1 /*
   2  * Copyright (c) 2001, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc/g1/concurrentG1Refine.hpp"
  27 #include "gc/g1/dirtyCardQueue.hpp"
  28 #include "gc/g1/g1BlockOffsetTable.inline.hpp"
  29 #include "gc/g1/g1CollectedHeap.inline.hpp"
  30 #include "gc/g1/g1FromCardCache.hpp"
  31 #include "gc/g1/g1GCPhaseTimes.hpp"
  32 #include "gc/g1/g1HotCardCache.hpp"
  33 #include "gc/g1/g1OopClosures.inline.hpp"
  34 #include "gc/g1/g1RemSet.inline.hpp"
  35 #include "gc/g1/g1SATBCardTableModRefBS.inline.hpp"
  36 #include "gc/g1/heapRegion.inline.hpp"
  37 #include "gc/g1/heapRegionManager.inline.hpp"
  38 #include "gc/g1/heapRegionRemSet.hpp"
  39 #include "gc/shared/gcTraceTime.inline.hpp"
  40 #include "memory/iterator.hpp"
  41 #include "memory/resourceArea.hpp"
  42 #include "oops/oop.inline.hpp"
  43 #include "utilities/globalDefinitions.hpp"
  44 #include "utilities/intHisto.hpp"
  45 #include "utilities/stack.inline.hpp"
  46 
  47 // Collects information about the overall remembered set scan progress during an evacuation.
  48 class G1RemSetScanState : public CHeapObj<mtGC> {
  49 private:
  50   class G1ClearCardTableTask : public AbstractGangTask {
  51     G1CollectedHeap* _g1h;
  52     uint* _dirty_region_list;
  53     size_t _num_dirty_regions;
  54     size_t _chunk_length;
  55 
  56     size_t volatile _cur_dirty_regions;
  57   public:
  58     G1ClearCardTableTask(G1CollectedHeap* g1h,
  59                          uint* dirty_region_list,
  60                          size_t num_dirty_regions,
  61                          size_t chunk_length) :
  62       AbstractGangTask("G1 Clear Card Table Task"),
  63       _g1h(g1h),
  64       _dirty_region_list(dirty_region_list),
  65       _num_dirty_regions(num_dirty_regions),
  66       _chunk_length(chunk_length),
  67       _cur_dirty_regions(0) {
  68 
  69       assert(chunk_length > 0, "must be");
  70     }
  71 
  72     static size_t chunk_size() { return M; }
  73 
  74     void work(uint worker_id) {
  75       G1SATBCardTableModRefBS* ct_bs = _g1h->g1_barrier_set();
  76 
  77       while (_cur_dirty_regions < _num_dirty_regions) {
  78         size_t next = Atomic::add(_chunk_length, &_cur_dirty_regions) - _chunk_length;
  79         size_t max = MIN2(next + _chunk_length, _num_dirty_regions);
  80 
  81         for (size_t i = next; i < max; i++) {
  82           HeapRegion* r = _g1h->region_at(_dirty_region_list[i]);
  83           if (!r->is_survivor()) {
  84             ct_bs->clear(MemRegion(r->bottom(), r->end()));
  85           }
  86         }
  87       }
  88     }
  89   };
  90 
  91   size_t _max_regions;
  92 
  93   // Scan progress for the remembered set of a single region. Transitions from
  94   // Unclaimed -> Claimed -> Complete.
  95   // At each of the transitions the thread that does the transition needs to perform
  96   // some special action once. This is the reason for the extra "Claimed" state.
  97   typedef jint G1RemsetIterState;
  98 
  99   static const G1RemsetIterState Unclaimed = 0; // The remembered set has not been scanned yet.
 100   static const G1RemsetIterState Claimed = 1;   // The remembered set is currently being scanned.
 101   static const G1RemsetIterState Complete = 2;  // The remembered set has been completely scanned.
 102 
 103   G1RemsetIterState volatile* _iter_states;
 104   // The current location where the next thread should continue scanning in a region's
 105   // remembered set.
 106   size_t volatile* _iter_claims;
 107 
 108   // Temporary buffer holding the regions we used to store remembered set scan duplicate
 109   // information. These are also called "dirty". Valid entries are from [0.._cur_dirty_region)
 110   uint* _dirty_region_buffer;
 111 
 112   typedef jbyte IsDirtyRegionState;
 113   static const IsDirtyRegionState Clean = 0;
 114   static const IsDirtyRegionState Dirty = 1;
 115   // Holds a flag for every region whether it is in the _dirty_region_buffer already
 116   // to avoid duplicates. Uses jbyte since there are no atomic instructions for bools.
 117   IsDirtyRegionState* _in_dirty_region_buffer;
 118   size_t _cur_dirty_region;
 119 public:
 120   G1RemSetScanState() :
 121     _max_regions(0),
 122     _iter_states(NULL),
 123     _iter_claims(NULL),
 124     _dirty_region_buffer(NULL),
 125     _in_dirty_region_buffer(NULL),
 126     _cur_dirty_region(0) {
 127 
 128   }
 129 
 130   ~G1RemSetScanState() {
 131     if (_iter_states != NULL) {
 132       FREE_C_HEAP_ARRAY(G1RemsetIterState, _iter_states);
 133     }
 134     if (_iter_claims != NULL) {
 135       FREE_C_HEAP_ARRAY(size_t, _iter_claims);
 136     }
 137     if (_dirty_region_buffer != NULL) {
 138       FREE_C_HEAP_ARRAY(uint, _dirty_region_buffer);
 139     }
 140     if (_in_dirty_region_buffer != NULL) {
 141       FREE_C_HEAP_ARRAY(IsDirtyRegionState, _in_dirty_region_buffer);
 142     }
 143   }
 144 
 145   void initialize(uint max_regions) {
 146     assert(_iter_states == NULL, "Must not be initialized twice");
 147     assert(_iter_claims == NULL, "Must not be initialized twice");
 148     _max_regions = max_regions;
 149     _iter_states = NEW_C_HEAP_ARRAY(G1RemsetIterState, max_regions, mtGC);
 150     _iter_claims = NEW_C_HEAP_ARRAY(size_t, max_regions, mtGC);
 151     _dirty_region_buffer = NEW_C_HEAP_ARRAY(uint, max_regions, mtGC);
 152     _in_dirty_region_buffer = NEW_C_HEAP_ARRAY(IsDirtyRegionState, max_regions, mtGC);
 153   }
 154 
 155   void reset() {
 156     for (uint i = 0; i < _max_regions; i++) {
 157       _iter_states[i] = Unclaimed;
 158     }
 159     memset((void*)_iter_claims, 0, _max_regions * sizeof(size_t));
 160     memset(_in_dirty_region_buffer, Clean, _max_regions * sizeof(IsDirtyRegionState));
 161     _cur_dirty_region = 0;
 162   }
 163 
 164   // Attempt to claim the remembered set of the region for iteration. Returns true
 165   // if this call caused the transition from Unclaimed to Claimed.
 166   inline bool claim_iter(uint region) {
 167     assert(region < _max_regions, "Tried to access invalid region %u", region);
 168     if (_iter_states[region] != Unclaimed) {
 169       return false;
 170     }
 171     jint res = Atomic::cmpxchg(Claimed, (jint*)(&_iter_states[region]), Unclaimed);
 172     return (res == Unclaimed);
 173   }
 174 
 175   // Try to atomically sets the iteration state to "complete". Returns true for the
 176   // thread that caused the transition.
 177   inline bool set_iter_complete(uint region) {
 178     if (iter_is_complete(region)) {
 179       return false;
 180     }
 181     jint res = Atomic::cmpxchg(Complete, (jint*)(&_iter_states[region]), Claimed);
 182     return (res == Claimed);
 183   }
 184 
 185   // Returns true if the region's iteration is complete.
 186   inline bool iter_is_complete(uint region) const {
 187     assert(region < _max_regions, "Tried to access invalid region %u", region);
 188     return _iter_states[region] == Complete;
 189   }
 190 
 191   // The current position within the remembered set of the given region.
 192   inline size_t iter_claimed(uint region) const {
 193     assert(region < _max_regions, "Tried to access invalid region %u", region);
 194     return _iter_claims[region];
 195   }
 196 
 197   // Claim the next block of cards within the remembered set of the region with
 198   // step size.
 199   inline size_t iter_claimed_next(uint region, size_t step) {
 200     return Atomic::add(step, &_iter_claims[region]) - step;
 201   }
 202 
 203   void add_dirty_region(uint region) {
 204     if (_in_dirty_region_buffer[region] == Dirty) {
 205       return;
 206     }
 207 
 208     bool marked_as_dirty = Atomic::cmpxchg(Dirty, &_in_dirty_region_buffer[region], Clean) == Clean;
 209     if (marked_as_dirty) {
 210       size_t allocated = Atomic::add(1, &_cur_dirty_region) - 1;
 211       _dirty_region_buffer[allocated] = region;
 212     }
 213   }
 214 
 215   // Clear the card table of "dirty" regions.
 216   void clear_card_table(WorkGang* workers) {
 217     if (_cur_dirty_region == 0) {
 218       return;
 219     }
 220 
 221     size_t const num_chunks = align_size_up(_cur_dirty_region * HeapRegion::CardsPerRegion, G1ClearCardTableTask::chunk_size()) / G1ClearCardTableTask::chunk_size();
 222     uint const num_workers = (uint)MIN2(num_chunks, (size_t)workers->active_workers());
 223     size_t const chunk_length = G1ClearCardTableTask::chunk_size() / HeapRegion::CardsPerRegion;
 224 
 225     // Iterate over the dirty cards region list.
 226     G1ClearCardTableTask cl(G1CollectedHeap::heap(), _dirty_region_buffer, _cur_dirty_region, chunk_length);
 227 
 228     log_debug(gc, ergo)("Running %s using %u workers for " SIZE_FORMAT " "
 229                         "units of work for " SIZE_FORMAT " regions.",
 230                         cl.name(), num_workers, num_chunks, _cur_dirty_region);
 231     workers->run_task(&cl, num_workers);
 232 
 233 #ifndef PRODUCT
 234     // Need to synchronize with concurrent cleanup since it needs to
 235     // finish its card table clearing before we can verify.
 236     G1CollectedHeap::heap()->wait_while_free_regions_coming();
 237     G1CollectedHeap::heap()->verifier()->verify_card_table_cleanup();
 238 #endif
 239   }
 240 };
 241 
 242 G1RemSet::G1RemSet(G1CollectedHeap* g1,
 243                    CardTableModRefBS* ct_bs,
 244                    G1HotCardCache* hot_card_cache) :
 245   _g1(g1),
 246   _scan_state(new G1RemSetScanState()),
 247   _conc_refine_cards(0),
 248   _ct_bs(ct_bs),
 249   _g1p(_g1->g1_policy()),
 250   _hot_card_cache(hot_card_cache),
 251   _prev_period_summary(),
 252   _into_cset_dirty_card_queue_set(false)
 253 {
 254   if (log_is_enabled(Trace, gc, remset)) {
 255     _prev_period_summary.initialize(this);
 256   }
 257   // Initialize the card queue set used to hold cards containing
 258   // references into the collection set.
 259   _into_cset_dirty_card_queue_set.initialize(NULL, // Should never be called by the Java code
 260                                              DirtyCardQ_CBL_mon,
 261                                              DirtyCardQ_FL_lock,
 262                                              -1, // never trigger processing
 263                                              -1, // no limit on length
 264                                              Shared_DirtyCardQ_lock,
 265                                              &JavaThread::dirty_card_queue_set());
 266 }
 267 
 268 G1RemSet::~G1RemSet() {
 269   if (_scan_state != NULL) {
 270     delete _scan_state;
 271   }
 272 }
 273 
 274 uint G1RemSet::num_par_rem_sets() {
 275   return DirtyCardQueueSet::num_par_ids() + ConcurrentG1Refine::thread_num() + MAX2(ConcGCThreads, ParallelGCThreads);
 276 }
 277 
 278 void G1RemSet::initialize(size_t capacity, uint max_regions) {
 279   G1FromCardCache::initialize(num_par_rem_sets(), max_regions);
 280   _scan_state->initialize(max_regions);
 281   {
 282     GCTraceTime(Debug, gc, marking)("Initialize Card Live Data");
 283     _card_live_data.initialize(capacity, max_regions);
 284   }
 285   if (G1PretouchAuxiliaryMemory) {
 286     GCTraceTime(Debug, gc, marking)("Pre-Touch Card Live Data");
 287     _card_live_data.pretouch();
 288   }
 289 }
 290 
 291 G1ScanRSClosure::G1ScanRSClosure(G1RemSetScanState* scan_state,
 292                                  G1ParPushHeapRSClosure* push_heap_cl,
 293                                  CodeBlobClosure* code_root_cl,
 294                                  uint worker_i) :
 295   _scan_state(scan_state),
 296   _push_heap_cl(push_heap_cl),
 297   _code_root_cl(code_root_cl),
 298   _strong_code_root_scan_time_sec(0.0),
 299   _cards(0),
 300   _cards_done(0),
 301   _worker_i(worker_i) {
 302   _g1h = G1CollectedHeap::heap();
 303   _bot = _g1h->bot();
 304   _ct_bs = _g1h->g1_barrier_set();
 305   _block_size = MAX2<size_t>(G1RSetScanBlockSize, 1);
 306 }
 307 
 308 void G1ScanRSClosure::scan_card(size_t index, HeapWord* card_start, HeapRegion *r) {
 309   MemRegion card_region(card_start, BOTConstants::N_words);
 310   MemRegion pre_gc_allocated(r->bottom(), r->scan_top());
 311   MemRegion mr = pre_gc_allocated.intersection(card_region);
 312   if (!mr.is_empty() && !_ct_bs->is_card_claimed(index)) {
 313     // We make the card as "claimed" lazily (so races are possible
 314     // but they're benign), which reduces the number of duplicate
 315     // scans (the rsets of the regions in the cset can intersect).
 316     _ct_bs->set_card_claimed(index);
 317     _push_heap_cl->set_region(r);
 318     r->oops_on_card_seq_iterate_careful<true>(mr, _push_heap_cl);
 319     _cards_done++;
 320   }
 321 }
 322 
 323 void G1ScanRSClosure::scan_strong_code_roots(HeapRegion* r) {
 324   double scan_start = os::elapsedTime();
 325   r->strong_code_roots_do(_code_root_cl);
 326   _strong_code_root_scan_time_sec += (os::elapsedTime() - scan_start);
 327 }
 328 
 329 bool G1ScanRSClosure::doHeapRegion(HeapRegion* r) {
 330   assert(r->in_collection_set(), "should only be called on elements of CS.");
 331   uint region_idx = r->hrm_index();
 332 
 333   if (_scan_state->iter_is_complete(region_idx)) {
 334     return false;
 335   }
 336   if (_scan_state->claim_iter(region_idx)) {
 337     // If we ever free the collection set concurrently, we should also
 338     // clear the card table concurrently therefore we won't need to
 339     // add regions of the collection set to the dirty cards region.
 340     _scan_state->add_dirty_region(region_idx);
 341   }
 342 
 343   HeapRegionRemSetIterator iter(r->rem_set());
 344   size_t card_index;
 345 
 346   // We claim cards in block so as to reduce the contention. The block size is determined by
 347   // the G1RSetScanBlockSize parameter.
 348   size_t claimed_card_block = _scan_state->iter_claimed_next(region_idx, _block_size);
 349   for (size_t current_card = 0; iter.has_next(card_index); current_card++) {
 350     if (current_card >= claimed_card_block + _block_size) {
 351       claimed_card_block = _scan_state->iter_claimed_next(region_idx, _block_size);
 352     }
 353     if (current_card < claimed_card_block) {
 354       continue;
 355     }
 356     HeapWord* card_start = _g1h->bot()->address_for_index(card_index);
 357 
 358     HeapRegion* card_region = _g1h->heap_region_containing(card_start);
 359     _cards++;
 360 
 361     _scan_state->add_dirty_region(card_region->hrm_index());
 362 
 363     // If the card is dirty, then we will scan it during updateRS.
 364     if (!card_region->in_collection_set() &&
 365         !_ct_bs->is_card_dirty(card_index)) {
 366       scan_card(card_index, card_start, card_region);
 367     }
 368   }
 369   if (_scan_state->set_iter_complete(region_idx)) {
 370     // Scan the strong code root list attached to the current region
 371     scan_strong_code_roots(r);
 372   }
 373   return false;
 374 }
 375 
 376 size_t G1RemSet::scan_rem_set(G1ParPushHeapRSClosure* oops_in_heap_closure,
 377                               CodeBlobClosure* heap_region_codeblobs,
 378                               uint worker_i) {
 379   double rs_time_start = os::elapsedTime();
 380 
 381   G1ScanRSClosure cl(_scan_state, oops_in_heap_closure, heap_region_codeblobs, worker_i);
 382   _g1->collection_set_iterate_from(&cl, worker_i);
 383 
 384    double scan_rs_time_sec = (os::elapsedTime() - rs_time_start) -
 385                               cl.strong_code_root_scan_time_sec();
 386 
 387   _g1p->phase_times()->record_time_secs(G1GCPhaseTimes::ScanRS, worker_i, scan_rs_time_sec);
 388   _g1p->phase_times()->record_time_secs(G1GCPhaseTimes::CodeRoots, worker_i, cl.strong_code_root_scan_time_sec());
 389 
 390   return cl.cards_done();
 391 }
 392 
 393 // Closure used for updating RSets and recording references that
 394 // point into the collection set. Only called during an
 395 // evacuation pause.
 396 
 397 class RefineRecordRefsIntoCSCardTableEntryClosure: public CardTableEntryClosure {
 398   G1RemSet* _g1rs;
 399   DirtyCardQueue* _into_cset_dcq;
 400   G1ParPushHeapRSClosure* _cl;
 401 public:
 402   RefineRecordRefsIntoCSCardTableEntryClosure(G1CollectedHeap* g1h,
 403                                               DirtyCardQueue* into_cset_dcq,
 404                                               G1ParPushHeapRSClosure* cl) :
 405     _g1rs(g1h->g1_rem_set()), _into_cset_dcq(into_cset_dcq), _cl(cl)
 406   {}
 407 
 408   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 409     // The only time we care about recording cards that
 410     // contain references that point into the collection set
 411     // is during RSet updating within an evacuation pause.
 412     // In this case worker_i should be the id of a GC worker thread.
 413     assert(SafepointSynchronize::is_at_safepoint(), "not during an evacuation pause");
 414     assert(worker_i < ParallelGCThreads, "should be a GC worker");
 415 
 416     if (_g1rs->refine_card_during_gc(card_ptr, worker_i, _cl)) {
 417       // 'card_ptr' contains references that point into the collection
 418       // set. We need to record the card in the DCQS
 419       // (_into_cset_dirty_card_queue_set)
 420       // that's used for that purpose.
 421       //
 422       // Enqueue the card
 423       _into_cset_dcq->enqueue(card_ptr);
 424     }
 425     return true;
 426   }
 427 };
 428 
 429 void G1RemSet::update_rem_set(DirtyCardQueue* into_cset_dcq,
 430                               G1ParPushHeapRSClosure* oops_in_heap_closure,
 431                               uint worker_i) {
 432   RefineRecordRefsIntoCSCardTableEntryClosure into_cset_update_rs_cl(_g1, into_cset_dcq, oops_in_heap_closure);
 433 
 434   G1GCParPhaseTimesTracker x(_g1p->phase_times(), G1GCPhaseTimes::UpdateRS, worker_i);
 435   if (G1HotCardCache::default_use_cache()) {
 436     // Apply the closure to the entries of the hot card cache.
 437     G1GCParPhaseTimesTracker y(_g1p->phase_times(), G1GCPhaseTimes::ScanHCC, worker_i);
 438     _g1->iterate_hcc_closure(&into_cset_update_rs_cl, worker_i);
 439   }
 440   // Apply the closure to all remaining log entries.
 441   _g1->iterate_dirty_card_closure(&into_cset_update_rs_cl, worker_i);
 442 }
 443 
 444 void G1RemSet::cleanupHRRS() {
 445   HeapRegionRemSet::cleanup();
 446 }
 447 
 448 size_t G1RemSet::oops_into_collection_set_do(G1ParPushHeapRSClosure* cl,
 449                                              CodeBlobClosure* heap_region_codeblobs,
 450                                              uint worker_i) {
 451   // A DirtyCardQueue that is used to hold cards containing references
 452   // that point into the collection set. This DCQ is associated with a
 453   // special DirtyCardQueueSet (see g1CollectedHeap.hpp).  Under normal
 454   // circumstances (i.e. the pause successfully completes), these cards
 455   // are just discarded (there's no need to update the RSets of regions
 456   // that were in the collection set - after the pause these regions
 457   // are wholly 'free' of live objects. In the event of an evacuation
 458   // failure the cards/buffers in this queue set are passed to the
 459   // DirtyCardQueueSet that is used to manage RSet updates
 460   DirtyCardQueue into_cset_dcq(&_into_cset_dirty_card_queue_set);
 461 
 462   update_rem_set(&into_cset_dcq, cl, worker_i);
 463   return scan_rem_set(cl, heap_region_codeblobs, worker_i);;
 464 }
 465 
 466 void G1RemSet::prepare_for_oops_into_collection_set_do() {
 467   _g1->set_refine_cte_cl_concurrency(false);
 468   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
 469   dcqs.concatenate_logs();
 470 
 471   _scan_state->reset();
 472 }
 473 
 474 void G1RemSet::cleanup_after_oops_into_collection_set_do() {
 475   G1GCPhaseTimes* phase_times = _g1->g1_policy()->phase_times();
 476   // Cleanup after copy
 477   _g1->set_refine_cte_cl_concurrency(true);
 478 
 479   // Set all cards back to clean.
 480   double start = os::elapsedTime();
 481   _scan_state->clear_card_table(_g1->workers());
 482   phase_times->record_clear_ct_time((os::elapsedTime() - start) * 1000.0);
 483 
 484   DirtyCardQueueSet& into_cset_dcqs = _into_cset_dirty_card_queue_set;
 485 
 486   if (_g1->evacuation_failed()) {
 487     double restore_remembered_set_start = os::elapsedTime();
 488 
 489     // Restore remembered sets for the regions pointing into the collection set.
 490     // We just need to transfer the completed buffers from the DirtyCardQueueSet
 491     // used to hold cards that contain references that point into the collection set
 492     // to the DCQS used to hold the deferred RS updates.
 493     _g1->dirty_card_queue_set().merge_bufferlists(&into_cset_dcqs);
 494     phase_times->record_evac_fail_restore_remsets((os::elapsedTime() - restore_remembered_set_start) * 1000.0);
 495   }
 496 
 497   // Free any completed buffers in the DirtyCardQueueSet used to hold cards
 498   // which contain references that point into the collection.
 499   _into_cset_dirty_card_queue_set.clear();
 500   assert(_into_cset_dirty_card_queue_set.completed_buffers_num() == 0,
 501          "all buffers should be freed");
 502   _into_cset_dirty_card_queue_set.clear_n_completed_buffers();
 503 }
 504 
 505 inline void check_card_ptr(jbyte* card_ptr, CardTableModRefBS* ct_bs) {
 506 #ifdef ASSERT
 507   G1CollectedHeap* g1 = G1CollectedHeap::heap();
 508   assert(g1->is_in_exact(ct_bs->addr_for(card_ptr)),
 509          "Card at " PTR_FORMAT " index " SIZE_FORMAT " representing heap at " PTR_FORMAT " (%u) must be in committed heap",
 510          p2i(card_ptr),
 511          ct_bs->index_for(ct_bs->addr_for(card_ptr)),
 512          p2i(ct_bs->addr_for(card_ptr)),
 513          g1->addr_to_region(ct_bs->addr_for(card_ptr)));
 514 #endif
 515 }
 516 
 517 G1UpdateRSOrPushRefOopClosure::G1UpdateRSOrPushRefOopClosure(G1CollectedHeap* g1h,
 518                                                              G1ParPushHeapRSClosure* push_ref_cl,
 519                                                              bool record_refs_into_cset,
 520                                                              uint worker_i) :
 521   _g1(g1h),
 522   _from(NULL),
 523   _record_refs_into_cset(record_refs_into_cset),
 524   _has_refs_into_cset(false),
 525   _push_ref_cl(push_ref_cl),
 526   _worker_i(worker_i) { }
 527 
 528 void G1RemSet::refine_card_concurrently(jbyte* card_ptr,
 529                                         uint worker_i) {
 530   assert(!_g1->is_gc_active(), "Only call concurrently");
 531 
 532   check_card_ptr(card_ptr, _ct_bs);
 533 
 534   // If the card is no longer dirty, nothing to do.
 535   if (*card_ptr != CardTableModRefBS::dirty_card_val()) {
 536     return;
 537   }
 538 
 539   // Construct the region representing the card.
 540   HeapWord* start = _ct_bs->addr_for(card_ptr);
 541   // And find the region containing it.
 542   HeapRegion* r = _g1->heap_region_containing(start);
 543 
 544   // This check is needed for some uncommon cases where we should
 545   // ignore the card.
 546   //
 547   // The region could be young.  Cards for young regions are
 548   // distinctly marked (set to g1_young_gen), so the post-barrier will
 549   // filter them out.  However, that marking is performed
 550   // concurrently.  A write to a young object could occur before the
 551   // card has been marked young, slipping past the filter.
 552   //
 553   // The card could be stale, because the region has been freed since
 554   // the card was recorded. In this case the region type could be
 555   // anything.  If (still) free or (reallocated) young, just ignore
 556   // it.  If (reallocated) old or humongous, the later card trimming
 557   // and additional checks in iteration may detect staleness.  At
 558   // worst, we end up processing a stale card unnecessarily.
 559   //
 560   // In the normal (non-stale) case, the synchronization between the
 561   // enqueueing of the card and processing it here will have ensured
 562   // we see the up-to-date region type here.
 563   if (!r->is_old_or_humongous()) {
 564     return;
 565   }
 566 
 567   // While we are processing RSet buffers during the collection, we
 568   // actually don't want to scan any cards on the collection set,
 569   // since we don't want to update remembered sets with entries that
 570   // point into the collection set, given that live objects from the
 571   // collection set are about to move and such entries will be stale
 572   // very soon. This change also deals with a reliability issue which
 573   // involves scanning a card in the collection set and coming across
 574   // an array that was being chunked and looking malformed. Note,
 575   // however, that if evacuation fails, we have to scan any objects
 576   // that were not moved and create any missing entries.
 577   if (r->in_collection_set()) {
 578     return;
 579   }
 580 
 581   // The result from the hot card cache insert call is either:
 582   //   * pointer to the current card
 583   //     (implying that the current card is not 'hot'),
 584   //   * null
 585   //     (meaning we had inserted the card ptr into the "hot" card cache,
 586   //     which had some headroom),
 587   //   * a pointer to a "hot" card that was evicted from the "hot" cache.
 588   //
 589 
 590   if (_hot_card_cache->use_cache()) {
 591     assert(!SafepointSynchronize::is_at_safepoint(), "sanity");
 592 
 593     const jbyte* orig_card_ptr = card_ptr;
 594     card_ptr = _hot_card_cache->insert(card_ptr);
 595     if (card_ptr == NULL) {
 596       // There was no eviction. Nothing to do.
 597       return;
 598     } else if (card_ptr != orig_card_ptr) {
 599       // Original card was inserted and an old card was evicted.
 600       start = _ct_bs->addr_for(card_ptr);
 601       r = _g1->heap_region_containing(start);
 602 
 603       // Check whether the region formerly in the cache should be
 604       // ignored, as discussed earlier for the original card.  The
 605       // region could have been freed while in the cache.  The cset is
 606       // not relevant here, since we're in concurrent phase.
 607       if (!r->is_old_or_humongous()) {
 608         return;
 609       }
 610     } // Else we still have the original card.
 611   }
 612 
 613   // Trim the region designated by the card to what's been allocated
 614   // in the region.  The card could be stale, or the card could cover
 615   // (part of) an object at the end of the allocated space and extend
 616   // beyond the end of allocation.
 617 
 618   // Non-humongous objects are only allocated in the old-gen during
 619   // GC, so if region is old then top is stable.  Humongous object
 620   // allocation sets top last; if top has not yet been set, this is
 621   // a stale card and we'll end up with an empty intersection.  If
 622   // this is not a stale card, the synchronization between the
 623   // enqueuing of the card and processing it here will have ensured
 624   // we see the up-to-date top here.
 625   HeapWord* scan_limit = r->top();
 626 
 627   if (scan_limit <= start) {
 628     // If the trimmed region is empty, the card must be stale.
 629     return;
 630   }
 631 
 632   // Okay to clean and process the card now.  There are still some
 633   // stale card cases that may be detected by iteration and dealt with
 634   // as iteration failure.
 635   *const_cast<volatile jbyte*>(card_ptr) = CardTableModRefBS::clean_card_val();
 636 
 637   // This fence serves two purposes.  First, the card must be cleaned
 638   // before processing the contents.  Second, we can't proceed with
 639   // processing until after the read of top, for synchronization with
 640   // possibly concurrent humongous object allocation.  It's okay that
 641   // reading top and reading type were racy wrto each other.  We need
 642   // both set, in any order, to proceed.
 643   OrderAccess::fence();
 644 
 645   // Don't use addr_for(card_ptr + 1) which can ask for
 646   // a card beyond the heap.
 647   HeapWord* end = start + CardTableModRefBS::card_size_in_words;
 648   MemRegion dirty_region(start, MIN2(scan_limit, end));
 649   assert(!dirty_region.is_empty(), "sanity");
 650 
 651   G1ConcurrentRefineOopClosure conc_refine_cl(_g1, worker_i);
 652 
 653   bool card_processed =
 654     r->oops_on_card_seq_iterate_careful<false>(dirty_region, &conc_refine_cl);
 655 
 656   // If unable to process the card then we encountered an unparsable
 657   // part of the heap (e.g. a partially allocated object) while
 658   // processing a stale card.  Despite the card being stale, redirty
 659   // and re-enqueue, because we've already cleaned the card.  Without
 660   // this we could incorrectly discard a non-stale card.
 661   if (!card_processed) {
 662     // The card might have gotten re-dirtied and re-enqueued while we
 663     // worked.  (In fact, it's pretty likely.)
 664     if (*card_ptr != CardTableModRefBS::dirty_card_val()) {
 665       *card_ptr = CardTableModRefBS::dirty_card_val();
 666       MutexLockerEx x(Shared_DirtyCardQ_lock,
 667                       Mutex::_no_safepoint_check_flag);
 668       DirtyCardQueue* sdcq =
 669         JavaThread::dirty_card_queue_set().shared_dirty_card_queue();
 670       sdcq->enqueue(card_ptr);
 671     }
 672   } else {
 673     _conc_refine_cards++;
 674   }
 675 }
 676 
 677 bool G1RemSet::refine_card_during_gc(jbyte* card_ptr,
 678                                      uint worker_i,
 679                                      G1ParPushHeapRSClosure*  oops_in_heap_closure) {
 680   assert(_g1->is_gc_active(), "Only call during GC");
 681 
 682   check_card_ptr(card_ptr, _ct_bs);
 683 
 684   // If the card is no longer dirty, nothing to do. This covers cards that were already
 685   // scanned as parts of the remembered sets.
 686   if (*card_ptr != CardTableModRefBS::dirty_card_val()) {
 687     // No need to return that this card contains refs that point
 688     // into the collection set.
 689     return false;
 690   }
 691 
 692   // Construct the region representing the card.
 693   HeapWord* start = _ct_bs->addr_for(card_ptr);
 694   // And find the region containing it.
 695   HeapRegion* r = _g1->heap_region_containing(start);
 696 
 697   // This check is needed for some uncommon cases where we should
 698   // ignore the card.
 699   //
 700   // The region could be young.  Cards for young regions are
 701   // distinctly marked (set to g1_young_gen), so the post-barrier will
 702   // filter them out.  However, that marking is performed
 703   // concurrently.  A write to a young object could occur before the
 704   // card has been marked young, slipping past the filter.
 705   //
 706   // The card could be stale, because the region has been freed since
 707   // the card was recorded. In this case the region type could be
 708   // anything.  If (still) free or (reallocated) young, just ignore
 709   // it.  If (reallocated) old or humongous, the later card trimming
 710   // and additional checks in iteration may detect staleness.  At
 711   // worst, we end up processing a stale card unnecessarily.
 712   //
 713   // In the normal (non-stale) case, the synchronization between the
 714   // enqueueing of the card and processing it here will have ensured
 715   // we see the up-to-date region type here.
 716   if (!r->is_old_or_humongous()) {
 717     return false;
 718   }
 719 
 720   // While we are processing RSet buffers during the collection, we
 721   // actually don't want to scan any cards on the collection set,
 722   // since we don't want to update remembered sets with entries that
 723   // point into the collection set, given that live objects from the
 724   // collection set are about to move and such entries will be stale
 725   // very soon. This change also deals with a reliability issue which
 726   // involves scanning a card in the collection set and coming across
 727   // an array that was being chunked and looking malformed. Note,
 728   // however, that if evacuation fails, we have to scan any objects
 729   // that were not moved and create any missing entries.
 730   if (r->in_collection_set()) {
 731     return false;
 732   }
 733 
 734   // Trim the region designated by the card to what's been allocated
 735   // in the region.  The card could be stale, or the card could cover
 736   // (part of) an object at the end of the allocated space and extend
 737   // beyond the end of allocation.
 738 
 739   // If we're in a STW GC, then a card might be in a GC alloc region
 740   // and extend onto a GC LAB, which may not be parsable.  Stop such
 741   // at the "scan_top" of the region.
 742   HeapWord* scan_limit = r->scan_top();
 743 
 744   if (scan_limit <= start) {
 745     // If the trimmed region is empty, the card must be stale.
 746     return false;
 747   }
 748 
 749   // Okay to clean and process the card now.  There are still some
 750   // stale card cases that may be detected by iteration and dealt with
 751   // as iteration failure.
 752   *const_cast<volatile jbyte*>(card_ptr) = CardTableModRefBS::clean_card_val();
 753 
 754   // Don't use addr_for(card_ptr + 1) which can ask for
 755   // a card beyond the heap.
 756   HeapWord* end = start + CardTableModRefBS::card_size_in_words;
 757   MemRegion dirty_region(start, MIN2(scan_limit, end));
 758   assert(!dirty_region.is_empty(), "sanity");
 759 
 760   G1UpdateRSOrPushRefOopClosure update_rs_oop_cl(_g1,
 761                                                  oops_in_heap_closure,
 762                                                  true,
 763                                                  worker_i);
 764   update_rs_oop_cl.set_from(r);
 765 
 766   bool card_processed =
 767     r->oops_on_card_seq_iterate_careful<true>(dirty_region, &update_rs_oop_cl);
 768   assert(card_processed, "must be");
 769   _conc_refine_cards++;
 770  
 771   return update_rs_oop_cl.has_refs_into_cset();
 772 }
 773 
 774 void G1RemSet::print_periodic_summary_info(const char* header, uint period_count) {
 775   if ((G1SummarizeRSetStatsPeriod > 0) && log_is_enabled(Trace, gc, remset) &&
 776       (period_count % G1SummarizeRSetStatsPeriod == 0)) {
 777 
 778     if (!_prev_period_summary.initialized()) {
 779       _prev_period_summary.initialize(this);
 780     }
 781 
 782     G1RemSetSummary current;
 783     current.initialize(this);
 784     _prev_period_summary.subtract_from(&current);
 785 
 786     Log(gc, remset) log;
 787     log.trace("%s", header);
 788     ResourceMark rm;
 789     _prev_period_summary.print_on(log.trace_stream());
 790 
 791     _prev_period_summary.set(&current);
 792   }
 793 }
 794 
 795 void G1RemSet::print_summary_info() {
 796   Log(gc, remset, exit) log;
 797   if (log.is_trace()) {
 798     log.trace(" Cumulative RS summary");
 799     G1RemSetSummary current;
 800     current.initialize(this);
 801     ResourceMark rm;
 802     current.print_on(log.trace_stream());
 803   }
 804 }
 805 
 806 void G1RemSet::prepare_for_verify() {
 807   if (G1HRRSFlushLogBuffersOnVerify &&
 808       (VerifyBeforeGC || VerifyAfterGC)
 809       &&  (!_g1->collector_state()->full_collection() || G1VerifyRSetsDuringFullGC)) {
 810     cleanupHRRS();
 811     _g1->set_refine_cte_cl_concurrency(false);
 812     if (SafepointSynchronize::is_at_safepoint()) {
 813       DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
 814       dcqs.concatenate_logs();
 815     }
 816 
 817     bool use_hot_card_cache = _hot_card_cache->use_cache();
 818     _hot_card_cache->set_use_cache(false);
 819 
 820     DirtyCardQueue into_cset_dcq(&_into_cset_dirty_card_queue_set);
 821     update_rem_set(&into_cset_dcq, NULL, 0);
 822     _into_cset_dirty_card_queue_set.clear();
 823 
 824     _hot_card_cache->set_use_cache(use_hot_card_cache);
 825     assert(JavaThread::dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
 826   }
 827 }
 828 
 829 void G1RemSet::create_card_live_data(WorkGang* workers, G1CMBitMap* mark_bitmap) {
 830   _card_live_data.create(workers, mark_bitmap);
 831 }
 832 
 833 void G1RemSet::finalize_card_live_data(WorkGang* workers, G1CMBitMap* mark_bitmap) {
 834   _card_live_data.finalize(workers, mark_bitmap);
 835 }
 836 
 837 void G1RemSet::verify_card_live_data(WorkGang* workers, G1CMBitMap* bitmap) {
 838   _card_live_data.verify(workers, bitmap);
 839 }
 840 
 841 void G1RemSet::clear_card_live_data(WorkGang* workers) {
 842   _card_live_data.clear(workers);
 843 }
 844 
 845 #ifdef ASSERT
 846 void G1RemSet::verify_card_live_data_is_clear() {
 847   _card_live_data.verify_is_clear();
 848 }
 849 #endif