1 /*
   2  * Copyright (c) 2001, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/metadataOnStackMark.hpp"
  27 #include "classfile/symbolTable.hpp"
  28 #include "code/codeCache.hpp"
  29 #include "gc/g1/g1CollectedHeap.inline.hpp"
  30 #include "gc/g1/g1CollectorState.hpp"
  31 #include "gc/g1/g1ConcurrentMark.inline.hpp"
  32 #include "gc/g1/g1ConcurrentMarkThread.inline.hpp"
  33 #include "gc/g1/g1HeapVerifier.hpp"
  34 #include "gc/g1/g1OopClosures.inline.hpp"
  35 #include "gc/g1/g1Policy.hpp"
  36 #include "gc/g1/g1RegionMarkStatsCache.inline.hpp"
  37 #include "gc/g1/g1StringDedup.hpp"
  38 #include "gc/g1/heapRegion.inline.hpp"
  39 #include "gc/g1/heapRegionRemSet.hpp"
  40 #include "gc/g1/heapRegionSet.inline.hpp"
  41 #include "gc/shared/adaptiveSizePolicy.hpp"
  42 #include "gc/shared/gcId.hpp"
  43 #include "gc/shared/gcTimer.hpp"
  44 #include "gc/shared/gcTrace.hpp"
  45 #include "gc/shared/gcTraceTime.inline.hpp"
  46 #include "gc/shared/genOopClosures.inline.hpp"
  47 #include "gc/shared/referencePolicy.hpp"
  48 #include "gc/shared/strongRootsScope.hpp"
  49 #include "gc/shared/suspendibleThreadSet.hpp"
  50 #include "gc/shared/taskqueue.inline.hpp"
  51 #include "gc/shared/vmGCOperations.hpp"
  52 #include "gc/shared/weakProcessor.hpp"
  53 #include "include/jvm.h"
  54 #include "logging/log.hpp"
  55 #include "memory/allocation.hpp"
  56 #include "memory/resourceArea.hpp"
  57 #include "oops/access.inline.hpp"
  58 #include "oops/oop.inline.hpp"
  59 #include "runtime/atomic.hpp"
  60 #include "runtime/handles.inline.hpp"
  61 #include "runtime/java.hpp"
  62 #include "runtime/prefetch.inline.hpp"
  63 #include "services/memTracker.hpp"
  64 #include "utilities/align.hpp"
  65 #include "utilities/growableArray.hpp"
  66 
  67 bool G1CMBitMapClosure::do_addr(HeapWord* const addr) {
  68   assert(addr < _cm->finger(), "invariant");
  69   assert(addr >= _task->finger(), "invariant");
  70 
  71   // We move that task's local finger along.
  72   _task->move_finger_to(addr);
  73 
  74   _task->scan_task_entry(G1TaskQueueEntry::from_oop(oop(addr)));
  75   // we only partially drain the local queue and global stack
  76   _task->drain_local_queue(true);
  77   _task->drain_global_stack(true);
  78 
  79   // if the has_aborted flag has been raised, we need to bail out of
  80   // the iteration
  81   return !_task->has_aborted();
  82 }
  83 
  84 G1CMMarkStack::G1CMMarkStack() :
  85   _max_chunk_capacity(0),
  86   _base(NULL),
  87   _chunk_capacity(0) {
  88   set_empty();
  89 }
  90 
  91 bool G1CMMarkStack::resize(size_t new_capacity) {
  92   assert(is_empty(), "Only resize when stack is empty.");
  93   assert(new_capacity <= _max_chunk_capacity,
  94          "Trying to resize stack to " SIZE_FORMAT " chunks when the maximum is " SIZE_FORMAT, new_capacity, _max_chunk_capacity);
  95 
  96   TaskQueueEntryChunk* new_base = MmapArrayAllocator<TaskQueueEntryChunk>::allocate_or_null(new_capacity, mtGC);
  97 
  98   if (new_base == NULL) {
  99     log_warning(gc)("Failed to reserve memory for new overflow mark stack with " SIZE_FORMAT " chunks and size " SIZE_FORMAT "B.", new_capacity, new_capacity * sizeof(TaskQueueEntryChunk));
 100     return false;
 101   }
 102   // Release old mapping.
 103   if (_base != NULL) {
 104     MmapArrayAllocator<TaskQueueEntryChunk>::free(_base, _chunk_capacity);
 105   }
 106 
 107   _base = new_base;
 108   _chunk_capacity = new_capacity;
 109   set_empty();
 110 
 111   return true;
 112 }
 113 
 114 size_t G1CMMarkStack::capacity_alignment() {
 115   return (size_t)lcm(os::vm_allocation_granularity(), sizeof(TaskQueueEntryChunk)) / sizeof(G1TaskQueueEntry);
 116 }
 117 
 118 bool G1CMMarkStack::initialize(size_t initial_capacity, size_t max_capacity) {
 119   guarantee(_max_chunk_capacity == 0, "G1CMMarkStack already initialized.");
 120 
 121   size_t const TaskEntryChunkSizeInVoidStar = sizeof(TaskQueueEntryChunk) / sizeof(G1TaskQueueEntry);
 122 
 123   _max_chunk_capacity = align_up(max_capacity, capacity_alignment()) / TaskEntryChunkSizeInVoidStar;
 124   size_t initial_chunk_capacity = align_up(initial_capacity, capacity_alignment()) / TaskEntryChunkSizeInVoidStar;
 125 
 126   guarantee(initial_chunk_capacity <= _max_chunk_capacity,
 127             "Maximum chunk capacity " SIZE_FORMAT " smaller than initial capacity " SIZE_FORMAT,
 128             _max_chunk_capacity,
 129             initial_chunk_capacity);
 130 
 131   log_debug(gc)("Initialize mark stack with " SIZE_FORMAT " chunks, maximum " SIZE_FORMAT,
 132                 initial_chunk_capacity, _max_chunk_capacity);
 133 
 134   return resize(initial_chunk_capacity);
 135 }
 136 
 137 void G1CMMarkStack::expand() {
 138   if (_chunk_capacity == _max_chunk_capacity) {
 139     log_debug(gc)("Can not expand overflow mark stack further, already at maximum capacity of " SIZE_FORMAT " chunks.", _chunk_capacity);
 140     return;
 141   }
 142   size_t old_capacity = _chunk_capacity;
 143   // Double capacity if possible
 144   size_t new_capacity = MIN2(old_capacity * 2, _max_chunk_capacity);
 145 
 146   if (resize(new_capacity)) {
 147     log_debug(gc)("Expanded mark stack capacity from " SIZE_FORMAT " to " SIZE_FORMAT " chunks",
 148                   old_capacity, new_capacity);
 149   } else {
 150     log_warning(gc)("Failed to expand mark stack capacity from " SIZE_FORMAT " to " SIZE_FORMAT " chunks",
 151                     old_capacity, new_capacity);
 152   }
 153 }
 154 
 155 G1CMMarkStack::~G1CMMarkStack() {
 156   if (_base != NULL) {
 157     MmapArrayAllocator<TaskQueueEntryChunk>::free(_base, _chunk_capacity);
 158   }
 159 }
 160 
 161 void G1CMMarkStack::add_chunk_to_list(TaskQueueEntryChunk* volatile* list, TaskQueueEntryChunk* elem) {
 162   elem->next = *list;
 163   *list = elem;
 164 }
 165 
 166 void G1CMMarkStack::add_chunk_to_chunk_list(TaskQueueEntryChunk* elem) {
 167   MutexLockerEx x(MarkStackChunkList_lock, Mutex::_no_safepoint_check_flag);
 168   add_chunk_to_list(&_chunk_list, elem);
 169   _chunks_in_chunk_list++;
 170 }
 171 
 172 void G1CMMarkStack::add_chunk_to_free_list(TaskQueueEntryChunk* elem) {
 173   MutexLockerEx x(MarkStackFreeList_lock, Mutex::_no_safepoint_check_flag);
 174   add_chunk_to_list(&_free_list, elem);
 175 }
 176 
 177 G1CMMarkStack::TaskQueueEntryChunk* G1CMMarkStack::remove_chunk_from_list(TaskQueueEntryChunk* volatile* list) {
 178   TaskQueueEntryChunk* result = *list;
 179   if (result != NULL) {
 180     *list = (*list)->next;
 181   }
 182   return result;
 183 }
 184 
 185 G1CMMarkStack::TaskQueueEntryChunk* G1CMMarkStack::remove_chunk_from_chunk_list() {
 186   MutexLockerEx x(MarkStackChunkList_lock, Mutex::_no_safepoint_check_flag);
 187   TaskQueueEntryChunk* result = remove_chunk_from_list(&_chunk_list);
 188   if (result != NULL) {
 189     _chunks_in_chunk_list--;
 190   }
 191   return result;
 192 }
 193 
 194 G1CMMarkStack::TaskQueueEntryChunk* G1CMMarkStack::remove_chunk_from_free_list() {
 195   MutexLockerEx x(MarkStackFreeList_lock, Mutex::_no_safepoint_check_flag);
 196   return remove_chunk_from_list(&_free_list);
 197 }
 198 
 199 G1CMMarkStack::TaskQueueEntryChunk* G1CMMarkStack::allocate_new_chunk() {
 200   // This dirty read of _hwm is okay because we only ever increase the _hwm in parallel code.
 201   // Further this limits _hwm to a value of _chunk_capacity + #threads, avoiding
 202   // wraparound of _hwm.
 203   if (_hwm >= _chunk_capacity) {
 204     return NULL;
 205   }
 206 
 207   size_t cur_idx = Atomic::add(1u, &_hwm) - 1;
 208   if (cur_idx >= _chunk_capacity) {
 209     return NULL;
 210   }
 211 
 212   TaskQueueEntryChunk* result = ::new (&_base[cur_idx]) TaskQueueEntryChunk;
 213   result->next = NULL;
 214   return result;
 215 }
 216 
 217 bool G1CMMarkStack::par_push_chunk(G1TaskQueueEntry* ptr_arr) {
 218   // Get a new chunk.
 219   TaskQueueEntryChunk* new_chunk = remove_chunk_from_free_list();
 220 
 221   if (new_chunk == NULL) {
 222     // Did not get a chunk from the free list. Allocate from backing memory.
 223     new_chunk = allocate_new_chunk();
 224 
 225     if (new_chunk == NULL) {
 226       return false;
 227     }
 228   }
 229 
 230   Copy::conjoint_memory_atomic(ptr_arr, new_chunk->data, EntriesPerChunk * sizeof(G1TaskQueueEntry));
 231 
 232   add_chunk_to_chunk_list(new_chunk);
 233 
 234   return true;
 235 }
 236 
 237 bool G1CMMarkStack::par_pop_chunk(G1TaskQueueEntry* ptr_arr) {
 238   TaskQueueEntryChunk* cur = remove_chunk_from_chunk_list();
 239 
 240   if (cur == NULL) {
 241     return false;
 242   }
 243 
 244   Copy::conjoint_memory_atomic(cur->data, ptr_arr, EntriesPerChunk * sizeof(G1TaskQueueEntry));
 245 
 246   add_chunk_to_free_list(cur);
 247   return true;
 248 }
 249 
 250 void G1CMMarkStack::set_empty() {
 251   _chunks_in_chunk_list = 0;
 252   _hwm = 0;
 253   _chunk_list = NULL;
 254   _free_list = NULL;
 255 }
 256 
 257 G1CMRootRegions::G1CMRootRegions() :
 258   _survivors(NULL), _cm(NULL), _scan_in_progress(false),
 259   _should_abort(false), _claimed_survivor_index(0) { }
 260 
 261 void G1CMRootRegions::init(const G1SurvivorRegions* survivors, G1ConcurrentMark* cm) {
 262   _survivors = survivors;
 263   _cm = cm;
 264 }
 265 
 266 void G1CMRootRegions::prepare_for_scan() {
 267   assert(!scan_in_progress(), "pre-condition");
 268 
 269   // Currently, only survivors can be root regions.
 270   _claimed_survivor_index = 0;
 271   _scan_in_progress = _survivors->regions()->is_nonempty();
 272   _should_abort = false;
 273 }
 274 
 275 HeapRegion* G1CMRootRegions::claim_next() {
 276   if (_should_abort) {
 277     // If someone has set the should_abort flag, we return NULL to
 278     // force the caller to bail out of their loop.
 279     return NULL;
 280   }
 281 
 282   // Currently, only survivors can be root regions.
 283   const GrowableArray<HeapRegion*>* survivor_regions = _survivors->regions();
 284 
 285   int claimed_index = Atomic::add(1, &_claimed_survivor_index) - 1;
 286   if (claimed_index < survivor_regions->length()) {
 287     return survivor_regions->at(claimed_index);
 288   }
 289   return NULL;
 290 }
 291 
 292 uint G1CMRootRegions::num_root_regions() const {
 293   return (uint)_survivors->regions()->length();
 294 }
 295 
 296 void G1CMRootRegions::notify_scan_done() {
 297   MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
 298   _scan_in_progress = false;
 299   RootRegionScan_lock->notify_all();
 300 }
 301 
 302 void G1CMRootRegions::cancel_scan() {
 303   notify_scan_done();
 304 }
 305 
 306 void G1CMRootRegions::scan_finished() {
 307   assert(scan_in_progress(), "pre-condition");
 308 
 309   // Currently, only survivors can be root regions.
 310   if (!_should_abort) {
 311     assert(_claimed_survivor_index >= 0, "otherwise comparison is invalid: %d", _claimed_survivor_index);
 312     assert((uint)_claimed_survivor_index >= _survivors->length(),
 313            "we should have claimed all survivors, claimed index = %u, length = %u",
 314            (uint)_claimed_survivor_index, _survivors->length());
 315   }
 316 
 317   notify_scan_done();
 318 }
 319 
 320 bool G1CMRootRegions::wait_until_scan_finished() {
 321   if (!scan_in_progress()) {
 322     return false;
 323   }
 324 
 325   {
 326     MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
 327     while (scan_in_progress()) {
 328       RootRegionScan_lock->wait(Mutex::_no_safepoint_check_flag);
 329     }
 330   }
 331   return true;
 332 }
 333 
 334 // Returns the maximum number of workers to be used in a concurrent
 335 // phase based on the number of GC workers being used in a STW
 336 // phase.
 337 static uint scale_concurrent_worker_threads(uint num_gc_workers) {
 338   return MAX2((num_gc_workers + 2) / 4, 1U);
 339 }
 340 
 341 G1ConcurrentMark::G1ConcurrentMark(G1CollectedHeap* g1h,
 342                                    G1RegionToSpaceMapper* prev_bitmap_storage,
 343                                    G1RegionToSpaceMapper* next_bitmap_storage) :
 344   // _cm_thread set inside the constructor
 345   _g1h(g1h),
 346   _completed_initialization(false),
 347 
 348   _mark_bitmap_1(),
 349   _mark_bitmap_2(),
 350   _prev_mark_bitmap(&_mark_bitmap_1),
 351   _next_mark_bitmap(&_mark_bitmap_2),
 352 
 353   _heap(_g1h->reserved_region()),
 354 
 355   _root_regions(),
 356 
 357   _global_mark_stack(),
 358 
 359   // _finger set in set_non_marking_state
 360 
 361   _worker_id_offset(DirtyCardQueueSet::num_par_ids() + G1ConcRefinementThreads),
 362   _max_num_tasks(ParallelGCThreads),
 363   // _num_active_tasks set in set_non_marking_state()
 364   // _tasks set inside the constructor
 365 
 366   _task_queues(new G1CMTaskQueueSet((int) _max_num_tasks)),
 367   _terminator(ParallelTaskTerminator((int) _max_num_tasks, _task_queues)),
 368 
 369   _first_overflow_barrier_sync(),
 370   _second_overflow_barrier_sync(),
 371 
 372   _has_overflown(false),
 373   _concurrent(false),
 374   _has_aborted(false),
 375   _restart_for_overflow(false),
 376   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
 377   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) G1OldTracer()),
 378 
 379   // _verbose_level set below
 380 
 381   _init_times(),
 382   _remark_times(),
 383   _remark_mark_times(),
 384   _remark_weak_ref_times(),
 385   _cleanup_times(),
 386   _total_cleanup_time(0.0),
 387 
 388   _accum_task_vtime(NULL),
 389 
 390   _concurrent_workers(NULL),
 391   _num_concurrent_workers(0),
 392   _max_concurrent_workers(0),
 393 
 394   _region_mark_stats(NEW_C_HEAP_ARRAY(G1RegionMarkStats, _g1h->max_regions(), mtGC)),
 395   _top_at_rebuild_starts(NEW_C_HEAP_ARRAY(HeapWord*, _g1h->max_regions(), mtGC))
 396 {
 397   _mark_bitmap_1.initialize(g1h->reserved_region(), prev_bitmap_storage);
 398   _mark_bitmap_2.initialize(g1h->reserved_region(), next_bitmap_storage);
 399 
 400   // Create & start ConcurrentMark thread.
 401   _cm_thread = new G1ConcurrentMarkThread(this);
 402   if (_cm_thread->osthread() == NULL) {
 403     vm_shutdown_during_initialization("Could not create ConcurrentMarkThread");
 404   }
 405 
 406   assert(CGC_lock != NULL, "CGC_lock must be initialized");
 407 
 408   SATBMarkQueueSet& satb_qs = JavaThread::satb_mark_queue_set();
 409   satb_qs.set_buffer_size(G1SATBBufferSize);
 410 
 411   _root_regions.init(_g1h->survivor(), this);
 412 
 413   if (FLAG_IS_DEFAULT(ConcGCThreads) || ConcGCThreads == 0) {
 414     // Calculate the number of concurrent worker threads by scaling
 415     // the number of parallel GC threads.
 416     uint marking_thread_num = scale_concurrent_worker_threads(ParallelGCThreads);
 417     FLAG_SET_ERGO(uint, ConcGCThreads, marking_thread_num);
 418   }
 419 
 420   assert(ConcGCThreads > 0, "ConcGCThreads have been set.");
 421   if (ConcGCThreads > ParallelGCThreads) {
 422     log_warning(gc)("More ConcGCThreads (%u) than ParallelGCThreads (%u).",
 423                     ConcGCThreads, ParallelGCThreads);
 424     return;
 425   }
 426 
 427   log_debug(gc)("ConcGCThreads: %u offset %u", ConcGCThreads, _worker_id_offset);
 428   log_debug(gc)("ParallelGCThreads: %u", ParallelGCThreads);
 429 
 430   _num_concurrent_workers = ConcGCThreads;
 431   _max_concurrent_workers = _num_concurrent_workers;
 432 
 433   _concurrent_workers = new WorkGang("G1 Conc", _max_concurrent_workers, false, true);
 434   _concurrent_workers->initialize_workers();
 435 
 436   if (FLAG_IS_DEFAULT(MarkStackSize)) {
 437     size_t mark_stack_size =
 438       MIN2(MarkStackSizeMax,
 439           MAX2(MarkStackSize, (size_t) (_max_concurrent_workers * TASKQUEUE_SIZE)));
 440     // Verify that the calculated value for MarkStackSize is in range.
 441     // It would be nice to use the private utility routine from Arguments.
 442     if (!(mark_stack_size >= 1 && mark_stack_size <= MarkStackSizeMax)) {
 443       log_warning(gc)("Invalid value calculated for MarkStackSize (" SIZE_FORMAT "): "
 444                       "must be between 1 and " SIZE_FORMAT,
 445                       mark_stack_size, MarkStackSizeMax);
 446       return;
 447     }
 448     FLAG_SET_ERGO(size_t, MarkStackSize, mark_stack_size);
 449   } else {
 450     // Verify MarkStackSize is in range.
 451     if (FLAG_IS_CMDLINE(MarkStackSize)) {
 452       if (FLAG_IS_DEFAULT(MarkStackSizeMax)) {
 453         if (!(MarkStackSize >= 1 && MarkStackSize <= MarkStackSizeMax)) {
 454           log_warning(gc)("Invalid value specified for MarkStackSize (" SIZE_FORMAT "): "
 455                           "must be between 1 and " SIZE_FORMAT,
 456                           MarkStackSize, MarkStackSizeMax);
 457           return;
 458         }
 459       } else if (FLAG_IS_CMDLINE(MarkStackSizeMax)) {
 460         if (!(MarkStackSize >= 1 && MarkStackSize <= MarkStackSizeMax)) {
 461           log_warning(gc)("Invalid value specified for MarkStackSize (" SIZE_FORMAT ")"
 462                           " or for MarkStackSizeMax (" SIZE_FORMAT ")",
 463                           MarkStackSize, MarkStackSizeMax);
 464           return;
 465         }
 466       }
 467     }
 468   }
 469 
 470   if (!_global_mark_stack.initialize(MarkStackSize, MarkStackSizeMax)) {
 471     vm_exit_during_initialization("Failed to allocate initial concurrent mark overflow mark stack.");
 472   }
 473 
 474   _tasks = NEW_C_HEAP_ARRAY(G1CMTask*, _max_num_tasks, mtGC);
 475   _accum_task_vtime = NEW_C_HEAP_ARRAY(double, _max_num_tasks, mtGC);
 476 
 477   // so that the assertion in MarkingTaskQueue::task_queue doesn't fail
 478   _num_active_tasks = _max_num_tasks;
 479 
 480   for (uint i = 0; i < _max_num_tasks; ++i) {
 481     G1CMTaskQueue* task_queue = new G1CMTaskQueue();
 482     task_queue->initialize();
 483     _task_queues->register_queue(i, task_queue);
 484 
 485     _tasks[i] = new G1CMTask(i, this, task_queue, _region_mark_stats, _g1h->max_regions());
 486 
 487     _accum_task_vtime[i] = 0.0;
 488   }
 489 
 490   reset_at_marking_complete();
 491   _completed_initialization = true;
 492 }
 493 
 494 void G1ConcurrentMark::reset() {
 495   _has_aborted = false;
 496 
 497   reset_marking_for_restart();
 498 
 499   // Reset all tasks, since different phases will use different number of active
 500   // threads. So, it's easiest to have all of them ready.
 501   for (uint i = 0; i < _max_num_tasks; ++i) {
 502     _tasks[i]->reset(_next_mark_bitmap);
 503   }
 504 
 505   uint max_regions = _g1h->max_regions();
 506   for (uint i = 0; i < max_regions; i++) {
 507     _top_at_rebuild_starts[i] = NULL;
 508     _region_mark_stats[i].clear();
 509   }
 510 }
 511 
 512 void G1ConcurrentMark::clear_statistics_in_region(uint region_idx) {
 513   for (uint j = 0; j < _max_num_tasks; ++j) {
 514     _tasks[j]->clear_mark_stats_cache(region_idx);
 515   }
 516   _top_at_rebuild_starts[region_idx] = NULL;
 517   _region_mark_stats[region_idx].clear();
 518 }
 519 
 520 void G1ConcurrentMark::clear_statistics(HeapRegion* r) {
 521   uint const region_idx = r->hrm_index();
 522   if (r->is_humongous()) {
 523     assert(r->is_starts_humongous(), "Got humongous continues region here");
 524     uint const size_in_regions = (uint)_g1h->humongous_obj_size_in_regions(oop(r->humongous_start_region()->bottom())->size());
 525     for (uint j = region_idx; j < (region_idx + size_in_regions); j++) {
 526       clear_statistics_in_region(j);
 527     }
 528   } else {
 529     clear_statistics_in_region(region_idx);
 530   }
 531 }
 532 
 533 static void clear_mark_if_set(G1CMBitMap* bitmap, HeapWord* addr) {
 534   if (bitmap->is_marked(addr)) {
 535     bitmap->clear(addr);
 536   }
 537 }
 538 
 539 void G1ConcurrentMark::humongous_object_eagerly_reclaimed(HeapRegion* r) {
 540   assert_at_safepoint_on_vm_thread();
 541 
 542   // Need to clear all mark bits of the humongous object.
 543   clear_mark_if_set(_prev_mark_bitmap, r->bottom());
 544   clear_mark_if_set(_next_mark_bitmap, r->bottom());
 545 
 546   if (!_g1h->collector_state()->mark_or_rebuild_in_progress()) {
 547     return;
 548   }
 549 
 550   // Clear any statistics about the region gathered so far.
 551   clear_statistics(r);
 552 }
 553 
 554 void G1ConcurrentMark::reset_marking_for_restart() {
 555   _global_mark_stack.set_empty();
 556 
 557   // Expand the marking stack, if we have to and if we can.
 558   if (has_overflown()) {
 559     _global_mark_stack.expand();
 560 
 561     uint max_regions = _g1h->max_regions();
 562     for (uint i = 0; i < max_regions; i++) {
 563       _region_mark_stats[i].clear_during_overflow();
 564     }
 565   }
 566 
 567   clear_has_overflown();
 568   _finger = _heap.start();
 569 
 570   for (uint i = 0; i < _max_num_tasks; ++i) {
 571     G1CMTaskQueue* queue = _task_queues->queue(i);
 572     queue->set_empty();
 573   }
 574 }
 575 
 576 void G1ConcurrentMark::set_concurrency(uint active_tasks) {
 577   assert(active_tasks <= _max_num_tasks, "we should not have more");
 578 
 579   _num_active_tasks = active_tasks;
 580   // Need to update the three data structures below according to the
 581   // number of active threads for this phase.
 582   _terminator = ParallelTaskTerminator((int) active_tasks, _task_queues);
 583   _first_overflow_barrier_sync.set_n_workers((int) active_tasks);
 584   _second_overflow_barrier_sync.set_n_workers((int) active_tasks);
 585 }
 586 
 587 void G1ConcurrentMark::set_concurrency_and_phase(uint active_tasks, bool concurrent) {
 588   set_concurrency(active_tasks);
 589 
 590   _concurrent = concurrent;
 591 
 592   if (!concurrent) {
 593     // At this point we should be in a STW phase, and completed marking.
 594     assert_at_safepoint_on_vm_thread();
 595     assert(out_of_regions(),
 596            "only way to get here: _finger: " PTR_FORMAT ", _heap_end: " PTR_FORMAT,
 597            p2i(_finger), p2i(_heap.end()));
 598   }
 599 }
 600 
 601 void G1ConcurrentMark::reset_at_marking_complete() {
 602   // We set the global marking state to some default values when we're
 603   // not doing marking.
 604   reset_marking_for_restart();
 605   _num_active_tasks = 0;
 606 }
 607 
 608 G1ConcurrentMark::~G1ConcurrentMark() {
 609   FREE_C_HEAP_ARRAY(HeapWord*, _top_at_rebuild_starts);
 610   FREE_C_HEAP_ARRAY(G1RegionMarkStats, _region_mark_stats);
 611   // The G1ConcurrentMark instance is never freed.
 612   ShouldNotReachHere();
 613 }
 614 
 615 class G1ClearBitMapTask : public AbstractGangTask {
 616 public:
 617   static size_t chunk_size() { return M; }
 618 
 619 private:
 620   // Heap region closure used for clearing the given mark bitmap.
 621   class G1ClearBitmapHRClosure : public HeapRegionClosure {
 622   private:
 623     G1CMBitMap* _bitmap;
 624     G1ConcurrentMark* _cm;
 625   public:
 626     G1ClearBitmapHRClosure(G1CMBitMap* bitmap, G1ConcurrentMark* cm) : HeapRegionClosure(), _cm(cm), _bitmap(bitmap) {
 627     }
 628 
 629     virtual bool do_heap_region(HeapRegion* r) {
 630       size_t const chunk_size_in_words = G1ClearBitMapTask::chunk_size() / HeapWordSize;
 631 
 632       HeapWord* cur = r->bottom();
 633       HeapWord* const end = r->end();
 634 
 635       while (cur < end) {
 636         MemRegion mr(cur, MIN2(cur + chunk_size_in_words, end));
 637         _bitmap->clear_range(mr);
 638 
 639         cur += chunk_size_in_words;
 640 
 641         // Abort iteration if after yielding the marking has been aborted.
 642         if (_cm != NULL && _cm->do_yield_check() && _cm->has_aborted()) {
 643           return true;
 644         }
 645         // Repeat the asserts from before the start of the closure. We will do them
 646         // as asserts here to minimize their overhead on the product. However, we
 647         // will have them as guarantees at the beginning / end of the bitmap
 648         // clearing to get some checking in the product.
 649         assert(_cm == NULL || _cm->cm_thread()->during_cycle(), "invariant");
 650         assert(_cm == NULL || !G1CollectedHeap::heap()->collector_state()->mark_or_rebuild_in_progress(), "invariant");
 651       }
 652       assert(cur == end, "Must have completed iteration over the bitmap for region %u.", r->hrm_index());
 653 
 654       return false;
 655     }
 656   };
 657 
 658   G1ClearBitmapHRClosure _cl;
 659   HeapRegionClaimer _hr_claimer;
 660   bool _suspendible; // If the task is suspendible, workers must join the STS.
 661 
 662 public:
 663   G1ClearBitMapTask(G1CMBitMap* bitmap, G1ConcurrentMark* cm, uint n_workers, bool suspendible) :
 664     AbstractGangTask("G1 Clear Bitmap"),
 665     _cl(bitmap, suspendible ? cm : NULL),
 666     _hr_claimer(n_workers),
 667     _suspendible(suspendible)
 668   { }
 669 
 670   void work(uint worker_id) {
 671     SuspendibleThreadSetJoiner sts_join(_suspendible);
 672     G1CollectedHeap::heap()->heap_region_par_iterate_from_worker_offset(&_cl, &_hr_claimer, worker_id);
 673   }
 674 
 675   bool is_complete() {
 676     return _cl.is_complete();
 677   }
 678 };
 679 
 680 void G1ConcurrentMark::clear_bitmap(G1CMBitMap* bitmap, WorkGang* workers, bool may_yield) {
 681   assert(may_yield || SafepointSynchronize::is_at_safepoint(), "Non-yielding bitmap clear only allowed at safepoint.");
 682 
 683   size_t const num_bytes_to_clear = (HeapRegion::GrainBytes * _g1h->num_regions()) / G1CMBitMap::heap_map_factor();
 684   size_t const num_chunks = align_up(num_bytes_to_clear, G1ClearBitMapTask::chunk_size()) / G1ClearBitMapTask::chunk_size();
 685 
 686   uint const num_workers = (uint)MIN2(num_chunks, (size_t)workers->active_workers());
 687 
 688   G1ClearBitMapTask cl(bitmap, this, num_workers, may_yield);
 689 
 690   log_debug(gc, ergo)("Running %s with %u workers for " SIZE_FORMAT " work units.", cl.name(), num_workers, num_chunks);
 691   workers->run_task(&cl, num_workers);
 692   guarantee(!may_yield || cl.is_complete(), "Must have completed iteration when not yielding.");
 693 }
 694 
 695 void G1ConcurrentMark::cleanup_for_next_mark() {
 696   // Make sure that the concurrent mark thread looks to still be in
 697   // the current cycle.
 698   guarantee(cm_thread()->during_cycle(), "invariant");
 699 
 700   // We are finishing up the current cycle by clearing the next
 701   // marking bitmap and getting it ready for the next cycle. During
 702   // this time no other cycle can start. So, let's make sure that this
 703   // is the case.
 704   guarantee(!_g1h->collector_state()->mark_or_rebuild_in_progress(), "invariant");
 705 
 706   clear_bitmap(_next_mark_bitmap, _concurrent_workers, true);
 707 
 708   // Repeat the asserts from above.
 709   guarantee(cm_thread()->during_cycle(), "invariant");
 710   guarantee(!_g1h->collector_state()->mark_or_rebuild_in_progress(), "invariant");
 711 }
 712 
 713 void G1ConcurrentMark::clear_prev_bitmap(WorkGang* workers) {
 714   assert_at_safepoint_on_vm_thread();
 715   clear_bitmap(_prev_mark_bitmap, workers, false);
 716 }
 717 
 718 class CheckBitmapClearHRClosure : public HeapRegionClosure {
 719   G1CMBitMap* _bitmap;
 720  public:
 721   CheckBitmapClearHRClosure(G1CMBitMap* bitmap) : _bitmap(bitmap) {
 722   }
 723 
 724   virtual bool do_heap_region(HeapRegion* r) {
 725     // This closure can be called concurrently to the mutator, so we must make sure
 726     // that the result of the getNextMarkedWordAddress() call is compared to the
 727     // value passed to it as limit to detect any found bits.
 728     // end never changes in G1.
 729     HeapWord* end = r->end();
 730     return _bitmap->get_next_marked_addr(r->bottom(), end) != end;
 731   }
 732 };
 733 
 734 bool G1ConcurrentMark::next_mark_bitmap_is_clear() {
 735   CheckBitmapClearHRClosure cl(_next_mark_bitmap);
 736   _g1h->heap_region_iterate(&cl);
 737   return cl.is_complete();
 738 }
 739 
 740 class NoteStartOfMarkHRClosure : public HeapRegionClosure {
 741 public:
 742   bool do_heap_region(HeapRegion* r) {
 743     r->note_start_of_marking();
 744     return false;
 745   }
 746 };
 747 
 748 void G1ConcurrentMark::pre_initial_mark() {
 749   // Initialize marking structures. This has to be done in a STW phase.
 750   reset();
 751 
 752   // For each region note start of marking.
 753   NoteStartOfMarkHRClosure startcl;
 754   _g1h->heap_region_iterate(&startcl);
 755 }
 756 
 757 
 758 void G1ConcurrentMark::post_initial_mark() {
 759   // Start Concurrent Marking weak-reference discovery.
 760   ReferenceProcessor* rp = _g1h->ref_processor_cm();
 761   // enable ("weak") refs discovery
 762   rp->enable_discovery();
 763   rp->setup_policy(false); // snapshot the soft ref policy to be used in this cycle
 764 
 765   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
 766   // This is the start of  the marking cycle, we're expected all
 767   // threads to have SATB queues with active set to false.
 768   satb_mq_set.set_active_all_threads(true, /* new active value */
 769                                      false /* expected_active */);
 770 
 771   _root_regions.prepare_for_scan();
 772 
 773   // update_g1_committed() will be called at the end of an evac pause
 774   // when marking is on. So, it's also called at the end of the
 775   // initial-mark pause to update the heap end, if the heap expands
 776   // during it. No need to call it here.
 777 }
 778 
 779 /*
 780  * Notice that in the next two methods, we actually leave the STS
 781  * during the barrier sync and join it immediately afterwards. If we
 782  * do not do this, the following deadlock can occur: one thread could
 783  * be in the barrier sync code, waiting for the other thread to also
 784  * sync up, whereas another one could be trying to yield, while also
 785  * waiting for the other threads to sync up too.
 786  *
 787  * Note, however, that this code is also used during remark and in
 788  * this case we should not attempt to leave / enter the STS, otherwise
 789  * we'll either hit an assert (debug / fastdebug) or deadlock
 790  * (product). So we should only leave / enter the STS if we are
 791  * operating concurrently.
 792  *
 793  * Because the thread that does the sync barrier has left the STS, it
 794  * is possible to be suspended for a Full GC or an evacuation pause
 795  * could occur. This is actually safe, since the entering the sync
 796  * barrier is one of the last things do_marking_step() does, and it
 797  * doesn't manipulate any data structures afterwards.
 798  */
 799 
 800 void G1ConcurrentMark::enter_first_sync_barrier(uint worker_id) {
 801   bool barrier_aborted;
 802   {
 803     SuspendibleThreadSetLeaver sts_leave(concurrent());
 804     barrier_aborted = !_first_overflow_barrier_sync.enter();
 805   }
 806 
 807   // at this point everyone should have synced up and not be doing any
 808   // more work
 809 
 810   if (barrier_aborted) {
 811     // If the barrier aborted we ignore the overflow condition and
 812     // just abort the whole marking phase as quickly as possible.
 813     return;
 814   }
 815 }
 816 
 817 void G1ConcurrentMark::enter_second_sync_barrier(uint worker_id) {
 818   SuspendibleThreadSetLeaver sts_leave(concurrent());
 819   _second_overflow_barrier_sync.enter();
 820 
 821   // at this point everything should be re-initialized and ready to go
 822 }
 823 
 824 class G1CMConcurrentMarkingTask : public AbstractGangTask {
 825   G1ConcurrentMark*     _cm;
 826 
 827 public:
 828   void work(uint worker_id) {
 829     assert(Thread::current()->is_ConcurrentGC_thread(), "Not a concurrent GC thread");
 830     ResourceMark rm;
 831 
 832     double start_vtime = os::elapsedVTime();
 833 
 834     {
 835       SuspendibleThreadSetJoiner sts_join;
 836 
 837       assert(worker_id < _cm->active_tasks(), "invariant");
 838 
 839       G1CMTask* task = _cm->task(worker_id);
 840       task->record_start_time();
 841       if (!_cm->has_aborted()) {
 842         do {
 843           task->do_marking_step(G1ConcMarkStepDurationMillis,
 844                                 true  /* do_termination */,
 845                                 false /* is_serial*/);
 846 
 847           _cm->do_yield_check();
 848         } while (!_cm->has_aborted() && task->has_aborted());
 849       }
 850       task->record_end_time();
 851       guarantee(!task->has_aborted() || _cm->has_aborted(), "invariant");
 852     }
 853 
 854     double end_vtime = os::elapsedVTime();
 855     _cm->update_accum_task_vtime(worker_id, end_vtime - start_vtime);
 856   }
 857 
 858   G1CMConcurrentMarkingTask(G1ConcurrentMark* cm) :
 859       AbstractGangTask("Concurrent Mark"), _cm(cm) { }
 860 
 861   ~G1CMConcurrentMarkingTask() { }
 862 };
 863 
 864 uint G1ConcurrentMark::calc_active_marking_workers() {
 865   uint result = 0;
 866   if (!UseDynamicNumberOfGCThreads ||
 867       (!FLAG_IS_DEFAULT(ConcGCThreads) &&
 868        !ForceDynamicNumberOfGCThreads)) {
 869     result = _max_concurrent_workers;
 870   } else {
 871     result =
 872       AdaptiveSizePolicy::calc_default_active_workers(_max_concurrent_workers,
 873                                                       1, /* Minimum workers */
 874                                                       _num_concurrent_workers,
 875                                                       Threads::number_of_non_daemon_threads());
 876     // Don't scale the result down by scale_concurrent_workers() because
 877     // that scaling has already gone into "_max_concurrent_workers".
 878   }
 879   assert(result > 0 && result <= _max_concurrent_workers,
 880          "Calculated number of marking workers must be larger than zero and at most the maximum %u, but is %u",
 881          _max_concurrent_workers, result);
 882   return result;
 883 }
 884 
 885 void G1ConcurrentMark::scan_root_region(HeapRegion* hr, uint worker_id) {
 886   // Currently, only survivors can be root regions.
 887   assert(hr->next_top_at_mark_start() == hr->bottom(), "invariant");
 888   G1RootRegionScanClosure cl(_g1h, this, worker_id);
 889 
 890   const uintx interval = PrefetchScanIntervalInBytes;
 891   HeapWord* curr = hr->bottom();
 892   const HeapWord* end = hr->top();
 893   while (curr < end) {
 894     Prefetch::read(curr, interval);
 895     oop obj = oop(curr);
 896     int size = obj->oop_iterate_size(&cl);
 897     assert(size == obj->size(), "sanity");
 898     curr += size;
 899   }
 900 }
 901 
 902 class G1CMRootRegionScanTask : public AbstractGangTask {
 903   G1ConcurrentMark* _cm;
 904 public:
 905   G1CMRootRegionScanTask(G1ConcurrentMark* cm) :
 906     AbstractGangTask("G1 Root Region Scan"), _cm(cm) { }
 907 
 908   void work(uint worker_id) {
 909     assert(Thread::current()->is_ConcurrentGC_thread(),
 910            "this should only be done by a conc GC thread");
 911 
 912     G1CMRootRegions* root_regions = _cm->root_regions();
 913     HeapRegion* hr = root_regions->claim_next();
 914     while (hr != NULL) {
 915       _cm->scan_root_region(hr, worker_id);
 916       hr = root_regions->claim_next();
 917     }
 918   }
 919 };
 920 
 921 void G1ConcurrentMark::scan_root_regions() {
 922   // scan_in_progress() will have been set to true only if there was
 923   // at least one root region to scan. So, if it's false, we
 924   // should not attempt to do any further work.
 925   if (root_regions()->scan_in_progress()) {
 926     assert(!has_aborted(), "Aborting before root region scanning is finished not supported.");
 927 
 928     _num_concurrent_workers = MIN2(calc_active_marking_workers(),
 929                                    // We distribute work on a per-region basis, so starting
 930                                    // more threads than that is useless.
 931                                    root_regions()->num_root_regions());
 932     assert(_num_concurrent_workers <= _max_concurrent_workers,
 933            "Maximum number of marking threads exceeded");
 934 
 935     G1CMRootRegionScanTask task(this);
 936     log_debug(gc, ergo)("Running %s using %u workers for %u work units.",
 937                         task.name(), _num_concurrent_workers, root_regions()->num_root_regions());
 938     _concurrent_workers->run_task(&task, _num_concurrent_workers);
 939 
 940     // It's possible that has_aborted() is true here without actually
 941     // aborting the survivor scan earlier. This is OK as it's
 942     // mainly used for sanity checking.
 943     root_regions()->scan_finished();
 944   }
 945 }
 946 
 947 void G1ConcurrentMark::concurrent_cycle_start() {
 948   _gc_timer_cm->register_gc_start();
 949 
 950   _gc_tracer_cm->report_gc_start(GCCause::_no_gc /* first parameter is not used */, _gc_timer_cm->gc_start());
 951 
 952   _g1h->trace_heap_before_gc(_gc_tracer_cm);
 953 }
 954 
 955 void G1ConcurrentMark::concurrent_cycle_end() {
 956   _g1h->collector_state()->set_clearing_next_bitmap(false);
 957 
 958   _g1h->trace_heap_after_gc(_gc_tracer_cm);
 959 
 960   if (has_aborted()) {
 961     log_info(gc, marking)("Concurrent Mark Abort");
 962     _gc_tracer_cm->report_concurrent_mode_failure();
 963   }
 964 
 965   _gc_timer_cm->register_gc_end();
 966 
 967   _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
 968 }
 969 
 970 void G1ConcurrentMark::mark_from_roots() {
 971   _restart_for_overflow = false;
 972 
 973   _num_concurrent_workers = calc_active_marking_workers();
 974 
 975   uint active_workers = MAX2(1U, _num_concurrent_workers);
 976 
 977   // Setting active workers is not guaranteed since fewer
 978   // worker threads may currently exist and more may not be
 979   // available.
 980   active_workers = _concurrent_workers->update_active_workers(active_workers);
 981   log_info(gc, task)("Using %u workers of %u for marking", active_workers, _concurrent_workers->total_workers());
 982 
 983   // Parallel task terminator is set in "set_concurrency_and_phase()"
 984   set_concurrency_and_phase(active_workers, true /* concurrent */);
 985 
 986   G1CMConcurrentMarkingTask marking_task(this);
 987   _concurrent_workers->run_task(&marking_task);
 988   print_stats();
 989 }
 990 
 991 void G1ConcurrentMark::verify_during_pause(G1HeapVerifier::G1VerifyType type, VerifyOption vo, const char* caller) {
 992   G1HeapVerifier* verifier = _g1h->verifier();
 993 
 994   verifier->verify_region_sets_optional();
 995 
 996   if (VerifyDuringGC) {
 997     GCTraceTime(Debug, gc, phases) trace(caller, _gc_timer_cm);
 998 
 999     size_t const BufLen = 512;
1000     char buffer[BufLen];
1001 
1002     jio_snprintf(buffer, BufLen, "During GC (%s)", caller);
1003     verifier->verify(type, vo, buffer);
1004   }
1005 
1006   verifier->check_bitmaps(caller);
1007 }
1008 
1009 class G1UpdateRemSetTrackingBeforeRebuild : public HeapRegionClosure {
1010   G1CollectedHeap* _g1h;
1011   G1ConcurrentMark* _cm;
1012 
1013   G1PrintRegionLivenessInfoClosure _cl;
1014 
1015   uint _num_regions_selected_for_rebuild;  // The number of regions actually selected for rebuild.
1016 
1017   void update_remset_before_rebuild(HeapRegion * hr) {
1018     G1RemSetTrackingPolicy* tracking_policy = _g1h->g1_policy()->remset_tracker();
1019 
1020     size_t live_bytes = _cm->liveness(hr->hrm_index()) * HeapWordSize;
1021     bool selected_for_rebuild = tracking_policy->update_before_rebuild(hr, live_bytes);
1022     if (selected_for_rebuild) {
1023       _num_regions_selected_for_rebuild++;
1024     }
1025     _cm->update_top_at_rebuild_start(hr);
1026   }
1027 
1028   void distribute_marked_bytes(HeapRegion* hr, size_t marked_words) {
1029     uint const region_idx = hr->hrm_index();
1030     uint num_regions_in_humongous = (uint)G1CollectedHeap::humongous_obj_size_in_regions(marked_words);
1031 
1032     for (uint i = region_idx; i < (region_idx + num_regions_in_humongous); i++) {
1033       HeapRegion* const r = _g1h->region_at(i);
1034       size_t const words_to_add = MIN2(HeapRegion::GrainWords, marked_words);
1035       assert(words_to_add > 0, "Out of space to distribute before end of humongous object in region %u (starts %u)", i, region_idx);
1036 
1037       log_trace(gc, marking)("Adding " SIZE_FORMAT " words to humongous region %u (%s)", 
1038                              words_to_add, i, r->get_type_str());
1039       r->add_to_marked_bytes(words_to_add * HeapWordSize);
1040       marked_words -= words_to_add;
1041     }
1042     assert(marked_words == 0,
1043            SIZE_FORMAT " words left after distributing space across %u regions",
1044            marked_words, num_regions_in_humongous);
1045   }
1046 
1047   void update_marked_bytes(HeapRegion* hr) {
1048     uint const region_idx = hr->hrm_index();
1049     size_t marked_words = _cm->liveness(region_idx);
1050     // The marking attributes the object's size completely to the humongous starts
1051     // region. We need to distribute this value across the entire set of regions a
1052     // humongous object spans.
1053     if (hr->is_humongous()) {
1054       assert(hr->is_starts_humongous() || marked_words == 0,
1055              "Should not have marked words " SIZE_FORMAT " in non-starts humongous region %u (%s)",
1056              marked_words, region_idx, hr->get_type_str());
1057 
1058       if (marked_words > 0) {
1059         distribute_marked_bytes(hr, marked_words);
1060       }
1061     } else {
1062       log_trace(gc, marking)("Adding " SIZE_FORMAT " words to region %u (%s)", marked_words, region_idx, hr->get_type_str());
1063       hr->add_to_marked_bytes(marked_words * HeapWordSize);
1064     }
1065   }
1066 
1067 public:
1068   G1UpdateRemSetTrackingBeforeRebuild(G1CollectedHeap* g1h, G1ConcurrentMark* cm) :
1069     _g1h(g1h), _cm(cm), _cl("Post-Marking"), _num_regions_selected_for_rebuild(0) { }
1070 
1071   virtual bool do_heap_region(HeapRegion* r) {
1072     update_remset_before_rebuild(r);
1073     update_marked_bytes(r);
1074     if (log_is_enabled(Trace, gc, liveness)) {
1075       _cl.do_heap_region(r);
1076     }
1077     r->note_end_of_marking();
1078     return false;
1079   }
1080 
1081   uint num_selected_for_rebuild() const { return _num_regions_selected_for_rebuild; }
1082 };
1083 
1084 class G1UpdateRemSetTrackingAfterRebuild : public HeapRegionClosure {
1085   G1CollectedHeap* _g1h;
1086 public:
1087   G1UpdateRemSetTrackingAfterRebuild(G1CollectedHeap* g1h) : _g1h(g1h) { }
1088 
1089   virtual bool do_heap_region(HeapRegion* r) {
1090     _g1h->g1_policy()->remset_tracker()->update_after_rebuild(r);
1091     return false;
1092   }
1093 };
1094 
1095 void G1ConcurrentMark::remark() {
1096   assert_at_safepoint_on_vm_thread();
1097 
1098   // If a full collection has happened, we should not continue. However we might
1099   // have ended up here as the Remark VM operation has been scheduled already.
1100   if (has_aborted()) {
1101     return;
1102   }
1103 
1104   G1Policy* g1p = _g1h->g1_policy();
1105   g1p->record_concurrent_mark_remark_start();
1106 
1107   double start = os::elapsedTime();
1108 
1109   verify_during_pause(G1HeapVerifier::G1VerifyRemark, VerifyOption_G1UsePrevMarking, "Remark before");
1110 
1111   {
1112     GCTraceTime(Debug, gc, phases) trace("Finalize Marking", _gc_timer_cm);
1113     finalize_marking();
1114   }
1115 
1116   double mark_work_end = os::elapsedTime();
1117 
1118   bool const mark_finished = !has_overflown();
1119   if (mark_finished) {
1120     weak_refs_work(false /* clear_all_soft_refs */);
1121 
1122     SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
1123     // We're done with marking.
1124     // This is the end of the marking cycle, we're expected all
1125     // threads to have SATB queues with active set to true.
1126     satb_mq_set.set_active_all_threads(false, /* new active value */
1127                                        true /* expected_active */);
1128 
1129     {
1130       GCTraceTime(Debug, gc, phases)("Flush Task Caches");
1131       flush_all_task_caches();
1132     }
1133 
1134     // Install newly created mark bitmap as "prev".
1135     swap_mark_bitmaps();
1136     {
1137       GCTraceTime(Debug, gc, phases)("Update Remembered Set Tracking Before Rebuild");
1138       G1UpdateRemSetTrackingBeforeRebuild cl(_g1h, this);
1139       _g1h->heap_region_iterate(&cl);
1140       log_debug(gc, remset, tracking)("Remembered Set Tracking update regions total %u, selected %u",
1141                                       _g1h->num_regions(), cl.num_selected_for_rebuild());
1142     }
1143 
1144     verify_during_pause(G1HeapVerifier::G1VerifyRemark, VerifyOption_G1UsePrevMarking, "Remark after");
1145 
1146     assert(!restart_for_overflow(), "sanity");
1147     // Completely reset the marking state since marking completed
1148     reset_at_marking_complete();
1149   } else {
1150     // We overflowed.  Restart concurrent marking.
1151     _restart_for_overflow = true;
1152 
1153     verify_during_pause(G1HeapVerifier::G1VerifyRemark, VerifyOption_G1UsePrevMarking, "Remark overflow");
1154 
1155     // Clear the marking state because we will be restarting
1156     // marking due to overflowing the global mark stack.
1157     reset_marking_for_restart();
1158   }
1159 
1160   {
1161     GCTraceTime(Debug, gc, phases)("Report Object Count");
1162     report_object_count(mark_finished);
1163   }
1164 
1165   // Statistics
1166   double now = os::elapsedTime();
1167   _remark_mark_times.add((mark_work_end - start) * 1000.0);
1168   _remark_weak_ref_times.add((now - mark_work_end) * 1000.0);
1169   _remark_times.add((now - start) * 1000.0);
1170 
1171   g1p->record_concurrent_mark_remark_end();
1172 }
1173 
1174 class G1CleanupTask : public AbstractGangTask {
1175   // Per-region work during the Cleanup pause.
1176   class G1CleanupRegionsClosure : public HeapRegionClosure {
1177     G1CollectedHeap* _g1h;
1178     size_t _freed_bytes;
1179     FreeRegionList* _local_cleanup_list;
1180     uint _old_regions_removed;
1181     uint _humongous_regions_removed;
1182     HRRSCleanupTask* _hrrs_cleanup_task;
1183 
1184   public:
1185     G1CleanupRegionsClosure(G1CollectedHeap* g1,
1186                             FreeRegionList* local_cleanup_list,
1187                             HRRSCleanupTask* hrrs_cleanup_task) :
1188       _g1h(g1),
1189       _freed_bytes(0),
1190       _local_cleanup_list(local_cleanup_list),
1191       _old_regions_removed(0),
1192       _humongous_regions_removed(0),
1193       _hrrs_cleanup_task(hrrs_cleanup_task) { }
1194 
1195     size_t freed_bytes() { return _freed_bytes; }
1196     const uint old_regions_removed() { return _old_regions_removed; }
1197     const uint humongous_regions_removed() { return _humongous_regions_removed; }
1198 
1199     bool do_heap_region(HeapRegion *hr) {
1200       if (hr->used() > 0 && hr->max_live_bytes() == 0 && !hr->is_young() && !hr->is_archive()) {
1201         _freed_bytes += hr->used();
1202         hr->set_containing_set(NULL);
1203         if (hr->is_humongous()) {
1204           _humongous_regions_removed++;
1205           _g1h->free_humongous_region(hr, _local_cleanup_list);
1206         } else {
1207           _old_regions_removed++;
1208           _g1h->free_region(hr, _local_cleanup_list, false /* skip_remset */, false /* skip_hcc */, true /* locked */);
1209         }
1210         hr->clear_cardtable();
1211         _g1h->concurrent_mark()->clear_statistics_in_region(hr->hrm_index());
1212         log_trace(gc)("Reclaimed empty region %u (%s) bot " PTR_FORMAT, hr->hrm_index(), hr->get_short_type_str(), p2i(hr->bottom()));
1213       } else {
1214         hr->rem_set()->do_cleanup_work(_hrrs_cleanup_task);
1215       }
1216 
1217       return false;
1218     }
1219   };
1220 
1221   G1CollectedHeap* _g1h;
1222   FreeRegionList* _cleanup_list;
1223   HeapRegionClaimer _hrclaimer;
1224 
1225 public:
1226   G1CleanupTask(G1CollectedHeap* g1h, FreeRegionList* cleanup_list, uint n_workers) :
1227     AbstractGangTask("G1 Cleanup"),
1228     _g1h(g1h),
1229     _cleanup_list(cleanup_list),
1230     _hrclaimer(n_workers) {
1231 
1232     HeapRegionRemSet::reset_for_cleanup_tasks();
1233   }
1234 
1235   void work(uint worker_id) {
1236     FreeRegionList local_cleanup_list("Local Cleanup List");
1237     HRRSCleanupTask hrrs_cleanup_task;
1238     G1CleanupRegionsClosure cl(_g1h,
1239                                &local_cleanup_list,
1240                                &hrrs_cleanup_task);
1241     _g1h->heap_region_par_iterate_from_worker_offset(&cl, &_hrclaimer, worker_id);
1242     assert(cl.is_complete(), "Shouldn't have aborted!");
1243 
1244     // Now update the old/humongous region sets
1245     _g1h->remove_from_old_sets(cl.old_regions_removed(), cl.humongous_regions_removed());
1246     {
1247       MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
1248       _g1h->decrement_summary_bytes(cl.freed_bytes());
1249 
1250       _cleanup_list->add_ordered(&local_cleanup_list);
1251       assert(local_cleanup_list.is_empty(), "post-condition");
1252 
1253       HeapRegionRemSet::finish_cleanup_task(&hrrs_cleanup_task);
1254     }
1255   }
1256 };
1257 
1258 void G1ConcurrentMark::reclaim_empty_regions() {
1259   WorkGang* workers = _g1h->workers();
1260   FreeRegionList empty_regions_list("Empty Regions After Mark List");
1261 
1262   G1CleanupTask cl(_g1h, &empty_regions_list, workers->active_workers());
1263   workers->run_task(&cl);
1264 
1265   if (!empty_regions_list.is_empty()) {
1266     log_debug(gc)("Reclaimed %u empty regions", empty_regions_list.length());
1267     // Now print the empty regions list.
1268     G1HRPrinter* hrp = _g1h->hr_printer();
1269     if (hrp->is_active()) {
1270       FreeRegionListIterator iter(&empty_regions_list);
1271       while (iter.more_available()) {
1272         HeapRegion* hr = iter.get_next();
1273         hrp->cleanup(hr);
1274       }
1275     }
1276     // And actually make them available.
1277     _g1h->prepend_to_freelist(&empty_regions_list);
1278   }
1279 }
1280 
1281 void G1ConcurrentMark::cleanup() {
1282   assert_at_safepoint_on_vm_thread();
1283 
1284   // If a full collection has happened, we shouldn't do this.
1285   if (has_aborted()) {
1286     return;
1287   }
1288 
1289   G1Policy* g1p = _g1h->g1_policy();
1290   g1p->record_concurrent_mark_cleanup_start();
1291 
1292   double start = os::elapsedTime();
1293 
1294   verify_during_pause(G1HeapVerifier::G1VerifyCleanup, VerifyOption_G1UsePrevMarking, "Cleanup before");
1295 
1296   {
1297     GCTraceTime(Debug, gc, phases)("Update Remembered Set Tracking After Rebuild");
1298     G1UpdateRemSetTrackingAfterRebuild cl(_g1h);
1299     _g1h->heap_region_iterate(&cl);
1300   }
1301 
1302   if (log_is_enabled(Trace, gc, liveness)) {
1303     G1PrintRegionLivenessInfoClosure cl("Post-Cleanup");
1304     _g1h->heap_region_iterate(&cl);
1305   }
1306 
1307   {
1308     GCTraceTime(Debug, gc, phases)("Reclaim Empty Regions");
1309     reclaim_empty_regions();
1310   }
1311 
1312   // Cleanup will have freed any regions completely full of garbage.
1313   // Update the soft reference policy with the new heap occupancy.
1314   Universe::update_heap_info_at_gc();
1315 
1316   // Clean out dead classes and update Metaspace sizes.
1317   if (ClassUnloadingWithConcurrentMark) {
1318     GCTraceTime(Debug, gc, phases)("Purge Metaspace");
1319     ClassLoaderDataGraph::purge();
1320   }
1321   MetaspaceGC::compute_new_size();
1322 
1323   // We reclaimed old regions so we should calculate the sizes to make
1324   // sure we update the old gen/space data.
1325   _g1h->g1mm()->update_sizes();
1326 
1327   verify_during_pause(G1HeapVerifier::G1VerifyCleanup, VerifyOption_G1UsePrevMarking, "Cleanup after");
1328 
1329   // We need to make this be a "collection" so any collection pause that
1330   // races with it goes around and waits for Cleanup to finish.
1331   _g1h->increment_total_collections();
1332 
1333   // Local statistics
1334   double recent_cleanup_time = (os::elapsedTime() - start);
1335   _total_cleanup_time += recent_cleanup_time;
1336   _cleanup_times.add(recent_cleanup_time);
1337 
1338   {
1339     GCTraceTime(Debug, gc, phases)("Finalize Concurrent Mark Cleanup");
1340     _g1h->g1_policy()->record_concurrent_mark_cleanup_end();
1341   }
1342 }
1343 
1344 // Supporting Object and Oop closures for reference discovery
1345 // and processing in during marking
1346 
1347 bool G1CMIsAliveClosure::do_object_b(oop obj) {
1348   HeapWord* addr = (HeapWord*)obj;
1349   return addr != NULL &&
1350          (!_g1h->is_in_g1_reserved(addr) || !_g1h->is_obj_ill(obj));
1351 }
1352 
1353 // 'Keep Alive' oop closure used by both serial parallel reference processing.
1354 // Uses the G1CMTask associated with a worker thread (for serial reference
1355 // processing the G1CMTask for worker 0 is used) to preserve (mark) and
1356 // trace referent objects.
1357 //
1358 // Using the G1CMTask and embedded local queues avoids having the worker
1359 // threads operating on the global mark stack. This reduces the risk
1360 // of overflowing the stack - which we would rather avoid at this late
1361 // state. Also using the tasks' local queues removes the potential
1362 // of the workers interfering with each other that could occur if
1363 // operating on the global stack.
1364 
1365 class G1CMKeepAliveAndDrainClosure : public OopClosure {
1366   G1ConcurrentMark* _cm;
1367   G1CMTask*         _task;
1368   int               _ref_counter_limit;
1369   int               _ref_counter;
1370   bool              _is_serial;
1371 public:
1372   G1CMKeepAliveAndDrainClosure(G1ConcurrentMark* cm, G1CMTask* task, bool is_serial) :
1373     _cm(cm), _task(task), _is_serial(is_serial),
1374     _ref_counter_limit(G1RefProcDrainInterval) {
1375     assert(_ref_counter_limit > 0, "sanity");
1376     assert(!_is_serial || _task->worker_id() == 0, "only task 0 for serial code");
1377     _ref_counter = _ref_counter_limit;
1378   }
1379 
1380   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
1381   virtual void do_oop(      oop* p) { do_oop_work(p); }
1382 
1383   template <class T> void do_oop_work(T* p) {
1384     if (!_cm->has_overflown()) {
1385       _task->deal_with_reference(p);
1386       _ref_counter--;
1387 
1388       if (_ref_counter == 0) {
1389         // We have dealt with _ref_counter_limit references, pushing them
1390         // and objects reachable from them on to the local stack (and
1391         // possibly the global stack). Call G1CMTask::do_marking_step() to
1392         // process these entries.
1393         //
1394         // We call G1CMTask::do_marking_step() in a loop, which we'll exit if
1395         // there's nothing more to do (i.e. we're done with the entries that
1396         // were pushed as a result of the G1CMTask::deal_with_reference() calls
1397         // above) or we overflow.
1398         //
1399         // Note: G1CMTask::do_marking_step() can set the G1CMTask::has_aborted()
1400         // flag while there may still be some work to do. (See the comment at
1401         // the beginning of G1CMTask::do_marking_step() for those conditions -
1402         // one of which is reaching the specified time target.) It is only
1403         // when G1CMTask::do_marking_step() returns without setting the
1404         // has_aborted() flag that the marking step has completed.
1405         do {
1406           double mark_step_duration_ms = G1ConcMarkStepDurationMillis;
1407           _task->do_marking_step(mark_step_duration_ms,
1408                                  false      /* do_termination */,
1409                                  _is_serial);
1410         } while (_task->has_aborted() && !_cm->has_overflown());
1411         _ref_counter = _ref_counter_limit;
1412       }
1413     }
1414   }
1415 };
1416 
1417 // 'Drain' oop closure used by both serial and parallel reference processing.
1418 // Uses the G1CMTask associated with a given worker thread (for serial
1419 // reference processing the G1CMtask for worker 0 is used). Calls the
1420 // do_marking_step routine, with an unbelievably large timeout value,
1421 // to drain the marking data structures of the remaining entries
1422 // added by the 'keep alive' oop closure above.
1423 
1424 class G1CMDrainMarkingStackClosure : public VoidClosure {
1425   G1ConcurrentMark* _cm;
1426   G1CMTask*         _task;
1427   bool              _is_serial;
1428  public:
1429   G1CMDrainMarkingStackClosure(G1ConcurrentMark* cm, G1CMTask* task, bool is_serial) :
1430     _cm(cm), _task(task), _is_serial(is_serial) {
1431     assert(!_is_serial || _task->worker_id() == 0, "only task 0 for serial code");
1432   }
1433 
1434   void do_void() {
1435     do {
1436       // We call G1CMTask::do_marking_step() to completely drain the local
1437       // and global marking stacks of entries pushed by the 'keep alive'
1438       // oop closure (an instance of G1CMKeepAliveAndDrainClosure above).
1439       //
1440       // G1CMTask::do_marking_step() is called in a loop, which we'll exit
1441       // if there's nothing more to do (i.e. we've completely drained the
1442       // entries that were pushed as a a result of applying the 'keep alive'
1443       // closure to the entries on the discovered ref lists) or we overflow
1444       // the global marking stack.
1445       //
1446       // Note: G1CMTask::do_marking_step() can set the G1CMTask::has_aborted()
1447       // flag while there may still be some work to do. (See the comment at
1448       // the beginning of G1CMTask::do_marking_step() for those conditions -
1449       // one of which is reaching the specified time target.) It is only
1450       // when G1CMTask::do_marking_step() returns without setting the
1451       // has_aborted() flag that the marking step has completed.
1452 
1453       _task->do_marking_step(1000000000.0 /* something very large */,
1454                              true         /* do_termination */,
1455                              _is_serial);
1456     } while (_task->has_aborted() && !_cm->has_overflown());
1457   }
1458 };
1459 
1460 // Implementation of AbstractRefProcTaskExecutor for parallel
1461 // reference processing at the end of G1 concurrent marking
1462 
1463 class G1CMRefProcTaskExecutor : public AbstractRefProcTaskExecutor {
1464 private:
1465   G1CollectedHeap*  _g1h;
1466   G1ConcurrentMark* _cm;
1467   WorkGang*         _workers;
1468   uint              _active_workers;
1469 
1470 public:
1471   G1CMRefProcTaskExecutor(G1CollectedHeap* g1h,
1472                           G1ConcurrentMark* cm,
1473                           WorkGang* workers,
1474                           uint n_workers) :
1475     _g1h(g1h), _cm(cm),
1476     _workers(workers), _active_workers(n_workers) { }
1477 
1478   // Executes the given task using concurrent marking worker threads.
1479   virtual void execute(ProcessTask& task);
1480   virtual void execute(EnqueueTask& task);
1481 };
1482 
1483 class G1CMRefProcTaskProxy : public AbstractGangTask {
1484   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
1485   ProcessTask&      _proc_task;
1486   G1CollectedHeap*  _g1h;
1487   G1ConcurrentMark* _cm;
1488 
1489 public:
1490   G1CMRefProcTaskProxy(ProcessTask& proc_task,
1491                        G1CollectedHeap* g1h,
1492                        G1ConcurrentMark* cm) :
1493     AbstractGangTask("Process reference objects in parallel"),
1494     _proc_task(proc_task), _g1h(g1h), _cm(cm) {
1495     ReferenceProcessor* rp = _g1h->ref_processor_cm();
1496     assert(rp->processing_is_mt(), "shouldn't be here otherwise");
1497   }
1498 
1499   virtual void work(uint worker_id) {
1500     ResourceMark rm;
1501     HandleMark hm;
1502     G1CMTask* task = _cm->task(worker_id);
1503     G1CMIsAliveClosure g1_is_alive(_g1h);
1504     G1CMKeepAliveAndDrainClosure g1_par_keep_alive(_cm, task, false /* is_serial */);
1505     G1CMDrainMarkingStackClosure g1_par_drain(_cm, task, false /* is_serial */);
1506 
1507     _proc_task.work(worker_id, g1_is_alive, g1_par_keep_alive, g1_par_drain);
1508   }
1509 };
1510 
1511 void G1CMRefProcTaskExecutor::execute(ProcessTask& proc_task) {
1512   assert(_workers != NULL, "Need parallel worker threads.");
1513   assert(_g1h->ref_processor_cm()->processing_is_mt(), "processing is not MT");
1514 
1515   G1CMRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _cm);
1516 
1517   // We need to reset the concurrency level before each
1518   // proxy task execution, so that the termination protocol
1519   // and overflow handling in G1CMTask::do_marking_step() knows
1520   // how many workers to wait for.
1521   _cm->set_concurrency(_active_workers);
1522   _workers->run_task(&proc_task_proxy);
1523 }
1524 
1525 class G1CMRefEnqueueTaskProxy : public AbstractGangTask {
1526   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
1527   EnqueueTask& _enq_task;
1528 
1529 public:
1530   G1CMRefEnqueueTaskProxy(EnqueueTask& enq_task) :
1531     AbstractGangTask("Enqueue reference objects in parallel"),
1532     _enq_task(enq_task) { }
1533 
1534   virtual void work(uint worker_id) {
1535     _enq_task.work(worker_id);
1536   }
1537 };
1538 
1539 void G1CMRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
1540   assert(_workers != NULL, "Need parallel worker threads.");
1541   assert(_g1h->ref_processor_cm()->processing_is_mt(), "processing is not MT");
1542 
1543   G1CMRefEnqueueTaskProxy enq_task_proxy(enq_task);
1544 
1545   // Not strictly necessary but...
1546   //
1547   // We need to reset the concurrency level before each
1548   // proxy task execution, so that the termination protocol
1549   // and overflow handling in G1CMTask::do_marking_step() knows
1550   // how many workers to wait for.
1551   _cm->set_concurrency(_active_workers);
1552   _workers->run_task(&enq_task_proxy);
1553 }
1554 
1555 void G1ConcurrentMark::weak_refs_work(bool clear_all_soft_refs) {
1556   ResourceMark rm;
1557   HandleMark   hm;
1558 
1559   // Is alive closure.
1560   G1CMIsAliveClosure g1_is_alive(_g1h);
1561 
1562   // Inner scope to exclude the cleaning of the string and symbol
1563   // tables from the displayed time.
1564   {
1565     GCTraceTime(Debug, gc, phases) trace("Reference Processing", _gc_timer_cm);
1566 
1567     ReferenceProcessor* rp = _g1h->ref_processor_cm();
1568 
1569     // See the comment in G1CollectedHeap::ref_processing_init()
1570     // about how reference processing currently works in G1.
1571 
1572     // Set the soft reference policy
1573     rp->setup_policy(clear_all_soft_refs);
1574     assert(_global_mark_stack.is_empty(), "mark stack should be empty");
1575 
1576     // Instances of the 'Keep Alive' and 'Complete GC' closures used
1577     // in serial reference processing. Note these closures are also
1578     // used for serially processing (by the the current thread) the
1579     // JNI references during parallel reference processing.
1580     //
1581     // These closures do not need to synchronize with the worker
1582     // threads involved in parallel reference processing as these
1583     // instances are executed serially by the current thread (e.g.
1584     // reference processing is not multi-threaded and is thus
1585     // performed by the current thread instead of a gang worker).
1586     //
1587     // The gang tasks involved in parallel reference processing create
1588     // their own instances of these closures, which do their own
1589     // synchronization among themselves.
1590     G1CMKeepAliveAndDrainClosure g1_keep_alive(this, task(0), true /* is_serial */);
1591     G1CMDrainMarkingStackClosure g1_drain_mark_stack(this, task(0), true /* is_serial */);
1592 
1593     // We need at least one active thread. If reference processing
1594     // is not multi-threaded we use the current (VMThread) thread,
1595     // otherwise we use the work gang from the G1CollectedHeap and
1596     // we utilize all the worker threads we can.
1597     bool processing_is_mt = rp->processing_is_mt();
1598     uint active_workers = (processing_is_mt ? _g1h->workers()->active_workers() : 1U);
1599     active_workers = MAX2(MIN2(active_workers, _max_num_tasks), 1U);
1600 
1601     // Parallel processing task executor.
1602     G1CMRefProcTaskExecutor par_task_executor(_g1h, this,
1603                                               _g1h->workers(), active_workers);
1604     AbstractRefProcTaskExecutor* executor = (processing_is_mt ? &par_task_executor : NULL);
1605 
1606     // Set the concurrency level. The phase was already set prior to
1607     // executing the remark task.
1608     set_concurrency(active_workers);
1609 
1610     // Set the degree of MT processing here.  If the discovery was done MT,
1611     // the number of threads involved during discovery could differ from
1612     // the number of active workers.  This is OK as long as the discovered
1613     // Reference lists are balanced (see balance_all_queues() and balance_queues()).
1614     rp->set_active_mt_degree(active_workers);
1615 
1616     ReferenceProcessorPhaseTimes pt(_gc_timer_cm, rp->num_q());
1617 
1618     // Process the weak references.
1619     const ReferenceProcessorStats& stats =
1620         rp->process_discovered_references(&g1_is_alive,
1621                                           &g1_keep_alive,
1622                                           &g1_drain_mark_stack,
1623                                           executor,
1624                                           &pt);
1625     _gc_tracer_cm->report_gc_reference_stats(stats);
1626     pt.print_all_references();
1627 
1628     // The do_oop work routines of the keep_alive and drain_marking_stack
1629     // oop closures will set the has_overflown flag if we overflow the
1630     // global marking stack.
1631 
1632     assert(has_overflown() || _global_mark_stack.is_empty(),
1633            "Mark stack should be empty (unless it has overflown)");
1634 
1635     assert(rp->num_q() == active_workers, "why not");
1636 
1637     rp->enqueue_discovered_references(executor, &pt);
1638 
1639     rp->verify_no_references_recorded();
1640 
1641     pt.print_enqueue_phase();
1642 
1643     assert(!rp->discovery_enabled(), "Post condition");
1644   }
1645 
1646   assert(has_overflown() || _global_mark_stack.is_empty(),
1647          "Mark stack should be empty (unless it has overflown)");
1648 
1649   {
1650     GCTraceTime(Debug, gc, phases) debug("Weak Processing", _gc_timer_cm);
1651     WeakProcessor::weak_oops_do(&g1_is_alive, &do_nothing_cl);
1652   }
1653 
1654   if (has_overflown()) {
1655     // We can not trust g1_is_alive if the marking stack overflowed
1656     return;
1657   }
1658 
1659   assert(_global_mark_stack.is_empty(), "Marking should have completed");
1660 
1661   // Unload Klasses, String, Symbols, Code Cache, etc.
1662   if (ClassUnloadingWithConcurrentMark) {
1663     GCTraceTime(Debug, gc, phases) debug("Class Unloading", _gc_timer_cm);
1664     bool purged_classes = SystemDictionary::do_unloading(&g1_is_alive, _gc_timer_cm, false /* Defer cleaning */);
1665     _g1h->complete_cleaning(&g1_is_alive, purged_classes);
1666   } else {
1667     GCTraceTime(Debug, gc, phases) debug("Cleanup", _gc_timer_cm);
1668     // No need to clean string table and symbol table as they are treated as strong roots when
1669     // class unloading is disabled.
1670     _g1h->partial_cleaning(&g1_is_alive, false, false, G1StringDedup::is_enabled());
1671   }
1672 }
1673 
1674 // When sampling object counts, we already swapped the mark bitmaps, so we need to use
1675 // the prev bitmap determining liveness.
1676 class G1ObjectCountIsAliveClosure: public BoolObjectClosure {
1677   G1CollectedHeap* _g1;
1678  public:
1679   G1ObjectCountIsAliveClosure(G1CollectedHeap* g1) : _g1(g1) { }
1680 
1681   bool do_object_b(oop obj) {
1682     HeapWord* addr = (HeapWord*)obj;
1683     return addr != NULL &&
1684            (!_g1->is_in_g1_reserved(addr) || !_g1->is_obj_dead(obj));
1685   }
1686 };
1687 
1688 void G1ConcurrentMark::report_object_count(bool mark_completed) {
1689   // Depending on the completion of the marking liveness needs to be determined
1690   // using either the next or prev bitmap.
1691   if (mark_completed) {
1692     G1ObjectCountIsAliveClosure is_alive(_g1h);
1693     _gc_tracer_cm->report_object_count_after_gc(&is_alive);
1694   } else {
1695     G1CMIsAliveClosure is_alive(_g1h);
1696     _gc_tracer_cm->report_object_count_after_gc(&is_alive);
1697   }
1698 }
1699 
1700 
1701 void G1ConcurrentMark::swap_mark_bitmaps() {
1702   G1CMBitMap* temp = _prev_mark_bitmap;
1703   _prev_mark_bitmap = _next_mark_bitmap;
1704   _next_mark_bitmap = temp;
1705   _g1h->collector_state()->set_clearing_next_bitmap(true);
1706 }
1707 
1708 // Closure for marking entries in SATB buffers.
1709 class G1CMSATBBufferClosure : public SATBBufferClosure {
1710 private:
1711   G1CMTask* _task;
1712   G1CollectedHeap* _g1h;
1713 
1714   // This is very similar to G1CMTask::deal_with_reference, but with
1715   // more relaxed requirements for the argument, so this must be more
1716   // circumspect about treating the argument as an object.
1717   void do_entry(void* entry) const {
1718     _task->increment_refs_reached();
1719     oop const obj = static_cast<oop>(entry);
1720     _task->make_reference_grey(obj);
1721   }
1722 
1723 public:
1724   G1CMSATBBufferClosure(G1CMTask* task, G1CollectedHeap* g1h)
1725     : _task(task), _g1h(g1h) { }
1726 
1727   virtual void do_buffer(void** buffer, size_t size) {
1728     for (size_t i = 0; i < size; ++i) {
1729       do_entry(buffer[i]);
1730     }
1731   }
1732 };
1733 
1734 class G1RemarkThreadsClosure : public ThreadClosure {
1735   G1CMSATBBufferClosure _cm_satb_cl;
1736   G1CMOopClosure _cm_cl;
1737   MarkingCodeBlobClosure _code_cl;
1738   int _thread_parity;
1739 
1740  public:
1741   G1RemarkThreadsClosure(G1CollectedHeap* g1h, G1CMTask* task) :
1742     _cm_satb_cl(task, g1h),
1743     _cm_cl(g1h, task),
1744     _code_cl(&_cm_cl, !CodeBlobToOopClosure::FixRelocations),
1745     _thread_parity(Threads::thread_claim_parity()) {}
1746 
1747   void do_thread(Thread* thread) {
1748     if (thread->is_Java_thread()) {
1749       if (thread->claim_oops_do(true, _thread_parity)) {
1750         JavaThread* jt = (JavaThread*)thread;
1751 
1752         // In theory it should not be neccessary to explicitly walk the nmethods to find roots for concurrent marking
1753         // however the liveness of oops reachable from nmethods have very complex lifecycles:
1754         // * Alive if on the stack of an executing method
1755         // * Weakly reachable otherwise
1756         // Some objects reachable from nmethods, such as the class loader (or klass_holder) of the receiver should be
1757         // live by the SATB invariant but other oops recorded in nmethods may behave differently.
1758         jt->nmethods_do(&_code_cl);
1759 
1760         jt->satb_mark_queue().apply_closure_and_empty(&_cm_satb_cl);
1761       }
1762     } else if (thread->is_VM_thread()) {
1763       if (thread->claim_oops_do(true, _thread_parity)) {
1764         JavaThread::satb_mark_queue_set().shared_satb_queue()->apply_closure_and_empty(&_cm_satb_cl);
1765       }
1766     }
1767   }
1768 };
1769 
1770 class G1CMRemarkTask : public AbstractGangTask {
1771   G1ConcurrentMark* _cm;
1772 public:
1773   void work(uint worker_id) {
1774     G1CMTask* task = _cm->task(worker_id);
1775     task->record_start_time();
1776     {
1777       ResourceMark rm;
1778       HandleMark hm;
1779 
1780       G1RemarkThreadsClosure threads_f(G1CollectedHeap::heap(), task);
1781       Threads::threads_do(&threads_f);
1782     }
1783 
1784     do {
1785       task->do_marking_step(1000000000.0 /* something very large */,
1786                             true         /* do_termination       */,
1787                             false        /* is_serial            */);
1788     } while (task->has_aborted() && !_cm->has_overflown());
1789     // If we overflow, then we do not want to restart. We instead
1790     // want to abort remark and do concurrent marking again.
1791     task->record_end_time();
1792   }
1793 
1794   G1CMRemarkTask(G1ConcurrentMark* cm, uint active_workers) :
1795     AbstractGangTask("Par Remark"), _cm(cm) {
1796     _cm->terminator()->reset_for_reuse(active_workers);
1797   }
1798 };
1799 
1800 void G1ConcurrentMark::finalize_marking() {
1801   ResourceMark rm;
1802   HandleMark   hm;
1803 
1804   _g1h->ensure_parsability(false);
1805 
1806   // this is remark, so we'll use up all active threads
1807   uint active_workers = _g1h->workers()->active_workers();
1808   set_concurrency_and_phase(active_workers, false /* concurrent */);
1809   // Leave _parallel_marking_threads at it's
1810   // value originally calculated in the G1ConcurrentMark
1811   // constructor and pass values of the active workers
1812   // through the gang in the task.
1813 
1814   {
1815     StrongRootsScope srs(active_workers);
1816 
1817     G1CMRemarkTask remarkTask(this, active_workers);
1818     // We will start all available threads, even if we decide that the
1819     // active_workers will be fewer. The extra ones will just bail out
1820     // immediately.
1821     _g1h->workers()->run_task(&remarkTask);
1822   }
1823 
1824   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
1825   guarantee(has_overflown() ||
1826             satb_mq_set.completed_buffers_num() == 0,
1827             "Invariant: has_overflown = %s, num buffers = " SIZE_FORMAT,
1828             BOOL_TO_STR(has_overflown()),
1829             satb_mq_set.completed_buffers_num());
1830 
1831   print_stats();
1832 }
1833 
1834 void G1ConcurrentMark::flush_all_task_caches() {
1835   size_t hits = 0;
1836   size_t misses = 0;
1837   for (uint i = 0; i < _max_num_tasks; i++) {
1838     Pair<size_t, size_t> stats = _tasks[i]->flush_mark_stats_cache();
1839     hits += stats.first;
1840     misses += stats.second;
1841   }
1842   size_t sum = hits + misses;
1843   log_debug(gc, stats)("Mark stats cache hits " SIZE_FORMAT " misses " SIZE_FORMAT " ratio %1.3lf",
1844                        hits, misses, percent_of(hits, sum));
1845 }
1846 
1847 void G1ConcurrentMark::clear_range_in_prev_bitmap(MemRegion mr) {
1848   _prev_mark_bitmap->clear_range(mr);
1849 }
1850 
1851 HeapRegion*
1852 G1ConcurrentMark::claim_region(uint worker_id) {
1853   // "checkpoint" the finger
1854   HeapWord* finger = _finger;
1855 
1856   while (finger < _heap.end()) {
1857     assert(_g1h->is_in_g1_reserved(finger), "invariant");
1858 
1859     HeapRegion* curr_region = _g1h->heap_region_containing(finger);
1860     // Make sure that the reads below do not float before loading curr_region.
1861     OrderAccess::loadload();
1862     // Above heap_region_containing may return NULL as we always scan claim
1863     // until the end of the heap. In this case, just jump to the next region.
1864     HeapWord* end = curr_region != NULL ? curr_region->end() : finger + HeapRegion::GrainWords;
1865 
1866     // Is the gap between reading the finger and doing the CAS too long?
1867     HeapWord* res = Atomic::cmpxchg(end, &_finger, finger);
1868     if (res == finger && curr_region != NULL) {
1869       // we succeeded
1870       HeapWord*   bottom        = curr_region->bottom();
1871       HeapWord*   limit         = curr_region->next_top_at_mark_start();
1872 
1873       // notice that _finger == end cannot be guaranteed here since,
1874       // someone else might have moved the finger even further
1875       assert(_finger >= end, "the finger should have moved forward");
1876 
1877       if (limit > bottom) {
1878         return curr_region;
1879       } else {
1880         assert(limit == bottom,
1881                "the region limit should be at bottom");
1882         // we return NULL and the caller should try calling
1883         // claim_region() again.
1884         return NULL;
1885       }
1886     } else {
1887       assert(_finger > finger, "the finger should have moved forward");
1888       // read it again
1889       finger = _finger;
1890     }
1891   }
1892 
1893   return NULL;
1894 }
1895 
1896 #ifndef PRODUCT
1897 class VerifyNoCSetOops {
1898   G1CollectedHeap* _g1h;
1899   const char* _phase;
1900   int _info;
1901 
1902 public:
1903   VerifyNoCSetOops(const char* phase, int info = -1) :
1904     _g1h(G1CollectedHeap::heap()),
1905     _phase(phase),
1906     _info(info)
1907   { }
1908 
1909   void operator()(G1TaskQueueEntry task_entry) const {
1910     if (task_entry.is_array_slice()) {
1911       guarantee(_g1h->is_in_reserved(task_entry.slice()), "Slice " PTR_FORMAT " must be in heap.", p2i(task_entry.slice()));
1912       return;
1913     }
1914     guarantee(oopDesc::is_oop(task_entry.obj()),
1915               "Non-oop " PTR_FORMAT ", phase: %s, info: %d",
1916               p2i(task_entry.obj()), _phase, _info);
1917     guarantee(!_g1h->is_in_cset(task_entry.obj()),
1918               "obj: " PTR_FORMAT " in CSet, phase: %s, info: %d",
1919               p2i(task_entry.obj()), _phase, _info);
1920   }
1921 };
1922 
1923 void G1ConcurrentMark::verify_no_cset_oops() {
1924   assert(SafepointSynchronize::is_at_safepoint(), "should be at a safepoint");
1925   if (!_g1h->collector_state()->mark_or_rebuild_in_progress()) {
1926     return;
1927   }
1928 
1929   // Verify entries on the global mark stack
1930   _global_mark_stack.iterate(VerifyNoCSetOops("Stack"));
1931 
1932   // Verify entries on the task queues
1933   for (uint i = 0; i < _max_num_tasks; ++i) {
1934     G1CMTaskQueue* queue = _task_queues->queue(i);
1935     queue->iterate(VerifyNoCSetOops("Queue", i));
1936   }
1937 
1938   // Verify the global finger
1939   HeapWord* global_finger = finger();
1940   if (global_finger != NULL && global_finger < _heap.end()) {
1941     // Since we always iterate over all regions, we might get a NULL HeapRegion
1942     // here.
1943     HeapRegion* global_hr = _g1h->heap_region_containing(global_finger);
1944     guarantee(global_hr == NULL || global_finger == global_hr->bottom(),
1945               "global finger: " PTR_FORMAT " region: " HR_FORMAT,
1946               p2i(global_finger), HR_FORMAT_PARAMS(global_hr));
1947   }
1948 
1949   // Verify the task fingers
1950   assert(_num_concurrent_workers <= _max_num_tasks, "sanity");
1951   for (uint i = 0; i < _num_concurrent_workers; ++i) {
1952     G1CMTask* task = _tasks[i];
1953     HeapWord* task_finger = task->finger();
1954     if (task_finger != NULL && task_finger < _heap.end()) {
1955       // See above note on the global finger verification.
1956       HeapRegion* task_hr = _g1h->heap_region_containing(task_finger);
1957       guarantee(task_hr == NULL || task_finger == task_hr->bottom() ||
1958                 !task_hr->in_collection_set(),
1959                 "task finger: " PTR_FORMAT " region: " HR_FORMAT,
1960                 p2i(task_finger), HR_FORMAT_PARAMS(task_hr));
1961     }
1962   }
1963 }
1964 #endif // PRODUCT
1965 
1966 void G1ConcurrentMark::rebuild_rem_set_concurrently() {
1967   _g1h->g1_rem_set()->rebuild_rem_set(this, _concurrent_workers, _worker_id_offset);
1968 }
1969 
1970 void G1ConcurrentMark::print_stats() {
1971   if (!log_is_enabled(Debug, gc, stats)) {
1972     return;
1973   }
1974   log_debug(gc, stats)("---------------------------------------------------------------------");
1975   for (size_t i = 0; i < _num_active_tasks; ++i) {
1976     _tasks[i]->print_stats();
1977     log_debug(gc, stats)("---------------------------------------------------------------------");
1978   }
1979 }
1980 
1981 void G1ConcurrentMark::concurrent_cycle_abort() {
1982   if (!cm_thread()->during_cycle() || _has_aborted) {
1983     // We haven't started a concurrent cycle or we have already aborted it. No need to do anything.
1984     return;
1985   }
1986 
1987   // Clear all marks in the next bitmap for the next marking cycle. This will allow us to skip the next
1988   // concurrent bitmap clearing.
1989   {
1990     GCTraceTime(Debug, gc)("Clear Next Bitmap");
1991     clear_bitmap(_next_mark_bitmap, _g1h->workers(), false);
1992   }
1993   // Note we cannot clear the previous marking bitmap here
1994   // since VerifyDuringGC verifies the objects marked during
1995   // a full GC against the previous bitmap.
1996 
1997   // Empty mark stack
1998   reset_marking_for_restart();
1999   for (uint i = 0; i < _max_num_tasks; ++i) {
2000     _tasks[i]->clear_region_fields();
2001   }
2002   _first_overflow_barrier_sync.abort();
2003   _second_overflow_barrier_sync.abort();
2004   _has_aborted = true;
2005 
2006   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
2007   satb_mq_set.abandon_partial_marking();
2008   // This can be called either during or outside marking, we'll read
2009   // the expected_active value from the SATB queue set.
2010   satb_mq_set.set_active_all_threads(
2011                                  false, /* new active value */
2012                                  satb_mq_set.is_active() /* expected_active */);
2013 }
2014 
2015 static void print_ms_time_info(const char* prefix, const char* name,
2016                                NumberSeq& ns) {
2017   log_trace(gc, marking)("%s%5d %12s: total time = %8.2f s (avg = %8.2f ms).",
2018                          prefix, ns.num(), name, ns.sum()/1000.0, ns.avg());
2019   if (ns.num() > 0) {
2020     log_trace(gc, marking)("%s         [std. dev = %8.2f ms, max = %8.2f ms]",
2021                            prefix, ns.sd(), ns.maximum());
2022   }
2023 }
2024 
2025 void G1ConcurrentMark::print_summary_info() {
2026   Log(gc, marking) log;
2027   if (!log.is_trace()) {
2028     return;
2029   }
2030 
2031   log.trace(" Concurrent marking:");
2032   print_ms_time_info("  ", "init marks", _init_times);
2033   print_ms_time_info("  ", "remarks", _remark_times);
2034   {
2035     print_ms_time_info("     ", "final marks", _remark_mark_times);
2036     print_ms_time_info("     ", "weak refs", _remark_weak_ref_times);
2037 
2038   }
2039   print_ms_time_info("  ", "cleanups", _cleanup_times);
2040   log.trace("    Finalize live data total time = %8.2f s (avg = %8.2f ms).",
2041             _total_cleanup_time, (_cleanup_times.num() > 0 ? _total_cleanup_time * 1000.0 / (double)_cleanup_times.num() : 0.0));
2042   log.trace("  Total stop_world time = %8.2f s.",
2043             (_init_times.sum() + _remark_times.sum() + _cleanup_times.sum())/1000.0);
2044   log.trace("  Total concurrent time = %8.2f s (%8.2f s marking).",
2045             cm_thread()->vtime_accum(), cm_thread()->vtime_mark_accum());
2046 }
2047 
2048 void G1ConcurrentMark::print_worker_threads_on(outputStream* st) const {
2049   _concurrent_workers->print_worker_threads_on(st);
2050 }
2051 
2052 void G1ConcurrentMark::threads_do(ThreadClosure* tc) const {
2053   _concurrent_workers->threads_do(tc);
2054 }
2055 
2056 void G1ConcurrentMark::print_on_error(outputStream* st) const {
2057   st->print_cr("Marking Bits (Prev, Next): (CMBitMap*) " PTR_FORMAT ", (CMBitMap*) " PTR_FORMAT,
2058                p2i(_prev_mark_bitmap), p2i(_next_mark_bitmap));
2059   _prev_mark_bitmap->print_on_error(st, " Prev Bits: ");
2060   _next_mark_bitmap->print_on_error(st, " Next Bits: ");
2061 }
2062 
2063 static ReferenceProcessor* get_cm_oop_closure_ref_processor(G1CollectedHeap* g1h) {
2064   ReferenceProcessor* result = g1h->ref_processor_cm();
2065   assert(result != NULL, "CM reference processor should not be NULL");
2066   return result;
2067 }
2068 
2069 G1CMOopClosure::G1CMOopClosure(G1CollectedHeap* g1h,
2070                                G1CMTask* task)
2071   : MetadataAwareOopClosure(get_cm_oop_closure_ref_processor(g1h)),
2072     _g1h(g1h), _task(task)
2073 { }
2074 
2075 void G1CMTask::setup_for_region(HeapRegion* hr) {
2076   assert(hr != NULL,
2077         "claim_region() should have filtered out NULL regions");
2078   _curr_region  = hr;
2079   _finger       = hr->bottom();
2080   update_region_limit();
2081 }
2082 
2083 void G1CMTask::update_region_limit() {
2084   HeapRegion* hr            = _curr_region;
2085   HeapWord* bottom          = hr->bottom();
2086   HeapWord* limit           = hr->next_top_at_mark_start();
2087 
2088   if (limit == bottom) {
2089     // The region was collected underneath our feet.
2090     // We set the finger to bottom to ensure that the bitmap
2091     // iteration that will follow this will not do anything.
2092     // (this is not a condition that holds when we set the region up,
2093     // as the region is not supposed to be empty in the first place)
2094     _finger = bottom;
2095   } else if (limit >= _region_limit) {
2096     assert(limit >= _finger, "peace of mind");
2097   } else {
2098     assert(limit < _region_limit, "only way to get here");
2099     // This can happen under some pretty unusual circumstances.  An
2100     // evacuation pause empties the region underneath our feet (NTAMS
2101     // at bottom). We then do some allocation in the region (NTAMS
2102     // stays at bottom), followed by the region being used as a GC
2103     // alloc region (NTAMS will move to top() and the objects
2104     // originally below it will be grayed). All objects now marked in
2105     // the region are explicitly grayed, if below the global finger,
2106     // and we do not need in fact to scan anything else. So, we simply
2107     // set _finger to be limit to ensure that the bitmap iteration
2108     // doesn't do anything.
2109     _finger = limit;
2110   }
2111 
2112   _region_limit = limit;
2113 }
2114 
2115 void G1CMTask::giveup_current_region() {
2116   assert(_curr_region != NULL, "invariant");
2117   clear_region_fields();
2118 }
2119 
2120 void G1CMTask::clear_region_fields() {
2121   // Values for these three fields that indicate that we're not
2122   // holding on to a region.
2123   _curr_region   = NULL;
2124   _finger        = NULL;
2125   _region_limit  = NULL;
2126 }
2127 
2128 void G1CMTask::set_cm_oop_closure(G1CMOopClosure* cm_oop_closure) {
2129   if (cm_oop_closure == NULL) {
2130     assert(_cm_oop_closure != NULL, "invariant");
2131   } else {
2132     assert(_cm_oop_closure == NULL, "invariant");
2133   }
2134   _cm_oop_closure = cm_oop_closure;
2135 }
2136 
2137 void G1CMTask::reset(G1CMBitMap* next_mark_bitmap) {
2138   guarantee(next_mark_bitmap != NULL, "invariant");
2139   _next_mark_bitmap              = next_mark_bitmap;
2140   clear_region_fields();
2141 
2142   _calls                         = 0;
2143   _elapsed_time_ms               = 0.0;
2144   _termination_time_ms           = 0.0;
2145   _termination_start_time_ms     = 0.0;
2146 
2147   _mark_stats_cache.reset();
2148 }
2149 
2150 bool G1CMTask::should_exit_termination() {
2151   regular_clock_call();
2152   // This is called when we are in the termination protocol. We should
2153   // quit if, for some reason, this task wants to abort or the global
2154   // stack is not empty (this means that we can get work from it).
2155   return !_cm->mark_stack_empty() || has_aborted();
2156 }
2157 
2158 void G1CMTask::reached_limit() {
2159   assert(_words_scanned >= _words_scanned_limit ||
2160          _refs_reached >= _refs_reached_limit ,
2161          "shouldn't have been called otherwise");
2162   regular_clock_call();
2163 }
2164 
2165 void G1CMTask::regular_clock_call() {
2166   if (has_aborted()) {
2167     return;
2168   }
2169 
2170   // First, we need to recalculate the words scanned and refs reached
2171   // limits for the next clock call.
2172   recalculate_limits();
2173 
2174   // During the regular clock call we do the following
2175 
2176   // (1) If an overflow has been flagged, then we abort.
2177   if (_cm->has_overflown()) {
2178     set_has_aborted();
2179     return;
2180   }
2181 
2182   // If we are not concurrent (i.e. we're doing remark) we don't need
2183   // to check anything else. The other steps are only needed during
2184   // the concurrent marking phase.
2185   if (!_cm->concurrent()) {
2186     return;
2187   }
2188 
2189   // (2) If marking has been aborted for Full GC, then we also abort.
2190   if (_cm->has_aborted()) {
2191     set_has_aborted();
2192     return;
2193   }
2194 
2195   double curr_time_ms = os::elapsedVTime() * 1000.0;
2196 
2197   // (4) We check whether we should yield. If we have to, then we abort.
2198   if (SuspendibleThreadSet::should_yield()) {
2199     // We should yield. To do this we abort the task. The caller is
2200     // responsible for yielding.
2201     set_has_aborted();
2202     return;
2203   }
2204 
2205   // (5) We check whether we've reached our time quota. If we have,
2206   // then we abort.
2207   double elapsed_time_ms = curr_time_ms - _start_time_ms;
2208   if (elapsed_time_ms > _time_target_ms) {
2209     set_has_aborted();
2210     _has_timed_out = true;
2211     return;
2212   }
2213 
2214   // (6) Finally, we check whether there are enough completed STAB
2215   // buffers available for processing. If there are, we abort.
2216   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
2217   if (!_draining_satb_buffers && satb_mq_set.process_completed_buffers()) {
2218     // we do need to process SATB buffers, we'll abort and restart
2219     // the marking task to do so
2220     set_has_aborted();
2221     return;
2222   }
2223 }
2224 
2225 void G1CMTask::recalculate_limits() {
2226   _real_words_scanned_limit = _words_scanned + words_scanned_period;
2227   _words_scanned_limit      = _real_words_scanned_limit;
2228 
2229   _real_refs_reached_limit  = _refs_reached  + refs_reached_period;
2230   _refs_reached_limit       = _real_refs_reached_limit;
2231 }
2232 
2233 void G1CMTask::decrease_limits() {
2234   // This is called when we believe that we're going to do an infrequent
2235   // operation which will increase the per byte scanned cost (i.e. move
2236   // entries to/from the global stack). It basically tries to decrease the
2237   // scanning limit so that the clock is called earlier.
2238 
2239   _words_scanned_limit = _real_words_scanned_limit - 3 * words_scanned_period / 4;
2240   _refs_reached_limit  = _real_refs_reached_limit - 3 * refs_reached_period / 4;
2241 }
2242 
2243 void G1CMTask::move_entries_to_global_stack() {
2244   // Local array where we'll store the entries that will be popped
2245   // from the local queue.
2246   G1TaskQueueEntry buffer[G1CMMarkStack::EntriesPerChunk];
2247 
2248   size_t n = 0;
2249   G1TaskQueueEntry task_entry;
2250   while (n < G1CMMarkStack::EntriesPerChunk && _task_queue->pop_local(task_entry)) {
2251     buffer[n] = task_entry;
2252     ++n;
2253   }
2254   if (n < G1CMMarkStack::EntriesPerChunk) {
2255     buffer[n] = G1TaskQueueEntry();
2256   }
2257 
2258   if (n > 0) {
2259     if (!_cm->mark_stack_push(buffer)) {
2260       set_has_aborted();
2261     }
2262   }
2263 
2264   // This operation was quite expensive, so decrease the limits.
2265   decrease_limits();
2266 }
2267 
2268 bool G1CMTask::get_entries_from_global_stack() {
2269   // Local array where we'll store the entries that will be popped
2270   // from the global stack.
2271   G1TaskQueueEntry buffer[G1CMMarkStack::EntriesPerChunk];
2272 
2273   if (!_cm->mark_stack_pop(buffer)) {
2274     return false;
2275   }
2276 
2277   // We did actually pop at least one entry.
2278   for (size_t i = 0; i < G1CMMarkStack::EntriesPerChunk; ++i) {
2279     G1TaskQueueEntry task_entry = buffer[i];
2280     if (task_entry.is_null()) {
2281       break;
2282     }
2283     assert(task_entry.is_array_slice() || oopDesc::is_oop(task_entry.obj()), "Element " PTR_FORMAT " must be an array slice or oop", p2i(task_entry.obj()));
2284     bool success = _task_queue->push(task_entry);
2285     // We only call this when the local queue is empty or under a
2286     // given target limit. So, we do not expect this push to fail.
2287     assert(success, "invariant");
2288   }
2289 
2290   // This operation was quite expensive, so decrease the limits
2291   decrease_limits();
2292   return true;
2293 }
2294 
2295 void G1CMTask::drain_local_queue(bool partially) {
2296   if (has_aborted()) {
2297     return;
2298   }
2299 
2300   // Decide what the target size is, depending whether we're going to
2301   // drain it partially (so that other tasks can steal if they run out
2302   // of things to do) or totally (at the very end).
2303   size_t target_size;
2304   if (partially) {
2305     target_size = MIN2((size_t)_task_queue->max_elems()/3, GCDrainStackTargetSize);
2306   } else {
2307     target_size = 0;
2308   }
2309 
2310   if (_task_queue->size() > target_size) {
2311     G1TaskQueueEntry entry;
2312     bool ret = _task_queue->pop_local(entry);
2313     while (ret) {
2314       scan_task_entry(entry);
2315       if (_task_queue->size() <= target_size || has_aborted()) {
2316         ret = false;
2317       } else {
2318         ret = _task_queue->pop_local(entry);
2319       }
2320     }
2321   }
2322 }
2323 
2324 void G1CMTask::drain_global_stack(bool partially) {
2325   if (has_aborted()) {
2326     return;
2327   }
2328 
2329   // We have a policy to drain the local queue before we attempt to
2330   // drain the global stack.
2331   assert(partially || _task_queue->size() == 0, "invariant");
2332 
2333   // Decide what the target size is, depending whether we're going to
2334   // drain it partially (so that other tasks can steal if they run out
2335   // of things to do) or totally (at the very end).
2336   // Notice that when draining the global mark stack partially, due to the racyness
2337   // of the mark stack size update we might in fact drop below the target. But,
2338   // this is not a problem.
2339   // In case of total draining, we simply process until the global mark stack is
2340   // totally empty, disregarding the size counter.
2341   if (partially) {
2342     size_t const target_size = _cm->partial_mark_stack_size_target();
2343     while (!has_aborted() && _cm->mark_stack_size() > target_size) {
2344       if (get_entries_from_global_stack()) {
2345         drain_local_queue(partially);
2346       }
2347     }
2348   } else {
2349     while (!has_aborted() && get_entries_from_global_stack()) {
2350       drain_local_queue(partially);
2351     }
2352   }
2353 }
2354 
2355 // SATB Queue has several assumptions on whether to call the par or
2356 // non-par versions of the methods. this is why some of the code is
2357 // replicated. We should really get rid of the single-threaded version
2358 // of the code to simplify things.
2359 void G1CMTask::drain_satb_buffers() {
2360   if (has_aborted()) {
2361     return;
2362   }
2363 
2364   // We set this so that the regular clock knows that we're in the
2365   // middle of draining buffers and doesn't set the abort flag when it
2366   // notices that SATB buffers are available for draining. It'd be
2367   // very counter productive if it did that. :-)
2368   _draining_satb_buffers = true;
2369 
2370   G1CMSATBBufferClosure satb_cl(this, _g1h);
2371   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
2372 
2373   // This keeps claiming and applying the closure to completed buffers
2374   // until we run out of buffers or we need to abort.
2375   while (!has_aborted() &&
2376          satb_mq_set.apply_closure_to_completed_buffer(&satb_cl)) {
2377     regular_clock_call();
2378   }
2379 
2380   _draining_satb_buffers = false;
2381 
2382   assert(has_aborted() ||
2383          _cm->concurrent() ||
2384          satb_mq_set.completed_buffers_num() == 0, "invariant");
2385 
2386   // again, this was a potentially expensive operation, decrease the
2387   // limits to get the regular clock call early
2388   decrease_limits();
2389 }
2390 
2391 void G1CMTask::clear_mark_stats_cache(uint region_idx) {
2392   _mark_stats_cache.reset(region_idx);
2393 }
2394 
2395 Pair<size_t, size_t> G1CMTask::flush_mark_stats_cache() {
2396   return _mark_stats_cache.evict_all();
2397 }
2398 
2399 void G1CMTask::print_stats() {
2400   log_debug(gc, stats)("Marking Stats, task = %u, calls = %u", _worker_id, _calls);
2401   log_debug(gc, stats)("  Elapsed time = %1.2lfms, Termination time = %1.2lfms",
2402                        _elapsed_time_ms, _termination_time_ms);
2403   log_debug(gc, stats)("  Step Times (cum): num = %d, avg = %1.2lfms, sd = %1.2lfms max = %1.2lfms, total = %1.2lfms",
2404                        _step_times_ms.num(),
2405                        _step_times_ms.avg(),
2406                        _step_times_ms.sd(),
2407                        _step_times_ms.maximum(),
2408                        _step_times_ms.sum());
2409   size_t const hits = _mark_stats_cache.hits();
2410   size_t const misses = _mark_stats_cache.misses();
2411   log_debug(gc, stats)("  Mark Stats Cache: hits " SIZE_FORMAT " misses " SIZE_FORMAT " ratio %.3f",
2412                        hits, misses, percent_of(hits, hits + misses));
2413 }
2414 
2415 bool G1ConcurrentMark::try_stealing(uint worker_id, int* hash_seed, G1TaskQueueEntry& task_entry) {
2416   return _task_queues->steal(worker_id, hash_seed, task_entry);
2417 }
2418 
2419 /*****************************************************************************
2420 
2421     The do_marking_step(time_target_ms, ...) method is the building
2422     block of the parallel marking framework. It can be called in parallel
2423     with other invocations of do_marking_step() on different tasks
2424     (but only one per task, obviously) and concurrently with the
2425     mutator threads, or during remark, hence it eliminates the need
2426     for two versions of the code. When called during remark, it will
2427     pick up from where the task left off during the concurrent marking
2428     phase. Interestingly, tasks are also claimable during evacuation
2429     pauses too, since do_marking_step() ensures that it aborts before
2430     it needs to yield.
2431 
2432     The data structures that it uses to do marking work are the
2433     following:
2434 
2435       (1) Marking Bitmap. If there are gray objects that appear only
2436       on the bitmap (this happens either when dealing with an overflow
2437       or when the initial marking phase has simply marked the roots
2438       and didn't push them on the stack), then tasks claim heap
2439       regions whose bitmap they then scan to find gray objects. A
2440       global finger indicates where the end of the last claimed region
2441       is. A local finger indicates how far into the region a task has
2442       scanned. The two fingers are used to determine how to gray an
2443       object (i.e. whether simply marking it is OK, as it will be
2444       visited by a task in the future, or whether it needs to be also
2445       pushed on a stack).
2446 
2447       (2) Local Queue. The local queue of the task which is accessed
2448       reasonably efficiently by the task. Other tasks can steal from
2449       it when they run out of work. Throughout the marking phase, a
2450       task attempts to keep its local queue short but not totally
2451       empty, so that entries are available for stealing by other
2452       tasks. Only when there is no more work, a task will totally
2453       drain its local queue.
2454 
2455       (3) Global Mark Stack. This handles local queue overflow. During
2456       marking only sets of entries are moved between it and the local
2457       queues, as access to it requires a mutex and more fine-grain
2458       interaction with it which might cause contention. If it
2459       overflows, then the marking phase should restart and iterate
2460       over the bitmap to identify gray objects. Throughout the marking
2461       phase, tasks attempt to keep the global mark stack at a small
2462       length but not totally empty, so that entries are available for
2463       popping by other tasks. Only when there is no more work, tasks
2464       will totally drain the global mark stack.
2465 
2466       (4) SATB Buffer Queue. This is where completed SATB buffers are
2467       made available. Buffers are regularly removed from this queue
2468       and scanned for roots, so that the queue doesn't get too
2469       long. During remark, all completed buffers are processed, as
2470       well as the filled in parts of any uncompleted buffers.
2471 
2472     The do_marking_step() method tries to abort when the time target
2473     has been reached. There are a few other cases when the
2474     do_marking_step() method also aborts:
2475 
2476       (1) When the marking phase has been aborted (after a Full GC).
2477 
2478       (2) When a global overflow (on the global stack) has been
2479       triggered. Before the task aborts, it will actually sync up with
2480       the other tasks to ensure that all the marking data structures
2481       (local queues, stacks, fingers etc.)  are re-initialized so that
2482       when do_marking_step() completes, the marking phase can
2483       immediately restart.
2484 
2485       (3) When enough completed SATB buffers are available. The
2486       do_marking_step() method only tries to drain SATB buffers right
2487       at the beginning. So, if enough buffers are available, the
2488       marking step aborts and the SATB buffers are processed at
2489       the beginning of the next invocation.
2490 
2491       (4) To yield. when we have to yield then we abort and yield
2492       right at the end of do_marking_step(). This saves us from a lot
2493       of hassle as, by yielding we might allow a Full GC. If this
2494       happens then objects will be compacted underneath our feet, the
2495       heap might shrink, etc. We save checking for this by just
2496       aborting and doing the yield right at the end.
2497 
2498     From the above it follows that the do_marking_step() method should
2499     be called in a loop (or, otherwise, regularly) until it completes.
2500 
2501     If a marking step completes without its has_aborted() flag being
2502     true, it means it has completed the current marking phase (and
2503     also all other marking tasks have done so and have all synced up).
2504 
2505     A method called regular_clock_call() is invoked "regularly" (in
2506     sub ms intervals) throughout marking. It is this clock method that
2507     checks all the abort conditions which were mentioned above and
2508     decides when the task should abort. A work-based scheme is used to
2509     trigger this clock method: when the number of object words the
2510     marking phase has scanned or the number of references the marking
2511     phase has visited reach a given limit. Additional invocations to
2512     the method clock have been planted in a few other strategic places
2513     too. The initial reason for the clock method was to avoid calling
2514     vtime too regularly, as it is quite expensive. So, once it was in
2515     place, it was natural to piggy-back all the other conditions on it
2516     too and not constantly check them throughout the code.
2517 
2518     If do_termination is true then do_marking_step will enter its
2519     termination protocol.
2520 
2521     The value of is_serial must be true when do_marking_step is being
2522     called serially (i.e. by the VMThread) and do_marking_step should
2523     skip any synchronization in the termination and overflow code.
2524     Examples include the serial remark code and the serial reference
2525     processing closures.
2526 
2527     The value of is_serial must be false when do_marking_step is
2528     being called by any of the worker threads in a work gang.
2529     Examples include the concurrent marking code (CMMarkingTask),
2530     the MT remark code, and the MT reference processing closures.
2531 
2532  *****************************************************************************/
2533 
2534 void G1CMTask::do_marking_step(double time_target_ms,
2535                                bool do_termination,
2536                                bool is_serial) {
2537   assert(time_target_ms >= 1.0, "minimum granularity is 1ms");
2538 
2539   _start_time_ms = os::elapsedVTime() * 1000.0;
2540 
2541   // If do_stealing is true then do_marking_step will attempt to
2542   // steal work from the other G1CMTasks. It only makes sense to
2543   // enable stealing when the termination protocol is enabled
2544   // and do_marking_step() is not being called serially.
2545   bool do_stealing = do_termination && !is_serial;
2546 
2547   double diff_prediction_ms = _g1h->g1_policy()->predictor().get_new_prediction(&_marking_step_diffs_ms);
2548   _time_target_ms = time_target_ms - diff_prediction_ms;
2549 
2550   // set up the variables that are used in the work-based scheme to
2551   // call the regular clock method
2552   _words_scanned = 0;
2553   _refs_reached  = 0;
2554   recalculate_limits();
2555 
2556   // clear all flags
2557   clear_has_aborted();
2558   _has_timed_out = false;
2559   _draining_satb_buffers = false;
2560 
2561   ++_calls;
2562 
2563   // Set up the bitmap and oop closures. Anything that uses them is
2564   // eventually called from this method, so it is OK to allocate these
2565   // statically.
2566   G1CMBitMapClosure bitmap_closure(this, _cm);
2567   G1CMOopClosure cm_oop_closure(_g1h, this);
2568   set_cm_oop_closure(&cm_oop_closure);
2569 
2570   if (_cm->has_overflown()) {
2571     // This can happen if the mark stack overflows during a GC pause
2572     // and this task, after a yield point, restarts. We have to abort
2573     // as we need to get into the overflow protocol which happens
2574     // right at the end of this task.
2575     set_has_aborted();
2576   }
2577 
2578   // First drain any available SATB buffers. After this, we will not
2579   // look at SATB buffers before the next invocation of this method.
2580   // If enough completed SATB buffers are queued up, the regular clock
2581   // will abort this task so that it restarts.
2582   drain_satb_buffers();
2583   // ...then partially drain the local queue and the global stack
2584   drain_local_queue(true);
2585   drain_global_stack(true);
2586 
2587   do {
2588     if (!has_aborted() && _curr_region != NULL) {
2589       // This means that we're already holding on to a region.
2590       assert(_finger != NULL, "if region is not NULL, then the finger "
2591              "should not be NULL either");
2592 
2593       // We might have restarted this task after an evacuation pause
2594       // which might have evacuated the region we're holding on to
2595       // underneath our feet. Let's read its limit again to make sure
2596       // that we do not iterate over a region of the heap that
2597       // contains garbage (update_region_limit() will also move
2598       // _finger to the start of the region if it is found empty).
2599       update_region_limit();
2600       // We will start from _finger not from the start of the region,
2601       // as we might be restarting this task after aborting half-way
2602       // through scanning this region. In this case, _finger points to
2603       // the address where we last found a marked object. If this is a
2604       // fresh region, _finger points to start().
2605       MemRegion mr = MemRegion(_finger, _region_limit);
2606 
2607       assert(!_curr_region->is_humongous() || mr.start() == _curr_region->bottom(),
2608              "humongous regions should go around loop once only");
2609 
2610       // Some special cases:
2611       // If the memory region is empty, we can just give up the region.
2612       // If the current region is humongous then we only need to check
2613       // the bitmap for the bit associated with the start of the object,
2614       // scan the object if it's live, and give up the region.
2615       // Otherwise, let's iterate over the bitmap of the part of the region
2616       // that is left.
2617       // If the iteration is successful, give up the region.
2618       if (mr.is_empty()) {
2619         giveup_current_region();
2620         regular_clock_call();
2621       } else if (_curr_region->is_humongous() && mr.start() == _curr_region->bottom()) {
2622         if (_next_mark_bitmap->is_marked(mr.start())) {
2623           // The object is marked - apply the closure
2624           bitmap_closure.do_addr(mr.start());
2625         }
2626         // Even if this task aborted while scanning the humongous object
2627         // we can (and should) give up the current region.
2628         giveup_current_region();
2629         regular_clock_call();
2630       } else if (_next_mark_bitmap->iterate(&bitmap_closure, mr)) {
2631         giveup_current_region();
2632         regular_clock_call();
2633       } else {
2634         assert(has_aborted(), "currently the only way to do so");
2635         // The only way to abort the bitmap iteration is to return
2636         // false from the do_bit() method. However, inside the
2637         // do_bit() method we move the _finger to point to the
2638         // object currently being looked at. So, if we bail out, we
2639         // have definitely set _finger to something non-null.
2640         assert(_finger != NULL, "invariant");
2641 
2642         // Region iteration was actually aborted. So now _finger
2643         // points to the address of the object we last scanned. If we
2644         // leave it there, when we restart this task, we will rescan
2645         // the object. It is easy to avoid this. We move the finger by
2646         // enough to point to the next possible object header.
2647         assert(_finger < _region_limit, "invariant");
2648         HeapWord* const new_finger = _finger + ((oop)_finger)->size();
2649         // Check if bitmap iteration was aborted while scanning the last object
2650         if (new_finger >= _region_limit) {
2651           giveup_current_region();
2652         } else {
2653           move_finger_to(new_finger);
2654         }
2655       }
2656     }
2657     // At this point we have either completed iterating over the
2658     // region we were holding on to, or we have aborted.
2659 
2660     // We then partially drain the local queue and the global stack.
2661     // (Do we really need this?)
2662     drain_local_queue(true);
2663     drain_global_stack(true);
2664 
2665     // Read the note on the claim_region() method on why it might
2666     // return NULL with potentially more regions available for
2667     // claiming and why we have to check out_of_regions() to determine
2668     // whether we're done or not.
2669     while (!has_aborted() && _curr_region == NULL && !_cm->out_of_regions()) {
2670       // We are going to try to claim a new region. We should have
2671       // given up on the previous one.
2672       // Separated the asserts so that we know which one fires.
2673       assert(_curr_region  == NULL, "invariant");
2674       assert(_finger       == NULL, "invariant");
2675       assert(_region_limit == NULL, "invariant");
2676       HeapRegion* claimed_region = _cm->claim_region(_worker_id);
2677       if (claimed_region != NULL) {
2678         // Yes, we managed to claim one
2679         setup_for_region(claimed_region);
2680         assert(_curr_region == claimed_region, "invariant");
2681       }
2682       // It is important to call the regular clock here. It might take
2683       // a while to claim a region if, for example, we hit a large
2684       // block of empty regions. So we need to call the regular clock
2685       // method once round the loop to make sure it's called
2686       // frequently enough.
2687       regular_clock_call();
2688     }
2689 
2690     if (!has_aborted() && _curr_region == NULL) {
2691       assert(_cm->out_of_regions(),
2692              "at this point we should be out of regions");
2693     }
2694   } while ( _curr_region != NULL && !has_aborted());
2695 
2696   if (!has_aborted()) {
2697     // We cannot check whether the global stack is empty, since other
2698     // tasks might be pushing objects to it concurrently.
2699     assert(_cm->out_of_regions(),
2700            "at this point we should be out of regions");
2701     // Try to reduce the number of available SATB buffers so that
2702     // remark has less work to do.
2703     drain_satb_buffers();
2704   }
2705 
2706   // Since we've done everything else, we can now totally drain the
2707   // local queue and global stack.
2708   drain_local_queue(false);
2709   drain_global_stack(false);
2710 
2711   // Attempt at work stealing from other task's queues.
2712   if (do_stealing && !has_aborted()) {
2713     // We have not aborted. This means that we have finished all that
2714     // we could. Let's try to do some stealing...
2715 
2716     // We cannot check whether the global stack is empty, since other
2717     // tasks might be pushing objects to it concurrently.
2718     assert(_cm->out_of_regions() && _task_queue->size() == 0,
2719            "only way to reach here");
2720     while (!has_aborted()) {
2721       G1TaskQueueEntry entry;
2722       if (_cm->try_stealing(_worker_id, &_hash_seed, entry)) {
2723         scan_task_entry(entry);
2724 
2725         // And since we're towards the end, let's totally drain the
2726         // local queue and global stack.
2727         drain_local_queue(false);
2728         drain_global_stack(false);
2729       } else {
2730         break;
2731       }
2732     }
2733   }
2734 
2735   // We still haven't aborted. Now, let's try to get into the
2736   // termination protocol.
2737   if (do_termination && !has_aborted()) {
2738     // We cannot check whether the global stack is empty, since other
2739     // tasks might be concurrently pushing objects on it.
2740     // Separated the asserts so that we know which one fires.
2741     assert(_cm->out_of_regions(), "only way to reach here");
2742     assert(_task_queue->size() == 0, "only way to reach here");
2743     _termination_start_time_ms = os::elapsedVTime() * 1000.0;
2744 
2745     // The G1CMTask class also extends the TerminatorTerminator class,
2746     // hence its should_exit_termination() method will also decide
2747     // whether to exit the termination protocol or not.
2748     bool finished = (is_serial ||
2749                      _cm->terminator()->offer_termination(this));
2750     double termination_end_time_ms = os::elapsedVTime() * 1000.0;
2751     _termination_time_ms +=
2752       termination_end_time_ms - _termination_start_time_ms;
2753 
2754     if (finished) {
2755       // We're all done.
2756 
2757       // We can now guarantee that the global stack is empty, since
2758       // all other tasks have finished. We separated the guarantees so
2759       // that, if a condition is false, we can immediately find out
2760       // which one.
2761       guarantee(_cm->out_of_regions(), "only way to reach here");
2762       guarantee(_cm->mark_stack_empty(), "only way to reach here");
2763       guarantee(_task_queue->size() == 0, "only way to reach here");
2764       guarantee(!_cm->has_overflown(), "only way to reach here");
2765     } else {
2766       // Apparently there's more work to do. Let's abort this task. It
2767       // will restart it and we can hopefully find more things to do.
2768       set_has_aborted();
2769     }
2770   }
2771 
2772   // Mainly for debugging purposes to make sure that a pointer to the
2773   // closure which was statically allocated in this frame doesn't
2774   // escape it by accident.
2775   set_cm_oop_closure(NULL);
2776   double end_time_ms = os::elapsedVTime() * 1000.0;
2777   double elapsed_time_ms = end_time_ms - _start_time_ms;
2778   // Update the step history.
2779   _step_times_ms.add(elapsed_time_ms);
2780 
2781   if (has_aborted()) {
2782     // The task was aborted for some reason.
2783     if (_has_timed_out) {
2784       double diff_ms = elapsed_time_ms - _time_target_ms;
2785       // Keep statistics of how well we did with respect to hitting
2786       // our target only if we actually timed out (if we aborted for
2787       // other reasons, then the results might get skewed).
2788       _marking_step_diffs_ms.add(diff_ms);
2789     }
2790 
2791     if (_cm->has_overflown()) {
2792       // This is the interesting one. We aborted because a global
2793       // overflow was raised. This means we have to restart the
2794       // marking phase and start iterating over regions. However, in
2795       // order to do this we have to make sure that all tasks stop
2796       // what they are doing and re-initialize in a safe manner. We
2797       // will achieve this with the use of two barrier sync points.
2798 
2799       if (!is_serial) {
2800         // We only need to enter the sync barrier if being called
2801         // from a parallel context
2802         _cm->enter_first_sync_barrier(_worker_id);
2803 
2804         // When we exit this sync barrier we know that all tasks have
2805         // stopped doing marking work. So, it's now safe to
2806         // re-initialize our data structures.
2807       }
2808 
2809       clear_region_fields();
2810       flush_mark_stats_cache();
2811 
2812       if (!is_serial) {
2813         // If we're executing the concurrent phase of marking, reset the marking
2814         // state; otherwise the marking state is reset after reference processing,
2815         // during the remark pause.
2816         // If we reset here as a result of an overflow during the remark we will
2817         // see assertion failures from any subsequent set_concurrency_and_phase()
2818         // calls.
2819         if (_cm->concurrent() && _worker_id == 0) {
2820           // Worker 0 is responsible for clearing the global data structures because
2821           // of an overflow. During STW we should not clear the overflow flag (in
2822           // G1ConcurrentMark::reset_marking_state()) since we rely on it being true when we exit
2823           // method to abort the pause and restart concurrent marking.
2824           _cm->reset_marking_for_restart();
2825 
2826           log_info(gc, marking)("Concurrent Mark reset for overflow");
2827         }
2828 
2829         // ...and enter the second barrier.
2830         _cm->enter_second_sync_barrier(_worker_id);
2831       }
2832       // At this point, if we're during the concurrent phase of
2833       // marking, everything has been re-initialized and we're
2834       // ready to restart.
2835     }
2836   }
2837 }
2838 
2839 G1CMTask::G1CMTask(uint worker_id,
2840                    G1ConcurrentMark* cm,
2841                    G1CMTaskQueue* task_queue,
2842                    G1RegionMarkStats* mark_stats,
2843                    uint max_regions) :
2844   _objArray_processor(this),
2845   _worker_id(worker_id),
2846   _g1h(G1CollectedHeap::heap()),
2847   _cm(cm),
2848   _next_mark_bitmap(NULL),
2849   _task_queue(task_queue),
2850   _mark_stats_cache(mark_stats, max_regions, RegionMarkStatsCacheSize),
2851   _calls(0),
2852   _time_target_ms(0.0),
2853   _start_time_ms(0.0),
2854   _cm_oop_closure(NULL),
2855   _curr_region(NULL),
2856   _finger(NULL),
2857   _region_limit(NULL),
2858   _words_scanned(0),
2859   _words_scanned_limit(0),
2860   _real_words_scanned_limit(0),
2861   _refs_reached(0),
2862   _refs_reached_limit(0),
2863   _real_refs_reached_limit(0),
2864   _hash_seed(17),
2865   _has_aborted(false),
2866   _has_timed_out(false),
2867   _draining_satb_buffers(false),
2868   _step_times_ms(),
2869   _elapsed_time_ms(0.0),
2870   _termination_time_ms(0.0),
2871   _termination_start_time_ms(0.0),
2872   _marking_step_diffs_ms()
2873 {
2874   guarantee(task_queue != NULL, "invariant");
2875 
2876   _marking_step_diffs_ms.add(0.5);
2877 }
2878 
2879 // These are formatting macros that are used below to ensure
2880 // consistent formatting. The *_H_* versions are used to format the
2881 // header for a particular value and they should be kept consistent
2882 // with the corresponding macro. Also note that most of the macros add
2883 // the necessary white space (as a prefix) which makes them a bit
2884 // easier to compose.
2885 
2886 // All the output lines are prefixed with this string to be able to
2887 // identify them easily in a large log file.
2888 #define G1PPRL_LINE_PREFIX            "###"
2889 
2890 #define G1PPRL_ADDR_BASE_FORMAT    " " PTR_FORMAT "-" PTR_FORMAT
2891 #ifdef _LP64
2892 #define G1PPRL_ADDR_BASE_H_FORMAT  " %37s"
2893 #else // _LP64
2894 #define G1PPRL_ADDR_BASE_H_FORMAT  " %21s"
2895 #endif // _LP64
2896 
2897 // For per-region info
2898 #define G1PPRL_TYPE_FORMAT            "   %-4s"
2899 #define G1PPRL_TYPE_H_FORMAT          "   %4s"
2900 #define G1PPRL_STATE_FORMAT           "   %-5s"
2901 #define G1PPRL_STATE_H_FORMAT         "   %5s"
2902 #define G1PPRL_BYTE_FORMAT            "  " SIZE_FORMAT_W(9)
2903 #define G1PPRL_BYTE_H_FORMAT          "  %9s"
2904 #define G1PPRL_DOUBLE_FORMAT          "  %14.1f"
2905 #define G1PPRL_DOUBLE_H_FORMAT        "  %14s"
2906 
2907 // For summary info
2908 #define G1PPRL_SUM_ADDR_FORMAT(tag)    "  " tag ":" G1PPRL_ADDR_BASE_FORMAT
2909 #define G1PPRL_SUM_BYTE_FORMAT(tag)    "  " tag ": " SIZE_FORMAT
2910 #define G1PPRL_SUM_MB_FORMAT(tag)      "  " tag ": %1.2f MB"
2911 #define G1PPRL_SUM_MB_PERC_FORMAT(tag) G1PPRL_SUM_MB_FORMAT(tag) " / %1.2f %%"
2912 
2913 G1PrintRegionLivenessInfoClosure::G1PrintRegionLivenessInfoClosure(const char* phase_name) :
2914   _total_used_bytes(0), _total_capacity_bytes(0),
2915   _total_prev_live_bytes(0), _total_next_live_bytes(0),
2916   _total_remset_bytes(0), _total_strong_code_roots_bytes(0)
2917 {
2918   G1CollectedHeap* g1h = G1CollectedHeap::heap();
2919   MemRegion g1_reserved = g1h->g1_reserved();
2920   double now = os::elapsedTime();
2921 
2922   // Print the header of the output.
2923   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX" PHASE %s @ %1.3f", phase_name, now);
2924   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX" HEAP"
2925                           G1PPRL_SUM_ADDR_FORMAT("reserved")
2926                           G1PPRL_SUM_BYTE_FORMAT("region-size"),
2927                           p2i(g1_reserved.start()), p2i(g1_reserved.end()),
2928                           HeapRegion::GrainBytes);
2929   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX);
2930   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX
2931                           G1PPRL_TYPE_H_FORMAT
2932                           G1PPRL_ADDR_BASE_H_FORMAT
2933                           G1PPRL_BYTE_H_FORMAT
2934                           G1PPRL_BYTE_H_FORMAT
2935                           G1PPRL_BYTE_H_FORMAT
2936                           G1PPRL_DOUBLE_H_FORMAT
2937                           G1PPRL_BYTE_H_FORMAT
2938                           G1PPRL_STATE_H_FORMAT
2939                           G1PPRL_BYTE_H_FORMAT,
2940                           "type", "address-range",
2941                           "used", "prev-live", "next-live", "gc-eff",
2942                           "remset", "state", "code-roots");
2943   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX
2944                           G1PPRL_TYPE_H_FORMAT
2945                           G1PPRL_ADDR_BASE_H_FORMAT
2946                           G1PPRL_BYTE_H_FORMAT
2947                           G1PPRL_BYTE_H_FORMAT
2948                           G1PPRL_BYTE_H_FORMAT
2949                           G1PPRL_DOUBLE_H_FORMAT
2950                           G1PPRL_BYTE_H_FORMAT
2951                           G1PPRL_STATE_H_FORMAT
2952                           G1PPRL_BYTE_H_FORMAT,
2953                           "", "",
2954                           "(bytes)", "(bytes)", "(bytes)", "(bytes/ms)",
2955                           "(bytes)", "", "(bytes)");
2956 }
2957 
2958 bool G1PrintRegionLivenessInfoClosure::do_heap_region(HeapRegion* r) {
2959   const char* type       = r->get_type_str();
2960   HeapWord* bottom       = r->bottom();
2961   HeapWord* end          = r->end();
2962   size_t capacity_bytes  = r->capacity();
2963   size_t used_bytes      = r->used();
2964   size_t prev_live_bytes = r->live_bytes();
2965   size_t next_live_bytes = r->next_live_bytes();
2966   double gc_eff          = r->gc_efficiency();
2967   size_t remset_bytes    = r->rem_set()->mem_size();
2968   size_t strong_code_roots_bytes = r->rem_set()->strong_code_roots_mem_size();
2969   const char* remset_type = r->rem_set()->get_short_state_str();
2970 
2971   _total_used_bytes      += used_bytes;
2972   _total_capacity_bytes  += capacity_bytes;
2973   _total_prev_live_bytes += prev_live_bytes;
2974   _total_next_live_bytes += next_live_bytes;
2975   _total_remset_bytes    += remset_bytes;
2976   _total_strong_code_roots_bytes += strong_code_roots_bytes;
2977 
2978   // Print a line for this particular region.
2979   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX
2980                           G1PPRL_TYPE_FORMAT
2981                           G1PPRL_ADDR_BASE_FORMAT
2982                           G1PPRL_BYTE_FORMAT
2983                           G1PPRL_BYTE_FORMAT
2984                           G1PPRL_BYTE_FORMAT
2985                           G1PPRL_DOUBLE_FORMAT
2986                           G1PPRL_BYTE_FORMAT
2987                           G1PPRL_STATE_FORMAT
2988                           G1PPRL_BYTE_FORMAT,
2989                           type, p2i(bottom), p2i(end),
2990                           used_bytes, prev_live_bytes, next_live_bytes, gc_eff,
2991                           remset_bytes, remset_type, strong_code_roots_bytes);
2992 
2993   return false;
2994 }
2995 
2996 G1PrintRegionLivenessInfoClosure::~G1PrintRegionLivenessInfoClosure() {
2997   // add static memory usages to remembered set sizes
2998   _total_remset_bytes += HeapRegionRemSet::fl_mem_size() + HeapRegionRemSet::static_mem_size();
2999   // Print the footer of the output.
3000   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX);
3001   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX
3002                          " SUMMARY"
3003                          G1PPRL_SUM_MB_FORMAT("capacity")
3004                          G1PPRL_SUM_MB_PERC_FORMAT("used")
3005                          G1PPRL_SUM_MB_PERC_FORMAT("prev-live")
3006                          G1PPRL_SUM_MB_PERC_FORMAT("next-live")
3007                          G1PPRL_SUM_MB_FORMAT("remset")
3008                          G1PPRL_SUM_MB_FORMAT("code-roots"),
3009                          bytes_to_mb(_total_capacity_bytes),
3010                          bytes_to_mb(_total_used_bytes),
3011                          percent_of(_total_used_bytes, _total_capacity_bytes),
3012                          bytes_to_mb(_total_prev_live_bytes),
3013                          percent_of(_total_prev_live_bytes, _total_capacity_bytes),
3014                          bytes_to_mb(_total_next_live_bytes),
3015                          percent_of(_total_next_live_bytes, _total_capacity_bytes),
3016                          bytes_to_mb(_total_remset_bytes),
3017                          bytes_to_mb(_total_strong_code_roots_bytes));
3018 }