1 /* 2 * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "asm/assembler.hpp" 27 #include "interpreter/interpreter.hpp" 28 #include "interpreter/interpreterRuntime.hpp" 29 #include "interpreter/templateTable.hpp" 30 #include "memory/universe.inline.hpp" 31 #include "oops/methodDataOop.hpp" 32 #include "oops/objArrayKlass.hpp" 33 #include "oops/oop.inline.hpp" 34 #include "prims/methodHandles.hpp" 35 #include "runtime/sharedRuntime.hpp" 36 #include "runtime/stubRoutines.hpp" 37 #include "runtime/synchronizer.hpp" 38 39 #ifndef CC_INTERP 40 #define __ _masm-> 41 42 //---------------------------------------------------------------------------------------------------- 43 // Platform-dependent initialization 44 45 void TemplateTable::pd_initialize() { 46 // No i486 specific initialization 47 } 48 49 //---------------------------------------------------------------------------------------------------- 50 // Address computation 51 52 // local variables 53 static inline Address iaddress(int n) { 54 return Address(rdi, Interpreter::local_offset_in_bytes(n)); 55 } 56 57 static inline Address laddress(int n) { return iaddress(n + 1); } 58 static inline Address haddress(int n) { return iaddress(n + 0); } 59 static inline Address faddress(int n) { return iaddress(n); } 60 static inline Address daddress(int n) { return laddress(n); } 61 static inline Address aaddress(int n) { return iaddress(n); } 62 63 static inline Address iaddress(Register r) { 64 return Address(rdi, r, Interpreter::stackElementScale()); 65 } 66 static inline Address laddress(Register r) { 67 return Address(rdi, r, Interpreter::stackElementScale(), Interpreter::local_offset_in_bytes(1)); 68 } 69 static inline Address haddress(Register r) { 70 return Address(rdi, r, Interpreter::stackElementScale(), Interpreter::local_offset_in_bytes(0)); 71 } 72 73 static inline Address faddress(Register r) { return iaddress(r); } 74 static inline Address daddress(Register r) { return laddress(r); } 75 static inline Address aaddress(Register r) { return iaddress(r); } 76 77 // expression stack 78 // (Note: Must not use symmetric equivalents at_rsp_m1/2 since they store 79 // data beyond the rsp which is potentially unsafe in an MT environment; 80 // an interrupt may overwrite that data.) 81 static inline Address at_rsp () { 82 return Address(rsp, 0); 83 } 84 85 // At top of Java expression stack which may be different than rsp(). It 86 // isn't for category 1 objects. 87 static inline Address at_tos () { 88 Address tos = Address(rsp, Interpreter::expr_offset_in_bytes(0)); 89 return tos; 90 } 91 92 static inline Address at_tos_p1() { 93 return Address(rsp, Interpreter::expr_offset_in_bytes(1)); 94 } 95 96 static inline Address at_tos_p2() { 97 return Address(rsp, Interpreter::expr_offset_in_bytes(2)); 98 } 99 100 // Condition conversion 101 static Assembler::Condition j_not(TemplateTable::Condition cc) { 102 switch (cc) { 103 case TemplateTable::equal : return Assembler::notEqual; 104 case TemplateTable::not_equal : return Assembler::equal; 105 case TemplateTable::less : return Assembler::greaterEqual; 106 case TemplateTable::less_equal : return Assembler::greater; 107 case TemplateTable::greater : return Assembler::lessEqual; 108 case TemplateTable::greater_equal: return Assembler::less; 109 } 110 ShouldNotReachHere(); 111 return Assembler::zero; 112 } 113 114 115 //---------------------------------------------------------------------------------------------------- 116 // Miscelaneous helper routines 117 118 // Store an oop (or NULL) at the address described by obj. 119 // If val == noreg this means store a NULL 120 121 static void do_oop_store(InterpreterMacroAssembler* _masm, 122 Address obj, 123 Register val, 124 BarrierSet::Name barrier, 125 bool precise) { 126 assert(val == noreg || val == rax, "parameter is just for looks"); 127 switch (barrier) { 128 #ifndef SERIALGC 129 case BarrierSet::G1SATBCT: 130 case BarrierSet::G1SATBCTLogging: 131 { 132 // flatten object address if needed 133 // We do it regardless of precise because we need the registers 134 if (obj.index() == noreg && obj.disp() == 0) { 135 if (obj.base() != rdx) { 136 __ movl(rdx, obj.base()); 137 } 138 } else { 139 __ leal(rdx, obj); 140 } 141 __ get_thread(rcx); 142 __ save_bcp(); 143 __ g1_write_barrier_pre(rdx, rcx, rsi, rbx, val != noreg); 144 145 // Do the actual store 146 // noreg means NULL 147 if (val == noreg) { 148 __ movptr(Address(rdx, 0), NULL_WORD); 149 // No post barrier for NULL 150 } else { 151 __ movl(Address(rdx, 0), val); 152 __ g1_write_barrier_post(rdx, rax, rcx, rbx, rsi); 153 } 154 __ restore_bcp(); 155 156 } 157 break; 158 #endif // SERIALGC 159 case BarrierSet::CardTableModRef: 160 case BarrierSet::CardTableExtension: 161 { 162 if (val == noreg) { 163 __ movptr(obj, NULL_WORD); 164 } else { 165 __ movl(obj, val); 166 // flatten object address if needed 167 if (!precise || (obj.index() == noreg && obj.disp() == 0)) { 168 __ store_check(obj.base()); 169 } else { 170 __ leal(rdx, obj); 171 __ store_check(rdx); 172 } 173 } 174 } 175 break; 176 case BarrierSet::ModRef: 177 case BarrierSet::Other: 178 if (val == noreg) { 179 __ movptr(obj, NULL_WORD); 180 } else { 181 __ movl(obj, val); 182 } 183 break; 184 default : 185 ShouldNotReachHere(); 186 187 } 188 } 189 190 Address TemplateTable::at_bcp(int offset) { 191 assert(_desc->uses_bcp(), "inconsistent uses_bcp information"); 192 return Address(rsi, offset); 193 } 194 195 196 void TemplateTable::patch_bytecode(Bytecodes::Code bytecode, Register bc, 197 Register scratch, 198 bool load_bc_into_scratch/*=true*/) { 199 200 if (!RewriteBytecodes) return; 201 // the pair bytecodes have already done the load. 202 if (load_bc_into_scratch) { 203 __ movl(bc, bytecode); 204 } 205 Label patch_done; 206 if (JvmtiExport::can_post_breakpoint()) { 207 Label fast_patch; 208 // if a breakpoint is present we can't rewrite the stream directly 209 __ movzbl(scratch, at_bcp(0)); 210 __ cmpl(scratch, Bytecodes::_breakpoint); 211 __ jcc(Assembler::notEqual, fast_patch); 212 __ get_method(scratch); 213 // Let breakpoint table handling rewrite to quicker bytecode 214 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::set_original_bytecode_at), scratch, rsi, bc); 215 #ifndef ASSERT 216 __ jmpb(patch_done); 217 #else 218 __ jmp(patch_done); 219 #endif 220 __ bind(fast_patch); 221 } 222 #ifdef ASSERT 223 Label okay; 224 __ load_unsigned_byte(scratch, at_bcp(0)); 225 __ cmpl(scratch, (int)Bytecodes::java_code(bytecode)); 226 __ jccb(Assembler::equal, okay); 227 __ cmpl(scratch, bc); 228 __ jcc(Assembler::equal, okay); 229 __ stop("patching the wrong bytecode"); 230 __ bind(okay); 231 #endif 232 // patch bytecode 233 __ movb(at_bcp(0), bc); 234 __ bind(patch_done); 235 } 236 237 //---------------------------------------------------------------------------------------------------- 238 // Individual instructions 239 240 void TemplateTable::nop() { 241 transition(vtos, vtos); 242 // nothing to do 243 } 244 245 void TemplateTable::shouldnotreachhere() { 246 transition(vtos, vtos); 247 __ stop("shouldnotreachhere bytecode"); 248 } 249 250 251 252 void TemplateTable::aconst_null() { 253 transition(vtos, atos); 254 __ xorptr(rax, rax); 255 } 256 257 258 void TemplateTable::iconst(int value) { 259 transition(vtos, itos); 260 if (value == 0) { 261 __ xorptr(rax, rax); 262 } else { 263 __ movptr(rax, value); 264 } 265 } 266 267 268 void TemplateTable::lconst(int value) { 269 transition(vtos, ltos); 270 if (value == 0) { 271 __ xorptr(rax, rax); 272 } else { 273 __ movptr(rax, value); 274 } 275 assert(value >= 0, "check this code"); 276 __ xorptr(rdx, rdx); 277 } 278 279 280 void TemplateTable::fconst(int value) { 281 transition(vtos, ftos); 282 if (value == 0) { __ fldz(); 283 } else if (value == 1) { __ fld1(); 284 } else if (value == 2) { __ fld1(); __ fld1(); __ faddp(); // should do a better solution here 285 } else { ShouldNotReachHere(); 286 } 287 } 288 289 290 void TemplateTable::dconst(int value) { 291 transition(vtos, dtos); 292 if (value == 0) { __ fldz(); 293 } else if (value == 1) { __ fld1(); 294 } else { ShouldNotReachHere(); 295 } 296 } 297 298 299 void TemplateTable::bipush() { 300 transition(vtos, itos); 301 __ load_signed_byte(rax, at_bcp(1)); 302 } 303 304 305 void TemplateTable::sipush() { 306 transition(vtos, itos); 307 __ load_unsigned_short(rax, at_bcp(1)); 308 __ bswapl(rax); 309 __ sarl(rax, 16); 310 } 311 312 void TemplateTable::ldc(bool wide) { 313 transition(vtos, vtos); 314 Label call_ldc, notFloat, notClass, Done; 315 316 if (wide) { 317 __ get_unsigned_2_byte_index_at_bcp(rbx, 1); 318 } else { 319 __ load_unsigned_byte(rbx, at_bcp(1)); 320 } 321 __ get_cpool_and_tags(rcx, rax); 322 const int base_offset = constantPoolOopDesc::header_size() * wordSize; 323 const int tags_offset = typeArrayOopDesc::header_size(T_BYTE) * wordSize; 324 325 // get type 326 __ xorptr(rdx, rdx); 327 __ movb(rdx, Address(rax, rbx, Address::times_1, tags_offset)); 328 329 // unresolved string - get the resolved string 330 __ cmpl(rdx, JVM_CONSTANT_UnresolvedString); 331 __ jccb(Assembler::equal, call_ldc); 332 333 // unresolved class - get the resolved class 334 __ cmpl(rdx, JVM_CONSTANT_UnresolvedClass); 335 __ jccb(Assembler::equal, call_ldc); 336 337 // unresolved class in error (resolution failed) - call into runtime 338 // so that the same error from first resolution attempt is thrown. 339 __ cmpl(rdx, JVM_CONSTANT_UnresolvedClassInError); 340 __ jccb(Assembler::equal, call_ldc); 341 342 // resolved class - need to call vm to get java mirror of the class 343 __ cmpl(rdx, JVM_CONSTANT_Class); 344 __ jcc(Assembler::notEqual, notClass); 345 346 __ bind(call_ldc); 347 __ movl(rcx, wide); 348 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), rcx); 349 __ push(atos); 350 __ jmp(Done); 351 352 __ bind(notClass); 353 __ cmpl(rdx, JVM_CONSTANT_Float); 354 __ jccb(Assembler::notEqual, notFloat); 355 // ftos 356 __ fld_s( Address(rcx, rbx, Address::times_ptr, base_offset)); 357 __ push(ftos); 358 __ jmp(Done); 359 360 __ bind(notFloat); 361 #ifdef ASSERT 362 { Label L; 363 __ cmpl(rdx, JVM_CONSTANT_Integer); 364 __ jcc(Assembler::equal, L); 365 __ cmpl(rdx, JVM_CONSTANT_String); 366 __ jcc(Assembler::equal, L); 367 __ stop("unexpected tag type in ldc"); 368 __ bind(L); 369 } 370 #endif 371 Label isOop; 372 // atos and itos 373 // String is only oop type we will see here 374 __ cmpl(rdx, JVM_CONSTANT_String); 375 __ jccb(Assembler::equal, isOop); 376 __ movl(rax, Address(rcx, rbx, Address::times_ptr, base_offset)); 377 __ push(itos); 378 __ jmp(Done); 379 __ bind(isOop); 380 __ movptr(rax, Address(rcx, rbx, Address::times_ptr, base_offset)); 381 __ push(atos); 382 383 if (VerifyOops) { 384 __ verify_oop(rax); 385 } 386 __ bind(Done); 387 } 388 389 // Fast path for caching oop constants. 390 // %%% We should use this to handle Class and String constants also. 391 // %%% It will simplify the ldc/primitive path considerably. 392 void TemplateTable::fast_aldc(bool wide) { 393 transition(vtos, atos); 394 395 if (!EnableInvokeDynamic) { 396 // We should not encounter this bytecode if !EnableInvokeDynamic. 397 // The verifier will stop it. However, if we get past the verifier, 398 // this will stop the thread in a reasonable way, without crashing the JVM. 399 __ call_VM(noreg, CAST_FROM_FN_PTR(address, 400 InterpreterRuntime::throw_IncompatibleClassChangeError)); 401 // the call_VM checks for exception, so we should never return here. 402 __ should_not_reach_here(); 403 return; 404 } 405 406 const Register cache = rcx; 407 const Register index = rdx; 408 409 resolve_cache_and_index(f1_oop, rax, cache, index, wide ? sizeof(u2) : sizeof(u1)); 410 if (VerifyOops) { 411 __ verify_oop(rax); 412 } 413 414 Label L_done, L_throw_exception; 415 const Register con_klass_temp = rcx; // same as Rcache 416 __ load_klass(con_klass_temp, rax); 417 __ cmpptr(con_klass_temp, ExternalAddress((address)Universe::systemObjArrayKlassObj_addr())); 418 __ jcc(Assembler::notEqual, L_done); 419 __ cmpl(Address(rax, arrayOopDesc::length_offset_in_bytes()), 0); 420 __ jcc(Assembler::notEqual, L_throw_exception); 421 __ xorptr(rax, rax); 422 __ jmp(L_done); 423 424 // Load the exception from the system-array which wraps it: 425 __ bind(L_throw_exception); 426 __ load_heap_oop(rax, Address(rax, arrayOopDesc::base_offset_in_bytes(T_OBJECT))); 427 __ jump(ExternalAddress(Interpreter::throw_exception_entry())); 428 429 __ bind(L_done); 430 } 431 432 void TemplateTable::ldc2_w() { 433 transition(vtos, vtos); 434 Label Long, Done; 435 __ get_unsigned_2_byte_index_at_bcp(rbx, 1); 436 437 __ get_cpool_and_tags(rcx, rax); 438 const int base_offset = constantPoolOopDesc::header_size() * wordSize; 439 const int tags_offset = typeArrayOopDesc::header_size(T_BYTE) * wordSize; 440 441 // get type 442 __ cmpb(Address(rax, rbx, Address::times_1, tags_offset), JVM_CONSTANT_Double); 443 __ jccb(Assembler::notEqual, Long); 444 // dtos 445 __ fld_d( Address(rcx, rbx, Address::times_ptr, base_offset)); 446 __ push(dtos); 447 __ jmpb(Done); 448 449 __ bind(Long); 450 // ltos 451 __ movptr(rax, Address(rcx, rbx, Address::times_ptr, base_offset + 0 * wordSize)); 452 NOT_LP64(__ movptr(rdx, Address(rcx, rbx, Address::times_ptr, base_offset + 1 * wordSize))); 453 454 __ push(ltos); 455 456 __ bind(Done); 457 } 458 459 460 void TemplateTable::locals_index(Register reg, int offset) { 461 __ load_unsigned_byte(reg, at_bcp(offset)); 462 __ negptr(reg); 463 } 464 465 466 void TemplateTable::iload() { 467 transition(vtos, itos); 468 if (RewriteFrequentPairs) { 469 Label rewrite, done; 470 471 // get next byte 472 __ load_unsigned_byte(rbx, at_bcp(Bytecodes::length_for(Bytecodes::_iload))); 473 // if _iload, wait to rewrite to iload2. We only want to rewrite the 474 // last two iloads in a pair. Comparing against fast_iload means that 475 // the next bytecode is neither an iload or a caload, and therefore 476 // an iload pair. 477 __ cmpl(rbx, Bytecodes::_iload); 478 __ jcc(Assembler::equal, done); 479 480 __ cmpl(rbx, Bytecodes::_fast_iload); 481 __ movl(rcx, Bytecodes::_fast_iload2); 482 __ jccb(Assembler::equal, rewrite); 483 484 // if _caload, rewrite to fast_icaload 485 __ cmpl(rbx, Bytecodes::_caload); 486 __ movl(rcx, Bytecodes::_fast_icaload); 487 __ jccb(Assembler::equal, rewrite); 488 489 // rewrite so iload doesn't check again. 490 __ movl(rcx, Bytecodes::_fast_iload); 491 492 // rewrite 493 // rcx: fast bytecode 494 __ bind(rewrite); 495 patch_bytecode(Bytecodes::_iload, rcx, rbx, false); 496 __ bind(done); 497 } 498 499 // Get the local value into tos 500 locals_index(rbx); 501 __ movl(rax, iaddress(rbx)); 502 } 503 504 505 void TemplateTable::fast_iload2() { 506 transition(vtos, itos); 507 locals_index(rbx); 508 __ movl(rax, iaddress(rbx)); 509 __ push(itos); 510 locals_index(rbx, 3); 511 __ movl(rax, iaddress(rbx)); 512 } 513 514 void TemplateTable::fast_iload() { 515 transition(vtos, itos); 516 locals_index(rbx); 517 __ movl(rax, iaddress(rbx)); 518 } 519 520 521 void TemplateTable::lload() { 522 transition(vtos, ltos); 523 locals_index(rbx); 524 __ movptr(rax, laddress(rbx)); 525 NOT_LP64(__ movl(rdx, haddress(rbx))); 526 } 527 528 529 void TemplateTable::fload() { 530 transition(vtos, ftos); 531 locals_index(rbx); 532 __ fld_s(faddress(rbx)); 533 } 534 535 536 void TemplateTable::dload() { 537 transition(vtos, dtos); 538 locals_index(rbx); 539 __ fld_d(daddress(rbx)); 540 } 541 542 543 void TemplateTable::aload() { 544 transition(vtos, atos); 545 locals_index(rbx); 546 __ movptr(rax, aaddress(rbx)); 547 } 548 549 550 void TemplateTable::locals_index_wide(Register reg) { 551 __ movl(reg, at_bcp(2)); 552 __ bswapl(reg); 553 __ shrl(reg, 16); 554 __ negptr(reg); 555 } 556 557 558 void TemplateTable::wide_iload() { 559 transition(vtos, itos); 560 locals_index_wide(rbx); 561 __ movl(rax, iaddress(rbx)); 562 } 563 564 565 void TemplateTable::wide_lload() { 566 transition(vtos, ltos); 567 locals_index_wide(rbx); 568 __ movptr(rax, laddress(rbx)); 569 NOT_LP64(__ movl(rdx, haddress(rbx))); 570 } 571 572 573 void TemplateTable::wide_fload() { 574 transition(vtos, ftos); 575 locals_index_wide(rbx); 576 __ fld_s(faddress(rbx)); 577 } 578 579 580 void TemplateTable::wide_dload() { 581 transition(vtos, dtos); 582 locals_index_wide(rbx); 583 __ fld_d(daddress(rbx)); 584 } 585 586 587 void TemplateTable::wide_aload() { 588 transition(vtos, atos); 589 locals_index_wide(rbx); 590 __ movptr(rax, aaddress(rbx)); 591 } 592 593 void TemplateTable::index_check(Register array, Register index) { 594 // Pop ptr into array 595 __ pop_ptr(array); 596 index_check_without_pop(array, index); 597 } 598 599 void TemplateTable::index_check_without_pop(Register array, Register index) { 600 // destroys rbx, 601 // check array 602 __ null_check(array, arrayOopDesc::length_offset_in_bytes()); 603 LP64_ONLY(__ movslq(index, index)); 604 // check index 605 __ cmpl(index, Address(array, arrayOopDesc::length_offset_in_bytes())); 606 if (index != rbx) { 607 // ??? convention: move aberrant index into rbx, for exception message 608 assert(rbx != array, "different registers"); 609 __ mov(rbx, index); 610 } 611 __ jump_cc(Assembler::aboveEqual, 612 ExternalAddress(Interpreter::_throw_ArrayIndexOutOfBoundsException_entry)); 613 } 614 615 616 void TemplateTable::iaload() { 617 transition(itos, itos); 618 // rdx: array 619 index_check(rdx, rax); // kills rbx, 620 // rax,: index 621 __ movl(rax, Address(rdx, rax, Address::times_4, arrayOopDesc::base_offset_in_bytes(T_INT))); 622 } 623 624 625 void TemplateTable::laload() { 626 transition(itos, ltos); 627 // rax,: index 628 // rdx: array 629 index_check(rdx, rax); 630 __ mov(rbx, rax); 631 // rbx,: index 632 __ movptr(rax, Address(rdx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_LONG) + 0 * wordSize)); 633 NOT_LP64(__ movl(rdx, Address(rdx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_LONG) + 1 * wordSize))); 634 } 635 636 637 void TemplateTable::faload() { 638 transition(itos, ftos); 639 // rdx: array 640 index_check(rdx, rax); // kills rbx, 641 // rax,: index 642 __ fld_s(Address(rdx, rax, Address::times_4, arrayOopDesc::base_offset_in_bytes(T_FLOAT))); 643 } 644 645 646 void TemplateTable::daload() { 647 transition(itos, dtos); 648 // rdx: array 649 index_check(rdx, rax); // kills rbx, 650 // rax,: index 651 __ fld_d(Address(rdx, rax, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_DOUBLE))); 652 } 653 654 655 void TemplateTable::aaload() { 656 transition(itos, atos); 657 // rdx: array 658 index_check(rdx, rax); // kills rbx, 659 // rax,: index 660 __ movptr(rax, Address(rdx, rax, Address::times_ptr, arrayOopDesc::base_offset_in_bytes(T_OBJECT))); 661 } 662 663 664 void TemplateTable::baload() { 665 transition(itos, itos); 666 // rdx: array 667 index_check(rdx, rax); // kills rbx, 668 // rax,: index 669 // can do better code for P5 - fix this at some point 670 __ load_signed_byte(rbx, Address(rdx, rax, Address::times_1, arrayOopDesc::base_offset_in_bytes(T_BYTE))); 671 __ mov(rax, rbx); 672 } 673 674 675 void TemplateTable::caload() { 676 transition(itos, itos); 677 // rdx: array 678 index_check(rdx, rax); // kills rbx, 679 // rax,: index 680 // can do better code for P5 - may want to improve this at some point 681 __ load_unsigned_short(rbx, Address(rdx, rax, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR))); 682 __ mov(rax, rbx); 683 } 684 685 // iload followed by caload frequent pair 686 void TemplateTable::fast_icaload() { 687 transition(vtos, itos); 688 // load index out of locals 689 locals_index(rbx); 690 __ movl(rax, iaddress(rbx)); 691 692 // rdx: array 693 index_check(rdx, rax); 694 // rax,: index 695 __ load_unsigned_short(rbx, Address(rdx, rax, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR))); 696 __ mov(rax, rbx); 697 } 698 699 void TemplateTable::saload() { 700 transition(itos, itos); 701 // rdx: array 702 index_check(rdx, rax); // kills rbx, 703 // rax,: index 704 // can do better code for P5 - may want to improve this at some point 705 __ load_signed_short(rbx, Address(rdx, rax, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_SHORT))); 706 __ mov(rax, rbx); 707 } 708 709 710 void TemplateTable::iload(int n) { 711 transition(vtos, itos); 712 __ movl(rax, iaddress(n)); 713 } 714 715 716 void TemplateTable::lload(int n) { 717 transition(vtos, ltos); 718 __ movptr(rax, laddress(n)); 719 NOT_LP64(__ movptr(rdx, haddress(n))); 720 } 721 722 723 void TemplateTable::fload(int n) { 724 transition(vtos, ftos); 725 __ fld_s(faddress(n)); 726 } 727 728 729 void TemplateTable::dload(int n) { 730 transition(vtos, dtos); 731 __ fld_d(daddress(n)); 732 } 733 734 735 void TemplateTable::aload(int n) { 736 transition(vtos, atos); 737 __ movptr(rax, aaddress(n)); 738 } 739 740 741 void TemplateTable::aload_0() { 742 transition(vtos, atos); 743 // According to bytecode histograms, the pairs: 744 // 745 // _aload_0, _fast_igetfield 746 // _aload_0, _fast_agetfield 747 // _aload_0, _fast_fgetfield 748 // 749 // occur frequently. If RewriteFrequentPairs is set, the (slow) _aload_0 750 // bytecode checks if the next bytecode is either _fast_igetfield, 751 // _fast_agetfield or _fast_fgetfield and then rewrites the 752 // current bytecode into a pair bytecode; otherwise it rewrites the current 753 // bytecode into _fast_aload_0 that doesn't do the pair check anymore. 754 // 755 // Note: If the next bytecode is _getfield, the rewrite must be delayed, 756 // otherwise we may miss an opportunity for a pair. 757 // 758 // Also rewrite frequent pairs 759 // aload_0, aload_1 760 // aload_0, iload_1 761 // These bytecodes with a small amount of code are most profitable to rewrite 762 if (RewriteFrequentPairs) { 763 Label rewrite, done; 764 // get next byte 765 __ load_unsigned_byte(rbx, at_bcp(Bytecodes::length_for(Bytecodes::_aload_0))); 766 767 // do actual aload_0 768 aload(0); 769 770 // if _getfield then wait with rewrite 771 __ cmpl(rbx, Bytecodes::_getfield); 772 __ jcc(Assembler::equal, done); 773 774 // if _igetfield then reqrite to _fast_iaccess_0 775 assert(Bytecodes::java_code(Bytecodes::_fast_iaccess_0) == Bytecodes::_aload_0, "fix bytecode definition"); 776 __ cmpl(rbx, Bytecodes::_fast_igetfield); 777 __ movl(rcx, Bytecodes::_fast_iaccess_0); 778 __ jccb(Assembler::equal, rewrite); 779 780 // if _agetfield then reqrite to _fast_aaccess_0 781 assert(Bytecodes::java_code(Bytecodes::_fast_aaccess_0) == Bytecodes::_aload_0, "fix bytecode definition"); 782 __ cmpl(rbx, Bytecodes::_fast_agetfield); 783 __ movl(rcx, Bytecodes::_fast_aaccess_0); 784 __ jccb(Assembler::equal, rewrite); 785 786 // if _fgetfield then reqrite to _fast_faccess_0 787 assert(Bytecodes::java_code(Bytecodes::_fast_faccess_0) == Bytecodes::_aload_0, "fix bytecode definition"); 788 __ cmpl(rbx, Bytecodes::_fast_fgetfield); 789 __ movl(rcx, Bytecodes::_fast_faccess_0); 790 __ jccb(Assembler::equal, rewrite); 791 792 // else rewrite to _fast_aload0 793 assert(Bytecodes::java_code(Bytecodes::_fast_aload_0) == Bytecodes::_aload_0, "fix bytecode definition"); 794 __ movl(rcx, Bytecodes::_fast_aload_0); 795 796 // rewrite 797 // rcx: fast bytecode 798 __ bind(rewrite); 799 patch_bytecode(Bytecodes::_aload_0, rcx, rbx, false); 800 801 __ bind(done); 802 } else { 803 aload(0); 804 } 805 } 806 807 void TemplateTable::istore() { 808 transition(itos, vtos); 809 locals_index(rbx); 810 __ movl(iaddress(rbx), rax); 811 } 812 813 814 void TemplateTable::lstore() { 815 transition(ltos, vtos); 816 locals_index(rbx); 817 __ movptr(laddress(rbx), rax); 818 NOT_LP64(__ movptr(haddress(rbx), rdx)); 819 } 820 821 822 void TemplateTable::fstore() { 823 transition(ftos, vtos); 824 locals_index(rbx); 825 __ fstp_s(faddress(rbx)); 826 } 827 828 829 void TemplateTable::dstore() { 830 transition(dtos, vtos); 831 locals_index(rbx); 832 __ fstp_d(daddress(rbx)); 833 } 834 835 836 void TemplateTable::astore() { 837 transition(vtos, vtos); 838 __ pop_ptr(rax); 839 locals_index(rbx); 840 __ movptr(aaddress(rbx), rax); 841 } 842 843 844 void TemplateTable::wide_istore() { 845 transition(vtos, vtos); 846 __ pop_i(rax); 847 locals_index_wide(rbx); 848 __ movl(iaddress(rbx), rax); 849 } 850 851 852 void TemplateTable::wide_lstore() { 853 transition(vtos, vtos); 854 __ pop_l(rax, rdx); 855 locals_index_wide(rbx); 856 __ movptr(laddress(rbx), rax); 857 NOT_LP64(__ movl(haddress(rbx), rdx)); 858 } 859 860 861 void TemplateTable::wide_fstore() { 862 wide_istore(); 863 } 864 865 866 void TemplateTable::wide_dstore() { 867 wide_lstore(); 868 } 869 870 871 void TemplateTable::wide_astore() { 872 transition(vtos, vtos); 873 __ pop_ptr(rax); 874 locals_index_wide(rbx); 875 __ movptr(aaddress(rbx), rax); 876 } 877 878 879 void TemplateTable::iastore() { 880 transition(itos, vtos); 881 __ pop_i(rbx); 882 // rax,: value 883 // rdx: array 884 index_check(rdx, rbx); // prefer index in rbx, 885 // rbx,: index 886 __ movl(Address(rdx, rbx, Address::times_4, arrayOopDesc::base_offset_in_bytes(T_INT)), rax); 887 } 888 889 890 void TemplateTable::lastore() { 891 transition(ltos, vtos); 892 __ pop_i(rbx); 893 // rax,: low(value) 894 // rcx: array 895 // rdx: high(value) 896 index_check(rcx, rbx); // prefer index in rbx, 897 // rbx,: index 898 __ movptr(Address(rcx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_LONG) + 0 * wordSize), rax); 899 NOT_LP64(__ movl(Address(rcx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_LONG) + 1 * wordSize), rdx)); 900 } 901 902 903 void TemplateTable::fastore() { 904 transition(ftos, vtos); 905 __ pop_i(rbx); 906 // rdx: array 907 // st0: value 908 index_check(rdx, rbx); // prefer index in rbx, 909 // rbx,: index 910 __ fstp_s(Address(rdx, rbx, Address::times_4, arrayOopDesc::base_offset_in_bytes(T_FLOAT))); 911 } 912 913 914 void TemplateTable::dastore() { 915 transition(dtos, vtos); 916 __ pop_i(rbx); 917 // rdx: array 918 // st0: value 919 index_check(rdx, rbx); // prefer index in rbx, 920 // rbx,: index 921 __ fstp_d(Address(rdx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_DOUBLE))); 922 } 923 924 925 void TemplateTable::aastore() { 926 Label is_null, ok_is_subtype, done; 927 transition(vtos, vtos); 928 // stack: ..., array, index, value 929 __ movptr(rax, at_tos()); // Value 930 __ movl(rcx, at_tos_p1()); // Index 931 __ movptr(rdx, at_tos_p2()); // Array 932 933 Address element_address(rdx, rcx, Address::times_4, arrayOopDesc::base_offset_in_bytes(T_OBJECT)); 934 index_check_without_pop(rdx, rcx); // kills rbx, 935 // do array store check - check for NULL value first 936 __ testptr(rax, rax); 937 __ jcc(Assembler::zero, is_null); 938 939 // Move subklass into EBX 940 __ load_klass(rbx, rax); 941 // Move superklass into EAX 942 __ load_klass(rax, rdx); 943 __ movptr(rax, Address(rax, sizeof(oopDesc) + objArrayKlass::element_klass_offset_in_bytes())); 944 // Compress array+index*wordSize+12 into a single register. Frees ECX. 945 __ lea(rdx, element_address); 946 947 // Generate subtype check. Blows ECX. Resets EDI to locals. 948 // Superklass in EAX. Subklass in EBX. 949 __ gen_subtype_check( rbx, ok_is_subtype ); 950 951 // Come here on failure 952 // object is at TOS 953 __ jump(ExternalAddress(Interpreter::_throw_ArrayStoreException_entry)); 954 955 // Come here on success 956 __ bind(ok_is_subtype); 957 958 // Get the value to store 959 __ movptr(rax, at_rsp()); 960 // and store it with appropriate barrier 961 do_oop_store(_masm, Address(rdx, 0), rax, _bs->kind(), true); 962 963 __ jmp(done); 964 965 // Have a NULL in EAX, EDX=array, ECX=index. Store NULL at ary[idx] 966 __ bind(is_null); 967 __ profile_null_seen(rbx); 968 969 // Store NULL, (noreg means NULL to do_oop_store) 970 do_oop_store(_masm, element_address, noreg, _bs->kind(), true); 971 972 // Pop stack arguments 973 __ bind(done); 974 __ addptr(rsp, 3 * Interpreter::stackElementSize); 975 } 976 977 978 void TemplateTable::bastore() { 979 transition(itos, vtos); 980 __ pop_i(rbx); 981 // rax,: value 982 // rdx: array 983 index_check(rdx, rbx); // prefer index in rbx, 984 // rbx,: index 985 __ movb(Address(rdx, rbx, Address::times_1, arrayOopDesc::base_offset_in_bytes(T_BYTE)), rax); 986 } 987 988 989 void TemplateTable::castore() { 990 transition(itos, vtos); 991 __ pop_i(rbx); 992 // rax,: value 993 // rdx: array 994 index_check(rdx, rbx); // prefer index in rbx, 995 // rbx,: index 996 __ movw(Address(rdx, rbx, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)), rax); 997 } 998 999 1000 void TemplateTable::sastore() { 1001 castore(); 1002 } 1003 1004 1005 void TemplateTable::istore(int n) { 1006 transition(itos, vtos); 1007 __ movl(iaddress(n), rax); 1008 } 1009 1010 1011 void TemplateTable::lstore(int n) { 1012 transition(ltos, vtos); 1013 __ movptr(laddress(n), rax); 1014 NOT_LP64(__ movptr(haddress(n), rdx)); 1015 } 1016 1017 1018 void TemplateTable::fstore(int n) { 1019 transition(ftos, vtos); 1020 __ fstp_s(faddress(n)); 1021 } 1022 1023 1024 void TemplateTable::dstore(int n) { 1025 transition(dtos, vtos); 1026 __ fstp_d(daddress(n)); 1027 } 1028 1029 1030 void TemplateTable::astore(int n) { 1031 transition(vtos, vtos); 1032 __ pop_ptr(rax); 1033 __ movptr(aaddress(n), rax); 1034 } 1035 1036 1037 void TemplateTable::pop() { 1038 transition(vtos, vtos); 1039 __ addptr(rsp, Interpreter::stackElementSize); 1040 } 1041 1042 1043 void TemplateTable::pop2() { 1044 transition(vtos, vtos); 1045 __ addptr(rsp, 2*Interpreter::stackElementSize); 1046 } 1047 1048 1049 void TemplateTable::dup() { 1050 transition(vtos, vtos); 1051 // stack: ..., a 1052 __ load_ptr(0, rax); 1053 __ push_ptr(rax); 1054 // stack: ..., a, a 1055 } 1056 1057 1058 void TemplateTable::dup_x1() { 1059 transition(vtos, vtos); 1060 // stack: ..., a, b 1061 __ load_ptr( 0, rax); // load b 1062 __ load_ptr( 1, rcx); // load a 1063 __ store_ptr(1, rax); // store b 1064 __ store_ptr(0, rcx); // store a 1065 __ push_ptr(rax); // push b 1066 // stack: ..., b, a, b 1067 } 1068 1069 1070 void TemplateTable::dup_x2() { 1071 transition(vtos, vtos); 1072 // stack: ..., a, b, c 1073 __ load_ptr( 0, rax); // load c 1074 __ load_ptr( 2, rcx); // load a 1075 __ store_ptr(2, rax); // store c in a 1076 __ push_ptr(rax); // push c 1077 // stack: ..., c, b, c, c 1078 __ load_ptr( 2, rax); // load b 1079 __ store_ptr(2, rcx); // store a in b 1080 // stack: ..., c, a, c, c 1081 __ store_ptr(1, rax); // store b in c 1082 // stack: ..., c, a, b, c 1083 } 1084 1085 1086 void TemplateTable::dup2() { 1087 transition(vtos, vtos); 1088 // stack: ..., a, b 1089 __ load_ptr(1, rax); // load a 1090 __ push_ptr(rax); // push a 1091 __ load_ptr(1, rax); // load b 1092 __ push_ptr(rax); // push b 1093 // stack: ..., a, b, a, b 1094 } 1095 1096 1097 void TemplateTable::dup2_x1() { 1098 transition(vtos, vtos); 1099 // stack: ..., a, b, c 1100 __ load_ptr( 0, rcx); // load c 1101 __ load_ptr( 1, rax); // load b 1102 __ push_ptr(rax); // push b 1103 __ push_ptr(rcx); // push c 1104 // stack: ..., a, b, c, b, c 1105 __ store_ptr(3, rcx); // store c in b 1106 // stack: ..., a, c, c, b, c 1107 __ load_ptr( 4, rcx); // load a 1108 __ store_ptr(2, rcx); // store a in 2nd c 1109 // stack: ..., a, c, a, b, c 1110 __ store_ptr(4, rax); // store b in a 1111 // stack: ..., b, c, a, b, c 1112 // stack: ..., b, c, a, b, c 1113 } 1114 1115 1116 void TemplateTable::dup2_x2() { 1117 transition(vtos, vtos); 1118 // stack: ..., a, b, c, d 1119 __ load_ptr( 0, rcx); // load d 1120 __ load_ptr( 1, rax); // load c 1121 __ push_ptr(rax); // push c 1122 __ push_ptr(rcx); // push d 1123 // stack: ..., a, b, c, d, c, d 1124 __ load_ptr( 4, rax); // load b 1125 __ store_ptr(2, rax); // store b in d 1126 __ store_ptr(4, rcx); // store d in b 1127 // stack: ..., a, d, c, b, c, d 1128 __ load_ptr( 5, rcx); // load a 1129 __ load_ptr( 3, rax); // load c 1130 __ store_ptr(3, rcx); // store a in c 1131 __ store_ptr(5, rax); // store c in a 1132 // stack: ..., c, d, a, b, c, d 1133 // stack: ..., c, d, a, b, c, d 1134 } 1135 1136 1137 void TemplateTable::swap() { 1138 transition(vtos, vtos); 1139 // stack: ..., a, b 1140 __ load_ptr( 1, rcx); // load a 1141 __ load_ptr( 0, rax); // load b 1142 __ store_ptr(0, rcx); // store a in b 1143 __ store_ptr(1, rax); // store b in a 1144 // stack: ..., b, a 1145 } 1146 1147 1148 void TemplateTable::iop2(Operation op) { 1149 transition(itos, itos); 1150 switch (op) { 1151 case add : __ pop_i(rdx); __ addl (rax, rdx); break; 1152 case sub : __ mov(rdx, rax); __ pop_i(rax); __ subl (rax, rdx); break; 1153 case mul : __ pop_i(rdx); __ imull(rax, rdx); break; 1154 case _and : __ pop_i(rdx); __ andl (rax, rdx); break; 1155 case _or : __ pop_i(rdx); __ orl (rax, rdx); break; 1156 case _xor : __ pop_i(rdx); __ xorl (rax, rdx); break; 1157 case shl : __ mov(rcx, rax); __ pop_i(rax); __ shll (rax); break; // implicit masking of lower 5 bits by Intel shift instr. 1158 case shr : __ mov(rcx, rax); __ pop_i(rax); __ sarl (rax); break; // implicit masking of lower 5 bits by Intel shift instr. 1159 case ushr : __ mov(rcx, rax); __ pop_i(rax); __ shrl (rax); break; // implicit masking of lower 5 bits by Intel shift instr. 1160 default : ShouldNotReachHere(); 1161 } 1162 } 1163 1164 1165 void TemplateTable::lop2(Operation op) { 1166 transition(ltos, ltos); 1167 __ pop_l(rbx, rcx); 1168 switch (op) { 1169 case add : __ addl(rax, rbx); __ adcl(rdx, rcx); break; 1170 case sub : __ subl(rbx, rax); __ sbbl(rcx, rdx); 1171 __ mov (rax, rbx); __ mov (rdx, rcx); break; 1172 case _and : __ andl(rax, rbx); __ andl(rdx, rcx); break; 1173 case _or : __ orl (rax, rbx); __ orl (rdx, rcx); break; 1174 case _xor : __ xorl(rax, rbx); __ xorl(rdx, rcx); break; 1175 default : ShouldNotReachHere(); 1176 } 1177 } 1178 1179 1180 void TemplateTable::idiv() { 1181 transition(itos, itos); 1182 __ mov(rcx, rax); 1183 __ pop_i(rax); 1184 // Note: could xor rax, and rcx and compare with (-1 ^ min_int). If 1185 // they are not equal, one could do a normal division (no correction 1186 // needed), which may speed up this implementation for the common case. 1187 // (see also JVM spec., p.243 & p.271) 1188 __ corrected_idivl(rcx); 1189 } 1190 1191 1192 void TemplateTable::irem() { 1193 transition(itos, itos); 1194 __ mov(rcx, rax); 1195 __ pop_i(rax); 1196 // Note: could xor rax, and rcx and compare with (-1 ^ min_int). If 1197 // they are not equal, one could do a normal division (no correction 1198 // needed), which may speed up this implementation for the common case. 1199 // (see also JVM spec., p.243 & p.271) 1200 __ corrected_idivl(rcx); 1201 __ mov(rax, rdx); 1202 } 1203 1204 1205 void TemplateTable::lmul() { 1206 transition(ltos, ltos); 1207 __ pop_l(rbx, rcx); 1208 __ push(rcx); __ push(rbx); 1209 __ push(rdx); __ push(rax); 1210 __ lmul(2 * wordSize, 0); 1211 __ addptr(rsp, 4 * wordSize); // take off temporaries 1212 } 1213 1214 1215 void TemplateTable::ldiv() { 1216 transition(ltos, ltos); 1217 __ pop_l(rbx, rcx); 1218 __ push(rcx); __ push(rbx); 1219 __ push(rdx); __ push(rax); 1220 // check if y = 0 1221 __ orl(rax, rdx); 1222 __ jump_cc(Assembler::zero, 1223 ExternalAddress(Interpreter::_throw_ArithmeticException_entry)); 1224 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::ldiv)); 1225 __ addptr(rsp, 4 * wordSize); // take off temporaries 1226 } 1227 1228 1229 void TemplateTable::lrem() { 1230 transition(ltos, ltos); 1231 __ pop_l(rbx, rcx); 1232 __ push(rcx); __ push(rbx); 1233 __ push(rdx); __ push(rax); 1234 // check if y = 0 1235 __ orl(rax, rdx); 1236 __ jump_cc(Assembler::zero, 1237 ExternalAddress(Interpreter::_throw_ArithmeticException_entry)); 1238 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::lrem)); 1239 __ addptr(rsp, 4 * wordSize); 1240 } 1241 1242 1243 void TemplateTable::lshl() { 1244 transition(itos, ltos); 1245 __ movl(rcx, rax); // get shift count 1246 __ pop_l(rax, rdx); // get shift value 1247 __ lshl(rdx, rax); 1248 } 1249 1250 1251 void TemplateTable::lshr() { 1252 transition(itos, ltos); 1253 __ mov(rcx, rax); // get shift count 1254 __ pop_l(rax, rdx); // get shift value 1255 __ lshr(rdx, rax, true); 1256 } 1257 1258 1259 void TemplateTable::lushr() { 1260 transition(itos, ltos); 1261 __ mov(rcx, rax); // get shift count 1262 __ pop_l(rax, rdx); // get shift value 1263 __ lshr(rdx, rax); 1264 } 1265 1266 1267 void TemplateTable::fop2(Operation op) { 1268 transition(ftos, ftos); 1269 switch (op) { 1270 case add: __ fadd_s (at_rsp()); break; 1271 case sub: __ fsubr_s(at_rsp()); break; 1272 case mul: __ fmul_s (at_rsp()); break; 1273 case div: __ fdivr_s(at_rsp()); break; 1274 case rem: __ fld_s (at_rsp()); __ fremr(rax); break; 1275 default : ShouldNotReachHere(); 1276 } 1277 __ f2ieee(); 1278 __ pop(rax); // pop float thing off 1279 } 1280 1281 1282 void TemplateTable::dop2(Operation op) { 1283 transition(dtos, dtos); 1284 1285 switch (op) { 1286 case add: __ fadd_d (at_rsp()); break; 1287 case sub: __ fsubr_d(at_rsp()); break; 1288 case mul: { 1289 Label L_strict; 1290 Label L_join; 1291 const Address access_flags (rcx, methodOopDesc::access_flags_offset()); 1292 __ get_method(rcx); 1293 __ movl(rcx, access_flags); 1294 __ testl(rcx, JVM_ACC_STRICT); 1295 __ jccb(Assembler::notZero, L_strict); 1296 __ fmul_d (at_rsp()); 1297 __ jmpb(L_join); 1298 __ bind(L_strict); 1299 __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias1())); 1300 __ fmulp(); 1301 __ fmul_d (at_rsp()); 1302 __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias2())); 1303 __ fmulp(); 1304 __ bind(L_join); 1305 break; 1306 } 1307 case div: { 1308 Label L_strict; 1309 Label L_join; 1310 const Address access_flags (rcx, methodOopDesc::access_flags_offset()); 1311 __ get_method(rcx); 1312 __ movl(rcx, access_flags); 1313 __ testl(rcx, JVM_ACC_STRICT); 1314 __ jccb(Assembler::notZero, L_strict); 1315 __ fdivr_d(at_rsp()); 1316 __ jmp(L_join); 1317 __ bind(L_strict); 1318 __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias1())); 1319 __ fmul_d (at_rsp()); 1320 __ fdivrp(); 1321 __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias2())); 1322 __ fmulp(); 1323 __ bind(L_join); 1324 break; 1325 } 1326 case rem: __ fld_d (at_rsp()); __ fremr(rax); break; 1327 default : ShouldNotReachHere(); 1328 } 1329 __ d2ieee(); 1330 // Pop double precision number from rsp. 1331 __ pop(rax); 1332 __ pop(rdx); 1333 } 1334 1335 1336 void TemplateTable::ineg() { 1337 transition(itos, itos); 1338 __ negl(rax); 1339 } 1340 1341 1342 void TemplateTable::lneg() { 1343 transition(ltos, ltos); 1344 __ lneg(rdx, rax); 1345 } 1346 1347 1348 void TemplateTable::fneg() { 1349 transition(ftos, ftos); 1350 __ fchs(); 1351 } 1352 1353 1354 void TemplateTable::dneg() { 1355 transition(dtos, dtos); 1356 __ fchs(); 1357 } 1358 1359 1360 void TemplateTable::iinc() { 1361 transition(vtos, vtos); 1362 __ load_signed_byte(rdx, at_bcp(2)); // get constant 1363 locals_index(rbx); 1364 __ addl(iaddress(rbx), rdx); 1365 } 1366 1367 1368 void TemplateTable::wide_iinc() { 1369 transition(vtos, vtos); 1370 __ movl(rdx, at_bcp(4)); // get constant 1371 locals_index_wide(rbx); 1372 __ bswapl(rdx); // swap bytes & sign-extend constant 1373 __ sarl(rdx, 16); 1374 __ addl(iaddress(rbx), rdx); 1375 // Note: should probably use only one movl to get both 1376 // the index and the constant -> fix this 1377 } 1378 1379 1380 void TemplateTable::convert() { 1381 // Checking 1382 #ifdef ASSERT 1383 { TosState tos_in = ilgl; 1384 TosState tos_out = ilgl; 1385 switch (bytecode()) { 1386 case Bytecodes::_i2l: // fall through 1387 case Bytecodes::_i2f: // fall through 1388 case Bytecodes::_i2d: // fall through 1389 case Bytecodes::_i2b: // fall through 1390 case Bytecodes::_i2c: // fall through 1391 case Bytecodes::_i2s: tos_in = itos; break; 1392 case Bytecodes::_l2i: // fall through 1393 case Bytecodes::_l2f: // fall through 1394 case Bytecodes::_l2d: tos_in = ltos; break; 1395 case Bytecodes::_f2i: // fall through 1396 case Bytecodes::_f2l: // fall through 1397 case Bytecodes::_f2d: tos_in = ftos; break; 1398 case Bytecodes::_d2i: // fall through 1399 case Bytecodes::_d2l: // fall through 1400 case Bytecodes::_d2f: tos_in = dtos; break; 1401 default : ShouldNotReachHere(); 1402 } 1403 switch (bytecode()) { 1404 case Bytecodes::_l2i: // fall through 1405 case Bytecodes::_f2i: // fall through 1406 case Bytecodes::_d2i: // fall through 1407 case Bytecodes::_i2b: // fall through 1408 case Bytecodes::_i2c: // fall through 1409 case Bytecodes::_i2s: tos_out = itos; break; 1410 case Bytecodes::_i2l: // fall through 1411 case Bytecodes::_f2l: // fall through 1412 case Bytecodes::_d2l: tos_out = ltos; break; 1413 case Bytecodes::_i2f: // fall through 1414 case Bytecodes::_l2f: // fall through 1415 case Bytecodes::_d2f: tos_out = ftos; break; 1416 case Bytecodes::_i2d: // fall through 1417 case Bytecodes::_l2d: // fall through 1418 case Bytecodes::_f2d: tos_out = dtos; break; 1419 default : ShouldNotReachHere(); 1420 } 1421 transition(tos_in, tos_out); 1422 } 1423 #endif // ASSERT 1424 1425 // Conversion 1426 // (Note: use push(rcx)/pop(rcx) for 1/2-word stack-ptr manipulation) 1427 switch (bytecode()) { 1428 case Bytecodes::_i2l: 1429 __ extend_sign(rdx, rax); 1430 break; 1431 case Bytecodes::_i2f: 1432 __ push(rax); // store int on tos 1433 __ fild_s(at_rsp()); // load int to ST0 1434 __ f2ieee(); // truncate to float size 1435 __ pop(rcx); // adjust rsp 1436 break; 1437 case Bytecodes::_i2d: 1438 __ push(rax); // add one slot for d2ieee() 1439 __ push(rax); // store int on tos 1440 __ fild_s(at_rsp()); // load int to ST0 1441 __ d2ieee(); // truncate to double size 1442 __ pop(rcx); // adjust rsp 1443 __ pop(rcx); 1444 break; 1445 case Bytecodes::_i2b: 1446 __ shll(rax, 24); // truncate upper 24 bits 1447 __ sarl(rax, 24); // and sign-extend byte 1448 LP64_ONLY(__ movsbl(rax, rax)); 1449 break; 1450 case Bytecodes::_i2c: 1451 __ andl(rax, 0xFFFF); // truncate upper 16 bits 1452 LP64_ONLY(__ movzwl(rax, rax)); 1453 break; 1454 case Bytecodes::_i2s: 1455 __ shll(rax, 16); // truncate upper 16 bits 1456 __ sarl(rax, 16); // and sign-extend short 1457 LP64_ONLY(__ movswl(rax, rax)); 1458 break; 1459 case Bytecodes::_l2i: 1460 /* nothing to do */ 1461 break; 1462 case Bytecodes::_l2f: 1463 __ push(rdx); // store long on tos 1464 __ push(rax); 1465 __ fild_d(at_rsp()); // load long to ST0 1466 __ f2ieee(); // truncate to float size 1467 __ pop(rcx); // adjust rsp 1468 __ pop(rcx); 1469 break; 1470 case Bytecodes::_l2d: 1471 __ push(rdx); // store long on tos 1472 __ push(rax); 1473 __ fild_d(at_rsp()); // load long to ST0 1474 __ d2ieee(); // truncate to double size 1475 __ pop(rcx); // adjust rsp 1476 __ pop(rcx); 1477 break; 1478 case Bytecodes::_f2i: 1479 __ push(rcx); // reserve space for argument 1480 __ fstp_s(at_rsp()); // pass float argument on stack 1481 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2i), 1); 1482 break; 1483 case Bytecodes::_f2l: 1484 __ push(rcx); // reserve space for argument 1485 __ fstp_s(at_rsp()); // pass float argument on stack 1486 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2l), 1); 1487 break; 1488 case Bytecodes::_f2d: 1489 /* nothing to do */ 1490 break; 1491 case Bytecodes::_d2i: 1492 __ push(rcx); // reserve space for argument 1493 __ push(rcx); 1494 __ fstp_d(at_rsp()); // pass double argument on stack 1495 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2i), 2); 1496 break; 1497 case Bytecodes::_d2l: 1498 __ push(rcx); // reserve space for argument 1499 __ push(rcx); 1500 __ fstp_d(at_rsp()); // pass double argument on stack 1501 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2l), 2); 1502 break; 1503 case Bytecodes::_d2f: 1504 __ push(rcx); // reserve space for f2ieee() 1505 __ f2ieee(); // truncate to float size 1506 __ pop(rcx); // adjust rsp 1507 break; 1508 default : 1509 ShouldNotReachHere(); 1510 } 1511 } 1512 1513 1514 void TemplateTable::lcmp() { 1515 transition(ltos, itos); 1516 // y = rdx:rax 1517 __ pop_l(rbx, rcx); // get x = rcx:rbx 1518 __ lcmp2int(rcx, rbx, rdx, rax);// rcx := cmp(x, y) 1519 __ mov(rax, rcx); 1520 } 1521 1522 1523 void TemplateTable::float_cmp(bool is_float, int unordered_result) { 1524 if (is_float) { 1525 __ fld_s(at_rsp()); 1526 } else { 1527 __ fld_d(at_rsp()); 1528 __ pop(rdx); 1529 } 1530 __ pop(rcx); 1531 __ fcmp2int(rax, unordered_result < 0); 1532 } 1533 1534 1535 void TemplateTable::branch(bool is_jsr, bool is_wide) { 1536 __ get_method(rcx); // ECX holds method 1537 __ profile_taken_branch(rax,rbx); // EAX holds updated MDP, EBX holds bumped taken count 1538 1539 const ByteSize be_offset = methodOopDesc::backedge_counter_offset() + InvocationCounter::counter_offset(); 1540 const ByteSize inv_offset = methodOopDesc::invocation_counter_offset() + InvocationCounter::counter_offset(); 1541 const int method_offset = frame::interpreter_frame_method_offset * wordSize; 1542 1543 // Load up EDX with the branch displacement 1544 __ movl(rdx, at_bcp(1)); 1545 __ bswapl(rdx); 1546 if (!is_wide) __ sarl(rdx, 16); 1547 LP64_ONLY(__ movslq(rdx, rdx)); 1548 1549 1550 // Handle all the JSR stuff here, then exit. 1551 // It's much shorter and cleaner than intermingling with the 1552 // non-JSR normal-branch stuff occurring below. 1553 if (is_jsr) { 1554 // Pre-load the next target bytecode into EBX 1555 __ load_unsigned_byte(rbx, Address(rsi, rdx, Address::times_1, 0)); 1556 1557 // compute return address as bci in rax, 1558 __ lea(rax, at_bcp((is_wide ? 5 : 3) - in_bytes(constMethodOopDesc::codes_offset()))); 1559 __ subptr(rax, Address(rcx, methodOopDesc::const_offset())); 1560 // Adjust the bcp in RSI by the displacement in EDX 1561 __ addptr(rsi, rdx); 1562 // Push return address 1563 __ push_i(rax); 1564 // jsr returns vtos 1565 __ dispatch_only_noverify(vtos); 1566 return; 1567 } 1568 1569 // Normal (non-jsr) branch handling 1570 1571 // Adjust the bcp in RSI by the displacement in EDX 1572 __ addptr(rsi, rdx); 1573 1574 assert(UseLoopCounter || !UseOnStackReplacement, "on-stack-replacement requires loop counters"); 1575 Label backedge_counter_overflow; 1576 Label profile_method; 1577 Label dispatch; 1578 if (UseLoopCounter) { 1579 // increment backedge counter for backward branches 1580 // rax,: MDO 1581 // rbx,: MDO bumped taken-count 1582 // rcx: method 1583 // rdx: target offset 1584 // rsi: target bcp 1585 // rdi: locals pointer 1586 __ testl(rdx, rdx); // check if forward or backward branch 1587 __ jcc(Assembler::positive, dispatch); // count only if backward branch 1588 1589 if (TieredCompilation) { 1590 Label no_mdo; 1591 int increment = InvocationCounter::count_increment; 1592 int mask = ((1 << Tier0BackedgeNotifyFreqLog) - 1) << InvocationCounter::count_shift; 1593 if (ProfileInterpreter) { 1594 // Are we profiling? 1595 __ movptr(rbx, Address(rcx, in_bytes(methodOopDesc::method_data_offset()))); 1596 __ testptr(rbx, rbx); 1597 __ jccb(Assembler::zero, no_mdo); 1598 // Increment the MDO backedge counter 1599 const Address mdo_backedge_counter(rbx, in_bytes(methodDataOopDesc::backedge_counter_offset()) + 1600 in_bytes(InvocationCounter::counter_offset())); 1601 __ increment_mask_and_jump(mdo_backedge_counter, increment, mask, 1602 rax, false, Assembler::zero, &backedge_counter_overflow); 1603 __ jmp(dispatch); 1604 } 1605 __ bind(no_mdo); 1606 // Increment backedge counter in methodOop 1607 __ increment_mask_and_jump(Address(rcx, be_offset), increment, mask, 1608 rax, false, Assembler::zero, &backedge_counter_overflow); 1609 } else { 1610 // increment counter 1611 __ movl(rax, Address(rcx, be_offset)); // load backedge counter 1612 __ incrementl(rax, InvocationCounter::count_increment); // increment counter 1613 __ movl(Address(rcx, be_offset), rax); // store counter 1614 1615 __ movl(rax, Address(rcx, inv_offset)); // load invocation counter 1616 __ andl(rax, InvocationCounter::count_mask_value); // and the status bits 1617 __ addl(rax, Address(rcx, be_offset)); // add both counters 1618 1619 if (ProfileInterpreter) { 1620 // Test to see if we should create a method data oop 1621 __ cmp32(rax, 1622 ExternalAddress((address) &InvocationCounter::InterpreterProfileLimit)); 1623 __ jcc(Assembler::less, dispatch); 1624 1625 // if no method data exists, go to profile method 1626 __ test_method_data_pointer(rax, profile_method); 1627 1628 if (UseOnStackReplacement) { 1629 // check for overflow against rbx, which is the MDO taken count 1630 __ cmp32(rbx, 1631 ExternalAddress((address) &InvocationCounter::InterpreterBackwardBranchLimit)); 1632 __ jcc(Assembler::below, dispatch); 1633 1634 // When ProfileInterpreter is on, the backedge_count comes from the 1635 // methodDataOop, which value does not get reset on the call to 1636 // frequency_counter_overflow(). To avoid excessive calls to the overflow 1637 // routine while the method is being compiled, add a second test to make 1638 // sure the overflow function is called only once every overflow_frequency. 1639 const int overflow_frequency = 1024; 1640 __ andptr(rbx, overflow_frequency-1); 1641 __ jcc(Assembler::zero, backedge_counter_overflow); 1642 } 1643 } else { 1644 if (UseOnStackReplacement) { 1645 // check for overflow against rax, which is the sum of the counters 1646 __ cmp32(rax, 1647 ExternalAddress((address) &InvocationCounter::InterpreterBackwardBranchLimit)); 1648 __ jcc(Assembler::aboveEqual, backedge_counter_overflow); 1649 1650 } 1651 } 1652 } 1653 __ bind(dispatch); 1654 } 1655 1656 // Pre-load the next target bytecode into EBX 1657 __ load_unsigned_byte(rbx, Address(rsi, 0)); 1658 1659 // continue with the bytecode @ target 1660 // rax,: return bci for jsr's, unused otherwise 1661 // rbx,: target bytecode 1662 // rsi: target bcp 1663 __ dispatch_only(vtos); 1664 1665 if (UseLoopCounter) { 1666 if (ProfileInterpreter) { 1667 // Out-of-line code to allocate method data oop. 1668 __ bind(profile_method); 1669 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method)); 1670 __ load_unsigned_byte(rbx, Address(rsi, 0)); // restore target bytecode 1671 __ set_method_data_pointer_for_bcp(); 1672 __ jmp(dispatch); 1673 } 1674 1675 if (UseOnStackReplacement) { 1676 1677 // invocation counter overflow 1678 __ bind(backedge_counter_overflow); 1679 __ negptr(rdx); 1680 __ addptr(rdx, rsi); // branch bcp 1681 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), rdx); 1682 __ load_unsigned_byte(rbx, Address(rsi, 0)); // restore target bytecode 1683 1684 // rax,: osr nmethod (osr ok) or NULL (osr not possible) 1685 // rbx,: target bytecode 1686 // rdx: scratch 1687 // rdi: locals pointer 1688 // rsi: bcp 1689 __ testptr(rax, rax); // test result 1690 __ jcc(Assembler::zero, dispatch); // no osr if null 1691 // nmethod may have been invalidated (VM may block upon call_VM return) 1692 __ movl(rcx, Address(rax, nmethod::entry_bci_offset())); 1693 __ cmpl(rcx, InvalidOSREntryBci); 1694 __ jcc(Assembler::equal, dispatch); 1695 1696 // We have the address of an on stack replacement routine in rax, 1697 // We need to prepare to execute the OSR method. First we must 1698 // migrate the locals and monitors off of the stack. 1699 1700 __ mov(rbx, rax); // save the nmethod 1701 1702 const Register thread = rcx; 1703 __ get_thread(thread); 1704 call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin)); 1705 // rax, is OSR buffer, move it to expected parameter location 1706 __ mov(rcx, rax); 1707 1708 // pop the interpreter frame 1709 __ movptr(rdx, Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize)); // get sender sp 1710 __ leave(); // remove frame anchor 1711 __ pop(rdi); // get return address 1712 __ mov(rsp, rdx); // set sp to sender sp 1713 1714 // Align stack pointer for compiled code (note that caller is 1715 // responsible for undoing this fixup by remembering the old SP 1716 // in an rbp,-relative location) 1717 __ andptr(rsp, -(StackAlignmentInBytes)); 1718 1719 // push the (possibly adjusted) return address 1720 __ push(rdi); 1721 1722 // and begin the OSR nmethod 1723 __ jmp(Address(rbx, nmethod::osr_entry_point_offset())); 1724 } 1725 } 1726 } 1727 1728 1729 void TemplateTable::if_0cmp(Condition cc) { 1730 transition(itos, vtos); 1731 // assume branch is more often taken than not (loops use backward branches) 1732 Label not_taken; 1733 __ testl(rax, rax); 1734 __ jcc(j_not(cc), not_taken); 1735 branch(false, false); 1736 __ bind(not_taken); 1737 __ profile_not_taken_branch(rax); 1738 } 1739 1740 1741 void TemplateTable::if_icmp(Condition cc) { 1742 transition(itos, vtos); 1743 // assume branch is more often taken than not (loops use backward branches) 1744 Label not_taken; 1745 __ pop_i(rdx); 1746 __ cmpl(rdx, rax); 1747 __ jcc(j_not(cc), not_taken); 1748 branch(false, false); 1749 __ bind(not_taken); 1750 __ profile_not_taken_branch(rax); 1751 } 1752 1753 1754 void TemplateTable::if_nullcmp(Condition cc) { 1755 transition(atos, vtos); 1756 // assume branch is more often taken than not (loops use backward branches) 1757 Label not_taken; 1758 __ testptr(rax, rax); 1759 __ jcc(j_not(cc), not_taken); 1760 branch(false, false); 1761 __ bind(not_taken); 1762 __ profile_not_taken_branch(rax); 1763 } 1764 1765 1766 void TemplateTable::if_acmp(Condition cc) { 1767 transition(atos, vtos); 1768 // assume branch is more often taken than not (loops use backward branches) 1769 Label not_taken; 1770 __ pop_ptr(rdx); 1771 __ cmpptr(rdx, rax); 1772 __ jcc(j_not(cc), not_taken); 1773 branch(false, false); 1774 __ bind(not_taken); 1775 __ profile_not_taken_branch(rax); 1776 } 1777 1778 1779 void TemplateTable::ret() { 1780 transition(vtos, vtos); 1781 locals_index(rbx); 1782 __ movptr(rbx, iaddress(rbx)); // get return bci, compute return bcp 1783 __ profile_ret(rbx, rcx); 1784 __ get_method(rax); 1785 __ movptr(rsi, Address(rax, methodOopDesc::const_offset())); 1786 __ lea(rsi, Address(rsi, rbx, Address::times_1, 1787 constMethodOopDesc::codes_offset())); 1788 __ dispatch_next(vtos); 1789 } 1790 1791 1792 void TemplateTable::wide_ret() { 1793 transition(vtos, vtos); 1794 locals_index_wide(rbx); 1795 __ movptr(rbx, iaddress(rbx)); // get return bci, compute return bcp 1796 __ profile_ret(rbx, rcx); 1797 __ get_method(rax); 1798 __ movptr(rsi, Address(rax, methodOopDesc::const_offset())); 1799 __ lea(rsi, Address(rsi, rbx, Address::times_1, constMethodOopDesc::codes_offset())); 1800 __ dispatch_next(vtos); 1801 } 1802 1803 1804 void TemplateTable::tableswitch() { 1805 Label default_case, continue_execution; 1806 transition(itos, vtos); 1807 // align rsi 1808 __ lea(rbx, at_bcp(wordSize)); 1809 __ andptr(rbx, -wordSize); 1810 // load lo & hi 1811 __ movl(rcx, Address(rbx, 1 * wordSize)); 1812 __ movl(rdx, Address(rbx, 2 * wordSize)); 1813 __ bswapl(rcx); 1814 __ bswapl(rdx); 1815 // check against lo & hi 1816 __ cmpl(rax, rcx); 1817 __ jccb(Assembler::less, default_case); 1818 __ cmpl(rax, rdx); 1819 __ jccb(Assembler::greater, default_case); 1820 // lookup dispatch offset 1821 __ subl(rax, rcx); 1822 __ movl(rdx, Address(rbx, rax, Address::times_4, 3 * BytesPerInt)); 1823 __ profile_switch_case(rax, rbx, rcx); 1824 // continue execution 1825 __ bind(continue_execution); 1826 __ bswapl(rdx); 1827 __ load_unsigned_byte(rbx, Address(rsi, rdx, Address::times_1)); 1828 __ addptr(rsi, rdx); 1829 __ dispatch_only(vtos); 1830 // handle default 1831 __ bind(default_case); 1832 __ profile_switch_default(rax); 1833 __ movl(rdx, Address(rbx, 0)); 1834 __ jmp(continue_execution); 1835 } 1836 1837 1838 void TemplateTable::lookupswitch() { 1839 transition(itos, itos); 1840 __ stop("lookupswitch bytecode should have been rewritten"); 1841 } 1842 1843 1844 void TemplateTable::fast_linearswitch() { 1845 transition(itos, vtos); 1846 Label loop_entry, loop, found, continue_execution; 1847 // bswapl rax, so we can avoid bswapping the table entries 1848 __ bswapl(rax); 1849 // align rsi 1850 __ lea(rbx, at_bcp(wordSize)); // btw: should be able to get rid of this instruction (change offsets below) 1851 __ andptr(rbx, -wordSize); 1852 // set counter 1853 __ movl(rcx, Address(rbx, wordSize)); 1854 __ bswapl(rcx); 1855 __ jmpb(loop_entry); 1856 // table search 1857 __ bind(loop); 1858 __ cmpl(rax, Address(rbx, rcx, Address::times_8, 2 * wordSize)); 1859 __ jccb(Assembler::equal, found); 1860 __ bind(loop_entry); 1861 __ decrementl(rcx); 1862 __ jcc(Assembler::greaterEqual, loop); 1863 // default case 1864 __ profile_switch_default(rax); 1865 __ movl(rdx, Address(rbx, 0)); 1866 __ jmpb(continue_execution); 1867 // entry found -> get offset 1868 __ bind(found); 1869 __ movl(rdx, Address(rbx, rcx, Address::times_8, 3 * wordSize)); 1870 __ profile_switch_case(rcx, rax, rbx); 1871 // continue execution 1872 __ bind(continue_execution); 1873 __ bswapl(rdx); 1874 __ load_unsigned_byte(rbx, Address(rsi, rdx, Address::times_1)); 1875 __ addptr(rsi, rdx); 1876 __ dispatch_only(vtos); 1877 } 1878 1879 1880 void TemplateTable::fast_binaryswitch() { 1881 transition(itos, vtos); 1882 // Implementation using the following core algorithm: 1883 // 1884 // int binary_search(int key, LookupswitchPair* array, int n) { 1885 // // Binary search according to "Methodik des Programmierens" by 1886 // // Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley Germany 1985. 1887 // int i = 0; 1888 // int j = n; 1889 // while (i+1 < j) { 1890 // // invariant P: 0 <= i < j <= n and (a[i] <= key < a[j] or Q) 1891 // // with Q: for all i: 0 <= i < n: key < a[i] 1892 // // where a stands for the array and assuming that the (inexisting) 1893 // // element a[n] is infinitely big. 1894 // int h = (i + j) >> 1; 1895 // // i < h < j 1896 // if (key < array[h].fast_match()) { 1897 // j = h; 1898 // } else { 1899 // i = h; 1900 // } 1901 // } 1902 // // R: a[i] <= key < a[i+1] or Q 1903 // // (i.e., if key is within array, i is the correct index) 1904 // return i; 1905 // } 1906 1907 // register allocation 1908 const Register key = rax; // already set (tosca) 1909 const Register array = rbx; 1910 const Register i = rcx; 1911 const Register j = rdx; 1912 const Register h = rdi; // needs to be restored 1913 const Register temp = rsi; 1914 // setup array 1915 __ save_bcp(); 1916 1917 __ lea(array, at_bcp(3*wordSize)); // btw: should be able to get rid of this instruction (change offsets below) 1918 __ andptr(array, -wordSize); 1919 // initialize i & j 1920 __ xorl(i, i); // i = 0; 1921 __ movl(j, Address(array, -wordSize)); // j = length(array); 1922 // Convert j into native byteordering 1923 __ bswapl(j); 1924 // and start 1925 Label entry; 1926 __ jmp(entry); 1927 1928 // binary search loop 1929 { Label loop; 1930 __ bind(loop); 1931 // int h = (i + j) >> 1; 1932 __ leal(h, Address(i, j, Address::times_1)); // h = i + j; 1933 __ sarl(h, 1); // h = (i + j) >> 1; 1934 // if (key < array[h].fast_match()) { 1935 // j = h; 1936 // } else { 1937 // i = h; 1938 // } 1939 // Convert array[h].match to native byte-ordering before compare 1940 __ movl(temp, Address(array, h, Address::times_8, 0*wordSize)); 1941 __ bswapl(temp); 1942 __ cmpl(key, temp); 1943 // j = h if (key < array[h].fast_match()) 1944 __ cmov32(Assembler::less , j, h); 1945 // i = h if (key >= array[h].fast_match()) 1946 __ cmov32(Assembler::greaterEqual, i, h); 1947 // while (i+1 < j) 1948 __ bind(entry); 1949 __ leal(h, Address(i, 1)); // i+1 1950 __ cmpl(h, j); // i+1 < j 1951 __ jcc(Assembler::less, loop); 1952 } 1953 1954 // end of binary search, result index is i (must check again!) 1955 Label default_case; 1956 // Convert array[i].match to native byte-ordering before compare 1957 __ movl(temp, Address(array, i, Address::times_8, 0*wordSize)); 1958 __ bswapl(temp); 1959 __ cmpl(key, temp); 1960 __ jcc(Assembler::notEqual, default_case); 1961 1962 // entry found -> j = offset 1963 __ movl(j , Address(array, i, Address::times_8, 1*wordSize)); 1964 __ profile_switch_case(i, key, array); 1965 __ bswapl(j); 1966 LP64_ONLY(__ movslq(j, j)); 1967 __ restore_bcp(); 1968 __ restore_locals(); // restore rdi 1969 __ load_unsigned_byte(rbx, Address(rsi, j, Address::times_1)); 1970 1971 __ addptr(rsi, j); 1972 __ dispatch_only(vtos); 1973 1974 // default case -> j = default offset 1975 __ bind(default_case); 1976 __ profile_switch_default(i); 1977 __ movl(j, Address(array, -2*wordSize)); 1978 __ bswapl(j); 1979 LP64_ONLY(__ movslq(j, j)); 1980 __ restore_bcp(); 1981 __ restore_locals(); // restore rdi 1982 __ load_unsigned_byte(rbx, Address(rsi, j, Address::times_1)); 1983 __ addptr(rsi, j); 1984 __ dispatch_only(vtos); 1985 } 1986 1987 1988 void TemplateTable::_return(TosState state) { 1989 transition(state, state); 1990 assert(_desc->calls_vm(), "inconsistent calls_vm information"); // call in remove_activation 1991 1992 if (_desc->bytecode() == Bytecodes::_return_register_finalizer) { 1993 assert(state == vtos, "only valid state"); 1994 __ movptr(rax, aaddress(0)); 1995 __ load_klass(rdi, rax); 1996 __ movl(rdi, Address(rdi, Klass::access_flags_offset_in_bytes() + sizeof(oopDesc))); 1997 __ testl(rdi, JVM_ACC_HAS_FINALIZER); 1998 Label skip_register_finalizer; 1999 __ jcc(Assembler::zero, skip_register_finalizer); 2000 2001 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), rax); 2002 2003 __ bind(skip_register_finalizer); 2004 } 2005 2006 __ remove_activation(state, rsi); 2007 __ jmp(rsi); 2008 } 2009 2010 2011 // ---------------------------------------------------------------------------- 2012 // Volatile variables demand their effects be made known to all CPU's in 2013 // order. Store buffers on most chips allow reads & writes to reorder; the 2014 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of 2015 // memory barrier (i.e., it's not sufficient that the interpreter does not 2016 // reorder volatile references, the hardware also must not reorder them). 2017 // 2018 // According to the new Java Memory Model (JMM): 2019 // (1) All volatiles are serialized wrt to each other. 2020 // ALSO reads & writes act as aquire & release, so: 2021 // (2) A read cannot let unrelated NON-volatile memory refs that happen after 2022 // the read float up to before the read. It's OK for non-volatile memory refs 2023 // that happen before the volatile read to float down below it. 2024 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs 2025 // that happen BEFORE the write float down to after the write. It's OK for 2026 // non-volatile memory refs that happen after the volatile write to float up 2027 // before it. 2028 // 2029 // We only put in barriers around volatile refs (they are expensive), not 2030 // _between_ memory refs (that would require us to track the flavor of the 2031 // previous memory refs). Requirements (2) and (3) require some barriers 2032 // before volatile stores and after volatile loads. These nearly cover 2033 // requirement (1) but miss the volatile-store-volatile-load case. This final 2034 // case is placed after volatile-stores although it could just as well go 2035 // before volatile-loads. 2036 void TemplateTable::volatile_barrier(Assembler::Membar_mask_bits order_constraint ) { 2037 // Helper function to insert a is-volatile test and memory barrier 2038 if( !os::is_MP() ) return; // Not needed on single CPU 2039 __ membar(order_constraint); 2040 } 2041 2042 void TemplateTable::resolve_cache_and_index(int byte_no, 2043 Register result, 2044 Register Rcache, 2045 Register index, 2046 size_t index_size) { 2047 Register temp = rbx; 2048 2049 assert_different_registers(result, Rcache, index, temp); 2050 2051 Label resolved; 2052 __ get_cache_and_index_at_bcp(Rcache, index, 1, index_size); 2053 if (byte_no == f1_oop) { 2054 // We are resolved if the f1 field contains a non-null object (CallSite, etc.) 2055 // This kind of CP cache entry does not need to match the flags byte, because 2056 // there is a 1-1 relation between bytecode type and CP entry type. 2057 assert(result != noreg, ""); //else do cmpptr(Address(...), (int32_t) NULL_WORD) 2058 __ movptr(result, Address(Rcache, index, Address::times_ptr, constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::f1_offset())); 2059 __ testptr(result, result); 2060 __ jcc(Assembler::notEqual, resolved); 2061 } else { 2062 assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range"); 2063 assert(result == noreg, ""); //else change code for setting result 2064 const int shift_count = (1 + byte_no)*BitsPerByte; 2065 __ movl(temp, Address(Rcache, index, Address::times_4, constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::indices_offset())); 2066 __ shrl(temp, shift_count); 2067 // have we resolved this bytecode? 2068 __ andl(temp, 0xFF); 2069 __ cmpl(temp, (int)bytecode()); 2070 __ jcc(Assembler::equal, resolved); 2071 } 2072 2073 // resolve first time through 2074 address entry; 2075 switch (bytecode()) { 2076 case Bytecodes::_getstatic : // fall through 2077 case Bytecodes::_putstatic : // fall through 2078 case Bytecodes::_getfield : // fall through 2079 case Bytecodes::_putfield : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_get_put); break; 2080 case Bytecodes::_invokevirtual : // fall through 2081 case Bytecodes::_invokespecial : // fall through 2082 case Bytecodes::_invokestatic : // fall through 2083 case Bytecodes::_invokeinterface: entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invoke); break; 2084 case Bytecodes::_invokedynamic : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invokedynamic); break; 2085 case Bytecodes::_fast_aldc : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc); break; 2086 case Bytecodes::_fast_aldc_w : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc); break; 2087 default : ShouldNotReachHere(); break; 2088 } 2089 __ movl(temp, (int)bytecode()); 2090 __ call_VM(noreg, entry, temp); 2091 // Update registers with resolved info 2092 __ get_cache_and_index_at_bcp(Rcache, index, 1, index_size); 2093 if (result != noreg) 2094 __ movptr(result, Address(Rcache, index, Address::times_ptr, constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::f1_offset())); 2095 __ bind(resolved); 2096 } 2097 2098 2099 // The cache and index registers must be set before call 2100 void TemplateTable::load_field_cp_cache_entry(Register obj, 2101 Register cache, 2102 Register index, 2103 Register off, 2104 Register flags, 2105 bool is_static = false) { 2106 assert_different_registers(cache, index, flags, off); 2107 2108 ByteSize cp_base_offset = constantPoolCacheOopDesc::base_offset(); 2109 // Field offset 2110 __ movptr(off, Address(cache, index, Address::times_ptr, 2111 in_bytes(cp_base_offset + ConstantPoolCacheEntry::f2_offset()))); 2112 // Flags 2113 __ movl(flags, Address(cache, index, Address::times_ptr, 2114 in_bytes(cp_base_offset + ConstantPoolCacheEntry::flags_offset()))); 2115 2116 // klass overwrite register 2117 if (is_static) { 2118 __ movptr(obj, Address(cache, index, Address::times_ptr, 2119 in_bytes(cp_base_offset + ConstantPoolCacheEntry::f1_offset()))); 2120 } 2121 } 2122 2123 void TemplateTable::load_invoke_cp_cache_entry(int byte_no, 2124 Register method, 2125 Register itable_index, 2126 Register flags, 2127 bool is_invokevirtual, 2128 bool is_invokevfinal /*unused*/, 2129 bool is_invokedynamic) { 2130 // setup registers 2131 const Register cache = rcx; 2132 const Register index = rdx; 2133 assert_different_registers(method, flags); 2134 assert_different_registers(method, cache, index); 2135 assert_different_registers(itable_index, flags); 2136 assert_different_registers(itable_index, cache, index); 2137 // determine constant pool cache field offsets 2138 const int method_offset = in_bytes( 2139 constantPoolCacheOopDesc::base_offset() + 2140 (is_invokevirtual 2141 ? ConstantPoolCacheEntry::f2_offset() 2142 : ConstantPoolCacheEntry::f1_offset() 2143 ) 2144 ); 2145 const int flags_offset = in_bytes(constantPoolCacheOopDesc::base_offset() + 2146 ConstantPoolCacheEntry::flags_offset()); 2147 // access constant pool cache fields 2148 const int index_offset = in_bytes(constantPoolCacheOopDesc::base_offset() + 2149 ConstantPoolCacheEntry::f2_offset()); 2150 2151 if (byte_no == f1_oop) { 2152 // Resolved f1_oop goes directly into 'method' register. 2153 assert(is_invokedynamic, ""); 2154 resolve_cache_and_index(byte_no, method, cache, index, sizeof(u4)); 2155 } else { 2156 resolve_cache_and_index(byte_no, noreg, cache, index, sizeof(u2)); 2157 __ movptr(method, Address(cache, index, Address::times_ptr, method_offset)); 2158 } 2159 if (itable_index != noreg) { 2160 __ movptr(itable_index, Address(cache, index, Address::times_ptr, index_offset)); 2161 } 2162 __ movl(flags, Address(cache, index, Address::times_ptr, flags_offset)); 2163 } 2164 2165 2166 // The registers cache and index expected to be set before call. 2167 // Correct values of the cache and index registers are preserved. 2168 void TemplateTable::jvmti_post_field_access(Register cache, 2169 Register index, 2170 bool is_static, 2171 bool has_tos) { 2172 if (JvmtiExport::can_post_field_access()) { 2173 // Check to see if a field access watch has been set before we take 2174 // the time to call into the VM. 2175 Label L1; 2176 assert_different_registers(cache, index, rax); 2177 __ mov32(rax, ExternalAddress((address) JvmtiExport::get_field_access_count_addr())); 2178 __ testl(rax,rax); 2179 __ jcc(Assembler::zero, L1); 2180 2181 // cache entry pointer 2182 __ addptr(cache, in_bytes(constantPoolCacheOopDesc::base_offset())); 2183 __ shll(index, LogBytesPerWord); 2184 __ addptr(cache, index); 2185 if (is_static) { 2186 __ xorptr(rax, rax); // NULL object reference 2187 } else { 2188 __ pop(atos); // Get the object 2189 __ verify_oop(rax); 2190 __ push(atos); // Restore stack state 2191 } 2192 // rax,: object pointer or NULL 2193 // cache: cache entry pointer 2194 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access), 2195 rax, cache); 2196 __ get_cache_and_index_at_bcp(cache, index, 1); 2197 __ bind(L1); 2198 } 2199 } 2200 2201 void TemplateTable::pop_and_check_object(Register r) { 2202 __ pop_ptr(r); 2203 __ null_check(r); // for field access must check obj. 2204 __ verify_oop(r); 2205 } 2206 2207 void TemplateTable::getfield_or_static(int byte_no, bool is_static) { 2208 transition(vtos, vtos); 2209 2210 const Register cache = rcx; 2211 const Register index = rdx; 2212 const Register obj = rcx; 2213 const Register off = rbx; 2214 const Register flags = rax; 2215 2216 resolve_cache_and_index(byte_no, noreg, cache, index, sizeof(u2)); 2217 jvmti_post_field_access(cache, index, is_static, false); 2218 load_field_cp_cache_entry(obj, cache, index, off, flags, is_static); 2219 2220 if (!is_static) pop_and_check_object(obj); 2221 2222 const Address lo(obj, off, Address::times_1, 0*wordSize); 2223 const Address hi(obj, off, Address::times_1, 1*wordSize); 2224 2225 Label Done, notByte, notInt, notShort, notChar, notLong, notFloat, notObj, notDouble; 2226 2227 __ shrl(flags, ConstantPoolCacheEntry::tosBits); 2228 assert(btos == 0, "change code, btos != 0"); 2229 // btos 2230 __ andptr(flags, 0x0f); 2231 __ jcc(Assembler::notZero, notByte); 2232 2233 __ load_signed_byte(rax, lo ); 2234 __ push(btos); 2235 // Rewrite bytecode to be faster 2236 if (!is_static) { 2237 patch_bytecode(Bytecodes::_fast_bgetfield, rcx, rbx); 2238 } 2239 __ jmp(Done); 2240 2241 __ bind(notByte); 2242 // itos 2243 __ cmpl(flags, itos ); 2244 __ jcc(Assembler::notEqual, notInt); 2245 2246 __ movl(rax, lo ); 2247 __ push(itos); 2248 // Rewrite bytecode to be faster 2249 if (!is_static) { 2250 patch_bytecode(Bytecodes::_fast_igetfield, rcx, rbx); 2251 } 2252 __ jmp(Done); 2253 2254 __ bind(notInt); 2255 // atos 2256 __ cmpl(flags, atos ); 2257 __ jcc(Assembler::notEqual, notObj); 2258 2259 __ movl(rax, lo ); 2260 __ push(atos); 2261 if (!is_static) { 2262 patch_bytecode(Bytecodes::_fast_agetfield, rcx, rbx); 2263 } 2264 __ jmp(Done); 2265 2266 __ bind(notObj); 2267 // ctos 2268 __ cmpl(flags, ctos ); 2269 __ jcc(Assembler::notEqual, notChar); 2270 2271 __ load_unsigned_short(rax, lo ); 2272 __ push(ctos); 2273 if (!is_static) { 2274 patch_bytecode(Bytecodes::_fast_cgetfield, rcx, rbx); 2275 } 2276 __ jmp(Done); 2277 2278 __ bind(notChar); 2279 // stos 2280 __ cmpl(flags, stos ); 2281 __ jcc(Assembler::notEqual, notShort); 2282 2283 __ load_signed_short(rax, lo ); 2284 __ push(stos); 2285 if (!is_static) { 2286 patch_bytecode(Bytecodes::_fast_sgetfield, rcx, rbx); 2287 } 2288 __ jmp(Done); 2289 2290 __ bind(notShort); 2291 // ltos 2292 __ cmpl(flags, ltos ); 2293 __ jcc(Assembler::notEqual, notLong); 2294 2295 // Generate code as if volatile. There just aren't enough registers to 2296 // save that information and this code is faster than the test. 2297 __ fild_d(lo); // Must load atomically 2298 __ subptr(rsp,2*wordSize); // Make space for store 2299 __ fistp_d(Address(rsp,0)); 2300 __ pop(rax); 2301 __ pop(rdx); 2302 2303 __ push(ltos); 2304 // Don't rewrite to _fast_lgetfield for potential volatile case. 2305 __ jmp(Done); 2306 2307 __ bind(notLong); 2308 // ftos 2309 __ cmpl(flags, ftos ); 2310 __ jcc(Assembler::notEqual, notFloat); 2311 2312 __ fld_s(lo); 2313 __ push(ftos); 2314 if (!is_static) { 2315 patch_bytecode(Bytecodes::_fast_fgetfield, rcx, rbx); 2316 } 2317 __ jmp(Done); 2318 2319 __ bind(notFloat); 2320 // dtos 2321 __ cmpl(flags, dtos ); 2322 __ jcc(Assembler::notEqual, notDouble); 2323 2324 __ fld_d(lo); 2325 __ push(dtos); 2326 if (!is_static) { 2327 patch_bytecode(Bytecodes::_fast_dgetfield, rcx, rbx); 2328 } 2329 __ jmpb(Done); 2330 2331 __ bind(notDouble); 2332 2333 __ stop("Bad state"); 2334 2335 __ bind(Done); 2336 // Doug Lea believes this is not needed with current Sparcs (TSO) and Intel (PSO). 2337 // volatile_barrier( ); 2338 } 2339 2340 2341 void TemplateTable::getfield(int byte_no) { 2342 getfield_or_static(byte_no, false); 2343 } 2344 2345 2346 void TemplateTable::getstatic(int byte_no) { 2347 getfield_or_static(byte_no, true); 2348 } 2349 2350 // The registers cache and index expected to be set before call. 2351 // The function may destroy various registers, just not the cache and index registers. 2352 void TemplateTable::jvmti_post_field_mod(Register cache, Register index, bool is_static) { 2353 2354 ByteSize cp_base_offset = constantPoolCacheOopDesc::base_offset(); 2355 2356 if (JvmtiExport::can_post_field_modification()) { 2357 // Check to see if a field modification watch has been set before we take 2358 // the time to call into the VM. 2359 Label L1; 2360 assert_different_registers(cache, index, rax); 2361 __ mov32(rax, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr())); 2362 __ testl(rax, rax); 2363 __ jcc(Assembler::zero, L1); 2364 2365 // The cache and index registers have been already set. 2366 // This allows to eliminate this call but the cache and index 2367 // registers have to be correspondingly used after this line. 2368 __ get_cache_and_index_at_bcp(rax, rdx, 1); 2369 2370 if (is_static) { 2371 // Life is simple. Null out the object pointer. 2372 __ xorptr(rbx, rbx); 2373 } else { 2374 // Life is harder. The stack holds the value on top, followed by the object. 2375 // We don't know the size of the value, though; it could be one or two words 2376 // depending on its type. As a result, we must find the type to determine where 2377 // the object is. 2378 Label two_word, valsize_known; 2379 __ movl(rcx, Address(rax, rdx, Address::times_ptr, in_bytes(cp_base_offset + 2380 ConstantPoolCacheEntry::flags_offset()))); 2381 __ mov(rbx, rsp); 2382 __ shrl(rcx, ConstantPoolCacheEntry::tosBits); 2383 // Make sure we don't need to mask rcx for tosBits after the above shift 2384 ConstantPoolCacheEntry::verify_tosBits(); 2385 __ cmpl(rcx, ltos); 2386 __ jccb(Assembler::equal, two_word); 2387 __ cmpl(rcx, dtos); 2388 __ jccb(Assembler::equal, two_word); 2389 __ addptr(rbx, Interpreter::expr_offset_in_bytes(1)); // one word jvalue (not ltos, dtos) 2390 __ jmpb(valsize_known); 2391 2392 __ bind(two_word); 2393 __ addptr(rbx, Interpreter::expr_offset_in_bytes(2)); // two words jvalue 2394 2395 __ bind(valsize_known); 2396 // setup object pointer 2397 __ movptr(rbx, Address(rbx, 0)); 2398 } 2399 // cache entry pointer 2400 __ addptr(rax, in_bytes(cp_base_offset)); 2401 __ shll(rdx, LogBytesPerWord); 2402 __ addptr(rax, rdx); 2403 // object (tos) 2404 __ mov(rcx, rsp); 2405 // rbx,: object pointer set up above (NULL if static) 2406 // rax,: cache entry pointer 2407 // rcx: jvalue object on the stack 2408 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification), 2409 rbx, rax, rcx); 2410 __ get_cache_and_index_at_bcp(cache, index, 1); 2411 __ bind(L1); 2412 } 2413 } 2414 2415 2416 void TemplateTable::putfield_or_static(int byte_no, bool is_static) { 2417 transition(vtos, vtos); 2418 2419 const Register cache = rcx; 2420 const Register index = rdx; 2421 const Register obj = rcx; 2422 const Register off = rbx; 2423 const Register flags = rax; 2424 2425 resolve_cache_and_index(byte_no, noreg, cache, index, sizeof(u2)); 2426 jvmti_post_field_mod(cache, index, is_static); 2427 load_field_cp_cache_entry(obj, cache, index, off, flags, is_static); 2428 2429 // Doug Lea believes this is not needed with current Sparcs (TSO) and Intel (PSO). 2430 // volatile_barrier( ); 2431 2432 Label notVolatile, Done; 2433 __ movl(rdx, flags); 2434 __ shrl(rdx, ConstantPoolCacheEntry::volatileField); 2435 __ andl(rdx, 0x1); 2436 2437 // field addresses 2438 const Address lo(obj, off, Address::times_1, 0*wordSize); 2439 const Address hi(obj, off, Address::times_1, 1*wordSize); 2440 2441 Label notByte, notInt, notShort, notChar, notLong, notFloat, notObj, notDouble; 2442 2443 __ shrl(flags, ConstantPoolCacheEntry::tosBits); 2444 assert(btos == 0, "change code, btos != 0"); 2445 // btos 2446 __ andl(flags, 0x0f); 2447 __ jcc(Assembler::notZero, notByte); 2448 2449 __ pop(btos); 2450 if (!is_static) pop_and_check_object(obj); 2451 __ movb(lo, rax ); 2452 if (!is_static) { 2453 patch_bytecode(Bytecodes::_fast_bputfield, rcx, rbx); 2454 } 2455 __ jmp(Done); 2456 2457 __ bind(notByte); 2458 // itos 2459 __ cmpl(flags, itos ); 2460 __ jcc(Assembler::notEqual, notInt); 2461 2462 __ pop(itos); 2463 if (!is_static) pop_and_check_object(obj); 2464 2465 __ movl(lo, rax ); 2466 if (!is_static) { 2467 patch_bytecode(Bytecodes::_fast_iputfield, rcx, rbx); 2468 } 2469 __ jmp(Done); 2470 2471 __ bind(notInt); 2472 // atos 2473 __ cmpl(flags, atos ); 2474 __ jcc(Assembler::notEqual, notObj); 2475 2476 __ pop(atos); 2477 if (!is_static) pop_and_check_object(obj); 2478 2479 do_oop_store(_masm, lo, rax, _bs->kind(), false); 2480 2481 if (!is_static) { 2482 patch_bytecode(Bytecodes::_fast_aputfield, rcx, rbx); 2483 } 2484 2485 __ jmp(Done); 2486 2487 __ bind(notObj); 2488 // ctos 2489 __ cmpl(flags, ctos ); 2490 __ jcc(Assembler::notEqual, notChar); 2491 2492 __ pop(ctos); 2493 if (!is_static) pop_and_check_object(obj); 2494 __ movw(lo, rax ); 2495 if (!is_static) { 2496 patch_bytecode(Bytecodes::_fast_cputfield, rcx, rbx); 2497 } 2498 __ jmp(Done); 2499 2500 __ bind(notChar); 2501 // stos 2502 __ cmpl(flags, stos ); 2503 __ jcc(Assembler::notEqual, notShort); 2504 2505 __ pop(stos); 2506 if (!is_static) pop_and_check_object(obj); 2507 __ movw(lo, rax ); 2508 if (!is_static) { 2509 patch_bytecode(Bytecodes::_fast_sputfield, rcx, rbx); 2510 } 2511 __ jmp(Done); 2512 2513 __ bind(notShort); 2514 // ltos 2515 __ cmpl(flags, ltos ); 2516 __ jcc(Assembler::notEqual, notLong); 2517 2518 Label notVolatileLong; 2519 __ testl(rdx, rdx); 2520 __ jcc(Assembler::zero, notVolatileLong); 2521 2522 __ pop(ltos); // overwrites rdx, do this after testing volatile. 2523 if (!is_static) pop_and_check_object(obj); 2524 2525 // Replace with real volatile test 2526 __ push(rdx); 2527 __ push(rax); // Must update atomically with FIST 2528 __ fild_d(Address(rsp,0)); // So load into FPU register 2529 __ fistp_d(lo); // and put into memory atomically 2530 __ addptr(rsp, 2*wordSize); 2531 // volatile_barrier(); 2532 volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad | 2533 Assembler::StoreStore)); 2534 // Don't rewrite volatile version 2535 __ jmp(notVolatile); 2536 2537 __ bind(notVolatileLong); 2538 2539 __ pop(ltos); // overwrites rdx 2540 if (!is_static) pop_and_check_object(obj); 2541 NOT_LP64(__ movptr(hi, rdx)); 2542 __ movptr(lo, rax); 2543 if (!is_static) { 2544 patch_bytecode(Bytecodes::_fast_lputfield, rcx, rbx); 2545 } 2546 __ jmp(notVolatile); 2547 2548 __ bind(notLong); 2549 // ftos 2550 __ cmpl(flags, ftos ); 2551 __ jcc(Assembler::notEqual, notFloat); 2552 2553 __ pop(ftos); 2554 if (!is_static) pop_and_check_object(obj); 2555 __ fstp_s(lo); 2556 if (!is_static) { 2557 patch_bytecode(Bytecodes::_fast_fputfield, rcx, rbx); 2558 } 2559 __ jmp(Done); 2560 2561 __ bind(notFloat); 2562 // dtos 2563 __ cmpl(flags, dtos ); 2564 __ jcc(Assembler::notEqual, notDouble); 2565 2566 __ pop(dtos); 2567 if (!is_static) pop_and_check_object(obj); 2568 __ fstp_d(lo); 2569 if (!is_static) { 2570 patch_bytecode(Bytecodes::_fast_dputfield, rcx, rbx); 2571 } 2572 __ jmp(Done); 2573 2574 __ bind(notDouble); 2575 2576 __ stop("Bad state"); 2577 2578 __ bind(Done); 2579 2580 // Check for volatile store 2581 __ testl(rdx, rdx); 2582 __ jcc(Assembler::zero, notVolatile); 2583 volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad | 2584 Assembler::StoreStore)); 2585 __ bind(notVolatile); 2586 } 2587 2588 2589 void TemplateTable::putfield(int byte_no) { 2590 putfield_or_static(byte_no, false); 2591 } 2592 2593 2594 void TemplateTable::putstatic(int byte_no) { 2595 putfield_or_static(byte_no, true); 2596 } 2597 2598 void TemplateTable::jvmti_post_fast_field_mod() { 2599 if (JvmtiExport::can_post_field_modification()) { 2600 // Check to see if a field modification watch has been set before we take 2601 // the time to call into the VM. 2602 Label L2; 2603 __ mov32(rcx, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr())); 2604 __ testl(rcx,rcx); 2605 __ jcc(Assembler::zero, L2); 2606 __ pop_ptr(rbx); // copy the object pointer from tos 2607 __ verify_oop(rbx); 2608 __ push_ptr(rbx); // put the object pointer back on tos 2609 __ subptr(rsp, sizeof(jvalue)); // add space for a jvalue object 2610 __ mov(rcx, rsp); 2611 __ push_ptr(rbx); // save object pointer so we can steal rbx, 2612 __ xorptr(rbx, rbx); 2613 const Address lo_value(rcx, rbx, Address::times_1, 0*wordSize); 2614 const Address hi_value(rcx, rbx, Address::times_1, 1*wordSize); 2615 switch (bytecode()) { // load values into the jvalue object 2616 case Bytecodes::_fast_bputfield: __ movb(lo_value, rax); break; 2617 case Bytecodes::_fast_sputfield: __ movw(lo_value, rax); break; 2618 case Bytecodes::_fast_cputfield: __ movw(lo_value, rax); break; 2619 case Bytecodes::_fast_iputfield: __ movl(lo_value, rax); break; 2620 case Bytecodes::_fast_lputfield: 2621 NOT_LP64(__ movptr(hi_value, rdx)); 2622 __ movptr(lo_value, rax); 2623 break; 2624 2625 // need to call fld_s() after fstp_s() to restore the value for below 2626 case Bytecodes::_fast_fputfield: __ fstp_s(lo_value); __ fld_s(lo_value); break; 2627 2628 // need to call fld_d() after fstp_d() to restore the value for below 2629 case Bytecodes::_fast_dputfield: __ fstp_d(lo_value); __ fld_d(lo_value); break; 2630 2631 // since rcx is not an object we don't call store_check() here 2632 case Bytecodes::_fast_aputfield: __ movptr(lo_value, rax); break; 2633 2634 default: ShouldNotReachHere(); 2635 } 2636 __ pop_ptr(rbx); // restore copy of object pointer 2637 2638 // Save rax, and sometimes rdx because call_VM() will clobber them, 2639 // then use them for JVM/DI purposes 2640 __ push(rax); 2641 if (bytecode() == Bytecodes::_fast_lputfield) __ push(rdx); 2642 // access constant pool cache entry 2643 __ get_cache_entry_pointer_at_bcp(rax, rdx, 1); 2644 __ verify_oop(rbx); 2645 // rbx,: object pointer copied above 2646 // rax,: cache entry pointer 2647 // rcx: jvalue object on the stack 2648 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification), rbx, rax, rcx); 2649 if (bytecode() == Bytecodes::_fast_lputfield) __ pop(rdx); // restore high value 2650 __ pop(rax); // restore lower value 2651 __ addptr(rsp, sizeof(jvalue)); // release jvalue object space 2652 __ bind(L2); 2653 } 2654 } 2655 2656 void TemplateTable::fast_storefield(TosState state) { 2657 transition(state, vtos); 2658 2659 ByteSize base = constantPoolCacheOopDesc::base_offset(); 2660 2661 jvmti_post_fast_field_mod(); 2662 2663 // access constant pool cache 2664 __ get_cache_and_index_at_bcp(rcx, rbx, 1); 2665 2666 // test for volatile with rdx but rdx is tos register for lputfield. 2667 if (bytecode() == Bytecodes::_fast_lputfield) __ push(rdx); 2668 __ movl(rdx, Address(rcx, rbx, Address::times_ptr, in_bytes(base + 2669 ConstantPoolCacheEntry::flags_offset()))); 2670 2671 // replace index with field offset from cache entry 2672 __ movptr(rbx, Address(rcx, rbx, Address::times_ptr, in_bytes(base + ConstantPoolCacheEntry::f2_offset()))); 2673 2674 // Doug Lea believes this is not needed with current Sparcs (TSO) and Intel (PSO). 2675 // volatile_barrier( ); 2676 2677 Label notVolatile, Done; 2678 __ shrl(rdx, ConstantPoolCacheEntry::volatileField); 2679 __ andl(rdx, 0x1); 2680 // Check for volatile store 2681 __ testl(rdx, rdx); 2682 __ jcc(Assembler::zero, notVolatile); 2683 2684 if (bytecode() == Bytecodes::_fast_lputfield) __ pop(rdx); 2685 2686 // Get object from stack 2687 pop_and_check_object(rcx); 2688 2689 // field addresses 2690 const Address lo(rcx, rbx, Address::times_1, 0*wordSize); 2691 const Address hi(rcx, rbx, Address::times_1, 1*wordSize); 2692 2693 // access field 2694 switch (bytecode()) { 2695 case Bytecodes::_fast_bputfield: __ movb(lo, rax); break; 2696 case Bytecodes::_fast_sputfield: // fall through 2697 case Bytecodes::_fast_cputfield: __ movw(lo, rax); break; 2698 case Bytecodes::_fast_iputfield: __ movl(lo, rax); break; 2699 case Bytecodes::_fast_lputfield: 2700 NOT_LP64(__ movptr(hi, rdx)); 2701 __ movptr(lo, rax); 2702 break; 2703 case Bytecodes::_fast_fputfield: __ fstp_s(lo); break; 2704 case Bytecodes::_fast_dputfield: __ fstp_d(lo); break; 2705 case Bytecodes::_fast_aputfield: { 2706 do_oop_store(_masm, lo, rax, _bs->kind(), false); 2707 break; 2708 } 2709 default: 2710 ShouldNotReachHere(); 2711 } 2712 2713 Label done; 2714 volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad | 2715 Assembler::StoreStore)); 2716 // Barriers are so large that short branch doesn't reach! 2717 __ jmp(done); 2718 2719 // Same code as above, but don't need rdx to test for volatile. 2720 __ bind(notVolatile); 2721 2722 if (bytecode() == Bytecodes::_fast_lputfield) __ pop(rdx); 2723 2724 // Get object from stack 2725 pop_and_check_object(rcx); 2726 2727 // access field 2728 switch (bytecode()) { 2729 case Bytecodes::_fast_bputfield: __ movb(lo, rax); break; 2730 case Bytecodes::_fast_sputfield: // fall through 2731 case Bytecodes::_fast_cputfield: __ movw(lo, rax); break; 2732 case Bytecodes::_fast_iputfield: __ movl(lo, rax); break; 2733 case Bytecodes::_fast_lputfield: 2734 NOT_LP64(__ movptr(hi, rdx)); 2735 __ movptr(lo, rax); 2736 break; 2737 case Bytecodes::_fast_fputfield: __ fstp_s(lo); break; 2738 case Bytecodes::_fast_dputfield: __ fstp_d(lo); break; 2739 case Bytecodes::_fast_aputfield: { 2740 do_oop_store(_masm, lo, rax, _bs->kind(), false); 2741 break; 2742 } 2743 default: 2744 ShouldNotReachHere(); 2745 } 2746 __ bind(done); 2747 } 2748 2749 2750 void TemplateTable::fast_accessfield(TosState state) { 2751 transition(atos, state); 2752 2753 // do the JVMTI work here to avoid disturbing the register state below 2754 if (JvmtiExport::can_post_field_access()) { 2755 // Check to see if a field access watch has been set before we take 2756 // the time to call into the VM. 2757 Label L1; 2758 __ mov32(rcx, ExternalAddress((address) JvmtiExport::get_field_access_count_addr())); 2759 __ testl(rcx,rcx); 2760 __ jcc(Assembler::zero, L1); 2761 // access constant pool cache entry 2762 __ get_cache_entry_pointer_at_bcp(rcx, rdx, 1); 2763 __ push_ptr(rax); // save object pointer before call_VM() clobbers it 2764 __ verify_oop(rax); 2765 // rax,: object pointer copied above 2766 // rcx: cache entry pointer 2767 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access), rax, rcx); 2768 __ pop_ptr(rax); // restore object pointer 2769 __ bind(L1); 2770 } 2771 2772 // access constant pool cache 2773 __ get_cache_and_index_at_bcp(rcx, rbx, 1); 2774 // replace index with field offset from cache entry 2775 __ movptr(rbx, Address(rcx, 2776 rbx, 2777 Address::times_ptr, 2778 in_bytes(constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::f2_offset()))); 2779 2780 2781 // rax,: object 2782 __ verify_oop(rax); 2783 __ null_check(rax); 2784 // field addresses 2785 const Address lo = Address(rax, rbx, Address::times_1, 0*wordSize); 2786 const Address hi = Address(rax, rbx, Address::times_1, 1*wordSize); 2787 2788 // access field 2789 switch (bytecode()) { 2790 case Bytecodes::_fast_bgetfield: __ movsbl(rax, lo ); break; 2791 case Bytecodes::_fast_sgetfield: __ load_signed_short(rax, lo ); break; 2792 case Bytecodes::_fast_cgetfield: __ load_unsigned_short(rax, lo ); break; 2793 case Bytecodes::_fast_igetfield: __ movl(rax, lo); break; 2794 case Bytecodes::_fast_lgetfield: __ stop("should not be rewritten"); break; 2795 case Bytecodes::_fast_fgetfield: __ fld_s(lo); break; 2796 case Bytecodes::_fast_dgetfield: __ fld_d(lo); break; 2797 case Bytecodes::_fast_agetfield: __ movptr(rax, lo); __ verify_oop(rax); break; 2798 default: 2799 ShouldNotReachHere(); 2800 } 2801 2802 // Doug Lea believes this is not needed with current Sparcs(TSO) and Intel(PSO) 2803 // volatile_barrier( ); 2804 } 2805 2806 void TemplateTable::fast_xaccess(TosState state) { 2807 transition(vtos, state); 2808 // get receiver 2809 __ movptr(rax, aaddress(0)); 2810 // access constant pool cache 2811 __ get_cache_and_index_at_bcp(rcx, rdx, 2); 2812 __ movptr(rbx, Address(rcx, 2813 rdx, 2814 Address::times_ptr, 2815 in_bytes(constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::f2_offset()))); 2816 // make sure exception is reported in correct bcp range (getfield is next instruction) 2817 __ increment(rsi); 2818 __ null_check(rax); 2819 const Address lo = Address(rax, rbx, Address::times_1, 0*wordSize); 2820 if (state == itos) { 2821 __ movl(rax, lo); 2822 } else if (state == atos) { 2823 __ movptr(rax, lo); 2824 __ verify_oop(rax); 2825 } else if (state == ftos) { 2826 __ fld_s(lo); 2827 } else { 2828 ShouldNotReachHere(); 2829 } 2830 __ decrement(rsi); 2831 } 2832 2833 2834 2835 //---------------------------------------------------------------------------------------------------- 2836 // Calls 2837 2838 void TemplateTable::count_calls(Register method, Register temp) { 2839 // implemented elsewhere 2840 ShouldNotReachHere(); 2841 } 2842 2843 2844 void TemplateTable::prepare_invoke(Register method, Register index, int byte_no) { 2845 // determine flags 2846 Bytecodes::Code code = bytecode(); 2847 const bool is_invokeinterface = code == Bytecodes::_invokeinterface; 2848 const bool is_invokedynamic = code == Bytecodes::_invokedynamic; 2849 const bool is_invokevirtual = code == Bytecodes::_invokevirtual; 2850 const bool is_invokespecial = code == Bytecodes::_invokespecial; 2851 const bool load_receiver = (code != Bytecodes::_invokestatic && code != Bytecodes::_invokedynamic); 2852 const bool receiver_null_check = is_invokespecial; 2853 const bool save_flags = is_invokeinterface || is_invokevirtual; 2854 // setup registers & access constant pool cache 2855 const Register recv = rcx; 2856 const Register flags = rdx; 2857 assert_different_registers(method, index, recv, flags); 2858 2859 // save 'interpreter return address' 2860 __ save_bcp(); 2861 2862 load_invoke_cp_cache_entry(byte_no, method, index, flags, is_invokevirtual, false, is_invokedynamic); 2863 2864 // load receiver if needed (note: no return address pushed yet) 2865 if (load_receiver) { 2866 assert(!is_invokedynamic, ""); 2867 __ movl(recv, flags); 2868 __ andl(recv, 0xFF); 2869 // recv count is 0 based? 2870 Address recv_addr(rsp, recv, Interpreter::stackElementScale(), -Interpreter::expr_offset_in_bytes(1)); 2871 __ movptr(recv, recv_addr); 2872 __ verify_oop(recv); 2873 } 2874 2875 // do null check if needed 2876 if (receiver_null_check) { 2877 __ null_check(recv); 2878 } 2879 2880 if (save_flags) { 2881 __ mov(rsi, flags); 2882 } 2883 2884 // compute return type 2885 __ shrl(flags, ConstantPoolCacheEntry::tosBits); 2886 // Make sure we don't need to mask flags for tosBits after the above shift 2887 ConstantPoolCacheEntry::verify_tosBits(); 2888 // load return address 2889 { 2890 address table_addr; 2891 if (is_invokeinterface || is_invokedynamic) 2892 table_addr = (address)Interpreter::return_5_addrs_by_index_table(); 2893 else 2894 table_addr = (address)Interpreter::return_3_addrs_by_index_table(); 2895 ExternalAddress table(table_addr); 2896 __ movptr(flags, ArrayAddress(table, Address(noreg, flags, Address::times_ptr))); 2897 } 2898 2899 // push return address 2900 __ push(flags); 2901 2902 // Restore flag value from the constant pool cache, and restore rsi 2903 // for later null checks. rsi is the bytecode pointer 2904 if (save_flags) { 2905 __ mov(flags, rsi); 2906 __ restore_bcp(); 2907 } 2908 } 2909 2910 2911 void TemplateTable::invokevirtual_helper(Register index, Register recv, 2912 Register flags) { 2913 2914 // Uses temporary registers rax, rdx 2915 assert_different_registers(index, recv, rax, rdx); 2916 2917 // Test for an invoke of a final method 2918 Label notFinal; 2919 __ movl(rax, flags); 2920 __ andl(rax, (1 << ConstantPoolCacheEntry::vfinalMethod)); 2921 __ jcc(Assembler::zero, notFinal); 2922 2923 Register method = index; // method must be rbx, 2924 assert(method == rbx, "methodOop must be rbx, for interpreter calling convention"); 2925 2926 // do the call - the index is actually the method to call 2927 __ verify_oop(method); 2928 2929 // It's final, need a null check here! 2930 __ null_check(recv); 2931 2932 // profile this call 2933 __ profile_final_call(rax); 2934 2935 __ jump_from_interpreted(method, rax); 2936 2937 __ bind(notFinal); 2938 2939 // get receiver klass 2940 __ null_check(recv, oopDesc::klass_offset_in_bytes()); 2941 // Keep recv in rcx for callee expects it there 2942 __ load_klass(rax, recv); 2943 __ verify_oop(rax); 2944 2945 // profile this call 2946 __ profile_virtual_call(rax, rdi, rdx); 2947 2948 // get target methodOop & entry point 2949 const int base = instanceKlass::vtable_start_offset() * wordSize; 2950 assert(vtableEntry::size() * wordSize == 4, "adjust the scaling in the code below"); 2951 __ movptr(method, Address(rax, index, Address::times_ptr, base + vtableEntry::method_offset_in_bytes())); 2952 __ jump_from_interpreted(method, rdx); 2953 } 2954 2955 2956 void TemplateTable::invokevirtual(int byte_no) { 2957 transition(vtos, vtos); 2958 assert(byte_no == f2_byte, "use this argument"); 2959 prepare_invoke(rbx, noreg, byte_no); 2960 2961 // rbx,: index 2962 // rcx: receiver 2963 // rdx: flags 2964 2965 invokevirtual_helper(rbx, rcx, rdx); 2966 } 2967 2968 2969 void TemplateTable::invokespecial(int byte_no) { 2970 transition(vtos, vtos); 2971 assert(byte_no == f1_byte, "use this argument"); 2972 prepare_invoke(rbx, noreg, byte_no); 2973 // do the call 2974 __ verify_oop(rbx); 2975 __ profile_call(rax); 2976 __ jump_from_interpreted(rbx, rax); 2977 } 2978 2979 2980 void TemplateTable::invokestatic(int byte_no) { 2981 transition(vtos, vtos); 2982 assert(byte_no == f1_byte, "use this argument"); 2983 prepare_invoke(rbx, noreg, byte_no); 2984 // do the call 2985 __ verify_oop(rbx); 2986 __ profile_call(rax); 2987 __ jump_from_interpreted(rbx, rax); 2988 } 2989 2990 2991 void TemplateTable::fast_invokevfinal(int byte_no) { 2992 transition(vtos, vtos); 2993 assert(byte_no == f2_byte, "use this argument"); 2994 __ stop("fast_invokevfinal not used on x86"); 2995 } 2996 2997 2998 void TemplateTable::invokeinterface(int byte_no) { 2999 transition(vtos, vtos); 3000 assert(byte_no == f1_byte, "use this argument"); 3001 prepare_invoke(rax, rbx, byte_no); 3002 3003 // rax,: Interface 3004 // rbx,: index 3005 // rcx: receiver 3006 // rdx: flags 3007 3008 // Special case of invokeinterface called for virtual method of 3009 // java.lang.Object. See cpCacheOop.cpp for details. 3010 // This code isn't produced by javac, but could be produced by 3011 // another compliant java compiler. 3012 Label notMethod; 3013 __ movl(rdi, rdx); 3014 __ andl(rdi, (1 << ConstantPoolCacheEntry::methodInterface)); 3015 __ jcc(Assembler::zero, notMethod); 3016 3017 invokevirtual_helper(rbx, rcx, rdx); 3018 __ bind(notMethod); 3019 3020 // Get receiver klass into rdx - also a null check 3021 __ restore_locals(); // restore rdi 3022 __ load_klass(rdx, rcx); 3023 __ verify_oop(rdx); 3024 3025 // profile this call 3026 __ profile_virtual_call(rdx, rsi, rdi); 3027 3028 Label no_such_interface, no_such_method; 3029 3030 __ lookup_interface_method(// inputs: rec. class, interface, itable index 3031 rdx, rax, rbx, 3032 // outputs: method, scan temp. reg 3033 rbx, rsi, 3034 no_such_interface); 3035 3036 // rbx,: methodOop to call 3037 // rcx: receiver 3038 // Check for abstract method error 3039 // Note: This should be done more efficiently via a throw_abstract_method_error 3040 // interpreter entry point and a conditional jump to it in case of a null 3041 // method. 3042 __ testptr(rbx, rbx); 3043 __ jcc(Assembler::zero, no_such_method); 3044 3045 // do the call 3046 // rcx: receiver 3047 // rbx,: methodOop 3048 __ jump_from_interpreted(rbx, rdx); 3049 __ should_not_reach_here(); 3050 3051 // exception handling code follows... 3052 // note: must restore interpreter registers to canonical 3053 // state for exception handling to work correctly! 3054 3055 __ bind(no_such_method); 3056 // throw exception 3057 __ pop(rbx); // pop return address (pushed by prepare_invoke) 3058 __ restore_bcp(); // rsi must be correct for exception handler (was destroyed) 3059 __ restore_locals(); // make sure locals pointer is correct as well (was destroyed) 3060 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodError)); 3061 // the call_VM checks for exception, so we should never return here. 3062 __ should_not_reach_here(); 3063 3064 __ bind(no_such_interface); 3065 // throw exception 3066 __ pop(rbx); // pop return address (pushed by prepare_invoke) 3067 __ restore_bcp(); // rsi must be correct for exception handler (was destroyed) 3068 __ restore_locals(); // make sure locals pointer is correct as well (was destroyed) 3069 __ call_VM(noreg, CAST_FROM_FN_PTR(address, 3070 InterpreterRuntime::throw_IncompatibleClassChangeError)); 3071 // the call_VM checks for exception, so we should never return here. 3072 __ should_not_reach_here(); 3073 } 3074 3075 void TemplateTable::invokedynamic(int byte_no) { 3076 transition(vtos, vtos); 3077 3078 if (!EnableInvokeDynamic) { 3079 // We should not encounter this bytecode if !EnableInvokeDynamic. 3080 // The verifier will stop it. However, if we get past the verifier, 3081 // this will stop the thread in a reasonable way, without crashing the JVM. 3082 __ call_VM(noreg, CAST_FROM_FN_PTR(address, 3083 InterpreterRuntime::throw_IncompatibleClassChangeError)); 3084 // the call_VM checks for exception, so we should never return here. 3085 __ should_not_reach_here(); 3086 return; 3087 } 3088 3089 assert(byte_no == f1_oop, "use this argument"); 3090 prepare_invoke(rax, rbx, byte_no); 3091 3092 // rax: CallSite object (f1) 3093 // rbx: unused (f2) 3094 // rcx: receiver address 3095 // rdx: flags (unused) 3096 3097 Register rax_callsite = rax; 3098 Register rcx_method_handle = rcx; 3099 3100 if (ProfileInterpreter) { 3101 // %%% should make a type profile for any invokedynamic that takes a ref argument 3102 // profile this call 3103 __ profile_call(rsi); 3104 } 3105 3106 __ load_heap_oop(rcx_method_handle, Address(rax_callsite, __ delayed_value(java_lang_invoke_CallSite::target_offset_in_bytes, rcx))); 3107 __ null_check(rcx_method_handle); 3108 __ prepare_to_jump_from_interpreted(); 3109 __ jump_to_method_handle_entry(rcx_method_handle, rdx); 3110 } 3111 3112 //---------------------------------------------------------------------------------------------------- 3113 // Allocation 3114 3115 void TemplateTable::_new() { 3116 transition(vtos, atos); 3117 __ get_unsigned_2_byte_index_at_bcp(rdx, 1); 3118 Label slow_case; 3119 Label slow_case_no_pop; 3120 Label done; 3121 Label initialize_header; 3122 Label initialize_object; // including clearing the fields 3123 Label allocate_shared; 3124 3125 __ get_cpool_and_tags(rcx, rax); 3126 3127 // Make sure the class we're about to instantiate has been resolved. 3128 // This is done before loading instanceKlass to be consistent with the order 3129 // how Constant Pool is updated (see constantPoolOopDesc::klass_at_put) 3130 const int tags_offset = typeArrayOopDesc::header_size(T_BYTE) * wordSize; 3131 __ cmpb(Address(rax, rdx, Address::times_1, tags_offset), JVM_CONSTANT_Class); 3132 __ jcc(Assembler::notEqual, slow_case_no_pop); 3133 3134 // get instanceKlass 3135 __ movptr(rcx, Address(rcx, rdx, Address::times_ptr, sizeof(constantPoolOopDesc))); 3136 __ push(rcx); // save the contexts of klass for initializing the header 3137 3138 // make sure klass is initialized & doesn't have finalizer 3139 // make sure klass is fully initialized 3140 __ cmpl(Address(rcx, instanceKlass::init_state_offset_in_bytes() + sizeof(oopDesc)), instanceKlass::fully_initialized); 3141 __ jcc(Assembler::notEqual, slow_case); 3142 3143 // get instance_size in instanceKlass (scaled to a count of bytes) 3144 __ movl(rdx, Address(rcx, Klass::layout_helper_offset_in_bytes() + sizeof(oopDesc))); 3145 // test to see if it has a finalizer or is malformed in some way 3146 __ testl(rdx, Klass::_lh_instance_slow_path_bit); 3147 __ jcc(Assembler::notZero, slow_case); 3148 3149 // 3150 // Allocate the instance 3151 // 1) Try to allocate in the TLAB 3152 // 2) if fail and the object is large allocate in the shared Eden 3153 // 3) if the above fails (or is not applicable), go to a slow case 3154 // (creates a new TLAB, etc.) 3155 3156 const bool allow_shared_alloc = 3157 Universe::heap()->supports_inline_contig_alloc() && !CMSIncrementalMode; 3158 3159 const Register thread = rcx; 3160 if (UseTLAB || allow_shared_alloc) { 3161 __ get_thread(thread); 3162 } 3163 3164 if (UseTLAB) { 3165 __ movptr(rax, Address(thread, in_bytes(JavaThread::tlab_top_offset()))); 3166 __ lea(rbx, Address(rax, rdx, Address::times_1)); 3167 __ cmpptr(rbx, Address(thread, in_bytes(JavaThread::tlab_end_offset()))); 3168 __ jcc(Assembler::above, allow_shared_alloc ? allocate_shared : slow_case); 3169 __ movptr(Address(thread, in_bytes(JavaThread::tlab_top_offset())), rbx); 3170 if (ZeroTLAB) { 3171 // the fields have been already cleared 3172 __ jmp(initialize_header); 3173 } else { 3174 // initialize both the header and fields 3175 __ jmp(initialize_object); 3176 } 3177 } 3178 3179 // Allocation in the shared Eden, if allowed. 3180 // 3181 // rdx: instance size in bytes 3182 if (allow_shared_alloc) { 3183 __ bind(allocate_shared); 3184 3185 ExternalAddress heap_top((address)Universe::heap()->top_addr()); 3186 3187 Label retry; 3188 __ bind(retry); 3189 __ movptr(rax, heap_top); 3190 __ lea(rbx, Address(rax, rdx, Address::times_1)); 3191 __ cmpptr(rbx, ExternalAddress((address)Universe::heap()->end_addr())); 3192 __ jcc(Assembler::above, slow_case); 3193 3194 // Compare rax, with the top addr, and if still equal, store the new 3195 // top addr in rbx, at the address of the top addr pointer. Sets ZF if was 3196 // equal, and clears it otherwise. Use lock prefix for atomicity on MPs. 3197 // 3198 // rax,: object begin 3199 // rbx,: object end 3200 // rdx: instance size in bytes 3201 __ locked_cmpxchgptr(rbx, heap_top); 3202 3203 // if someone beat us on the allocation, try again, otherwise continue 3204 __ jcc(Assembler::notEqual, retry); 3205 3206 __ incr_allocated_bytes(thread, rdx, 0); 3207 } 3208 3209 if (UseTLAB || Universe::heap()->supports_inline_contig_alloc()) { 3210 // The object is initialized before the header. If the object size is 3211 // zero, go directly to the header initialization. 3212 __ bind(initialize_object); 3213 __ decrement(rdx, sizeof(oopDesc)); 3214 __ jcc(Assembler::zero, initialize_header); 3215 3216 // Initialize topmost object field, divide rdx by 8, check if odd and 3217 // test if zero. 3218 __ xorl(rcx, rcx); // use zero reg to clear memory (shorter code) 3219 __ shrl(rdx, LogBytesPerLong); // divide by 2*oopSize and set carry flag if odd 3220 3221 // rdx must have been multiple of 8 3222 #ifdef ASSERT 3223 // make sure rdx was multiple of 8 3224 Label L; 3225 // Ignore partial flag stall after shrl() since it is debug VM 3226 __ jccb(Assembler::carryClear, L); 3227 __ stop("object size is not multiple of 2 - adjust this code"); 3228 __ bind(L); 3229 // rdx must be > 0, no extra check needed here 3230 #endif 3231 3232 // initialize remaining object fields: rdx was a multiple of 8 3233 { Label loop; 3234 __ bind(loop); 3235 __ movptr(Address(rax, rdx, Address::times_8, sizeof(oopDesc) - 1*oopSize), rcx); 3236 NOT_LP64(__ movptr(Address(rax, rdx, Address::times_8, sizeof(oopDesc) - 2*oopSize), rcx)); 3237 __ decrement(rdx); 3238 __ jcc(Assembler::notZero, loop); 3239 } 3240 3241 // initialize object header only. 3242 __ bind(initialize_header); 3243 if (UseBiasedLocking) { 3244 __ pop(rcx); // get saved klass back in the register. 3245 __ movptr(rbx, Address(rcx, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes())); 3246 __ movptr(Address(rax, oopDesc::mark_offset_in_bytes ()), rbx); 3247 } else { 3248 __ movptr(Address(rax, oopDesc::mark_offset_in_bytes ()), 3249 (int32_t)markOopDesc::prototype()); // header 3250 __ pop(rcx); // get saved klass back in the register. 3251 } 3252 __ store_klass(rax, rcx); // klass 3253 3254 { 3255 SkipIfEqual skip_if(_masm, &DTraceAllocProbes, 0); 3256 // Trigger dtrace event for fastpath 3257 __ push(atos); 3258 __ call_VM_leaf( 3259 CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc), rax); 3260 __ pop(atos); 3261 } 3262 3263 __ jmp(done); 3264 } 3265 3266 // slow case 3267 __ bind(slow_case); 3268 __ pop(rcx); // restore stack pointer to what it was when we came in. 3269 __ bind(slow_case_no_pop); 3270 __ get_constant_pool(rax); 3271 __ get_unsigned_2_byte_index_at_bcp(rdx, 1); 3272 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), rax, rdx); 3273 3274 // continue 3275 __ bind(done); 3276 } 3277 3278 3279 void TemplateTable::newarray() { 3280 transition(itos, atos); 3281 __ push_i(rax); // make sure everything is on the stack 3282 __ load_unsigned_byte(rdx, at_bcp(1)); 3283 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray), rdx, rax); 3284 __ pop_i(rdx); // discard size 3285 } 3286 3287 3288 void TemplateTable::anewarray() { 3289 transition(itos, atos); 3290 __ get_unsigned_2_byte_index_at_bcp(rdx, 1); 3291 __ get_constant_pool(rcx); 3292 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray), rcx, rdx, rax); 3293 } 3294 3295 3296 void TemplateTable::arraylength() { 3297 transition(atos, itos); 3298 __ null_check(rax, arrayOopDesc::length_offset_in_bytes()); 3299 __ movl(rax, Address(rax, arrayOopDesc::length_offset_in_bytes())); 3300 } 3301 3302 3303 void TemplateTable::checkcast() { 3304 transition(atos, atos); 3305 Label done, is_null, ok_is_subtype, quicked, resolved; 3306 __ testptr(rax, rax); // Object is in EAX 3307 __ jcc(Assembler::zero, is_null); 3308 3309 // Get cpool & tags index 3310 __ get_cpool_and_tags(rcx, rdx); // ECX=cpool, EDX=tags array 3311 __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // EBX=index 3312 // See if bytecode has already been quicked 3313 __ cmpb(Address(rdx, rbx, Address::times_1, typeArrayOopDesc::header_size(T_BYTE) * wordSize), JVM_CONSTANT_Class); 3314 __ jcc(Assembler::equal, quicked); 3315 3316 __ push(atos); 3317 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc) ); 3318 __ pop_ptr(rdx); 3319 __ jmpb(resolved); 3320 3321 // Get superklass in EAX and subklass in EBX 3322 __ bind(quicked); 3323 __ mov(rdx, rax); // Save object in EDX; EAX needed for subtype check 3324 __ movptr(rax, Address(rcx, rbx, Address::times_ptr, sizeof(constantPoolOopDesc))); 3325 3326 __ bind(resolved); 3327 __ load_klass(rbx, rdx); 3328 3329 // Generate subtype check. Blows ECX. Resets EDI. Object in EDX. 3330 // Superklass in EAX. Subklass in EBX. 3331 __ gen_subtype_check( rbx, ok_is_subtype ); 3332 3333 // Come here on failure 3334 __ push(rdx); 3335 // object is at TOS 3336 __ jump(ExternalAddress(Interpreter::_throw_ClassCastException_entry)); 3337 3338 // Come here on success 3339 __ bind(ok_is_subtype); 3340 __ mov(rax,rdx); // Restore object in EDX 3341 3342 // Collect counts on whether this check-cast sees NULLs a lot or not. 3343 if (ProfileInterpreter) { 3344 __ jmp(done); 3345 __ bind(is_null); 3346 __ profile_null_seen(rcx); 3347 } else { 3348 __ bind(is_null); // same as 'done' 3349 } 3350 __ bind(done); 3351 } 3352 3353 3354 void TemplateTable::instanceof() { 3355 transition(atos, itos); 3356 Label done, is_null, ok_is_subtype, quicked, resolved; 3357 __ testptr(rax, rax); 3358 __ jcc(Assembler::zero, is_null); 3359 3360 // Get cpool & tags index 3361 __ get_cpool_and_tags(rcx, rdx); // ECX=cpool, EDX=tags array 3362 __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // EBX=index 3363 // See if bytecode has already been quicked 3364 __ cmpb(Address(rdx, rbx, Address::times_1, typeArrayOopDesc::header_size(T_BYTE) * wordSize), JVM_CONSTANT_Class); 3365 __ jcc(Assembler::equal, quicked); 3366 3367 __ push(atos); 3368 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc) ); 3369 __ pop_ptr(rdx); 3370 __ load_klass(rdx, rdx); 3371 __ jmp(resolved); 3372 3373 // Get superklass in EAX and subklass in EDX 3374 __ bind(quicked); 3375 __ load_klass(rdx, rax); 3376 __ movptr(rax, Address(rcx, rbx, Address::times_ptr, sizeof(constantPoolOopDesc))); 3377 3378 __ bind(resolved); 3379 3380 // Generate subtype check. Blows ECX. Resets EDI. 3381 // Superklass in EAX. Subklass in EDX. 3382 __ gen_subtype_check( rdx, ok_is_subtype ); 3383 3384 // Come here on failure 3385 __ xorl(rax,rax); 3386 __ jmpb(done); 3387 // Come here on success 3388 __ bind(ok_is_subtype); 3389 __ movl(rax, 1); 3390 3391 // Collect counts on whether this test sees NULLs a lot or not. 3392 if (ProfileInterpreter) { 3393 __ jmp(done); 3394 __ bind(is_null); 3395 __ profile_null_seen(rcx); 3396 } else { 3397 __ bind(is_null); // same as 'done' 3398 } 3399 __ bind(done); 3400 // rax, = 0: obj == NULL or obj is not an instanceof the specified klass 3401 // rax, = 1: obj != NULL and obj is an instanceof the specified klass 3402 } 3403 3404 3405 //---------------------------------------------------------------------------------------------------- 3406 // Breakpoints 3407 void TemplateTable::_breakpoint() { 3408 3409 // Note: We get here even if we are single stepping.. 3410 // jbug inists on setting breakpoints at every bytecode 3411 // even if we are in single step mode. 3412 3413 transition(vtos, vtos); 3414 3415 // get the unpatched byte code 3416 __ get_method(rcx); 3417 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::get_original_bytecode_at), rcx, rsi); 3418 __ mov(rbx, rax); 3419 3420 // post the breakpoint event 3421 __ get_method(rcx); 3422 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::_breakpoint), rcx, rsi); 3423 3424 // complete the execution of original bytecode 3425 __ dispatch_only_normal(vtos); 3426 } 3427 3428 3429 //---------------------------------------------------------------------------------------------------- 3430 // Exceptions 3431 3432 void TemplateTable::athrow() { 3433 transition(atos, vtos); 3434 __ null_check(rax); 3435 __ jump(ExternalAddress(Interpreter::throw_exception_entry())); 3436 } 3437 3438 3439 //---------------------------------------------------------------------------------------------------- 3440 // Synchronization 3441 // 3442 // Note: monitorenter & exit are symmetric routines; which is reflected 3443 // in the assembly code structure as well 3444 // 3445 // Stack layout: 3446 // 3447 // [expressions ] <--- rsp = expression stack top 3448 // .. 3449 // [expressions ] 3450 // [monitor entry] <--- monitor block top = expression stack bot 3451 // .. 3452 // [monitor entry] 3453 // [frame data ] <--- monitor block bot 3454 // ... 3455 // [saved rbp, ] <--- rbp, 3456 3457 3458 void TemplateTable::monitorenter() { 3459 transition(atos, vtos); 3460 3461 // check for NULL object 3462 __ null_check(rax); 3463 3464 const Address monitor_block_top(rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize); 3465 const Address monitor_block_bot(rbp, frame::interpreter_frame_initial_sp_offset * wordSize); 3466 const int entry_size = ( frame::interpreter_frame_monitor_size() * wordSize); 3467 Label allocated; 3468 3469 // initialize entry pointer 3470 __ xorl(rdx, rdx); // points to free slot or NULL 3471 3472 // find a free slot in the monitor block (result in rdx) 3473 { Label entry, loop, exit; 3474 __ movptr(rcx, monitor_block_top); // points to current entry, starting with top-most entry 3475 3476 __ lea(rbx, monitor_block_bot); // points to word before bottom of monitor block 3477 __ jmpb(entry); 3478 3479 __ bind(loop); 3480 __ cmpptr(Address(rcx, BasicObjectLock::obj_offset_in_bytes()), (int32_t)NULL_WORD); // check if current entry is used 3481 __ cmovptr(Assembler::equal, rdx, rcx); // if not used then remember entry in rdx 3482 __ cmpptr(rax, Address(rcx, BasicObjectLock::obj_offset_in_bytes())); // check if current entry is for same object 3483 __ jccb(Assembler::equal, exit); // if same object then stop searching 3484 __ addptr(rcx, entry_size); // otherwise advance to next entry 3485 __ bind(entry); 3486 __ cmpptr(rcx, rbx); // check if bottom reached 3487 __ jcc(Assembler::notEqual, loop); // if not at bottom then check this entry 3488 __ bind(exit); 3489 } 3490 3491 __ testptr(rdx, rdx); // check if a slot has been found 3492 __ jccb(Assembler::notZero, allocated); // if found, continue with that one 3493 3494 // allocate one if there's no free slot 3495 { Label entry, loop; 3496 // 1. compute new pointers // rsp: old expression stack top 3497 __ movptr(rdx, monitor_block_bot); // rdx: old expression stack bottom 3498 __ subptr(rsp, entry_size); // move expression stack top 3499 __ subptr(rdx, entry_size); // move expression stack bottom 3500 __ mov(rcx, rsp); // set start value for copy loop 3501 __ movptr(monitor_block_bot, rdx); // set new monitor block top 3502 __ jmp(entry); 3503 // 2. move expression stack contents 3504 __ bind(loop); 3505 __ movptr(rbx, Address(rcx, entry_size)); // load expression stack word from old location 3506 __ movptr(Address(rcx, 0), rbx); // and store it at new location 3507 __ addptr(rcx, wordSize); // advance to next word 3508 __ bind(entry); 3509 __ cmpptr(rcx, rdx); // check if bottom reached 3510 __ jcc(Assembler::notEqual, loop); // if not at bottom then copy next word 3511 } 3512 3513 // call run-time routine 3514 // rdx: points to monitor entry 3515 __ bind(allocated); 3516 3517 // Increment bcp to point to the next bytecode, so exception handling for async. exceptions work correctly. 3518 // The object has already been poped from the stack, so the expression stack looks correct. 3519 __ increment(rsi); 3520 3521 __ movptr(Address(rdx, BasicObjectLock::obj_offset_in_bytes()), rax); // store object 3522 __ lock_object(rdx); 3523 3524 // check to make sure this monitor doesn't cause stack overflow after locking 3525 __ save_bcp(); // in case of exception 3526 __ generate_stack_overflow_check(0); 3527 3528 // The bcp has already been incremented. Just need to dispatch to next instruction. 3529 __ dispatch_next(vtos); 3530 } 3531 3532 3533 void TemplateTable::monitorexit() { 3534 transition(atos, vtos); 3535 3536 // check for NULL object 3537 __ null_check(rax); 3538 3539 const Address monitor_block_top(rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize); 3540 const Address monitor_block_bot(rbp, frame::interpreter_frame_initial_sp_offset * wordSize); 3541 const int entry_size = ( frame::interpreter_frame_monitor_size() * wordSize); 3542 Label found; 3543 3544 // find matching slot 3545 { Label entry, loop; 3546 __ movptr(rdx, monitor_block_top); // points to current entry, starting with top-most entry 3547 __ lea(rbx, monitor_block_bot); // points to word before bottom of monitor block 3548 __ jmpb(entry); 3549 3550 __ bind(loop); 3551 __ cmpptr(rax, Address(rdx, BasicObjectLock::obj_offset_in_bytes())); // check if current entry is for same object 3552 __ jcc(Assembler::equal, found); // if same object then stop searching 3553 __ addptr(rdx, entry_size); // otherwise advance to next entry 3554 __ bind(entry); 3555 __ cmpptr(rdx, rbx); // check if bottom reached 3556 __ jcc(Assembler::notEqual, loop); // if not at bottom then check this entry 3557 } 3558 3559 // error handling. Unlocking was not block-structured 3560 Label end; 3561 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception)); 3562 __ should_not_reach_here(); 3563 3564 // call run-time routine 3565 // rcx: points to monitor entry 3566 __ bind(found); 3567 __ push_ptr(rax); // make sure object is on stack (contract with oopMaps) 3568 __ unlock_object(rdx); 3569 __ pop_ptr(rax); // discard object 3570 __ bind(end); 3571 } 3572 3573 3574 //---------------------------------------------------------------------------------------------------- 3575 // Wide instructions 3576 3577 void TemplateTable::wide() { 3578 transition(vtos, vtos); 3579 __ load_unsigned_byte(rbx, at_bcp(1)); 3580 ExternalAddress wtable((address)Interpreter::_wentry_point); 3581 __ jump(ArrayAddress(wtable, Address(noreg, rbx, Address::times_ptr))); 3582 // Note: the rsi increment step is part of the individual wide bytecode implementations 3583 } 3584 3585 3586 //---------------------------------------------------------------------------------------------------- 3587 // Multi arrays 3588 3589 void TemplateTable::multianewarray() { 3590 transition(vtos, atos); 3591 __ load_unsigned_byte(rax, at_bcp(3)); // get number of dimensions 3592 // last dim is on top of stack; we want address of first one: 3593 // first_addr = last_addr + (ndims - 1) * stackElementSize - 1*wordsize 3594 // the latter wordSize to point to the beginning of the array. 3595 __ lea( rax, Address(rsp, rax, Interpreter::stackElementScale(), -wordSize)); 3596 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::multianewarray), rax); // pass in rax, 3597 __ load_unsigned_byte(rbx, at_bcp(3)); 3598 __ lea(rsp, Address(rsp, rbx, Interpreter::stackElementScale())); // get rid of counts 3599 } 3600 3601 #endif /* !CC_INTERP */