1 /* 2 * Copyright (c) 2001, 2017, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #ifndef SHARE_VM_GC_G1_G1CONCURRENTMARK_HPP 26 #define SHARE_VM_GC_G1_G1CONCURRENTMARK_HPP 27 28 #include "classfile/javaClasses.hpp" 29 #include "gc/g1/g1ConcurrentMarkObjArrayProcessor.hpp" 30 #include "gc/g1/g1RegionToSpaceMapper.hpp" 31 #include "gc/g1/heapRegionSet.hpp" 32 #include "gc/shared/taskqueue.hpp" 33 34 class G1CollectedHeap; 35 class G1CMBitMap; 36 class G1CMTask; 37 class G1ConcurrentMark; 38 class ConcurrentGCTimer; 39 class G1OldTracer; 40 class G1SurvivorRegions; 41 42 #ifdef _MSC_VER 43 #pragma warning(push) 44 // warning C4522: multiple assignment operators specified 45 #pragma warning(disable:4522) 46 #endif 47 48 // This is a container class for either an oop or a continuation address for 49 // mark stack entries. Both are pushed onto the mark stack. 50 class G1TaskQueueEntry VALUE_OBJ_CLASS_SPEC { 51 private: 52 void* _holder; 53 54 static const uintptr_t ArraySliceBit = 1; 55 56 G1TaskQueueEntry(oop obj) : _holder(obj) { 57 assert(_holder != NULL, "Not allowed to set NULL task queue element"); 58 } 59 G1TaskQueueEntry(HeapWord* addr) : _holder((void*)((uintptr_t)addr | ArraySliceBit)) { } 60 public: 61 G1TaskQueueEntry(const G1TaskQueueEntry& other) { _holder = other._holder; } 62 G1TaskQueueEntry() : _holder(NULL) { } 63 64 static G1TaskQueueEntry from_slice(HeapWord* what) { return G1TaskQueueEntry(what); } 65 static G1TaskQueueEntry from_oop(oop obj) { return G1TaskQueueEntry(obj); } 66 67 G1TaskQueueEntry& operator=(const G1TaskQueueEntry& t) { 68 _holder = t._holder; 69 return *this; 70 } 71 72 volatile G1TaskQueueEntry& operator=(const volatile G1TaskQueueEntry& t) volatile { 73 _holder = t._holder; 74 return *this; 75 } 76 77 oop obj() const { 78 assert(!is_array_slice(), "Trying to read array slice " PTR_FORMAT " as oop", p2i(_holder)); 79 return (oop)_holder; 80 } 81 82 HeapWord* slice() const { 83 assert(is_array_slice(), "Trying to read oop " PTR_FORMAT " as array slice", p2i(_holder)); 84 return (HeapWord*)((uintptr_t)_holder & ~ArraySliceBit); 85 } 86 87 bool is_oop() const { return !is_array_slice(); } 88 bool is_array_slice() const { return ((uintptr_t)_holder & ArraySliceBit) != 0; } 89 bool is_null() const { return _holder == NULL; } 90 }; 91 92 #ifdef _MSC_VER 93 #pragma warning(pop) 94 #endif 95 96 typedef GenericTaskQueue<G1TaskQueueEntry, mtGC> G1CMTaskQueue; 97 typedef GenericTaskQueueSet<G1CMTaskQueue, mtGC> G1CMTaskQueueSet; 98 99 // Closure used by CM during concurrent reference discovery 100 // and reference processing (during remarking) to determine 101 // if a particular object is alive. It is primarily used 102 // to determine if referents of discovered reference objects 103 // are alive. An instance is also embedded into the 104 // reference processor as the _is_alive_non_header field 105 class G1CMIsAliveClosure: public BoolObjectClosure { 106 G1CollectedHeap* _g1; 107 public: 108 G1CMIsAliveClosure(G1CollectedHeap* g1) : _g1(g1) { } 109 110 bool do_object_b(oop obj); 111 }; 112 113 // A generic CM bit map. This is essentially a wrapper around the BitMap 114 // class, with one bit per (1<<_shifter) HeapWords. 115 116 class G1CMBitMapRO VALUE_OBJ_CLASS_SPEC { 117 protected: 118 HeapWord* _bmStartWord; // base address of range covered by map 119 size_t _bmWordSize; // map size (in #HeapWords covered) 120 const int _shifter; // map to char or bit 121 BitMapView _bm; // the bit map itself 122 123 public: 124 // constructor 125 G1CMBitMapRO(int shifter); 126 127 // inquiries 128 HeapWord* startWord() const { return _bmStartWord; } 129 // the following is one past the last word in space 130 HeapWord* endWord() const { return _bmStartWord + _bmWordSize; } 131 132 // read marks 133 134 bool isMarked(HeapWord* addr) const { 135 assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize), 136 "outside underlying space?"); 137 return _bm.at(heapWordToOffset(addr)); 138 } 139 140 // iteration 141 inline bool iterate(BitMapClosure* cl, MemRegion mr); 142 143 // Return the address corresponding to the next marked bit at or after 144 // "addr", and before "limit", if "limit" is non-NULL. If there is no 145 // such bit, returns "limit" if that is non-NULL, or else "endWord()". 146 HeapWord* getNextMarkedWordAddress(const HeapWord* addr, 147 const HeapWord* limit = NULL) const; 148 149 // conversion utilities 150 HeapWord* offsetToHeapWord(size_t offset) const { 151 return _bmStartWord + (offset << _shifter); 152 } 153 size_t heapWordToOffset(const HeapWord* addr) const { 154 return pointer_delta(addr, _bmStartWord) >> _shifter; 155 } 156 157 // The argument addr should be the start address of a valid object 158 inline HeapWord* nextObject(HeapWord* addr); 159 160 void print_on_error(outputStream* st, const char* prefix) const; 161 162 // debugging 163 NOT_PRODUCT(bool covers(MemRegion rs) const;) 164 }; 165 166 class G1CMBitMapMappingChangedListener : public G1MappingChangedListener { 167 private: 168 G1CMBitMap* _bm; 169 public: 170 G1CMBitMapMappingChangedListener() : _bm(NULL) {} 171 172 void set_bitmap(G1CMBitMap* bm) { _bm = bm; } 173 174 virtual void on_commit(uint start_idx, size_t num_regions, bool zero_filled); 175 }; 176 177 class G1CMBitMap : public G1CMBitMapRO { 178 private: 179 G1CMBitMapMappingChangedListener _listener; 180 181 public: 182 static size_t compute_size(size_t heap_size); 183 // Returns the amount of bytes on the heap between two marks in the bitmap. 184 static size_t mark_distance(); 185 // Returns how many bytes (or bits) of the heap a single byte (or bit) of the 186 // mark bitmap corresponds to. This is the same as the mark distance above. 187 static size_t heap_map_factor() { 188 return mark_distance(); 189 } 190 191 G1CMBitMap() : G1CMBitMapRO(LogMinObjAlignment), _listener() { _listener.set_bitmap(this); } 192 193 // Initializes the underlying BitMap to cover the given area. 194 void initialize(MemRegion heap, G1RegionToSpaceMapper* storage); 195 196 // Write marks. 197 inline void mark(HeapWord* addr); 198 inline void clear(HeapWord* addr); 199 inline bool parMark(HeapWord* addr); 200 201 void clear_range(MemRegion mr); 202 }; 203 204 // Represents the overflow mark stack used by concurrent marking. 205 // 206 // Stores oops in a huge buffer in virtual memory that is always fully committed. 207 // Resizing may only happen during a STW pause when the stack is empty. 208 // 209 // Memory is allocated on a "chunk" basis, i.e. a set of oops. For this, the mark 210 // stack memory is split into evenly sized chunks of oops. Users can only 211 // add or remove entries on that basis. 212 // Chunks are filled in increasing address order. Not completely filled chunks 213 // have a NULL element as a terminating element. 214 // 215 // Every chunk has a header containing a single pointer element used for memory 216 // management. This wastes some space, but is negligible (< .1% with current sizing). 217 // 218 // Memory management is done using a mix of tracking a high water-mark indicating 219 // that all chunks at a lower address are valid chunks, and a singly linked free 220 // list connecting all empty chunks. 221 class G1CMMarkStack VALUE_OBJ_CLASS_SPEC { 222 public: 223 // Number of oops that can fit in a single chunk. 224 static const size_t EntriesPerChunk = 1024 - 1 /* One reference for the next pointer */; 225 private: 226 struct TaskQueueEntryChunk { 227 TaskQueueEntryChunk* next; 228 G1TaskQueueEntry data[EntriesPerChunk]; 229 }; 230 231 size_t _max_chunk_capacity; // Maximum number of OopChunk elements on the stack. 232 233 TaskQueueEntryChunk* _base; // Bottom address of allocated memory area. 234 size_t _chunk_capacity; // Current maximum number of OopChunk elements. 235 236 char _pad0[DEFAULT_CACHE_LINE_SIZE]; 237 TaskQueueEntryChunk* volatile _free_list; // Linked list of free chunks that can be allocated by users. 238 char _pad1[DEFAULT_CACHE_LINE_SIZE - sizeof(TaskQueueEntryChunk*)]; 239 TaskQueueEntryChunk* volatile _chunk_list; // List of chunks currently containing data. 240 volatile size_t _chunks_in_chunk_list; 241 char _pad2[DEFAULT_CACHE_LINE_SIZE - sizeof(TaskQueueEntryChunk*) - sizeof(size_t)]; 242 243 volatile size_t _hwm; // High water mark within the reserved space. 244 char _pad4[DEFAULT_CACHE_LINE_SIZE - sizeof(size_t)]; 245 246 // Allocate a new chunk from the reserved memory, using the high water mark. Returns 247 // NULL if out of memory. 248 TaskQueueEntryChunk* allocate_new_chunk(); 249 250 volatile bool _out_of_memory; 251 252 // Atomically add the given chunk to the list. 253 void add_chunk_to_list(TaskQueueEntryChunk* volatile* list, TaskQueueEntryChunk* elem); 254 // Atomically remove and return a chunk from the given list. Returns NULL if the 255 // list is empty. 256 TaskQueueEntryChunk* remove_chunk_from_list(TaskQueueEntryChunk* volatile* list); 257 258 void add_chunk_to_chunk_list(TaskQueueEntryChunk* elem); 259 void add_chunk_to_free_list(TaskQueueEntryChunk* elem); 260 261 TaskQueueEntryChunk* remove_chunk_from_chunk_list(); 262 TaskQueueEntryChunk* remove_chunk_from_free_list(); 263 264 bool _should_expand; 265 266 // Resizes the mark stack to the given new capacity. Releases any previous 267 // memory if successful. 268 bool resize(size_t new_capacity); 269 270 public: 271 G1CMMarkStack(); 272 ~G1CMMarkStack(); 273 274 // Alignment and minimum capacity of this mark stack in number of oops. 275 static size_t capacity_alignment(); 276 277 // Allocate and initialize the mark stack with the given number of oops. 278 bool initialize(size_t initial_capacity, size_t max_capacity); 279 280 // Pushes the given buffer containing at most EntriesPerChunk elements on the mark 281 // stack. If less than EntriesPerChunk elements are to be pushed, the array must 282 // be terminated with a NULL. 283 // Returns whether the buffer contents were successfully pushed to the global mark 284 // stack. 285 bool par_push_chunk(G1TaskQueueEntry* buffer); 286 287 // Pops a chunk from this mark stack, copying them into the given buffer. This 288 // chunk may contain up to EntriesPerChunk elements. If there are less, the last 289 // element in the array is a NULL pointer. 290 bool par_pop_chunk(G1TaskQueueEntry* buffer); 291 292 // Return whether the chunk list is empty. Racy due to unsynchronized access to 293 // _chunk_list. 294 bool is_empty() const { return _chunk_list == NULL; } 295 296 size_t capacity() const { return _chunk_capacity; } 297 298 bool is_out_of_memory() const { return _out_of_memory; } 299 void clear_out_of_memory() { _out_of_memory = false; } 300 301 bool should_expand() const { return _should_expand; } 302 void set_should_expand(bool value) { _should_expand = value; } 303 304 // Expand the stack, typically in response to an overflow condition 305 void expand(); 306 307 // Return the approximate number of oops on this mark stack. Racy due to 308 // unsynchronized access to _chunks_in_chunk_list. 309 size_t size() const { return _chunks_in_chunk_list * EntriesPerChunk; } 310 311 void set_empty(); 312 313 // Apply Fn to every oop on the mark stack. The mark stack must not 314 // be modified while iterating. 315 template<typename Fn> void iterate(Fn fn) const PRODUCT_RETURN; 316 }; 317 318 // Root Regions are regions that are not empty at the beginning of a 319 // marking cycle and which we might collect during an evacuation pause 320 // while the cycle is active. Given that, during evacuation pauses, we 321 // do not copy objects that are explicitly marked, what we have to do 322 // for the root regions is to scan them and mark all objects reachable 323 // from them. According to the SATB assumptions, we only need to visit 324 // each object once during marking. So, as long as we finish this scan 325 // before the next evacuation pause, we can copy the objects from the 326 // root regions without having to mark them or do anything else to them. 327 // 328 // Currently, we only support root region scanning once (at the start 329 // of the marking cycle) and the root regions are all the survivor 330 // regions populated during the initial-mark pause. 331 class G1CMRootRegions VALUE_OBJ_CLASS_SPEC { 332 private: 333 const G1SurvivorRegions* _survivors; 334 G1ConcurrentMark* _cm; 335 336 volatile bool _scan_in_progress; 337 volatile bool _should_abort; 338 volatile int _claimed_survivor_index; 339 340 void notify_scan_done(); 341 342 public: 343 G1CMRootRegions(); 344 // We actually do most of the initialization in this method. 345 void init(const G1SurvivorRegions* survivors, G1ConcurrentMark* cm); 346 347 // Reset the claiming / scanning of the root regions. 348 void prepare_for_scan(); 349 350 // Forces get_next() to return NULL so that the iteration aborts early. 351 void abort() { _should_abort = true; } 352 353 // Return true if the CM thread are actively scanning root regions, 354 // false otherwise. 355 bool scan_in_progress() { return _scan_in_progress; } 356 357 // Claim the next root region to scan atomically, or return NULL if 358 // all have been claimed. 359 HeapRegion* claim_next(); 360 361 // The number of root regions to scan. 362 uint num_root_regions() const; 363 364 void cancel_scan(); 365 366 // Flag that we're done with root region scanning and notify anyone 367 // who's waiting on it. If aborted is false, assume that all regions 368 // have been claimed. 369 void scan_finished(); 370 371 // If CM threads are still scanning root regions, wait until they 372 // are done. Return true if we had to wait, false otherwise. 373 bool wait_until_scan_finished(); 374 }; 375 376 class ConcurrentMarkThread; 377 378 class G1ConcurrentMark: public CHeapObj<mtGC> { 379 friend class ConcurrentMarkThread; 380 friend class G1ParNoteEndTask; 381 friend class G1VerifyLiveDataClosure; 382 friend class G1CMRefProcTaskProxy; 383 friend class G1CMRefProcTaskExecutor; 384 friend class G1CMKeepAliveAndDrainClosure; 385 friend class G1CMDrainMarkingStackClosure; 386 friend class G1CMBitMapClosure; 387 friend class G1CMConcurrentMarkingTask; 388 friend class G1CMRemarkTask; 389 friend class G1CMTask; 390 391 protected: 392 ConcurrentMarkThread* _cmThread; // The thread doing the work 393 G1CollectedHeap* _g1h; // The heap 394 uint _parallel_marking_threads; // The number of marking 395 // threads we're using 396 uint _max_parallel_marking_threads; // Max number of marking 397 // threads we'll ever use 398 double _sleep_factor; // How much we have to sleep, with 399 // respect to the work we just did, to 400 // meet the marking overhead goal 401 double _marking_task_overhead; // Marking target overhead for 402 // a single task 403 404 FreeRegionList _cleanup_list; 405 406 // Concurrent marking support structures 407 G1CMBitMap _markBitMap1; 408 G1CMBitMap _markBitMap2; 409 G1CMBitMapRO* _prevMarkBitMap; // Completed mark bitmap 410 G1CMBitMap* _nextMarkBitMap; // Under-construction mark bitmap 411 412 // Heap bounds 413 HeapWord* _heap_start; 414 HeapWord* _heap_end; 415 416 // Root region tracking and claiming 417 G1CMRootRegions _root_regions; 418 419 // For gray objects 420 G1CMMarkStack _global_mark_stack; // Grey objects behind global finger 421 HeapWord* volatile _finger; // The global finger, region aligned, 422 // always points to the end of the 423 // last claimed region 424 425 // Marking tasks 426 uint _max_worker_id;// Maximum worker id 427 uint _active_tasks; // Task num currently active 428 G1CMTask** _tasks; // Task queue array (max_worker_id len) 429 G1CMTaskQueueSet* _task_queues; // Task queue set 430 ParallelTaskTerminator _terminator; // For termination 431 432 // Two sync barriers that are used to synchronize tasks when an 433 // overflow occurs. The algorithm is the following. All tasks enter 434 // the first one to ensure that they have all stopped manipulating 435 // the global data structures. After they exit it, they re-initialize 436 // their data structures and task 0 re-initializes the global data 437 // structures. Then, they enter the second sync barrier. This 438 // ensure, that no task starts doing work before all data 439 // structures (local and global) have been re-initialized. When they 440 // exit it, they are free to start working again. 441 WorkGangBarrierSync _first_overflow_barrier_sync; 442 WorkGangBarrierSync _second_overflow_barrier_sync; 443 444 // This is set by any task, when an overflow on the global data 445 // structures is detected 446 volatile bool _has_overflown; 447 // True: marking is concurrent, false: we're in remark 448 volatile bool _concurrent; 449 // Set at the end of a Full GC so that marking aborts 450 volatile bool _has_aborted; 451 452 // Used when remark aborts due to an overflow to indicate that 453 // another concurrent marking phase should start 454 volatile bool _restart_for_overflow; 455 456 // This is true from the very start of concurrent marking until the 457 // point when all the tasks complete their work. It is really used 458 // to determine the points between the end of concurrent marking and 459 // time of remark. 460 volatile bool _concurrent_marking_in_progress; 461 462 ConcurrentGCTimer* _gc_timer_cm; 463 464 G1OldTracer* _gc_tracer_cm; 465 466 // All of these times are in ms 467 NumberSeq _init_times; 468 NumberSeq _remark_times; 469 NumberSeq _remark_mark_times; 470 NumberSeq _remark_weak_ref_times; 471 NumberSeq _cleanup_times; 472 double _total_counting_time; 473 double _total_rs_scrub_time; 474 475 double* _accum_task_vtime; // Accumulated task vtime 476 477 WorkGang* _parallel_workers; 478 479 void weakRefsWorkParallelPart(BoolObjectClosure* is_alive, bool purged_classes); 480 void weakRefsWork(bool clear_all_soft_refs); 481 482 void swapMarkBitMaps(); 483 484 // It resets the global marking data structures, as well as the 485 // task local ones; should be called during initial mark. 486 void reset(); 487 488 // Resets all the marking data structures. Called when we have to restart 489 // marking or when marking completes (via set_non_marking_state below). 490 void reset_marking_state(bool clear_overflow = true); 491 492 // We do this after we're done with marking so that the marking data 493 // structures are initialized to a sensible and predictable state. 494 void set_non_marking_state(); 495 496 // Called to indicate how many threads are currently active. 497 void set_concurrency(uint active_tasks); 498 499 // It should be called to indicate which phase we're in (concurrent 500 // mark or remark) and how many threads are currently active. 501 void set_concurrency_and_phase(uint active_tasks, bool concurrent); 502 503 // Prints all gathered CM-related statistics 504 void print_stats(); 505 506 bool cleanup_list_is_empty() { 507 return _cleanup_list.is_empty(); 508 } 509 510 // Accessor methods 511 uint parallel_marking_threads() const { return _parallel_marking_threads; } 512 uint max_parallel_marking_threads() const { return _max_parallel_marking_threads;} 513 double sleep_factor() { return _sleep_factor; } 514 double marking_task_overhead() { return _marking_task_overhead;} 515 516 HeapWord* finger() { return _finger; } 517 bool concurrent() { return _concurrent; } 518 uint active_tasks() { return _active_tasks; } 519 ParallelTaskTerminator* terminator() { return &_terminator; } 520 521 // It claims the next available region to be scanned by a marking 522 // task/thread. It might return NULL if the next region is empty or 523 // we have run out of regions. In the latter case, out_of_regions() 524 // determines whether we've really run out of regions or the task 525 // should call claim_region() again. This might seem a bit 526 // awkward. Originally, the code was written so that claim_region() 527 // either successfully returned with a non-empty region or there 528 // were no more regions to be claimed. The problem with this was 529 // that, in certain circumstances, it iterated over large chunks of 530 // the heap finding only empty regions and, while it was working, it 531 // was preventing the calling task to call its regular clock 532 // method. So, this way, each task will spend very little time in 533 // claim_region() and is allowed to call the regular clock method 534 // frequently. 535 HeapRegion* claim_region(uint worker_id); 536 537 // It determines whether we've run out of regions to scan. Note that 538 // the finger can point past the heap end in case the heap was expanded 539 // to satisfy an allocation without doing a GC. This is fine, because all 540 // objects in those regions will be considered live anyway because of 541 // SATB guarantees (i.e. their TAMS will be equal to bottom). 542 bool out_of_regions() { return _finger >= _heap_end; } 543 544 // Returns the task with the given id 545 G1CMTask* task(int id) { 546 assert(0 <= id && id < (int) _active_tasks, 547 "task id not within active bounds"); 548 return _tasks[id]; 549 } 550 551 // Returns the task queue with the given id 552 G1CMTaskQueue* task_queue(int id) { 553 assert(0 <= id && id < (int) _active_tasks, 554 "task queue id not within active bounds"); 555 return (G1CMTaskQueue*) _task_queues->queue(id); 556 } 557 558 // Returns the task queue set 559 G1CMTaskQueueSet* task_queues() { return _task_queues; } 560 561 // Access / manipulation of the overflow flag which is set to 562 // indicate that the global stack has overflown 563 bool has_overflown() { return _has_overflown; } 564 void set_has_overflown() { _has_overflown = true; } 565 void clear_has_overflown() { _has_overflown = false; } 566 bool restart_for_overflow() { return _restart_for_overflow; } 567 568 // Methods to enter the two overflow sync barriers 569 void enter_first_sync_barrier(uint worker_id); 570 void enter_second_sync_barrier(uint worker_id); 571 572 // Card index of the bottom of the G1 heap. Used for biasing indices into 573 // the card bitmaps. 574 intptr_t _heap_bottom_card_num; 575 576 // Set to true when initialization is complete 577 bool _completed_initialization; 578 579 // end_timer, true to end gc timer after ending concurrent phase. 580 void register_concurrent_phase_end_common(bool end_timer); 581 582 // Clear the given bitmap in parallel using the given WorkGang. If may_yield is 583 // true, periodically insert checks to see if this method should exit prematurely. 584 void clear_bitmap(G1CMBitMap* bitmap, WorkGang* workers, bool may_yield); 585 public: 586 // Manipulation of the global mark stack. 587 // The push and pop operations are used by tasks for transfers 588 // between task-local queues and the global mark stack. 589 bool mark_stack_push(G1TaskQueueEntry* arr) { 590 if (!_global_mark_stack.par_push_chunk(arr)) { 591 set_has_overflown(); 592 return false; 593 } 594 return true; 595 } 596 bool mark_stack_pop(G1TaskQueueEntry* arr) { 597 return _global_mark_stack.par_pop_chunk(arr); 598 } 599 size_t mark_stack_size() { return _global_mark_stack.size(); } 600 size_t partial_mark_stack_size_target() { return _global_mark_stack.capacity()/3; } 601 bool mark_stack_overflow() { return _global_mark_stack.is_out_of_memory(); } 602 bool mark_stack_empty() { return _global_mark_stack.is_empty(); } 603 604 G1CMRootRegions* root_regions() { return &_root_regions; } 605 606 bool concurrent_marking_in_progress() { 607 return _concurrent_marking_in_progress; 608 } 609 void set_concurrent_marking_in_progress() { 610 _concurrent_marking_in_progress = true; 611 } 612 void clear_concurrent_marking_in_progress() { 613 _concurrent_marking_in_progress = false; 614 } 615 616 void concurrent_cycle_start(); 617 void concurrent_cycle_end(); 618 619 void update_accum_task_vtime(int i, double vtime) { 620 _accum_task_vtime[i] += vtime; 621 } 622 623 double all_task_accum_vtime() { 624 double ret = 0.0; 625 for (uint i = 0; i < _max_worker_id; ++i) 626 ret += _accum_task_vtime[i]; 627 return ret; 628 } 629 630 // Attempts to steal an object from the task queues of other tasks 631 bool try_stealing(uint worker_id, int* hash_seed, G1TaskQueueEntry& task_entry); 632 633 G1ConcurrentMark(G1CollectedHeap* g1h, 634 G1RegionToSpaceMapper* prev_bitmap_storage, 635 G1RegionToSpaceMapper* next_bitmap_storage); 636 ~G1ConcurrentMark(); 637 638 ConcurrentMarkThread* cmThread() { return _cmThread; } 639 640 G1CMBitMapRO* prevMarkBitMap() const { return _prevMarkBitMap; } 641 G1CMBitMap* nextMarkBitMap() const { return _nextMarkBitMap; } 642 643 // Returns the number of GC threads to be used in a concurrent 644 // phase based on the number of GC threads being used in a STW 645 // phase. 646 uint scale_parallel_threads(uint n_par_threads); 647 648 // Calculates the number of GC threads to be used in a concurrent phase. 649 uint calc_parallel_marking_threads(); 650 651 // The following three are interaction between CM and 652 // G1CollectedHeap 653 654 // This notifies CM that a root during initial-mark needs to be 655 // grayed. It is MT-safe. hr is the region that 656 // contains the object and it's passed optionally from callers who 657 // might already have it (no point in recalculating it). 658 inline void grayRoot(oop obj, 659 HeapRegion* hr = NULL); 660 661 // Prepare internal data structures for the next mark cycle. This includes clearing 662 // the next mark bitmap and some internal data structures. This method is intended 663 // to be called concurrently to the mutator. It will yield to safepoint requests. 664 void cleanup_for_next_mark(); 665 666 // Clear the previous marking bitmap during safepoint. 667 void clear_prev_bitmap(WorkGang* workers); 668 669 // Return whether the next mark bitmap has no marks set. To be used for assertions 670 // only. Will not yield to pause requests. 671 bool nextMarkBitmapIsClear(); 672 673 // These two do the work that needs to be done before and after the 674 // initial root checkpoint. Since this checkpoint can be done at two 675 // different points (i.e. an explicit pause or piggy-backed on a 676 // young collection), then it's nice to be able to easily share the 677 // pre/post code. It might be the case that we can put everything in 678 // the post method. TP 679 void checkpointRootsInitialPre(); 680 void checkpointRootsInitialPost(); 681 682 // Scan all the root regions and mark everything reachable from 683 // them. 684 void scan_root_regions(); 685 686 // Scan a single root region and mark everything reachable from it. 687 void scanRootRegion(HeapRegion* hr); 688 689 // Do concurrent phase of marking, to a tentative transitive closure. 690 void mark_from_roots(); 691 692 void checkpointRootsFinal(bool clear_all_soft_refs); 693 void checkpointRootsFinalWork(); 694 void cleanup(); 695 void complete_cleanup(); 696 697 // Mark in the previous bitmap. NB: this is usually read-only, so use 698 // this carefully! 699 inline void markPrev(oop p); 700 701 // Clears marks for all objects in the given range, for the prev or 702 // next bitmaps. NB: the previous bitmap is usually 703 // read-only, so use this carefully! 704 void clearRangePrevBitmap(MemRegion mr); 705 706 // Verify that there are no CSet oops on the stacks (taskqueues / 707 // global mark stack) and fingers (global / per-task). 708 // If marking is not in progress, it's a no-op. 709 void verify_no_cset_oops() PRODUCT_RETURN; 710 711 inline bool isPrevMarked(oop p) const; 712 713 inline bool do_yield_check(); 714 715 // Abandon current marking iteration due to a Full GC. 716 void abort(); 717 718 bool has_aborted() { return _has_aborted; } 719 720 void print_summary_info(); 721 722 void print_worker_threads_on(outputStream* st) const; 723 void threads_do(ThreadClosure* tc) const; 724 725 void print_on_error(outputStream* st) const; 726 727 // Attempts to mark the given object on the next mark bitmap. 728 inline bool par_mark(oop obj); 729 730 // Returns true if initialization was successfully completed. 731 bool completed_initialization() const { 732 return _completed_initialization; 733 } 734 735 ConcurrentGCTimer* gc_timer_cm() const { return _gc_timer_cm; } 736 G1OldTracer* gc_tracer_cm() const { return _gc_tracer_cm; } 737 738 private: 739 // Clear (Reset) all liveness count data. 740 void clear_live_data(WorkGang* workers); 741 742 #ifdef ASSERT 743 // Verify all of the above data structures that they are in initial state. 744 void verify_live_data_clear(); 745 #endif 746 747 // Aggregates the per-card liveness data based on the current marking. Also sets 748 // the amount of marked bytes for each region. 749 void create_live_data(); 750 751 void finalize_live_data(); 752 753 void verify_live_data(); 754 }; 755 756 // A class representing a marking task. 757 class G1CMTask : public TerminatorTerminator { 758 private: 759 enum PrivateConstants { 760 // The regular clock call is called once the scanned words reaches 761 // this limit 762 words_scanned_period = 12*1024, 763 // The regular clock call is called once the number of visited 764 // references reaches this limit 765 refs_reached_period = 1024, 766 // Initial value for the hash seed, used in the work stealing code 767 init_hash_seed = 17 768 }; 769 770 G1CMObjArrayProcessor _objArray_processor; 771 772 uint _worker_id; 773 G1CollectedHeap* _g1h; 774 G1ConcurrentMark* _cm; 775 G1CMBitMap* _nextMarkBitMap; 776 // the task queue of this task 777 G1CMTaskQueue* _task_queue; 778 private: 779 // the task queue set---needed for stealing 780 G1CMTaskQueueSet* _task_queues; 781 // indicates whether the task has been claimed---this is only for 782 // debugging purposes 783 bool _claimed; 784 785 // number of calls to this task 786 int _calls; 787 788 // when the virtual timer reaches this time, the marking step should 789 // exit 790 double _time_target_ms; 791 // the start time of the current marking step 792 double _start_time_ms; 793 794 // the oop closure used for iterations over oops 795 G1CMOopClosure* _cm_oop_closure; 796 797 // the region this task is scanning, NULL if we're not scanning any 798 HeapRegion* _curr_region; 799 // the local finger of this task, NULL if we're not scanning a region 800 HeapWord* _finger; 801 // limit of the region this task is scanning, NULL if we're not scanning one 802 HeapWord* _region_limit; 803 804 // the number of words this task has scanned 805 size_t _words_scanned; 806 // When _words_scanned reaches this limit, the regular clock is 807 // called. Notice that this might be decreased under certain 808 // circumstances (i.e. when we believe that we did an expensive 809 // operation). 810 size_t _words_scanned_limit; 811 // the initial value of _words_scanned_limit (i.e. what it was 812 // before it was decreased). 813 size_t _real_words_scanned_limit; 814 815 // the number of references this task has visited 816 size_t _refs_reached; 817 // When _refs_reached reaches this limit, the regular clock is 818 // called. Notice this this might be decreased under certain 819 // circumstances (i.e. when we believe that we did an expensive 820 // operation). 821 size_t _refs_reached_limit; 822 // the initial value of _refs_reached_limit (i.e. what it was before 823 // it was decreased). 824 size_t _real_refs_reached_limit; 825 826 // used by the work stealing stuff 827 int _hash_seed; 828 // if this is true, then the task has aborted for some reason 829 bool _has_aborted; 830 // set when the task aborts because it has met its time quota 831 bool _has_timed_out; 832 // true when we're draining SATB buffers; this avoids the task 833 // aborting due to SATB buffers being available (as we're already 834 // dealing with them) 835 bool _draining_satb_buffers; 836 837 // number sequence of past step times 838 NumberSeq _step_times_ms; 839 // elapsed time of this task 840 double _elapsed_time_ms; 841 // termination time of this task 842 double _termination_time_ms; 843 // when this task got into the termination protocol 844 double _termination_start_time_ms; 845 846 // true when the task is during a concurrent phase, false when it is 847 // in the remark phase (so, in the latter case, we do not have to 848 // check all the things that we have to check during the concurrent 849 // phase, i.e. SATB buffer availability...) 850 bool _concurrent; 851 852 TruncatedSeq _marking_step_diffs_ms; 853 854 // it updates the local fields after this task has claimed 855 // a new region to scan 856 void setup_for_region(HeapRegion* hr); 857 // it brings up-to-date the limit of the region 858 void update_region_limit(); 859 860 // called when either the words scanned or the refs visited limit 861 // has been reached 862 void reached_limit(); 863 // recalculates the words scanned and refs visited limits 864 void recalculate_limits(); 865 // decreases the words scanned and refs visited limits when we reach 866 // an expensive operation 867 void decrease_limits(); 868 // it checks whether the words scanned or refs visited reached their 869 // respective limit and calls reached_limit() if they have 870 void check_limits() { 871 if (_words_scanned >= _words_scanned_limit || 872 _refs_reached >= _refs_reached_limit) { 873 reached_limit(); 874 } 875 } 876 // this is supposed to be called regularly during a marking step as 877 // it checks a bunch of conditions that might cause the marking step 878 // to abort 879 void regular_clock_call(); 880 bool concurrent() { return _concurrent; } 881 882 // Test whether obj might have already been passed over by the 883 // mark bitmap scan, and so needs to be pushed onto the mark stack. 884 bool is_below_finger(oop obj, HeapWord* global_finger) const; 885 886 template<bool scan> void process_grey_task_entry(G1TaskQueueEntry task_entry); 887 public: 888 // Apply the closure on the given area of the objArray. Return the number of words 889 // scanned. 890 inline size_t scan_objArray(objArrayOop obj, MemRegion mr); 891 // It resets the task; it should be called right at the beginning of 892 // a marking phase. 893 void reset(G1CMBitMap* _nextMarkBitMap); 894 // it clears all the fields that correspond to a claimed region. 895 void clear_region_fields(); 896 897 void set_concurrent(bool concurrent) { _concurrent = concurrent; } 898 899 // The main method of this class which performs a marking step 900 // trying not to exceed the given duration. However, it might exit 901 // prematurely, according to some conditions (i.e. SATB buffers are 902 // available for processing). 903 void do_marking_step(double target_ms, 904 bool do_termination, 905 bool is_serial); 906 907 // These two calls start and stop the timer 908 void record_start_time() { 909 _elapsed_time_ms = os::elapsedTime() * 1000.0; 910 } 911 void record_end_time() { 912 _elapsed_time_ms = os::elapsedTime() * 1000.0 - _elapsed_time_ms; 913 } 914 915 // returns the worker ID associated with this task. 916 uint worker_id() { return _worker_id; } 917 918 // From TerminatorTerminator. It determines whether this task should 919 // exit the termination protocol after it's entered it. 920 virtual bool should_exit_termination(); 921 922 // Resets the local region fields after a task has finished scanning a 923 // region; or when they have become stale as a result of the region 924 // being evacuated. 925 void giveup_current_region(); 926 927 HeapWord* finger() { return _finger; } 928 929 bool has_aborted() { return _has_aborted; } 930 void set_has_aborted() { _has_aborted = true; } 931 void clear_has_aborted() { _has_aborted = false; } 932 bool has_timed_out() { return _has_timed_out; } 933 bool claimed() { return _claimed; } 934 935 void set_cm_oop_closure(G1CMOopClosure* cm_oop_closure); 936 937 // Increment the number of references this task has visited. 938 void increment_refs_reached() { ++_refs_reached; } 939 940 // Grey the object by marking it. If not already marked, push it on 941 // the local queue if below the finger. 942 // obj is below its region's NTAMS. 943 inline void make_reference_grey(oop obj); 944 945 // Grey the object (by calling make_grey_reference) if required, 946 // e.g. obj is below its containing region's NTAMS. 947 // Precondition: obj is a valid heap object. 948 inline void deal_with_reference(oop obj); 949 950 // It scans an object and visits its children. 951 inline void scan_task_entry(G1TaskQueueEntry task_entry); 952 953 // It pushes an object on the local queue. 954 inline void push(G1TaskQueueEntry task_entry); 955 956 // Move entries to the global stack. 957 void move_entries_to_global_stack(); 958 // Move entries from the global stack, return true if we were successful to do so. 959 bool get_entries_from_global_stack(); 960 961 // It pops and scans objects from the local queue. If partially is 962 // true, then it stops when the queue size is of a given limit. If 963 // partially is false, then it stops when the queue is empty. 964 void drain_local_queue(bool partially); 965 // It moves entries from the global stack to the local queue and 966 // drains the local queue. If partially is true, then it stops when 967 // both the global stack and the local queue reach a given size. If 968 // partially if false, it tries to empty them totally. 969 void drain_global_stack(bool partially); 970 // It keeps picking SATB buffers and processing them until no SATB 971 // buffers are available. 972 void drain_satb_buffers(); 973 974 // moves the local finger to a new location 975 inline void move_finger_to(HeapWord* new_finger) { 976 assert(new_finger >= _finger && new_finger < _region_limit, "invariant"); 977 _finger = new_finger; 978 } 979 980 G1CMTask(uint worker_id, 981 G1ConcurrentMark *cm, 982 G1CMTaskQueue* task_queue, 983 G1CMTaskQueueSet* task_queues); 984 985 // it prints statistics associated with this task 986 void print_stats(); 987 }; 988 989 // Class that's used to to print out per-region liveness 990 // information. It's currently used at the end of marking and also 991 // after we sort the old regions at the end of the cleanup operation. 992 class G1PrintRegionLivenessInfoClosure: public HeapRegionClosure { 993 private: 994 // Accumulators for these values. 995 size_t _total_used_bytes; 996 size_t _total_capacity_bytes; 997 size_t _total_prev_live_bytes; 998 size_t _total_next_live_bytes; 999 1000 // Accumulator for the remembered set size 1001 size_t _total_remset_bytes; 1002 1003 // Accumulator for strong code roots memory size 1004 size_t _total_strong_code_roots_bytes; 1005 1006 static double perc(size_t val, size_t total) { 1007 if (total == 0) { 1008 return 0.0; 1009 } else { 1010 return 100.0 * ((double) val / (double) total); 1011 } 1012 } 1013 1014 static double bytes_to_mb(size_t val) { 1015 return (double) val / (double) M; 1016 } 1017 1018 public: 1019 // The header and footer are printed in the constructor and 1020 // destructor respectively. 1021 G1PrintRegionLivenessInfoClosure(const char* phase_name); 1022 virtual bool doHeapRegion(HeapRegion* r); 1023 ~G1PrintRegionLivenessInfoClosure(); 1024 }; 1025 1026 #endif // SHARE_VM_GC_G1_G1CONCURRENTMARK_HPP