1 /*
   2  * Copyright (c) 2001, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_G1_G1CONCURRENTMARK_HPP
  26 #define SHARE_VM_GC_G1_G1CONCURRENTMARK_HPP
  27 
  28 #include "classfile/javaClasses.hpp"
  29 #include "gc/g1/g1ConcurrentMarkObjArrayProcessor.hpp"
  30 #include "gc/g1/g1RegionToSpaceMapper.hpp"
  31 #include "gc/g1/heapRegionSet.hpp"
  32 #include "gc/shared/taskqueue.hpp"
  33 
  34 class G1CollectedHeap;
  35 class G1CMBitMap;
  36 class G1CMTask;
  37 class G1ConcurrentMark;
  38 class ConcurrentGCTimer;
  39 class G1OldTracer;
  40 class G1SurvivorRegions;
  41 
  42 #ifdef _MSC_VER
  43 #pragma warning(push)
  44 // warning C4522: multiple assignment operators specified
  45 #pragma warning(disable:4522)
  46 #endif
  47 
  48 // This is a container class for either an oop or a continuation address for
  49 // mark stack entries. Both are pushed onto the mark stack.
  50 class G1TaskQueueEntry VALUE_OBJ_CLASS_SPEC {
  51 private:
  52   void* _holder;
  53 
  54   static const uintptr_t ArraySliceBit = 1;
  55 
  56   G1TaskQueueEntry(oop obj) : _holder(obj) {
  57     assert(_holder != NULL, "Not allowed to set NULL task queue element");
  58   }
  59   G1TaskQueueEntry(HeapWord* addr) : _holder((void*)((uintptr_t)addr | ArraySliceBit)) { }
  60 public:
  61   G1TaskQueueEntry(const G1TaskQueueEntry& other) { _holder = other._holder; }
  62   G1TaskQueueEntry() : _holder(NULL) { }
  63 
  64   static G1TaskQueueEntry from_slice(HeapWord* what) { return G1TaskQueueEntry(what); }
  65   static G1TaskQueueEntry from_oop(oop obj) { return G1TaskQueueEntry(obj); }
  66 
  67   G1TaskQueueEntry& operator=(const G1TaskQueueEntry& t) {
  68     _holder = t._holder;
  69     return *this;
  70   }
  71 
  72   volatile G1TaskQueueEntry& operator=(const volatile G1TaskQueueEntry& t) volatile {
  73     _holder = t._holder;
  74     return *this;
  75   }
  76 
  77   oop obj() const {
  78     assert(!is_array_slice(), "Trying to read array slice " PTR_FORMAT " as oop", p2i(_holder));
  79     return (oop)_holder;
  80   }
  81 
  82   HeapWord* slice() const {
  83     assert(is_array_slice(), "Trying to read oop " PTR_FORMAT " as array slice", p2i(_holder));
  84     return (HeapWord*)((uintptr_t)_holder & ~ArraySliceBit);
  85   }
  86 
  87   bool is_oop() const { return !is_array_slice(); }
  88   bool is_array_slice() const { return ((uintptr_t)_holder & ArraySliceBit) != 0; }
  89   bool is_null() const { return _holder == NULL; }
  90 };
  91 
  92 #ifdef _MSC_VER
  93 #pragma warning(pop)
  94 #endif
  95 
  96 typedef GenericTaskQueue<G1TaskQueueEntry, mtGC> G1CMTaskQueue;
  97 typedef GenericTaskQueueSet<G1CMTaskQueue, mtGC> G1CMTaskQueueSet;
  98 
  99 // Closure used by CM during concurrent reference discovery
 100 // and reference processing (during remarking) to determine
 101 // if a particular object is alive. It is primarily used
 102 // to determine if referents of discovered reference objects
 103 // are alive. An instance is also embedded into the
 104 // reference processor as the _is_alive_non_header field
 105 class G1CMIsAliveClosure: public BoolObjectClosure {
 106   G1CollectedHeap* _g1;
 107  public:
 108   G1CMIsAliveClosure(G1CollectedHeap* g1) : _g1(g1) { }
 109 
 110   bool do_object_b(oop obj);
 111 };
 112 
 113 // A generic CM bit map.  This is essentially a wrapper around the BitMap
 114 // class, with one bit per (1<<_shifter) HeapWords.
 115 
 116 class G1CMBitMapRO VALUE_OBJ_CLASS_SPEC {
 117  protected:
 118   HeapWord*  _bmStartWord; // base address of range covered by map
 119   size_t     _bmWordSize;  // map size (in #HeapWords covered)
 120   const int  _shifter;     // map to char or bit
 121   BitMapView _bm;          // the bit map itself
 122 
 123  public:
 124   // constructor
 125   G1CMBitMapRO(int shifter);
 126 
 127   // inquiries
 128   HeapWord* startWord()   const { return _bmStartWord; }
 129   // the following is one past the last word in space
 130   HeapWord* endWord()     const { return _bmStartWord + _bmWordSize; }
 131 
 132   // read marks
 133 
 134   bool isMarked(HeapWord* addr) const {
 135     assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
 136            "outside underlying space?");
 137     return _bm.at(heapWordToOffset(addr));
 138   }
 139 
 140   // iteration
 141   inline bool iterate(BitMapClosure* cl, MemRegion mr);
 142 
 143   // Return the address corresponding to the next marked bit at or after
 144   // "addr", and before "limit", if "limit" is non-NULL.  If there is no
 145   // such bit, returns "limit" if that is non-NULL, or else "endWord()".
 146   HeapWord* getNextMarkedWordAddress(const HeapWord* addr,
 147                                      const HeapWord* limit = NULL) const;
 148 
 149   // conversion utilities
 150   HeapWord* offsetToHeapWord(size_t offset) const {
 151     return _bmStartWord + (offset << _shifter);
 152   }
 153   size_t heapWordToOffset(const HeapWord* addr) const {
 154     return pointer_delta(addr, _bmStartWord) >> _shifter;
 155   }
 156 
 157   // The argument addr should be the start address of a valid object
 158   inline HeapWord* nextObject(HeapWord* addr);
 159 
 160   void print_on_error(outputStream* st, const char* prefix) const;
 161 
 162   // debugging
 163   NOT_PRODUCT(bool covers(MemRegion rs) const;)
 164 };
 165 
 166 class G1CMBitMapMappingChangedListener : public G1MappingChangedListener {
 167  private:
 168   G1CMBitMap* _bm;
 169  public:
 170   G1CMBitMapMappingChangedListener() : _bm(NULL) {}
 171 
 172   void set_bitmap(G1CMBitMap* bm) { _bm = bm; }
 173 
 174   virtual void on_commit(uint start_idx, size_t num_regions, bool zero_filled);
 175 };
 176 
 177 class G1CMBitMap : public G1CMBitMapRO {
 178  private:
 179   G1CMBitMapMappingChangedListener _listener;
 180 
 181  public:
 182   static size_t compute_size(size_t heap_size);
 183   // Returns the amount of bytes on the heap between two marks in the bitmap.
 184   static size_t mark_distance();
 185   // Returns how many bytes (or bits) of the heap a single byte (or bit) of the
 186   // mark bitmap corresponds to. This is the same as the mark distance above.
 187   static size_t heap_map_factor() {
 188     return mark_distance();
 189   }
 190 
 191   G1CMBitMap() : G1CMBitMapRO(LogMinObjAlignment), _listener() { _listener.set_bitmap(this); }
 192 
 193   // Initializes the underlying BitMap to cover the given area.
 194   void initialize(MemRegion heap, G1RegionToSpaceMapper* storage);
 195 
 196   // Write marks.
 197   inline void mark(HeapWord* addr);
 198   inline void clear(HeapWord* addr);
 199   inline bool parMark(HeapWord* addr);
 200 
 201   void clear_range(MemRegion mr);
 202 };
 203 
 204 // Represents the overflow mark stack used by concurrent marking.
 205 //
 206 // Stores oops in a huge buffer in virtual memory that is always fully committed.
 207 // Resizing may only happen during a STW pause when the stack is empty.
 208 //
 209 // Memory is allocated on a "chunk" basis, i.e. a set of oops. For this, the mark
 210 // stack memory is split into evenly sized chunks of oops. Users can only
 211 // add or remove entries on that basis.
 212 // Chunks are filled in increasing address order. Not completely filled chunks
 213 // have a NULL element as a terminating element.
 214 //
 215 // Every chunk has a header containing a single pointer element used for memory
 216 // management. This wastes some space, but is negligible (< .1% with current sizing).
 217 //
 218 // Memory management is done using a mix of tracking a high water-mark indicating
 219 // that all chunks at a lower address are valid chunks, and a singly linked free
 220 // list connecting all empty chunks.
 221 class G1CMMarkStack VALUE_OBJ_CLASS_SPEC {
 222 public:
 223   // Number of oops that can fit in a single chunk.
 224   static const size_t EntriesPerChunk = 1024 - 1 /* One reference for the next pointer */;
 225 private:
 226   struct TaskQueueEntryChunk {
 227     TaskQueueEntryChunk* next;
 228     G1TaskQueueEntry data[EntriesPerChunk];
 229   };
 230 
 231   size_t _max_chunk_capacity;    // Maximum number of OopChunk elements on the stack.
 232 
 233   TaskQueueEntryChunk* _base;               // Bottom address of allocated memory area.
 234   size_t _chunk_capacity;        // Current maximum number of OopChunk elements.
 235 
 236   char _pad0[DEFAULT_CACHE_LINE_SIZE];
 237   TaskQueueEntryChunk* volatile _free_list;  // Linked list of free chunks that can be allocated by users.
 238   char _pad1[DEFAULT_CACHE_LINE_SIZE - sizeof(TaskQueueEntryChunk*)];
 239   TaskQueueEntryChunk* volatile _chunk_list; // List of chunks currently containing data.
 240   volatile size_t _chunks_in_chunk_list;
 241   char _pad2[DEFAULT_CACHE_LINE_SIZE - sizeof(TaskQueueEntryChunk*) - sizeof(size_t)];
 242 
 243   volatile size_t _hwm;          // High water mark within the reserved space.
 244   char _pad4[DEFAULT_CACHE_LINE_SIZE - sizeof(size_t)];
 245 
 246   // Allocate a new chunk from the reserved memory, using the high water mark. Returns
 247   // NULL if out of memory.
 248   TaskQueueEntryChunk* allocate_new_chunk();
 249 
 250   volatile bool _out_of_memory;
 251 
 252   // Atomically add the given chunk to the list.
 253   void add_chunk_to_list(TaskQueueEntryChunk* volatile* list, TaskQueueEntryChunk* elem);
 254   // Atomically remove and return a chunk from the given list. Returns NULL if the
 255   // list is empty.
 256   TaskQueueEntryChunk* remove_chunk_from_list(TaskQueueEntryChunk* volatile* list);
 257 
 258   void add_chunk_to_chunk_list(TaskQueueEntryChunk* elem);
 259   void add_chunk_to_free_list(TaskQueueEntryChunk* elem);
 260 
 261   TaskQueueEntryChunk* remove_chunk_from_chunk_list();
 262   TaskQueueEntryChunk* remove_chunk_from_free_list();
 263 
 264   bool  _should_expand;
 265 
 266   // Resizes the mark stack to the given new capacity. Releases any previous
 267   // memory if successful.
 268   bool resize(size_t new_capacity);
 269 
 270  public:
 271   G1CMMarkStack();
 272   ~G1CMMarkStack();
 273 
 274   // Alignment and minimum capacity of this mark stack in number of oops.
 275   static size_t capacity_alignment();
 276 
 277   // Allocate and initialize the mark stack with the given number of oops.
 278   bool initialize(size_t initial_capacity, size_t max_capacity);
 279 
 280   // Pushes the given buffer containing at most EntriesPerChunk elements on the mark
 281   // stack. If less than EntriesPerChunk elements are to be pushed, the array must
 282   // be terminated with a NULL.
 283   // Returns whether the buffer contents were successfully pushed to the global mark
 284   // stack.
 285   bool par_push_chunk(G1TaskQueueEntry* buffer);
 286 
 287   // Pops a chunk from this mark stack, copying them into the given buffer. This
 288   // chunk may contain up to EntriesPerChunk elements. If there are less, the last
 289   // element in the array is a NULL pointer.
 290   bool par_pop_chunk(G1TaskQueueEntry* buffer);
 291 
 292   // Return whether the chunk list is empty. Racy due to unsynchronized access to
 293   // _chunk_list.
 294   bool is_empty() const { return _chunk_list == NULL; }
 295 
 296   size_t capacity() const  { return _chunk_capacity; }
 297 
 298   bool is_out_of_memory() const { return _out_of_memory; }
 299   void clear_out_of_memory() { _out_of_memory = false; }
 300 
 301   bool should_expand() const { return _should_expand; }
 302   void set_should_expand(bool value) { _should_expand = value; }
 303 
 304   // Expand the stack, typically in response to an overflow condition
 305   void expand();
 306 
 307   // Return the approximate number of oops on this mark stack. Racy due to
 308   // unsynchronized access to _chunks_in_chunk_list.
 309   size_t size() const { return _chunks_in_chunk_list * EntriesPerChunk; }
 310 
 311   void set_empty();
 312 
 313   // Apply Fn to every oop on the mark stack. The mark stack must not
 314   // be modified while iterating.
 315   template<typename Fn> void iterate(Fn fn) const PRODUCT_RETURN;
 316 };
 317 
 318 // Root Regions are regions that are not empty at the beginning of a
 319 // marking cycle and which we might collect during an evacuation pause
 320 // while the cycle is active. Given that, during evacuation pauses, we
 321 // do not copy objects that are explicitly marked, what we have to do
 322 // for the root regions is to scan them and mark all objects reachable
 323 // from them. According to the SATB assumptions, we only need to visit
 324 // each object once during marking. So, as long as we finish this scan
 325 // before the next evacuation pause, we can copy the objects from the
 326 // root regions without having to mark them or do anything else to them.
 327 //
 328 // Currently, we only support root region scanning once (at the start
 329 // of the marking cycle) and the root regions are all the survivor
 330 // regions populated during the initial-mark pause.
 331 class G1CMRootRegions VALUE_OBJ_CLASS_SPEC {
 332 private:
 333   const G1SurvivorRegions* _survivors;
 334   G1ConcurrentMark*        _cm;
 335 
 336   volatile bool            _scan_in_progress;
 337   volatile bool            _should_abort;
 338   volatile int             _claimed_survivor_index;
 339 
 340   void notify_scan_done();
 341 
 342 public:
 343   G1CMRootRegions();
 344   // We actually do most of the initialization in this method.
 345   void init(const G1SurvivorRegions* survivors, G1ConcurrentMark* cm);
 346 
 347   // Reset the claiming / scanning of the root regions.
 348   void prepare_for_scan();
 349 
 350   // Forces get_next() to return NULL so that the iteration aborts early.
 351   void abort() { _should_abort = true; }
 352 
 353   // Return true if the CM thread are actively scanning root regions,
 354   // false otherwise.
 355   bool scan_in_progress() { return _scan_in_progress; }
 356 
 357   // Claim the next root region to scan atomically, or return NULL if
 358   // all have been claimed.
 359   HeapRegion* claim_next();
 360 
 361   // The number of root regions to scan.
 362   uint num_root_regions() const;
 363 
 364   void cancel_scan();
 365 
 366   // Flag that we're done with root region scanning and notify anyone
 367   // who's waiting on it. If aborted is false, assume that all regions
 368   // have been claimed.
 369   void scan_finished();
 370 
 371   // If CM threads are still scanning root regions, wait until they
 372   // are done. Return true if we had to wait, false otherwise.
 373   bool wait_until_scan_finished();
 374 };
 375 
 376 class ConcurrentMarkThread;
 377 
 378 class G1ConcurrentMark: public CHeapObj<mtGC> {
 379   friend class ConcurrentMarkThread;
 380   friend class G1ParNoteEndTask;
 381   friend class G1VerifyLiveDataClosure;
 382   friend class G1CMRefProcTaskProxy;
 383   friend class G1CMRefProcTaskExecutor;
 384   friend class G1CMKeepAliveAndDrainClosure;
 385   friend class G1CMDrainMarkingStackClosure;
 386   friend class G1CMBitMapClosure;
 387   friend class G1CMConcurrentMarkingTask;
 388   friend class G1CMRemarkTask;
 389   friend class G1CMTask;
 390 
 391 protected:
 392   ConcurrentMarkThread* _cmThread;   // The thread doing the work
 393   G1CollectedHeap*      _g1h;        // The heap
 394   uint                  _parallel_marking_threads; // The number of marking
 395                                                    // threads we're using
 396   uint                  _max_parallel_marking_threads; // Max number of marking
 397                                                        // threads we'll ever use
 398   double                _sleep_factor; // How much we have to sleep, with
 399                                        // respect to the work we just did, to
 400                                        // meet the marking overhead goal
 401   double                _marking_task_overhead; // Marking target overhead for
 402                                                 // a single task
 403 
 404   FreeRegionList        _cleanup_list;
 405 
 406   // Concurrent marking support structures
 407   G1CMBitMap              _markBitMap1;
 408   G1CMBitMap              _markBitMap2;
 409   G1CMBitMapRO*           _prevMarkBitMap; // Completed mark bitmap
 410   G1CMBitMap*             _nextMarkBitMap; // Under-construction mark bitmap
 411 
 412   // Heap bounds
 413   HeapWord*               _heap_start;
 414   HeapWord*               _heap_end;
 415 
 416   // Root region tracking and claiming
 417   G1CMRootRegions         _root_regions;
 418 
 419   // For gray objects
 420   G1CMMarkStack           _global_mark_stack; // Grey objects behind global finger
 421   HeapWord* volatile      _finger;  // The global finger, region aligned,
 422                                     // always points to the end of the
 423                                     // last claimed region
 424 
 425   // Marking tasks
 426   uint                    _max_worker_id;// Maximum worker id
 427   uint                    _active_tasks; // Task num currently active
 428   G1CMTask**              _tasks;        // Task queue array (max_worker_id len)
 429   G1CMTaskQueueSet*       _task_queues;  // Task queue set
 430   ParallelTaskTerminator  _terminator;   // For termination
 431 
 432   // Two sync barriers that are used to synchronize tasks when an
 433   // overflow occurs. The algorithm is the following. All tasks enter
 434   // the first one to ensure that they have all stopped manipulating
 435   // the global data structures. After they exit it, they re-initialize
 436   // their data structures and task 0 re-initializes the global data
 437   // structures. Then, they enter the second sync barrier. This
 438   // ensure, that no task starts doing work before all data
 439   // structures (local and global) have been re-initialized. When they
 440   // exit it, they are free to start working again.
 441   WorkGangBarrierSync     _first_overflow_barrier_sync;
 442   WorkGangBarrierSync     _second_overflow_barrier_sync;
 443 
 444   // This is set by any task, when an overflow on the global data
 445   // structures is detected
 446   volatile bool           _has_overflown;
 447   // True: marking is concurrent, false: we're in remark
 448   volatile bool           _concurrent;
 449   // Set at the end of a Full GC so that marking aborts
 450   volatile bool           _has_aborted;
 451 
 452   // Used when remark aborts due to an overflow to indicate that
 453   // another concurrent marking phase should start
 454   volatile bool           _restart_for_overflow;
 455 
 456   // This is true from the very start of concurrent marking until the
 457   // point when all the tasks complete their work. It is really used
 458   // to determine the points between the end of concurrent marking and
 459   // time of remark.
 460   volatile bool           _concurrent_marking_in_progress;
 461 
 462   ConcurrentGCTimer*      _gc_timer_cm;
 463 
 464   G1OldTracer*            _gc_tracer_cm;
 465 
 466   // All of these times are in ms
 467   NumberSeq _init_times;
 468   NumberSeq _remark_times;
 469   NumberSeq _remark_mark_times;
 470   NumberSeq _remark_weak_ref_times;
 471   NumberSeq _cleanup_times;
 472   double    _total_counting_time;
 473   double    _total_rs_scrub_time;
 474 
 475   double*   _accum_task_vtime;   // Accumulated task vtime
 476 
 477   WorkGang* _parallel_workers;
 478 
 479   void weakRefsWorkParallelPart(BoolObjectClosure* is_alive, bool purged_classes);
 480   void weakRefsWork(bool clear_all_soft_refs);
 481 
 482   void swapMarkBitMaps();
 483 
 484   // It resets the global marking data structures, as well as the
 485   // task local ones; should be called during initial mark.
 486   void reset();
 487 
 488   // Resets all the marking data structures. Called when we have to restart
 489   // marking or when marking completes (via set_non_marking_state below).
 490   void reset_marking_state(bool clear_overflow = true);
 491 
 492   // We do this after we're done with marking so that the marking data
 493   // structures are initialized to a sensible and predictable state.
 494   void set_non_marking_state();
 495 
 496   // Called to indicate how many threads are currently active.
 497   void set_concurrency(uint active_tasks);
 498 
 499   // It should be called to indicate which phase we're in (concurrent
 500   // mark or remark) and how many threads are currently active.
 501   void set_concurrency_and_phase(uint active_tasks, bool concurrent);
 502 
 503   // Prints all gathered CM-related statistics
 504   void print_stats();
 505 
 506   bool cleanup_list_is_empty() {
 507     return _cleanup_list.is_empty();
 508   }
 509 
 510   // Accessor methods
 511   uint parallel_marking_threads() const     { return _parallel_marking_threads; }
 512   uint max_parallel_marking_threads() const { return _max_parallel_marking_threads;}
 513   double sleep_factor()                     { return _sleep_factor; }
 514   double marking_task_overhead()            { return _marking_task_overhead;}
 515 
 516   HeapWord*               finger()          { return _finger;   }
 517   bool                    concurrent()      { return _concurrent; }
 518   uint                    active_tasks()    { return _active_tasks; }
 519   ParallelTaskTerminator* terminator()      { return &_terminator; }
 520 
 521   // It claims the next available region to be scanned by a marking
 522   // task/thread. It might return NULL if the next region is empty or
 523   // we have run out of regions. In the latter case, out_of_regions()
 524   // determines whether we've really run out of regions or the task
 525   // should call claim_region() again. This might seem a bit
 526   // awkward. Originally, the code was written so that claim_region()
 527   // either successfully returned with a non-empty region or there
 528   // were no more regions to be claimed. The problem with this was
 529   // that, in certain circumstances, it iterated over large chunks of
 530   // the heap finding only empty regions and, while it was working, it
 531   // was preventing the calling task to call its regular clock
 532   // method. So, this way, each task will spend very little time in
 533   // claim_region() and is allowed to call the regular clock method
 534   // frequently.
 535   HeapRegion* claim_region(uint worker_id);
 536 
 537   // It determines whether we've run out of regions to scan. Note that
 538   // the finger can point past the heap end in case the heap was expanded
 539   // to satisfy an allocation without doing a GC. This is fine, because all
 540   // objects in those regions will be considered live anyway because of
 541   // SATB guarantees (i.e. their TAMS will be equal to bottom).
 542   bool        out_of_regions() { return _finger >= _heap_end; }
 543 
 544   // Returns the task with the given id
 545   G1CMTask* task(int id) {
 546     assert(0 <= id && id < (int) _active_tasks,
 547            "task id not within active bounds");
 548     return _tasks[id];
 549   }
 550 
 551   // Returns the task queue with the given id
 552   G1CMTaskQueue* task_queue(int id) {
 553     assert(0 <= id && id < (int) _active_tasks,
 554            "task queue id not within active bounds");
 555     return (G1CMTaskQueue*) _task_queues->queue(id);
 556   }
 557 
 558   // Returns the task queue set
 559   G1CMTaskQueueSet* task_queues()  { return _task_queues; }
 560 
 561   // Access / manipulation of the overflow flag which is set to
 562   // indicate that the global stack has overflown
 563   bool has_overflown()           { return _has_overflown; }
 564   void set_has_overflown()       { _has_overflown = true; }
 565   void clear_has_overflown()     { _has_overflown = false; }
 566   bool restart_for_overflow()    { return _restart_for_overflow; }
 567 
 568   // Methods to enter the two overflow sync barriers
 569   void enter_first_sync_barrier(uint worker_id);
 570   void enter_second_sync_barrier(uint worker_id);
 571 
 572   // Card index of the bottom of the G1 heap. Used for biasing indices into
 573   // the card bitmaps.
 574   intptr_t _heap_bottom_card_num;
 575 
 576   // Set to true when initialization is complete
 577   bool _completed_initialization;
 578 
 579   // end_timer, true to end gc timer after ending concurrent phase.
 580   void register_concurrent_phase_end_common(bool end_timer);
 581 
 582   // Clear the given bitmap in parallel using the given WorkGang. If may_yield is
 583   // true, periodically insert checks to see if this method should exit prematurely.
 584   void clear_bitmap(G1CMBitMap* bitmap, WorkGang* workers, bool may_yield);
 585 public:
 586   // Manipulation of the global mark stack.
 587   // The push and pop operations are used by tasks for transfers
 588   // between task-local queues and the global mark stack.
 589   bool mark_stack_push(G1TaskQueueEntry* arr) {
 590     if (!_global_mark_stack.par_push_chunk(arr)) {
 591       set_has_overflown();
 592       return false;
 593     }
 594     return true;
 595   }
 596   bool mark_stack_pop(G1TaskQueueEntry* arr) {
 597     return _global_mark_stack.par_pop_chunk(arr);
 598   }
 599   size_t mark_stack_size()                { return _global_mark_stack.size(); }
 600   size_t partial_mark_stack_size_target() { return _global_mark_stack.capacity()/3; }
 601   bool mark_stack_overflow()              { return _global_mark_stack.is_out_of_memory(); }
 602   bool mark_stack_empty()                 { return _global_mark_stack.is_empty(); }
 603 
 604   G1CMRootRegions* root_regions() { return &_root_regions; }
 605 
 606   bool concurrent_marking_in_progress() {
 607     return _concurrent_marking_in_progress;
 608   }
 609   void set_concurrent_marking_in_progress() {
 610     _concurrent_marking_in_progress = true;
 611   }
 612   void clear_concurrent_marking_in_progress() {
 613     _concurrent_marking_in_progress = false;
 614   }
 615 
 616   void concurrent_cycle_start();
 617   void concurrent_cycle_end();
 618 
 619   void update_accum_task_vtime(int i, double vtime) {
 620     _accum_task_vtime[i] += vtime;
 621   }
 622 
 623   double all_task_accum_vtime() {
 624     double ret = 0.0;
 625     for (uint i = 0; i < _max_worker_id; ++i)
 626       ret += _accum_task_vtime[i];
 627     return ret;
 628   }
 629 
 630   // Attempts to steal an object from the task queues of other tasks
 631   bool try_stealing(uint worker_id, int* hash_seed, G1TaskQueueEntry& task_entry);
 632 
 633   G1ConcurrentMark(G1CollectedHeap* g1h,
 634                    G1RegionToSpaceMapper* prev_bitmap_storage,
 635                    G1RegionToSpaceMapper* next_bitmap_storage);
 636   ~G1ConcurrentMark();
 637 
 638   ConcurrentMarkThread* cmThread() { return _cmThread; }
 639 
 640   G1CMBitMapRO* prevMarkBitMap() const { return _prevMarkBitMap; }
 641   G1CMBitMap*   nextMarkBitMap() const { return _nextMarkBitMap; }
 642 
 643   // Returns the number of GC threads to be used in a concurrent
 644   // phase based on the number of GC threads being used in a STW
 645   // phase.
 646   uint scale_parallel_threads(uint n_par_threads);
 647 
 648   // Calculates the number of GC threads to be used in a concurrent phase.
 649   uint calc_parallel_marking_threads();
 650 
 651   // The following three are interaction between CM and
 652   // G1CollectedHeap
 653 
 654   // This notifies CM that a root during initial-mark needs to be
 655   // grayed. It is MT-safe. hr is the region that
 656   // contains the object and it's passed optionally from callers who
 657   // might already have it (no point in recalculating it).
 658   inline void grayRoot(oop obj,
 659                        HeapRegion* hr = NULL);
 660 
 661   // Prepare internal data structures for the next mark cycle. This includes clearing
 662   // the next mark bitmap and some internal data structures. This method is intended
 663   // to be called concurrently to the mutator. It will yield to safepoint requests.
 664   void cleanup_for_next_mark();
 665 
 666   // Clear the previous marking bitmap during safepoint.
 667   void clear_prev_bitmap(WorkGang* workers);
 668 
 669   // Return whether the next mark bitmap has no marks set. To be used for assertions
 670   // only. Will not yield to pause requests.
 671   bool nextMarkBitmapIsClear();
 672 
 673   // These two do the work that needs to be done before and after the
 674   // initial root checkpoint. Since this checkpoint can be done at two
 675   // different points (i.e. an explicit pause or piggy-backed on a
 676   // young collection), then it's nice to be able to easily share the
 677   // pre/post code. It might be the case that we can put everything in
 678   // the post method. TP
 679   void checkpointRootsInitialPre();
 680   void checkpointRootsInitialPost();
 681 
 682   // Scan all the root regions and mark everything reachable from
 683   // them.
 684   void scan_root_regions();
 685 
 686   // Scan a single root region and mark everything reachable from it.
 687   void scanRootRegion(HeapRegion* hr);
 688 
 689   // Do concurrent phase of marking, to a tentative transitive closure.
 690   void mark_from_roots();
 691 
 692   void checkpointRootsFinal(bool clear_all_soft_refs);
 693   void checkpointRootsFinalWork();
 694   void cleanup();
 695   void complete_cleanup();
 696 
 697   // Mark in the previous bitmap.  NB: this is usually read-only, so use
 698   // this carefully!
 699   inline void markPrev(oop p);
 700 
 701   // Clears marks for all objects in the given range, for the prev or
 702   // next bitmaps.  NB: the previous bitmap is usually
 703   // read-only, so use this carefully!
 704   void clearRangePrevBitmap(MemRegion mr);
 705 
 706   // Verify that there are no CSet oops on the stacks (taskqueues /
 707   // global mark stack) and fingers (global / per-task).
 708   // If marking is not in progress, it's a no-op.
 709   void verify_no_cset_oops() PRODUCT_RETURN;
 710 
 711   inline bool isPrevMarked(oop p) const;
 712 
 713   inline bool do_yield_check();
 714 
 715   // Abandon current marking iteration due to a Full GC.
 716   void abort();
 717 
 718   bool has_aborted()      { return _has_aborted; }
 719 
 720   void print_summary_info();
 721 
 722   void print_worker_threads_on(outputStream* st) const;
 723   void threads_do(ThreadClosure* tc) const;
 724 
 725   void print_on_error(outputStream* st) const;
 726 
 727   // Attempts to mark the given object on the next mark bitmap.
 728   inline bool par_mark(oop obj);
 729 
 730   // Returns true if initialization was successfully completed.
 731   bool completed_initialization() const {
 732     return _completed_initialization;
 733   }
 734 
 735   ConcurrentGCTimer* gc_timer_cm() const { return _gc_timer_cm; }
 736   G1OldTracer* gc_tracer_cm() const { return _gc_tracer_cm; }
 737 
 738 private:
 739   // Clear (Reset) all liveness count data.
 740   void clear_live_data(WorkGang* workers);
 741 
 742 #ifdef ASSERT
 743   // Verify all of the above data structures that they are in initial state.
 744   void verify_live_data_clear();
 745 #endif
 746 
 747   // Aggregates the per-card liveness data based on the current marking. Also sets
 748   // the amount of marked bytes for each region.
 749   void create_live_data();
 750 
 751   void finalize_live_data();
 752 
 753   void verify_live_data();
 754 };
 755 
 756 // A class representing a marking task.
 757 class G1CMTask : public TerminatorTerminator {
 758 private:
 759   enum PrivateConstants {
 760     // The regular clock call is called once the scanned words reaches
 761     // this limit
 762     words_scanned_period          = 12*1024,
 763     // The regular clock call is called once the number of visited
 764     // references reaches this limit
 765     refs_reached_period           = 1024,
 766     // Initial value for the hash seed, used in the work stealing code
 767     init_hash_seed                = 17
 768   };
 769 
 770   G1CMObjArrayProcessor       _objArray_processor;
 771 
 772   uint                        _worker_id;
 773   G1CollectedHeap*            _g1h;
 774   G1ConcurrentMark*           _cm;
 775   G1CMBitMap*                 _nextMarkBitMap;
 776   // the task queue of this task
 777   G1CMTaskQueue*              _task_queue;
 778 private:
 779   // the task queue set---needed for stealing
 780   G1CMTaskQueueSet*           _task_queues;
 781   // indicates whether the task has been claimed---this is only  for
 782   // debugging purposes
 783   bool                        _claimed;
 784 
 785   // number of calls to this task
 786   int                         _calls;
 787 
 788   // when the virtual timer reaches this time, the marking step should
 789   // exit
 790   double                      _time_target_ms;
 791   // the start time of the current marking step
 792   double                      _start_time_ms;
 793 
 794   // the oop closure used for iterations over oops
 795   G1CMOopClosure*             _cm_oop_closure;
 796 
 797   // the region this task is scanning, NULL if we're not scanning any
 798   HeapRegion*                 _curr_region;
 799   // the local finger of this task, NULL if we're not scanning a region
 800   HeapWord*                   _finger;
 801   // limit of the region this task is scanning, NULL if we're not scanning one
 802   HeapWord*                   _region_limit;
 803 
 804   // the number of words this task has scanned
 805   size_t                      _words_scanned;
 806   // When _words_scanned reaches this limit, the regular clock is
 807   // called. Notice that this might be decreased under certain
 808   // circumstances (i.e. when we believe that we did an expensive
 809   // operation).
 810   size_t                      _words_scanned_limit;
 811   // the initial value of _words_scanned_limit (i.e. what it was
 812   // before it was decreased).
 813   size_t                      _real_words_scanned_limit;
 814 
 815   // the number of references this task has visited
 816   size_t                      _refs_reached;
 817   // When _refs_reached reaches this limit, the regular clock is
 818   // called. Notice this this might be decreased under certain
 819   // circumstances (i.e. when we believe that we did an expensive
 820   // operation).
 821   size_t                      _refs_reached_limit;
 822   // the initial value of _refs_reached_limit (i.e. what it was before
 823   // it was decreased).
 824   size_t                      _real_refs_reached_limit;
 825 
 826   // used by the work stealing stuff
 827   int                         _hash_seed;
 828   // if this is true, then the task has aborted for some reason
 829   bool                        _has_aborted;
 830   // set when the task aborts because it has met its time quota
 831   bool                        _has_timed_out;
 832   // true when we're draining SATB buffers; this avoids the task
 833   // aborting due to SATB buffers being available (as we're already
 834   // dealing with them)
 835   bool                        _draining_satb_buffers;
 836 
 837   // number sequence of past step times
 838   NumberSeq                   _step_times_ms;
 839   // elapsed time of this task
 840   double                      _elapsed_time_ms;
 841   // termination time of this task
 842   double                      _termination_time_ms;
 843   // when this task got into the termination protocol
 844   double                      _termination_start_time_ms;
 845 
 846   // true when the task is during a concurrent phase, false when it is
 847   // in the remark phase (so, in the latter case, we do not have to
 848   // check all the things that we have to check during the concurrent
 849   // phase, i.e. SATB buffer availability...)
 850   bool                        _concurrent;
 851 
 852   TruncatedSeq                _marking_step_diffs_ms;
 853 
 854   // it updates the local fields after this task has claimed
 855   // a new region to scan
 856   void setup_for_region(HeapRegion* hr);
 857   // it brings up-to-date the limit of the region
 858   void update_region_limit();
 859 
 860   // called when either the words scanned or the refs visited limit
 861   // has been reached
 862   void reached_limit();
 863   // recalculates the words scanned and refs visited limits
 864   void recalculate_limits();
 865   // decreases the words scanned and refs visited limits when we reach
 866   // an expensive operation
 867   void decrease_limits();
 868   // it checks whether the words scanned or refs visited reached their
 869   // respective limit and calls reached_limit() if they have
 870   void check_limits() {
 871     if (_words_scanned >= _words_scanned_limit ||
 872         _refs_reached >= _refs_reached_limit) {
 873       reached_limit();
 874     }
 875   }
 876   // this is supposed to be called regularly during a marking step as
 877   // it checks a bunch of conditions that might cause the marking step
 878   // to abort
 879   void regular_clock_call();
 880   bool concurrent() { return _concurrent; }
 881 
 882   // Test whether obj might have already been passed over by the
 883   // mark bitmap scan, and so needs to be pushed onto the mark stack.
 884   bool is_below_finger(oop obj, HeapWord* global_finger) const;
 885 
 886   template<bool scan> void process_grey_task_entry(G1TaskQueueEntry task_entry);
 887 public:
 888   // Apply the closure on the given area of the objArray. Return the number of words
 889   // scanned.
 890   inline size_t scan_objArray(objArrayOop obj, MemRegion mr);
 891   // It resets the task; it should be called right at the beginning of
 892   // a marking phase.
 893   void reset(G1CMBitMap* _nextMarkBitMap);
 894   // it clears all the fields that correspond to a claimed region.
 895   void clear_region_fields();
 896 
 897   void set_concurrent(bool concurrent) { _concurrent = concurrent; }
 898 
 899   // The main method of this class which performs a marking step
 900   // trying not to exceed the given duration. However, it might exit
 901   // prematurely, according to some conditions (i.e. SATB buffers are
 902   // available for processing).
 903   void do_marking_step(double target_ms,
 904                        bool do_termination,
 905                        bool is_serial);
 906 
 907   // These two calls start and stop the timer
 908   void record_start_time() {
 909     _elapsed_time_ms = os::elapsedTime() * 1000.0;
 910   }
 911   void record_end_time() {
 912     _elapsed_time_ms = os::elapsedTime() * 1000.0 - _elapsed_time_ms;
 913   }
 914 
 915   // returns the worker ID associated with this task.
 916   uint worker_id() { return _worker_id; }
 917 
 918   // From TerminatorTerminator. It determines whether this task should
 919   // exit the termination protocol after it's entered it.
 920   virtual bool should_exit_termination();
 921 
 922   // Resets the local region fields after a task has finished scanning a
 923   // region; or when they have become stale as a result of the region
 924   // being evacuated.
 925   void giveup_current_region();
 926 
 927   HeapWord* finger()            { return _finger; }
 928 
 929   bool has_aborted()            { return _has_aborted; }
 930   void set_has_aborted()        { _has_aborted = true; }
 931   void clear_has_aborted()      { _has_aborted = false; }
 932   bool has_timed_out()          { return _has_timed_out; }
 933   bool claimed()                { return _claimed; }
 934 
 935   void set_cm_oop_closure(G1CMOopClosure* cm_oop_closure);
 936 
 937   // Increment the number of references this task has visited.
 938   void increment_refs_reached() { ++_refs_reached; }
 939 
 940   // Grey the object by marking it.  If not already marked, push it on
 941   // the local queue if below the finger.
 942   // obj is below its region's NTAMS.
 943   inline void make_reference_grey(oop obj);
 944 
 945   // Grey the object (by calling make_grey_reference) if required,
 946   // e.g. obj is below its containing region's NTAMS.
 947   // Precondition: obj is a valid heap object.
 948   inline void deal_with_reference(oop obj);
 949 
 950   // It scans an object and visits its children.
 951   inline void scan_task_entry(G1TaskQueueEntry task_entry);
 952 
 953   // It pushes an object on the local queue.
 954   inline void push(G1TaskQueueEntry task_entry);
 955 
 956   // Move entries to the global stack.
 957   void move_entries_to_global_stack();
 958   // Move entries from the global stack, return true if we were successful to do so.
 959   bool get_entries_from_global_stack();
 960 
 961   // It pops and scans objects from the local queue. If partially is
 962   // true, then it stops when the queue size is of a given limit. If
 963   // partially is false, then it stops when the queue is empty.
 964   void drain_local_queue(bool partially);
 965   // It moves entries from the global stack to the local queue and
 966   // drains the local queue. If partially is true, then it stops when
 967   // both the global stack and the local queue reach a given size. If
 968   // partially if false, it tries to empty them totally.
 969   void drain_global_stack(bool partially);
 970   // It keeps picking SATB buffers and processing them until no SATB
 971   // buffers are available.
 972   void drain_satb_buffers();
 973 
 974   // moves the local finger to a new location
 975   inline void move_finger_to(HeapWord* new_finger) {
 976     assert(new_finger >= _finger && new_finger < _region_limit, "invariant");
 977     _finger = new_finger;
 978   }
 979 
 980   G1CMTask(uint worker_id,
 981            G1ConcurrentMark *cm,
 982            G1CMTaskQueue* task_queue,
 983            G1CMTaskQueueSet* task_queues);
 984 
 985   // it prints statistics associated with this task
 986   void print_stats();
 987 };
 988 
 989 // Class that's used to to print out per-region liveness
 990 // information. It's currently used at the end of marking and also
 991 // after we sort the old regions at the end of the cleanup operation.
 992 class G1PrintRegionLivenessInfoClosure: public HeapRegionClosure {
 993 private:
 994   // Accumulators for these values.
 995   size_t _total_used_bytes;
 996   size_t _total_capacity_bytes;
 997   size_t _total_prev_live_bytes;
 998   size_t _total_next_live_bytes;
 999 
1000   // Accumulator for the remembered set size
1001   size_t _total_remset_bytes;
1002 
1003   // Accumulator for strong code roots memory size
1004   size_t _total_strong_code_roots_bytes;
1005 
1006   static double perc(size_t val, size_t total) {
1007     if (total == 0) {
1008       return 0.0;
1009     } else {
1010       return 100.0 * ((double) val / (double) total);
1011     }
1012   }
1013 
1014   static double bytes_to_mb(size_t val) {
1015     return (double) val / (double) M;
1016   }
1017 
1018 public:
1019   // The header and footer are printed in the constructor and
1020   // destructor respectively.
1021   G1PrintRegionLivenessInfoClosure(const char* phase_name);
1022   virtual bool doHeapRegion(HeapRegion* r);
1023   ~G1PrintRegionLivenessInfoClosure();
1024 };
1025 
1026 #endif // SHARE_VM_GC_G1_G1CONCURRENTMARK_HPP