1 /*
   2  * Copyright (c) 2001, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc/g1/g1Analytics.hpp"
  27 #include "gc/g1/g1Arguments.hpp"
  28 #include "gc/g1/g1CollectedHeap.inline.hpp"
  29 #include "gc/g1/g1CollectionSet.hpp"
  30 #include "gc/g1/g1CollectionSetCandidates.hpp"
  31 #include "gc/g1/g1ConcurrentMark.hpp"
  32 #include "gc/g1/g1ConcurrentMarkThread.inline.hpp"
  33 #include "gc/g1/g1ConcurrentRefine.hpp"
  34 #include "gc/g1/g1CollectionSetChooser.hpp"
  35 #include "gc/g1/g1HeapSizingPolicy.hpp"
  36 #include "gc/g1/g1HeterogeneousHeapPolicy.hpp"
  37 #include "gc/g1/g1HotCardCache.hpp"
  38 #include "gc/g1/g1IHOPControl.hpp"
  39 #include "gc/g1/g1GCPhaseTimes.hpp"
  40 #include "gc/g1/g1Policy.hpp"
  41 #include "gc/g1/g1SurvivorRegions.hpp"
  42 #include "gc/g1/g1YoungGenSizer.hpp"
  43 #include "gc/g1/heapRegion.inline.hpp"
  44 #include "gc/g1/heapRegionRemSet.hpp"
  45 #include "gc/shared/gcPolicyCounters.hpp"
  46 #include "logging/logStream.hpp"
  47 #include "runtime/arguments.hpp"
  48 #include "runtime/java.hpp"
  49 #include "runtime/mutexLocker.hpp"
  50 #include "utilities/debug.hpp"
  51 #include "utilities/growableArray.hpp"
  52 #include "utilities/pair.hpp"
  53 
  54 G1Policy::G1Policy(STWGCTimer* gc_timer) :
  55   _predictor(G1ConfidencePercent / 100.0),
  56   _analytics(new G1Analytics(&_predictor)),
  57   _remset_tracker(),
  58   _mmu_tracker(new G1MMUTrackerQueue(GCPauseIntervalMillis / 1000.0, MaxGCPauseMillis / 1000.0)),
  59   _ihop_control(create_ihop_control(&_predictor)),
  60   _policy_counters(new GCPolicyCounters("GarbageFirst", 1, 2)),
  61   _full_collection_start_sec(0.0),
  62   _collection_pause_end_millis(os::javaTimeNanos() / NANOSECS_PER_MILLISEC),
  63   _young_list_target_length(0),
  64   _young_list_fixed_length(0),
  65   _young_list_max_length(0),
  66   _eden_surv_rate_group(new G1SurvRateGroup()),
  67   _survivor_surv_rate_group(new G1SurvRateGroup()),
  68   _reserve_factor((double) G1ReservePercent / 100.0),
  69   _reserve_regions(0),
  70   _young_gen_sizer(G1YoungGenSizer::create_gen_sizer()),
  71   _free_regions_at_end_of_collection(0),
  72   _rs_length(0),
  73   _rs_length_prediction(0),
  74   _pending_cards_at_gc_start(0),
  75   _pending_cards_at_prev_gc_end(0),
  76   _total_mutator_refined_cards(0),
  77   _total_concurrent_refined_cards(0),
  78   _total_concurrent_refinement_time(),
  79   _bytes_allocated_in_old_since_last_gc(0),
  80   _minimum_desired_bytes_after_last_cm(0),
  81   _initial_mark_to_mixed(),
  82   _collection_set(NULL),
  83   _g1h(NULL),
  84   _phase_times(new G1GCPhaseTimes(gc_timer, ParallelGCThreads)),
  85   _mark_remark_start_sec(0),
  86   _mark_cleanup_start_sec(0),
  87   _tenuring_threshold(MaxTenuringThreshold),
  88   _max_survivor_regions(0),
  89   _survivors_age_table(true)
  90 {
  91 }
  92 
  93 G1Policy::~G1Policy() {
  94   delete _ihop_control;
  95   delete _young_gen_sizer;
  96 }
  97 
  98 G1Policy* G1Policy::create_policy(STWGCTimer* gc_timer_stw) {
  99   if (G1Arguments::is_heterogeneous_heap()) {
 100     return new G1HeterogeneousHeapPolicy(gc_timer_stw);
 101   } else {
 102     return new G1Policy(gc_timer_stw);
 103   }
 104 }
 105 
 106 G1CollectorState* G1Policy::collector_state() const { return _g1h->collector_state(); }
 107 
 108 void G1Policy::init(G1CollectedHeap* g1h, G1CollectionSet* collection_set) {
 109   _g1h = g1h;
 110   _collection_set = collection_set;
 111 
 112   assert(Heap_lock->owned_by_self(), "Locking discipline.");
 113 
 114   if (!use_adaptive_young_list_length()) {
 115     _young_list_fixed_length = _young_gen_sizer->min_desired_young_length();
 116   }
 117   _young_gen_sizer->adjust_max_new_size(_g1h->max_expandable_regions());
 118 
 119   _free_regions_at_end_of_collection = _g1h->num_free_regions();
 120 
 121   update_young_list_max_and_target_length();
 122   // We may immediately start allocating regions and placing them on the
 123   // collection set list. Initialize the per-collection set info
 124   _collection_set->start_incremental_building();
 125 }
 126 
 127 void G1Policy::note_gc_start() {
 128   phase_times()->note_gc_start();
 129 }
 130 
 131 class G1YoungLengthPredictor {
 132   const double _base_time_ms;
 133   const double _base_free_regions;
 134   const double _target_pause_time_ms;
 135   const G1Policy* const _policy;
 136 
 137  public:
 138   G1YoungLengthPredictor(double base_time_ms,
 139                          double base_free_regions,
 140                          double target_pause_time_ms,
 141                          const G1Policy* policy) :
 142     _base_time_ms(base_time_ms),
 143     _base_free_regions(base_free_regions),
 144     _target_pause_time_ms(target_pause_time_ms),
 145     _policy(policy) {}
 146 
 147   bool will_fit(uint young_length) const {
 148     if (young_length >= _base_free_regions) {
 149       // end condition 1: not enough space for the young regions
 150       return false;
 151     }
 152 
 153     size_t bytes_to_copy = 0;
 154     const double copy_time_ms = _policy->predict_eden_copy_time_ms(young_length, &bytes_to_copy);
 155     const double young_other_time_ms = _policy->analytics()->predict_young_other_time_ms(young_length);
 156     const double pause_time_ms = _base_time_ms + copy_time_ms + young_other_time_ms;
 157     if (pause_time_ms > _target_pause_time_ms) {
 158       // end condition 2: prediction is over the target pause time
 159       return false;
 160     }
 161 
 162     const size_t free_bytes = (_base_free_regions - young_length) * HeapRegion::GrainBytes;
 163 
 164     // When copying, we will likely need more bytes free than is live in the region.
 165     // Add some safety margin to factor in the confidence of our guess, and the
 166     // natural expected waste.
 167     // (100.0 / G1ConfidencePercent) is a scale factor that expresses the uncertainty
 168     // of the calculation: the lower the confidence, the more headroom.
 169     // (100 + TargetPLABWastePct) represents the increase in expected bytes during
 170     // copying due to anticipated waste in the PLABs.
 171     const double safety_factor = (100.0 / G1ConfidencePercent) * (100 + TargetPLABWastePct) / 100.0;
 172     const size_t expected_bytes_to_copy = (size_t)(safety_factor * bytes_to_copy);
 173 
 174     if (expected_bytes_to_copy > free_bytes) {
 175       // end condition 3: out-of-space
 176       return false;
 177     }
 178 
 179     // success!
 180     return true;
 181   }
 182 };
 183 
 184 void G1Policy::record_new_heap_size(uint new_number_of_regions) {
 185   // re-calculate the necessary reserve
 186   double reserve_regions_d = (double) new_number_of_regions * _reserve_factor;
 187   // We use ceiling so that if reserve_regions_d is > 0.0 (but
 188   // smaller than 1.0) we'll get 1.
 189   _reserve_regions = (uint) ceil(reserve_regions_d);
 190 
 191   _young_gen_sizer->heap_size_changed(new_number_of_regions);
 192 
 193   _ihop_control->update_target_occupancy(new_number_of_regions * HeapRegion::GrainBytes);
 194 }
 195 
 196 uint G1Policy::calculate_young_list_desired_min_length(uint base_min_length) const {
 197   uint desired_min_length = 0;
 198   if (use_adaptive_young_list_length()) {
 199     if (_analytics->num_alloc_rate_ms() > 3) {
 200       double now_sec = os::elapsedTime();
 201       double when_ms = _mmu_tracker->when_max_gc_sec(now_sec) * 1000.0;
 202       double alloc_rate_ms = _analytics->predict_alloc_rate_ms();
 203       desired_min_length = (uint) ceil(alloc_rate_ms * when_ms);
 204     } else {
 205       // otherwise we don't have enough info to make the prediction
 206     }
 207   }
 208   desired_min_length += base_min_length;
 209   // make sure we don't go below any user-defined minimum bound
 210   return MAX2(_young_gen_sizer->min_desired_young_length(), desired_min_length);
 211 }
 212 
 213 uint G1Policy::calculate_young_list_desired_max_length() const {
 214   // Here, we might want to also take into account any additional
 215   // constraints (i.e., user-defined minimum bound). Currently, we
 216   // effectively don't set this bound.
 217   return _young_gen_sizer->max_desired_young_length();
 218 }
 219 
 220 uint G1Policy::update_young_list_max_and_target_length() {
 221   return update_young_list_max_and_target_length(_analytics->predict_rs_length());
 222 }
 223 
 224 uint G1Policy::update_young_list_max_and_target_length(size_t rs_length) {
 225   uint unbounded_target_length = update_young_list_target_length(rs_length);
 226   update_max_gc_locker_expansion();
 227   return unbounded_target_length;
 228 }
 229 
 230 uint G1Policy::update_young_list_target_length(size_t rs_length) {
 231   YoungTargetLengths young_lengths = young_list_target_lengths(rs_length);
 232   _young_list_target_length = young_lengths.first;
 233 
 234   return young_lengths.second;
 235 }
 236 
 237 G1Policy::YoungTargetLengths G1Policy::young_list_target_lengths(size_t rs_length) const {
 238   YoungTargetLengths result;
 239 
 240   // Calculate the absolute and desired min bounds first.
 241 
 242   // This is how many young regions we already have (currently: the survivors).
 243   const uint base_min_length = _g1h->survivor_regions_count();
 244   uint desired_min_length = calculate_young_list_desired_min_length(base_min_length);
 245   // This is the absolute minimum young length. Ensure that we
 246   // will at least have one eden region available for allocation.
 247   uint absolute_min_length = base_min_length + MAX2(_g1h->eden_regions_count(), (uint)1);
 248   // If we shrank the young list target it should not shrink below the current size.
 249   desired_min_length = MAX2(desired_min_length, absolute_min_length);
 250   // Calculate the absolute and desired max bounds.
 251 
 252   uint desired_max_length = calculate_young_list_desired_max_length();
 253 
 254   uint young_list_target_length = 0;
 255   if (use_adaptive_young_list_length()) {
 256     if (collector_state()->in_young_only_phase()) {
 257       young_list_target_length =
 258                         calculate_young_list_target_length(rs_length,
 259                                                            base_min_length,
 260                                                            desired_min_length,
 261                                                            desired_max_length);
 262     } else {
 263       // Don't calculate anything and let the code below bound it to
 264       // the desired_min_length, i.e., do the next GC as soon as
 265       // possible to maximize how many old regions we can add to it.
 266     }
 267   } else {
 268     // The user asked for a fixed young gen so we'll fix the young gen
 269     // whether the next GC is young or mixed.
 270     young_list_target_length = _young_list_fixed_length;
 271   }
 272 
 273   result.second = young_list_target_length;
 274 
 275   // We will try our best not to "eat" into the reserve.
 276   uint absolute_max_length = 0;
 277   if (_free_regions_at_end_of_collection > _reserve_regions) {
 278     absolute_max_length = _free_regions_at_end_of_collection - _reserve_regions;
 279   }
 280   if (desired_max_length > absolute_max_length) {
 281     desired_max_length = absolute_max_length;
 282   }
 283 
 284   // Make sure we don't go over the desired max length, nor under the
 285   // desired min length. In case they clash, desired_min_length wins
 286   // which is why that test is second.
 287   if (young_list_target_length > desired_max_length) {
 288     young_list_target_length = desired_max_length;
 289   }
 290   if (young_list_target_length < desired_min_length) {
 291     young_list_target_length = desired_min_length;
 292   }
 293 
 294   assert(young_list_target_length > base_min_length,
 295          "we should be able to allocate at least one eden region");
 296   assert(young_list_target_length >= absolute_min_length, "post-condition");
 297 
 298   result.first = young_list_target_length;
 299   return result;
 300 }
 301 
 302 uint G1Policy::calculate_young_list_target_length(size_t rs_length,
 303                                                   uint base_min_length,
 304                                                   uint desired_min_length,
 305                                                   uint desired_max_length) const {
 306   assert(use_adaptive_young_list_length(), "pre-condition");
 307   assert(collector_state()->in_young_only_phase(), "only call this for young GCs");
 308 
 309   // In case some edge-condition makes the desired max length too small...
 310   if (desired_max_length <= desired_min_length) {
 311     return desired_min_length;
 312   }
 313 
 314   // We'll adjust min_young_length and max_young_length not to include
 315   // the already allocated young regions (i.e., so they reflect the
 316   // min and max eden regions we'll allocate). The base_min_length
 317   // will be reflected in the predictions by the
 318   // survivor_regions_evac_time prediction.
 319   assert(desired_min_length > base_min_length, "invariant");
 320   uint min_young_length = desired_min_length - base_min_length;
 321   assert(desired_max_length > base_min_length, "invariant");
 322   uint max_young_length = desired_max_length - base_min_length;
 323 
 324   const double target_pause_time_ms = _mmu_tracker->max_gc_time() * 1000.0;
 325   const size_t pending_cards = _analytics->predict_pending_cards();
 326   const double base_time_ms = predict_base_elapsed_time_ms(pending_cards, rs_length);
 327   const uint available_free_regions = _free_regions_at_end_of_collection;
 328   const uint base_free_regions =
 329     available_free_regions > _reserve_regions ? available_free_regions - _reserve_regions : 0;
 330 
 331   // Here, we will make sure that the shortest young length that
 332   // makes sense fits within the target pause time.
 333 
 334   G1YoungLengthPredictor p(base_time_ms,
 335                            base_free_regions,
 336                            target_pause_time_ms,
 337                            this);
 338   if (p.will_fit(min_young_length)) {
 339     // The shortest young length will fit into the target pause time;
 340     // we'll now check whether the absolute maximum number of young
 341     // regions will fit in the target pause time. If not, we'll do
 342     // a binary search between min_young_length and max_young_length.
 343     if (p.will_fit(max_young_length)) {
 344       // The maximum young length will fit into the target pause time.
 345       // We are done so set min young length to the maximum length (as
 346       // the result is assumed to be returned in min_young_length).
 347       min_young_length = max_young_length;
 348     } else {
 349       // The maximum possible number of young regions will not fit within
 350       // the target pause time so we'll search for the optimal
 351       // length. The loop invariants are:
 352       //
 353       // min_young_length < max_young_length
 354       // min_young_length is known to fit into the target pause time
 355       // max_young_length is known not to fit into the target pause time
 356       //
 357       // Going into the loop we know the above hold as we've just
 358       // checked them. Every time around the loop we check whether
 359       // the middle value between min_young_length and
 360       // max_young_length fits into the target pause time. If it
 361       // does, it becomes the new min. If it doesn't, it becomes
 362       // the new max. This way we maintain the loop invariants.
 363 
 364       assert(min_young_length < max_young_length, "invariant");
 365       uint diff = (max_young_length - min_young_length) / 2;
 366       while (diff > 0) {
 367         uint young_length = min_young_length + diff;
 368         if (p.will_fit(young_length)) {
 369           min_young_length = young_length;
 370         } else {
 371           max_young_length = young_length;
 372         }
 373         assert(min_young_length <  max_young_length, "invariant");
 374         diff = (max_young_length - min_young_length) / 2;
 375       }
 376       // The results is min_young_length which, according to the
 377       // loop invariants, should fit within the target pause time.
 378 
 379       // These are the post-conditions of the binary search above:
 380       assert(min_young_length < max_young_length,
 381              "otherwise we should have discovered that max_young_length "
 382              "fits into the pause target and not done the binary search");
 383       assert(p.will_fit(min_young_length),
 384              "min_young_length, the result of the binary search, should "
 385              "fit into the pause target");
 386       assert(!p.will_fit(min_young_length + 1),
 387              "min_young_length, the result of the binary search, should be "
 388              "optimal, so no larger length should fit into the pause target");
 389     }
 390   } else {
 391     // Even the minimum length doesn't fit into the pause time
 392     // target, return it as the result nevertheless.
 393   }
 394   return base_min_length + min_young_length;
 395 }
 396 
 397 double G1Policy::predict_survivor_regions_evac_time() const {
 398   double survivor_regions_evac_time = 0.0;
 399   const GrowableArray<HeapRegion*>* survivor_regions = _g1h->survivor()->regions();
 400   for (GrowableArrayIterator<HeapRegion*> it = survivor_regions->begin();
 401        it != survivor_regions->end();
 402        ++it) {
 403     survivor_regions_evac_time += predict_region_total_time_ms(*it, collector_state()->in_young_only_phase());
 404   }
 405   return survivor_regions_evac_time;
 406 }
 407 
 408 void G1Policy::revise_young_list_target_length_if_necessary(size_t rs_length) {
 409   guarantee(use_adaptive_young_list_length(), "should not call this otherwise" );
 410 
 411   if (rs_length > _rs_length_prediction) {
 412     // add 10% to avoid having to recalculate often
 413     size_t rs_length_prediction = rs_length * 1100 / 1000;
 414     update_rs_length_prediction(rs_length_prediction);
 415 
 416     update_young_list_max_and_target_length(rs_length_prediction);
 417   }
 418 }
 419 
 420 void G1Policy::update_rs_length_prediction() {
 421   update_rs_length_prediction(_analytics->predict_rs_length());
 422 }
 423 
 424 void G1Policy::update_rs_length_prediction(size_t prediction) {
 425   if (collector_state()->in_young_only_phase() && use_adaptive_young_list_length()) {
 426     _rs_length_prediction = prediction;
 427   }
 428 }
 429 
 430 void G1Policy::record_full_collection_start() {
 431   _full_collection_start_sec = os::elapsedTime();
 432   // Release the future to-space so that it is available for compaction into.
 433   collector_state()->set_in_young_only_phase(false);
 434   collector_state()->set_in_full_gc(true);
 435   _collection_set->clear_candidates();
 436   record_concurrent_refinement_data(true /* is_full_collection */);
 437 }
 438 
 439 void G1Policy::record_full_collection_end() {
 440   // Consider this like a collection pause for the purposes of allocation
 441   // since last pause.
 442   double end_sec = os::elapsedTime();
 443   double full_gc_time_sec = end_sec - _full_collection_start_sec;
 444   double full_gc_time_ms = full_gc_time_sec * 1000.0;
 445 
 446   _analytics->update_recent_gc_times(end_sec, full_gc_time_ms);
 447 
 448   collector_state()->set_in_full_gc(false);
 449 
 450   // "Nuke" the heuristics that control the young/mixed GC
 451   // transitions and make sure we start with young GCs after the Full GC.
 452   collector_state()->set_in_young_only_phase(true);
 453   collector_state()->set_in_young_gc_before_mixed(false);
 454   collector_state()->set_initiate_conc_mark_if_possible(need_to_start_conc_mark("end of Full GC", 0));
 455   collector_state()->set_in_initial_mark_gc(false);
 456   collector_state()->set_mark_or_rebuild_in_progress(false);
 457   collector_state()->set_clearing_next_bitmap(false);
 458 
 459   _eden_surv_rate_group->start_adding_regions();
 460   // also call this on any additional surv rate groups
 461 
 462   _free_regions_at_end_of_collection = _g1h->num_free_regions();
 463   _survivor_surv_rate_group->reset();
 464   update_young_list_max_and_target_length();
 465   update_rs_length_prediction();
 466   _pending_cards_at_prev_gc_end = _g1h->pending_card_num();
 467 
 468   _bytes_allocated_in_old_since_last_gc = 0;
 469 
 470   record_pause(FullGC, _full_collection_start_sec, end_sec);
 471 }
 472 
 473 void G1Policy::record_concurrent_refinement_data(bool is_full_collection) {
 474   _pending_cards_at_gc_start = _g1h->pending_card_num();
 475 
 476   // Record info about concurrent refinement thread processing.
 477   G1ConcurrentRefine* cr = _g1h->concurrent_refine();
 478   G1ConcurrentRefine::RefinementStats cr_stats = cr->total_refinement_stats();
 479 
 480   Tickspan cr_time = cr_stats._time - _total_concurrent_refinement_time;
 481   _total_concurrent_refinement_time = cr_stats._time;
 482 
 483   size_t cr_cards = cr_stats._cards - _total_concurrent_refined_cards;
 484   _total_concurrent_refined_cards = cr_stats._cards;
 485 
 486   // Don't update rate if full collection.  We could be in an implicit full
 487   // collection after a non-full collection failure, in which case there
 488   // wasn't any mutator/cr-thread activity since last recording.  And if
 489   // we're in an explicit full collection, the time since the last GC can
 490   // be arbitrarily short, so not a very good sample.  Similarly, don't
 491   // update the rate if the current sample is empty or time is zero.
 492   if (!is_full_collection && (cr_cards > 0) && (cr_time > Tickspan())) {
 493     double rate = cr_cards / (cr_time.seconds() * MILLIUNITS);
 494     _analytics->report_concurrent_refine_rate_ms(rate);
 495   }
 496 
 497   // Record info about mutator thread processing.
 498   G1DirtyCardQueueSet& dcqs = G1BarrierSet::dirty_card_queue_set();
 499   size_t mut_total_cards = dcqs.total_mutator_refined_cards();
 500   size_t mut_cards = mut_total_cards - _total_mutator_refined_cards;
 501   _total_mutator_refined_cards = mut_total_cards;
 502 
 503   // Record mutator's card logging rate.
 504   // Don't update if full collection; see above.
 505   if (!is_full_collection) {
 506     size_t total_cards = _pending_cards_at_gc_start + cr_cards + mut_cards;
 507     assert(_pending_cards_at_prev_gc_end <= total_cards,
 508            "untracked cards: last pending: " SIZE_FORMAT
 509            ", pending: " SIZE_FORMAT ", conc refine: " SIZE_FORMAT
 510            ", mut refine:" SIZE_FORMAT,
 511            _pending_cards_at_prev_gc_end, _pending_cards_at_gc_start,
 512            cr_cards, mut_cards);
 513     size_t logged_cards = total_cards - _pending_cards_at_prev_gc_end;
 514     double logging_start_time = _analytics->prev_collection_pause_end_ms();
 515     double logging_end_time = Ticks::now().seconds() * MILLIUNITS;
 516     double logging_time = logging_end_time - logging_start_time;
 517     // Unlike above for conc-refine rate, here we should not require a
 518     // non-empty sample, since an application could go some time with only
 519     // young-gen or filtered out writes.  But we'll ignore unusually short
 520     // sample periods, as they may just pollute the predictions.
 521     if (logging_time > 1.0) {   // Require > 1ms sample time.
 522       _analytics->report_logged_cards_rate_ms(logged_cards / logging_time);
 523     }
 524   }
 525 }
 526 
 527 void G1Policy::record_collection_pause_start(double start_time_sec) {
 528   // We only need to do this here as the policy will only be applied
 529   // to the GC we're about to start. so, no point is calculating this
 530   // every time we calculate / recalculate the target young length.
 531   update_survivors_policy();
 532 
 533   assert(max_survivor_regions() + _g1h->num_used_regions() <= _g1h->max_regions(),
 534          "Maximum survivor regions %u plus used regions %u exceeds max regions %u",
 535          max_survivor_regions(), _g1h->num_used_regions(), _g1h->max_regions());
 536   assert_used_and_recalculate_used_equal(_g1h);
 537 
 538   phase_times()->record_cur_collection_start_sec(start_time_sec);
 539 
 540   record_concurrent_refinement_data(false /* is_full_collection */);
 541 
 542   _collection_set->reset_bytes_used_before();
 543 
 544   // do that for any other surv rate groups
 545   _eden_surv_rate_group->stop_adding_regions();
 546   _survivors_age_table.clear();
 547 
 548   assert(_g1h->collection_set()->verify_young_ages(), "region age verification failed");
 549 }
 550 
 551 void G1Policy::record_concurrent_mark_init_end(double mark_init_elapsed_time_ms) {
 552   assert(!collector_state()->initiate_conc_mark_if_possible(), "we should have cleared it by now");
 553   collector_state()->set_in_initial_mark_gc(false);
 554 }
 555 
 556 void G1Policy::record_concurrent_mark_remark_start() {
 557   _mark_remark_start_sec = os::elapsedTime();
 558 }
 559 
 560 void G1Policy::record_concurrent_mark_remark_end() {
 561   double end_time_sec = os::elapsedTime();
 562   double elapsed_time_ms = (end_time_sec - _mark_remark_start_sec)*1000.0;
 563   _analytics->report_concurrent_mark_remark_times_ms(elapsed_time_ms);
 564   _analytics->append_prev_collection_pause_end_ms(elapsed_time_ms);
 565 
 566   record_pause(Remark, _mark_remark_start_sec, end_time_sec);
 567 }
 568 
 569 void G1Policy::record_concurrent_mark_cleanup_start() {
 570   _mark_cleanup_start_sec = os::elapsedTime();
 571 }
 572 
 573 double G1Policy::average_time_ms(G1GCPhaseTimes::GCParPhases phase) const {
 574   return phase_times()->average_time_ms(phase);
 575 }
 576 
 577 double G1Policy::young_other_time_ms() const {
 578   return phase_times()->young_cset_choice_time_ms() +
 579          phase_times()->average_time_ms(G1GCPhaseTimes::YoungFreeCSet);
 580 }
 581 
 582 double G1Policy::non_young_other_time_ms() const {
 583   return phase_times()->non_young_cset_choice_time_ms() +
 584          phase_times()->average_time_ms(G1GCPhaseTimes::NonYoungFreeCSet);
 585 }
 586 
 587 double G1Policy::other_time_ms(double pause_time_ms) const {
 588   return pause_time_ms - phase_times()->cur_collection_par_time_ms();
 589 }
 590 
 591 double G1Policy::constant_other_time_ms(double pause_time_ms) const {
 592   return other_time_ms(pause_time_ms) - phase_times()->total_free_cset_time_ms() - phase_times()->total_rebuild_freelist_time_ms();
 593 }
 594 
 595 bool G1Policy::about_to_start_mixed_phase() const {
 596   return _g1h->concurrent_mark()->cm_thread()->during_cycle() || collector_state()->in_young_gc_before_mixed();
 597 }
 598 
 599 bool G1Policy::need_to_start_conc_mark(const char* source, size_t alloc_word_size) {
 600   if (about_to_start_mixed_phase()) {
 601     return false;
 602   }
 603 
 604   size_t marking_initiating_used_threshold = _ihop_control->get_conc_mark_start_threshold();
 605 
 606   size_t cur_used_bytes = _g1h->non_young_capacity_bytes();
 607   size_t alloc_byte_size = alloc_word_size * HeapWordSize;
 608   size_t marking_request_bytes = cur_used_bytes + alloc_byte_size;
 609 
 610   bool result = false;
 611   if (marking_request_bytes > marking_initiating_used_threshold) {
 612     result = collector_state()->in_young_only_phase() && !collector_state()->in_young_gc_before_mixed();
 613     log_debug(gc, ergo, ihop)("%s occupancy: " SIZE_FORMAT "B allocation request: " SIZE_FORMAT "B threshold: " SIZE_FORMAT "B (%1.2f) source: %s",
 614                               result ? "Request concurrent cycle initiation (occupancy higher than threshold)" : "Do not request concurrent cycle initiation (still doing mixed collections)",
 615                               cur_used_bytes, alloc_byte_size, marking_initiating_used_threshold, (double) marking_initiating_used_threshold / _g1h->capacity() * 100, source);
 616   }
 617 
 618   return result;
 619 }
 620 
 621 double G1Policy::logged_cards_processing_time() const {
 622   double all_cards_processing_time = average_time_ms(G1GCPhaseTimes::ScanHR) + average_time_ms(G1GCPhaseTimes::OptScanHR);
 623   size_t logged_dirty_cards = phase_times()->sum_thread_work_items(G1GCPhaseTimes::MergeLB, G1GCPhaseTimes::MergeLBDirtyCards);
 624   size_t scan_heap_roots_cards = phase_times()->sum_thread_work_items(G1GCPhaseTimes::ScanHR, G1GCPhaseTimes::ScanHRScannedCards) +
 625                                  phase_times()->sum_thread_work_items(G1GCPhaseTimes::OptScanHR, G1GCPhaseTimes::ScanHRScannedCards);
 626   // This may happen if there are duplicate cards in different log buffers.
 627   if (logged_dirty_cards > scan_heap_roots_cards) {
 628     return all_cards_processing_time + average_time_ms(G1GCPhaseTimes::MergeLB);
 629   }
 630   return (all_cards_processing_time * logged_dirty_cards / scan_heap_roots_cards) + average_time_ms(G1GCPhaseTimes::MergeLB);
 631 }
 632 
 633 // Anything below that is considered to be zero
 634 #define MIN_TIMER_GRANULARITY 0.0000001
 635 
 636 void G1Policy::record_collection_pause_end(double pause_time_ms) {
 637   G1GCPhaseTimes* p = phase_times();
 638 
 639   double end_time_sec = os::elapsedTime();
 640 
 641   bool this_pause_included_initial_mark = false;
 642   bool this_pause_was_young_only = collector_state()->in_young_only_phase();
 643 
 644   bool update_stats = !_g1h->evacuation_failed();
 645 
 646   record_pause(young_gc_pause_kind(), end_time_sec - pause_time_ms / 1000.0, end_time_sec);
 647 
 648   _collection_pause_end_millis = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
 649 
 650   this_pause_included_initial_mark = collector_state()->in_initial_mark_gc();
 651   if (this_pause_included_initial_mark) {
 652     record_concurrent_mark_init_end(0.0);
 653   } else {
 654     maybe_start_marking();
 655   }
 656 
 657   double app_time_ms = (phase_times()->cur_collection_start_sec() * 1000.0 - _analytics->prev_collection_pause_end_ms());
 658   if (app_time_ms < MIN_TIMER_GRANULARITY) {
 659     // This usually happens due to the timer not having the required
 660     // granularity. Some Linuxes are the usual culprits.
 661     // We'll just set it to something (arbitrarily) small.
 662     app_time_ms = 1.0;
 663   }
 664 
 665   if (update_stats) {
 666     // We maintain the invariant that all objects allocated by mutator
 667     // threads will be allocated out of eden regions. So, we can use
 668     // the eden region number allocated since the previous GC to
 669     // calculate the application's allocate rate. The only exception
 670     // to that is humongous objects that are allocated separately. But
 671     // given that humongous object allocations do not really affect
 672     // either the pause's duration nor when the next pause will take
 673     // place we can safely ignore them here.
 674     uint regions_allocated = _collection_set->eden_region_length();
 675     double alloc_rate_ms = (double) regions_allocated / app_time_ms;
 676     _analytics->report_alloc_rate_ms(alloc_rate_ms);
 677 
 678     double interval_ms =
 679       (end_time_sec - _analytics->last_known_gc_end_time_sec()) * 1000.0;
 680     _analytics->update_recent_gc_times(end_time_sec, pause_time_ms);
 681     _analytics->compute_pause_time_ratio(interval_ms, pause_time_ms);
 682   }
 683 
 684   if (collector_state()->in_young_gc_before_mixed()) {
 685     assert(!this_pause_included_initial_mark, "The young GC before mixed is not allowed to be an initial mark GC");
 686     // This has been the young GC before we start doing mixed GCs. We already
 687     // decided to start mixed GCs much earlier, so there is nothing to do except
 688     // advancing the state.
 689     collector_state()->set_in_young_only_phase(false);
 690     collector_state()->set_in_young_gc_before_mixed(false);
 691   } else if (!this_pause_was_young_only) {
 692     // This is a mixed GC. Here we decide whether to continue doing more
 693     // mixed GCs or not.
 694     if (!next_gc_should_be_mixed("continue mixed GCs",
 695                                  "do not continue mixed GCs")) {
 696       collector_state()->set_in_young_only_phase(true);
 697 
 698       clear_collection_set_candidates();
 699       maybe_start_marking();
 700     }
 701   }
 702 
 703   _eden_surv_rate_group->start_adding_regions();
 704 
 705   double merge_hcc_time_ms = average_time_ms(G1GCPhaseTimes::MergeHCC);
 706   if (update_stats) {
 707     size_t const total_log_buffer_cards = p->sum_thread_work_items(G1GCPhaseTimes::MergeHCC, G1GCPhaseTimes::MergeHCCDirtyCards) +
 708                                           p->sum_thread_work_items(G1GCPhaseTimes::MergeLB, G1GCPhaseTimes::MergeLBDirtyCards);
 709     // Update prediction for card merge; MergeRSDirtyCards includes the cards from the Eager Reclaim phase.
 710     size_t const total_cards_merged = p->sum_thread_work_items(G1GCPhaseTimes::MergeRS, G1GCPhaseTimes::MergeRSDirtyCards) +
 711                                       p->sum_thread_work_items(G1GCPhaseTimes::OptMergeRS, G1GCPhaseTimes::MergeRSDirtyCards) +
 712                                       total_log_buffer_cards;
 713 
 714     // The threshold for the number of cards in a given sampling which we consider
 715     // large enough so that the impact from setup and other costs is negligible.
 716     size_t const CardsNumSamplingThreshold = 10;
 717 
 718     if (total_cards_merged > CardsNumSamplingThreshold) {
 719       double avg_time_merge_cards = average_time_ms(G1GCPhaseTimes::MergeER) +
 720                                     average_time_ms(G1GCPhaseTimes::MergeRS) +
 721                                     average_time_ms(G1GCPhaseTimes::MergeHCC) +
 722                                     average_time_ms(G1GCPhaseTimes::MergeLB) +
 723                                     average_time_ms(G1GCPhaseTimes::OptMergeRS);
 724       _analytics->report_cost_per_card_merge_ms(avg_time_merge_cards / total_cards_merged, this_pause_was_young_only);
 725     }
 726 
 727     // Update prediction for card scan
 728     size_t const total_cards_scanned = p->sum_thread_work_items(G1GCPhaseTimes::ScanHR, G1GCPhaseTimes::ScanHRScannedCards) +
 729                                        p->sum_thread_work_items(G1GCPhaseTimes::OptScanHR, G1GCPhaseTimes::ScanHRScannedCards);
 730 
 731     if (total_cards_scanned > CardsNumSamplingThreshold) {
 732       double avg_time_dirty_card_scan = average_time_ms(G1GCPhaseTimes::ScanHR) +
 733                                         average_time_ms(G1GCPhaseTimes::OptScanHR);
 734 
 735       _analytics->report_cost_per_card_scan_ms(avg_time_dirty_card_scan / total_cards_scanned, this_pause_was_young_only);
 736     }
 737 
 738     // Update prediction for the ratio between cards from the remembered
 739     // sets and actually scanned cards from the remembered sets.
 740     // Cards from the remembered sets are all cards not duplicated by cards from
 741     // the logs.
 742     // Due to duplicates in the log buffers, the number of actually scanned cards
 743     // can be smaller than the cards in the log buffers.
 744     const size_t from_rs_length_cards = (total_cards_scanned > total_log_buffer_cards) ? total_cards_scanned - total_log_buffer_cards : 0;
 745     double merge_to_scan_ratio = 0.0;
 746     if (total_cards_scanned > 0) {
 747       merge_to_scan_ratio = (double) from_rs_length_cards / total_cards_scanned;
 748     }
 749     _analytics->report_card_merge_to_scan_ratio(merge_to_scan_ratio, this_pause_was_young_only);
 750 
 751     const size_t recorded_rs_length = _collection_set->recorded_rs_length();
 752     const size_t rs_length_diff = _rs_length > recorded_rs_length ? _rs_length - recorded_rs_length : 0;
 753     _analytics->report_rs_length_diff(rs_length_diff);
 754 
 755     // Update prediction for copy cost per byte
 756     size_t copied_bytes = p->sum_thread_work_items(G1GCPhaseTimes::MergePSS, G1GCPhaseTimes::MergePSSCopiedBytes);
 757 
 758     if (copied_bytes > 0) {
 759       double cost_per_byte_ms = (average_time_ms(G1GCPhaseTimes::ObjCopy) + average_time_ms(G1GCPhaseTimes::OptObjCopy)) / copied_bytes;
 760       _analytics->report_cost_per_byte_ms(cost_per_byte_ms, collector_state()->mark_or_rebuild_in_progress());
 761     }
 762 
 763     if (_collection_set->young_region_length() > 0) {
 764       _analytics->report_young_other_cost_per_region_ms(young_other_time_ms() /
 765                                                         _collection_set->young_region_length());
 766     }
 767 
 768     if (_collection_set->old_region_length() > 0) {
 769       _analytics->report_non_young_other_cost_per_region_ms(non_young_other_time_ms() /
 770                                                             _collection_set->old_region_length());
 771     }
 772 
 773     _analytics->report_constant_other_time_ms(constant_other_time_ms(pause_time_ms));
 774 
 775     // Do not update RS lengths and the number of pending cards with information from mixed gc:
 776     // these are is wildly different to during young only gc and mess up young gen sizing right
 777     // after the mixed gc phase.
 778     // During mixed gc we do not use them for young gen sizing.
 779     if (this_pause_was_young_only) {
 780       _analytics->report_pending_cards((double) _pending_cards_at_gc_start);
 781       _analytics->report_rs_length((double) _rs_length);
 782     }
 783   }
 784 
 785   assert(!(this_pause_included_initial_mark && collector_state()->mark_or_rebuild_in_progress()),
 786          "If the last pause has been an initial mark, we should not have been in the marking window");
 787   if (this_pause_included_initial_mark) {
 788     collector_state()->set_mark_or_rebuild_in_progress(true);
 789   }
 790 
 791   _free_regions_at_end_of_collection = _g1h->num_free_regions();
 792 
 793   update_rs_length_prediction();
 794 
 795   // Do not update dynamic IHOP due to G1 periodic collection as it is highly likely
 796   // that in this case we are not running in a "normal" operating mode.
 797   if (_g1h->gc_cause() != GCCause::_g1_periodic_collection) {
 798     // IHOP control wants to know the expected young gen length if it were not
 799     // restrained by the heap reserve. Using the actual length would make the
 800     // prediction too small and the limit the young gen every time we get to the
 801     // predicted target occupancy.
 802     size_t last_unrestrained_young_length = update_young_list_max_and_target_length();
 803 
 804     update_ihop_prediction(app_time_ms / 1000.0,
 805                            _bytes_allocated_in_old_since_last_gc,
 806                            last_unrestrained_young_length * HeapRegion::GrainBytes,
 807                            this_pause_was_young_only);
 808     _bytes_allocated_in_old_since_last_gc = 0;
 809 
 810     _ihop_control->send_trace_event(_g1h->gc_tracer_stw());
 811   } else {
 812     // Any garbage collection triggered as periodic collection resets the time-to-mixed
 813     // measurement. Periodic collection typically means that the application is "inactive", i.e.
 814     // the marking threads may have received an uncharacterisic amount of cpu time
 815     // for completing the marking, i.e. are faster than expected.
 816     // This skews the predicted marking length towards smaller values which might cause
 817     // the mark start being too late.
 818     _initial_mark_to_mixed.reset();
 819   }
 820 
 821   // Note that _mmu_tracker->max_gc_time() returns the time in seconds.
 822   double scan_logged_cards_time_goal_ms = _mmu_tracker->max_gc_time() * MILLIUNITS * G1RSetUpdatingPauseTimePercent / 100.0;
 823 
 824   if (scan_logged_cards_time_goal_ms < merge_hcc_time_ms) {
 825     log_debug(gc, ergo, refine)("Adjust concurrent refinement thresholds (scanning the HCC expected to take longer than Update RS time goal)."
 826                                 "Logged Cards Scan time goal: %1.2fms Scan HCC time: %1.2fms",
 827                                 scan_logged_cards_time_goal_ms, merge_hcc_time_ms);
 828 
 829     scan_logged_cards_time_goal_ms = 0;
 830   } else {
 831     scan_logged_cards_time_goal_ms -= merge_hcc_time_ms;
 832   }
 833 
 834   _pending_cards_at_prev_gc_end = _g1h->pending_card_num();
 835   double const logged_cards_time = logged_cards_processing_time();
 836 
 837   log_debug(gc, ergo, refine)("Concurrent refinement times: Logged Cards Scan time goal: %1.2fms Logged Cards Scan time: %1.2fms HCC time: %1.2fms",
 838                               scan_logged_cards_time_goal_ms, logged_cards_time, merge_hcc_time_ms);
 839 
 840   _g1h->concurrent_refine()->adjust(logged_cards_time,
 841                                     phase_times()->sum_thread_work_items(G1GCPhaseTimes::MergeLB, G1GCPhaseTimes::MergeLBDirtyCards),
 842                                     scan_logged_cards_time_goal_ms);
 843 }
 844 
 845 G1IHOPControl* G1Policy::create_ihop_control(const G1Predictions* predictor){
 846   if (G1UseAdaptiveIHOP) {
 847     return new G1AdaptiveIHOPControl(InitiatingHeapOccupancyPercent,
 848                                      predictor,
 849                                      G1ReservePercent,
 850                                      G1HeapWastePercent);
 851   } else {
 852     return new G1StaticIHOPControl(InitiatingHeapOccupancyPercent);
 853   }
 854 }
 855 
 856 void G1Policy::update_ihop_prediction(double mutator_time_s,
 857                                       size_t mutator_alloc_bytes,
 858                                       size_t young_gen_size,
 859                                       bool this_gc_was_young_only) {
 860   // Always try to update IHOP prediction. Even evacuation failures give information
 861   // about e.g. whether to start IHOP earlier next time.
 862 
 863   // Avoid using really small application times that might create samples with
 864   // very high or very low values. They may be caused by e.g. back-to-back gcs.
 865   double const min_valid_time = 1e-6;
 866 
 867   bool report = false;
 868 
 869   double marking_to_mixed_time = -1.0;
 870   if (!this_gc_was_young_only && _initial_mark_to_mixed.has_result()) {
 871     marking_to_mixed_time = _initial_mark_to_mixed.last_marking_time();
 872     assert(marking_to_mixed_time > 0.0,
 873            "Initial mark to mixed time must be larger than zero but is %.3f",
 874            marking_to_mixed_time);
 875     if (marking_to_mixed_time > min_valid_time) {
 876       _ihop_control->update_marking_length(marking_to_mixed_time);
 877       report = true;
 878     }
 879   }
 880 
 881   // As an approximation for the young gc promotion rates during marking we use
 882   // all of them. In many applications there are only a few if any young gcs during
 883   // marking, which makes any prediction useless. This increases the accuracy of the
 884   // prediction.
 885   if (this_gc_was_young_only && mutator_time_s > min_valid_time) {
 886     _ihop_control->update_allocation_info(mutator_time_s, mutator_alloc_bytes, young_gen_size);
 887     report = true;
 888   }
 889 
 890   if (report) {
 891     report_ihop_statistics();
 892   }
 893 }
 894 
 895 void G1Policy::report_ihop_statistics() {
 896   _ihop_control->print();
 897 }
 898 
 899 void G1Policy::print_phases() {
 900   phase_times()->print();
 901 }
 902 
 903 double G1Policy::predict_base_elapsed_time_ms(size_t pending_cards,
 904                                               size_t rs_length) const {
 905   size_t effective_scanned_cards = _analytics->predict_scan_card_num(rs_length, collector_state()->in_young_only_phase());
 906   return
 907     _analytics->predict_card_merge_time_ms(pending_cards + rs_length, collector_state()->in_young_only_phase()) +
 908     _analytics->predict_card_scan_time_ms(effective_scanned_cards, collector_state()->in_young_only_phase()) +
 909     _analytics->predict_constant_other_time_ms() +
 910     predict_survivor_regions_evac_time();
 911 }
 912 
 913 double G1Policy::predict_base_elapsed_time_ms(size_t pending_cards) const {
 914   size_t rs_length = _analytics->predict_rs_length();
 915   return predict_base_elapsed_time_ms(pending_cards, rs_length);
 916 }
 917 
 918 size_t G1Policy::predict_bytes_to_copy(HeapRegion* hr) const {
 919   size_t bytes_to_copy;
 920   if (!hr->is_young()) {
 921     bytes_to_copy = hr->max_live_bytes();
 922   } else {
 923     bytes_to_copy = (size_t) (hr->used() * hr->surv_rate_prediction(_predictor));
 924   }
 925   return bytes_to_copy;
 926 }
 927 
 928 double G1Policy::predict_eden_copy_time_ms(uint count, size_t* bytes_to_copy) const {
 929   if (count == 0) {
 930     return 0.0;
 931   }
 932   size_t const expected_bytes = _eden_surv_rate_group->accum_surv_rate_pred(count) * HeapRegion::GrainBytes;
 933   if (bytes_to_copy != NULL) {
 934     *bytes_to_copy = expected_bytes;
 935   }
 936   return _analytics->predict_object_copy_time_ms(expected_bytes, collector_state()->mark_or_rebuild_in_progress());
 937 }
 938 
 939 double G1Policy::predict_region_copy_time_ms(HeapRegion* hr) const {
 940   size_t const bytes_to_copy = predict_bytes_to_copy(hr);
 941   return _analytics->predict_object_copy_time_ms(bytes_to_copy, collector_state()->mark_or_rebuild_in_progress());
 942 }
 943 
 944 double G1Policy::predict_region_non_copy_time_ms(HeapRegion* hr,
 945                                                  bool for_young_gc) const {
 946   size_t rs_length = hr->rem_set()->occupied();
 947   size_t scan_card_num = _analytics->predict_scan_card_num(rs_length, for_young_gc);
 948 
 949   double region_elapsed_time_ms =
 950     _analytics->predict_card_merge_time_ms(rs_length, collector_state()->in_young_only_phase()) +
 951     _analytics->predict_card_scan_time_ms(scan_card_num, collector_state()->in_young_only_phase());
 952 
 953   // The prediction of the "other" time for this region is based
 954   // upon the region type and NOT the GC type.
 955   if (hr->is_young()) {
 956     region_elapsed_time_ms += _analytics->predict_young_other_time_ms(1);
 957   } else {
 958     region_elapsed_time_ms += _analytics->predict_non_young_other_time_ms(1);
 959   }
 960   return region_elapsed_time_ms;
 961 }
 962 
 963 double G1Policy::predict_region_total_time_ms(HeapRegion* hr, bool for_young_gc) const {
 964   return predict_region_non_copy_time_ms(hr, for_young_gc) + predict_region_copy_time_ms(hr);
 965 }
 966 
 967 bool G1Policy::should_allocate_mutator_region() const {
 968   uint young_list_length = _g1h->young_regions_count();
 969   uint young_list_target_length = _young_list_target_length;
 970   return young_list_length < young_list_target_length;
 971 }
 972 
 973 bool G1Policy::can_expand_young_list() const {
 974   uint young_list_length = _g1h->young_regions_count();
 975   uint young_list_max_length = _young_list_max_length;
 976   return young_list_length < young_list_max_length;
 977 }
 978 
 979 bool G1Policy::use_adaptive_young_list_length() const {
 980   return _young_gen_sizer->use_adaptive_young_list_length();
 981 }
 982 
 983 size_t G1Policy::desired_survivor_size(uint max_regions) const {
 984   size_t const survivor_capacity = HeapRegion::GrainWords * max_regions;
 985   return (size_t)((((double)survivor_capacity) * TargetSurvivorRatio) / 100);
 986 }
 987 
 988 void G1Policy::print_age_table() {
 989   _survivors_age_table.print_age_table(_tenuring_threshold);
 990 }
 991 
 992 void G1Policy::update_max_gc_locker_expansion() {
 993   uint expansion_region_num = 0;
 994   if (GCLockerEdenExpansionPercent > 0) {
 995     double perc = (double) GCLockerEdenExpansionPercent / 100.0;
 996     double expansion_region_num_d = perc * (double) _young_list_target_length;
 997     // We use ceiling so that if expansion_region_num_d is > 0.0 (but
 998     // less than 1.0) we'll get 1.
 999     expansion_region_num = (uint) ceil(expansion_region_num_d);
1000   } else {
1001     assert(expansion_region_num == 0, "sanity");
1002   }
1003   _young_list_max_length = _young_list_target_length + expansion_region_num;
1004   assert(_young_list_target_length <= _young_list_max_length, "post-condition");
1005 }
1006 
1007 // Calculates survivor space parameters.
1008 void G1Policy::update_survivors_policy() {
1009   double max_survivor_regions_d =
1010                  (double) _young_list_target_length / (double) SurvivorRatio;
1011 
1012   // Calculate desired survivor size based on desired max survivor regions (unconstrained
1013   // by remaining heap). Otherwise we may cause undesired promotions as we are
1014   // already getting close to end of the heap, impacting performance even more.
1015   uint const desired_max_survivor_regions = ceil(max_survivor_regions_d);
1016   size_t const survivor_size = desired_survivor_size(desired_max_survivor_regions);
1017 
1018   _tenuring_threshold = _survivors_age_table.compute_tenuring_threshold(survivor_size);
1019   if (UsePerfData) {
1020     _policy_counters->tenuring_threshold()->set_value(_tenuring_threshold);
1021     _policy_counters->desired_survivor_size()->set_value(survivor_size * oopSize);
1022   }
1023   // The real maximum survivor size is bounded by the number of regions that can
1024   // be allocated into.
1025   _max_survivor_regions = MIN2(desired_max_survivor_regions,
1026                                _g1h->num_free_or_available_regions());
1027 }
1028 
1029 bool G1Policy::force_initial_mark_if_outside_cycle(GCCause::Cause gc_cause) {
1030   // We actually check whether we are marking here and not if we are in a
1031   // reclamation phase. This means that we will schedule a concurrent mark
1032   // even while we are still in the process of reclaiming memory.
1033   bool during_cycle = _g1h->concurrent_mark()->cm_thread()->during_cycle();
1034   if (!during_cycle) {
1035     log_debug(gc, ergo)("Request concurrent cycle initiation (requested by GC cause). GC cause: %s", GCCause::to_string(gc_cause));
1036     collector_state()->set_initiate_conc_mark_if_possible(true);
1037     return true;
1038   } else {
1039     log_debug(gc, ergo)("Do not request concurrent cycle initiation (concurrent cycle already in progress). GC cause: %s", GCCause::to_string(gc_cause));
1040     return false;
1041   }
1042 }
1043 
1044 void G1Policy::initiate_conc_mark() {
1045   collector_state()->set_in_initial_mark_gc(true);
1046   collector_state()->set_initiate_conc_mark_if_possible(false);
1047 }
1048 
1049 void G1Policy::decide_on_conc_mark_initiation() {
1050   // We are about to decide on whether this pause will be an
1051   // initial-mark pause.
1052 
1053   // First, collector_state()->in_initial_mark_gc() should not be already set. We
1054   // will set it here if we have to. However, it should be cleared by
1055   // the end of the pause (it's only set for the duration of an
1056   // initial-mark pause).
1057   assert(!collector_state()->in_initial_mark_gc(), "pre-condition");
1058 
1059   if (collector_state()->initiate_conc_mark_if_possible()) {
1060     // We had noticed on a previous pause that the heap occupancy has
1061     // gone over the initiating threshold and we should start a
1062     // concurrent marking cycle. So we might initiate one.
1063 
1064     if (!about_to_start_mixed_phase() && collector_state()->in_young_only_phase()) {
1065       // Initiate a new initial mark if there is no marking or reclamation going on.
1066       initiate_conc_mark();
1067       log_debug(gc, ergo)("Initiate concurrent cycle (concurrent cycle initiation requested)");
1068     } else if (_g1h->is_user_requested_concurrent_full_gc(_g1h->gc_cause())) {
1069       // Initiate a user requested initial mark. An initial mark must be young only
1070       // GC, so the collector state must be updated to reflect this.
1071       collector_state()->set_in_young_only_phase(true);
1072       collector_state()->set_in_young_gc_before_mixed(false);
1073 
1074       // We might have ended up coming here about to start a mixed phase with a collection set
1075       // active. The following remark might change the change the "evacuation efficiency" of
1076       // the regions in this set, leading to failing asserts later.
1077       // Since the concurrent cycle will recreate the collection set anyway, simply drop it here.
1078       clear_collection_set_candidates();
1079       abort_time_to_mixed_tracking();
1080       initiate_conc_mark();
1081       log_debug(gc, ergo)("Initiate concurrent cycle (user requested concurrent cycle)");
1082     } else {
1083       // The concurrent marking thread is still finishing up the
1084       // previous cycle. If we start one right now the two cycles
1085       // overlap. In particular, the concurrent marking thread might
1086       // be in the process of clearing the next marking bitmap (which
1087       // we will use for the next cycle if we start one). Starting a
1088       // cycle now will be bad given that parts of the marking
1089       // information might get cleared by the marking thread. And we
1090       // cannot wait for the marking thread to finish the cycle as it
1091       // periodically yields while clearing the next marking bitmap
1092       // and, if it's in a yield point, it's waiting for us to
1093       // finish. So, at this point we will not start a cycle and we'll
1094       // let the concurrent marking thread complete the last one.
1095       log_debug(gc, ergo)("Do not initiate concurrent cycle (concurrent cycle already in progress)");
1096     }
1097   }
1098 }
1099 
1100 void G1Policy::determine_desired_bytes_after_concurrent_mark() {
1101   size_t cur_used_bytes = _g1h->non_young_capacity_bytes();
1102 
1103   size_t overall_target_capacity = _g1h->heap_sizing_policy()->target_heap_capacity(cur_used_bytes, MinHeapFreeRatio);
1104 
1105   size_t desired_bytes_after_concurrent_mark = _g1h->policy()->desired_bytes_after_concurrent_mark(cur_used_bytes);
1106 
1107   _minimum_desired_bytes_after_last_cm = MIN2(desired_bytes_after_concurrent_mark, overall_target_capacity);
1108 
1109   log_debug(gc, ergo, heap)("Expansion amount after remark used: " SIZE_FORMAT " "
1110                             "minimum_desired_capacity " SIZE_FORMAT " desired_bytes_after_concurrent_mark: " SIZE_FORMAT " "
1111                             "minimum_desired_bytes_after_concurrent_mark " SIZE_FORMAT,
1112                             cur_used_bytes, overall_target_capacity, desired_bytes_after_concurrent_mark, _minimum_desired_bytes_after_last_cm);
1113 }
1114 
1115 void G1Policy::record_concurrent_mark_cleanup_end() {
1116   G1CollectionSetCandidates* candidates = G1CollectionSetChooser::build(_g1h->workers(), _g1h->num_regions());
1117   _collection_set->set_candidates(candidates);
1118 
1119   bool mixed_gc_pending = next_gc_should_be_mixed("request mixed gcs", "request young-only gcs");
1120   if (!mixed_gc_pending) {
1121     clear_collection_set_candidates();
1122     abort_time_to_mixed_tracking();
1123   }
1124   collector_state()->set_in_young_gc_before_mixed(mixed_gc_pending);
1125   collector_state()->set_mark_or_rebuild_in_progress(false);
1126 
1127   determine_desired_bytes_after_concurrent_mark();
1128 
1129   double end_sec = os::elapsedTime();
1130   double elapsed_time_ms = (end_sec - _mark_cleanup_start_sec) * 1000.0;
1131   _analytics->report_concurrent_mark_cleanup_times_ms(elapsed_time_ms);
1132   _analytics->append_prev_collection_pause_end_ms(elapsed_time_ms);
1133 
1134   record_pause(Cleanup, _mark_cleanup_start_sec, end_sec);
1135 }
1136 
1137 double G1Policy::reclaimable_bytes_percent(size_t reclaimable_bytes) const {
1138   return percent_of(reclaimable_bytes, _g1h->capacity());
1139 }
1140 
1141 class G1ClearCollectionSetCandidateRemSets : public HeapRegionClosure {
1142   virtual bool do_heap_region(HeapRegion* r) {
1143     r->rem_set()->clear_locked(true /* only_cardset */);
1144     return false;
1145   }
1146 };
1147 
1148 void G1Policy::clear_collection_set_candidates() {
1149   // Clear remembered sets of remaining candidate regions and the actual candidate
1150   // set.
1151   G1ClearCollectionSetCandidateRemSets cl;
1152   _collection_set->candidates()->iterate(&cl);
1153   _collection_set->clear_candidates();
1154 }
1155 
1156 void G1Policy::maybe_start_marking() {
1157   if (need_to_start_conc_mark("end of GC")) {
1158     // Note: this might have already been set, if during the last
1159     // pause we decided to start a cycle but at the beginning of
1160     // this pause we decided to postpone it. That's OK.
1161     collector_state()->set_initiate_conc_mark_if_possible(true);
1162   }
1163 }
1164 
1165 G1Policy::PauseKind G1Policy::young_gc_pause_kind() const {
1166   assert(!collector_state()->in_full_gc(), "must be");
1167   if (collector_state()->in_initial_mark_gc()) {
1168     assert(!collector_state()->in_young_gc_before_mixed(), "must be");
1169     return InitialMarkGC;
1170   } else if (collector_state()->in_young_gc_before_mixed()) {
1171     assert(!collector_state()->in_initial_mark_gc(), "must be");
1172     return LastYoungGC;
1173   } else if (collector_state()->in_mixed_phase()) {
1174     assert(!collector_state()->in_initial_mark_gc(), "must be");
1175     assert(!collector_state()->in_young_gc_before_mixed(), "must be");
1176     return MixedGC;
1177   } else {
1178     assert(!collector_state()->in_initial_mark_gc(), "must be");
1179     assert(!collector_state()->in_young_gc_before_mixed(), "must be");
1180     return YoungOnlyGC;
1181   }
1182 }
1183 
1184 void G1Policy::record_pause(PauseKind kind, double start, double end) {
1185   // Manage the MMU tracker. For some reason it ignores Full GCs.
1186   if (kind != FullGC) {
1187     _mmu_tracker->add_pause(start, end);
1188   }
1189   // Manage the mutator time tracking from initial mark to first mixed gc.
1190   switch (kind) {
1191     case FullGC:
1192       abort_time_to_mixed_tracking();
1193       break;
1194     case Cleanup:
1195     case Remark:
1196     case YoungOnlyGC:
1197     case LastYoungGC:
1198       _initial_mark_to_mixed.add_pause(end - start);
1199       break;
1200     case InitialMarkGC:
1201       if (_g1h->gc_cause() != GCCause::_g1_periodic_collection) {
1202         _initial_mark_to_mixed.record_initial_mark_end(end);
1203       }
1204       break;
1205     case MixedGC:
1206       _initial_mark_to_mixed.record_mixed_gc_start(start);
1207       break;
1208     default:
1209       ShouldNotReachHere();
1210   }
1211 }
1212 
1213 void G1Policy::abort_time_to_mixed_tracking() {
1214   _initial_mark_to_mixed.reset();
1215 }
1216 
1217 bool G1Policy::next_gc_should_be_mixed(const char* true_action_str,
1218                                        const char* false_action_str) const {
1219   G1CollectionSetCandidates* candidates = _collection_set->candidates();
1220 
1221   if (candidates == NULL || candidates->is_empty()) {
1222     if (false_action_str != NULL) {
1223       log_debug(gc, ergo)("%s (candidate old regions not available)", false_action_str);
1224     }
1225     return false;
1226   }
1227 
1228   // Is the amount of uncollected reclaimable space above G1HeapWastePercent?
1229   size_t reclaimable_bytes = candidates->remaining_reclaimable_bytes();
1230   double reclaimable_percent = reclaimable_bytes_percent(reclaimable_bytes);
1231   double threshold = (double) G1HeapWastePercent;
1232   if (reclaimable_percent <= threshold) {
1233     if (false_action_str != NULL) {
1234       log_debug(gc, ergo)("%s (reclaimable percentage not over threshold). candidate old regions: %u reclaimable: " SIZE_FORMAT " (%1.2f) threshold: " UINTX_FORMAT,
1235                           false_action_str, candidates->num_remaining(), reclaimable_bytes, reclaimable_percent, G1HeapWastePercent);
1236     }
1237     return false;
1238   }
1239   if (true_action_str != NULL) {
1240     log_debug(gc, ergo)("%s (candidate old regions available). candidate old regions: %u reclaimable: " SIZE_FORMAT " (%1.2f) threshold: " UINTX_FORMAT,
1241                         true_action_str, candidates->num_remaining(), reclaimable_bytes, reclaimable_percent, G1HeapWastePercent);
1242   }
1243   return true;
1244 }
1245 
1246 uint G1Policy::calc_min_old_cset_length() const {
1247   // The min old CSet region bound is based on the maximum desired
1248   // number of mixed GCs after a cycle. I.e., even if some old regions
1249   // look expensive, we should add them to the CSet anyway to make
1250   // sure we go through the available old regions in no more than the
1251   // maximum desired number of mixed GCs.
1252   //
1253   // The calculation is based on the number of marked regions we added
1254   // to the CSet candidates in the first place, not how many remain, so
1255   // that the result is the same during all mixed GCs that follow a cycle.
1256 
1257   const size_t region_num = _collection_set->candidates()->num_regions();
1258   const size_t gc_num = (size_t) MAX2(G1MixedGCCountTarget, (uintx) 1);
1259   size_t result = region_num / gc_num;
1260   // emulate ceiling
1261   if (result * gc_num < region_num) {
1262     result += 1;
1263   }
1264   return (uint) result;
1265 }
1266 
1267 uint G1Policy::calc_max_old_cset_length() const {
1268   // The max old CSet region bound is based on the threshold expressed
1269   // as a percentage of the heap size. I.e., it should bound the
1270   // number of old regions added to the CSet irrespective of how many
1271   // of them are available.
1272 
1273   const G1CollectedHeap* g1h = G1CollectedHeap::heap();
1274   const size_t region_num = g1h->num_regions();
1275   const size_t perc = (size_t) G1OldCSetRegionThresholdPercent;
1276   size_t result = region_num * perc / 100;
1277   // emulate ceiling
1278   if (100 * result < region_num * perc) {
1279     result += 1;
1280   }
1281   return (uint) result;
1282 }
1283 
1284 void G1Policy::calculate_old_collection_set_regions(G1CollectionSetCandidates* candidates,
1285                                                     double time_remaining_ms,
1286                                                     uint& num_initial_regions,
1287                                                     uint& num_optional_regions) {
1288   assert(candidates != NULL, "Must be");
1289 
1290   num_initial_regions = 0;
1291   num_optional_regions = 0;
1292   uint num_expensive_regions = 0;
1293 
1294   double predicted_old_time_ms = 0.0;
1295   double predicted_initial_time_ms = 0.0;
1296   double predicted_optional_time_ms = 0.0;
1297 
1298   double optional_threshold_ms = time_remaining_ms * optional_prediction_fraction();
1299 
1300   const uint min_old_cset_length = calc_min_old_cset_length();
1301   const uint max_old_cset_length = MAX2(min_old_cset_length, calc_max_old_cset_length());
1302   const uint max_optional_regions = max_old_cset_length - min_old_cset_length;
1303   bool check_time_remaining = use_adaptive_young_list_length();
1304 
1305   uint candidate_idx = candidates->cur_idx();
1306 
1307   log_debug(gc, ergo, cset)("Start adding old regions to collection set. Min %u regions, max %u regions, "
1308                             "time remaining %1.2fms, optional threshold %1.2fms",
1309                             min_old_cset_length, max_old_cset_length, time_remaining_ms, optional_threshold_ms);
1310 
1311   HeapRegion* hr = candidates->at(candidate_idx);
1312   while (hr != NULL) {
1313     if (num_initial_regions + num_optional_regions >= max_old_cset_length) {
1314       // Added maximum number of old regions to the CSet.
1315       log_debug(gc, ergo, cset)("Finish adding old regions to collection set (Maximum number of regions). "
1316                                 "Initial %u regions, optional %u regions",
1317                                 num_initial_regions, num_optional_regions);
1318       break;
1319     }
1320 
1321     // Stop adding regions if the remaining reclaimable space is
1322     // not above G1HeapWastePercent.
1323     size_t reclaimable_bytes = candidates->remaining_reclaimable_bytes();
1324     double reclaimable_percent = reclaimable_bytes_percent(reclaimable_bytes);
1325     double threshold = (double) G1HeapWastePercent;
1326     if (reclaimable_percent <= threshold) {
1327       // We've added enough old regions that the amount of uncollected
1328       // reclaimable space is at or below the waste threshold. Stop
1329       // adding old regions to the CSet.
1330       log_debug(gc, ergo, cset)("Finish adding old regions to collection set (Reclaimable percentage below threshold). "
1331                                 "Reclaimable: " SIZE_FORMAT "%s (%1.2f%%) threshold: " UINTX_FORMAT "%%",
1332                                 byte_size_in_proper_unit(reclaimable_bytes), proper_unit_for_byte_size(reclaimable_bytes),
1333                                 reclaimable_percent, G1HeapWastePercent);
1334       break;
1335     }
1336 
1337     double predicted_time_ms = predict_region_total_time_ms(hr, false);
1338     time_remaining_ms = MAX2(time_remaining_ms - predicted_time_ms, 0.0);
1339     // Add regions to old set until we reach the minimum amount
1340     if (num_initial_regions < min_old_cset_length) {
1341       predicted_old_time_ms += predicted_time_ms;
1342       num_initial_regions++;
1343       // Record the number of regions added with no time remaining
1344       if (time_remaining_ms == 0.0) {
1345         num_expensive_regions++;
1346       }
1347     } else if (!check_time_remaining) {
1348       // In the non-auto-tuning case, we'll finish adding regions
1349       // to the CSet if we reach the minimum.
1350       log_debug(gc, ergo, cset)("Finish adding old regions to collection set (Region amount reached min).");
1351       break;
1352     } else {
1353       // Keep adding regions to old set until we reach the optional threshold
1354       if (time_remaining_ms > optional_threshold_ms) {
1355         predicted_old_time_ms += predicted_time_ms;
1356         num_initial_regions++;
1357       } else if (time_remaining_ms > 0) {
1358         // Keep adding optional regions until time is up.
1359         assert(num_optional_regions < max_optional_regions, "Should not be possible.");
1360         predicted_optional_time_ms += predicted_time_ms;
1361         num_optional_regions++;
1362       } else {
1363         log_debug(gc, ergo, cset)("Finish adding old regions to collection set (Predicted time too high).");
1364         break;
1365       }
1366     }
1367     hr = candidates->at(++candidate_idx);
1368   }
1369   if (hr == NULL) {
1370     log_debug(gc, ergo, cset)("Old candidate collection set empty.");
1371   }
1372 
1373   if (num_expensive_regions > 0) {
1374     log_debug(gc, ergo, cset)("Added %u initial old regions to collection set although the predicted time was too high.",
1375                               num_expensive_regions);
1376   }
1377 
1378   log_debug(gc, ergo, cset)("Finish choosing collection set old regions. Initial: %u, optional: %u, "
1379                             "predicted old time: %1.2fms, predicted optional time: %1.2fms, time remaining: %1.2f",
1380                             num_initial_regions, num_optional_regions,
1381                             predicted_initial_time_ms, predicted_optional_time_ms, time_remaining_ms);
1382 }
1383 
1384 void G1Policy::calculate_optional_collection_set_regions(G1CollectionSetCandidates* candidates,
1385                                                          uint const max_optional_regions,
1386                                                          double time_remaining_ms,
1387                                                          uint& num_optional_regions) {
1388   assert(_g1h->collector_state()->in_mixed_phase(), "Should only be called in mixed phase");
1389 
1390   num_optional_regions = 0;
1391   double prediction_ms = 0;
1392   uint candidate_idx = candidates->cur_idx();
1393 
1394   HeapRegion* r = candidates->at(candidate_idx);
1395   while (num_optional_regions < max_optional_regions) {
1396     assert(r != NULL, "Region must exist");
1397     prediction_ms += predict_region_total_time_ms(r, false);
1398 
1399     if (prediction_ms > time_remaining_ms) {
1400       log_debug(gc, ergo, cset)("Prediction %.3fms for region %u does not fit remaining time: %.3fms.",
1401                                 prediction_ms, r->hrm_index(), time_remaining_ms);
1402       break;
1403     }
1404     // This region will be included in the next optional evacuation.
1405 
1406     time_remaining_ms -= prediction_ms;
1407     num_optional_regions++;
1408     r = candidates->at(++candidate_idx);
1409   }
1410 
1411   log_debug(gc, ergo, cset)("Prepared %u regions out of %u for optional evacuation. Predicted time: %.3fms",
1412                             num_optional_regions, max_optional_regions, prediction_ms);
1413 }
1414 
1415 void G1Policy::transfer_survivors_to_cset(const G1SurvivorRegions* survivors) {
1416   note_start_adding_survivor_regions();
1417 
1418   HeapRegion* last = NULL;
1419   for (GrowableArrayIterator<HeapRegion*> it = survivors->regions()->begin();
1420        it != survivors->regions()->end();
1421        ++it) {
1422     HeapRegion* curr = *it;
1423     set_region_survivor(curr);
1424 
1425     // The region is a non-empty survivor so let's add it to
1426     // the incremental collection set for the next evacuation
1427     // pause.
1428     _collection_set->add_survivor_regions(curr);
1429 
1430     last = curr;
1431   }
1432   note_stop_adding_survivor_regions();
1433 
1434   // Don't clear the survivor list handles until the start of
1435   // the next evacuation pause - we need it in order to re-tag
1436   // the survivor regions from this evacuation pause as 'young'
1437   // at the start of the next.
1438 }
1439 
1440 size_t G1Policy::desired_bytes_after_concurrent_mark(size_t used_bytes) {
1441   size_t minimum_desired_buffer_size = _ihop_control->predict_unrestrained_buffer_size();
1442   return minimum_desired_buffer_size != 0 ?
1443            minimum_desired_buffer_size :
1444            _young_list_max_length * HeapRegion::GrainBytes + _reserve_regions * HeapRegion::GrainBytes + used_bytes;
1445 }