1 /* 2 * Copyright (c) 2001, 2017, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "gc/g1/concurrentG1Refine.hpp" 27 #include "gc/g1/dirtyCardQueue.hpp" 28 #include "gc/g1/g1BlockOffsetTable.inline.hpp" 29 #include "gc/g1/g1CollectedHeap.inline.hpp" 30 #include "gc/g1/g1FromCardCache.hpp" 31 #include "gc/g1/g1GCPhaseTimes.hpp" 32 #include "gc/g1/g1HotCardCache.hpp" 33 #include "gc/g1/g1OopClosures.inline.hpp" 34 #include "gc/g1/g1RemSet.inline.hpp" 35 #include "gc/g1/g1SATBCardTableModRefBS.inline.hpp" 36 #include "gc/g1/heapRegion.inline.hpp" 37 #include "gc/g1/heapRegionManager.inline.hpp" 38 #include "gc/g1/heapRegionRemSet.hpp" 39 #include "gc/shared/gcTraceTime.inline.hpp" 40 #include "memory/iterator.hpp" 41 #include "memory/resourceArea.hpp" 42 #include "oops/oop.inline.hpp" 43 #include "utilities/globalDefinitions.hpp" 44 #include "utilities/intHisto.hpp" 45 #include "utilities/stack.inline.hpp" 46 47 // Collects information about the overall remembered set scan progress during an evacuation. 48 class G1RemSetScanState : public CHeapObj<mtGC> { 49 private: 50 class G1ClearCardTableTask : public AbstractGangTask { 51 G1CollectedHeap* _g1h; 52 uint* _dirty_region_list; 53 size_t _num_dirty_regions; 54 size_t _chunk_length; 55 56 size_t volatile _cur_dirty_regions; 57 public: 58 G1ClearCardTableTask(G1CollectedHeap* g1h, 59 uint* dirty_region_list, 60 size_t num_dirty_regions, 61 size_t chunk_length) : 62 AbstractGangTask("G1 Clear Card Table Task"), 63 _g1h(g1h), 64 _dirty_region_list(dirty_region_list), 65 _num_dirty_regions(num_dirty_regions), 66 _chunk_length(chunk_length), 67 _cur_dirty_regions(0) { 68 69 assert(chunk_length > 0, "must be"); 70 } 71 72 static size_t chunk_size() { return M; } 73 74 void work(uint worker_id) { 75 G1SATBCardTableModRefBS* ct_bs = _g1h->g1_barrier_set(); 76 77 while (_cur_dirty_regions < _num_dirty_regions) { 78 size_t next = Atomic::add(_chunk_length, &_cur_dirty_regions) - _chunk_length; 79 size_t max = MIN2(next + _chunk_length, _num_dirty_regions); 80 81 for (size_t i = next; i < max; i++) { 82 HeapRegion* r = _g1h->region_at(_dirty_region_list[i]); 83 if (!r->is_survivor()) { 84 ct_bs->clear(MemRegion(r->bottom(), r->end())); 85 } 86 } 87 } 88 } 89 }; 90 91 size_t _max_regions; 92 93 // Scan progress for the remembered set of a single region. Transitions from 94 // Unclaimed -> Claimed -> Complete. 95 // At each of the transitions the thread that does the transition needs to perform 96 // some special action once. This is the reason for the extra "Claimed" state. 97 typedef jint G1RemsetIterState; 98 99 static const G1RemsetIterState Unclaimed = 0; // The remembered set has not been scanned yet. 100 static const G1RemsetIterState Claimed = 1; // The remembered set is currently being scanned. 101 static const G1RemsetIterState Complete = 2; // The remembered set has been completely scanned. 102 103 G1RemsetIterState volatile* _iter_states; 104 // The current location where the next thread should continue scanning in a region's 105 // remembered set. 106 size_t volatile* _iter_claims; 107 108 // Temporary buffer holding the regions we used to store remembered set scan duplicate 109 // information. These are also called "dirty". Valid entries are from [0.._cur_dirty_region) 110 uint* _dirty_region_buffer; 111 112 typedef jbyte IsDirtyRegionState; 113 static const IsDirtyRegionState Clean = 0; 114 static const IsDirtyRegionState Dirty = 1; 115 // Holds a flag for every region whether it is in the _dirty_region_buffer already 116 // to avoid duplicates. Uses jbyte since there are no atomic instructions for bools. 117 IsDirtyRegionState* _in_dirty_region_buffer; 118 size_t _cur_dirty_region; 119 120 // Creates a snapshot of the current _top values at the start of collection to 121 // filter out card marks that we do not want to scan. 122 class G1ResetScanTopClosure : public HeapRegionClosure { 123 private: 124 HeapWord** _scan_top; 125 public: 126 G1ResetScanTopClosure(HeapWord** scan_top) : _scan_top(scan_top) { } 127 128 virtual bool doHeapRegion(HeapRegion* r) { 129 uint hrm_index = r->hrm_index(); 130 if (!r->in_collection_set() && r->is_old_or_humongous()) { 131 _scan_top[hrm_index] = r->top(); 132 } else { 133 _scan_top[hrm_index] = r->bottom(); 134 } 135 return false; 136 } 137 }; 138 139 // For each region, contains the maximum top() value to be used during this garbage 140 // collection. Subsumes common checks like filtering out everything but old and 141 // humongous regions outside the collection set. 142 // This is valid because we are not interested in scanning stray remembered set 143 // entries from free or archive regions. 144 HeapWord** _scan_top; 145 public: 146 G1RemSetScanState() : 147 _max_regions(0), 148 _iter_states(NULL), 149 _iter_claims(NULL), 150 _dirty_region_buffer(NULL), 151 _in_dirty_region_buffer(NULL), 152 _cur_dirty_region(0), 153 _scan_top(NULL) { 154 } 155 156 ~G1RemSetScanState() { 157 if (_iter_states != NULL) { 158 FREE_C_HEAP_ARRAY(G1RemsetIterState, _iter_states); 159 } 160 if (_iter_claims != NULL) { 161 FREE_C_HEAP_ARRAY(size_t, _iter_claims); 162 } 163 if (_dirty_region_buffer != NULL) { 164 FREE_C_HEAP_ARRAY(uint, _dirty_region_buffer); 165 } 166 if (_in_dirty_region_buffer != NULL) { 167 FREE_C_HEAP_ARRAY(IsDirtyRegionState, _in_dirty_region_buffer); 168 } 169 if (_scan_top != NULL) { 170 FREE_C_HEAP_ARRAY(HeapWord*, _scan_top); 171 } 172 } 173 174 void initialize(uint max_regions) { 175 assert(_iter_states == NULL, "Must not be initialized twice"); 176 assert(_iter_claims == NULL, "Must not be initialized twice"); 177 _max_regions = max_regions; 178 _iter_states = NEW_C_HEAP_ARRAY(G1RemsetIterState, max_regions, mtGC); 179 _iter_claims = NEW_C_HEAP_ARRAY(size_t, max_regions, mtGC); 180 _dirty_region_buffer = NEW_C_HEAP_ARRAY(uint, max_regions, mtGC); 181 _in_dirty_region_buffer = NEW_C_HEAP_ARRAY(IsDirtyRegionState, max_regions, mtGC); 182 _scan_top = NEW_C_HEAP_ARRAY(HeapWord*, max_regions, mtGC); 183 } 184 185 void reset() { 186 for (uint i = 0; i < _max_regions; i++) { 187 _iter_states[i] = Unclaimed; 188 } 189 190 memset(_scan_top, 0, _max_regions * sizeof(HeapWord*)); 191 G1ResetScanTopClosure cl(_scan_top); 192 G1CollectedHeap::heap()->heap_region_iterate(&cl); 193 194 memset((void*)_iter_claims, 0, _max_regions * sizeof(size_t)); 195 memset(_in_dirty_region_buffer, Clean, _max_regions * sizeof(IsDirtyRegionState)); 196 _cur_dirty_region = 0; 197 } 198 199 // Attempt to claim the remembered set of the region for iteration. Returns true 200 // if this call caused the transition from Unclaimed to Claimed. 201 inline bool claim_iter(uint region) { 202 assert(region < _max_regions, "Tried to access invalid region %u", region); 203 if (_iter_states[region] != Unclaimed) { 204 return false; 205 } 206 jint res = Atomic::cmpxchg(Claimed, (jint*)(&_iter_states[region]), Unclaimed); 207 return (res == Unclaimed); 208 } 209 210 // Try to atomically sets the iteration state to "complete". Returns true for the 211 // thread that caused the transition. 212 inline bool set_iter_complete(uint region) { 213 if (iter_is_complete(region)) { 214 return false; 215 } 216 jint res = Atomic::cmpxchg(Complete, (jint*)(&_iter_states[region]), Claimed); 217 return (res == Claimed); 218 } 219 220 // Returns true if the region's iteration is complete. 221 inline bool iter_is_complete(uint region) const { 222 assert(region < _max_regions, "Tried to access invalid region %u", region); 223 return _iter_states[region] == Complete; 224 } 225 226 // The current position within the remembered set of the given region. 227 inline size_t iter_claimed(uint region) const { 228 assert(region < _max_regions, "Tried to access invalid region %u", region); 229 return _iter_claims[region]; 230 } 231 232 // Claim the next block of cards within the remembered set of the region with 233 // step size. 234 inline size_t iter_claimed_next(uint region, size_t step) { 235 return Atomic::add(step, &_iter_claims[region]) - step; 236 } 237 238 void add_dirty_region(uint region) { 239 if (_in_dirty_region_buffer[region] == Dirty) { 240 return; 241 } 242 243 bool marked_as_dirty = Atomic::cmpxchg(Dirty, &_in_dirty_region_buffer[region], Clean) == Clean; 244 if (marked_as_dirty) { 245 size_t allocated = Atomic::add(1, &_cur_dirty_region) - 1; 246 _dirty_region_buffer[allocated] = region; 247 } 248 } 249 250 HeapWord* scan_top(uint region_idx) const { 251 return _scan_top[region_idx]; 252 } 253 254 // Clear the card table of "dirty" regions. 255 void clear_card_table(WorkGang* workers) { 256 if (_cur_dirty_region == 0) { 257 return; 258 } 259 260 size_t const num_chunks = align_size_up(_cur_dirty_region * HeapRegion::CardsPerRegion, G1ClearCardTableTask::chunk_size()) / G1ClearCardTableTask::chunk_size(); 261 uint const num_workers = (uint)MIN2(num_chunks, (size_t)workers->active_workers()); 262 size_t const chunk_length = G1ClearCardTableTask::chunk_size() / HeapRegion::CardsPerRegion; 263 264 // Iterate over the dirty cards region list. 265 G1ClearCardTableTask cl(G1CollectedHeap::heap(), _dirty_region_buffer, _cur_dirty_region, chunk_length); 266 267 log_debug(gc, ergo)("Running %s using %u workers for " SIZE_FORMAT " " 268 "units of work for " SIZE_FORMAT " regions.", 269 cl.name(), num_workers, num_chunks, _cur_dirty_region); 270 workers->run_task(&cl, num_workers); 271 272 #ifndef PRODUCT 273 // Need to synchronize with concurrent cleanup since it needs to 274 // finish its card table clearing before we can verify. 275 G1CollectedHeap::heap()->wait_while_free_regions_coming(); 276 G1CollectedHeap::heap()->verifier()->verify_card_table_cleanup(); 277 #endif 278 } 279 }; 280 281 G1RemSet::G1RemSet(G1CollectedHeap* g1, 282 CardTableModRefBS* ct_bs, 283 G1HotCardCache* hot_card_cache) : 284 _g1(g1), 285 _scan_state(new G1RemSetScanState()), 286 _conc_refine_cards(0), 287 _ct_bs(ct_bs), 288 _g1p(_g1->g1_policy()), 289 _hot_card_cache(hot_card_cache), 290 _prev_period_summary(), 291 _into_cset_dirty_card_queue_set(false) 292 { 293 if (log_is_enabled(Trace, gc, remset)) { 294 _prev_period_summary.initialize(this); 295 } 296 // Initialize the card queue set used to hold cards containing 297 // references into the collection set. 298 _into_cset_dirty_card_queue_set.initialize(NULL, // Should never be called by the Java code 299 DirtyCardQ_CBL_mon, 300 DirtyCardQ_FL_lock, 301 -1, // never trigger processing 302 -1, // no limit on length 303 Shared_DirtyCardQ_lock, 304 &JavaThread::dirty_card_queue_set()); 305 } 306 307 G1RemSet::~G1RemSet() { 308 if (_scan_state != NULL) { 309 delete _scan_state; 310 } 311 } 312 313 uint G1RemSet::num_par_rem_sets() { 314 return DirtyCardQueueSet::num_par_ids() + ConcurrentG1Refine::thread_num() + MAX2(ConcGCThreads, ParallelGCThreads); 315 } 316 317 void G1RemSet::initialize(size_t capacity, uint max_regions) { 318 G1FromCardCache::initialize(num_par_rem_sets(), max_regions); 319 _scan_state->initialize(max_regions); 320 { 321 GCTraceTime(Debug, gc, marking)("Initialize Card Live Data"); 322 _card_live_data.initialize(capacity, max_regions); 323 } 324 if (G1PretouchAuxiliaryMemory) { 325 GCTraceTime(Debug, gc, marking)("Pre-Touch Card Live Data"); 326 _card_live_data.pretouch(); 327 } 328 } 329 330 G1ScanRSClosure::G1ScanRSClosure(G1RemSetScanState* scan_state, 331 G1ParPushHeapRSClosure* push_heap_cl, 332 CodeBlobClosure* code_root_cl, 333 uint worker_i) : 334 _scan_state(scan_state), 335 _push_heap_cl(push_heap_cl), 336 _code_root_cl(code_root_cl), 337 _strong_code_root_scan_time_sec(0.0), 338 _cards(0), 339 _cards_done(0), 340 _worker_i(worker_i) { 341 _g1h = G1CollectedHeap::heap(); 342 _bot = _g1h->bot(); 343 _ct_bs = _g1h->g1_barrier_set(); 344 _block_size = MAX2<size_t>(G1RSetScanBlockSize, 1); 345 } 346 347 void G1ScanRSClosure::scan_card(size_t index, HeapWord* card_start, HeapRegion *r) { 348 MemRegion card_region(card_start, BOTConstants::N_words); 349 MemRegion pre_gc_allocated(r->bottom(), _scan_state->scan_top(r->hrm_index())); 350 MemRegion mr = pre_gc_allocated.intersection(card_region); 351 if (!mr.is_empty() && !_ct_bs->is_card_claimed(index)) { 352 // We make the card as "claimed" lazily (so races are possible 353 // but they're benign), which reduces the number of duplicate 354 // scans (the rsets of the regions in the cset can intersect). 355 _ct_bs->set_card_claimed(index); 356 _push_heap_cl->set_region(r); 357 r->oops_on_card_seq_iterate_careful<true>(mr, _push_heap_cl); 358 _cards_done++; 359 } 360 } 361 362 void G1ScanRSClosure::scan_strong_code_roots(HeapRegion* r) { 363 double scan_start = os::elapsedTime(); 364 r->strong_code_roots_do(_code_root_cl); 365 _strong_code_root_scan_time_sec += (os::elapsedTime() - scan_start); 366 } 367 368 bool G1ScanRSClosure::doHeapRegion(HeapRegion* r) { 369 assert(r->in_collection_set(), "should only be called on elements of CS."); 370 uint region_idx = r->hrm_index(); 371 372 if (_scan_state->iter_is_complete(region_idx)) { 373 return false; 374 } 375 if (_scan_state->claim_iter(region_idx)) { 376 // If we ever free the collection set concurrently, we should also 377 // clear the card table concurrently therefore we won't need to 378 // add regions of the collection set to the dirty cards region. 379 _scan_state->add_dirty_region(region_idx); 380 } 381 382 HeapRegionRemSetIterator iter(r->rem_set()); 383 size_t card_index; 384 385 // We claim cards in block so as to reduce the contention. The block size is determined by 386 // the G1RSetScanBlockSize parameter. 387 size_t claimed_card_block = _scan_state->iter_claimed_next(region_idx, _block_size); 388 for (size_t current_card = 0; iter.has_next(card_index); current_card++) { 389 if (current_card >= claimed_card_block + _block_size) { 390 claimed_card_block = _scan_state->iter_claimed_next(region_idx, _block_size); 391 } 392 if (current_card < claimed_card_block) { 393 continue; 394 } 395 HeapWord* card_start = _g1h->bot()->address_for_index(card_index); 396 397 HeapRegion* card_region = _g1h->heap_region_containing(card_start); 398 _cards++; 399 400 _scan_state->add_dirty_region(card_region->hrm_index()); 401 402 // If the card is dirty, then we will scan it during updateRS. 403 if (!card_region->in_collection_set() && 404 !_ct_bs->is_card_dirty(card_index)) { 405 scan_card(card_index, card_start, card_region); 406 } 407 } 408 if (_scan_state->set_iter_complete(region_idx)) { 409 // Scan the strong code root list attached to the current region 410 scan_strong_code_roots(r); 411 } 412 return false; 413 } 414 415 size_t G1RemSet::scan_rem_set(G1ParPushHeapRSClosure* oops_in_heap_closure, 416 CodeBlobClosure* heap_region_codeblobs, 417 uint worker_i) { 418 double rs_time_start = os::elapsedTime(); 419 420 G1ScanRSClosure cl(_scan_state, oops_in_heap_closure, heap_region_codeblobs, worker_i); 421 _g1->collection_set_iterate_from(&cl, worker_i); 422 423 double scan_rs_time_sec = (os::elapsedTime() - rs_time_start) - 424 cl.strong_code_root_scan_time_sec(); 425 426 _g1p->phase_times()->record_time_secs(G1GCPhaseTimes::ScanRS, worker_i, scan_rs_time_sec); 427 _g1p->phase_times()->record_time_secs(G1GCPhaseTimes::CodeRoots, worker_i, cl.strong_code_root_scan_time_sec()); 428 429 return cl.cards_done(); 430 } 431 432 // Closure used for updating RSets and recording references that 433 // point into the collection set. Only called during an 434 // evacuation pause. 435 436 class RefineRecordRefsIntoCSCardTableEntryClosure: public CardTableEntryClosure { 437 G1RemSet* _g1rs; 438 DirtyCardQueue* _into_cset_dcq; 439 G1ParPushHeapRSClosure* _cl; 440 public: 441 RefineRecordRefsIntoCSCardTableEntryClosure(G1CollectedHeap* g1h, 442 DirtyCardQueue* into_cset_dcq, 443 G1ParPushHeapRSClosure* cl) : 444 _g1rs(g1h->g1_rem_set()), _into_cset_dcq(into_cset_dcq), _cl(cl) 445 {} 446 447 bool do_card_ptr(jbyte* card_ptr, uint worker_i) { 448 // The only time we care about recording cards that 449 // contain references that point into the collection set 450 // is during RSet updating within an evacuation pause. 451 // In this case worker_i should be the id of a GC worker thread. 452 assert(SafepointSynchronize::is_at_safepoint(), "not during an evacuation pause"); 453 assert(worker_i < ParallelGCThreads, "should be a GC worker"); 454 455 if (_g1rs->refine_card_during_gc(card_ptr, worker_i, _cl)) { 456 // 'card_ptr' contains references that point into the collection 457 // set. We need to record the card in the DCQS 458 // (_into_cset_dirty_card_queue_set) 459 // that's used for that purpose. 460 // 461 // Enqueue the card 462 _into_cset_dcq->enqueue(card_ptr); 463 } 464 return true; 465 } 466 }; 467 468 void G1RemSet::update_rem_set(DirtyCardQueue* into_cset_dcq, 469 G1ParPushHeapRSClosure* oops_in_heap_closure, 470 uint worker_i) { 471 RefineRecordRefsIntoCSCardTableEntryClosure into_cset_update_rs_cl(_g1, into_cset_dcq, oops_in_heap_closure); 472 473 G1GCParPhaseTimesTracker x(_g1p->phase_times(), G1GCPhaseTimes::UpdateRS, worker_i); 474 if (G1HotCardCache::default_use_cache()) { 475 // Apply the closure to the entries of the hot card cache. 476 G1GCParPhaseTimesTracker y(_g1p->phase_times(), G1GCPhaseTimes::ScanHCC, worker_i); 477 _g1->iterate_hcc_closure(&into_cset_update_rs_cl, worker_i); 478 } 479 // Apply the closure to all remaining log entries. 480 _g1->iterate_dirty_card_closure(&into_cset_update_rs_cl, worker_i); 481 } 482 483 void G1RemSet::cleanupHRRS() { 484 HeapRegionRemSet::cleanup(); 485 } 486 487 size_t G1RemSet::oops_into_collection_set_do(G1ParPushHeapRSClosure* cl, 488 CodeBlobClosure* heap_region_codeblobs, 489 uint worker_i) { 490 // A DirtyCardQueue that is used to hold cards containing references 491 // that point into the collection set. This DCQ is associated with a 492 // special DirtyCardQueueSet (see g1CollectedHeap.hpp). Under normal 493 // circumstances (i.e. the pause successfully completes), these cards 494 // are just discarded (there's no need to update the RSets of regions 495 // that were in the collection set - after the pause these regions 496 // are wholly 'free' of live objects. In the event of an evacuation 497 // failure the cards/buffers in this queue set are passed to the 498 // DirtyCardQueueSet that is used to manage RSet updates 499 DirtyCardQueue into_cset_dcq(&_into_cset_dirty_card_queue_set); 500 501 update_rem_set(&into_cset_dcq, cl, worker_i); 502 return scan_rem_set(cl, heap_region_codeblobs, worker_i);; 503 } 504 505 void G1RemSet::prepare_for_oops_into_collection_set_do() { 506 _g1->set_refine_cte_cl_concurrency(false); 507 DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set(); 508 dcqs.concatenate_logs(); 509 510 _scan_state->reset(); 511 } 512 513 void G1RemSet::cleanup_after_oops_into_collection_set_do() { 514 G1GCPhaseTimes* phase_times = _g1->g1_policy()->phase_times(); 515 // Cleanup after copy 516 _g1->set_refine_cte_cl_concurrency(true); 517 518 // Set all cards back to clean. 519 double start = os::elapsedTime(); 520 _scan_state->clear_card_table(_g1->workers()); 521 phase_times->record_clear_ct_time((os::elapsedTime() - start) * 1000.0); 522 523 DirtyCardQueueSet& into_cset_dcqs = _into_cset_dirty_card_queue_set; 524 525 if (_g1->evacuation_failed()) { 526 double restore_remembered_set_start = os::elapsedTime(); 527 528 // Restore remembered sets for the regions pointing into the collection set. 529 // We just need to transfer the completed buffers from the DirtyCardQueueSet 530 // used to hold cards that contain references that point into the collection set 531 // to the DCQS used to hold the deferred RS updates. 532 _g1->dirty_card_queue_set().merge_bufferlists(&into_cset_dcqs); 533 phase_times->record_evac_fail_restore_remsets((os::elapsedTime() - restore_remembered_set_start) * 1000.0); 534 } 535 536 // Free any completed buffers in the DirtyCardQueueSet used to hold cards 537 // which contain references that point into the collection. 538 _into_cset_dirty_card_queue_set.clear(); 539 assert(_into_cset_dirty_card_queue_set.completed_buffers_num() == 0, 540 "all buffers should be freed"); 541 _into_cset_dirty_card_queue_set.clear_n_completed_buffers(); 542 } 543 544 inline void check_card_ptr(jbyte* card_ptr, CardTableModRefBS* ct_bs) { 545 #ifdef ASSERT 546 G1CollectedHeap* g1 = G1CollectedHeap::heap(); 547 assert(g1->is_in_exact(ct_bs->addr_for(card_ptr)), 548 "Card at " PTR_FORMAT " index " SIZE_FORMAT " representing heap at " PTR_FORMAT " (%u) must be in committed heap", 549 p2i(card_ptr), 550 ct_bs->index_for(ct_bs->addr_for(card_ptr)), 551 p2i(ct_bs->addr_for(card_ptr)), 552 g1->addr_to_region(ct_bs->addr_for(card_ptr))); 553 #endif 554 } 555 556 G1UpdateRSOrPushRefOopClosure::G1UpdateRSOrPushRefOopClosure(G1CollectedHeap* g1h, 557 G1ParPushHeapRSClosure* push_ref_cl, 558 bool record_refs_into_cset, 559 uint worker_i) : 560 _g1(g1h), 561 _from(NULL), 562 _record_refs_into_cset(record_refs_into_cset), 563 _has_refs_into_cset(false), 564 _push_ref_cl(push_ref_cl), 565 _worker_i(worker_i) { } 566 567 void G1RemSet::refine_card_concurrently(jbyte* card_ptr, 568 uint worker_i) { 569 assert(!_g1->is_gc_active(), "Only call concurrently"); 570 571 check_card_ptr(card_ptr, _ct_bs); 572 573 // If the card is no longer dirty, nothing to do. 574 if (*card_ptr != CardTableModRefBS::dirty_card_val()) { 575 return; 576 } 577 578 // Construct the region representing the card. 579 HeapWord* start = _ct_bs->addr_for(card_ptr); 580 // And find the region containing it. 581 HeapRegion* r = _g1->heap_region_containing(start); 582 583 // This check is needed for some uncommon cases where we should 584 // ignore the card. 585 // 586 // The region could be young. Cards for young regions are 587 // distinctly marked (set to g1_young_gen), so the post-barrier will 588 // filter them out. However, that marking is performed 589 // concurrently. A write to a young object could occur before the 590 // card has been marked young, slipping past the filter. 591 // 592 // The card could be stale, because the region has been freed since 593 // the card was recorded. In this case the region type could be 594 // anything. If (still) free or (reallocated) young, just ignore 595 // it. If (reallocated) old or humongous, the later card trimming 596 // and additional checks in iteration may detect staleness. At 597 // worst, we end up processing a stale card unnecessarily. 598 // 599 // In the normal (non-stale) case, the synchronization between the 600 // enqueueing of the card and processing it here will have ensured 601 // we see the up-to-date region type here. 602 if (!r->is_old_or_humongous()) { 603 return; 604 } 605 606 // While we are processing RSet buffers during the collection, we 607 // actually don't want to scan any cards on the collection set, 608 // since we don't want to update remembered sets with entries that 609 // point into the collection set, given that live objects from the 610 // collection set are about to move and such entries will be stale 611 // very soon. This change also deals with a reliability issue which 612 // involves scanning a card in the collection set and coming across 613 // an array that was being chunked and looking malformed. Note, 614 // however, that if evacuation fails, we have to scan any objects 615 // that were not moved and create any missing entries. 616 if (r->in_collection_set()) { 617 return; 618 } 619 620 // The result from the hot card cache insert call is either: 621 // * pointer to the current card 622 // (implying that the current card is not 'hot'), 623 // * null 624 // (meaning we had inserted the card ptr into the "hot" card cache, 625 // which had some headroom), 626 // * a pointer to a "hot" card that was evicted from the "hot" cache. 627 // 628 629 if (_hot_card_cache->use_cache()) { 630 assert(!SafepointSynchronize::is_at_safepoint(), "sanity"); 631 632 const jbyte* orig_card_ptr = card_ptr; 633 card_ptr = _hot_card_cache->insert(card_ptr); 634 if (card_ptr == NULL) { 635 // There was no eviction. Nothing to do. 636 return; 637 } else if (card_ptr != orig_card_ptr) { 638 // Original card was inserted and an old card was evicted. 639 start = _ct_bs->addr_for(card_ptr); 640 r = _g1->heap_region_containing(start); 641 642 // Check whether the region formerly in the cache should be 643 // ignored, as discussed earlier for the original card. The 644 // region could have been freed while in the cache. The cset is 645 // not relevant here, since we're in concurrent phase. 646 if (!r->is_old_or_humongous()) { 647 return; 648 } 649 } // Else we still have the original card. 650 } 651 652 // Trim the region designated by the card to what's been allocated 653 // in the region. The card could be stale, or the card could cover 654 // (part of) an object at the end of the allocated space and extend 655 // beyond the end of allocation. 656 657 // Non-humongous objects are only allocated in the old-gen during 658 // GC, so if region is old then top is stable. Humongous object 659 // allocation sets top last; if top has not yet been set, this is 660 // a stale card and we'll end up with an empty intersection. If 661 // this is not a stale card, the synchronization between the 662 // enqueuing of the card and processing it here will have ensured 663 // we see the up-to-date top here. 664 HeapWord* scan_limit = r->top(); 665 666 if (scan_limit <= start) { 667 // If the trimmed region is empty, the card must be stale. 668 return; 669 } 670 671 // Okay to clean and process the card now. There are still some 672 // stale card cases that may be detected by iteration and dealt with 673 // as iteration failure. 674 *const_cast<volatile jbyte*>(card_ptr) = CardTableModRefBS::clean_card_val(); 675 676 // This fence serves two purposes. First, the card must be cleaned 677 // before processing the contents. Second, we can't proceed with 678 // processing until after the read of top, for synchronization with 679 // possibly concurrent humongous object allocation. It's okay that 680 // reading top and reading type were racy wrto each other. We need 681 // both set, in any order, to proceed. 682 OrderAccess::fence(); 683 684 // Don't use addr_for(card_ptr + 1) which can ask for 685 // a card beyond the heap. 686 HeapWord* end = start + CardTableModRefBS::card_size_in_words; 687 MemRegion dirty_region(start, MIN2(scan_limit, end)); 688 assert(!dirty_region.is_empty(), "sanity"); 689 690 G1ConcurrentRefineOopClosure conc_refine_cl(_g1, worker_i); 691 692 bool card_processed = 693 r->oops_on_card_seq_iterate_careful<false>(dirty_region, &conc_refine_cl); 694 695 // If unable to process the card then we encountered an unparsable 696 // part of the heap (e.g. a partially allocated object) while 697 // processing a stale card. Despite the card being stale, redirty 698 // and re-enqueue, because we've already cleaned the card. Without 699 // this we could incorrectly discard a non-stale card. 700 if (!card_processed) { 701 // The card might have gotten re-dirtied and re-enqueued while we 702 // worked. (In fact, it's pretty likely.) 703 if (*card_ptr != CardTableModRefBS::dirty_card_val()) { 704 *card_ptr = CardTableModRefBS::dirty_card_val(); 705 MutexLockerEx x(Shared_DirtyCardQ_lock, 706 Mutex::_no_safepoint_check_flag); 707 DirtyCardQueue* sdcq = 708 JavaThread::dirty_card_queue_set().shared_dirty_card_queue(); 709 sdcq->enqueue(card_ptr); 710 } 711 } else { 712 _conc_refine_cards++; 713 } 714 } 715 716 bool G1RemSet::refine_card_during_gc(jbyte* card_ptr, 717 uint worker_i, 718 G1ParPushHeapRSClosure* oops_in_heap_closure) { 719 assert(_g1->is_gc_active(), "Only call during GC"); 720 721 check_card_ptr(card_ptr, _ct_bs); 722 723 // If the card is no longer dirty, nothing to do. This covers cards that were already 724 // scanned as parts of the remembered sets. 725 if (*card_ptr != CardTableModRefBS::dirty_card_val()) { 726 // No need to return that this card contains refs that point 727 // into the collection set. 728 return false; 729 } 730 731 // Construct the region representing the card. 732 HeapWord* start = _ct_bs->addr_for(card_ptr); 733 // And find the region containing it. 734 HeapRegion* r = _g1->heap_region_containing(start); 735 736 HeapWord* scan_limit = _scan_state->scan_top(r->hrm_index()); 737 if (scan_limit <= start) { 738 // If the card starts above the area in the region containing objects to scan, skip it. 739 return false; 740 } 741 742 // Okay to clean and process the card now. There are still some 743 // stale card cases that may be detected by iteration and dealt with 744 // as iteration failure. 745 *const_cast<volatile jbyte*>(card_ptr) = CardTableModRefBS::clean_card_val(); 746 747 // Don't use addr_for(card_ptr + 1) which can ask for 748 // a card beyond the heap. 749 HeapWord* end = start + CardTableModRefBS::card_size_in_words; 750 MemRegion dirty_region(start, MIN2(scan_limit, end)); 751 assert(!dirty_region.is_empty(), "sanity"); 752 753 G1UpdateRSOrPushRefOopClosure update_rs_oop_cl(_g1, 754 oops_in_heap_closure, 755 true, 756 worker_i); 757 update_rs_oop_cl.set_from(r); 758 759 bool card_processed = 760 r->oops_on_card_seq_iterate_careful<true>(dirty_region, &update_rs_oop_cl); 761 assert(card_processed, "must be"); 762 _conc_refine_cards++; 763 764 return update_rs_oop_cl.has_refs_into_cset(); 765 } 766 767 void G1RemSet::print_periodic_summary_info(const char* header, uint period_count) { 768 if ((G1SummarizeRSetStatsPeriod > 0) && log_is_enabled(Trace, gc, remset) && 769 (period_count % G1SummarizeRSetStatsPeriod == 0)) { 770 771 if (!_prev_period_summary.initialized()) { 772 _prev_period_summary.initialize(this); 773 } 774 775 G1RemSetSummary current; 776 current.initialize(this); 777 _prev_period_summary.subtract_from(¤t); 778 779 Log(gc, remset) log; 780 log.trace("%s", header); 781 ResourceMark rm; 782 _prev_period_summary.print_on(log.trace_stream()); 783 784 _prev_period_summary.set(¤t); 785 } 786 } 787 788 void G1RemSet::print_summary_info() { 789 Log(gc, remset, exit) log; 790 if (log.is_trace()) { 791 log.trace(" Cumulative RS summary"); 792 G1RemSetSummary current; 793 current.initialize(this); 794 ResourceMark rm; 795 current.print_on(log.trace_stream()); 796 } 797 } 798 799 void G1RemSet::prepare_for_verify() { 800 if (G1HRRSFlushLogBuffersOnVerify && 801 (VerifyBeforeGC || VerifyAfterGC) 802 && (!_g1->collector_state()->full_collection() || G1VerifyRSetsDuringFullGC)) { 803 cleanupHRRS(); 804 _g1->set_refine_cte_cl_concurrency(false); 805 if (SafepointSynchronize::is_at_safepoint()) { 806 DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set(); 807 dcqs.concatenate_logs(); 808 } 809 810 bool use_hot_card_cache = _hot_card_cache->use_cache(); 811 _hot_card_cache->set_use_cache(false); 812 813 DirtyCardQueue into_cset_dcq(&_into_cset_dirty_card_queue_set); 814 update_rem_set(&into_cset_dcq, NULL, 0); 815 _into_cset_dirty_card_queue_set.clear(); 816 817 _hot_card_cache->set_use_cache(use_hot_card_cache); 818 assert(JavaThread::dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed"); 819 } 820 } 821 822 void G1RemSet::create_card_live_data(WorkGang* workers, G1CMBitMap* mark_bitmap) { 823 _card_live_data.create(workers, mark_bitmap); 824 } 825 826 void G1RemSet::finalize_card_live_data(WorkGang* workers, G1CMBitMap* mark_bitmap) { 827 _card_live_data.finalize(workers, mark_bitmap); 828 } 829 830 void G1RemSet::verify_card_live_data(WorkGang* workers, G1CMBitMap* bitmap) { 831 _card_live_data.verify(workers, bitmap); 832 } 833 834 void G1RemSet::clear_card_live_data(WorkGang* workers) { 835 _card_live_data.clear(workers); 836 } 837 838 #ifdef ASSERT 839 void G1RemSet::verify_card_live_data_is_clear() { 840 _card_live_data.verify_is_clear(); 841 } 842 #endif