 
2015   // Generate stack overflow check
2016 
2017   if (UseStackBanging) {
2018     __ bang_stack_with_offset(StackShadowPages*os::vm_page_size());
2019   } else {
2020     // need a 5 byte instruction to allow MT safe patching to non-entrant
2021     __ fat_nop();
2022   }
2023 
2024   // Generate a new frame for the wrapper.
2025   __ enter();
2026   // -2 because return address is already present and so is saved rbp
2027   __ subptr(rsp, stack_size - 2*wordSize);
2028 
2029   // Frame is now completed as far as size and linkage.
2030   int frame_complete = ((intptr_t)__ pc()) - start;
2031 
2032     if (UseRTMLocking) {
2033       // Abort RTM transaction before calling JNI
2034       // because critical section will be large and will be
2035       // aborted anyway. Also nmethod could be deoptimized.
2036       __ xabort(0);
2037     }
2038 
2039 #ifdef ASSERT
2040     {
2041       Label L;
2042       __ mov(rax, rsp);
2043       __ andptr(rax, -16); // must be 16 byte boundary (see amd64 ABI)
2044       __ cmpptr(rax, rsp);
2045       __ jcc(Assembler::equal, L);
2046       __ stop("improperly aligned stack");
2047       __ bind(L);
2048     }
2049 #endif /* ASSERT */
2050 
2051 
2052   // We use r14 as the oop handle for the receiver/klass
2053   // It is callee save so it survives the call to native
2054 
2055   const Register oop_handle_reg = r14;
2056 
2057   if (is_critical_native) {
2058     check_needs_gc_for_critical_native(masm, stack_slots, total_c_args, total_in_args,
2059                                        oop_handle_offset, oop_maps, in_regs, in_sig_bt);
2060   }
2061 
2062   //
2063   // We immediately shuffle the arguments so that any vm call we have to
2064   // make from here on out (sync slow path, jvmti, etc.) we will have
2065   // captured the oops from our caller and have a valid oopMap for
2066   // them.
2067 
2068   // -----------------
2069   // The Grand Shuffle
2070 
2071   // The Java calling convention is either equal (linux) or denser (win64) than the
2072   // c calling convention. However the because of the jni_env argument the c calling
2073   // convention always has at least one more (and two for static) arguments than Java.
2074   // Therefore if we move the args from java -> c backwards then we will never have
2075   // a register->register conflict and we don't have to build a dependency graph
2076   // and figure out how to break any cycles.
2077   //
2078 
2079   // Record esp-based slot for receiver on stack for non-static methods
2080   int receiver_offset = -1;
2081 
2082   // This is a trick. We double the stack slots so we can claim
2083   // the oops in the caller's frame. Since we are sure to have
2084   // more args than the caller doubling is enough to make
2085   // sure we can capture all the incoming oop args from the
2086   // caller.
2087   //
2088   OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
2089 
2090   // Mark location of rbp (someday)
2091   // map->set_callee_saved(VMRegImpl::stack2reg( stack_slots - 2), stack_slots * 2, 0, vmreg(rbp));
2092 
2093   // Use eax, ebx as temporaries during any memory-memory moves we have to do
2094   // All inbound args are referenced based on rbp and all outbound args via rsp.
2095 
2096 
2097 #ifdef ASSERT
2098   bool reg_destroyed[RegisterImpl::number_of_registers];
2099   bool freg_destroyed[XMMRegisterImpl::number_of_registers];
2100   for ( int r = 0 ; r < RegisterImpl::number_of_registers ; r++ ) {
2101     reg_destroyed[r] = false;
2102   }
2103   for ( int f = 0 ; f < XMMRegisterImpl::number_of_registers ; f++ ) {
2104     freg_destroyed[f] = false;
2105   }
2106 
2107 #endif /* ASSERT */
2108 
2109   // This may iterate in two different directions depending on the
2110   // kind of native it is.  The reason is that for regular JNI natives
2111   // the incoming and outgoing registers are offset upwards and for
2112   // critical natives they are offset down.
2113   GrowableArray<int> arg_order(2 * total_in_args);
2114   VMRegPair tmp_vmreg;
2115   tmp_vmreg.set1(rbx->as_VMReg());
2116 
2117   if (!is_critical_native) {
2118     for (int i = total_in_args - 1, c_arg = total_c_args - 1; i >= 0; i--, c_arg--) {
2119       arg_order.push(i);
2120       arg_order.push(c_arg);
2121     }
2122   } else {
2123     // Compute a valid move order, using tmp_vmreg to break any cycles
2124     ComputeMoveOrder cmo(total_in_args, in_regs, total_c_args, out_regs, in_sig_bt, arg_order, tmp_vmreg);
2125   }
2126 
2127   int temploc = -1;
2128   for (int ai = 0; ai < arg_order.length(); ai += 2) {
2129     int i = arg_order.at(ai);
2130     int c_arg = arg_order.at(ai + 1);
2131     __ block_comment(err_msg("move %d -> %d", i, c_arg));
2132     if (c_arg == -1) {
2133       assert(is_critical_native, "should only be required for critical natives");
2134       // This arg needs to be moved to a temporary
2135       __ mov(tmp_vmreg.first()->as_Register(), in_regs[i].first()->as_Register());
2136       in_regs[i] = tmp_vmreg;
2137       temploc = i;
2138       continue;
2139     } else if (i == -1) {
2140       assert(is_critical_native, "should only be required for critical natives");
2141       // Read from the temporary location
2142       assert(temploc != -1, "must be valid");
2143       i = temploc;
2144       temploc = -1;
2145     }
2146 #ifdef ASSERT
2147     if (in_regs[i].first()->is_Register()) {
2148       assert(!reg_destroyed[in_regs[i].first()->as_Register()->encoding()], "destroyed reg!");
2149     } else if (in_regs[i].first()->is_XMMRegister()) {
2150       assert(!freg_destroyed[in_regs[i].first()->as_XMMRegister()->encoding()], "destroyed reg!");
2151     }
2152     if (out_regs[c_arg].first()->is_Register()) {
2153       reg_destroyed[out_regs[c_arg].first()->as_Register()->encoding()] = true;
2154     } else if (out_regs[c_arg].first()->is_XMMRegister()) {
2155       freg_destroyed[out_regs[c_arg].first()->as_XMMRegister()->encoding()] = true;
2156     }
2157 #endif /* ASSERT */
2158     switch (in_sig_bt[i]) {
2159       case T_ARRAY:
2160         if (is_critical_native) {
2161           unpack_array_argument(masm, in_regs[i], in_elem_bt[i], out_regs[c_arg + 1], out_regs[c_arg]);
2162           c_arg++;
2163 #ifdef ASSERT
2164           if (out_regs[c_arg].first()->is_Register()) {
2165             reg_destroyed[out_regs[c_arg].first()->as_Register()->encoding()] = true;
2166           } else if (out_regs[c_arg].first()->is_XMMRegister()) {
2167             freg_destroyed[out_regs[c_arg].first()->as_XMMRegister()->encoding()] = true;
2168           }
2169 #endif
2170           break;
2171         }
2172       case T_OBJECT:
2173         assert(!is_critical_native, "no oop arguments");
2174         object_move(masm, map, oop_handle_offset, stack_slots, in_regs[i], out_regs[c_arg],
2175                     ((i == 0) && (!is_static)),
2176                     &receiver_offset);
2177         break;
2178       case T_VOID:
2179         break;
2180 
2181       case T_FLOAT:
2182         float_move(masm, in_regs[i], out_regs[c_arg]);
2183           break;
2184 
2185       case T_DOUBLE:
2186         assert( i + 1 < total_in_args &&
2187                 in_sig_bt[i + 1] == T_VOID &&
2188                 out_sig_bt[c_arg+1] == T_VOID, "bad arg list");
2189         double_move(masm, in_regs[i], out_regs[c_arg]);
2190         break;
2191 
2192       case T_LONG :
2193         long_move(masm, in_regs[i], out_regs[c_arg]);
2194         break;
2195 
2196       case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
2197 
2198       default:
2199         move32_64(masm, in_regs[i], out_regs[c_arg]);
2200     }
2201   }
2202 
2203   int c_arg;
2204 
2205   // Pre-load a static method's oop into r14.  Used both by locking code and
2206   // the normal JNI call code.
2207   if (!is_critical_native) {
2208     // point c_arg at the first arg that is already loaded in case we
2209     // need to spill before we call out
2210     c_arg = total_c_args - total_in_args;
2211 
2212     if (method->is_static()) {
2213 
2214       //  load oop into a register
2215       __ movoop(oop_handle_reg, JNIHandles::make_local(method->method_holder()->java_mirror()));
2216 
2217       // Now handlize the static class mirror it's known not-null.
2218       __ movptr(Address(rsp, klass_offset), oop_handle_reg);
2219       map->set_oop(VMRegImpl::stack2reg(klass_slot_offset));
2220 
2221       // Now get the handle
2222       __ lea(oop_handle_reg, Address(rsp, klass_offset));
2223       // store the klass handle as second argument
2224       __ movptr(c_rarg1, oop_handle_reg);
2225       // and protect the arg if we must spill
2226       c_arg--;
2227     }
2228   } else {
2229     // For JNI critical methods we need to save all registers in save_args.
2230     c_arg = 0;
2231   }
2232 
2233   // Change state to native (we save the return address in the thread, since it might not
2234   // be pushed on the stack when we do a a stack traversal). It is enough that the pc()
2235   // points into the right code segment. It does not have to be the correct return pc.
2236   // We use the same pc/oopMap repeatedly when we call out
2237 
2238   intptr_t the_pc = (intptr_t) __ pc();
2239   oop_maps->add_gc_map(the_pc - start, map);
2240 
2241   __ set_last_Java_frame(rsp, noreg, (address)the_pc);
2242 
2243 
2244   // We have all of the arguments setup at this point. We must not touch any register
2245   // argument registers at this point (what if we save/restore them there are no oop?
2246 
2247   {
2248     SkipIfEqual skip(masm, &DTraceMethodProbes, false);
2249     // protect the args we've loaded
2250     save_args(masm, total_c_args, c_arg, out_regs);
2251     __ mov_metadata(c_rarg1, method());
2252     __ call_VM_leaf(
2253       CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
2254       r15_thread, c_rarg1);
2255     restore_args(masm, total_c_args, c_arg, out_regs);
2256   }
2257 
2258   // RedefineClasses() tracing support for obsolete method entry
2259   if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
2260     // protect the args we've loaded
2261     save_args(masm, total_c_args, c_arg, out_regs);
2262     __ mov_metadata(c_rarg1, method());
2263     __ call_VM_leaf(
2264       CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
2265       r15_thread, c_rarg1);
2266     restore_args(masm, total_c_args, c_arg, out_regs);
2267   }
2268 
2269   // Lock a synchronized method
2270 
2271   // Register definitions used by locking and unlocking
2272 
2273   const Register swap_reg = rax;  // Must use rax for cmpxchg instruction
2274   const Register obj_reg  = rbx;  // Will contain the oop
2275   const Register lock_reg = r13;  // Address of compiler lock object (BasicLock)
2276   const Register old_hdr  = r13;  // value of old header at unlock time
2277 
2278   Label slow_path_lock;
2279   Label lock_done;
2280 
2281   if (method->is_synchronized()) {
2282     assert(!is_critical_native, "unhandled");
2283 
2284 
2285     const int mark_word_offset = BasicLock::displaced_header_offset_in_bytes();
2286 
2287     // Get the handle (the 2nd argument)
2288     __ mov(oop_handle_reg, c_rarg1);
2289 
2290     // Get address of the box
2291 
2292     __ lea(lock_reg, Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size));
2293 
2294     // Load the oop from the handle
2295     __ movptr(obj_reg, Address(oop_handle_reg, 0));
2296 
2297     if (UseBiasedLocking) {
2298       __ biased_locking_enter(lock_reg, obj_reg, swap_reg, rscratch1, false, lock_done, &slow_path_lock);
2299     }
2300 
2301     // Load immediate 1 into swap_reg %rax
2302     __ movl(swap_reg, 1);
2303 
2304     // Load (object->mark() | 1) into swap_reg %rax
2305     __ orptr(swap_reg, Address(obj_reg, 0));
2306 
2307     // Save (object->mark() | 1) into BasicLock's displaced header
2308     __ movptr(Address(lock_reg, mark_word_offset), swap_reg);
2309 
2310     if (os::is_MP()) {
2311       __ lock();
2312     }
2313 
2314     // src -> dest iff dest == rax else rax <- dest
2315     __ cmpxchgptr(lock_reg, Address(obj_reg, 0));
2316     __ jcc(Assembler::equal, lock_done);
2317 
2318     // Hmm should this move to the slow path code area???
2319 
2320     // Test if the oopMark is an obvious stack pointer, i.e.,
2321     //  1) (mark & 3) == 0, and
2322     //  2) rsp <= mark < mark + os::pagesize()
2323     // These 3 tests can be done by evaluating the following
2324     // expression: ((mark - rsp) & (3 - os::vm_page_size())),
2325     // assuming both stack pointer and pagesize have their
2326     // least significant 2 bits clear.
2327     // NOTE: the oopMark is in swap_reg %rax as the result of cmpxchg
2328 
2329     __ subptr(swap_reg, rsp);
2330     __ andptr(swap_reg, 3 - os::vm_page_size());
2331 
2332     // Save the test result, for recursive case, the result is zero
2333     __ movptr(Address(lock_reg, mark_word_offset), swap_reg);
2334     __ jcc(Assembler::notEqual, slow_path_lock);
2335 
2336     // Slow path will re-enter here
2337 
2338     __ bind(lock_done);
2339   }
2340 
2341 
2342   // Finally just about ready to make the JNI call
2343 
2344 
2345   // get JNIEnv* which is first argument to native
2346   if (!is_critical_native) {
2347     __ lea(c_rarg0, Address(r15_thread, in_bytes(JavaThread::jni_environment_offset())));
2348   }
2349 
2350   // Now set thread in native
2351   __ movl(Address(r15_thread, JavaThread::thread_state_offset()), _thread_in_native);
2352 
2353   __ call(RuntimeAddress(native_func));
2354 
2355   // Verify or restore cpu control state after JNI call
2356   __ restore_cpu_control_state_after_jni();
2357 
2358   // Unpack native results.
2359   switch (ret_type) {
2360   case T_BOOLEAN: __ c2bool(rax);            break;
2361   case T_CHAR   : __ movzwl(rax, rax);      break;
2362   case T_BYTE   : __ sign_extend_byte (rax); break;
2363   case T_SHORT  : __ sign_extend_short(rax); break;
2364   case T_INT    : /* nothing to do */        break;
2365   case T_DOUBLE :
2366   case T_FLOAT  :
2367     // Result is in xmm0 we'll save as needed
2368     break;
2369   case T_ARRAY:                 // Really a handle
2370   case T_OBJECT:                // Really a handle
2371       break; // can't de-handlize until after safepoint check
2372   case T_VOID: break;
2373   case T_LONG: break;
2374   default       : ShouldNotReachHere();
2375   }
2376 
2377   // Switch thread to "native transition" state before reading the synchronization state.
2378   // This additional state is necessary because reading and testing the synchronization
2379   // state is not atomic w.r.t. GC, as this scenario demonstrates:
2380   //     Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
2381   //     VM thread changes sync state to synchronizing and suspends threads for GC.
2382   //     Thread A is resumed to finish this native method, but doesn't block here since it
2383   //     didn't see any synchronization is progress, and escapes.
2384   __ movl(Address(r15_thread, JavaThread::thread_state_offset()), _thread_in_native_trans);
2385 
2386   if(os::is_MP()) {
2387     if (UseMembar) {
2388       // Force this write out before the read below
2389       __ membar(Assembler::Membar_mask_bits(
2390            Assembler::LoadLoad | Assembler::LoadStore |
2391            Assembler::StoreLoad | Assembler::StoreStore));
2392     } else {
2393       // Write serialization page so VM thread can do a pseudo remote membar.
2394       // We use the current thread pointer to calculate a thread specific
2395       // offset to write to within the page. This minimizes bus traffic
2396       // due to cache line collision.
2397       __ serialize_memory(r15_thread, rcx);
2398     }
2399   }
2400 
2401   Label after_transition;
2402 
2403   // check for safepoint operation in progress and/or pending suspend requests
2404   {
2405     Label Continue;
2406 
2407     __ cmp32(ExternalAddress((address)SafepointSynchronize::address_of_state()),
2408              SafepointSynchronize::_not_synchronized);
2409 
2410     Label L;
2411     __ jcc(Assembler::notEqual, L);
2412     __ cmpl(Address(r15_thread, JavaThread::suspend_flags_offset()), 0);
2413     __ jcc(Assembler::equal, Continue);
2414     __ bind(L);
2415 
2416     // Don't use call_VM as it will see a possible pending exception and forward it
2417     // and never return here preventing us from clearing _last_native_pc down below.
2418     // Also can't use call_VM_leaf either as it will check to see if rsi & rdi are
2419     // preserved and correspond to the bcp/locals pointers. So we do a runtime call
2420     // by hand.
2421     //
2422     save_native_result(masm, ret_type, stack_slots);
2423     __ mov(c_rarg0, r15_thread);
2424     __ mov(r12, rsp); // remember sp
2425     __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
2426     __ andptr(rsp, -16); // align stack as required by ABI
2427     if (!is_critical_native) {
2428       __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans)));
2429     } else {
2430       __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans_and_transition)));
2431     }
2432     __ mov(rsp, r12); // restore sp
2433     __ reinit_heapbase();
2434     // Restore any method result value
2435     restore_native_result(masm, ret_type, stack_slots);
2436 
2437     if (is_critical_native) {
2438       // The call above performed the transition to thread_in_Java so
2439       // skip the transition logic below.
2440       __ jmpb(after_transition);
2441     }
2442 
2443     __ bind(Continue);
2444   }
2445 
2446   // change thread state
2447   __ movl(Address(r15_thread, JavaThread::thread_state_offset()), _thread_in_Java);
2448   __ bind(after_transition);
2449 
2450   Label reguard;
2451   Label reguard_done;
2452   __ cmpl(Address(r15_thread, JavaThread::stack_guard_state_offset()), JavaThread::stack_guard_yellow_disabled);
2453   __ jcc(Assembler::equal, reguard);
2454   __ bind(reguard_done);
2455 
2456   // native result if any is live
2457 
2458   // Unlock
2459   Label unlock_done;
2460   Label slow_path_unlock;
2461   if (method->is_synchronized()) {
2462 
2463     // Get locked oop from the handle we passed to jni
2464     __ movptr(obj_reg, Address(oop_handle_reg, 0));
2465 
2466     Label done;
2467 
2468     if (UseBiasedLocking) {
2469       __ biased_locking_exit(obj_reg, old_hdr, done);
2470     }
2471 
2472     // Simple recursive lock?
2473 
2474     __ cmpptr(Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size), (int32_t)NULL_WORD);
2475     __ jcc(Assembler::equal, done);
2476 
2477     // Must save rax if if it is live now because cmpxchg must use it
2478     if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
2479       save_native_result(masm, ret_type, stack_slots);
2480     }
2481 
2482 
2483     // get address of the stack lock
2484     __ lea(rax, Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size));
2485     //  get old displaced header
2486     __ movptr(old_hdr, Address(rax, 0));
2487 
2488     // Atomic swap old header if oop still contains the stack lock
2489     if (os::is_MP()) {
2490       __ lock();
2491     }
2492     __ cmpxchgptr(old_hdr, Address(obj_reg, 0));
2493     __ jcc(Assembler::notEqual, slow_path_unlock);
2494 
2495     // slow path re-enters here
2496     __ bind(unlock_done);
2497     if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
2498       restore_native_result(masm, ret_type, stack_slots);
2499     }
2500 
2501     __ bind(done);
2502 
2503   }
2504   {
2505     SkipIfEqual skip(masm, &DTraceMethodProbes, false);
2506     save_native_result(masm, ret_type, stack_slots);
2507     __ mov_metadata(c_rarg1, method());
2508     __ call_VM_leaf(
2509          CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
2510          r15_thread, c_rarg1);
2511     restore_native_result(masm, ret_type, stack_slots);
2512   }
2513 
2514   __ reset_last_Java_frame(false, true);
2515 
2516   // Unpack oop result
2517   if (ret_type == T_OBJECT || ret_type == T_ARRAY) {
2518       Label L;
2519       __ testptr(rax, rax);
2520       __ jcc(Assembler::zero, L);
2521       __ movptr(rax, Address(rax, 0));
2522       __ bind(L);
2523       __ verify_oop(rax);
2524   }
2525 
2526   if (!is_critical_native) {
2527     // reset handle block
2528     __ movptr(rcx, Address(r15_thread, JavaThread::active_handles_offset()));
2529     __ movl(Address(rcx, JNIHandleBlock::top_offset_in_bytes()), (int32_t)NULL_WORD);
2530   }
2531 
2532   // pop our frame
2533 
2534   __ leave();
2535 
2536   if (!is_critical_native) {
2537     // Any exception pending?
2538     __ cmpptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
2539     __ jcc(Assembler::notEqual, exception_pending);
2540   }
2541 
2542   // Return
2543 
2544   __ ret(0);
2545 
2546   // Unexpected paths are out of line and go here
2547 
2548   if (!is_critical_native) {
2549     // forward the exception
2550     __ bind(exception_pending);
2551 
2552     // and forward the exception
2553     __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
2554   }
2555 
2556   // Slow path locking & unlocking
2557   if (method->is_synchronized()) {
2558 
2559     // BEGIN Slow path lock
2560     __ bind(slow_path_lock);
2561 
2562     // has last_Java_frame setup. No exceptions so do vanilla call not call_VM
2563     // args are (oop obj, BasicLock* lock, JavaThread* thread)
2564 
2565     // protect the args we've loaded
2566     save_args(masm, total_c_args, c_arg, out_regs);
2567 
2568     __ mov(c_rarg0, obj_reg);
2569     __ mov(c_rarg1, lock_reg);
2570     __ mov(c_rarg2, r15_thread);
2571 
2572     // Not a leaf but we have last_Java_frame setup as we want
2573     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C), 3);
2574     restore_args(masm, total_c_args, c_arg, out_regs);
2575 
2576 #ifdef ASSERT
2577     { Label L;
2578     __ cmpptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
2579     __ jcc(Assembler::equal, L);
2580     __ stop("no pending exception allowed on exit from monitorenter");
2581     __ bind(L);
2582     }
2583 #endif
2584     __ jmp(lock_done);
2585 
2586     // END Slow path lock
2587 
2588     // BEGIN Slow path unlock
2589     __ bind(slow_path_unlock);
2590 
2591     // If we haven't already saved the native result we must save it now as xmm registers
2592     // are still exposed.
2593 
2594     if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
2595       save_native_result(masm, ret_type, stack_slots);
2596     }
2597 
2598     __ lea(c_rarg1, Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size));
2599 
2600     __ mov(c_rarg0, obj_reg);
2601     __ mov(c_rarg2, r15_thread);
2602     __ mov(r12, rsp); // remember sp
2603     __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
2604     __ andptr(rsp, -16); // align stack as required by ABI
2605 
2606     // Save pending exception around call to VM (which contains an EXCEPTION_MARK)
2607     // NOTE that obj_reg == rbx currently
2608     __ movptr(rbx, Address(r15_thread, in_bytes(Thread::pending_exception_offset())));
2609     __ movptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
2610 
2611     // args are (oop obj, BasicLock* lock, JavaThread* thread)
2612     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C)));
2613     __ mov(rsp, r12); // restore sp
2614     __ reinit_heapbase();
2615 #ifdef ASSERT
2616     {
2617       Label L;
2618       __ cmpptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int)NULL_WORD);
2619       __ jcc(Assembler::equal, L);
2620       __ stop("no pending exception allowed on exit complete_monitor_unlocking_C");
2621       __ bind(L);
2622     }
2623 #endif /* ASSERT */
2624 
2625     __ movptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), rbx);
2626 
2627     if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
2628       restore_native_result(masm, ret_type, stack_slots);
2629     }
2630     __ jmp(unlock_done);
2631 
2632     // END Slow path unlock
2633 
2634   } // synchronized
2635 
2636   // SLOW PATH Reguard the stack if needed
2637 
2638   __ bind(reguard);
2639   save_native_result(masm, ret_type, stack_slots);
2640   __ mov(r12, rsp); // remember sp
2641   __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
2642   __ andptr(rsp, -16); // align stack as required by ABI
2643   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages)));
2644   __ mov(rsp, r12); // restore sp
2645   __ reinit_heapbase();
2646   restore_native_result(masm, ret_type, stack_slots);
2647   // and continue
2648   __ jmp(reguard_done);
2649 
2650 
2651 
2652   __ flush();
2653 
2654   nmethod *nm = nmethod::new_native_nmethod(method,
2655                                             compile_id,
2656                                             masm->code(),
2657                                             vep_offset,
2658                                             frame_complete,
2659                                             stack_slots / VMRegImpl::slots_per_word,
2660                                             (is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)),
2661                                             in_ByteSize(lock_slot_offset*VMRegImpl::stack_slot_size),
2662                                             oop_maps);
2663 
2664   if (is_critical_native) {
2665     nm->set_lazy_critical_native(true);
2666   }
2667 
2668   return nm;
2669 
2670 }
2671 
2672 // this function returns the adjust size (in number of words) to a c2i adapter
2673 // activation for use during deoptimization
2674 int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals ) {
2675   return (callee_locals - callee_parameters) * Interpreter::stackElementWords;
2676 }
2677 
2678 
2679 uint SharedRuntime::out_preserve_stack_slots() {
2680   return 0;
2681 }
2682 
2683 //------------------------------generate_deopt_blob----------------------------
2684 void SharedRuntime::generate_deopt_blob() {
2685   // Allocate space for the code
2686   ResourceMark rm;
2687   // Setup code generation tools
2688   CodeBuffer buffer("deopt_blob", 2048, 1024);
2689   MacroAssembler* masm = new MacroAssembler(&buffer);
2690   int frame_size_in_words;
2691   OopMap* map = NULL;
2692   OopMapSet *oop_maps = new OopMapSet();
2693 
2694   // -------------
2695   // This code enters when returning to a de-optimized nmethod.  A return
2696   // address has been pushed on the the stack, and return values are in
2697   // registers.
2698   // If we are doing a normal deopt then we were called from the patched
2699   // nmethod from the point we returned to the nmethod. So the return
2700   // address on the stack is wrong by NativeCall::instruction_size
2701   // We will adjust the value so it looks like we have the original return
2702   // address on the stack (like when we eagerly deoptimized).
2703   // In the case of an exception pending when deoptimizing, we enter
2704   // with a return address on the stack that points after the call we patched
2705   // into the exception handler. We have the following register state from,
2706   // e.g., the forward exception stub (see stubGenerator_x86_64.cpp).
2707   //    rax: exception oop
2708   //    rbx: exception handler
2709   //    rdx: throwing pc
2710   // So in this case we simply jam rdx into the useless return address and
2711   // the stack looks just like we want.
2712   //
2713   // At this point we need to de-opt.  We save the argument return
2714   // registers.  We call the first C routine, fetch_unroll_info().  This
2715   // routine captures the return values and returns a structure which
2716   // describes the current frame size and the sizes of all replacement frames.
2717   // The current frame is compiled code and may contain many inlined
2718   // functions, each with their own JVM state.  We pop the current frame, then
2719   // push all the new frames.  Then we call the C routine unpack_frames() to
2720   // populate these frames.  Finally unpack_frames() returns us the new target
2721   // address.  Notice that callee-save registers are BLOWN here; they have
2722   // already been captured in the vframeArray at the time the return PC was
2723   // patched.
2724   address start = __ pc();
2725   Label cont;
2726 
2727   // Prolog for non exception case!
2728 
2729   // Save everything in sight.
2730   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
2731 
2732   // Normal deoptimization.  Save exec mode for unpack_frames.
2733   __ movl(r14, Deoptimization::Unpack_deopt); // callee-saved
2734   __ jmp(cont);
2735 
2736   int reexecute_offset = __ pc() - start;
2737 
2738   // Reexecute case
2739   // return address is the pc describes what bci to do re-execute at
2740 
2741   // No need to update map as each call to save_live_registers will produce identical oopmap
2742   (void) RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
2743 
2744   __ movl(r14, Deoptimization::Unpack_reexecute); // callee-saved
2745   __ jmp(cont);
2746 
2747   int exception_offset = __ pc() - start;
2748 
2749   // Prolog for exception case
2750 
2751   // all registers are dead at this entry point, except for rax, and
2752   // rdx which contain the exception oop and exception pc
2753   // respectively.  Set them in TLS and fall thru to the
2754   // unpack_with_exception_in_tls entry point.
2755 
2756   __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), rdx);
2757   __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()), rax);
2758 
2759   int exception_in_tls_offset = __ pc() - start;
2760 
2761   // new implementation because exception oop is now passed in JavaThread
2762 
2763   // Prolog for exception case
2764   // All registers must be preserved because they might be used by LinearScan
2765   // Exceptiop oop and throwing PC are passed in JavaThread
2766   // tos: stack at point of call to method that threw the exception (i.e. only
2767   // args are on the stack, no return address)
2768 
2769   // make room on stack for the return address
2770   // It will be patched later with the throwing pc. The correct value is not
2771   // available now because loading it from memory would destroy registers.
2772   __ push(0);
2773 
2774   // Save everything in sight.
2775   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
2776 
2777   // Now it is safe to overwrite any register
2778 
2779   // Deopt during an exception.  Save exec mode for unpack_frames.
2780   __ movl(r14, Deoptimization::Unpack_exception); // callee-saved
2781 
2782   // load throwing pc from JavaThread and patch it as the return address
2783   // of the current frame. Then clear the field in JavaThread
2784 
2785   __ movptr(rdx, Address(r15_thread, JavaThread::exception_pc_offset()));
2786   __ movptr(Address(rbp, wordSize), rdx);
2787   __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), (int32_t)NULL_WORD);
2788 
2789 #ifdef ASSERT
2790   // verify that there is really an exception oop in JavaThread
2791   __ movptr(rax, Address(r15_thread, JavaThread::exception_oop_offset()));
2792   __ verify_oop(rax);
2793 
2794   // verify that there is no pending exception
2795   Label no_pending_exception;
2796   __ movptr(rax, Address(r15_thread, Thread::pending_exception_offset()));
2797   __ testptr(rax, rax);
2798   __ jcc(Assembler::zero, no_pending_exception);
2799   __ stop("must not have pending exception here");
2800   __ bind(no_pending_exception);
2801 #endif
2802 
2803   __ bind(cont);
2804 
2805   // Call C code.  Need thread and this frame, but NOT official VM entry
2806   // crud.  We cannot block on this call, no GC can happen.
2807   //
2808   // UnrollBlock* fetch_unroll_info(JavaThread* thread)
2809 
2810   // fetch_unroll_info needs to call last_java_frame().
2811 
2812   __ set_last_Java_frame(noreg, noreg, NULL);
2813 #ifdef ASSERT
2814   { Label L;
2815     __ cmpptr(Address(r15_thread,
2816                     JavaThread::last_Java_fp_offset()),
2817             (int32_t)0);
2818     __ jcc(Assembler::equal, L);
2819     __ stop("SharedRuntime::generate_deopt_blob: last_Java_fp not cleared");
2820     __ bind(L);
2821   }
2822 #endif // ASSERT
2823   __ mov(c_rarg0, r15_thread);
2824   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info)));
2825 
2826   // Need to have an oopmap that tells fetch_unroll_info where to
2827   // find any register it might need.
2828   oop_maps->add_gc_map(__ pc() - start, map);
2829 
2830   __ reset_last_Java_frame(false, false);
2831 
2832   // Load UnrollBlock* into rdi
2833   __ mov(rdi, rax);
2834 
2835    Label noException;
2836   __ cmpl(r14, Deoptimization::Unpack_exception);   // Was exception pending?
2837   __ jcc(Assembler::notEqual, noException);
2838   __ movptr(rax, Address(r15_thread, JavaThread::exception_oop_offset()));
2839   // QQQ this is useless it was NULL above
2840   __ movptr(rdx, Address(r15_thread, JavaThread::exception_pc_offset()));
2841   __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()), (int32_t)NULL_WORD);
2842   __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), (int32_t)NULL_WORD);
2843 
2844   __ verify_oop(rax);
2845 
2846   // Overwrite the result registers with the exception results.
2847   __ movptr(Address(rsp, RegisterSaver::rax_offset_in_bytes()), rax);
2848   // I think this is useless
2849   __ movptr(Address(rsp, RegisterSaver::rdx_offset_in_bytes()), rdx);
2850 
2851   __ bind(noException);
2852 
2853   // Only register save data is on the stack.
2854   // Now restore the result registers.  Everything else is either dead
2855   // or captured in the vframeArray.
2856   RegisterSaver::restore_result_registers(masm);
2857 
2858   // All of the register save area has been popped of the stack. Only the
2859   // return address remains.
2860 
2861   // Pop all the frames we must move/replace.
2862   //
2863   // Frame picture (youngest to oldest)
2864   // 1: self-frame (no frame link)
2865   // 2: deopting frame  (no frame link)
2866   // 3: caller of deopting frame (could be compiled/interpreted).
2867   //
2868   // Note: by leaving the return address of self-frame on the stack
2869   // and using the size of frame 2 to adjust the stack
2870   // when we are done the return to frame 3 will still be on the stack.
2871 
2872   // Pop deoptimized frame
2873   __ movl(rcx, Address(rdi, Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset_in_bytes()));
2874   __ addptr(rsp, rcx);
2875 
2876   // rsp should be pointing at the return address to the caller (3)
2877 
2878   // Pick up the initial fp we should save
2879   // restore rbp before stack bang because if stack overflow is thrown it needs to be pushed (and preserved)
2880   __ movptr(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_info_offset_in_bytes()));
2881 
2882 #ifdef ASSERT
2883   // Compilers generate code that bang the stack by as much as the
2884   // interpreter would need. So this stack banging should never
2885   // trigger a fault. Verify that it does not on non product builds.
2886   if (UseStackBanging) {
2887     __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()));
2888     __ bang_stack_size(rbx, rcx);
2889   }
2890 #endif
2891 
2892   // Load address of array of frame pcs into rcx
2893   __ movptr(rcx, Address(rdi, Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
2894 
2895   // Trash the old pc
2896   __ addptr(rsp, wordSize);
2897 
2898   // Load address of array of frame sizes into rsi
2899   __ movptr(rsi, Address(rdi, Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes()));
2900 
2901   // Load counter into rdx
2902   __ movl(rdx, Address(rdi, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes()));
2903 
2904   // Now adjust the caller's stack to make up for the extra locals
2905   // but record the original sp so that we can save it in the skeletal interpreter
2906   // frame and the stack walking of interpreter_sender will get the unextended sp
2907   // value and not the "real" sp value.
2908 
2909   const Register sender_sp = r8;
2910 
2911   __ mov(sender_sp, rsp);
2912   __ movl(rbx, Address(rdi,
2913                        Deoptimization::UnrollBlock::
2914                        caller_adjustment_offset_in_bytes()));
2915   __ subptr(rsp, rbx);
2916 
2917   // Push interpreter frames in a loop
2918   Label loop;
2919   __ bind(loop);
2920   __ movptr(rbx, Address(rsi, 0));      // Load frame size
2921 #ifdef CC_INTERP
2922   __ subptr(rbx, 4*wordSize);           // we'll push pc and ebp by hand and
2923 #ifdef ASSERT
2924   __ push(0xDEADDEAD);                  // Make a recognizable pattern
2925   __ push(0xDEADDEAD);
2926 #else /* ASSERT */
2927   __ subptr(rsp, 2*wordSize);           // skip the "static long no_param"
2928 #endif /* ASSERT */
2929 #else
2930   __ subptr(rbx, 2*wordSize);           // We'll push pc and ebp by hand
2931 #endif // CC_INTERP
2932   __ pushptr(Address(rcx, 0));          // Save return address
2933   __ enter();                           // Save old & set new ebp
2934   __ subptr(rsp, rbx);                  // Prolog
2935 #ifdef CC_INTERP
2936   __ movptr(Address(rbp,
2937                   -(sizeof(BytecodeInterpreter)) + in_bytes(byte_offset_of(BytecodeInterpreter, _sender_sp))),
2938             sender_sp); // Make it walkable
2939 #else /* CC_INTERP */
2940   // This value is corrected by layout_activation_impl
2941   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD );
2942   __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize), sender_sp); // Make it walkable
2943 #endif /* CC_INTERP */
2944   __ mov(sender_sp, rsp);               // Pass sender_sp to next frame
2945   __ addptr(rsi, wordSize);             // Bump array pointer (sizes)
2946   __ addptr(rcx, wordSize);             // Bump array pointer (pcs)
2947   __ decrementl(rdx);                   // Decrement counter
2948   __ jcc(Assembler::notZero, loop);
2949   __ pushptr(Address(rcx, 0));          // Save final return address
2950 
2951   // Re-push self-frame
2952   __ enter();                           // Save old & set new ebp
2953 
2954   // Allocate a full sized register save area.
2955   // Return address and rbp are in place, so we allocate two less words.
2956   __ subptr(rsp, (frame_size_in_words - 2) * wordSize);
2957 
2958   // Restore frame locals after moving the frame
2959   __ movdbl(Address(rsp, RegisterSaver::xmm0_offset_in_bytes()), xmm0);
2960   __ movptr(Address(rsp, RegisterSaver::rax_offset_in_bytes()), rax);
2961 
2962   // Call C code.  Need thread but NOT official VM entry
2963   // crud.  We cannot block on this call, no GC can happen.  Call should
2964   // restore return values to their stack-slots with the new SP.
2965   //
2966   // void Deoptimization::unpack_frames(JavaThread* thread, int exec_mode)
2967 
2968   // Use rbp because the frames look interpreted now
2969   // Save "the_pc" since it cannot easily be retrieved using the last_java_SP after we aligned SP.
2970   // Don't need the precise return PC here, just precise enough to point into this code blob.
2971   address the_pc = __ pc();
2972   __ set_last_Java_frame(noreg, rbp, the_pc);
2973 
2974   __ andptr(rsp, -(StackAlignmentInBytes));  // Fix stack alignment as required by ABI
2975   __ mov(c_rarg0, r15_thread);
2976   __ movl(c_rarg1, r14); // second arg: exec_mode
2977   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
2978   // Revert SP alignment after call since we're going to do some SP relative addressing below
2979   __ movptr(rsp, Address(r15_thread, JavaThread::last_Java_sp_offset()));
2980 
2981   // Set an oopmap for the call site
2982   // Use the same PC we used for the last java frame
2983   oop_maps->add_gc_map(the_pc - start,
2984                        new OopMap( frame_size_in_words, 0 ));
2985 
2986   // Clear fp AND pc
2987   __ reset_last_Java_frame(true, true);
2988 
2989   // Collect return values
2990   __ movdbl(xmm0, Address(rsp, RegisterSaver::xmm0_offset_in_bytes()));
2991   __ movptr(rax, Address(rsp, RegisterSaver::rax_offset_in_bytes()));
2992   // I think this is useless (throwing pc?)
2993   __ movptr(rdx, Address(rsp, RegisterSaver::rdx_offset_in_bytes()));
2994 
2995   // Pop self-frame.
2996   __ leave();                           // Epilog
2997 
2998   // Jump to interpreter
2999   __ ret(0);
3000 
3001   // Make sure all code is generated
3002   masm->flush();
3003 
3004   _deopt_blob = DeoptimizationBlob::create(&buffer, oop_maps, 0, exception_offset, reexecute_offset, frame_size_in_words);
3005   _deopt_blob->set_unpack_with_exception_in_tls_offset(exception_in_tls_offset);
3006 }
3007 
3008 #ifdef COMPILER2
3009 //------------------------------generate_uncommon_trap_blob--------------------
3010 void SharedRuntime::generate_uncommon_trap_blob() {
3011   // Allocate space for the code
3012   ResourceMark rm;
3013   // Setup code generation tools
3014   CodeBuffer buffer("uncommon_trap_blob", 2048, 1024);
3015   MacroAssembler* masm = new MacroAssembler(&buffer);
3016 
3017   assert(SimpleRuntimeFrame::framesize % 4 == 0, "sp not 16-byte aligned");
3018 
3019   address start = __ pc();
3020 
3021   if (UseRTMLocking) {
3022     // Abort RTM transaction before possible nmethod deoptimization.
3023     __ xabort(0);
3024   }
3025 
3026   // Push self-frame.  We get here with a return address on the
3027   // stack, so rsp is 8-byte aligned until we allocate our frame.
3028   __ subptr(rsp, SimpleRuntimeFrame::return_off << LogBytesPerInt); // Epilog!
3029 
3030   // No callee saved registers. rbp is assumed implicitly saved
3031   __ movptr(Address(rsp, SimpleRuntimeFrame::rbp_off << LogBytesPerInt), rbp);
3032 
3033   // compiler left unloaded_class_index in j_rarg0 move to where the
3034   // runtime expects it.
3035   __ movl(c_rarg1, j_rarg0);
3036 
3037   __ set_last_Java_frame(noreg, noreg, NULL);
3038 
3039   // Call C code.  Need thread but NOT official VM entry
3040   // crud.  We cannot block on this call, no GC can happen.  Call should
3041   // capture callee-saved registers as well as return values.
3042   // Thread is in rdi already.
3043   //
3044   // UnrollBlock* uncommon_trap(JavaThread* thread, jint unloaded_class_index);
3045 
3046   __ mov(c_rarg0, r15_thread);
3047   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap)));
3048 
3049   // Set an oopmap for the call site
3050   OopMapSet* oop_maps = new OopMapSet();
3051   OopMap* map = new OopMap(SimpleRuntimeFrame::framesize, 0);
3052 
3053   // location of rbp is known implicitly by the frame sender code
3054 
3055   oop_maps->add_gc_map(__ pc() - start, map);
3056 
3057   __ reset_last_Java_frame(false, false);
3058 
3059   // Load UnrollBlock* into rdi
3060   __ mov(rdi, rax);
3061 
3062   // Pop all the frames we must move/replace.
3063   //
3064   // Frame picture (youngest to oldest)
3065   // 1: self-frame (no frame link)
3066   // 2: deopting frame  (no frame link)
3067   // 3: caller of deopting frame (could be compiled/interpreted).
3068 
3069   // Pop self-frame.  We have no frame, and must rely only on rax and rsp.
3070   __ addptr(rsp, (SimpleRuntimeFrame::framesize - 2) << LogBytesPerInt); // Epilog!
3071 
3072   // Pop deoptimized frame (int)
3073   __ movl(rcx, Address(rdi,
3074                        Deoptimization::UnrollBlock::
3075                        size_of_deoptimized_frame_offset_in_bytes()));
3076   __ addptr(rsp, rcx);
3077 
3078   // rsp should be pointing at the return address to the caller (3)
3079 
3080   // Pick up the initial fp we should save
3081   // restore rbp before stack bang because if stack overflow is thrown it needs to be pushed (and preserved)
3082   __ movptr(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_info_offset_in_bytes()));
3083 
3084 #ifdef ASSERT
3085   // Compilers generate code that bang the stack by as much as the
3086   // interpreter would need. So this stack banging should never
3087   // trigger a fault. Verify that it does not on non product builds.
3088   if (UseStackBanging) {
3089     __ movl(rbx, Address(rdi ,Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()));
3090     __ bang_stack_size(rbx, rcx);
3091   }
3092 #endif
3093 
3094   // Load address of array of frame pcs into rcx (address*)
3095   __ movptr(rcx, Address(rdi, Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
3096 
3097   // Trash the return pc
3098   __ addptr(rsp, wordSize);
3099 
3100   // Load address of array of frame sizes into rsi (intptr_t*)
3101   __ movptr(rsi, Address(rdi, Deoptimization::UnrollBlock:: frame_sizes_offset_in_bytes()));
3102 
3103   // Counter
3104   __ movl(rdx, Address(rdi, Deoptimization::UnrollBlock:: number_of_frames_offset_in_bytes())); // (int)
3105 
3106   // Now adjust the caller's stack to make up for the extra locals but
3107   // record the original sp so that we can save it in the skeletal
3108   // interpreter frame and the stack walking of interpreter_sender
3109   // will get the unextended sp value and not the "real" sp value.
3110 
3111   const Register sender_sp = r8;
3112 
3113   __ mov(sender_sp, rsp);
3114   __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock:: caller_adjustment_offset_in_bytes())); // (int)
3115   __ subptr(rsp, rbx);
3116 
3117   // Push interpreter frames in a loop
3118   Label loop;
3119   __ bind(loop);
3120   __ movptr(rbx, Address(rsi, 0)); // Load frame size
3121   __ subptr(rbx, 2 * wordSize);    // We'll push pc and rbp by hand
3122   __ pushptr(Address(rcx, 0));     // Save return address
3123   __ enter();                      // Save old & set new rbp
3124   __ subptr(rsp, rbx);             // Prolog
3125 #ifdef CC_INTERP
3126   __ movptr(Address(rbp,
3127                   -(sizeof(BytecodeInterpreter)) + in_bytes(byte_offset_of(BytecodeInterpreter, _sender_sp))),
3128             sender_sp); // Make it walkable
3129 #else // CC_INTERP
3130   __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize),
3131             sender_sp);            // Make it walkable
3132   // This value is corrected by layout_activation_impl
3133   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD );
3134 #endif // CC_INTERP
3135   __ mov(sender_sp, rsp);          // Pass sender_sp to next frame
3136   __ addptr(rsi, wordSize);        // Bump array pointer (sizes)
3137   __ addptr(rcx, wordSize);        // Bump array pointer (pcs)
3138   __ decrementl(rdx);              // Decrement counter
3139   __ jcc(Assembler::notZero, loop);
3140   __ pushptr(Address(rcx, 0));     // Save final return address
3141 
3142   // Re-push self-frame
3143   __ enter();                 // Save old & set new rbp
3144   __ subptr(rsp, (SimpleRuntimeFrame::framesize - 4) << LogBytesPerInt);
3145                               // Prolog
3146 
3147   // Use rbp because the frames look interpreted now
3148   // Save "the_pc" since it cannot easily be retrieved using the last_java_SP after we aligned SP.
3149   // Don't need the precise return PC here, just precise enough to point into this code blob.
3150   address the_pc = __ pc();
3151   __ set_last_Java_frame(noreg, rbp, the_pc);
3152 
3153   // Call C code.  Need thread but NOT official VM entry
3154   // crud.  We cannot block on this call, no GC can happen.  Call should
3155   // restore return values to their stack-slots with the new SP.
3156   // Thread is in rdi already.
3157   //
3158   // BasicType unpack_frames(JavaThread* thread, int exec_mode);
3159 
3160   __ andptr(rsp, -(StackAlignmentInBytes)); // Align SP as required by ABI
3161   __ mov(c_rarg0, r15_thread);
3162   __ movl(c_rarg1, Deoptimization::Unpack_uncommon_trap);
3163   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
3164 
3165   // Set an oopmap for the call site
3166   // Use the same PC we used for the last java frame
3167   oop_maps->add_gc_map(the_pc - start, new OopMap(SimpleRuntimeFrame::framesize, 0));
3168 
3169   // Clear fp AND pc
3170   __ reset_last_Java_frame(true, true);
3171 
3172   // Pop self-frame.
3173   __ leave();                 // Epilog
3174 
3175   // Jump to interpreter
3176   __ ret(0);
3177 
3178   // Make sure all code is generated
3179   masm->flush();
3180 
3181   _uncommon_trap_blob =  UncommonTrapBlob::create(&buffer, oop_maps,
3182                                                  SimpleRuntimeFrame::framesize >> 1);
3183 }
3184 #endif // COMPILER2
3185 
3186 
3187 //------------------------------generate_handler_blob------
3188 //
3189 // Generate a special Compile2Runtime blob that saves all registers,
3190 // and setup oopmap.
3191 //
3192 SafepointBlob* SharedRuntime::generate_handler_blob(address call_ptr, int poll_type) {
3193   assert(StubRoutines::forward_exception_entry() != NULL,
3194          "must be generated before");
3195 
3196   ResourceMark rm;
3197   OopMapSet *oop_maps = new OopMapSet();
3198   OopMap* map;
3199 
3200   // Allocate space for the code.  Setup code generation tools.
3201   CodeBuffer buffer("handler_blob", 2048, 1024);
3202   MacroAssembler* masm = new MacroAssembler(&buffer);
3203 
3204   address start   = __ pc();
3205   address call_pc = NULL;
3206   int frame_size_in_words;
3207   bool cause_return = (poll_type == POLL_AT_RETURN);
3208   bool save_vectors = (poll_type == POLL_AT_VECTOR_LOOP);
3209 
3210   if (UseRTMLocking) {
3211     // Abort RTM transaction before calling runtime
3212     // because critical section will be large and will be
3213     // aborted anyway. Also nmethod could be deoptimized.
3214     __ xabort(0);
3215   }
3216 
3217   // Make room for return address (or push it again)
3218   if (!cause_return) {
3219     __ push(rbx);
3220   }
3221 
3222   // Save registers, fpu state, and flags
3223   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words, save_vectors);
3224 
3225   // The following is basically a call_VM.  However, we need the precise
3226   // address of the call in order to generate an oopmap. Hence, we do all the
3227   // work outselves.
3228 
3229   __ set_last_Java_frame(noreg, noreg, NULL);
3230 
3231   // The return address must always be correct so that frame constructor never
3232   // sees an invalid pc.
3233 
3234   if (!cause_return) {
3235     // overwrite the dummy value we pushed on entry
3236     __ movptr(c_rarg0, Address(r15_thread, JavaThread::saved_exception_pc_offset()));
3237     __ movptr(Address(rbp, wordSize), c_rarg0);
3238   }
3239 
3240   // Do the call
3241   __ mov(c_rarg0, r15_thread);
3242   __ call(RuntimeAddress(call_ptr));
3243 
3244   // Set an oopmap for the call site.  This oopmap will map all
3245   // oop-registers and debug-info registers as callee-saved.  This
3246   // will allow deoptimization at this safepoint to find all possible
3247   // debug-info recordings, as well as let GC find all oops.
3248 
3249   oop_maps->add_gc_map( __ pc() - start, map);
3250 
3251   Label noException;
3252 
3253   __ reset_last_Java_frame(false, false);
3254 
3255   __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
3256   __ jcc(Assembler::equal, noException);
3257 
3258   // Exception pending
3259 
3260   RegisterSaver::restore_live_registers(masm, save_vectors);
3261 
3262   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
3263 
3264   // No exception case
3265   __ bind(noException);
3266 
3267   // Normal exit, restore registers and exit.
3268   RegisterSaver::restore_live_registers(masm, save_vectors);
3269 
3270   __ ret(0);
3271 
3272   // Make sure all code is generated
3273   masm->flush();
3274 
3275   // Fill-out other meta info
3276   return SafepointBlob::create(&buffer, oop_maps, frame_size_in_words);
3277 }
3278 
3279 //
3280 // generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss
3281 //
3282 // Generate a stub that calls into vm to find out the proper destination
3283 // of a java call. All the argument registers are live at this point
3284 // but since this is generic code we don't know what they are and the caller
3285 // must do any gc of the args.
3286 //
3287 RuntimeStub* SharedRuntime::generate_resolve_blob(address destination, const char* name) {
3288   assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
3289 
3290   // allocate space for the code
3291   ResourceMark rm;
3292 
3293   CodeBuffer buffer(name, 1000, 512);
3294   MacroAssembler* masm                = new MacroAssembler(&buffer);
3295 
3296   int frame_size_in_words;
3297 
3298   OopMapSet *oop_maps = new OopMapSet();
3299   OopMap* map = NULL;
3300 
3301   int start = __ offset();
3302 
3303   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
3304 
3305   int frame_complete = __ offset();
3306 
3307   __ set_last_Java_frame(noreg, noreg, NULL);
3308 
3309   __ mov(c_rarg0, r15_thread);
3310 
3311   __ call(RuntimeAddress(destination));
3312 
3313 
3314   // Set an oopmap for the call site.
3315   // We need this not only for callee-saved registers, but also for volatile
3316   // registers that the compiler might be keeping live across a safepoint.
3317 
3318   oop_maps->add_gc_map( __ offset() - start, map);
3319 
3320   // rax contains the address we are going to jump to assuming no exception got installed
3321 
3322   // clear last_Java_sp
3323   __ reset_last_Java_frame(false, false);
3324   // check for pending exceptions
3325   Label pending;
3326   __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
3327   __ jcc(Assembler::notEqual, pending);
3328 
3329   // get the returned Method*
3330   __ get_vm_result_2(rbx, r15_thread);
3331   __ movptr(Address(rsp, RegisterSaver::rbx_offset_in_bytes()), rbx);
3332 
3333   __ movptr(Address(rsp, RegisterSaver::rax_offset_in_bytes()), rax);
3334 
3335   RegisterSaver::restore_live_registers(masm);
3336 
3337   // We are back the the original state on entry and ready to go.
3338 
3339   __ jmp(rax);
3340 
3341   // Pending exception after the safepoint
3342 
3343   __ bind(pending);
3344 
3345   RegisterSaver::restore_live_registers(masm);
3346 
3347   // exception pending => remove activation and forward to exception handler
3348 
3349   __ movptr(Address(r15_thread, JavaThread::vm_result_offset()), (int)NULL_WORD);
3350 
3351   __ movptr(rax, Address(r15_thread, Thread::pending_exception_offset()));
3352   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
3353 
3354   // -------------
3355   // make sure all code is generated
3356   masm->flush();
3357 
3358   // return the  blob
3359   // frame_size_words or bytes??
3360   return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_in_words, oop_maps, true);
3361 }
3362 
3363 
3364 //------------------------------Montgomery multiplication------------------------
3365 //
3366 
3367 #ifndef _WINDOWS
3368 
3369 #define ASM_SUBTRACT
3370 
3371 #ifdef ASM_SUBTRACT
3372 // Subtract 0:b from carry:a.  Return carry.
3373 static unsigned long
3374 sub(unsigned long a[], unsigned long b[], unsigned long carry, long len) {
3375   long i = 0, cnt = len;
3376   unsigned long tmp;
3377   asm volatile("clc; "
3378                "0: ; "
3379                "mov (%[b], %[i], 8), %[tmp]; "
3380                "sbb %[tmp], (%[a], %[i], 8); "
3381                "inc %[i]; dec %[cnt]; "
3382                "jne 0b; "
3383                "mov %[carry], %[tmp]; sbb $0, %[tmp]; "
3384                : [i]"+r"(i), [cnt]"+r"(cnt), [tmp]"=&r"(tmp)
3385                : [a]"r"(a), [b]"r"(b), [carry]"r"(carry)
3386                : "memory");
3387   return tmp;
3388 }
3389 #else // ASM_SUBTRACT
3390 typedef int __attribute__((mode(TI))) int128;
3391 
3392 // Subtract 0:b from carry:a.  Return carry.
3393 static unsigned long
3394 sub(unsigned long a[], unsigned long b[], unsigned long carry, int len) {
3395   int128 tmp = 0;
3396   int i;
3397   for (i = 0; i < len; i++) {
3398     tmp += a[i];
3399     tmp -= b[i];
3400     a[i] = tmp;
3401     tmp >>= 64;
3402     assert(-1 <= tmp && tmp <= 0, "invariant");
3403   }
3404   return tmp + carry;
3405 }
3406 #endif // ! ASM_SUBTRACT
3407 
3408 // Multiply (unsigned) Long A by Long B, accumulating the double-
3409 // length result into the accumulator formed of T0, T1, and T2.
3410 #define MACC(A, B, T0, T1, T2)                                  \
3411 do {                                                            \
3412   unsigned long hi, lo;                                         \
3413   __asm__ ("mul %5; add %%rax, %2; adc %%rdx, %3; adc $0, %4"   \
3414            : "=&d"(hi), "=a"(lo), "+r"(T0), "+r"(T1), "+g"(T2)  \
3415            : "r"(A), "a"(B) : "cc");                            \
3416  } while(0)
3417 
3418 // As above, but add twice the double-length result into the
3419 // accumulator.
3420 #define MACC2(A, B, T0, T1, T2)                                 \
3421 do {                                                            \
3422   unsigned long hi, lo;                                         \
3423   __asm__ ("mul %5; add %%rax, %2; adc %%rdx, %3; adc $0, %4; " \
3424            "add %%rax, %2; adc %%rdx, %3; adc $0, %4"           \
3425            : "=&d"(hi), "=a"(lo), "+r"(T0), "+r"(T1), "+g"(T2)  \
3426            : "r"(A), "a"(B) : "cc");                            \
3427  } while(0)
3428 
3429 // Fast Montgomery multiplication.  The derivation of the algorithm is
3430 // in  A Cryptographic Library for the Motorola DSP56000,
3431 // Dusse and Kaliski, Proc. EUROCRYPT 90, pp. 230-237.
3432 
3433 static void __attribute__((noinline))
3434 montgomery_multiply(unsigned long a[], unsigned long b[], unsigned long n[],
3435                     unsigned long m[], unsigned long inv, int len) {
3436   unsigned long t0 = 0, t1 = 0, t2 = 0; // Triple-precision accumulator
3437   int i;
3438 
3439   assert(inv * n[0] == -1UL, "broken inverse in Montgomery multiply");
3440 
3441   for (i = 0; i < len; i++) {
3442     int j;
3443     for (j = 0; j < i; j++) {
3444       MACC(a[j], b[i-j], t0, t1, t2);
3445       MACC(m[j], n[i-j], t0, t1, t2);
3446     }
3447     MACC(a[i], b[0], t0, t1, t2);
3448     m[i] = t0 * inv;
3449     MACC(m[i], n[0], t0, t1, t2);
3450 
3451     assert(t0 == 0, "broken Montgomery multiply");
3452 
3453     t0 = t1; t1 = t2; t2 = 0;
3454   }
3455 
3456   for (i = len; i < 2*len; i++) {
3457     int j;
3458     for (j = i-len+1; j < len; j++) {
3459       MACC(a[j], b[i-j], t0, t1, t2);
3460       MACC(m[j], n[i-j], t0, t1, t2);
3461     }
3462     m[i-len] = t0;
3463     t0 = t1; t1 = t2; t2 = 0;
3464   }
3465 
3466   while (t0)
3467     t0 = sub(m, n, t0, len);
3468 }
3469 
3470 // Fast Montgomery squaring.  This uses asymptotically 25% fewer
3471 // multiplies so it should be up to 25% faster than Montgomery
3472 // multiplication.  However, its loop control is more complex and it
3473 // may actually run slower on some machines.
3474 
3475 static void __attribute__((noinline))
3476 montgomery_square(unsigned long a[], unsigned long n[],
3477                   unsigned long m[], unsigned long inv, int len) {
3478   unsigned long t0 = 0, t1 = 0, t2 = 0; // Triple-precision accumulator
3479   int i;
3480 
3481   assert(inv * n[0] == -1UL, "broken inverse in Montgomery multiply");
3482 
3483   for (i = 0; i < len; i++) {
3484     int j;
3485     int end = (i+1)/2;
3486     for (j = 0; j < end; j++) {
3487       MACC2(a[j], a[i-j], t0, t1, t2);
3488       MACC(m[j], n[i-j], t0, t1, t2);
3489     }
3490     if ((i & 1) == 0) {
3491       MACC(a[j], a[j], t0, t1, t2);
3492     }
3493     for (; j < i; j++) {
3494       MACC(m[j], n[i-j], t0, t1, t2);
3495     }
3496     m[i] = t0 * inv;
3497     MACC(m[i], n[0], t0, t1, t2);
3498 
3499     assert(t0 == 0, "broken Montgomery square");
3500 
3501     t0 = t1; t1 = t2; t2 = 0;
3502   }
3503 
3504   for (i = len; i < 2*len; i++) {
3505     int start = i-len+1;
3506     int end = start + (len - start)/2;
3507     int j;
3508     for (j = start; j < end; j++) {
3509       MACC2(a[j], a[i-j], t0, t1, t2);
3510       MACC(m[j], n[i-j], t0, t1, t2);
3511     }
3512     if ((i & 1) == 0) {
3513       MACC(a[j], a[j], t0, t1, t2);
3514     }
3515     for (; j < len; j++) {
3516       MACC(m[j], n[i-j], t0, t1, t2);
3517     }
3518     m[i-len] = t0;
3519     t0 = t1; t1 = t2; t2 = 0;
3520   }
3521 
3522   while (t0)
3523     t0 = sub(m, n, t0, len);
3524 }
3525 
3526 // Swap words in a longword.
3527 static unsigned long swap(unsigned long x) {
3528   return (x << 32) | (x >> 32);
3529 }
3530 
3531 // Copy len longwords from s to d, word-swapping as we go.  The
3532 // destination array is reversed.
3533 static void reverse_words(unsigned long *s, unsigned long *d, int len) {
3534   d += len;
3535   while(len-- > 0) {
3536     d--;
3537     *d = swap(*s);
3538     s++;
3539   }
3540 }
3541 
3542 // The threshold at which squaring is advantageous was determined
3543 // experimentally on an i7-3930K (Ivy Bridge) CPU @ 3.5GHz.
3544 #define MONTGOMERY_SQUARING_THRESHOLD 64
3545 
3546 void SharedRuntime::montgomery_multiply(jint *a_ints, jint *b_ints, jint *n_ints,
3547                                         jint len, jlong inv,
3548                                         jint *m_ints) {
3549   assert(len % 2 == 0, "array length in montgomery_multiply must be even");
3550   int longwords = len/2;
3551 
3552   // Make very sure we don't use so much space that the stack might
3553   // overflow.  512 jints corresponds to an 16384-bit integer and
3554   // will use here a total of 8k bytes of stack space.
3555   int total_allocation = longwords * sizeof (unsigned long) * 4;
3556   guarantee(total_allocation <= 8192, "must be");
3557   unsigned long *scratch = (unsigned long *)alloca(total_allocation);
3558 
3559   // Local scratch arrays
3560   unsigned long
3561     *a = scratch + 0 * longwords,
3562     *b = scratch + 1 * longwords,
3563     *n = scratch + 2 * longwords,
3564     *m = scratch + 3 * longwords;
3565 
3566   reverse_words((unsigned long *)a_ints, a, longwords);
3567   reverse_words((unsigned long *)b_ints, b, longwords);
3568   reverse_words((unsigned long *)n_ints, n, longwords);
3569 
3570   ::montgomery_multiply(a, b, n, m, (unsigned long)inv, longwords);
3571 
3572   reverse_words(m, (unsigned long *)m_ints, longwords);
3573 }
3574 
3575 void SharedRuntime::montgomery_square(jint *a_ints, jint *n_ints,
3576                                       jint len, jlong inv,
3577                                       jint *m_ints) {
3578   assert(len % 2 == 0, "array length in montgomery_square must be even");
3579   int longwords = len/2;
3580 
3581   // Make very sure we don't use so much space that the stack might
3582   // overflow.  512 jints corresponds to an 16384-bit integer and
3583   // will use here a total of 6k bytes of stack space.
3584   int total_allocation = longwords * sizeof (unsigned long) * 3;
3585   guarantee(total_allocation <= 8192, "must be");
3586   unsigned long *scratch = (unsigned long *)alloca(total_allocation);
3587 
3588   // Local scratch arrays
3589   unsigned long
3590     *a = scratch + 0 * longwords,
3591     *n = scratch + 1 * longwords,
3592     *m = scratch + 2 * longwords;
3593 
3594   reverse_words((unsigned long *)a_ints, a, longwords);
3595   reverse_words((unsigned long *)n_ints, n, longwords);
3596 
3597   if (len >= MONTGOMERY_SQUARING_THRESHOLD) {
3598     ::montgomery_square(a, n, m, (unsigned long)inv, longwords);
3599   } else {
3600     ::montgomery_multiply(a, a, n, m, (unsigned long)inv, longwords);
3601   }
3602 
3603   reverse_words(m, (unsigned long *)m_ints, longwords);
3604 }
3605 
3606 #endif // WINDOWS
3607 
3608 #ifdef COMPILER2
3609 // This is here instead of runtime_x86_64.cpp because it uses SimpleRuntimeFrame
3610 //
3611 //------------------------------generate_exception_blob---------------------------
3612 // creates exception blob at the end
3613 // Using exception blob, this code is jumped from a compiled method.
3614 // (see emit_exception_handler in x86_64.ad file)
3615 //
3616 // Given an exception pc at a call we call into the runtime for the
3617 // handler in this method. This handler might merely restore state
3618 // (i.e. callee save registers) unwind the frame and jump to the
3619 // exception handler for the nmethod if there is no Java level handler
3620 // for the nmethod.
3621 //
3622 // This code is entered with a jmp.
3623 //
3624 // Arguments:
3625 //   rax: exception oop
3626 //   rdx: exception pc
3627 //
3628 // Results:
3629 //   rax: exception oop
3630 //   rdx: exception pc in caller or ???
3631 //   destination: exception handler of caller
3632 //
3633 // Note: the exception pc MUST be at a call (precise debug information)
3634 //       Registers rax, rdx, rcx, rsi, rdi, r8-r11 are not callee saved.
3635 //
3636 
3637 void OptoRuntime::generate_exception_blob() {
3638   assert(!OptoRuntime::is_callee_saved_register(RDX_num), "");
3639   assert(!OptoRuntime::is_callee_saved_register(RAX_num), "");
3640   assert(!OptoRuntime::is_callee_saved_register(RCX_num), "");
3641 
3642   assert(SimpleRuntimeFrame::framesize % 4 == 0, "sp not 16-byte aligned");
3643 
3644   // Allocate space for the code
3645   ResourceMark rm;
3646   // Setup code generation tools
3647   CodeBuffer buffer("exception_blob", 2048, 1024);
3648   MacroAssembler* masm = new MacroAssembler(&buffer);
3649 
3650 
3651   address start = __ pc();
3652 
3653   // Exception pc is 'return address' for stack walker
3654   __ push(rdx);
3655   __ subptr(rsp, SimpleRuntimeFrame::return_off << LogBytesPerInt); // Prolog
3656 
3657   // Save callee-saved registers.  See x86_64.ad.
3658 
3659   // rbp is an implicitly saved callee saved register (i.e., the calling
3660   // convention will save/restore it in the prolog/epilog). Other than that
3661   // there are no callee save registers now that adapter frames are gone.
3662 
3663   __ movptr(Address(rsp, SimpleRuntimeFrame::rbp_off << LogBytesPerInt), rbp);
3664 
3665   // Store exception in Thread object. We cannot pass any arguments to the
3666   // handle_exception call, since we do not want to make any assumption
3667   // about the size of the frame where the exception happened in.
3668   // c_rarg0 is either rdi (Linux) or rcx (Windows).
3669   __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()),rax);
3670   __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), rdx);
3671 
3672   // This call does all the hard work.  It checks if an exception handler
3673   // exists in the method.
3674   // If so, it returns the handler address.
3675   // If not, it prepares for stack-unwinding, restoring the callee-save
3676   // registers of the frame being removed.
3677   //
3678   // address OptoRuntime::handle_exception_C(JavaThread* thread)
3679 
3680   // At a method handle call, the stack may not be properly aligned
3681   // when returning with an exception.
3682   address the_pc = __ pc();
3683   __ set_last_Java_frame(noreg, noreg, the_pc);
3684   __ mov(c_rarg0, r15_thread);
3685   __ andptr(rsp, -(StackAlignmentInBytes));    // Align stack
3686   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, OptoRuntime::handle_exception_C)));
3687 
3688   // Set an oopmap for the call site.  This oopmap will only be used if we
3689   // are unwinding the stack.  Hence, all locations will be dead.
3690   // Callee-saved registers will be the same as the frame above (i.e.,
3691   // handle_exception_stub), since they were restored when we got the
3692   // exception.
3693 
3694   OopMapSet* oop_maps = new OopMapSet();
3695 
3696   oop_maps->add_gc_map(the_pc - start, new OopMap(SimpleRuntimeFrame::framesize, 0));
3697 
3698   __ reset_last_Java_frame(false, true);
3699 
3700   // Restore callee-saved registers
3701 
3702   // rbp is an implicitly saved callee-saved register (i.e., the calling
3703   // convention will save restore it in prolog/epilog) Other than that
3704   // there are no callee save registers now that adapter frames are gone.
3705 
3706   __ movptr(rbp, Address(rsp, SimpleRuntimeFrame::rbp_off << LogBytesPerInt));
3707 
3708   __ addptr(rsp, SimpleRuntimeFrame::return_off << LogBytesPerInt); // Epilog
3709   __ pop(rdx);                  // No need for exception pc anymore
3710 
3711   // rax: exception handler
3712 
3713   // We have a handler in rax (could be deopt blob).
3714   __ mov(r8, rax);
3715 
3716   // Get the exception oop
3717   __ movptr(rax, Address(r15_thread, JavaThread::exception_oop_offset()));
3718   // Get the exception pc in case we are deoptimized
3719   __ movptr(rdx, Address(r15_thread, JavaThread::exception_pc_offset()));
3720 #ifdef ASSERT
3721   __ movptr(Address(r15_thread, JavaThread::exception_handler_pc_offset()), (int)NULL_WORD);
3722   __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), (int)NULL_WORD);
3723 #endif
3724   // Clear the exception oop so GC no longer processes it as a root.
3725   __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()), (int)NULL_WORD);
3726 
3727   // rax: exception oop
3728   // r8:  exception handler
3729   // rdx: exception pc
3730   // Jump to handler
3731 
3732   __ jmp(r8);
3733 
3734   // Make sure all code is generated
3735   masm->flush();
3736 
3737   // Set exception blob
3738   _exception_blob =  ExceptionBlob::create(&buffer, oop_maps, SimpleRuntimeFrame::framesize >> 1);
3739 }
3740 #endif // COMPILER2