1 /*
   2  * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef CPU_X86_VM_NATIVEINST_X86_HPP
  26 #define CPU_X86_VM_NATIVEINST_X86_HPP
  27 
  28 #include "asm/assembler.hpp"
  29 #include "memory/allocation.hpp"
  30 #include "runtime/icache.hpp"
  31 #include "runtime/os.hpp"
  32 #include "utilities/top.hpp"
  33 
  34 // We have interfaces for the following instructions:
  35 // - NativeInstruction
  36 // - - NativeCall
  37 // - - NativeMovConstReg
  38 // - - NativeMovConstRegPatching
  39 // - - NativeMovRegMem
  40 // - - NativeMovRegMemPatching
  41 // - - NativeJump
  42 // - - NativeIllegalOpCode
  43 // - - NativeGeneralJump
  44 // - - NativeReturn
  45 // - - NativeReturnX (return with argument)
  46 // - - NativePushConst
  47 // - - NativeTstRegMem
  48 
  49 // The base class for different kinds of native instruction abstractions.
  50 // Provides the primitive operations to manipulate code relative to this.
  51 
  52 class NativeInstruction VALUE_OBJ_CLASS_SPEC {
  53   friend class Relocation;
  54 
  55  public:
  56   enum Intel_specific_constants {
  57     nop_instruction_code        = 0x90,
  58     nop_instruction_size        =    1
  59   };
  60 
  61   bool is_nop()                        { return ubyte_at(0) == nop_instruction_code; }
  62   inline bool is_call();
  63   inline bool is_call_reg();
  64   inline bool is_illegal();
  65   inline bool is_return();
  66   inline bool is_jump();
  67   inline bool is_cond_jump();
  68   inline bool is_safepoint_poll();
  69   inline bool is_mov_literal64();
  70 
  71  protected:
  72   address addr_at(int offset) const    { return address(this) + offset; }
  73 
  74   s_char sbyte_at(int offset) const    { return *(s_char*) addr_at(offset); }
  75   u_char ubyte_at(int offset) const    { return *(u_char*) addr_at(offset); }
  76 
  77   jint int_at(int offset) const         { return *(jint*) addr_at(offset); }
  78 
  79   intptr_t ptr_at(int offset) const    { return *(intptr_t*) addr_at(offset); }
  80 
  81   oop  oop_at (int offset) const       { return *(oop*) addr_at(offset); }
  82 
  83 
  84   void set_char_at(int offset, char c)        { *addr_at(offset) = (u_char)c; wrote(offset); }
  85   void set_int_at(int offset, jint  i)        { *(jint*)addr_at(offset) = i;  wrote(offset); }
  86   void set_ptr_at (int offset, intptr_t  ptr) { *(intptr_t*) addr_at(offset) = ptr;  wrote(offset); }
  87   void set_oop_at (int offset, oop  o)        { *(oop*) addr_at(offset) = o;  wrote(offset); }
  88 
  89   // This doesn't really do anything on Intel, but it is the place where
  90   // cache invalidation belongs, generically:
  91   void wrote(int offset);
  92 
  93  public:
  94 
  95   // unit test stuff
  96   static void test() {}                 // override for testing
  97 
  98   inline friend NativeInstruction* nativeInstruction_at(address address);
  99 };
 100 
 101 inline NativeInstruction* nativeInstruction_at(address address) {
 102   NativeInstruction* inst = (NativeInstruction*)address;
 103 #ifdef ASSERT
 104   //inst->verify();
 105 #endif
 106   return inst;
 107 }
 108 
 109 inline NativeCall* nativeCall_at(address address);
 110 // The NativeCall is an abstraction for accessing/manipulating native call imm32/rel32off
 111 // instructions (used to manipulate inline caches, primitive & dll calls, etc.).
 112 
 113 class NativeCall: public NativeInstruction {
 114  public:
 115   enum Intel_specific_constants {
 116     instruction_code            = 0xE8,
 117     instruction_size            =    5,
 118     instruction_offset          =    0,
 119     displacement_offset         =    1,
 120     return_address_offset       =    5
 121   };
 122 
 123   enum { cache_line_size = BytesPerWord };  // conservative estimate!
 124 
 125   address instruction_address() const       { return addr_at(instruction_offset); }
 126   address next_instruction_address() const  { return addr_at(return_address_offset); }
 127   int   displacement() const                { return (jint) int_at(displacement_offset); }
 128   address displacement_address() const      { return addr_at(displacement_offset); }
 129   address return_address() const            { return addr_at(return_address_offset); }
 130   address destination() const;
 131   void  set_destination(address dest)       {
 132 #ifdef AMD64
 133     assert((labs((intptr_t) dest - (intptr_t) return_address())  &
 134             0xFFFFFFFF00000000) == 0,
 135            "must be 32bit offset");
 136 #endif // AMD64
 137     set_int_at(displacement_offset, dest - return_address());
 138   }
 139   void  set_destination_mt_safe(address dest);
 140 
 141   void  verify_alignment() { assert((intptr_t)addr_at(displacement_offset) % BytesPerInt == 0, "must be aligned"); }
 142   void  verify();
 143   void  print();
 144 
 145   // Creation
 146   inline friend NativeCall* nativeCall_at(address address);
 147   inline friend NativeCall* nativeCall_before(address return_address);
 148 
 149   static bool is_call_at(address instr) {
 150     return ((*instr) & 0xFF) == NativeCall::instruction_code;
 151   }
 152 
 153   static bool is_call_before(address return_address) {
 154     return is_call_at(return_address - NativeCall::return_address_offset);
 155   }
 156 
 157   static bool is_call_to(address instr, address target) {
 158     return nativeInstruction_at(instr)->is_call() &&
 159       nativeCall_at(instr)->destination() == target;
 160   }
 161 
 162   // MT-safe patching of a call instruction.
 163   static void insert(address code_pos, address entry);
 164 
 165   static void replace_mt_safe(address instr_addr, address code_buffer);
 166 };
 167 
 168 inline NativeCall* nativeCall_at(address address) {
 169   NativeCall* call = (NativeCall*)(address - NativeCall::instruction_offset);
 170 #ifdef ASSERT
 171   call->verify();
 172 #endif
 173   return call;
 174 }
 175 
 176 inline NativeCall* nativeCall_before(address return_address) {
 177   NativeCall* call = (NativeCall*)(return_address - NativeCall::return_address_offset);
 178 #ifdef ASSERT
 179   call->verify();
 180 #endif
 181   return call;
 182 }
 183 
 184 class NativeCallReg: public NativeInstruction {
 185  public:
 186   enum Intel_specific_constants {
 187     instruction_code            = 0xFF,
 188     instruction_offset          =    0,
 189     return_address_offset_norex =    2,
 190     return_address_offset_rex   =    3
 191   };
 192 
 193   int next_instruction_offset() const  {
 194     if (ubyte_at(0) == NativeCallReg::instruction_code) {
 195       return return_address_offset_norex;
 196     } else {
 197       return return_address_offset_rex;
 198     }
 199   }
 200 };
 201 
 202 // An interface for accessing/manipulating native mov reg, imm32 instructions.
 203 // (used to manipulate inlined 32bit data dll calls, etc.)
 204 class NativeMovConstReg: public NativeInstruction {
 205 #ifdef AMD64
 206   static const bool has_rex = true;
 207   static const int rex_size = 1;
 208 #else
 209   static const bool has_rex = false;
 210   static const int rex_size = 0;
 211 #endif // AMD64
 212  public:
 213   enum Intel_specific_constants {
 214     instruction_code            = 0xB8,
 215     instruction_size            =    1 + rex_size + wordSize,
 216     instruction_offset          =    0,
 217     data_offset                 =    1 + rex_size,
 218     next_instruction_offset     =    instruction_size,
 219     register_mask               = 0x07
 220   };
 221 
 222   address instruction_address() const       { return addr_at(instruction_offset); }
 223   address next_instruction_address() const  { return addr_at(next_instruction_offset); }
 224   intptr_t data() const                     { return ptr_at(data_offset); }
 225   void  set_data(intptr_t x)                { set_ptr_at(data_offset, x); }
 226 
 227   void  verify();
 228   void  print();
 229 
 230   // unit test stuff
 231   static void test() {}
 232 
 233   // Creation
 234   inline friend NativeMovConstReg* nativeMovConstReg_at(address address);
 235   inline friend NativeMovConstReg* nativeMovConstReg_before(address address);
 236 };
 237 
 238 inline NativeMovConstReg* nativeMovConstReg_at(address address) {
 239   NativeMovConstReg* test = (NativeMovConstReg*)(address - NativeMovConstReg::instruction_offset);
 240 #ifdef ASSERT
 241   test->verify();
 242 #endif
 243   return test;
 244 }
 245 
 246 inline NativeMovConstReg* nativeMovConstReg_before(address address) {
 247   NativeMovConstReg* test = (NativeMovConstReg*)(address - NativeMovConstReg::instruction_size - NativeMovConstReg::instruction_offset);
 248 #ifdef ASSERT
 249   test->verify();
 250 #endif
 251   return test;
 252 }
 253 
 254 class NativeMovConstRegPatching: public NativeMovConstReg {
 255  private:
 256     friend NativeMovConstRegPatching* nativeMovConstRegPatching_at(address address) {
 257     NativeMovConstRegPatching* test = (NativeMovConstRegPatching*)(address - instruction_offset);
 258     #ifdef ASSERT
 259       test->verify();
 260     #endif
 261     return test;
 262   }
 263 };
 264 
 265 // An interface for accessing/manipulating native moves of the form:
 266 //      mov[b/w/l/q] [reg + offset], reg   (instruction_code_reg2mem)
 267 //      mov[b/w/l/q] reg, [reg+offset]     (instruction_code_mem2reg
 268 //      mov[s/z]x[w/b/q] [reg + offset], reg
 269 //      fld_s  [reg+offset]
 270 //      fld_d  [reg+offset]
 271 //      fstp_s [reg + offset]
 272 //      fstp_d [reg + offset]
 273 //      mov_literal64  scratch,<pointer> ; mov[b/w/l/q] 0(scratch),reg | mov[b/w/l/q] reg,0(scratch)
 274 //
 275 // Warning: These routines must be able to handle any instruction sequences
 276 // that are generated as a result of the load/store byte,word,long
 277 // macros.  For example: The load_unsigned_byte instruction generates
 278 // an xor reg,reg inst prior to generating the movb instruction.  This
 279 // class must skip the xor instruction.
 280 
 281 class NativeMovRegMem: public NativeInstruction {
 282  public:
 283   enum Intel_specific_constants {
 284     instruction_prefix_wide_lo          = Assembler::REX,
 285     instruction_prefix_wide_hi          = Assembler::REX_WRXB,
 286     instruction_code_xor                = 0x33,
 287     instruction_extended_prefix         = 0x0F,
 288     instruction_code_mem2reg_movslq     = 0x63,
 289     instruction_code_mem2reg_movzxb     = 0xB6,
 290     instruction_code_mem2reg_movsxb     = 0xBE,
 291     instruction_code_mem2reg_movzxw     = 0xB7,
 292     instruction_code_mem2reg_movsxw     = 0xBF,
 293     instruction_operandsize_prefix      = 0x66,
 294     instruction_code_reg2mem            = 0x89,
 295     instruction_code_mem2reg            = 0x8b,
 296     instruction_code_reg2memb           = 0x88,
 297     instruction_code_mem2regb           = 0x8a,
 298     instruction_code_float_s            = 0xd9,
 299     instruction_code_float_d            = 0xdd,
 300     instruction_code_long_volatile      = 0xdf,
 301     instruction_code_xmm_ss_prefix      = 0xf3,
 302     instruction_code_xmm_sd_prefix      = 0xf2,
 303     instruction_code_xmm_code           = 0x0f,
 304     instruction_code_xmm_load           = 0x10,
 305     instruction_code_xmm_store          = 0x11,
 306     instruction_code_xmm_lpd            = 0x12,
 307 
 308     instruction_VEX_prefix_2bytes       = Assembler::VEX_2bytes,
 309     instruction_VEX_prefix_3bytes       = Assembler::VEX_3bytes,
 310 
 311     instruction_size                    = 4,
 312     instruction_offset                  = 0,
 313     data_offset                         = 2,
 314     next_instruction_offset             = 4
 315   };
 316 
 317   // helper
 318   int instruction_start() const;
 319 
 320   address instruction_address() const;
 321 
 322   address next_instruction_address() const;
 323 
 324   int   offset() const;
 325 
 326   void  set_offset(int x);
 327 
 328   void  add_offset_in_bytes(int add_offset)     { set_offset ( ( offset() + add_offset ) ); }
 329 
 330   void verify();
 331   void print ();
 332 
 333   // unit test stuff
 334   static void test() {}
 335 
 336  private:
 337   inline friend NativeMovRegMem* nativeMovRegMem_at (address address);
 338 };
 339 
 340 inline NativeMovRegMem* nativeMovRegMem_at (address address) {
 341   NativeMovRegMem* test = (NativeMovRegMem*)(address - NativeMovRegMem::instruction_offset);
 342 #ifdef ASSERT
 343   test->verify();
 344 #endif
 345   return test;
 346 }
 347 
 348 
 349 // An interface for accessing/manipulating native leal instruction of form:
 350 //        leal reg, [reg + offset]
 351 
 352 class NativeLoadAddress: public NativeMovRegMem {
 353 #ifdef AMD64
 354   static const bool has_rex = true;
 355   static const int rex_size = 1;
 356 #else
 357   static const bool has_rex = false;
 358   static const int rex_size = 0;
 359 #endif // AMD64
 360  public:
 361   enum Intel_specific_constants {
 362     instruction_prefix_wide             = Assembler::REX_W,
 363     instruction_prefix_wide_extended    = Assembler::REX_WB,
 364     lea_instruction_code                = 0x8D,
 365     mov64_instruction_code              = 0xB8
 366   };
 367 
 368   void verify();
 369   void print ();
 370 
 371   // unit test stuff
 372   static void test() {}
 373 
 374  private:
 375   friend NativeLoadAddress* nativeLoadAddress_at (address address) {
 376     NativeLoadAddress* test = (NativeLoadAddress*)(address - instruction_offset);
 377     #ifdef ASSERT
 378       test->verify();
 379     #endif
 380     return test;
 381   }
 382 };
 383 
 384 // jump rel32off
 385 
 386 class NativeJump: public NativeInstruction {
 387  public:
 388   enum Intel_specific_constants {
 389     instruction_code            = 0xe9,
 390     instruction_size            =    5,
 391     instruction_offset          =    0,
 392     data_offset                 =    1,
 393     next_instruction_offset     =    5
 394   };
 395 
 396   address instruction_address() const       { return addr_at(instruction_offset); }
 397   address next_instruction_address() const  { return addr_at(next_instruction_offset); }
 398   address jump_destination() const          {
 399      address dest = (int_at(data_offset)+next_instruction_address());
 400      // 32bit used to encode unresolved jmp as jmp -1
 401      // 64bit can't produce this so it used jump to self.
 402      // Now 32bit and 64bit use jump to self as the unresolved address
 403      // which the inline cache code (and relocs) know about
 404 
 405      // return -1 if jump to self
 406     dest = (dest == (address) this) ? (address) -1 : dest;
 407     return dest;
 408   }
 409 
 410   void  set_jump_destination(address dest)  {
 411     intptr_t val = dest - next_instruction_address();
 412     if (dest == (address) -1) {
 413       val = -5; // jump to self
 414     }
 415 #ifdef AMD64
 416     assert((labs(val)  & 0xFFFFFFFF00000000) == 0 || dest == (address)-1, "must be 32bit offset or -1");
 417 #endif // AMD64
 418     set_int_at(data_offset, (jint)val);
 419   }
 420 
 421   // Creation
 422   inline friend NativeJump* nativeJump_at(address address);
 423 
 424   void verify();
 425 
 426   // Unit testing stuff
 427   static void test() {}
 428 
 429   // Insertion of native jump instruction
 430   static void insert(address code_pos, address entry);
 431   // MT-safe insertion of native jump at verified method entry
 432   static void check_verified_entry_alignment(address entry, address verified_entry);
 433   static void patch_verified_entry(address entry, address verified_entry, address dest);
 434 };
 435 
 436 inline NativeJump* nativeJump_at(address address) {
 437   NativeJump* jump = (NativeJump*)(address - NativeJump::instruction_offset);
 438 #ifdef ASSERT
 439   jump->verify();
 440 #endif
 441   return jump;
 442 }
 443 
 444 // Handles all kinds of jump on Intel. Long/far, conditional/unconditional
 445 class NativeGeneralJump: public NativeInstruction {
 446  public:
 447   enum Intel_specific_constants {
 448     // Constants does not apply, since the lengths and offsets depends on the actual jump
 449     // used
 450     // Instruction codes:
 451     //   Unconditional jumps: 0xE9    (rel32off), 0xEB (rel8off)
 452     //   Conditional jumps:   0x0F8x  (rel32off), 0x7x (rel8off)
 453     unconditional_long_jump  = 0xe9,
 454     unconditional_short_jump = 0xeb,
 455     instruction_size = 5
 456   };
 457 
 458   address instruction_address() const       { return addr_at(0); }
 459   address jump_destination()    const;
 460 
 461   // Creation
 462   inline friend NativeGeneralJump* nativeGeneralJump_at(address address);
 463 
 464   // Insertion of native general jump instruction
 465   static void insert_unconditional(address code_pos, address entry);
 466   static void replace_mt_safe(address instr_addr, address code_buffer);
 467 
 468   void verify();
 469 };
 470 
 471 inline NativeGeneralJump* nativeGeneralJump_at(address address) {
 472   NativeGeneralJump* jump = (NativeGeneralJump*)(address);
 473   debug_only(jump->verify();)
 474   return jump;
 475 }
 476 
 477 class NativePopReg : public NativeInstruction {
 478  public:
 479   enum Intel_specific_constants {
 480     instruction_code            = 0x58,
 481     instruction_size            =    1,
 482     instruction_offset          =    0,
 483     data_offset                 =    1,
 484     next_instruction_offset     =    1
 485   };
 486 
 487   // Insert a pop instruction
 488   static void insert(address code_pos, Register reg);
 489 };
 490 
 491 
 492 class NativeIllegalInstruction: public NativeInstruction {
 493  public:
 494   enum Intel_specific_constants {
 495     instruction_code            = 0x0B0F,    // Real byte order is: 0x0F, 0x0B
 496     instruction_size            =    2,
 497     instruction_offset          =    0,
 498     next_instruction_offset     =    2
 499   };
 500 
 501   // Insert illegal opcode as specific address
 502   static void insert(address code_pos);
 503 };
 504 
 505 // return instruction that does not pop values of the stack
 506 class NativeReturn: public NativeInstruction {
 507  public:
 508   enum Intel_specific_constants {
 509     instruction_code            = 0xC3,
 510     instruction_size            =    1,
 511     instruction_offset          =    0,
 512     next_instruction_offset     =    1
 513   };
 514 };
 515 
 516 // return instruction that does pop values of the stack
 517 class NativeReturnX: public NativeInstruction {
 518  public:
 519   enum Intel_specific_constants {
 520     instruction_code            = 0xC2,
 521     instruction_size            =    2,
 522     instruction_offset          =    0,
 523     next_instruction_offset     =    2
 524   };
 525 };
 526 
 527 // Simple test vs memory
 528 class NativeTstRegMem: public NativeInstruction {
 529  public:
 530   enum Intel_specific_constants {
 531     instruction_rex_prefix_mask = 0xF0,
 532     instruction_rex_prefix      = Assembler::REX,
 533     instruction_code_memXregl   = 0x85,
 534     modrm_mask                  = 0x38, // select reg from the ModRM byte
 535     modrm_reg                   = 0x00  // rax
 536   };
 537 };
 538 
 539 inline bool NativeInstruction::is_illegal()      { return (short)int_at(0) == (short)NativeIllegalInstruction::instruction_code; }
 540 inline bool NativeInstruction::is_call()         { return ubyte_at(0) == NativeCall::instruction_code; }
 541 inline bool NativeInstruction::is_call_reg()     { return ubyte_at(0) == NativeCallReg::instruction_code ||
 542                                                           (ubyte_at(1) == NativeCallReg::instruction_code &&
 543                                                            (ubyte_at(0) == Assembler::REX || ubyte_at(0) == Assembler::REX_B)); }
 544 inline bool NativeInstruction::is_return()       { return ubyte_at(0) == NativeReturn::instruction_code ||
 545                                                           ubyte_at(0) == NativeReturnX::instruction_code; }
 546 inline bool NativeInstruction::is_jump()         { return ubyte_at(0) == NativeJump::instruction_code ||
 547                                                           ubyte_at(0) == 0xEB; /* short jump */ }
 548 inline bool NativeInstruction::is_cond_jump()    { return (int_at(0) & 0xF0FF) == 0x800F /* long jump */ ||
 549                                                           (ubyte_at(0) & 0xF0) == 0x70;  /* short jump */ }
 550 inline bool NativeInstruction::is_safepoint_poll() {
 551 #ifdef AMD64
 552   // Try decoding a near safepoint first:
 553   if (ubyte_at(0) == NativeTstRegMem::instruction_code_memXregl &&
 554       ubyte_at(1) == 0x05) { // 00 rax 101
 555     address fault = addr_at(6) + int_at(2);
 556     NOT_JVMCI(assert(!Assembler::is_polling_page_far(), "unexpected poll encoding");)
 557     return os::is_poll_address(fault);
 558   }
 559   // Now try decoding a far safepoint:
 560   // two cases, depending on the choice of the base register in the address.
 561   if (((ubyte_at(0) & NativeTstRegMem::instruction_rex_prefix_mask) == NativeTstRegMem::instruction_rex_prefix &&
 562        ubyte_at(1) == NativeTstRegMem::instruction_code_memXregl &&
 563        (ubyte_at(2) & NativeTstRegMem::modrm_mask) == NativeTstRegMem::modrm_reg) ||
 564       ubyte_at(0) == NativeTstRegMem::instruction_code_memXregl &&
 565       (ubyte_at(1) & NativeTstRegMem::modrm_mask) == NativeTstRegMem::modrm_reg) {
 566     NOT_JVMCI(assert(Assembler::is_polling_page_far(), "unexpected poll encoding");)
 567     return true;
 568   }
 569   return false;
 570 #else
 571   return ( ubyte_at(0) == NativeMovRegMem::instruction_code_mem2reg ||
 572            ubyte_at(0) == NativeTstRegMem::instruction_code_memXregl ) &&
 573            (ubyte_at(1)&0xC7) == 0x05 && /* Mod R/M == disp32 */
 574            (os::is_poll_address((address)int_at(2)));
 575 #endif // AMD64
 576 }
 577 
 578 inline bool NativeInstruction::is_mov_literal64() {
 579 #ifdef AMD64
 580   return ((ubyte_at(0) == Assembler::REX_W || ubyte_at(0) == Assembler::REX_WB) &&
 581           (ubyte_at(1) & (0xff ^ NativeMovConstReg::register_mask)) == 0xB8);
 582 #else
 583   return false;
 584 #endif // AMD64
 585 }
 586 
 587 #endif // CPU_X86_VM_NATIVEINST_X86_HPP