1 /* 2 * Copyright (c) 2003, 2011, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "interpreter/interpreter.hpp" 27 #include "interpreter/interpreterRuntime.hpp" 28 #include "interpreter/templateTable.hpp" 29 #include "memory/universe.inline.hpp" 30 #include "oops/methodDataOop.hpp" 31 #include "oops/objArrayKlass.hpp" 32 #include "oops/oop.inline.hpp" 33 #include "prims/methodHandles.hpp" 34 #include "runtime/sharedRuntime.hpp" 35 #include "runtime/stubRoutines.hpp" 36 #include "runtime/synchronizer.hpp" 37 38 #ifndef CC_INTERP 39 40 #define __ _masm-> 41 42 // Platform-dependent initialization 43 44 void TemplateTable::pd_initialize() { 45 // No amd64 specific initialization 46 } 47 48 // Address computation: local variables 49 50 static inline Address iaddress(int n) { 51 return Address(r14, Interpreter::local_offset_in_bytes(n)); 52 } 53 54 static inline Address laddress(int n) { 55 return iaddress(n + 1); 56 } 57 58 static inline Address faddress(int n) { 59 return iaddress(n); 60 } 61 62 static inline Address daddress(int n) { 63 return laddress(n); 64 } 65 66 static inline Address aaddress(int n) { 67 return iaddress(n); 68 } 69 70 static inline Address iaddress(Register r) { 71 return Address(r14, r, Address::times_8); 72 } 73 74 static inline Address laddress(Register r) { 75 return Address(r14, r, Address::times_8, Interpreter::local_offset_in_bytes(1)); 76 } 77 78 static inline Address faddress(Register r) { 79 return iaddress(r); 80 } 81 82 static inline Address daddress(Register r) { 83 return laddress(r); 84 } 85 86 static inline Address aaddress(Register r) { 87 return iaddress(r); 88 } 89 90 static inline Address at_rsp() { 91 return Address(rsp, 0); 92 } 93 94 // At top of Java expression stack which may be different than esp(). It 95 // isn't for category 1 objects. 96 static inline Address at_tos () { 97 return Address(rsp, Interpreter::expr_offset_in_bytes(0)); 98 } 99 100 static inline Address at_tos_p1() { 101 return Address(rsp, Interpreter::expr_offset_in_bytes(1)); 102 } 103 104 static inline Address at_tos_p2() { 105 return Address(rsp, Interpreter::expr_offset_in_bytes(2)); 106 } 107 108 static inline Address at_tos_p3() { 109 return Address(rsp, Interpreter::expr_offset_in_bytes(3)); 110 } 111 112 // Condition conversion 113 static Assembler::Condition j_not(TemplateTable::Condition cc) { 114 switch (cc) { 115 case TemplateTable::equal : return Assembler::notEqual; 116 case TemplateTable::not_equal : return Assembler::equal; 117 case TemplateTable::less : return Assembler::greaterEqual; 118 case TemplateTable::less_equal : return Assembler::greater; 119 case TemplateTable::greater : return Assembler::lessEqual; 120 case TemplateTable::greater_equal: return Assembler::less; 121 } 122 ShouldNotReachHere(); 123 return Assembler::zero; 124 } 125 126 127 // Miscelaneous helper routines 128 // Store an oop (or NULL) at the address described by obj. 129 // If val == noreg this means store a NULL 130 131 static void do_oop_store(InterpreterMacroAssembler* _masm, 132 Address obj, 133 Register val, 134 BarrierSet::Name barrier, 135 bool precise) { 136 assert(val == noreg || val == rax, "parameter is just for looks"); 137 switch (barrier) { 138 #ifndef SERIALGC 139 case BarrierSet::G1SATBCT: 140 case BarrierSet::G1SATBCTLogging: 141 { 142 // flatten object address if needed 143 if (obj.index() == noreg && obj.disp() == 0) { 144 if (obj.base() != rdx) { 145 __ movq(rdx, obj.base()); 146 } 147 } else { 148 __ leaq(rdx, obj); 149 } 150 __ g1_write_barrier_pre(rdx, r8, rbx, val != noreg); 151 if (val == noreg) { 152 __ store_heap_oop_null(Address(rdx, 0)); 153 } else { 154 __ store_heap_oop(Address(rdx, 0), val); 155 __ g1_write_barrier_post(rdx, val, r8, rbx); 156 } 157 158 } 159 break; 160 #endif // SERIALGC 161 case BarrierSet::CardTableModRef: 162 case BarrierSet::CardTableExtension: 163 { 164 if (val == noreg) { 165 __ store_heap_oop_null(obj); 166 } else { 167 __ store_heap_oop(obj, val); 168 // flatten object address if needed 169 if (!precise || (obj.index() == noreg && obj.disp() == 0)) { 170 __ store_check(obj.base()); 171 } else { 172 __ leaq(rdx, obj); 173 __ store_check(rdx); 174 } 175 } 176 } 177 break; 178 case BarrierSet::ModRef: 179 case BarrierSet::Other: 180 if (val == noreg) { 181 __ store_heap_oop_null(obj); 182 } else { 183 __ store_heap_oop(obj, val); 184 } 185 break; 186 default : 187 ShouldNotReachHere(); 188 189 } 190 } 191 192 Address TemplateTable::at_bcp(int offset) { 193 assert(_desc->uses_bcp(), "inconsistent uses_bcp information"); 194 return Address(r13, offset); 195 } 196 197 void TemplateTable::patch_bytecode(Bytecodes::Code bytecode, Register bc, 198 Register scratch, 199 bool load_bc_into_scratch/*=true*/) { 200 if (!RewriteBytecodes) { 201 return; 202 } 203 // the pair bytecodes have already done the load. 204 if (load_bc_into_scratch) { 205 __ movl(bc, bytecode); 206 } 207 Label patch_done; 208 if (JvmtiExport::can_post_breakpoint()) { 209 Label fast_patch; 210 // if a breakpoint is present we can't rewrite the stream directly 211 __ movzbl(scratch, at_bcp(0)); 212 __ cmpl(scratch, Bytecodes::_breakpoint); 213 __ jcc(Assembler::notEqual, fast_patch); 214 __ get_method(scratch); 215 // Let breakpoint table handling rewrite to quicker bytecode 216 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::set_original_bytecode_at), scratch, r13, bc); 217 #ifndef ASSERT 218 __ jmpb(patch_done); 219 #else 220 __ jmp(patch_done); 221 #endif 222 __ bind(fast_patch); 223 } 224 #ifdef ASSERT 225 Label okay; 226 __ load_unsigned_byte(scratch, at_bcp(0)); 227 __ cmpl(scratch, (int) Bytecodes::java_code(bytecode)); 228 __ jcc(Assembler::equal, okay); 229 __ cmpl(scratch, bc); 230 __ jcc(Assembler::equal, okay); 231 __ stop("patching the wrong bytecode"); 232 __ bind(okay); 233 #endif 234 // patch bytecode 235 __ movb(at_bcp(0), bc); 236 __ bind(patch_done); 237 } 238 239 240 // Individual instructions 241 242 void TemplateTable::nop() { 243 transition(vtos, vtos); 244 // nothing to do 245 } 246 247 void TemplateTable::shouldnotreachhere() { 248 transition(vtos, vtos); 249 __ stop("shouldnotreachhere bytecode"); 250 } 251 252 void TemplateTable::aconst_null() { 253 transition(vtos, atos); 254 __ xorl(rax, rax); 255 } 256 257 void TemplateTable::iconst(int value) { 258 transition(vtos, itos); 259 if (value == 0) { 260 __ xorl(rax, rax); 261 } else { 262 __ movl(rax, value); 263 } 264 } 265 266 void TemplateTable::lconst(int value) { 267 transition(vtos, ltos); 268 if (value == 0) { 269 __ xorl(rax, rax); 270 } else { 271 __ movl(rax, value); 272 } 273 } 274 275 void TemplateTable::fconst(int value) { 276 transition(vtos, ftos); 277 static float one = 1.0f, two = 2.0f; 278 switch (value) { 279 case 0: 280 __ xorps(xmm0, xmm0); 281 break; 282 case 1: 283 __ movflt(xmm0, ExternalAddress((address) &one)); 284 break; 285 case 2: 286 __ movflt(xmm0, ExternalAddress((address) &two)); 287 break; 288 default: 289 ShouldNotReachHere(); 290 break; 291 } 292 } 293 294 void TemplateTable::dconst(int value) { 295 transition(vtos, dtos); 296 static double one = 1.0; 297 switch (value) { 298 case 0: 299 __ xorpd(xmm0, xmm0); 300 break; 301 case 1: 302 __ movdbl(xmm0, ExternalAddress((address) &one)); 303 break; 304 default: 305 ShouldNotReachHere(); 306 break; 307 } 308 } 309 310 void TemplateTable::bipush() { 311 transition(vtos, itos); 312 __ load_signed_byte(rax, at_bcp(1)); 313 } 314 315 void TemplateTable::sipush() { 316 transition(vtos, itos); 317 __ load_unsigned_short(rax, at_bcp(1)); 318 __ bswapl(rax); 319 __ sarl(rax, 16); 320 } 321 322 void TemplateTable::ldc(bool wide) { 323 transition(vtos, vtos); 324 Label call_ldc, notFloat, notClass, Done; 325 326 if (wide) { 327 __ get_unsigned_2_byte_index_at_bcp(rbx, 1); 328 } else { 329 __ load_unsigned_byte(rbx, at_bcp(1)); 330 } 331 332 __ get_cpool_and_tags(rcx, rax); 333 const int base_offset = constantPoolOopDesc::header_size() * wordSize; 334 const int tags_offset = typeArrayOopDesc::header_size(T_BYTE) * wordSize; 335 336 // get type 337 __ movzbl(rdx, Address(rax, rbx, Address::times_1, tags_offset)); 338 339 // unresolved string - get the resolved string 340 __ cmpl(rdx, JVM_CONSTANT_UnresolvedString); 341 __ jccb(Assembler::equal, call_ldc); 342 343 // unresolved class - get the resolved class 344 __ cmpl(rdx, JVM_CONSTANT_UnresolvedClass); 345 __ jccb(Assembler::equal, call_ldc); 346 347 // unresolved class in error state - call into runtime to throw the error 348 // from the first resolution attempt 349 __ cmpl(rdx, JVM_CONSTANT_UnresolvedClassInError); 350 __ jccb(Assembler::equal, call_ldc); 351 352 // resolved class - need to call vm to get java mirror of the class 353 __ cmpl(rdx, JVM_CONSTANT_Class); 354 __ jcc(Assembler::notEqual, notClass); 355 356 __ bind(call_ldc); 357 __ movl(c_rarg1, wide); 358 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), c_rarg1); 359 __ push_ptr(rax); 360 __ verify_oop(rax); 361 __ jmp(Done); 362 363 __ bind(notClass); 364 __ cmpl(rdx, JVM_CONSTANT_Float); 365 __ jccb(Assembler::notEqual, notFloat); 366 // ftos 367 __ movflt(xmm0, Address(rcx, rbx, Address::times_8, base_offset)); 368 __ push_f(); 369 __ jmp(Done); 370 371 __ bind(notFloat); 372 #ifdef ASSERT 373 { 374 Label L; 375 __ cmpl(rdx, JVM_CONSTANT_Integer); 376 __ jcc(Assembler::equal, L); 377 __ cmpl(rdx, JVM_CONSTANT_String); 378 __ jcc(Assembler::equal, L); 379 __ stop("unexpected tag type in ldc"); 380 __ bind(L); 381 } 382 #endif 383 // atos and itos 384 Label isOop; 385 __ cmpl(rdx, JVM_CONSTANT_Integer); 386 __ jcc(Assembler::notEqual, isOop); 387 __ movl(rax, Address(rcx, rbx, Address::times_8, base_offset)); 388 __ push_i(rax); 389 __ jmp(Done); 390 391 __ bind(isOop); 392 __ movptr(rax, Address(rcx, rbx, Address::times_8, base_offset)); 393 __ push_ptr(rax); 394 395 if (VerifyOops) { 396 __ verify_oop(rax); 397 } 398 399 __ bind(Done); 400 } 401 402 // Fast path for caching oop constants. 403 // %%% We should use this to handle Class and String constants also. 404 // %%% It will simplify the ldc/primitive path considerably. 405 void TemplateTable::fast_aldc(bool wide) { 406 transition(vtos, atos); 407 408 if (!EnableInvokeDynamic) { 409 // We should not encounter this bytecode if !EnableInvokeDynamic. 410 // The verifier will stop it. However, if we get past the verifier, 411 // this will stop the thread in a reasonable way, without crashing the JVM. 412 __ call_VM(noreg, CAST_FROM_FN_PTR(address, 413 InterpreterRuntime::throw_IncompatibleClassChangeError)); 414 // the call_VM checks for exception, so we should never return here. 415 __ should_not_reach_here(); 416 return; 417 } 418 419 const Register cache = rcx; 420 const Register index = rdx; 421 422 resolve_cache_and_index(f1_oop, rax, cache, index, wide ? sizeof(u2) : sizeof(u1)); 423 if (VerifyOops) { 424 __ verify_oop(rax); 425 } 426 427 Label L_done, L_throw_exception; 428 const Register con_klass_temp = rcx; // same as cache 429 const Register array_klass_temp = rdx; // same as index 430 __ load_klass(con_klass_temp, rax); 431 __ lea(array_klass_temp, ExternalAddress((address)Universe::systemObjArrayKlassObj_addr())); 432 __ cmpptr(con_klass_temp, Address(array_klass_temp, 0)); 433 __ jcc(Assembler::notEqual, L_done); 434 __ cmpl(Address(rax, arrayOopDesc::length_offset_in_bytes()), 0); 435 __ jcc(Assembler::notEqual, L_throw_exception); 436 __ xorptr(rax, rax); 437 __ jmp(L_done); 438 439 // Load the exception from the system-array which wraps it: 440 __ bind(L_throw_exception); 441 __ load_heap_oop(rax, Address(rax, arrayOopDesc::base_offset_in_bytes(T_OBJECT))); 442 __ jump(ExternalAddress(Interpreter::throw_exception_entry())); 443 444 __ bind(L_done); 445 } 446 447 void TemplateTable::ldc2_w() { 448 transition(vtos, vtos); 449 Label Long, Done; 450 __ get_unsigned_2_byte_index_at_bcp(rbx, 1); 451 452 __ get_cpool_and_tags(rcx, rax); 453 const int base_offset = constantPoolOopDesc::header_size() * wordSize; 454 const int tags_offset = typeArrayOopDesc::header_size(T_BYTE) * wordSize; 455 456 // get type 457 __ cmpb(Address(rax, rbx, Address::times_1, tags_offset), 458 JVM_CONSTANT_Double); 459 __ jccb(Assembler::notEqual, Long); 460 // dtos 461 __ movdbl(xmm0, Address(rcx, rbx, Address::times_8, base_offset)); 462 __ push_d(); 463 __ jmpb(Done); 464 465 __ bind(Long); 466 // ltos 467 __ movq(rax, Address(rcx, rbx, Address::times_8, base_offset)); 468 __ push_l(); 469 470 __ bind(Done); 471 } 472 473 void TemplateTable::locals_index(Register reg, int offset) { 474 __ load_unsigned_byte(reg, at_bcp(offset)); 475 __ negptr(reg); 476 } 477 478 void TemplateTable::iload() { 479 transition(vtos, itos); 480 if (RewriteFrequentPairs) { 481 Label rewrite, done; 482 const Register bc = c_rarg3; 483 assert(rbx != bc, "register damaged"); 484 485 // get next byte 486 __ load_unsigned_byte(rbx, 487 at_bcp(Bytecodes::length_for(Bytecodes::_iload))); 488 // if _iload, wait to rewrite to iload2. We only want to rewrite the 489 // last two iloads in a pair. Comparing against fast_iload means that 490 // the next bytecode is neither an iload or a caload, and therefore 491 // an iload pair. 492 __ cmpl(rbx, Bytecodes::_iload); 493 __ jcc(Assembler::equal, done); 494 495 __ cmpl(rbx, Bytecodes::_fast_iload); 496 __ movl(bc, Bytecodes::_fast_iload2); 497 __ jccb(Assembler::equal, rewrite); 498 499 // if _caload, rewrite to fast_icaload 500 __ cmpl(rbx, Bytecodes::_caload); 501 __ movl(bc, Bytecodes::_fast_icaload); 502 __ jccb(Assembler::equal, rewrite); 503 504 // rewrite so iload doesn't check again. 505 __ movl(bc, Bytecodes::_fast_iload); 506 507 // rewrite 508 // bc: fast bytecode 509 __ bind(rewrite); 510 patch_bytecode(Bytecodes::_iload, bc, rbx, false); 511 __ bind(done); 512 } 513 514 // Get the local value into tos 515 locals_index(rbx); 516 __ movl(rax, iaddress(rbx)); 517 } 518 519 void TemplateTable::fast_iload2() { 520 transition(vtos, itos); 521 locals_index(rbx); 522 __ movl(rax, iaddress(rbx)); 523 __ push(itos); 524 locals_index(rbx, 3); 525 __ movl(rax, iaddress(rbx)); 526 } 527 528 void TemplateTable::fast_iload() { 529 transition(vtos, itos); 530 locals_index(rbx); 531 __ movl(rax, iaddress(rbx)); 532 } 533 534 void TemplateTable::lload() { 535 transition(vtos, ltos); 536 locals_index(rbx); 537 __ movq(rax, laddress(rbx)); 538 } 539 540 void TemplateTable::fload() { 541 transition(vtos, ftos); 542 locals_index(rbx); 543 __ movflt(xmm0, faddress(rbx)); 544 } 545 546 void TemplateTable::dload() { 547 transition(vtos, dtos); 548 locals_index(rbx); 549 __ movdbl(xmm0, daddress(rbx)); 550 } 551 552 void TemplateTable::aload() { 553 transition(vtos, atos); 554 locals_index(rbx); 555 __ movptr(rax, aaddress(rbx)); 556 } 557 558 void TemplateTable::locals_index_wide(Register reg) { 559 __ movl(reg, at_bcp(2)); 560 __ bswapl(reg); 561 __ shrl(reg, 16); 562 __ negptr(reg); 563 } 564 565 void TemplateTable::wide_iload() { 566 transition(vtos, itos); 567 locals_index_wide(rbx); 568 __ movl(rax, iaddress(rbx)); 569 } 570 571 void TemplateTable::wide_lload() { 572 transition(vtos, ltos); 573 locals_index_wide(rbx); 574 __ movq(rax, laddress(rbx)); 575 } 576 577 void TemplateTable::wide_fload() { 578 transition(vtos, ftos); 579 locals_index_wide(rbx); 580 __ movflt(xmm0, faddress(rbx)); 581 } 582 583 void TemplateTable::wide_dload() { 584 transition(vtos, dtos); 585 locals_index_wide(rbx); 586 __ movdbl(xmm0, daddress(rbx)); 587 } 588 589 void TemplateTable::wide_aload() { 590 transition(vtos, atos); 591 locals_index_wide(rbx); 592 __ movptr(rax, aaddress(rbx)); 593 } 594 595 void TemplateTable::index_check(Register array, Register index) { 596 // destroys rbx 597 // check array 598 __ null_check(array, arrayOopDesc::length_offset_in_bytes()); 599 // sign extend index for use by indexed load 600 __ movl2ptr(index, index); 601 // check index 602 __ cmpl(index, Address(array, arrayOopDesc::length_offset_in_bytes())); 603 if (index != rbx) { 604 // ??? convention: move aberrant index into ebx for exception message 605 assert(rbx != array, "different registers"); 606 __ movl(rbx, index); 607 } 608 __ jump_cc(Assembler::aboveEqual, 609 ExternalAddress(Interpreter::_throw_ArrayIndexOutOfBoundsException_entry)); 610 } 611 612 void TemplateTable::iaload() { 613 transition(itos, itos); 614 __ pop_ptr(rdx); 615 // eax: index 616 // rdx: array 617 index_check(rdx, rax); // kills rbx 618 __ movl(rax, Address(rdx, rax, 619 Address::times_4, 620 arrayOopDesc::base_offset_in_bytes(T_INT))); 621 } 622 623 void TemplateTable::laload() { 624 transition(itos, ltos); 625 __ pop_ptr(rdx); 626 // eax: index 627 // rdx: array 628 index_check(rdx, rax); // kills rbx 629 __ movq(rax, Address(rdx, rbx, 630 Address::times_8, 631 arrayOopDesc::base_offset_in_bytes(T_LONG))); 632 } 633 634 void TemplateTable::faload() { 635 transition(itos, ftos); 636 __ pop_ptr(rdx); 637 // eax: index 638 // rdx: array 639 index_check(rdx, rax); // kills rbx 640 __ movflt(xmm0, Address(rdx, rax, 641 Address::times_4, 642 arrayOopDesc::base_offset_in_bytes(T_FLOAT))); 643 } 644 645 void TemplateTable::daload() { 646 transition(itos, dtos); 647 __ pop_ptr(rdx); 648 // eax: index 649 // rdx: array 650 index_check(rdx, rax); // kills rbx 651 __ movdbl(xmm0, Address(rdx, rax, 652 Address::times_8, 653 arrayOopDesc::base_offset_in_bytes(T_DOUBLE))); 654 } 655 656 void TemplateTable::aaload() { 657 transition(itos, atos); 658 __ pop_ptr(rdx); 659 // eax: index 660 // rdx: array 661 index_check(rdx, rax); // kills rbx 662 __ load_heap_oop(rax, Address(rdx, rax, 663 UseCompressedOops ? Address::times_4 : Address::times_8, 664 arrayOopDesc::base_offset_in_bytes(T_OBJECT))); 665 } 666 667 void TemplateTable::baload() { 668 transition(itos, itos); 669 __ pop_ptr(rdx); 670 // eax: index 671 // rdx: array 672 index_check(rdx, rax); // kills rbx 673 __ load_signed_byte(rax, 674 Address(rdx, rax, 675 Address::times_1, 676 arrayOopDesc::base_offset_in_bytes(T_BYTE))); 677 } 678 679 void TemplateTable::caload() { 680 transition(itos, itos); 681 __ pop_ptr(rdx); 682 // eax: index 683 // rdx: array 684 index_check(rdx, rax); // kills rbx 685 __ load_unsigned_short(rax, 686 Address(rdx, rax, 687 Address::times_2, 688 arrayOopDesc::base_offset_in_bytes(T_CHAR))); 689 } 690 691 // iload followed by caload frequent pair 692 void TemplateTable::fast_icaload() { 693 transition(vtos, itos); 694 // load index out of locals 695 locals_index(rbx); 696 __ movl(rax, iaddress(rbx)); 697 698 // eax: index 699 // rdx: array 700 __ pop_ptr(rdx); 701 index_check(rdx, rax); // kills rbx 702 __ load_unsigned_short(rax, 703 Address(rdx, rax, 704 Address::times_2, 705 arrayOopDesc::base_offset_in_bytes(T_CHAR))); 706 } 707 708 void TemplateTable::saload() { 709 transition(itos, itos); 710 __ pop_ptr(rdx); 711 // eax: index 712 // rdx: array 713 index_check(rdx, rax); // kills rbx 714 __ load_signed_short(rax, 715 Address(rdx, rax, 716 Address::times_2, 717 arrayOopDesc::base_offset_in_bytes(T_SHORT))); 718 } 719 720 void TemplateTable::iload(int n) { 721 transition(vtos, itos); 722 __ movl(rax, iaddress(n)); 723 } 724 725 void TemplateTable::lload(int n) { 726 transition(vtos, ltos); 727 __ movq(rax, laddress(n)); 728 } 729 730 void TemplateTable::fload(int n) { 731 transition(vtos, ftos); 732 __ movflt(xmm0, faddress(n)); 733 } 734 735 void TemplateTable::dload(int n) { 736 transition(vtos, dtos); 737 __ movdbl(xmm0, daddress(n)); 738 } 739 740 void TemplateTable::aload(int n) { 741 transition(vtos, atos); 742 __ movptr(rax, aaddress(n)); 743 } 744 745 void TemplateTable::aload_0() { 746 transition(vtos, atos); 747 // According to bytecode histograms, the pairs: 748 // 749 // _aload_0, _fast_igetfield 750 // _aload_0, _fast_agetfield 751 // _aload_0, _fast_fgetfield 752 // 753 // occur frequently. If RewriteFrequentPairs is set, the (slow) 754 // _aload_0 bytecode checks if the next bytecode is either 755 // _fast_igetfield, _fast_agetfield or _fast_fgetfield and then 756 // rewrites the current bytecode into a pair bytecode; otherwise it 757 // rewrites the current bytecode into _fast_aload_0 that doesn't do 758 // the pair check anymore. 759 // 760 // Note: If the next bytecode is _getfield, the rewrite must be 761 // delayed, otherwise we may miss an opportunity for a pair. 762 // 763 // Also rewrite frequent pairs 764 // aload_0, aload_1 765 // aload_0, iload_1 766 // These bytecodes with a small amount of code are most profitable 767 // to rewrite 768 if (RewriteFrequentPairs) { 769 Label rewrite, done; 770 const Register bc = c_rarg3; 771 assert(rbx != bc, "register damaged"); 772 // get next byte 773 __ load_unsigned_byte(rbx, 774 at_bcp(Bytecodes::length_for(Bytecodes::_aload_0))); 775 776 // do actual aload_0 777 aload(0); 778 779 // if _getfield then wait with rewrite 780 __ cmpl(rbx, Bytecodes::_getfield); 781 __ jcc(Assembler::equal, done); 782 783 // if _igetfield then reqrite to _fast_iaccess_0 784 assert(Bytecodes::java_code(Bytecodes::_fast_iaccess_0) == 785 Bytecodes::_aload_0, 786 "fix bytecode definition"); 787 __ cmpl(rbx, Bytecodes::_fast_igetfield); 788 __ movl(bc, Bytecodes::_fast_iaccess_0); 789 __ jccb(Assembler::equal, rewrite); 790 791 // if _agetfield then reqrite to _fast_aaccess_0 792 assert(Bytecodes::java_code(Bytecodes::_fast_aaccess_0) == 793 Bytecodes::_aload_0, 794 "fix bytecode definition"); 795 __ cmpl(rbx, Bytecodes::_fast_agetfield); 796 __ movl(bc, Bytecodes::_fast_aaccess_0); 797 __ jccb(Assembler::equal, rewrite); 798 799 // if _fgetfield then reqrite to _fast_faccess_0 800 assert(Bytecodes::java_code(Bytecodes::_fast_faccess_0) == 801 Bytecodes::_aload_0, 802 "fix bytecode definition"); 803 __ cmpl(rbx, Bytecodes::_fast_fgetfield); 804 __ movl(bc, Bytecodes::_fast_faccess_0); 805 __ jccb(Assembler::equal, rewrite); 806 807 // else rewrite to _fast_aload0 808 assert(Bytecodes::java_code(Bytecodes::_fast_aload_0) == 809 Bytecodes::_aload_0, 810 "fix bytecode definition"); 811 __ movl(bc, Bytecodes::_fast_aload_0); 812 813 // rewrite 814 // bc: fast bytecode 815 __ bind(rewrite); 816 patch_bytecode(Bytecodes::_aload_0, bc, rbx, false); 817 818 __ bind(done); 819 } else { 820 aload(0); 821 } 822 } 823 824 void TemplateTable::istore() { 825 transition(itos, vtos); 826 locals_index(rbx); 827 __ movl(iaddress(rbx), rax); 828 } 829 830 void TemplateTable::lstore() { 831 transition(ltos, vtos); 832 locals_index(rbx); 833 __ movq(laddress(rbx), rax); 834 } 835 836 void TemplateTable::fstore() { 837 transition(ftos, vtos); 838 locals_index(rbx); 839 __ movflt(faddress(rbx), xmm0); 840 } 841 842 void TemplateTable::dstore() { 843 transition(dtos, vtos); 844 locals_index(rbx); 845 __ movdbl(daddress(rbx), xmm0); 846 } 847 848 void TemplateTable::astore() { 849 transition(vtos, vtos); 850 __ pop_ptr(rax); 851 locals_index(rbx); 852 __ movptr(aaddress(rbx), rax); 853 } 854 855 void TemplateTable::wide_istore() { 856 transition(vtos, vtos); 857 __ pop_i(); 858 locals_index_wide(rbx); 859 __ movl(iaddress(rbx), rax); 860 } 861 862 void TemplateTable::wide_lstore() { 863 transition(vtos, vtos); 864 __ pop_l(); 865 locals_index_wide(rbx); 866 __ movq(laddress(rbx), rax); 867 } 868 869 void TemplateTable::wide_fstore() { 870 transition(vtos, vtos); 871 __ pop_f(); 872 locals_index_wide(rbx); 873 __ movflt(faddress(rbx), xmm0); 874 } 875 876 void TemplateTable::wide_dstore() { 877 transition(vtos, vtos); 878 __ pop_d(); 879 locals_index_wide(rbx); 880 __ movdbl(daddress(rbx), xmm0); 881 } 882 883 void TemplateTable::wide_astore() { 884 transition(vtos, vtos); 885 __ pop_ptr(rax); 886 locals_index_wide(rbx); 887 __ movptr(aaddress(rbx), rax); 888 } 889 890 void TemplateTable::iastore() { 891 transition(itos, vtos); 892 __ pop_i(rbx); 893 __ pop_ptr(rdx); 894 // eax: value 895 // ebx: index 896 // rdx: array 897 index_check(rdx, rbx); // prefer index in ebx 898 __ movl(Address(rdx, rbx, 899 Address::times_4, 900 arrayOopDesc::base_offset_in_bytes(T_INT)), 901 rax); 902 } 903 904 void TemplateTable::lastore() { 905 transition(ltos, vtos); 906 __ pop_i(rbx); 907 __ pop_ptr(rdx); 908 // rax: value 909 // ebx: index 910 // rdx: array 911 index_check(rdx, rbx); // prefer index in ebx 912 __ movq(Address(rdx, rbx, 913 Address::times_8, 914 arrayOopDesc::base_offset_in_bytes(T_LONG)), 915 rax); 916 } 917 918 void TemplateTable::fastore() { 919 transition(ftos, vtos); 920 __ pop_i(rbx); 921 __ pop_ptr(rdx); 922 // xmm0: value 923 // ebx: index 924 // rdx: array 925 index_check(rdx, rbx); // prefer index in ebx 926 __ movflt(Address(rdx, rbx, 927 Address::times_4, 928 arrayOopDesc::base_offset_in_bytes(T_FLOAT)), 929 xmm0); 930 } 931 932 void TemplateTable::dastore() { 933 transition(dtos, vtos); 934 __ pop_i(rbx); 935 __ pop_ptr(rdx); 936 // xmm0: value 937 // ebx: index 938 // rdx: array 939 index_check(rdx, rbx); // prefer index in ebx 940 __ movdbl(Address(rdx, rbx, 941 Address::times_8, 942 arrayOopDesc::base_offset_in_bytes(T_DOUBLE)), 943 xmm0); 944 } 945 946 void TemplateTable::aastore() { 947 Label is_null, ok_is_subtype, done; 948 transition(vtos, vtos); 949 // stack: ..., array, index, value 950 __ movptr(rax, at_tos()); // value 951 __ movl(rcx, at_tos_p1()); // index 952 __ movptr(rdx, at_tos_p2()); // array 953 954 Address element_address(rdx, rcx, 955 UseCompressedOops? Address::times_4 : Address::times_8, 956 arrayOopDesc::base_offset_in_bytes(T_OBJECT)); 957 958 index_check(rdx, rcx); // kills rbx 959 // do array store check - check for NULL value first 960 __ testptr(rax, rax); 961 __ jcc(Assembler::zero, is_null); 962 963 // Move subklass into rbx 964 __ load_klass(rbx, rax); 965 // Move superklass into rax 966 __ load_klass(rax, rdx); 967 __ movptr(rax, Address(rax, 968 sizeof(oopDesc) + 969 objArrayKlass::element_klass_offset_in_bytes())); 970 // Compress array + index*oopSize + 12 into a single register. Frees rcx. 971 __ lea(rdx, element_address); 972 973 // Generate subtype check. Blows rcx, rdi 974 // Superklass in rax. Subklass in rbx. 975 __ gen_subtype_check(rbx, ok_is_subtype); 976 977 // Come here on failure 978 // object is at TOS 979 __ jump(ExternalAddress(Interpreter::_throw_ArrayStoreException_entry)); 980 981 // Come here on success 982 __ bind(ok_is_subtype); 983 984 // Get the value we will store 985 __ movptr(rax, at_tos()); 986 // Now store using the appropriate barrier 987 do_oop_store(_masm, Address(rdx, 0), rax, _bs->kind(), true); 988 __ jmp(done); 989 990 // Have a NULL in rax, rdx=array, ecx=index. Store NULL at ary[idx] 991 __ bind(is_null); 992 __ profile_null_seen(rbx); 993 994 // Store a NULL 995 do_oop_store(_masm, element_address, noreg, _bs->kind(), true); 996 997 // Pop stack arguments 998 __ bind(done); 999 __ addptr(rsp, 3 * Interpreter::stackElementSize); 1000 } 1001 1002 void TemplateTable::bastore() { 1003 transition(itos, vtos); 1004 __ pop_i(rbx); 1005 __ pop_ptr(rdx); 1006 // eax: value 1007 // ebx: index 1008 // rdx: array 1009 index_check(rdx, rbx); // prefer index in ebx 1010 __ movb(Address(rdx, rbx, 1011 Address::times_1, 1012 arrayOopDesc::base_offset_in_bytes(T_BYTE)), 1013 rax); 1014 } 1015 1016 void TemplateTable::castore() { 1017 transition(itos, vtos); 1018 __ pop_i(rbx); 1019 __ pop_ptr(rdx); 1020 // eax: value 1021 // ebx: index 1022 // rdx: array 1023 index_check(rdx, rbx); // prefer index in ebx 1024 __ movw(Address(rdx, rbx, 1025 Address::times_2, 1026 arrayOopDesc::base_offset_in_bytes(T_CHAR)), 1027 rax); 1028 } 1029 1030 void TemplateTable::sastore() { 1031 castore(); 1032 } 1033 1034 void TemplateTable::istore(int n) { 1035 transition(itos, vtos); 1036 __ movl(iaddress(n), rax); 1037 } 1038 1039 void TemplateTable::lstore(int n) { 1040 transition(ltos, vtos); 1041 __ movq(laddress(n), rax); 1042 } 1043 1044 void TemplateTable::fstore(int n) { 1045 transition(ftos, vtos); 1046 __ movflt(faddress(n), xmm0); 1047 } 1048 1049 void TemplateTable::dstore(int n) { 1050 transition(dtos, vtos); 1051 __ movdbl(daddress(n), xmm0); 1052 } 1053 1054 void TemplateTable::astore(int n) { 1055 transition(vtos, vtos); 1056 __ pop_ptr(rax); 1057 __ movptr(aaddress(n), rax); 1058 } 1059 1060 void TemplateTable::pop() { 1061 transition(vtos, vtos); 1062 __ addptr(rsp, Interpreter::stackElementSize); 1063 } 1064 1065 void TemplateTable::pop2() { 1066 transition(vtos, vtos); 1067 __ addptr(rsp, 2 * Interpreter::stackElementSize); 1068 } 1069 1070 void TemplateTable::dup() { 1071 transition(vtos, vtos); 1072 __ load_ptr(0, rax); 1073 __ push_ptr(rax); 1074 // stack: ..., a, a 1075 } 1076 1077 void TemplateTable::dup_x1() { 1078 transition(vtos, vtos); 1079 // stack: ..., a, b 1080 __ load_ptr( 0, rax); // load b 1081 __ load_ptr( 1, rcx); // load a 1082 __ store_ptr(1, rax); // store b 1083 __ store_ptr(0, rcx); // store a 1084 __ push_ptr(rax); // push b 1085 // stack: ..., b, a, b 1086 } 1087 1088 void TemplateTable::dup_x2() { 1089 transition(vtos, vtos); 1090 // stack: ..., a, b, c 1091 __ load_ptr( 0, rax); // load c 1092 __ load_ptr( 2, rcx); // load a 1093 __ store_ptr(2, rax); // store c in a 1094 __ push_ptr(rax); // push c 1095 // stack: ..., c, b, c, c 1096 __ load_ptr( 2, rax); // load b 1097 __ store_ptr(2, rcx); // store a in b 1098 // stack: ..., c, a, c, c 1099 __ store_ptr(1, rax); // store b in c 1100 // stack: ..., c, a, b, c 1101 } 1102 1103 void TemplateTable::dup2() { 1104 transition(vtos, vtos); 1105 // stack: ..., a, b 1106 __ load_ptr(1, rax); // load a 1107 __ push_ptr(rax); // push a 1108 __ load_ptr(1, rax); // load b 1109 __ push_ptr(rax); // push b 1110 // stack: ..., a, b, a, b 1111 } 1112 1113 void TemplateTable::dup2_x1() { 1114 transition(vtos, vtos); 1115 // stack: ..., a, b, c 1116 __ load_ptr( 0, rcx); // load c 1117 __ load_ptr( 1, rax); // load b 1118 __ push_ptr(rax); // push b 1119 __ push_ptr(rcx); // push c 1120 // stack: ..., a, b, c, b, c 1121 __ store_ptr(3, rcx); // store c in b 1122 // stack: ..., a, c, c, b, c 1123 __ load_ptr( 4, rcx); // load a 1124 __ store_ptr(2, rcx); // store a in 2nd c 1125 // stack: ..., a, c, a, b, c 1126 __ store_ptr(4, rax); // store b in a 1127 // stack: ..., b, c, a, b, c 1128 } 1129 1130 void TemplateTable::dup2_x2() { 1131 transition(vtos, vtos); 1132 // stack: ..., a, b, c, d 1133 __ load_ptr( 0, rcx); // load d 1134 __ load_ptr( 1, rax); // load c 1135 __ push_ptr(rax); // push c 1136 __ push_ptr(rcx); // push d 1137 // stack: ..., a, b, c, d, c, d 1138 __ load_ptr( 4, rax); // load b 1139 __ store_ptr(2, rax); // store b in d 1140 __ store_ptr(4, rcx); // store d in b 1141 // stack: ..., a, d, c, b, c, d 1142 __ load_ptr( 5, rcx); // load a 1143 __ load_ptr( 3, rax); // load c 1144 __ store_ptr(3, rcx); // store a in c 1145 __ store_ptr(5, rax); // store c in a 1146 // stack: ..., c, d, a, b, c, d 1147 } 1148 1149 void TemplateTable::swap() { 1150 transition(vtos, vtos); 1151 // stack: ..., a, b 1152 __ load_ptr( 1, rcx); // load a 1153 __ load_ptr( 0, rax); // load b 1154 __ store_ptr(0, rcx); // store a in b 1155 __ store_ptr(1, rax); // store b in a 1156 // stack: ..., b, a 1157 } 1158 1159 void TemplateTable::iop2(Operation op) { 1160 transition(itos, itos); 1161 switch (op) { 1162 case add : __ pop_i(rdx); __ addl (rax, rdx); break; 1163 case sub : __ movl(rdx, rax); __ pop_i(rax); __ subl (rax, rdx); break; 1164 case mul : __ pop_i(rdx); __ imull(rax, rdx); break; 1165 case _and : __ pop_i(rdx); __ andl (rax, rdx); break; 1166 case _or : __ pop_i(rdx); __ orl (rax, rdx); break; 1167 case _xor : __ pop_i(rdx); __ xorl (rax, rdx); break; 1168 case shl : __ movl(rcx, rax); __ pop_i(rax); __ shll (rax); break; 1169 case shr : __ movl(rcx, rax); __ pop_i(rax); __ sarl (rax); break; 1170 case ushr : __ movl(rcx, rax); __ pop_i(rax); __ shrl (rax); break; 1171 default : ShouldNotReachHere(); 1172 } 1173 } 1174 1175 void TemplateTable::lop2(Operation op) { 1176 transition(ltos, ltos); 1177 switch (op) { 1178 case add : __ pop_l(rdx); __ addptr(rax, rdx); break; 1179 case sub : __ mov(rdx, rax); __ pop_l(rax); __ subptr(rax, rdx); break; 1180 case _and : __ pop_l(rdx); __ andptr(rax, rdx); break; 1181 case _or : __ pop_l(rdx); __ orptr (rax, rdx); break; 1182 case _xor : __ pop_l(rdx); __ xorptr(rax, rdx); break; 1183 default : ShouldNotReachHere(); 1184 } 1185 } 1186 1187 void TemplateTable::idiv() { 1188 transition(itos, itos); 1189 __ movl(rcx, rax); 1190 __ pop_i(rax); 1191 // Note: could xor eax and ecx and compare with (-1 ^ min_int). If 1192 // they are not equal, one could do a normal division (no correction 1193 // needed), which may speed up this implementation for the common case. 1194 // (see also JVM spec., p.243 & p.271) 1195 __ corrected_idivl(rcx); 1196 } 1197 1198 void TemplateTable::irem() { 1199 transition(itos, itos); 1200 __ movl(rcx, rax); 1201 __ pop_i(rax); 1202 // Note: could xor eax and ecx and compare with (-1 ^ min_int). If 1203 // they are not equal, one could do a normal division (no correction 1204 // needed), which may speed up this implementation for the common case. 1205 // (see also JVM spec., p.243 & p.271) 1206 __ corrected_idivl(rcx); 1207 __ movl(rax, rdx); 1208 } 1209 1210 void TemplateTable::lmul() { 1211 transition(ltos, ltos); 1212 __ pop_l(rdx); 1213 __ imulq(rax, rdx); 1214 } 1215 1216 void TemplateTable::ldiv() { 1217 transition(ltos, ltos); 1218 __ mov(rcx, rax); 1219 __ pop_l(rax); 1220 // generate explicit div0 check 1221 __ testq(rcx, rcx); 1222 __ jump_cc(Assembler::zero, 1223 ExternalAddress(Interpreter::_throw_ArithmeticException_entry)); 1224 // Note: could xor rax and rcx and compare with (-1 ^ min_int). If 1225 // they are not equal, one could do a normal division (no correction 1226 // needed), which may speed up this implementation for the common case. 1227 // (see also JVM spec., p.243 & p.271) 1228 __ corrected_idivq(rcx); // kills rbx 1229 } 1230 1231 void TemplateTable::lrem() { 1232 transition(ltos, ltos); 1233 __ mov(rcx, rax); 1234 __ pop_l(rax); 1235 __ testq(rcx, rcx); 1236 __ jump_cc(Assembler::zero, 1237 ExternalAddress(Interpreter::_throw_ArithmeticException_entry)); 1238 // Note: could xor rax and rcx and compare with (-1 ^ min_int). If 1239 // they are not equal, one could do a normal division (no correction 1240 // needed), which may speed up this implementation for the common case. 1241 // (see also JVM spec., p.243 & p.271) 1242 __ corrected_idivq(rcx); // kills rbx 1243 __ mov(rax, rdx); 1244 } 1245 1246 void TemplateTable::lshl() { 1247 transition(itos, ltos); 1248 __ movl(rcx, rax); // get shift count 1249 __ pop_l(rax); // get shift value 1250 __ shlq(rax); 1251 } 1252 1253 void TemplateTable::lshr() { 1254 transition(itos, ltos); 1255 __ movl(rcx, rax); // get shift count 1256 __ pop_l(rax); // get shift value 1257 __ sarq(rax); 1258 } 1259 1260 void TemplateTable::lushr() { 1261 transition(itos, ltos); 1262 __ movl(rcx, rax); // get shift count 1263 __ pop_l(rax); // get shift value 1264 __ shrq(rax); 1265 } 1266 1267 void TemplateTable::fop2(Operation op) { 1268 transition(ftos, ftos); 1269 switch (op) { 1270 case add: 1271 __ addss(xmm0, at_rsp()); 1272 __ addptr(rsp, Interpreter::stackElementSize); 1273 break; 1274 case sub: 1275 __ movflt(xmm1, xmm0); 1276 __ pop_f(xmm0); 1277 __ subss(xmm0, xmm1); 1278 break; 1279 case mul: 1280 __ mulss(xmm0, at_rsp()); 1281 __ addptr(rsp, Interpreter::stackElementSize); 1282 break; 1283 case div: 1284 __ movflt(xmm1, xmm0); 1285 __ pop_f(xmm0); 1286 __ divss(xmm0, xmm1); 1287 break; 1288 case rem: 1289 __ movflt(xmm1, xmm0); 1290 __ pop_f(xmm0); 1291 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::frem), 2); 1292 break; 1293 default: 1294 ShouldNotReachHere(); 1295 break; 1296 } 1297 } 1298 1299 void TemplateTable::dop2(Operation op) { 1300 transition(dtos, dtos); 1301 switch (op) { 1302 case add: 1303 __ addsd(xmm0, at_rsp()); 1304 __ addptr(rsp, 2 * Interpreter::stackElementSize); 1305 break; 1306 case sub: 1307 __ movdbl(xmm1, xmm0); 1308 __ pop_d(xmm0); 1309 __ subsd(xmm0, xmm1); 1310 break; 1311 case mul: 1312 __ mulsd(xmm0, at_rsp()); 1313 __ addptr(rsp, 2 * Interpreter::stackElementSize); 1314 break; 1315 case div: 1316 __ movdbl(xmm1, xmm0); 1317 __ pop_d(xmm0); 1318 __ divsd(xmm0, xmm1); 1319 break; 1320 case rem: 1321 __ movdbl(xmm1, xmm0); 1322 __ pop_d(xmm0); 1323 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::drem), 2); 1324 break; 1325 default: 1326 ShouldNotReachHere(); 1327 break; 1328 } 1329 } 1330 1331 void TemplateTable::ineg() { 1332 transition(itos, itos); 1333 __ negl(rax); 1334 } 1335 1336 void TemplateTable::lneg() { 1337 transition(ltos, ltos); 1338 __ negq(rax); 1339 } 1340 1341 // Note: 'double' and 'long long' have 32-bits alignment on x86. 1342 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) { 1343 // Use the expression (adr)&(~0xF) to provide 128-bits aligned address 1344 // of 128-bits operands for SSE instructions. 1345 jlong *operand = (jlong*)(((intptr_t)adr)&((intptr_t)(~0xF))); 1346 // Store the value to a 128-bits operand. 1347 operand[0] = lo; 1348 operand[1] = hi; 1349 return operand; 1350 } 1351 1352 // Buffer for 128-bits masks used by SSE instructions. 1353 static jlong float_signflip_pool[2*2]; 1354 static jlong double_signflip_pool[2*2]; 1355 1356 void TemplateTable::fneg() { 1357 transition(ftos, ftos); 1358 static jlong *float_signflip = double_quadword(&float_signflip_pool[1], 0x8000000080000000, 0x8000000080000000); 1359 __ xorps(xmm0, ExternalAddress((address) float_signflip)); 1360 } 1361 1362 void TemplateTable::dneg() { 1363 transition(dtos, dtos); 1364 static jlong *double_signflip = double_quadword(&double_signflip_pool[1], 0x8000000000000000, 0x8000000000000000); 1365 __ xorpd(xmm0, ExternalAddress((address) double_signflip)); 1366 } 1367 1368 void TemplateTable::iinc() { 1369 transition(vtos, vtos); 1370 __ load_signed_byte(rdx, at_bcp(2)); // get constant 1371 locals_index(rbx); 1372 __ addl(iaddress(rbx), rdx); 1373 } 1374 1375 void TemplateTable::wide_iinc() { 1376 transition(vtos, vtos); 1377 __ movl(rdx, at_bcp(4)); // get constant 1378 locals_index_wide(rbx); 1379 __ bswapl(rdx); // swap bytes & sign-extend constant 1380 __ sarl(rdx, 16); 1381 __ addl(iaddress(rbx), rdx); 1382 // Note: should probably use only one movl to get both 1383 // the index and the constant -> fix this 1384 } 1385 1386 void TemplateTable::convert() { 1387 // Checking 1388 #ifdef ASSERT 1389 { 1390 TosState tos_in = ilgl; 1391 TosState tos_out = ilgl; 1392 switch (bytecode()) { 1393 case Bytecodes::_i2l: // fall through 1394 case Bytecodes::_i2f: // fall through 1395 case Bytecodes::_i2d: // fall through 1396 case Bytecodes::_i2b: // fall through 1397 case Bytecodes::_i2c: // fall through 1398 case Bytecodes::_i2s: tos_in = itos; break; 1399 case Bytecodes::_l2i: // fall through 1400 case Bytecodes::_l2f: // fall through 1401 case Bytecodes::_l2d: tos_in = ltos; break; 1402 case Bytecodes::_f2i: // fall through 1403 case Bytecodes::_f2l: // fall through 1404 case Bytecodes::_f2d: tos_in = ftos; break; 1405 case Bytecodes::_d2i: // fall through 1406 case Bytecodes::_d2l: // fall through 1407 case Bytecodes::_d2f: tos_in = dtos; break; 1408 default : ShouldNotReachHere(); 1409 } 1410 switch (bytecode()) { 1411 case Bytecodes::_l2i: // fall through 1412 case Bytecodes::_f2i: // fall through 1413 case Bytecodes::_d2i: // fall through 1414 case Bytecodes::_i2b: // fall through 1415 case Bytecodes::_i2c: // fall through 1416 case Bytecodes::_i2s: tos_out = itos; break; 1417 case Bytecodes::_i2l: // fall through 1418 case Bytecodes::_f2l: // fall through 1419 case Bytecodes::_d2l: tos_out = ltos; break; 1420 case Bytecodes::_i2f: // fall through 1421 case Bytecodes::_l2f: // fall through 1422 case Bytecodes::_d2f: tos_out = ftos; break; 1423 case Bytecodes::_i2d: // fall through 1424 case Bytecodes::_l2d: // fall through 1425 case Bytecodes::_f2d: tos_out = dtos; break; 1426 default : ShouldNotReachHere(); 1427 } 1428 transition(tos_in, tos_out); 1429 } 1430 #endif // ASSERT 1431 1432 static const int64_t is_nan = 0x8000000000000000L; 1433 1434 // Conversion 1435 switch (bytecode()) { 1436 case Bytecodes::_i2l: 1437 __ movslq(rax, rax); 1438 break; 1439 case Bytecodes::_i2f: 1440 __ cvtsi2ssl(xmm0, rax); 1441 break; 1442 case Bytecodes::_i2d: 1443 __ cvtsi2sdl(xmm0, rax); 1444 break; 1445 case Bytecodes::_i2b: 1446 __ movsbl(rax, rax); 1447 break; 1448 case Bytecodes::_i2c: 1449 __ movzwl(rax, rax); 1450 break; 1451 case Bytecodes::_i2s: 1452 __ movswl(rax, rax); 1453 break; 1454 case Bytecodes::_l2i: 1455 __ movl(rax, rax); 1456 break; 1457 case Bytecodes::_l2f: 1458 __ cvtsi2ssq(xmm0, rax); 1459 break; 1460 case Bytecodes::_l2d: 1461 __ cvtsi2sdq(xmm0, rax); 1462 break; 1463 case Bytecodes::_f2i: 1464 { 1465 Label L; 1466 __ cvttss2sil(rax, xmm0); 1467 __ cmpl(rax, 0x80000000); // NaN or overflow/underflow? 1468 __ jcc(Assembler::notEqual, L); 1469 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2i), 1); 1470 __ bind(L); 1471 } 1472 break; 1473 case Bytecodes::_f2l: 1474 { 1475 Label L; 1476 __ cvttss2siq(rax, xmm0); 1477 // NaN or overflow/underflow? 1478 __ cmp64(rax, ExternalAddress((address) &is_nan)); 1479 __ jcc(Assembler::notEqual, L); 1480 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2l), 1); 1481 __ bind(L); 1482 } 1483 break; 1484 case Bytecodes::_f2d: 1485 __ cvtss2sd(xmm0, xmm0); 1486 break; 1487 case Bytecodes::_d2i: 1488 { 1489 Label L; 1490 __ cvttsd2sil(rax, xmm0); 1491 __ cmpl(rax, 0x80000000); // NaN or overflow/underflow? 1492 __ jcc(Assembler::notEqual, L); 1493 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2i), 1); 1494 __ bind(L); 1495 } 1496 break; 1497 case Bytecodes::_d2l: 1498 { 1499 Label L; 1500 __ cvttsd2siq(rax, xmm0); 1501 // NaN or overflow/underflow? 1502 __ cmp64(rax, ExternalAddress((address) &is_nan)); 1503 __ jcc(Assembler::notEqual, L); 1504 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2l), 1); 1505 __ bind(L); 1506 } 1507 break; 1508 case Bytecodes::_d2f: 1509 __ cvtsd2ss(xmm0, xmm0); 1510 break; 1511 default: 1512 ShouldNotReachHere(); 1513 } 1514 } 1515 1516 void TemplateTable::lcmp() { 1517 transition(ltos, itos); 1518 Label done; 1519 __ pop_l(rdx); 1520 __ cmpq(rdx, rax); 1521 __ movl(rax, -1); 1522 __ jccb(Assembler::less, done); 1523 __ setb(Assembler::notEqual, rax); 1524 __ movzbl(rax, rax); 1525 __ bind(done); 1526 } 1527 1528 void TemplateTable::float_cmp(bool is_float, int unordered_result) { 1529 Label done; 1530 if (is_float) { 1531 // XXX get rid of pop here, use ... reg, mem32 1532 __ pop_f(xmm1); 1533 __ ucomiss(xmm1, xmm0); 1534 } else { 1535 // XXX get rid of pop here, use ... reg, mem64 1536 __ pop_d(xmm1); 1537 __ ucomisd(xmm1, xmm0); 1538 } 1539 if (unordered_result < 0) { 1540 __ movl(rax, -1); 1541 __ jccb(Assembler::parity, done); 1542 __ jccb(Assembler::below, done); 1543 __ setb(Assembler::notEqual, rdx); 1544 __ movzbl(rax, rdx); 1545 } else { 1546 __ movl(rax, 1); 1547 __ jccb(Assembler::parity, done); 1548 __ jccb(Assembler::above, done); 1549 __ movl(rax, 0); 1550 __ jccb(Assembler::equal, done); 1551 __ decrementl(rax); 1552 } 1553 __ bind(done); 1554 } 1555 1556 void TemplateTable::branch(bool is_jsr, bool is_wide) { 1557 __ get_method(rcx); // rcx holds method 1558 __ profile_taken_branch(rax, rbx); // rax holds updated MDP, rbx 1559 // holds bumped taken count 1560 1561 const ByteSize be_offset = methodOopDesc::backedge_counter_offset() + 1562 InvocationCounter::counter_offset(); 1563 const ByteSize inv_offset = methodOopDesc::invocation_counter_offset() + 1564 InvocationCounter::counter_offset(); 1565 const int method_offset = frame::interpreter_frame_method_offset * wordSize; 1566 1567 // Load up edx with the branch displacement 1568 __ movl(rdx, at_bcp(1)); 1569 __ bswapl(rdx); 1570 1571 if (!is_wide) { 1572 __ sarl(rdx, 16); 1573 } 1574 __ movl2ptr(rdx, rdx); 1575 1576 // Handle all the JSR stuff here, then exit. 1577 // It's much shorter and cleaner than intermingling with the non-JSR 1578 // normal-branch stuff occurring below. 1579 if (is_jsr) { 1580 // Pre-load the next target bytecode into rbx 1581 __ load_unsigned_byte(rbx, Address(r13, rdx, Address::times_1, 0)); 1582 1583 // compute return address as bci in rax 1584 __ lea(rax, at_bcp((is_wide ? 5 : 3) - 1585 in_bytes(constMethodOopDesc::codes_offset()))); 1586 __ subptr(rax, Address(rcx, methodOopDesc::const_offset())); 1587 // Adjust the bcp in r13 by the displacement in rdx 1588 __ addptr(r13, rdx); 1589 // jsr returns atos that is not an oop 1590 __ push_i(rax); 1591 __ dispatch_only(vtos); 1592 return; 1593 } 1594 1595 // Normal (non-jsr) branch handling 1596 1597 // Adjust the bcp in r13 by the displacement in rdx 1598 __ addptr(r13, rdx); 1599 1600 assert(UseLoopCounter || !UseOnStackReplacement, 1601 "on-stack-replacement requires loop counters"); 1602 Label backedge_counter_overflow; 1603 Label profile_method; 1604 Label dispatch; 1605 if (UseLoopCounter) { 1606 // increment backedge counter for backward branches 1607 // rax: MDO 1608 // ebx: MDO bumped taken-count 1609 // rcx: method 1610 // rdx: target offset 1611 // r13: target bcp 1612 // r14: locals pointer 1613 __ testl(rdx, rdx); // check if forward or backward branch 1614 __ jcc(Assembler::positive, dispatch); // count only if backward branch 1615 if (TieredCompilation) { 1616 Label no_mdo; 1617 int increment = InvocationCounter::count_increment; 1618 int mask = ((1 << Tier0BackedgeNotifyFreqLog) - 1) << InvocationCounter::count_shift; 1619 if (ProfileInterpreter) { 1620 // Are we profiling? 1621 __ movptr(rbx, Address(rcx, in_bytes(methodOopDesc::method_data_offset()))); 1622 __ testptr(rbx, rbx); 1623 __ jccb(Assembler::zero, no_mdo); 1624 // Increment the MDO backedge counter 1625 const Address mdo_backedge_counter(rbx, in_bytes(methodDataOopDesc::backedge_counter_offset()) + 1626 in_bytes(InvocationCounter::counter_offset())); 1627 __ increment_mask_and_jump(mdo_backedge_counter, increment, mask, 1628 rax, false, Assembler::zero, &backedge_counter_overflow); 1629 __ jmp(dispatch); 1630 } 1631 __ bind(no_mdo); 1632 // Increment backedge counter in methodOop 1633 __ increment_mask_and_jump(Address(rcx, be_offset), increment, mask, 1634 rax, false, Assembler::zero, &backedge_counter_overflow); 1635 } else { 1636 // increment counter 1637 __ movl(rax, Address(rcx, be_offset)); // load backedge counter 1638 __ incrementl(rax, InvocationCounter::count_increment); // increment counter 1639 __ movl(Address(rcx, be_offset), rax); // store counter 1640 1641 __ movl(rax, Address(rcx, inv_offset)); // load invocation counter 1642 __ andl(rax, InvocationCounter::count_mask_value); // and the status bits 1643 __ addl(rax, Address(rcx, be_offset)); // add both counters 1644 1645 if (ProfileInterpreter) { 1646 // Test to see if we should create a method data oop 1647 __ cmp32(rax, 1648 ExternalAddress((address) &InvocationCounter::InterpreterProfileLimit)); 1649 __ jcc(Assembler::less, dispatch); 1650 1651 // if no method data exists, go to profile method 1652 __ test_method_data_pointer(rax, profile_method); 1653 1654 if (UseOnStackReplacement) { 1655 // check for overflow against ebx which is the MDO taken count 1656 __ cmp32(rbx, 1657 ExternalAddress((address) &InvocationCounter::InterpreterBackwardBranchLimit)); 1658 __ jcc(Assembler::below, dispatch); 1659 1660 // When ProfileInterpreter is on, the backedge_count comes 1661 // from the methodDataOop, which value does not get reset on 1662 // the call to frequency_counter_overflow(). To avoid 1663 // excessive calls to the overflow routine while the method is 1664 // being compiled, add a second test to make sure the overflow 1665 // function is called only once every overflow_frequency. 1666 const int overflow_frequency = 1024; 1667 __ andl(rbx, overflow_frequency - 1); 1668 __ jcc(Assembler::zero, backedge_counter_overflow); 1669 1670 } 1671 } else { 1672 if (UseOnStackReplacement) { 1673 // check for overflow against eax, which is the sum of the 1674 // counters 1675 __ cmp32(rax, 1676 ExternalAddress((address) &InvocationCounter::InterpreterBackwardBranchLimit)); 1677 __ jcc(Assembler::aboveEqual, backedge_counter_overflow); 1678 1679 } 1680 } 1681 } 1682 __ bind(dispatch); 1683 } 1684 1685 // Pre-load the next target bytecode into rbx 1686 __ load_unsigned_byte(rbx, Address(r13, 0)); 1687 1688 // continue with the bytecode @ target 1689 // eax: return bci for jsr's, unused otherwise 1690 // ebx: target bytecode 1691 // r13: target bcp 1692 __ dispatch_only(vtos); 1693 1694 if (UseLoopCounter) { 1695 if (ProfileInterpreter) { 1696 // Out-of-line code to allocate method data oop. 1697 __ bind(profile_method); 1698 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method)); 1699 __ load_unsigned_byte(rbx, Address(r13, 0)); // restore target bytecode 1700 __ set_method_data_pointer_for_bcp(); 1701 __ jmp(dispatch); 1702 } 1703 1704 if (UseOnStackReplacement) { 1705 // invocation counter overflow 1706 __ bind(backedge_counter_overflow); 1707 __ negptr(rdx); 1708 __ addptr(rdx, r13); // branch bcp 1709 // IcoResult frequency_counter_overflow([JavaThread*], address branch_bcp) 1710 __ call_VM(noreg, 1711 CAST_FROM_FN_PTR(address, 1712 InterpreterRuntime::frequency_counter_overflow), 1713 rdx); 1714 __ load_unsigned_byte(rbx, Address(r13, 0)); // restore target bytecode 1715 1716 // rax: osr nmethod (osr ok) or NULL (osr not possible) 1717 // ebx: target bytecode 1718 // rdx: scratch 1719 // r14: locals pointer 1720 // r13: bcp 1721 __ testptr(rax, rax); // test result 1722 __ jcc(Assembler::zero, dispatch); // no osr if null 1723 // nmethod may have been invalidated (VM may block upon call_VM return) 1724 __ movl(rcx, Address(rax, nmethod::entry_bci_offset())); 1725 __ cmpl(rcx, InvalidOSREntryBci); 1726 __ jcc(Assembler::equal, dispatch); 1727 1728 // We have the address of an on stack replacement routine in eax 1729 // We need to prepare to execute the OSR method. First we must 1730 // migrate the locals and monitors off of the stack. 1731 1732 __ mov(r13, rax); // save the nmethod 1733 1734 call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin)); 1735 1736 // eax is OSR buffer, move it to expected parameter location 1737 __ mov(j_rarg0, rax); 1738 1739 // We use j_rarg definitions here so that registers don't conflict as parameter 1740 // registers change across platforms as we are in the midst of a calling 1741 // sequence to the OSR nmethod and we don't want collision. These are NOT parameters. 1742 1743 const Register retaddr = j_rarg2; 1744 const Register sender_sp = j_rarg1; 1745 1746 // pop the interpreter frame 1747 __ movptr(sender_sp, Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize)); // get sender sp 1748 __ leave(); // remove frame anchor 1749 __ pop(retaddr); // get return address 1750 __ mov(rsp, sender_sp); // set sp to sender sp 1751 // Ensure compiled code always sees stack at proper alignment 1752 __ andptr(rsp, -(StackAlignmentInBytes)); 1753 1754 // unlike x86 we need no specialized return from compiled code 1755 // to the interpreter or the call stub. 1756 1757 // push the return address 1758 __ push(retaddr); 1759 1760 // and begin the OSR nmethod 1761 __ jmp(Address(r13, nmethod::osr_entry_point_offset())); 1762 } 1763 } 1764 } 1765 1766 1767 void TemplateTable::if_0cmp(Condition cc) { 1768 transition(itos, vtos); 1769 // assume branch is more often taken than not (loops use backward branches) 1770 Label not_taken; 1771 __ testl(rax, rax); 1772 __ jcc(j_not(cc), not_taken); 1773 branch(false, false); 1774 __ bind(not_taken); 1775 __ profile_not_taken_branch(rax); 1776 } 1777 1778 void TemplateTable::if_icmp(Condition cc) { 1779 transition(itos, vtos); 1780 // assume branch is more often taken than not (loops use backward branches) 1781 Label not_taken; 1782 __ pop_i(rdx); 1783 __ cmpl(rdx, rax); 1784 __ jcc(j_not(cc), not_taken); 1785 branch(false, false); 1786 __ bind(not_taken); 1787 __ profile_not_taken_branch(rax); 1788 } 1789 1790 void TemplateTable::if_nullcmp(Condition cc) { 1791 transition(atos, vtos); 1792 // assume branch is more often taken than not (loops use backward branches) 1793 Label not_taken; 1794 __ testptr(rax, rax); 1795 __ jcc(j_not(cc), not_taken); 1796 branch(false, false); 1797 __ bind(not_taken); 1798 __ profile_not_taken_branch(rax); 1799 } 1800 1801 void TemplateTable::if_acmp(Condition cc) { 1802 transition(atos, vtos); 1803 // assume branch is more often taken than not (loops use backward branches) 1804 Label not_taken; 1805 __ pop_ptr(rdx); 1806 __ cmpptr(rdx, rax); 1807 __ jcc(j_not(cc), not_taken); 1808 branch(false, false); 1809 __ bind(not_taken); 1810 __ profile_not_taken_branch(rax); 1811 } 1812 1813 void TemplateTable::ret() { 1814 transition(vtos, vtos); 1815 locals_index(rbx); 1816 __ movslq(rbx, iaddress(rbx)); // get return bci, compute return bcp 1817 __ profile_ret(rbx, rcx); 1818 __ get_method(rax); 1819 __ movptr(r13, Address(rax, methodOopDesc::const_offset())); 1820 __ lea(r13, Address(r13, rbx, Address::times_1, 1821 constMethodOopDesc::codes_offset())); 1822 __ dispatch_next(vtos); 1823 } 1824 1825 void TemplateTable::wide_ret() { 1826 transition(vtos, vtos); 1827 locals_index_wide(rbx); 1828 __ movptr(rbx, aaddress(rbx)); // get return bci, compute return bcp 1829 __ profile_ret(rbx, rcx); 1830 __ get_method(rax); 1831 __ movptr(r13, Address(rax, methodOopDesc::const_offset())); 1832 __ lea(r13, Address(r13, rbx, Address::times_1, constMethodOopDesc::codes_offset())); 1833 __ dispatch_next(vtos); 1834 } 1835 1836 void TemplateTable::tableswitch() { 1837 Label default_case, continue_execution; 1838 transition(itos, vtos); 1839 // align r13 1840 __ lea(rbx, at_bcp(BytesPerInt)); 1841 __ andptr(rbx, -BytesPerInt); 1842 // load lo & hi 1843 __ movl(rcx, Address(rbx, BytesPerInt)); 1844 __ movl(rdx, Address(rbx, 2 * BytesPerInt)); 1845 __ bswapl(rcx); 1846 __ bswapl(rdx); 1847 // check against lo & hi 1848 __ cmpl(rax, rcx); 1849 __ jcc(Assembler::less, default_case); 1850 __ cmpl(rax, rdx); 1851 __ jcc(Assembler::greater, default_case); 1852 // lookup dispatch offset 1853 __ subl(rax, rcx); 1854 __ movl(rdx, Address(rbx, rax, Address::times_4, 3 * BytesPerInt)); 1855 __ profile_switch_case(rax, rbx, rcx); 1856 // continue execution 1857 __ bind(continue_execution); 1858 __ bswapl(rdx); 1859 __ movl2ptr(rdx, rdx); 1860 __ load_unsigned_byte(rbx, Address(r13, rdx, Address::times_1)); 1861 __ addptr(r13, rdx); 1862 __ dispatch_only(vtos); 1863 // handle default 1864 __ bind(default_case); 1865 __ profile_switch_default(rax); 1866 __ movl(rdx, Address(rbx, 0)); 1867 __ jmp(continue_execution); 1868 } 1869 1870 void TemplateTable::lookupswitch() { 1871 transition(itos, itos); 1872 __ stop("lookupswitch bytecode should have been rewritten"); 1873 } 1874 1875 void TemplateTable::fast_linearswitch() { 1876 transition(itos, vtos); 1877 Label loop_entry, loop, found, continue_execution; 1878 // bswap rax so we can avoid bswapping the table entries 1879 __ bswapl(rax); 1880 // align r13 1881 __ lea(rbx, at_bcp(BytesPerInt)); // btw: should be able to get rid of 1882 // this instruction (change offsets 1883 // below) 1884 __ andptr(rbx, -BytesPerInt); 1885 // set counter 1886 __ movl(rcx, Address(rbx, BytesPerInt)); 1887 __ bswapl(rcx); 1888 __ jmpb(loop_entry); 1889 // table search 1890 __ bind(loop); 1891 __ cmpl(rax, Address(rbx, rcx, Address::times_8, 2 * BytesPerInt)); 1892 __ jcc(Assembler::equal, found); 1893 __ bind(loop_entry); 1894 __ decrementl(rcx); 1895 __ jcc(Assembler::greaterEqual, loop); 1896 // default case 1897 __ profile_switch_default(rax); 1898 __ movl(rdx, Address(rbx, 0)); 1899 __ jmp(continue_execution); 1900 // entry found -> get offset 1901 __ bind(found); 1902 __ movl(rdx, Address(rbx, rcx, Address::times_8, 3 * BytesPerInt)); 1903 __ profile_switch_case(rcx, rax, rbx); 1904 // continue execution 1905 __ bind(continue_execution); 1906 __ bswapl(rdx); 1907 __ movl2ptr(rdx, rdx); 1908 __ load_unsigned_byte(rbx, Address(r13, rdx, Address::times_1)); 1909 __ addptr(r13, rdx); 1910 __ dispatch_only(vtos); 1911 } 1912 1913 void TemplateTable::fast_binaryswitch() { 1914 transition(itos, vtos); 1915 // Implementation using the following core algorithm: 1916 // 1917 // int binary_search(int key, LookupswitchPair* array, int n) { 1918 // // Binary search according to "Methodik des Programmierens" by 1919 // // Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley Germany 1985. 1920 // int i = 0; 1921 // int j = n; 1922 // while (i+1 < j) { 1923 // // invariant P: 0 <= i < j <= n and (a[i] <= key < a[j] or Q) 1924 // // with Q: for all i: 0 <= i < n: key < a[i] 1925 // // where a stands for the array and assuming that the (inexisting) 1926 // // element a[n] is infinitely big. 1927 // int h = (i + j) >> 1; 1928 // // i < h < j 1929 // if (key < array[h].fast_match()) { 1930 // j = h; 1931 // } else { 1932 // i = h; 1933 // } 1934 // } 1935 // // R: a[i] <= key < a[i+1] or Q 1936 // // (i.e., if key is within array, i is the correct index) 1937 // return i; 1938 // } 1939 1940 // Register allocation 1941 const Register key = rax; // already set (tosca) 1942 const Register array = rbx; 1943 const Register i = rcx; 1944 const Register j = rdx; 1945 const Register h = rdi; 1946 const Register temp = rsi; 1947 1948 // Find array start 1949 __ lea(array, at_bcp(3 * BytesPerInt)); // btw: should be able to 1950 // get rid of this 1951 // instruction (change 1952 // offsets below) 1953 __ andptr(array, -BytesPerInt); 1954 1955 // Initialize i & j 1956 __ xorl(i, i); // i = 0; 1957 __ movl(j, Address(array, -BytesPerInt)); // j = length(array); 1958 1959 // Convert j into native byteordering 1960 __ bswapl(j); 1961 1962 // And start 1963 Label entry; 1964 __ jmp(entry); 1965 1966 // binary search loop 1967 { 1968 Label loop; 1969 __ bind(loop); 1970 // int h = (i + j) >> 1; 1971 __ leal(h, Address(i, j, Address::times_1)); // h = i + j; 1972 __ sarl(h, 1); // h = (i + j) >> 1; 1973 // if (key < array[h].fast_match()) { 1974 // j = h; 1975 // } else { 1976 // i = h; 1977 // } 1978 // Convert array[h].match to native byte-ordering before compare 1979 __ movl(temp, Address(array, h, Address::times_8)); 1980 __ bswapl(temp); 1981 __ cmpl(key, temp); 1982 // j = h if (key < array[h].fast_match()) 1983 __ cmovl(Assembler::less, j, h); 1984 // i = h if (key >= array[h].fast_match()) 1985 __ cmovl(Assembler::greaterEqual, i, h); 1986 // while (i+1 < j) 1987 __ bind(entry); 1988 __ leal(h, Address(i, 1)); // i+1 1989 __ cmpl(h, j); // i+1 < j 1990 __ jcc(Assembler::less, loop); 1991 } 1992 1993 // end of binary search, result index is i (must check again!) 1994 Label default_case; 1995 // Convert array[i].match to native byte-ordering before compare 1996 __ movl(temp, Address(array, i, Address::times_8)); 1997 __ bswapl(temp); 1998 __ cmpl(key, temp); 1999 __ jcc(Assembler::notEqual, default_case); 2000 2001 // entry found -> j = offset 2002 __ movl(j , Address(array, i, Address::times_8, BytesPerInt)); 2003 __ profile_switch_case(i, key, array); 2004 __ bswapl(j); 2005 __ movl2ptr(j, j); 2006 __ load_unsigned_byte(rbx, Address(r13, j, Address::times_1)); 2007 __ addptr(r13, j); 2008 __ dispatch_only(vtos); 2009 2010 // default case -> j = default offset 2011 __ bind(default_case); 2012 __ profile_switch_default(i); 2013 __ movl(j, Address(array, -2 * BytesPerInt)); 2014 __ bswapl(j); 2015 __ movl2ptr(j, j); 2016 __ load_unsigned_byte(rbx, Address(r13, j, Address::times_1)); 2017 __ addptr(r13, j); 2018 __ dispatch_only(vtos); 2019 } 2020 2021 2022 void TemplateTable::_return(TosState state) { 2023 transition(state, state); 2024 assert(_desc->calls_vm(), 2025 "inconsistent calls_vm information"); // call in remove_activation 2026 2027 if (_desc->bytecode() == Bytecodes::_return_register_finalizer) { 2028 assert(state == vtos, "only valid state"); 2029 __ movptr(c_rarg1, aaddress(0)); 2030 __ load_klass(rdi, c_rarg1); 2031 __ movl(rdi, Address(rdi, Klass::access_flags_offset_in_bytes() + sizeof(oopDesc))); 2032 __ testl(rdi, JVM_ACC_HAS_FINALIZER); 2033 Label skip_register_finalizer; 2034 __ jcc(Assembler::zero, skip_register_finalizer); 2035 2036 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), c_rarg1); 2037 2038 __ bind(skip_register_finalizer); 2039 } 2040 2041 __ remove_activation(state, r13); 2042 __ jmp(r13); 2043 } 2044 2045 // ---------------------------------------------------------------------------- 2046 // Volatile variables demand their effects be made known to all CPU's 2047 // in order. Store buffers on most chips allow reads & writes to 2048 // reorder; the JMM's ReadAfterWrite.java test fails in -Xint mode 2049 // without some kind of memory barrier (i.e., it's not sufficient that 2050 // the interpreter does not reorder volatile references, the hardware 2051 // also must not reorder them). 2052 // 2053 // According to the new Java Memory Model (JMM): 2054 // (1) All volatiles are serialized wrt to each other. ALSO reads & 2055 // writes act as aquire & release, so: 2056 // (2) A read cannot let unrelated NON-volatile memory refs that 2057 // happen after the read float up to before the read. It's OK for 2058 // non-volatile memory refs that happen before the volatile read to 2059 // float down below it. 2060 // (3) Similar a volatile write cannot let unrelated NON-volatile 2061 // memory refs that happen BEFORE the write float down to after the 2062 // write. It's OK for non-volatile memory refs that happen after the 2063 // volatile write to float up before it. 2064 // 2065 // We only put in barriers around volatile refs (they are expensive), 2066 // not _between_ memory refs (that would require us to track the 2067 // flavor of the previous memory refs). Requirements (2) and (3) 2068 // require some barriers before volatile stores and after volatile 2069 // loads. These nearly cover requirement (1) but miss the 2070 // volatile-store-volatile-load case. This final case is placed after 2071 // volatile-stores although it could just as well go before 2072 // volatile-loads. 2073 void TemplateTable::volatile_barrier(Assembler::Membar_mask_bits 2074 order_constraint) { 2075 // Helper function to insert a is-volatile test and memory barrier 2076 if (os::is_MP()) { // Not needed on single CPU 2077 __ membar(order_constraint); 2078 } 2079 } 2080 2081 void TemplateTable::resolve_cache_and_index(int byte_no, 2082 Register result, 2083 Register Rcache, 2084 Register index, 2085 size_t index_size) { 2086 const Register temp = rbx; 2087 assert_different_registers(result, Rcache, index, temp); 2088 2089 Label resolved; 2090 __ get_cache_and_index_at_bcp(Rcache, index, 1, index_size); 2091 if (byte_no == f1_oop) { 2092 // We are resolved if the f1 field contains a non-null object (CallSite, etc.) 2093 // This kind of CP cache entry does not need to match the flags byte, because 2094 // there is a 1-1 relation between bytecode type and CP entry type. 2095 assert(result != noreg, ""); //else do cmpptr(Address(...), (int32_t) NULL_WORD) 2096 __ movptr(result, Address(Rcache, index, Address::times_ptr, constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::f1_offset())); 2097 __ testptr(result, result); 2098 __ jcc(Assembler::notEqual, resolved); 2099 } else { 2100 assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range"); 2101 assert(result == noreg, ""); //else change code for setting result 2102 const int shift_count = (1 + byte_no) * BitsPerByte; 2103 __ movl(temp, Address(Rcache, index, Address::times_ptr, constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::indices_offset())); 2104 __ shrl(temp, shift_count); 2105 // have we resolved this bytecode? 2106 __ andl(temp, 0xFF); 2107 __ cmpl(temp, (int) bytecode()); 2108 __ jcc(Assembler::equal, resolved); 2109 } 2110 2111 // resolve first time through 2112 address entry; 2113 switch (bytecode()) { 2114 case Bytecodes::_getstatic: 2115 case Bytecodes::_putstatic: 2116 case Bytecodes::_getfield: 2117 case Bytecodes::_putfield: 2118 entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_get_put); 2119 break; 2120 case Bytecodes::_invokevirtual: 2121 case Bytecodes::_invokespecial: 2122 case Bytecodes::_invokestatic: 2123 case Bytecodes::_invokeinterface: 2124 entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invoke); 2125 break; 2126 case Bytecodes::_invokedynamic: 2127 entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invokedynamic); 2128 break; 2129 case Bytecodes::_fast_aldc: 2130 entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc); 2131 break; 2132 case Bytecodes::_fast_aldc_w: 2133 entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc); 2134 break; 2135 default: 2136 ShouldNotReachHere(); 2137 break; 2138 } 2139 __ movl(temp, (int) bytecode()); 2140 __ call_VM(noreg, entry, temp); 2141 2142 // Update registers with resolved info 2143 __ get_cache_and_index_at_bcp(Rcache, index, 1, index_size); 2144 if (result != noreg) 2145 __ movptr(result, Address(Rcache, index, Address::times_ptr, constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::f1_offset())); 2146 __ bind(resolved); 2147 } 2148 2149 // The Rcache and index registers must be set before call 2150 void TemplateTable::load_field_cp_cache_entry(Register obj, 2151 Register cache, 2152 Register index, 2153 Register off, 2154 Register flags, 2155 bool is_static = false) { 2156 assert_different_registers(cache, index, flags, off); 2157 2158 ByteSize cp_base_offset = constantPoolCacheOopDesc::base_offset(); 2159 // Field offset 2160 __ movptr(off, Address(cache, index, Address::times_8, 2161 in_bytes(cp_base_offset + 2162 ConstantPoolCacheEntry::f2_offset()))); 2163 // Flags 2164 __ movl(flags, Address(cache, index, Address::times_8, 2165 in_bytes(cp_base_offset + 2166 ConstantPoolCacheEntry::flags_offset()))); 2167 2168 // klass overwrite register 2169 if (is_static) { 2170 __ movptr(obj, Address(cache, index, Address::times_8, 2171 in_bytes(cp_base_offset + 2172 ConstantPoolCacheEntry::f1_offset()))); 2173 } 2174 } 2175 2176 void TemplateTable::load_invoke_cp_cache_entry(int byte_no, 2177 Register method, 2178 Register itable_index, 2179 Register flags, 2180 bool is_invokevirtual, 2181 bool is_invokevfinal, /*unused*/ 2182 bool is_invokedynamic) { 2183 // setup registers 2184 const Register cache = rcx; 2185 const Register index = rdx; 2186 assert_different_registers(method, flags); 2187 assert_different_registers(method, cache, index); 2188 assert_different_registers(itable_index, flags); 2189 assert_different_registers(itable_index, cache, index); 2190 // determine constant pool cache field offsets 2191 const int method_offset = in_bytes( 2192 constantPoolCacheOopDesc::base_offset() + 2193 (is_invokevirtual 2194 ? ConstantPoolCacheEntry::f2_offset() 2195 : ConstantPoolCacheEntry::f1_offset())); 2196 const int flags_offset = in_bytes(constantPoolCacheOopDesc::base_offset() + 2197 ConstantPoolCacheEntry::flags_offset()); 2198 // access constant pool cache fields 2199 const int index_offset = in_bytes(constantPoolCacheOopDesc::base_offset() + 2200 ConstantPoolCacheEntry::f2_offset()); 2201 2202 if (byte_no == f1_oop) { 2203 // Resolved f1_oop goes directly into 'method' register. 2204 assert(is_invokedynamic, ""); 2205 resolve_cache_and_index(byte_no, method, cache, index, sizeof(u4)); 2206 } else { 2207 resolve_cache_and_index(byte_no, noreg, cache, index, sizeof(u2)); 2208 __ movptr(method, Address(cache, index, Address::times_ptr, method_offset)); 2209 } 2210 if (itable_index != noreg) { 2211 __ movptr(itable_index, Address(cache, index, Address::times_ptr, index_offset)); 2212 } 2213 __ movl(flags, Address(cache, index, Address::times_ptr, flags_offset)); 2214 } 2215 2216 2217 // The registers cache and index expected to be set before call. 2218 // Correct values of the cache and index registers are preserved. 2219 void TemplateTable::jvmti_post_field_access(Register cache, Register index, 2220 bool is_static, bool has_tos) { 2221 // do the JVMTI work here to avoid disturbing the register state below 2222 // We use c_rarg registers here because we want to use the register used in 2223 // the call to the VM 2224 if (JvmtiExport::can_post_field_access()) { 2225 // Check to see if a field access watch has been set before we 2226 // take the time to call into the VM. 2227 Label L1; 2228 assert_different_registers(cache, index, rax); 2229 __ mov32(rax, ExternalAddress((address) JvmtiExport::get_field_access_count_addr())); 2230 __ testl(rax, rax); 2231 __ jcc(Assembler::zero, L1); 2232 2233 __ get_cache_and_index_at_bcp(c_rarg2, c_rarg3, 1); 2234 2235 // cache entry pointer 2236 __ addptr(c_rarg2, in_bytes(constantPoolCacheOopDesc::base_offset())); 2237 __ shll(c_rarg3, LogBytesPerWord); 2238 __ addptr(c_rarg2, c_rarg3); 2239 if (is_static) { 2240 __ xorl(c_rarg1, c_rarg1); // NULL object reference 2241 } else { 2242 __ movptr(c_rarg1, at_tos()); // get object pointer without popping it 2243 __ verify_oop(c_rarg1); 2244 } 2245 // c_rarg1: object pointer or NULL 2246 // c_rarg2: cache entry pointer 2247 // c_rarg3: jvalue object on the stack 2248 __ call_VM(noreg, CAST_FROM_FN_PTR(address, 2249 InterpreterRuntime::post_field_access), 2250 c_rarg1, c_rarg2, c_rarg3); 2251 __ get_cache_and_index_at_bcp(cache, index, 1); 2252 __ bind(L1); 2253 } 2254 } 2255 2256 void TemplateTable::pop_and_check_object(Register r) { 2257 __ pop_ptr(r); 2258 __ null_check(r); // for field access must check obj. 2259 __ verify_oop(r); 2260 } 2261 2262 void TemplateTable::getfield_or_static(int byte_no, bool is_static) { 2263 transition(vtos, vtos); 2264 2265 const Register cache = rcx; 2266 const Register index = rdx; 2267 const Register obj = c_rarg3; 2268 const Register off = rbx; 2269 const Register flags = rax; 2270 const Register bc = c_rarg3; // uses same reg as obj, so don't mix them 2271 2272 resolve_cache_and_index(byte_no, noreg, cache, index, sizeof(u2)); 2273 jvmti_post_field_access(cache, index, is_static, false); 2274 load_field_cp_cache_entry(obj, cache, index, off, flags, is_static); 2275 2276 if (!is_static) { 2277 // obj is on the stack 2278 pop_and_check_object(obj); 2279 } 2280 2281 const Address field(obj, off, Address::times_1); 2282 2283 Label Done, notByte, notInt, notShort, notChar, 2284 notLong, notFloat, notObj, notDouble; 2285 2286 __ shrl(flags, ConstantPoolCacheEntry::tosBits); 2287 assert(btos == 0, "change code, btos != 0"); 2288 2289 __ andl(flags, 0x0F); 2290 __ jcc(Assembler::notZero, notByte); 2291 // btos 2292 __ load_signed_byte(rax, field); 2293 __ push(btos); 2294 // Rewrite bytecode to be faster 2295 if (!is_static) { 2296 patch_bytecode(Bytecodes::_fast_bgetfield, bc, rbx); 2297 } 2298 __ jmp(Done); 2299 2300 __ bind(notByte); 2301 __ cmpl(flags, atos); 2302 __ jcc(Assembler::notEqual, notObj); 2303 // atos 2304 __ load_heap_oop(rax, field); 2305 __ push(atos); 2306 if (!is_static) { 2307 patch_bytecode(Bytecodes::_fast_agetfield, bc, rbx); 2308 } 2309 __ jmp(Done); 2310 2311 __ bind(notObj); 2312 __ cmpl(flags, itos); 2313 __ jcc(Assembler::notEqual, notInt); 2314 // itos 2315 __ movl(rax, field); 2316 __ push(itos); 2317 // Rewrite bytecode to be faster 2318 if (!is_static) { 2319 patch_bytecode(Bytecodes::_fast_igetfield, bc, rbx); 2320 } 2321 __ jmp(Done); 2322 2323 __ bind(notInt); 2324 __ cmpl(flags, ctos); 2325 __ jcc(Assembler::notEqual, notChar); 2326 // ctos 2327 __ load_unsigned_short(rax, field); 2328 __ push(ctos); 2329 // Rewrite bytecode to be faster 2330 if (!is_static) { 2331 patch_bytecode(Bytecodes::_fast_cgetfield, bc, rbx); 2332 } 2333 __ jmp(Done); 2334 2335 __ bind(notChar); 2336 __ cmpl(flags, stos); 2337 __ jcc(Assembler::notEqual, notShort); 2338 // stos 2339 __ load_signed_short(rax, field); 2340 __ push(stos); 2341 // Rewrite bytecode to be faster 2342 if (!is_static) { 2343 patch_bytecode(Bytecodes::_fast_sgetfield, bc, rbx); 2344 } 2345 __ jmp(Done); 2346 2347 __ bind(notShort); 2348 __ cmpl(flags, ltos); 2349 __ jcc(Assembler::notEqual, notLong); 2350 // ltos 2351 __ movq(rax, field); 2352 __ push(ltos); 2353 // Rewrite bytecode to be faster 2354 if (!is_static) { 2355 patch_bytecode(Bytecodes::_fast_lgetfield, bc, rbx); 2356 } 2357 __ jmp(Done); 2358 2359 __ bind(notLong); 2360 __ cmpl(flags, ftos); 2361 __ jcc(Assembler::notEqual, notFloat); 2362 // ftos 2363 __ movflt(xmm0, field); 2364 __ push(ftos); 2365 // Rewrite bytecode to be faster 2366 if (!is_static) { 2367 patch_bytecode(Bytecodes::_fast_fgetfield, bc, rbx); 2368 } 2369 __ jmp(Done); 2370 2371 __ bind(notFloat); 2372 #ifdef ASSERT 2373 __ cmpl(flags, dtos); 2374 __ jcc(Assembler::notEqual, notDouble); 2375 #endif 2376 // dtos 2377 __ movdbl(xmm0, field); 2378 __ push(dtos); 2379 // Rewrite bytecode to be faster 2380 if (!is_static) { 2381 patch_bytecode(Bytecodes::_fast_dgetfield, bc, rbx); 2382 } 2383 #ifdef ASSERT 2384 __ jmp(Done); 2385 2386 __ bind(notDouble); 2387 __ stop("Bad state"); 2388 #endif 2389 2390 __ bind(Done); 2391 // [jk] not needed currently 2392 // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadLoad | 2393 // Assembler::LoadStore)); 2394 } 2395 2396 2397 void TemplateTable::getfield(int byte_no) { 2398 getfield_or_static(byte_no, false); 2399 } 2400 2401 void TemplateTable::getstatic(int byte_no) { 2402 getfield_or_static(byte_no, true); 2403 } 2404 2405 // The registers cache and index expected to be set before call. 2406 // The function may destroy various registers, just not the cache and index registers. 2407 void TemplateTable::jvmti_post_field_mod(Register cache, Register index, bool is_static) { 2408 transition(vtos, vtos); 2409 2410 ByteSize cp_base_offset = constantPoolCacheOopDesc::base_offset(); 2411 2412 if (JvmtiExport::can_post_field_modification()) { 2413 // Check to see if a field modification watch has been set before 2414 // we take the time to call into the VM. 2415 Label L1; 2416 assert_different_registers(cache, index, rax); 2417 __ mov32(rax, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr())); 2418 __ testl(rax, rax); 2419 __ jcc(Assembler::zero, L1); 2420 2421 __ get_cache_and_index_at_bcp(c_rarg2, rscratch1, 1); 2422 2423 if (is_static) { 2424 // Life is simple. Null out the object pointer. 2425 __ xorl(c_rarg1, c_rarg1); 2426 } else { 2427 // Life is harder. The stack holds the value on top, followed by 2428 // the object. We don't know the size of the value, though; it 2429 // could be one or two words depending on its type. As a result, 2430 // we must find the type to determine where the object is. 2431 __ movl(c_rarg3, Address(c_rarg2, rscratch1, 2432 Address::times_8, 2433 in_bytes(cp_base_offset + 2434 ConstantPoolCacheEntry::flags_offset()))); 2435 __ shrl(c_rarg3, ConstantPoolCacheEntry::tosBits); 2436 // Make sure we don't need to mask rcx for tosBits after the 2437 // above shift 2438 ConstantPoolCacheEntry::verify_tosBits(); 2439 __ movptr(c_rarg1, at_tos_p1()); // initially assume a one word jvalue 2440 __ cmpl(c_rarg3, ltos); 2441 __ cmovptr(Assembler::equal, 2442 c_rarg1, at_tos_p2()); // ltos (two word jvalue) 2443 __ cmpl(c_rarg3, dtos); 2444 __ cmovptr(Assembler::equal, 2445 c_rarg1, at_tos_p2()); // dtos (two word jvalue) 2446 } 2447 // cache entry pointer 2448 __ addptr(c_rarg2, in_bytes(cp_base_offset)); 2449 __ shll(rscratch1, LogBytesPerWord); 2450 __ addptr(c_rarg2, rscratch1); 2451 // object (tos) 2452 __ mov(c_rarg3, rsp); 2453 // c_rarg1: object pointer set up above (NULL if static) 2454 // c_rarg2: cache entry pointer 2455 // c_rarg3: jvalue object on the stack 2456 __ call_VM(noreg, 2457 CAST_FROM_FN_PTR(address, 2458 InterpreterRuntime::post_field_modification), 2459 c_rarg1, c_rarg2, c_rarg3); 2460 __ get_cache_and_index_at_bcp(cache, index, 1); 2461 __ bind(L1); 2462 } 2463 } 2464 2465 void TemplateTable::putfield_or_static(int byte_no, bool is_static) { 2466 transition(vtos, vtos); 2467 2468 const Register cache = rcx; 2469 const Register index = rdx; 2470 const Register obj = rcx; 2471 const Register off = rbx; 2472 const Register flags = rax; 2473 const Register bc = c_rarg3; 2474 2475 resolve_cache_and_index(byte_no, noreg, cache, index, sizeof(u2)); 2476 jvmti_post_field_mod(cache, index, is_static); 2477 load_field_cp_cache_entry(obj, cache, index, off, flags, is_static); 2478 2479 // [jk] not needed currently 2480 // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadStore | 2481 // Assembler::StoreStore)); 2482 2483 Label notVolatile, Done; 2484 __ movl(rdx, flags); 2485 __ shrl(rdx, ConstantPoolCacheEntry::volatileField); 2486 __ andl(rdx, 0x1); 2487 2488 // field address 2489 const Address field(obj, off, Address::times_1); 2490 2491 Label notByte, notInt, notShort, notChar, 2492 notLong, notFloat, notObj, notDouble; 2493 2494 __ shrl(flags, ConstantPoolCacheEntry::tosBits); 2495 2496 assert(btos == 0, "change code, btos != 0"); 2497 __ andl(flags, 0x0f); 2498 __ jcc(Assembler::notZero, notByte); 2499 // btos 2500 __ pop(btos); 2501 if (!is_static) pop_and_check_object(obj); 2502 __ movb(field, rax); 2503 if (!is_static) { 2504 patch_bytecode(Bytecodes::_fast_bputfield, bc, rbx); 2505 } 2506 __ jmp(Done); 2507 2508 __ bind(notByte); 2509 __ cmpl(flags, atos); 2510 __ jcc(Assembler::notEqual, notObj); 2511 // atos 2512 __ pop(atos); 2513 if (!is_static) pop_and_check_object(obj); 2514 2515 // Store into the field 2516 do_oop_store(_masm, field, rax, _bs->kind(), false); 2517 2518 if (!is_static) { 2519 patch_bytecode(Bytecodes::_fast_aputfield, bc, rbx); 2520 } 2521 __ jmp(Done); 2522 2523 __ bind(notObj); 2524 __ cmpl(flags, itos); 2525 __ jcc(Assembler::notEqual, notInt); 2526 // itos 2527 __ pop(itos); 2528 if (!is_static) pop_and_check_object(obj); 2529 __ movl(field, rax); 2530 if (!is_static) { 2531 patch_bytecode(Bytecodes::_fast_iputfield, bc, rbx); 2532 } 2533 __ jmp(Done); 2534 2535 __ bind(notInt); 2536 __ cmpl(flags, ctos); 2537 __ jcc(Assembler::notEqual, notChar); 2538 // ctos 2539 __ pop(ctos); 2540 if (!is_static) pop_and_check_object(obj); 2541 __ movw(field, rax); 2542 if (!is_static) { 2543 patch_bytecode(Bytecodes::_fast_cputfield, bc, rbx); 2544 } 2545 __ jmp(Done); 2546 2547 __ bind(notChar); 2548 __ cmpl(flags, stos); 2549 __ jcc(Assembler::notEqual, notShort); 2550 // stos 2551 __ pop(stos); 2552 if (!is_static) pop_and_check_object(obj); 2553 __ movw(field, rax); 2554 if (!is_static) { 2555 patch_bytecode(Bytecodes::_fast_sputfield, bc, rbx); 2556 } 2557 __ jmp(Done); 2558 2559 __ bind(notShort); 2560 __ cmpl(flags, ltos); 2561 __ jcc(Assembler::notEqual, notLong); 2562 // ltos 2563 __ pop(ltos); 2564 if (!is_static) pop_and_check_object(obj); 2565 __ movq(field, rax); 2566 if (!is_static) { 2567 patch_bytecode(Bytecodes::_fast_lputfield, bc, rbx); 2568 } 2569 __ jmp(Done); 2570 2571 __ bind(notLong); 2572 __ cmpl(flags, ftos); 2573 __ jcc(Assembler::notEqual, notFloat); 2574 // ftos 2575 __ pop(ftos); 2576 if (!is_static) pop_and_check_object(obj); 2577 __ movflt(field, xmm0); 2578 if (!is_static) { 2579 patch_bytecode(Bytecodes::_fast_fputfield, bc, rbx); 2580 } 2581 __ jmp(Done); 2582 2583 __ bind(notFloat); 2584 #ifdef ASSERT 2585 __ cmpl(flags, dtos); 2586 __ jcc(Assembler::notEqual, notDouble); 2587 #endif 2588 // dtos 2589 __ pop(dtos); 2590 if (!is_static) pop_and_check_object(obj); 2591 __ movdbl(field, xmm0); 2592 if (!is_static) { 2593 patch_bytecode(Bytecodes::_fast_dputfield, bc, rbx); 2594 } 2595 2596 #ifdef ASSERT 2597 __ jmp(Done); 2598 2599 __ bind(notDouble); 2600 __ stop("Bad state"); 2601 #endif 2602 2603 __ bind(Done); 2604 // Check for volatile store 2605 __ testl(rdx, rdx); 2606 __ jcc(Assembler::zero, notVolatile); 2607 volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad | 2608 Assembler::StoreStore)); 2609 2610 __ bind(notVolatile); 2611 } 2612 2613 void TemplateTable::putfield(int byte_no) { 2614 putfield_or_static(byte_no, false); 2615 } 2616 2617 void TemplateTable::putstatic(int byte_no) { 2618 putfield_or_static(byte_no, true); 2619 } 2620 2621 void TemplateTable::jvmti_post_fast_field_mod() { 2622 if (JvmtiExport::can_post_field_modification()) { 2623 // Check to see if a field modification watch has been set before 2624 // we take the time to call into the VM. 2625 Label L2; 2626 __ mov32(c_rarg3, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr())); 2627 __ testl(c_rarg3, c_rarg3); 2628 __ jcc(Assembler::zero, L2); 2629 __ pop_ptr(rbx); // copy the object pointer from tos 2630 __ verify_oop(rbx); 2631 __ push_ptr(rbx); // put the object pointer back on tos 2632 __ subptr(rsp, sizeof(jvalue)); // add space for a jvalue object 2633 __ mov(c_rarg3, rsp); 2634 const Address field(c_rarg3, 0); 2635 2636 switch (bytecode()) { // load values into the jvalue object 2637 case Bytecodes::_fast_aputfield: __ movq(field, rax); break; 2638 case Bytecodes::_fast_lputfield: __ movq(field, rax); break; 2639 case Bytecodes::_fast_iputfield: __ movl(field, rax); break; 2640 case Bytecodes::_fast_bputfield: __ movb(field, rax); break; 2641 case Bytecodes::_fast_sputfield: // fall through 2642 case Bytecodes::_fast_cputfield: __ movw(field, rax); break; 2643 case Bytecodes::_fast_fputfield: __ movflt(field, xmm0); break; 2644 case Bytecodes::_fast_dputfield: __ movdbl(field, xmm0); break; 2645 default: 2646 ShouldNotReachHere(); 2647 } 2648 2649 // Save rax because call_VM() will clobber it, then use it for 2650 // JVMTI purposes 2651 __ push(rax); 2652 // access constant pool cache entry 2653 __ get_cache_entry_pointer_at_bcp(c_rarg2, rax, 1); 2654 __ verify_oop(rbx); 2655 // rbx: object pointer copied above 2656 // c_rarg2: cache entry pointer 2657 // c_rarg3: jvalue object on the stack 2658 __ call_VM(noreg, 2659 CAST_FROM_FN_PTR(address, 2660 InterpreterRuntime::post_field_modification), 2661 rbx, c_rarg2, c_rarg3); 2662 __ pop(rax); // restore lower value 2663 __ addptr(rsp, sizeof(jvalue)); // release jvalue object space 2664 __ bind(L2); 2665 } 2666 } 2667 2668 void TemplateTable::fast_storefield(TosState state) { 2669 transition(state, vtos); 2670 2671 ByteSize base = constantPoolCacheOopDesc::base_offset(); 2672 2673 jvmti_post_fast_field_mod(); 2674 2675 // access constant pool cache 2676 __ get_cache_and_index_at_bcp(rcx, rbx, 1); 2677 2678 // test for volatile with rdx 2679 __ movl(rdx, Address(rcx, rbx, Address::times_8, 2680 in_bytes(base + 2681 ConstantPoolCacheEntry::flags_offset()))); 2682 2683 // replace index with field offset from cache entry 2684 __ movptr(rbx, Address(rcx, rbx, Address::times_8, 2685 in_bytes(base + ConstantPoolCacheEntry::f2_offset()))); 2686 2687 // [jk] not needed currently 2688 // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadStore | 2689 // Assembler::StoreStore)); 2690 2691 Label notVolatile; 2692 __ shrl(rdx, ConstantPoolCacheEntry::volatileField); 2693 __ andl(rdx, 0x1); 2694 2695 // Get object from stack 2696 pop_and_check_object(rcx); 2697 2698 // field address 2699 const Address field(rcx, rbx, Address::times_1); 2700 2701 // access field 2702 switch (bytecode()) { 2703 case Bytecodes::_fast_aputfield: 2704 do_oop_store(_masm, field, rax, _bs->kind(), false); 2705 break; 2706 case Bytecodes::_fast_lputfield: 2707 __ movq(field, rax); 2708 break; 2709 case Bytecodes::_fast_iputfield: 2710 __ movl(field, rax); 2711 break; 2712 case Bytecodes::_fast_bputfield: 2713 __ movb(field, rax); 2714 break; 2715 case Bytecodes::_fast_sputfield: 2716 // fall through 2717 case Bytecodes::_fast_cputfield: 2718 __ movw(field, rax); 2719 break; 2720 case Bytecodes::_fast_fputfield: 2721 __ movflt(field, xmm0); 2722 break; 2723 case Bytecodes::_fast_dputfield: 2724 __ movdbl(field, xmm0); 2725 break; 2726 default: 2727 ShouldNotReachHere(); 2728 } 2729 2730 // Check for volatile store 2731 __ testl(rdx, rdx); 2732 __ jcc(Assembler::zero, notVolatile); 2733 volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad | 2734 Assembler::StoreStore)); 2735 __ bind(notVolatile); 2736 } 2737 2738 2739 void TemplateTable::fast_accessfield(TosState state) { 2740 transition(atos, state); 2741 2742 // Do the JVMTI work here to avoid disturbing the register state below 2743 if (JvmtiExport::can_post_field_access()) { 2744 // Check to see if a field access watch has been set before we 2745 // take the time to call into the VM. 2746 Label L1; 2747 __ mov32(rcx, ExternalAddress((address) JvmtiExport::get_field_access_count_addr())); 2748 __ testl(rcx, rcx); 2749 __ jcc(Assembler::zero, L1); 2750 // access constant pool cache entry 2751 __ get_cache_entry_pointer_at_bcp(c_rarg2, rcx, 1); 2752 __ verify_oop(rax); 2753 __ push_ptr(rax); // save object pointer before call_VM() clobbers it 2754 __ mov(c_rarg1, rax); 2755 // c_rarg1: object pointer copied above 2756 // c_rarg2: cache entry pointer 2757 __ call_VM(noreg, 2758 CAST_FROM_FN_PTR(address, 2759 InterpreterRuntime::post_field_access), 2760 c_rarg1, c_rarg2); 2761 __ pop_ptr(rax); // restore object pointer 2762 __ bind(L1); 2763 } 2764 2765 // access constant pool cache 2766 __ get_cache_and_index_at_bcp(rcx, rbx, 1); 2767 // replace index with field offset from cache entry 2768 // [jk] not needed currently 2769 // if (os::is_MP()) { 2770 // __ movl(rdx, Address(rcx, rbx, Address::times_8, 2771 // in_bytes(constantPoolCacheOopDesc::base_offset() + 2772 // ConstantPoolCacheEntry::flags_offset()))); 2773 // __ shrl(rdx, ConstantPoolCacheEntry::volatileField); 2774 // __ andl(rdx, 0x1); 2775 // } 2776 __ movptr(rbx, Address(rcx, rbx, Address::times_8, 2777 in_bytes(constantPoolCacheOopDesc::base_offset() + 2778 ConstantPoolCacheEntry::f2_offset()))); 2779 2780 // rax: object 2781 __ verify_oop(rax); 2782 __ null_check(rax); 2783 Address field(rax, rbx, Address::times_1); 2784 2785 // access field 2786 switch (bytecode()) { 2787 case Bytecodes::_fast_agetfield: 2788 __ load_heap_oop(rax, field); 2789 __ verify_oop(rax); 2790 break; 2791 case Bytecodes::_fast_lgetfield: 2792 __ movq(rax, field); 2793 break; 2794 case Bytecodes::_fast_igetfield: 2795 __ movl(rax, field); 2796 break; 2797 case Bytecodes::_fast_bgetfield: 2798 __ movsbl(rax, field); 2799 break; 2800 case Bytecodes::_fast_sgetfield: 2801 __ load_signed_short(rax, field); 2802 break; 2803 case Bytecodes::_fast_cgetfield: 2804 __ load_unsigned_short(rax, field); 2805 break; 2806 case Bytecodes::_fast_fgetfield: 2807 __ movflt(xmm0, field); 2808 break; 2809 case Bytecodes::_fast_dgetfield: 2810 __ movdbl(xmm0, field); 2811 break; 2812 default: 2813 ShouldNotReachHere(); 2814 } 2815 // [jk] not needed currently 2816 // if (os::is_MP()) { 2817 // Label notVolatile; 2818 // __ testl(rdx, rdx); 2819 // __ jcc(Assembler::zero, notVolatile); 2820 // __ membar(Assembler::LoadLoad); 2821 // __ bind(notVolatile); 2822 //}; 2823 } 2824 2825 void TemplateTable::fast_xaccess(TosState state) { 2826 transition(vtos, state); 2827 2828 // get receiver 2829 __ movptr(rax, aaddress(0)); 2830 // access constant pool cache 2831 __ get_cache_and_index_at_bcp(rcx, rdx, 2); 2832 __ movptr(rbx, 2833 Address(rcx, rdx, Address::times_8, 2834 in_bytes(constantPoolCacheOopDesc::base_offset() + 2835 ConstantPoolCacheEntry::f2_offset()))); 2836 // make sure exception is reported in correct bcp range (getfield is 2837 // next instruction) 2838 __ increment(r13); 2839 __ null_check(rax); 2840 switch (state) { 2841 case itos: 2842 __ movl(rax, Address(rax, rbx, Address::times_1)); 2843 break; 2844 case atos: 2845 __ load_heap_oop(rax, Address(rax, rbx, Address::times_1)); 2846 __ verify_oop(rax); 2847 break; 2848 case ftos: 2849 __ movflt(xmm0, Address(rax, rbx, Address::times_1)); 2850 break; 2851 default: 2852 ShouldNotReachHere(); 2853 } 2854 2855 // [jk] not needed currently 2856 // if (os::is_MP()) { 2857 // Label notVolatile; 2858 // __ movl(rdx, Address(rcx, rdx, Address::times_8, 2859 // in_bytes(constantPoolCacheOopDesc::base_offset() + 2860 // ConstantPoolCacheEntry::flags_offset()))); 2861 // __ shrl(rdx, ConstantPoolCacheEntry::volatileField); 2862 // __ testl(rdx, 0x1); 2863 // __ jcc(Assembler::zero, notVolatile); 2864 // __ membar(Assembler::LoadLoad); 2865 // __ bind(notVolatile); 2866 // } 2867 2868 __ decrement(r13); 2869 } 2870 2871 2872 2873 //----------------------------------------------------------------------------- 2874 // Calls 2875 2876 void TemplateTable::count_calls(Register method, Register temp) { 2877 // implemented elsewhere 2878 ShouldNotReachHere(); 2879 } 2880 2881 void TemplateTable::prepare_invoke(Register method, Register index, int byte_no) { 2882 // determine flags 2883 Bytecodes::Code code = bytecode(); 2884 const bool is_invokeinterface = code == Bytecodes::_invokeinterface; 2885 const bool is_invokedynamic = code == Bytecodes::_invokedynamic; 2886 const bool is_invokevirtual = code == Bytecodes::_invokevirtual; 2887 const bool is_invokespecial = code == Bytecodes::_invokespecial; 2888 const bool load_receiver = (code != Bytecodes::_invokestatic && code != Bytecodes::_invokedynamic); 2889 const bool receiver_null_check = is_invokespecial; 2890 const bool save_flags = is_invokeinterface || is_invokevirtual; 2891 // setup registers & access constant pool cache 2892 const Register recv = rcx; 2893 const Register flags = rdx; 2894 assert_different_registers(method, index, recv, flags); 2895 2896 // save 'interpreter return address' 2897 __ save_bcp(); 2898 2899 load_invoke_cp_cache_entry(byte_no, method, index, flags, is_invokevirtual, false, is_invokedynamic); 2900 2901 // load receiver if needed (note: no return address pushed yet) 2902 if (load_receiver) { 2903 assert(!is_invokedynamic, ""); 2904 __ movl(recv, flags); 2905 __ andl(recv, 0xFF); 2906 Address recv_addr(rsp, recv, Address::times_8, -Interpreter::expr_offset_in_bytes(1)); 2907 __ movptr(recv, recv_addr); 2908 __ verify_oop(recv); 2909 } 2910 2911 // do null check if needed 2912 if (receiver_null_check) { 2913 __ null_check(recv); 2914 } 2915 2916 if (save_flags) { 2917 __ movl(r13, flags); 2918 } 2919 2920 // compute return type 2921 __ shrl(flags, ConstantPoolCacheEntry::tosBits); 2922 // Make sure we don't need to mask flags for tosBits after the above shift 2923 ConstantPoolCacheEntry::verify_tosBits(); 2924 // load return address 2925 { 2926 address table_addr; 2927 if (is_invokeinterface || is_invokedynamic) 2928 table_addr = (address)Interpreter::return_5_addrs_by_index_table(); 2929 else 2930 table_addr = (address)Interpreter::return_3_addrs_by_index_table(); 2931 ExternalAddress table(table_addr); 2932 __ lea(rscratch1, table); 2933 __ movptr(flags, Address(rscratch1, flags, Address::times_ptr)); 2934 } 2935 2936 // push return address 2937 __ push(flags); 2938 2939 // Restore flag field from the constant pool cache, and restore esi 2940 // for later null checks. r13 is the bytecode pointer 2941 if (save_flags) { 2942 __ movl(flags, r13); 2943 __ restore_bcp(); 2944 } 2945 } 2946 2947 2948 void TemplateTable::invokevirtual_helper(Register index, 2949 Register recv, 2950 Register flags) { 2951 // Uses temporary registers rax, rdx 2952 assert_different_registers(index, recv, rax, rdx); 2953 2954 // Test for an invoke of a final method 2955 Label notFinal; 2956 __ movl(rax, flags); 2957 __ andl(rax, (1 << ConstantPoolCacheEntry::vfinalMethod)); 2958 __ jcc(Assembler::zero, notFinal); 2959 2960 const Register method = index; // method must be rbx 2961 assert(method == rbx, 2962 "methodOop must be rbx for interpreter calling convention"); 2963 2964 // do the call - the index is actually the method to call 2965 __ verify_oop(method); 2966 2967 // It's final, need a null check here! 2968 __ null_check(recv); 2969 2970 // profile this call 2971 __ profile_final_call(rax); 2972 2973 __ jump_from_interpreted(method, rax); 2974 2975 __ bind(notFinal); 2976 2977 // get receiver klass 2978 __ null_check(recv, oopDesc::klass_offset_in_bytes()); 2979 __ load_klass(rax, recv); 2980 2981 __ verify_oop(rax); 2982 2983 // profile this call 2984 __ profile_virtual_call(rax, r14, rdx); 2985 2986 // get target methodOop & entry point 2987 const int base = instanceKlass::vtable_start_offset() * wordSize; 2988 assert(vtableEntry::size() * wordSize == 8, 2989 "adjust the scaling in the code below"); 2990 __ movptr(method, Address(rax, index, 2991 Address::times_8, 2992 base + vtableEntry::method_offset_in_bytes())); 2993 __ movptr(rdx, Address(method, methodOopDesc::interpreter_entry_offset())); 2994 __ jump_from_interpreted(method, rdx); 2995 } 2996 2997 2998 void TemplateTable::invokevirtual(int byte_no) { 2999 transition(vtos, vtos); 3000 assert(byte_no == f2_byte, "use this argument"); 3001 prepare_invoke(rbx, noreg, byte_no); 3002 3003 // rbx: index 3004 // rcx: receiver 3005 // rdx: flags 3006 3007 invokevirtual_helper(rbx, rcx, rdx); 3008 } 3009 3010 3011 void TemplateTable::invokespecial(int byte_no) { 3012 transition(vtos, vtos); 3013 assert(byte_no == f1_byte, "use this argument"); 3014 prepare_invoke(rbx, noreg, byte_no); 3015 // do the call 3016 __ verify_oop(rbx); 3017 __ profile_call(rax); 3018 __ jump_from_interpreted(rbx, rax); 3019 } 3020 3021 3022 void TemplateTable::invokestatic(int byte_no) { 3023 transition(vtos, vtos); 3024 assert(byte_no == f1_byte, "use this argument"); 3025 prepare_invoke(rbx, noreg, byte_no); 3026 // do the call 3027 __ verify_oop(rbx); 3028 __ profile_call(rax); 3029 __ jump_from_interpreted(rbx, rax); 3030 } 3031 3032 void TemplateTable::fast_invokevfinal(int byte_no) { 3033 transition(vtos, vtos); 3034 assert(byte_no == f2_byte, "use this argument"); 3035 __ stop("fast_invokevfinal not used on amd64"); 3036 } 3037 3038 void TemplateTable::invokeinterface(int byte_no) { 3039 transition(vtos, vtos); 3040 assert(byte_no == f1_byte, "use this argument"); 3041 prepare_invoke(rax, rbx, byte_no); 3042 3043 // rax: Interface 3044 // rbx: index 3045 // rcx: receiver 3046 // rdx: flags 3047 3048 // Special case of invokeinterface called for virtual method of 3049 // java.lang.Object. See cpCacheOop.cpp for details. 3050 // This code isn't produced by javac, but could be produced by 3051 // another compliant java compiler. 3052 Label notMethod; 3053 __ movl(r14, rdx); 3054 __ andl(r14, (1 << ConstantPoolCacheEntry::methodInterface)); 3055 __ jcc(Assembler::zero, notMethod); 3056 3057 invokevirtual_helper(rbx, rcx, rdx); 3058 __ bind(notMethod); 3059 3060 // Get receiver klass into rdx - also a null check 3061 __ restore_locals(); // restore r14 3062 __ load_klass(rdx, rcx); 3063 __ verify_oop(rdx); 3064 3065 // profile this call 3066 __ profile_virtual_call(rdx, r13, r14); 3067 3068 Label no_such_interface, no_such_method; 3069 3070 __ lookup_interface_method(// inputs: rec. class, interface, itable index 3071 rdx, rax, rbx, 3072 // outputs: method, scan temp. reg 3073 rbx, r13, 3074 no_such_interface); 3075 3076 // rbx,: methodOop to call 3077 // rcx: receiver 3078 // Check for abstract method error 3079 // Note: This should be done more efficiently via a throw_abstract_method_error 3080 // interpreter entry point and a conditional jump to it in case of a null 3081 // method. 3082 __ testptr(rbx, rbx); 3083 __ jcc(Assembler::zero, no_such_method); 3084 3085 // do the call 3086 // rcx: receiver 3087 // rbx,: methodOop 3088 __ jump_from_interpreted(rbx, rdx); 3089 __ should_not_reach_here(); 3090 3091 // exception handling code follows... 3092 // note: must restore interpreter registers to canonical 3093 // state for exception handling to work correctly! 3094 3095 __ bind(no_such_method); 3096 // throw exception 3097 __ pop(rbx); // pop return address (pushed by prepare_invoke) 3098 __ restore_bcp(); // r13 must be correct for exception handler (was destroyed) 3099 __ restore_locals(); // make sure locals pointer is correct as well (was destroyed) 3100 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodError)); 3101 // the call_VM checks for exception, so we should never return here. 3102 __ should_not_reach_here(); 3103 3104 __ bind(no_such_interface); 3105 // throw exception 3106 __ pop(rbx); // pop return address (pushed by prepare_invoke) 3107 __ restore_bcp(); // r13 must be correct for exception handler (was destroyed) 3108 __ restore_locals(); // make sure locals pointer is correct as well (was destroyed) 3109 __ call_VM(noreg, CAST_FROM_FN_PTR(address, 3110 InterpreterRuntime::throw_IncompatibleClassChangeError)); 3111 // the call_VM checks for exception, so we should never return here. 3112 __ should_not_reach_here(); 3113 return; 3114 } 3115 3116 void TemplateTable::invokedynamic(int byte_no) { 3117 transition(vtos, vtos); 3118 assert(byte_no == f1_oop, "use this argument"); 3119 3120 if (!EnableInvokeDynamic) { 3121 // We should not encounter this bytecode if !EnableInvokeDynamic. 3122 // The verifier will stop it. However, if we get past the verifier, 3123 // this will stop the thread in a reasonable way, without crashing the JVM. 3124 __ call_VM(noreg, CAST_FROM_FN_PTR(address, 3125 InterpreterRuntime::throw_IncompatibleClassChangeError)); 3126 // the call_VM checks for exception, so we should never return here. 3127 __ should_not_reach_here(); 3128 return; 3129 } 3130 3131 prepare_invoke(rax, rbx, byte_no); 3132 3133 // rax: CallSite object (f1) 3134 // rbx: unused (f2) 3135 // rcx: receiver address 3136 // rdx: flags (unused) 3137 3138 Register rax_callsite = rax; 3139 Register rcx_method_handle = rcx; 3140 3141 // %%% should make a type profile for any invokedynamic that takes a ref argument 3142 // profile this call 3143 __ profile_call(r13); 3144 3145 __ verify_oop(rax_callsite); 3146 __ load_heap_oop(rcx_method_handle, Address(rax_callsite, __ delayed_value(java_lang_invoke_CallSite::target_offset_in_bytes, rdx))); 3147 __ null_check(rcx_method_handle); 3148 __ verify_oop(rcx_method_handle); 3149 __ prepare_to_jump_from_interpreted(); 3150 __ jump_to_method_handle_entry(rcx_method_handle, rdx); 3151 } 3152 3153 3154 //----------------------------------------------------------------------------- 3155 // Allocation 3156 3157 void TemplateTable::_new() { 3158 transition(vtos, atos); 3159 __ get_unsigned_2_byte_index_at_bcp(rdx, 1); 3160 Label slow_case; 3161 Label done; 3162 Label initialize_header; 3163 Label initialize_object; // including clearing the fields 3164 Label allocate_shared; 3165 3166 __ get_cpool_and_tags(rsi, rax); 3167 // Make sure the class we're about to instantiate has been resolved. 3168 // This is done before loading instanceKlass to be consistent with the order 3169 // how Constant Pool is updated (see constantPoolOopDesc::klass_at_put) 3170 const int tags_offset = typeArrayOopDesc::header_size(T_BYTE) * wordSize; 3171 __ cmpb(Address(rax, rdx, Address::times_1, tags_offset), 3172 JVM_CONSTANT_Class); 3173 __ jcc(Assembler::notEqual, slow_case); 3174 3175 // get instanceKlass 3176 __ movptr(rsi, Address(rsi, rdx, 3177 Address::times_8, sizeof(constantPoolOopDesc))); 3178 3179 // make sure klass is initialized & doesn't have finalizer 3180 // make sure klass is fully initialized 3181 __ cmpl(Address(rsi, 3182 instanceKlass::init_state_offset_in_bytes() + 3183 sizeof(oopDesc)), 3184 instanceKlass::fully_initialized); 3185 __ jcc(Assembler::notEqual, slow_case); 3186 3187 // get instance_size in instanceKlass (scaled to a count of bytes) 3188 __ movl(rdx, 3189 Address(rsi, 3190 Klass::layout_helper_offset_in_bytes() + sizeof(oopDesc))); 3191 // test to see if it has a finalizer or is malformed in some way 3192 __ testl(rdx, Klass::_lh_instance_slow_path_bit); 3193 __ jcc(Assembler::notZero, slow_case); 3194 3195 // Allocate the instance 3196 // 1) Try to allocate in the TLAB 3197 // 2) if fail and the object is large allocate in the shared Eden 3198 // 3) if the above fails (or is not applicable), go to a slow case 3199 // (creates a new TLAB, etc.) 3200 3201 const bool allow_shared_alloc = 3202 Universe::heap()->supports_inline_contig_alloc() && !CMSIncrementalMode; 3203 3204 if (UseTLAB) { 3205 __ movptr(rax, Address(r15_thread, in_bytes(JavaThread::tlab_top_offset()))); 3206 __ lea(rbx, Address(rax, rdx, Address::times_1)); 3207 __ cmpptr(rbx, Address(r15_thread, in_bytes(JavaThread::tlab_end_offset()))); 3208 __ jcc(Assembler::above, allow_shared_alloc ? allocate_shared : slow_case); 3209 __ movptr(Address(r15_thread, in_bytes(JavaThread::tlab_top_offset())), rbx); 3210 if (ZeroTLAB) { 3211 // the fields have been already cleared 3212 __ jmp(initialize_header); 3213 } else { 3214 // initialize both the header and fields 3215 __ jmp(initialize_object); 3216 } 3217 } 3218 3219 // Allocation in the shared Eden, if allowed. 3220 // 3221 // rdx: instance size in bytes 3222 if (allow_shared_alloc) { 3223 __ bind(allocate_shared); 3224 3225 ExternalAddress top((address)Universe::heap()->top_addr()); 3226 ExternalAddress end((address)Universe::heap()->end_addr()); 3227 3228 const Register RtopAddr = rscratch1; 3229 const Register RendAddr = rscratch2; 3230 3231 __ lea(RtopAddr, top); 3232 __ lea(RendAddr, end); 3233 __ movptr(rax, Address(RtopAddr, 0)); 3234 3235 // For retries rax gets set by cmpxchgq 3236 Label retry; 3237 __ bind(retry); 3238 __ lea(rbx, Address(rax, rdx, Address::times_1)); 3239 __ cmpptr(rbx, Address(RendAddr, 0)); 3240 __ jcc(Assembler::above, slow_case); 3241 3242 // Compare rax with the top addr, and if still equal, store the new 3243 // top addr in rbx at the address of the top addr pointer. Sets ZF if was 3244 // equal, and clears it otherwise. Use lock prefix for atomicity on MPs. 3245 // 3246 // rax: object begin 3247 // rbx: object end 3248 // rdx: instance size in bytes 3249 if (os::is_MP()) { 3250 __ lock(); 3251 } 3252 __ cmpxchgptr(rbx, Address(RtopAddr, 0)); 3253 3254 // if someone beat us on the allocation, try again, otherwise continue 3255 __ jcc(Assembler::notEqual, retry); 3256 3257 __ incr_allocated_bytes(r15_thread, rdx, 0); 3258 } 3259 3260 if (UseTLAB || Universe::heap()->supports_inline_contig_alloc()) { 3261 // The object is initialized before the header. If the object size is 3262 // zero, go directly to the header initialization. 3263 __ bind(initialize_object); 3264 __ decrementl(rdx, sizeof(oopDesc)); 3265 __ jcc(Assembler::zero, initialize_header); 3266 3267 // Initialize object fields 3268 __ xorl(rcx, rcx); // use zero reg to clear memory (shorter code) 3269 __ shrl(rdx, LogBytesPerLong); // divide by oopSize to simplify the loop 3270 { 3271 Label loop; 3272 __ bind(loop); 3273 __ movq(Address(rax, rdx, Address::times_8, 3274 sizeof(oopDesc) - oopSize), 3275 rcx); 3276 __ decrementl(rdx); 3277 __ jcc(Assembler::notZero, loop); 3278 } 3279 3280 // initialize object header only. 3281 __ bind(initialize_header); 3282 if (UseBiasedLocking) { 3283 __ movptr(rscratch1, Address(rsi, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes())); 3284 __ movptr(Address(rax, oopDesc::mark_offset_in_bytes()), rscratch1); 3285 } else { 3286 __ movptr(Address(rax, oopDesc::mark_offset_in_bytes()), 3287 (intptr_t) markOopDesc::prototype()); // header (address 0x1) 3288 } 3289 __ xorl(rcx, rcx); // use zero reg to clear memory (shorter code) 3290 __ store_klass_gap(rax, rcx); // zero klass gap for compressed oops 3291 __ store_klass(rax, rsi); // store klass last 3292 3293 { 3294 SkipIfEqual skip(_masm, &DTraceAllocProbes, false); 3295 // Trigger dtrace event for fastpath 3296 __ push(atos); // save the return value 3297 __ call_VM_leaf( 3298 CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc), rax); 3299 __ pop(atos); // restore the return value 3300 3301 } 3302 __ jmp(done); 3303 } 3304 3305 3306 // slow case 3307 __ bind(slow_case); 3308 __ get_constant_pool(c_rarg1); 3309 __ get_unsigned_2_byte_index_at_bcp(c_rarg2, 1); 3310 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), c_rarg1, c_rarg2); 3311 __ verify_oop(rax); 3312 3313 // continue 3314 __ bind(done); 3315 } 3316 3317 void TemplateTable::newarray() { 3318 transition(itos, atos); 3319 __ load_unsigned_byte(c_rarg1, at_bcp(1)); 3320 __ movl(c_rarg2, rax); 3321 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray), 3322 c_rarg1, c_rarg2); 3323 } 3324 3325 void TemplateTable::anewarray() { 3326 transition(itos, atos); 3327 __ get_unsigned_2_byte_index_at_bcp(c_rarg2, 1); 3328 __ get_constant_pool(c_rarg1); 3329 __ movl(c_rarg3, rax); 3330 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray), 3331 c_rarg1, c_rarg2, c_rarg3); 3332 } 3333 3334 void TemplateTable::arraylength() { 3335 transition(atos, itos); 3336 __ null_check(rax, arrayOopDesc::length_offset_in_bytes()); 3337 __ movl(rax, Address(rax, arrayOopDesc::length_offset_in_bytes())); 3338 } 3339 3340 void TemplateTable::checkcast() { 3341 transition(atos, atos); 3342 Label done, is_null, ok_is_subtype, quicked, resolved; 3343 __ testptr(rax, rax); // object is in rax 3344 __ jcc(Assembler::zero, is_null); 3345 3346 // Get cpool & tags index 3347 __ get_cpool_and_tags(rcx, rdx); // rcx=cpool, rdx=tags array 3348 __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // rbx=index 3349 // See if bytecode has already been quicked 3350 __ cmpb(Address(rdx, rbx, 3351 Address::times_1, 3352 typeArrayOopDesc::header_size(T_BYTE) * wordSize), 3353 JVM_CONSTANT_Class); 3354 __ jcc(Assembler::equal, quicked); 3355 __ push(atos); // save receiver for result, and for GC 3356 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc)); 3357 __ pop_ptr(rdx); // restore receiver 3358 __ jmpb(resolved); 3359 3360 // Get superklass in rax and subklass in rbx 3361 __ bind(quicked); 3362 __ mov(rdx, rax); // Save object in rdx; rax needed for subtype check 3363 __ movptr(rax, Address(rcx, rbx, 3364 Address::times_8, sizeof(constantPoolOopDesc))); 3365 3366 __ bind(resolved); 3367 __ load_klass(rbx, rdx); 3368 3369 // Generate subtype check. Blows rcx, rdi. Object in rdx. 3370 // Superklass in rax. Subklass in rbx. 3371 __ gen_subtype_check(rbx, ok_is_subtype); 3372 3373 // Come here on failure 3374 __ push_ptr(rdx); 3375 // object is at TOS 3376 __ jump(ExternalAddress(Interpreter::_throw_ClassCastException_entry)); 3377 3378 // Come here on success 3379 __ bind(ok_is_subtype); 3380 __ mov(rax, rdx); // Restore object in rdx 3381 3382 // Collect counts on whether this check-cast sees NULLs a lot or not. 3383 if (ProfileInterpreter) { 3384 __ jmp(done); 3385 __ bind(is_null); 3386 __ profile_null_seen(rcx); 3387 } else { 3388 __ bind(is_null); // same as 'done' 3389 } 3390 __ bind(done); 3391 } 3392 3393 void TemplateTable::instanceof() { 3394 transition(atos, itos); 3395 Label done, is_null, ok_is_subtype, quicked, resolved; 3396 __ testptr(rax, rax); 3397 __ jcc(Assembler::zero, is_null); 3398 3399 // Get cpool & tags index 3400 __ get_cpool_and_tags(rcx, rdx); // rcx=cpool, rdx=tags array 3401 __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // rbx=index 3402 // See if bytecode has already been quicked 3403 __ cmpb(Address(rdx, rbx, 3404 Address::times_1, 3405 typeArrayOopDesc::header_size(T_BYTE) * wordSize), 3406 JVM_CONSTANT_Class); 3407 __ jcc(Assembler::equal, quicked); 3408 3409 __ push(atos); // save receiver for result, and for GC 3410 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc)); 3411 __ pop_ptr(rdx); // restore receiver 3412 __ verify_oop(rdx); 3413 __ load_klass(rdx, rdx); 3414 __ jmpb(resolved); 3415 3416 // Get superklass in rax and subklass in rdx 3417 __ bind(quicked); 3418 __ load_klass(rdx, rax); 3419 __ movptr(rax, Address(rcx, rbx, 3420 Address::times_8, sizeof(constantPoolOopDesc))); 3421 3422 __ bind(resolved); 3423 3424 // Generate subtype check. Blows rcx, rdi 3425 // Superklass in rax. Subklass in rdx. 3426 __ gen_subtype_check(rdx, ok_is_subtype); 3427 3428 // Come here on failure 3429 __ xorl(rax, rax); 3430 __ jmpb(done); 3431 // Come here on success 3432 __ bind(ok_is_subtype); 3433 __ movl(rax, 1); 3434 3435 // Collect counts on whether this test sees NULLs a lot or not. 3436 if (ProfileInterpreter) { 3437 __ jmp(done); 3438 __ bind(is_null); 3439 __ profile_null_seen(rcx); 3440 } else { 3441 __ bind(is_null); // same as 'done' 3442 } 3443 __ bind(done); 3444 // rax = 0: obj == NULL or obj is not an instanceof the specified klass 3445 // rax = 1: obj != NULL and obj is an instanceof the specified klass 3446 } 3447 3448 //----------------------------------------------------------------------------- 3449 // Breakpoints 3450 void TemplateTable::_breakpoint() { 3451 // Note: We get here even if we are single stepping.. 3452 // jbug inists on setting breakpoints at every bytecode 3453 // even if we are in single step mode. 3454 3455 transition(vtos, vtos); 3456 3457 // get the unpatched byte code 3458 __ get_method(c_rarg1); 3459 __ call_VM(noreg, 3460 CAST_FROM_FN_PTR(address, 3461 InterpreterRuntime::get_original_bytecode_at), 3462 c_rarg1, r13); 3463 __ mov(rbx, rax); 3464 3465 // post the breakpoint event 3466 __ get_method(c_rarg1); 3467 __ call_VM(noreg, 3468 CAST_FROM_FN_PTR(address, InterpreterRuntime::_breakpoint), 3469 c_rarg1, r13); 3470 3471 // complete the execution of original bytecode 3472 __ dispatch_only_normal(vtos); 3473 } 3474 3475 //----------------------------------------------------------------------------- 3476 // Exceptions 3477 3478 void TemplateTable::athrow() { 3479 transition(atos, vtos); 3480 __ null_check(rax); 3481 __ jump(ExternalAddress(Interpreter::throw_exception_entry())); 3482 } 3483 3484 //----------------------------------------------------------------------------- 3485 // Synchronization 3486 // 3487 // Note: monitorenter & exit are symmetric routines; which is reflected 3488 // in the assembly code structure as well 3489 // 3490 // Stack layout: 3491 // 3492 // [expressions ] <--- rsp = expression stack top 3493 // .. 3494 // [expressions ] 3495 // [monitor entry] <--- monitor block top = expression stack bot 3496 // .. 3497 // [monitor entry] 3498 // [frame data ] <--- monitor block bot 3499 // ... 3500 // [saved rbp ] <--- rbp 3501 void TemplateTable::monitorenter() { 3502 transition(atos, vtos); 3503 3504 // check for NULL object 3505 __ null_check(rax); 3506 3507 const Address monitor_block_top( 3508 rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize); 3509 const Address monitor_block_bot( 3510 rbp, frame::interpreter_frame_initial_sp_offset * wordSize); 3511 const int entry_size = frame::interpreter_frame_monitor_size() * wordSize; 3512 3513 Label allocated; 3514 3515 // initialize entry pointer 3516 __ xorl(c_rarg1, c_rarg1); // points to free slot or NULL 3517 3518 // find a free slot in the monitor block (result in c_rarg1) 3519 { 3520 Label entry, loop, exit; 3521 __ movptr(c_rarg3, monitor_block_top); // points to current entry, 3522 // starting with top-most entry 3523 __ lea(c_rarg2, monitor_block_bot); // points to word before bottom 3524 // of monitor block 3525 __ jmpb(entry); 3526 3527 __ bind(loop); 3528 // check if current entry is used 3529 __ cmpptr(Address(c_rarg3, BasicObjectLock::obj_offset_in_bytes()), (int32_t) NULL_WORD); 3530 // if not used then remember entry in c_rarg1 3531 __ cmov(Assembler::equal, c_rarg1, c_rarg3); 3532 // check if current entry is for same object 3533 __ cmpptr(rax, Address(c_rarg3, BasicObjectLock::obj_offset_in_bytes())); 3534 // if same object then stop searching 3535 __ jccb(Assembler::equal, exit); 3536 // otherwise advance to next entry 3537 __ addptr(c_rarg3, entry_size); 3538 __ bind(entry); 3539 // check if bottom reached 3540 __ cmpptr(c_rarg3, c_rarg2); 3541 // if not at bottom then check this entry 3542 __ jcc(Assembler::notEqual, loop); 3543 __ bind(exit); 3544 } 3545 3546 __ testptr(c_rarg1, c_rarg1); // check if a slot has been found 3547 __ jcc(Assembler::notZero, allocated); // if found, continue with that one 3548 3549 // allocate one if there's no free slot 3550 { 3551 Label entry, loop; 3552 // 1. compute new pointers // rsp: old expression stack top 3553 __ movptr(c_rarg1, monitor_block_bot); // c_rarg1: old expression stack bottom 3554 __ subptr(rsp, entry_size); // move expression stack top 3555 __ subptr(c_rarg1, entry_size); // move expression stack bottom 3556 __ mov(c_rarg3, rsp); // set start value for copy loop 3557 __ movptr(monitor_block_bot, c_rarg1); // set new monitor block bottom 3558 __ jmp(entry); 3559 // 2. move expression stack contents 3560 __ bind(loop); 3561 __ movptr(c_rarg2, Address(c_rarg3, entry_size)); // load expression stack 3562 // word from old location 3563 __ movptr(Address(c_rarg3, 0), c_rarg2); // and store it at new location 3564 __ addptr(c_rarg3, wordSize); // advance to next word 3565 __ bind(entry); 3566 __ cmpptr(c_rarg3, c_rarg1); // check if bottom reached 3567 __ jcc(Assembler::notEqual, loop); // if not at bottom then 3568 // copy next word 3569 } 3570 3571 // call run-time routine 3572 // c_rarg1: points to monitor entry 3573 __ bind(allocated); 3574 3575 // Increment bcp to point to the next bytecode, so exception 3576 // handling for async. exceptions work correctly. 3577 // The object has already been poped from the stack, so the 3578 // expression stack looks correct. 3579 __ increment(r13); 3580 3581 // store object 3582 __ movptr(Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes()), rax); 3583 __ lock_object(c_rarg1); 3584 3585 // check to make sure this monitor doesn't cause stack overflow after locking 3586 __ save_bcp(); // in case of exception 3587 __ generate_stack_overflow_check(0); 3588 3589 // The bcp has already been incremented. Just need to dispatch to 3590 // next instruction. 3591 __ dispatch_next(vtos); 3592 } 3593 3594 3595 void TemplateTable::monitorexit() { 3596 transition(atos, vtos); 3597 3598 // check for NULL object 3599 __ null_check(rax); 3600 3601 const Address monitor_block_top( 3602 rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize); 3603 const Address monitor_block_bot( 3604 rbp, frame::interpreter_frame_initial_sp_offset * wordSize); 3605 const int entry_size = frame::interpreter_frame_monitor_size() * wordSize; 3606 3607 Label found; 3608 3609 // find matching slot 3610 { 3611 Label entry, loop; 3612 __ movptr(c_rarg1, monitor_block_top); // points to current entry, 3613 // starting with top-most entry 3614 __ lea(c_rarg2, monitor_block_bot); // points to word before bottom 3615 // of monitor block 3616 __ jmpb(entry); 3617 3618 __ bind(loop); 3619 // check if current entry is for same object 3620 __ cmpptr(rax, Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes())); 3621 // if same object then stop searching 3622 __ jcc(Assembler::equal, found); 3623 // otherwise advance to next entry 3624 __ addptr(c_rarg1, entry_size); 3625 __ bind(entry); 3626 // check if bottom reached 3627 __ cmpptr(c_rarg1, c_rarg2); 3628 // if not at bottom then check this entry 3629 __ jcc(Assembler::notEqual, loop); 3630 } 3631 3632 // error handling. Unlocking was not block-structured 3633 __ call_VM(noreg, CAST_FROM_FN_PTR(address, 3634 InterpreterRuntime::throw_illegal_monitor_state_exception)); 3635 __ should_not_reach_here(); 3636 3637 // call run-time routine 3638 // rsi: points to monitor entry 3639 __ bind(found); 3640 __ push_ptr(rax); // make sure object is on stack (contract with oopMaps) 3641 __ unlock_object(c_rarg1); 3642 __ pop_ptr(rax); // discard object 3643 } 3644 3645 3646 // Wide instructions 3647 void TemplateTable::wide() { 3648 transition(vtos, vtos); 3649 __ load_unsigned_byte(rbx, at_bcp(1)); 3650 __ lea(rscratch1, ExternalAddress((address)Interpreter::_wentry_point)); 3651 __ jmp(Address(rscratch1, rbx, Address::times_8)); 3652 // Note: the r13 increment step is part of the individual wide 3653 // bytecode implementations 3654 } 3655 3656 3657 // Multi arrays 3658 void TemplateTable::multianewarray() { 3659 transition(vtos, atos); 3660 __ load_unsigned_byte(rax, at_bcp(3)); // get number of dimensions 3661 // last dim is on top of stack; we want address of first one: 3662 // first_addr = last_addr + (ndims - 1) * wordSize 3663 __ lea(c_rarg1, Address(rsp, rax, Address::times_8, -wordSize)); 3664 call_VM(rax, 3665 CAST_FROM_FN_PTR(address, InterpreterRuntime::multianewarray), 3666 c_rarg1); 3667 __ load_unsigned_byte(rbx, at_bcp(3)); 3668 __ lea(rsp, Address(rsp, rbx, Address::times_8)); 3669 } 3670 #endif // !CC_INTERP