1 /* 2 * Copyright (c) 2001, 2018, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "classfile/metadataOnStackMark.hpp" 27 #include "classfile/stringTable.hpp" 28 #include "classfile/symbolTable.hpp" 29 #include "code/codeCache.hpp" 30 #include "code/icBuffer.hpp" 31 #include "gc/g1/g1Allocator.inline.hpp" 32 #include "gc/g1/g1CollectedHeap.inline.hpp" 33 #include "gc/g1/g1CollectionSet.hpp" 34 #include "gc/g1/g1CollectorPolicy.hpp" 35 #include "gc/g1/g1CollectorState.hpp" 36 #include "gc/g1/g1ConcurrentRefine.hpp" 37 #include "gc/g1/g1ConcurrentRefineThread.hpp" 38 #include "gc/g1/g1ConcurrentMarkThread.inline.hpp" 39 #include "gc/g1/g1EvacStats.inline.hpp" 40 #include "gc/g1/g1FullCollector.hpp" 41 #include "gc/g1/g1GCPhaseTimes.hpp" 42 #include "gc/g1/g1HeapSizingPolicy.hpp" 43 #include "gc/g1/g1HeapTransition.hpp" 44 #include "gc/g1/g1HeapVerifier.hpp" 45 #include "gc/g1/g1HotCardCache.hpp" 46 #include "gc/g1/g1MemoryPool.hpp" 47 #include "gc/g1/g1OopClosures.inline.hpp" 48 #include "gc/g1/g1ParScanThreadState.inline.hpp" 49 #include "gc/g1/g1Policy.hpp" 50 #include "gc/g1/g1RegionToSpaceMapper.hpp" 51 #include "gc/g1/g1RemSet.hpp" 52 #include "gc/g1/g1RootClosures.hpp" 53 #include "gc/g1/g1RootProcessor.hpp" 54 #include "gc/g1/g1StringDedup.hpp" 55 #include "gc/g1/g1YCTypes.hpp" 56 #include "gc/g1/g1YoungRemSetSamplingThread.hpp" 57 #include "gc/g1/heapRegion.inline.hpp" 58 #include "gc/g1/heapRegionRemSet.hpp" 59 #include "gc/g1/heapRegionSet.inline.hpp" 60 #include "gc/g1/vm_operations_g1.hpp" 61 #include "gc/shared/adaptiveSizePolicy.hpp" 62 #include "gc/shared/gcHeapSummary.hpp" 63 #include "gc/shared/gcId.hpp" 64 #include "gc/shared/gcLocker.hpp" 65 #include "gc/shared/gcTimer.hpp" 66 #include "gc/shared/gcTrace.hpp" 67 #include "gc/shared/gcTraceTime.inline.hpp" 68 #include "gc/shared/generationSpec.hpp" 69 #include "gc/shared/isGCActiveMark.hpp" 70 #include "gc/shared/preservedMarks.inline.hpp" 71 #include "gc/shared/suspendibleThreadSet.hpp" 72 #include "gc/shared/referenceProcessor.inline.hpp" 73 #include "gc/shared/taskqueue.inline.hpp" 74 #include "gc/shared/weakProcessor.hpp" 75 #include "logging/log.hpp" 76 #include "memory/allocation.hpp" 77 #include "memory/iterator.hpp" 78 #include "memory/resourceArea.hpp" 79 #include "oops/access.inline.hpp" 80 #include "oops/compressedOops.inline.hpp" 81 #include "oops/oop.inline.hpp" 82 #include "prims/resolvedMethodTable.hpp" 83 #include "runtime/atomic.hpp" 84 #include "runtime/handles.inline.hpp" 85 #include "runtime/init.hpp" 86 #include "runtime/orderAccess.inline.hpp" 87 #include "runtime/threadSMR.hpp" 88 #include "runtime/vmThread.hpp" 89 #include "utilities/align.hpp" 90 #include "utilities/globalDefinitions.hpp" 91 #include "utilities/stack.inline.hpp" 92 93 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0; 94 95 // INVARIANTS/NOTES 96 // 97 // All allocation activity covered by the G1CollectedHeap interface is 98 // serialized by acquiring the HeapLock. This happens in mem_allocate 99 // and allocate_new_tlab, which are the "entry" points to the 100 // allocation code from the rest of the JVM. (Note that this does not 101 // apply to TLAB allocation, which is not part of this interface: it 102 // is done by clients of this interface.) 103 104 class RedirtyLoggedCardTableEntryClosure : public CardTableEntryClosure { 105 private: 106 size_t _num_dirtied; 107 G1CollectedHeap* _g1h; 108 G1CardTable* _g1_ct; 109 110 HeapRegion* region_for_card(jbyte* card_ptr) const { 111 return _g1h->heap_region_containing(_g1_ct->addr_for(card_ptr)); 112 } 113 114 bool will_become_free(HeapRegion* hr) const { 115 // A region will be freed by free_collection_set if the region is in the 116 // collection set and has not had an evacuation failure. 117 return _g1h->is_in_cset(hr) && !hr->evacuation_failed(); 118 } 119 120 public: 121 RedirtyLoggedCardTableEntryClosure(G1CollectedHeap* g1h) : CardTableEntryClosure(), 122 _num_dirtied(0), _g1h(g1h), _g1_ct(g1h->card_table()) { } 123 124 bool do_card_ptr(jbyte* card_ptr, uint worker_i) { 125 HeapRegion* hr = region_for_card(card_ptr); 126 127 // Should only dirty cards in regions that won't be freed. 128 if (!will_become_free(hr)) { 129 *card_ptr = G1CardTable::dirty_card_val(); 130 _num_dirtied++; 131 } 132 133 return true; 134 } 135 136 size_t num_dirtied() const { return _num_dirtied; } 137 }; 138 139 140 void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) { 141 HeapRegionRemSet::invalidate_from_card_cache(start_idx, num_regions); 142 } 143 144 void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) { 145 // The from card cache is not the memory that is actually committed. So we cannot 146 // take advantage of the zero_filled parameter. 147 reset_from_card_cache(start_idx, num_regions); 148 } 149 150 151 HeapRegion* G1CollectedHeap::new_heap_region(uint hrs_index, 152 MemRegion mr) { 153 return new HeapRegion(hrs_index, bot(), mr); 154 } 155 156 // Private methods. 157 158 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool is_old, bool do_expand) { 159 assert(!is_humongous(word_size) || word_size <= HeapRegion::GrainWords, 160 "the only time we use this to allocate a humongous region is " 161 "when we are allocating a single humongous region"); 162 163 HeapRegion* res = _hrm.allocate_free_region(is_old); 164 165 if (res == NULL && do_expand && _expand_heap_after_alloc_failure) { 166 // Currently, only attempts to allocate GC alloc regions set 167 // do_expand to true. So, we should only reach here during a 168 // safepoint. If this assumption changes we might have to 169 // reconsider the use of _expand_heap_after_alloc_failure. 170 assert(SafepointSynchronize::is_at_safepoint(), "invariant"); 171 172 log_debug(gc, ergo, heap)("Attempt heap expansion (region allocation request failed). Allocation request: " SIZE_FORMAT "B", 173 word_size * HeapWordSize); 174 175 if (expand(word_size * HeapWordSize)) { 176 // Given that expand() succeeded in expanding the heap, and we 177 // always expand the heap by an amount aligned to the heap 178 // region size, the free list should in theory not be empty. 179 // In either case allocate_free_region() will check for NULL. 180 res = _hrm.allocate_free_region(is_old); 181 } else { 182 _expand_heap_after_alloc_failure = false; 183 } 184 } 185 return res; 186 } 187 188 HeapWord* 189 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first, 190 uint num_regions, 191 size_t word_size) { 192 assert(first != G1_NO_HRM_INDEX, "pre-condition"); 193 assert(is_humongous(word_size), "word_size should be humongous"); 194 assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition"); 195 196 // Index of last region in the series. 197 uint last = first + num_regions - 1; 198 199 // We need to initialize the region(s) we just discovered. This is 200 // a bit tricky given that it can happen concurrently with 201 // refinement threads refining cards on these regions and 202 // potentially wanting to refine the BOT as they are scanning 203 // those cards (this can happen shortly after a cleanup; see CR 204 // 6991377). So we have to set up the region(s) carefully and in 205 // a specific order. 206 207 // The word size sum of all the regions we will allocate. 208 size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords; 209 assert(word_size <= word_size_sum, "sanity"); 210 211 // This will be the "starts humongous" region. 212 HeapRegion* first_hr = region_at(first); 213 // The header of the new object will be placed at the bottom of 214 // the first region. 215 HeapWord* new_obj = first_hr->bottom(); 216 // This will be the new top of the new object. 217 HeapWord* obj_top = new_obj + word_size; 218 219 // First, we need to zero the header of the space that we will be 220 // allocating. When we update top further down, some refinement 221 // threads might try to scan the region. By zeroing the header we 222 // ensure that any thread that will try to scan the region will 223 // come across the zero klass word and bail out. 224 // 225 // NOTE: It would not have been correct to have used 226 // CollectedHeap::fill_with_object() and make the space look like 227 // an int array. The thread that is doing the allocation will 228 // later update the object header to a potentially different array 229 // type and, for a very short period of time, the klass and length 230 // fields will be inconsistent. This could cause a refinement 231 // thread to calculate the object size incorrectly. 232 Copy::fill_to_words(new_obj, oopDesc::header_size(), 0); 233 234 // Next, pad out the unused tail of the last region with filler 235 // objects, for improved usage accounting. 236 // How many words we use for filler objects. 237 size_t word_fill_size = word_size_sum - word_size; 238 239 // How many words memory we "waste" which cannot hold a filler object. 240 size_t words_not_fillable = 0; 241 242 if (word_fill_size >= min_fill_size()) { 243 fill_with_objects(obj_top, word_fill_size); 244 } else if (word_fill_size > 0) { 245 // We have space to fill, but we cannot fit an object there. 246 words_not_fillable = word_fill_size; 247 word_fill_size = 0; 248 } 249 250 // We will set up the first region as "starts humongous". This 251 // will also update the BOT covering all the regions to reflect 252 // that there is a single object that starts at the bottom of the 253 // first region. 254 first_hr->set_starts_humongous(obj_top, word_fill_size); 255 _g1_policy->remset_tracker()->update_at_allocate(first_hr); 256 // Then, if there are any, we will set up the "continues 257 // humongous" regions. 258 HeapRegion* hr = NULL; 259 for (uint i = first + 1; i <= last; ++i) { 260 hr = region_at(i); 261 hr->set_continues_humongous(first_hr); 262 _g1_policy->remset_tracker()->update_at_allocate(hr); 263 } 264 265 // Up to this point no concurrent thread would have been able to 266 // do any scanning on any region in this series. All the top 267 // fields still point to bottom, so the intersection between 268 // [bottom,top] and [card_start,card_end] will be empty. Before we 269 // update the top fields, we'll do a storestore to make sure that 270 // no thread sees the update to top before the zeroing of the 271 // object header and the BOT initialization. 272 OrderAccess::storestore(); 273 274 // Now, we will update the top fields of the "continues humongous" 275 // regions except the last one. 276 for (uint i = first; i < last; ++i) { 277 hr = region_at(i); 278 hr->set_top(hr->end()); 279 } 280 281 hr = region_at(last); 282 // If we cannot fit a filler object, we must set top to the end 283 // of the humongous object, otherwise we cannot iterate the heap 284 // and the BOT will not be complete. 285 hr->set_top(hr->end() - words_not_fillable); 286 287 assert(hr->bottom() < obj_top && obj_top <= hr->end(), 288 "obj_top should be in last region"); 289 290 _verifier->check_bitmaps("Humongous Region Allocation", first_hr); 291 292 assert(words_not_fillable == 0 || 293 first_hr->bottom() + word_size_sum - words_not_fillable == hr->top(), 294 "Miscalculation in humongous allocation"); 295 296 increase_used((word_size_sum - words_not_fillable) * HeapWordSize); 297 298 for (uint i = first; i <= last; ++i) { 299 hr = region_at(i); 300 _humongous_set.add(hr); 301 _hr_printer.alloc(hr); 302 } 303 304 return new_obj; 305 } 306 307 size_t G1CollectedHeap::humongous_obj_size_in_regions(size_t word_size) { 308 assert(is_humongous(word_size), "Object of size " SIZE_FORMAT " must be humongous here", word_size); 309 return align_up(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords; 310 } 311 312 // If could fit into free regions w/o expansion, try. 313 // Otherwise, if can expand, do so. 314 // Otherwise, if using ex regions might help, try with ex given back. 315 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size) { 316 assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */); 317 318 _verifier->verify_region_sets_optional(); 319 320 uint first = G1_NO_HRM_INDEX; 321 uint obj_regions = (uint) humongous_obj_size_in_regions(word_size); 322 323 if (obj_regions == 1) { 324 // Only one region to allocate, try to use a fast path by directly allocating 325 // from the free lists. Do not try to expand here, we will potentially do that 326 // later. 327 HeapRegion* hr = new_region(word_size, true /* is_old */, false /* do_expand */); 328 if (hr != NULL) { 329 first = hr->hrm_index(); 330 } 331 } else { 332 // Policy: Try only empty regions (i.e. already committed first). Maybe we 333 // are lucky enough to find some. 334 first = _hrm.find_contiguous_only_empty(obj_regions); 335 if (first != G1_NO_HRM_INDEX) { 336 _hrm.allocate_free_regions_starting_at(first, obj_regions); 337 } 338 } 339 340 if (first == G1_NO_HRM_INDEX) { 341 // Policy: We could not find enough regions for the humongous object in the 342 // free list. Look through the heap to find a mix of free and uncommitted regions. 343 // If so, try expansion. 344 first = _hrm.find_contiguous_empty_or_unavailable(obj_regions); 345 if (first != G1_NO_HRM_INDEX) { 346 // We found something. Make sure these regions are committed, i.e. expand 347 // the heap. Alternatively we could do a defragmentation GC. 348 log_debug(gc, ergo, heap)("Attempt heap expansion (humongous allocation request failed). Allocation request: " SIZE_FORMAT "B", 349 word_size * HeapWordSize); 350 351 _hrm.expand_at(first, obj_regions, workers()); 352 g1_policy()->record_new_heap_size(num_regions()); 353 354 #ifdef ASSERT 355 for (uint i = first; i < first + obj_regions; ++i) { 356 HeapRegion* hr = region_at(i); 357 assert(hr->is_free(), "sanity"); 358 assert(hr->is_empty(), "sanity"); 359 assert(is_on_master_free_list(hr), "sanity"); 360 } 361 #endif 362 _hrm.allocate_free_regions_starting_at(first, obj_regions); 363 } else { 364 // Policy: Potentially trigger a defragmentation GC. 365 } 366 } 367 368 HeapWord* result = NULL; 369 if (first != G1_NO_HRM_INDEX) { 370 result = humongous_obj_allocate_initialize_regions(first, obj_regions, word_size); 371 assert(result != NULL, "it should always return a valid result"); 372 373 // A successful humongous object allocation changes the used space 374 // information of the old generation so we need to recalculate the 375 // sizes and update the jstat counters here. 376 g1mm()->update_sizes(); 377 } 378 379 _verifier->verify_region_sets_optional(); 380 381 return result; 382 } 383 384 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) { 385 assert_heap_not_locked_and_not_at_safepoint(); 386 assert(!is_humongous(word_size), "we do not allow humongous TLABs"); 387 388 return attempt_allocation(word_size); 389 } 390 391 HeapWord* 392 G1CollectedHeap::mem_allocate(size_t word_size, 393 bool* gc_overhead_limit_was_exceeded) { 394 assert_heap_not_locked_and_not_at_safepoint(); 395 396 if (is_humongous(word_size)) { 397 return attempt_allocation_humongous(word_size); 398 } 399 return attempt_allocation(word_size); 400 } 401 402 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size) { 403 ResourceMark rm; // For retrieving the thread names in log messages. 404 405 // Make sure you read the note in attempt_allocation_humongous(). 406 407 assert_heap_not_locked_and_not_at_safepoint(); 408 assert(!is_humongous(word_size), "attempt_allocation_slow() should not " 409 "be called for humongous allocation requests"); 410 411 // We should only get here after the first-level allocation attempt 412 // (attempt_allocation()) failed to allocate. 413 414 // We will loop until a) we manage to successfully perform the 415 // allocation or b) we successfully schedule a collection which 416 // fails to perform the allocation. b) is the only case when we'll 417 // return NULL. 418 HeapWord* result = NULL; 419 for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) { 420 bool should_try_gc; 421 uint gc_count_before; 422 423 { 424 MutexLockerEx x(Heap_lock); 425 result = _allocator->attempt_allocation_locked(word_size); 426 if (result != NULL) { 427 return result; 428 } 429 430 // If the GCLocker is active and we are bound for a GC, try expanding young gen. 431 // This is different to when only GCLocker::needs_gc() is set: try to avoid 432 // waiting because the GCLocker is active to not wait too long. 433 if (GCLocker::is_active_and_needs_gc() && g1_policy()->can_expand_young_list()) { 434 // No need for an ergo message here, can_expand_young_list() does this when 435 // it returns true. 436 result = _allocator->attempt_allocation_force(word_size); 437 if (result != NULL) { 438 return result; 439 } 440 } 441 // Only try a GC if the GCLocker does not signal the need for a GC. Wait until 442 // the GCLocker initiated GC has been performed and then retry. This includes 443 // the case when the GC Locker is not active but has not been performed. 444 should_try_gc = !GCLocker::needs_gc(); 445 // Read the GC count while still holding the Heap_lock. 446 gc_count_before = total_collections(); 447 } 448 449 if (should_try_gc) { 450 bool succeeded; 451 result = do_collection_pause(word_size, gc_count_before, &succeeded, 452 GCCause::_g1_inc_collection_pause); 453 if (result != NULL) { 454 assert(succeeded, "only way to get back a non-NULL result"); 455 log_trace(gc, alloc)("%s: Successfully scheduled collection returning " PTR_FORMAT, 456 Thread::current()->name(), p2i(result)); 457 return result; 458 } 459 460 if (succeeded) { 461 // We successfully scheduled a collection which failed to allocate. No 462 // point in trying to allocate further. We'll just return NULL. 463 log_trace(gc, alloc)("%s: Successfully scheduled collection failing to allocate " 464 SIZE_FORMAT " words", Thread::current()->name(), word_size); 465 return NULL; 466 } 467 log_trace(gc, alloc)("%s: Unsuccessfully scheduled collection allocating " SIZE_FORMAT " words", 468 Thread::current()->name(), word_size); 469 } else { 470 // Failed to schedule a collection. 471 if (gclocker_retry_count > GCLockerRetryAllocationCount) { 472 log_warning(gc, alloc)("%s: Retried waiting for GCLocker too often allocating " 473 SIZE_FORMAT " words", Thread::current()->name(), word_size); 474 return NULL; 475 } 476 log_trace(gc, alloc)("%s: Stall until clear", Thread::current()->name()); 477 // The GCLocker is either active or the GCLocker initiated 478 // GC has not yet been performed. Stall until it is and 479 // then retry the allocation. 480 GCLocker::stall_until_clear(); 481 gclocker_retry_count += 1; 482 } 483 484 // We can reach here if we were unsuccessful in scheduling a 485 // collection (because another thread beat us to it) or if we were 486 // stalled due to the GC locker. In either can we should retry the 487 // allocation attempt in case another thread successfully 488 // performed a collection and reclaimed enough space. We do the 489 // first attempt (without holding the Heap_lock) here and the 490 // follow-on attempt will be at the start of the next loop 491 // iteration (after taking the Heap_lock). 492 493 result = _allocator->attempt_allocation(word_size); 494 if (result != NULL) { 495 return result; 496 } 497 498 // Give a warning if we seem to be looping forever. 499 if ((QueuedAllocationWarningCount > 0) && 500 (try_count % QueuedAllocationWarningCount == 0)) { 501 log_warning(gc, alloc)("%s: Retried allocation %u times for " SIZE_FORMAT " words", 502 Thread::current()->name(), try_count, word_size); 503 } 504 } 505 506 ShouldNotReachHere(); 507 return NULL; 508 } 509 510 void G1CollectedHeap::begin_archive_alloc_range(bool open) { 511 assert_at_safepoint_on_vm_thread(); 512 if (_archive_allocator == NULL) { 513 _archive_allocator = G1ArchiveAllocator::create_allocator(this, open); 514 } 515 } 516 517 bool G1CollectedHeap::is_archive_alloc_too_large(size_t word_size) { 518 // Allocations in archive regions cannot be of a size that would be considered 519 // humongous even for a minimum-sized region, because G1 region sizes/boundaries 520 // may be different at archive-restore time. 521 return word_size >= humongous_threshold_for(HeapRegion::min_region_size_in_words()); 522 } 523 524 HeapWord* G1CollectedHeap::archive_mem_allocate(size_t word_size) { 525 assert_at_safepoint_on_vm_thread(); 526 assert(_archive_allocator != NULL, "_archive_allocator not initialized"); 527 if (is_archive_alloc_too_large(word_size)) { 528 return NULL; 529 } 530 return _archive_allocator->archive_mem_allocate(word_size); 531 } 532 533 void G1CollectedHeap::end_archive_alloc_range(GrowableArray<MemRegion>* ranges, 534 size_t end_alignment_in_bytes) { 535 assert_at_safepoint_on_vm_thread(); 536 assert(_archive_allocator != NULL, "_archive_allocator not initialized"); 537 538 // Call complete_archive to do the real work, filling in the MemRegion 539 // array with the archive regions. 540 _archive_allocator->complete_archive(ranges, end_alignment_in_bytes); 541 delete _archive_allocator; 542 _archive_allocator = NULL; 543 } 544 545 bool G1CollectedHeap::check_archive_addresses(MemRegion* ranges, size_t count) { 546 assert(ranges != NULL, "MemRegion array NULL"); 547 assert(count != 0, "No MemRegions provided"); 548 MemRegion reserved = _hrm.reserved(); 549 for (size_t i = 0; i < count; i++) { 550 if (!reserved.contains(ranges[i].start()) || !reserved.contains(ranges[i].last())) { 551 return false; 552 } 553 } 554 return true; 555 } 556 557 bool G1CollectedHeap::alloc_archive_regions(MemRegion* ranges, 558 size_t count, 559 bool open) { 560 assert(!is_init_completed(), "Expect to be called at JVM init time"); 561 assert(ranges != NULL, "MemRegion array NULL"); 562 assert(count != 0, "No MemRegions provided"); 563 MutexLockerEx x(Heap_lock); 564 565 MemRegion reserved = _hrm.reserved(); 566 HeapWord* prev_last_addr = NULL; 567 HeapRegion* prev_last_region = NULL; 568 569 // Temporarily disable pretouching of heap pages. This interface is used 570 // when mmap'ing archived heap data in, so pre-touching is wasted. 571 FlagSetting fs(AlwaysPreTouch, false); 572 573 // Enable archive object checking used by G1MarkSweep. We have to let it know 574 // about each archive range, so that objects in those ranges aren't marked. 575 G1ArchiveAllocator::enable_archive_object_check(); 576 577 // For each specified MemRegion range, allocate the corresponding G1 578 // regions and mark them as archive regions. We expect the ranges 579 // in ascending starting address order, without overlap. 580 for (size_t i = 0; i < count; i++) { 581 MemRegion curr_range = ranges[i]; 582 HeapWord* start_address = curr_range.start(); 583 size_t word_size = curr_range.word_size(); 584 HeapWord* last_address = curr_range.last(); 585 size_t commits = 0; 586 587 guarantee(reserved.contains(start_address) && reserved.contains(last_address), 588 "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]", 589 p2i(start_address), p2i(last_address)); 590 guarantee(start_address > prev_last_addr, 591 "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT , 592 p2i(start_address), p2i(prev_last_addr)); 593 prev_last_addr = last_address; 594 595 // Check for ranges that start in the same G1 region in which the previous 596 // range ended, and adjust the start address so we don't try to allocate 597 // the same region again. If the current range is entirely within that 598 // region, skip it, just adjusting the recorded top. 599 HeapRegion* start_region = _hrm.addr_to_region(start_address); 600 if ((prev_last_region != NULL) && (start_region == prev_last_region)) { 601 start_address = start_region->end(); 602 if (start_address > last_address) { 603 increase_used(word_size * HeapWordSize); 604 start_region->set_top(last_address + 1); 605 continue; 606 } 607 start_region->set_top(start_address); 608 curr_range = MemRegion(start_address, last_address + 1); 609 start_region = _hrm.addr_to_region(start_address); 610 } 611 612 // Perform the actual region allocation, exiting if it fails. 613 // Then note how much new space we have allocated. 614 if (!_hrm.allocate_containing_regions(curr_range, &commits, workers())) { 615 return false; 616 } 617 increase_used(word_size * HeapWordSize); 618 if (commits != 0) { 619 log_debug(gc, ergo, heap)("Attempt heap expansion (allocate archive regions). Total size: " SIZE_FORMAT "B", 620 HeapRegion::GrainWords * HeapWordSize * commits); 621 622 } 623 624 // Mark each G1 region touched by the range as archive, add it to 625 // the old set, and set top. 626 HeapRegion* curr_region = _hrm.addr_to_region(start_address); 627 HeapRegion* last_region = _hrm.addr_to_region(last_address); 628 prev_last_region = last_region; 629 630 while (curr_region != NULL) { 631 assert(curr_region->is_empty() && !curr_region->is_pinned(), 632 "Region already in use (index %u)", curr_region->hrm_index()); 633 if (open) { 634 curr_region->set_open_archive(); 635 } else { 636 curr_region->set_closed_archive(); 637 } 638 _hr_printer.alloc(curr_region); 639 _old_set.add(curr_region); 640 HeapWord* top; 641 HeapRegion* next_region; 642 if (curr_region != last_region) { 643 top = curr_region->end(); 644 next_region = _hrm.next_region_in_heap(curr_region); 645 } else { 646 top = last_address + 1; 647 next_region = NULL; 648 } 649 curr_region->set_top(top); 650 curr_region->set_first_dead(top); 651 curr_region->set_end_of_live(top); 652 curr_region = next_region; 653 } 654 655 // Notify mark-sweep of the archive 656 G1ArchiveAllocator::set_range_archive(curr_range, open); 657 } 658 return true; 659 } 660 661 void G1CollectedHeap::fill_archive_regions(MemRegion* ranges, size_t count) { 662 assert(!is_init_completed(), "Expect to be called at JVM init time"); 663 assert(ranges != NULL, "MemRegion array NULL"); 664 assert(count != 0, "No MemRegions provided"); 665 MemRegion reserved = _hrm.reserved(); 666 HeapWord *prev_last_addr = NULL; 667 HeapRegion* prev_last_region = NULL; 668 669 // For each MemRegion, create filler objects, if needed, in the G1 regions 670 // that contain the address range. The address range actually within the 671 // MemRegion will not be modified. That is assumed to have been initialized 672 // elsewhere, probably via an mmap of archived heap data. 673 MutexLockerEx x(Heap_lock); 674 for (size_t i = 0; i < count; i++) { 675 HeapWord* start_address = ranges[i].start(); 676 HeapWord* last_address = ranges[i].last(); 677 678 assert(reserved.contains(start_address) && reserved.contains(last_address), 679 "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]", 680 p2i(start_address), p2i(last_address)); 681 assert(start_address > prev_last_addr, 682 "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT , 683 p2i(start_address), p2i(prev_last_addr)); 684 685 HeapRegion* start_region = _hrm.addr_to_region(start_address); 686 HeapRegion* last_region = _hrm.addr_to_region(last_address); 687 HeapWord* bottom_address = start_region->bottom(); 688 689 // Check for a range beginning in the same region in which the 690 // previous one ended. 691 if (start_region == prev_last_region) { 692 bottom_address = prev_last_addr + 1; 693 } 694 695 // Verify that the regions were all marked as archive regions by 696 // alloc_archive_regions. 697 HeapRegion* curr_region = start_region; 698 while (curr_region != NULL) { 699 guarantee(curr_region->is_archive(), 700 "Expected archive region at index %u", curr_region->hrm_index()); 701 if (curr_region != last_region) { 702 curr_region = _hrm.next_region_in_heap(curr_region); 703 } else { 704 curr_region = NULL; 705 } 706 } 707 708 prev_last_addr = last_address; 709 prev_last_region = last_region; 710 711 // Fill the memory below the allocated range with dummy object(s), 712 // if the region bottom does not match the range start, or if the previous 713 // range ended within the same G1 region, and there is a gap. 714 if (start_address != bottom_address) { 715 size_t fill_size = pointer_delta(start_address, bottom_address); 716 G1CollectedHeap::fill_with_objects(bottom_address, fill_size); 717 increase_used(fill_size * HeapWordSize); 718 } 719 } 720 } 721 722 inline HeapWord* G1CollectedHeap::attempt_allocation(size_t word_size) { 723 assert_heap_not_locked_and_not_at_safepoint(); 724 assert(!is_humongous(word_size), "attempt_allocation() should not " 725 "be called for humongous allocation requests"); 726 727 HeapWord* result = _allocator->attempt_allocation(word_size); 728 729 if (result == NULL) { 730 result = attempt_allocation_slow(word_size); 731 } 732 assert_heap_not_locked(); 733 if (result != NULL) { 734 dirty_young_block(result, word_size); 735 } 736 return result; 737 } 738 739 void G1CollectedHeap::dealloc_archive_regions(MemRegion* ranges, size_t count) { 740 assert(!is_init_completed(), "Expect to be called at JVM init time"); 741 assert(ranges != NULL, "MemRegion array NULL"); 742 assert(count != 0, "No MemRegions provided"); 743 MemRegion reserved = _hrm.reserved(); 744 HeapWord* prev_last_addr = NULL; 745 HeapRegion* prev_last_region = NULL; 746 size_t size_used = 0; 747 size_t uncommitted_regions = 0; 748 749 // For each Memregion, free the G1 regions that constitute it, and 750 // notify mark-sweep that the range is no longer to be considered 'archive.' 751 MutexLockerEx x(Heap_lock); 752 for (size_t i = 0; i < count; i++) { 753 HeapWord* start_address = ranges[i].start(); 754 HeapWord* last_address = ranges[i].last(); 755 756 assert(reserved.contains(start_address) && reserved.contains(last_address), 757 "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]", 758 p2i(start_address), p2i(last_address)); 759 assert(start_address > prev_last_addr, 760 "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT , 761 p2i(start_address), p2i(prev_last_addr)); 762 size_used += ranges[i].byte_size(); 763 prev_last_addr = last_address; 764 765 HeapRegion* start_region = _hrm.addr_to_region(start_address); 766 HeapRegion* last_region = _hrm.addr_to_region(last_address); 767 768 // Check for ranges that start in the same G1 region in which the previous 769 // range ended, and adjust the start address so we don't try to free 770 // the same region again. If the current range is entirely within that 771 // region, skip it. 772 if (start_region == prev_last_region) { 773 start_address = start_region->end(); 774 if (start_address > last_address) { 775 continue; 776 } 777 start_region = _hrm.addr_to_region(start_address); 778 } 779 prev_last_region = last_region; 780 781 // After verifying that each region was marked as an archive region by 782 // alloc_archive_regions, set it free and empty and uncommit it. 783 HeapRegion* curr_region = start_region; 784 while (curr_region != NULL) { 785 guarantee(curr_region->is_archive(), 786 "Expected archive region at index %u", curr_region->hrm_index()); 787 uint curr_index = curr_region->hrm_index(); 788 _old_set.remove(curr_region); 789 curr_region->set_free(); 790 curr_region->set_top(curr_region->bottom()); 791 if (curr_region != last_region) { 792 curr_region = _hrm.next_region_in_heap(curr_region); 793 } else { 794 curr_region = NULL; 795 } 796 _hrm.shrink_at(curr_index, 1); 797 uncommitted_regions++; 798 } 799 800 // Notify mark-sweep that this is no longer an archive range. 801 G1ArchiveAllocator::set_range_archive(ranges[i], false); 802 } 803 804 if (uncommitted_regions != 0) { 805 log_debug(gc, ergo, heap)("Attempt heap shrinking (uncommitted archive regions). Total size: " SIZE_FORMAT "B", 806 HeapRegion::GrainWords * HeapWordSize * uncommitted_regions); 807 } 808 decrease_used(size_used); 809 } 810 811 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size) { 812 ResourceMark rm; // For retrieving the thread names in log messages. 813 814 // The structure of this method has a lot of similarities to 815 // attempt_allocation_slow(). The reason these two were not merged 816 // into a single one is that such a method would require several "if 817 // allocation is not humongous do this, otherwise do that" 818 // conditional paths which would obscure its flow. In fact, an early 819 // version of this code did use a unified method which was harder to 820 // follow and, as a result, it had subtle bugs that were hard to 821 // track down. So keeping these two methods separate allows each to 822 // be more readable. It will be good to keep these two in sync as 823 // much as possible. 824 825 assert_heap_not_locked_and_not_at_safepoint(); 826 assert(is_humongous(word_size), "attempt_allocation_humongous() " 827 "should only be called for humongous allocations"); 828 829 // Humongous objects can exhaust the heap quickly, so we should check if we 830 // need to start a marking cycle at each humongous object allocation. We do 831 // the check before we do the actual allocation. The reason for doing it 832 // before the allocation is that we avoid having to keep track of the newly 833 // allocated memory while we do a GC. 834 if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation", 835 word_size)) { 836 collect(GCCause::_g1_humongous_allocation); 837 } 838 839 // We will loop until a) we manage to successfully perform the 840 // allocation or b) we successfully schedule a collection which 841 // fails to perform the allocation. b) is the only case when we'll 842 // return NULL. 843 HeapWord* result = NULL; 844 for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) { 845 bool should_try_gc; 846 uint gc_count_before; 847 848 849 { 850 MutexLockerEx x(Heap_lock); 851 852 // Given that humongous objects are not allocated in young 853 // regions, we'll first try to do the allocation without doing a 854 // collection hoping that there's enough space in the heap. 855 result = humongous_obj_allocate(word_size); 856 if (result != NULL) { 857 size_t size_in_regions = humongous_obj_size_in_regions(word_size); 858 g1_policy()->add_bytes_allocated_in_old_since_last_gc(size_in_regions * HeapRegion::GrainBytes); 859 return result; 860 } 861 862 // Only try a GC if the GCLocker does not signal the need for a GC. Wait until 863 // the GCLocker initiated GC has been performed and then retry. This includes 864 // the case when the GC Locker is not active but has not been performed. 865 should_try_gc = !GCLocker::needs_gc(); 866 // Read the GC count while still holding the Heap_lock. 867 gc_count_before = total_collections(); 868 } 869 870 if (should_try_gc) { 871 bool succeeded; 872 result = do_collection_pause(word_size, gc_count_before, &succeeded, 873 GCCause::_g1_humongous_allocation); 874 if (result != NULL) { 875 assert(succeeded, "only way to get back a non-NULL result"); 876 log_trace(gc, alloc)("%s: Successfully scheduled collection returning " PTR_FORMAT, 877 Thread::current()->name(), p2i(result)); 878 return result; 879 } 880 881 if (succeeded) { 882 // We successfully scheduled a collection which failed to allocate. No 883 // point in trying to allocate further. We'll just return NULL. 884 log_trace(gc, alloc)("%s: Successfully scheduled collection failing to allocate " 885 SIZE_FORMAT " words", Thread::current()->name(), word_size); 886 return NULL; 887 } 888 log_trace(gc, alloc)("%s: Unsuccessfully scheduled collection allocating " SIZE_FORMAT "", 889 Thread::current()->name(), word_size); 890 } else { 891 // Failed to schedule a collection. 892 if (gclocker_retry_count > GCLockerRetryAllocationCount) { 893 log_warning(gc, alloc)("%s: Retried waiting for GCLocker too often allocating " 894 SIZE_FORMAT " words", Thread::current()->name(), word_size); 895 return NULL; 896 } 897 log_trace(gc, alloc)("%s: Stall until clear", Thread::current()->name()); 898 // The GCLocker is either active or the GCLocker initiated 899 // GC has not yet been performed. Stall until it is and 900 // then retry the allocation. 901 GCLocker::stall_until_clear(); 902 gclocker_retry_count += 1; 903 } 904 905 906 // We can reach here if we were unsuccessful in scheduling a 907 // collection (because another thread beat us to it) or if we were 908 // stalled due to the GC locker. In either can we should retry the 909 // allocation attempt in case another thread successfully 910 // performed a collection and reclaimed enough space. 911 // Humongous object allocation always needs a lock, so we wait for the retry 912 // in the next iteration of the loop, unlike for the regular iteration case. 913 // Give a warning if we seem to be looping forever. 914 915 if ((QueuedAllocationWarningCount > 0) && 916 (try_count % QueuedAllocationWarningCount == 0)) { 917 log_warning(gc, alloc)("%s: Retried allocation %u times for " SIZE_FORMAT " words", 918 Thread::current()->name(), try_count, word_size); 919 } 920 } 921 922 ShouldNotReachHere(); 923 return NULL; 924 } 925 926 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size, 927 bool expect_null_mutator_alloc_region) { 928 assert_at_safepoint_on_vm_thread(); 929 assert(!_allocator->has_mutator_alloc_region() || !expect_null_mutator_alloc_region, 930 "the current alloc region was unexpectedly found to be non-NULL"); 931 932 if (!is_humongous(word_size)) { 933 return _allocator->attempt_allocation_locked(word_size); 934 } else { 935 HeapWord* result = humongous_obj_allocate(word_size); 936 if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) { 937 collector_state()->set_initiate_conc_mark_if_possible(true); 938 } 939 return result; 940 } 941 942 ShouldNotReachHere(); 943 } 944 945 class PostCompactionPrinterClosure: public HeapRegionClosure { 946 private: 947 G1HRPrinter* _hr_printer; 948 public: 949 bool do_heap_region(HeapRegion* hr) { 950 assert(!hr->is_young(), "not expecting to find young regions"); 951 _hr_printer->post_compaction(hr); 952 return false; 953 } 954 955 PostCompactionPrinterClosure(G1HRPrinter* hr_printer) 956 : _hr_printer(hr_printer) { } 957 }; 958 959 void G1CollectedHeap::print_hrm_post_compaction() { 960 if (_hr_printer.is_active()) { 961 PostCompactionPrinterClosure cl(hr_printer()); 962 heap_region_iterate(&cl); 963 } 964 } 965 966 void G1CollectedHeap::abort_concurrent_cycle() { 967 // If we start the compaction before the CM threads finish 968 // scanning the root regions we might trip them over as we'll 969 // be moving objects / updating references. So let's wait until 970 // they are done. By telling them to abort, they should complete 971 // early. 972 _cm->root_regions()->abort(); 973 _cm->root_regions()->wait_until_scan_finished(); 974 975 // Disable discovery and empty the discovered lists 976 // for the CM ref processor. 977 ref_processor_cm()->disable_discovery(); 978 ref_processor_cm()->abandon_partial_discovery(); 979 ref_processor_cm()->verify_no_references_recorded(); 980 981 // Abandon current iterations of concurrent marking and concurrent 982 // refinement, if any are in progress. 983 concurrent_mark()->concurrent_cycle_abort(); 984 } 985 986 void G1CollectedHeap::prepare_heap_for_full_collection() { 987 // Make sure we'll choose a new allocation region afterwards. 988 _allocator->release_mutator_alloc_region(); 989 _allocator->abandon_gc_alloc_regions(); 990 g1_rem_set()->cleanupHRRS(); 991 992 // We may have added regions to the current incremental collection 993 // set between the last GC or pause and now. We need to clear the 994 // incremental collection set and then start rebuilding it afresh 995 // after this full GC. 996 abandon_collection_set(collection_set()); 997 998 tear_down_region_sets(false /* free_list_only */); 999 } 1000 1001 void G1CollectedHeap::verify_before_full_collection(bool explicit_gc) { 1002 assert(!GCCause::is_user_requested_gc(gc_cause()) || explicit_gc, "invariant"); 1003 assert(used() == recalculate_used(), "Should be equal"); 1004 _verifier->verify_region_sets_optional(); 1005 _verifier->verify_before_gc(G1HeapVerifier::G1VerifyFull); 1006 _verifier->check_bitmaps("Full GC Start"); 1007 } 1008 1009 void G1CollectedHeap::prepare_heap_for_mutators() { 1010 // Delete metaspaces for unloaded class loaders and clean up loader_data graph 1011 ClassLoaderDataGraph::purge(); 1012 MetaspaceUtils::verify_metrics(); 1013 1014 // Prepare heap for normal collections. 1015 assert(num_free_regions() == 0, "we should not have added any free regions"); 1016 rebuild_region_sets(false /* free_list_only */); 1017 abort_refinement(); 1018 resize_if_necessary_after_full_collection(); 1019 1020 // Rebuild the strong code root lists for each region 1021 rebuild_strong_code_roots(); 1022 1023 // Start a new incremental collection set for the next pause 1024 start_new_collection_set(); 1025 1026 _allocator->init_mutator_alloc_region(); 1027 1028 // Post collection state updates. 1029 MetaspaceGC::compute_new_size(); 1030 } 1031 1032 void G1CollectedHeap::abort_refinement() { 1033 if (_hot_card_cache->use_cache()) { 1034 _hot_card_cache->reset_hot_cache(); 1035 } 1036 1037 // Discard all remembered set updates. 1038 JavaThread::dirty_card_queue_set().abandon_logs(); 1039 assert(dirty_card_queue_set().completed_buffers_num() == 0, "DCQS should be empty"); 1040 } 1041 1042 void G1CollectedHeap::verify_after_full_collection() { 1043 _hrm.verify_optional(); 1044 _verifier->verify_region_sets_optional(); 1045 _verifier->verify_after_gc(G1HeapVerifier::G1VerifyFull); 1046 // Clear the previous marking bitmap, if needed for bitmap verification. 1047 // Note we cannot do this when we clear the next marking bitmap in 1048 // G1ConcurrentMark::abort() above since VerifyDuringGC verifies the 1049 // objects marked during a full GC against the previous bitmap. 1050 // But we need to clear it before calling check_bitmaps below since 1051 // the full GC has compacted objects and updated TAMS but not updated 1052 // the prev bitmap. 1053 if (G1VerifyBitmaps) { 1054 GCTraceTime(Debug, gc)("Clear Bitmap for Verification"); 1055 _cm->clear_prev_bitmap(workers()); 1056 } 1057 _verifier->check_bitmaps("Full GC End"); 1058 1059 // At this point there should be no regions in the 1060 // entire heap tagged as young. 1061 assert(check_young_list_empty(), "young list should be empty at this point"); 1062 1063 // Note: since we've just done a full GC, concurrent 1064 // marking is no longer active. Therefore we need not 1065 // re-enable reference discovery for the CM ref processor. 1066 // That will be done at the start of the next marking cycle. 1067 // We also know that the STW processor should no longer 1068 // discover any new references. 1069 assert(!ref_processor_stw()->discovery_enabled(), "Postcondition"); 1070 assert(!ref_processor_cm()->discovery_enabled(), "Postcondition"); 1071 ref_processor_stw()->verify_no_references_recorded(); 1072 ref_processor_cm()->verify_no_references_recorded(); 1073 } 1074 1075 void G1CollectedHeap::print_heap_after_full_collection(G1HeapTransition* heap_transition) { 1076 // Post collection logging. 1077 // We should do this after we potentially resize the heap so 1078 // that all the COMMIT / UNCOMMIT events are generated before 1079 // the compaction events. 1080 print_hrm_post_compaction(); 1081 heap_transition->print(); 1082 print_heap_after_gc(); 1083 print_heap_regions(); 1084 #ifdef TRACESPINNING 1085 ParallelTaskTerminator::print_termination_counts(); 1086 #endif 1087 } 1088 1089 bool G1CollectedHeap::do_full_collection(bool explicit_gc, 1090 bool clear_all_soft_refs) { 1091 assert_at_safepoint_on_vm_thread(); 1092 1093 if (GCLocker::check_active_before_gc()) { 1094 // Full GC was not completed. 1095 return false; 1096 } 1097 1098 const bool do_clear_all_soft_refs = clear_all_soft_refs || 1099 soft_ref_policy()->should_clear_all_soft_refs(); 1100 1101 G1FullCollector collector(this, &_full_gc_memory_manager, explicit_gc, do_clear_all_soft_refs); 1102 GCTraceTime(Info, gc) tm("Pause Full", NULL, gc_cause(), true); 1103 1104 collector.prepare_collection(); 1105 collector.collect(); 1106 collector.complete_collection(); 1107 1108 // Full collection was successfully completed. 1109 return true; 1110 } 1111 1112 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) { 1113 // Currently, there is no facility in the do_full_collection(bool) API to notify 1114 // the caller that the collection did not succeed (e.g., because it was locked 1115 // out by the GC locker). So, right now, we'll ignore the return value. 1116 bool dummy = do_full_collection(true, /* explicit_gc */ 1117 clear_all_soft_refs); 1118 } 1119 1120 void G1CollectedHeap::resize_if_necessary_after_full_collection() { 1121 // Capacity, free and used after the GC counted as full regions to 1122 // include the waste in the following calculations. 1123 const size_t capacity_after_gc = capacity(); 1124 const size_t used_after_gc = capacity_after_gc - unused_committed_regions_in_bytes(); 1125 1126 // This is enforced in arguments.cpp. 1127 assert(MinHeapFreeRatio <= MaxHeapFreeRatio, 1128 "otherwise the code below doesn't make sense"); 1129 1130 // We don't have floating point command-line arguments 1131 const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0; 1132 const double maximum_used_percentage = 1.0 - minimum_free_percentage; 1133 const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0; 1134 const double minimum_used_percentage = 1.0 - maximum_free_percentage; 1135 1136 const size_t min_heap_size = collector_policy()->min_heap_byte_size(); 1137 const size_t max_heap_size = collector_policy()->max_heap_byte_size(); 1138 1139 // We have to be careful here as these two calculations can overflow 1140 // 32-bit size_t's. 1141 double used_after_gc_d = (double) used_after_gc; 1142 double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage; 1143 double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage; 1144 1145 // Let's make sure that they are both under the max heap size, which 1146 // by default will make them fit into a size_t. 1147 double desired_capacity_upper_bound = (double) max_heap_size; 1148 minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d, 1149 desired_capacity_upper_bound); 1150 maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d, 1151 desired_capacity_upper_bound); 1152 1153 // We can now safely turn them into size_t's. 1154 size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d; 1155 size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d; 1156 1157 // This assert only makes sense here, before we adjust them 1158 // with respect to the min and max heap size. 1159 assert(minimum_desired_capacity <= maximum_desired_capacity, 1160 "minimum_desired_capacity = " SIZE_FORMAT ", " 1161 "maximum_desired_capacity = " SIZE_FORMAT, 1162 minimum_desired_capacity, maximum_desired_capacity); 1163 1164 // Should not be greater than the heap max size. No need to adjust 1165 // it with respect to the heap min size as it's a lower bound (i.e., 1166 // we'll try to make the capacity larger than it, not smaller). 1167 minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size); 1168 // Should not be less than the heap min size. No need to adjust it 1169 // with respect to the heap max size as it's an upper bound (i.e., 1170 // we'll try to make the capacity smaller than it, not greater). 1171 maximum_desired_capacity = MAX2(maximum_desired_capacity, min_heap_size); 1172 1173 if (capacity_after_gc < minimum_desired_capacity) { 1174 // Don't expand unless it's significant 1175 size_t expand_bytes = minimum_desired_capacity - capacity_after_gc; 1176 1177 log_debug(gc, ergo, heap)("Attempt heap expansion (capacity lower than min desired capacity after Full GC). " 1178 "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B live: " SIZE_FORMAT "B " 1179 "min_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)", 1180 capacity_after_gc, used_after_gc, used(), minimum_desired_capacity, MinHeapFreeRatio); 1181 1182 expand(expand_bytes, _workers); 1183 1184 // No expansion, now see if we want to shrink 1185 } else if (capacity_after_gc > maximum_desired_capacity) { 1186 // Capacity too large, compute shrinking size 1187 size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity; 1188 1189 log_debug(gc, ergo, heap)("Attempt heap shrinking (capacity higher than max desired capacity after Full GC). " 1190 "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B live: " SIZE_FORMAT "B " 1191 "maximum_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)", 1192 capacity_after_gc, used_after_gc, used(), maximum_desired_capacity, MaxHeapFreeRatio); 1193 1194 shrink(shrink_bytes); 1195 } 1196 } 1197 1198 HeapWord* G1CollectedHeap::satisfy_failed_allocation_helper(size_t word_size, 1199 bool do_gc, 1200 bool clear_all_soft_refs, 1201 bool expect_null_mutator_alloc_region, 1202 bool* gc_succeeded) { 1203 *gc_succeeded = true; 1204 // Let's attempt the allocation first. 1205 HeapWord* result = 1206 attempt_allocation_at_safepoint(word_size, 1207 expect_null_mutator_alloc_region); 1208 if (result != NULL) { 1209 return result; 1210 } 1211 1212 // In a G1 heap, we're supposed to keep allocation from failing by 1213 // incremental pauses. Therefore, at least for now, we'll favor 1214 // expansion over collection. (This might change in the future if we can 1215 // do something smarter than full collection to satisfy a failed alloc.) 1216 result = expand_and_allocate(word_size); 1217 if (result != NULL) { 1218 return result; 1219 } 1220 1221 if (do_gc) { 1222 // Expansion didn't work, we'll try to do a Full GC. 1223 *gc_succeeded = do_full_collection(false, /* explicit_gc */ 1224 clear_all_soft_refs); 1225 } 1226 1227 return NULL; 1228 } 1229 1230 HeapWord* G1CollectedHeap::satisfy_failed_allocation(size_t word_size, 1231 bool* succeeded) { 1232 assert_at_safepoint_on_vm_thread(); 1233 1234 // Attempts to allocate followed by Full GC. 1235 HeapWord* result = 1236 satisfy_failed_allocation_helper(word_size, 1237 true, /* do_gc */ 1238 false, /* clear_all_soft_refs */ 1239 false, /* expect_null_mutator_alloc_region */ 1240 succeeded); 1241 1242 if (result != NULL || !*succeeded) { 1243 return result; 1244 } 1245 1246 // Attempts to allocate followed by Full GC that will collect all soft references. 1247 result = satisfy_failed_allocation_helper(word_size, 1248 true, /* do_gc */ 1249 true, /* clear_all_soft_refs */ 1250 true, /* expect_null_mutator_alloc_region */ 1251 succeeded); 1252 1253 if (result != NULL || !*succeeded) { 1254 return result; 1255 } 1256 1257 // Attempts to allocate, no GC 1258 result = satisfy_failed_allocation_helper(word_size, 1259 false, /* do_gc */ 1260 false, /* clear_all_soft_refs */ 1261 true, /* expect_null_mutator_alloc_region */ 1262 succeeded); 1263 1264 if (result != NULL) { 1265 return result; 1266 } 1267 1268 assert(!soft_ref_policy()->should_clear_all_soft_refs(), 1269 "Flag should have been handled and cleared prior to this point"); 1270 1271 // What else? We might try synchronous finalization later. If the total 1272 // space available is large enough for the allocation, then a more 1273 // complete compaction phase than we've tried so far might be 1274 // appropriate. 1275 return NULL; 1276 } 1277 1278 // Attempting to expand the heap sufficiently 1279 // to support an allocation of the given "word_size". If 1280 // successful, perform the allocation and return the address of the 1281 // allocated block, or else "NULL". 1282 1283 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) { 1284 assert_at_safepoint_on_vm_thread(); 1285 1286 _verifier->verify_region_sets_optional(); 1287 1288 size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes); 1289 log_debug(gc, ergo, heap)("Attempt heap expansion (allocation request failed). Allocation request: " SIZE_FORMAT "B", 1290 word_size * HeapWordSize); 1291 1292 1293 if (expand(expand_bytes, _workers)) { 1294 _hrm.verify_optional(); 1295 _verifier->verify_region_sets_optional(); 1296 return attempt_allocation_at_safepoint(word_size, 1297 false /* expect_null_mutator_alloc_region */); 1298 } 1299 return NULL; 1300 } 1301 1302 bool G1CollectedHeap::expand(size_t expand_bytes, WorkGang* pretouch_workers, double* expand_time_ms) { 1303 size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes); 1304 aligned_expand_bytes = align_up(aligned_expand_bytes, 1305 HeapRegion::GrainBytes); 1306 1307 log_debug(gc, ergo, heap)("Expand the heap. requested expansion amount: " SIZE_FORMAT "B expansion amount: " SIZE_FORMAT "B", 1308 expand_bytes, aligned_expand_bytes); 1309 1310 if (is_maximal_no_gc()) { 1311 log_debug(gc, ergo, heap)("Did not expand the heap (heap already fully expanded)"); 1312 return false; 1313 } 1314 1315 double expand_heap_start_time_sec = os::elapsedTime(); 1316 uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes); 1317 assert(regions_to_expand > 0, "Must expand by at least one region"); 1318 1319 uint expanded_by = _hrm.expand_by(regions_to_expand, pretouch_workers); 1320 if (expand_time_ms != NULL) { 1321 *expand_time_ms = (os::elapsedTime() - expand_heap_start_time_sec) * MILLIUNITS; 1322 } 1323 1324 if (expanded_by > 0) { 1325 size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes; 1326 assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition"); 1327 g1_policy()->record_new_heap_size(num_regions()); 1328 } else { 1329 log_debug(gc, ergo, heap)("Did not expand the heap (heap expansion operation failed)"); 1330 1331 // The expansion of the virtual storage space was unsuccessful. 1332 // Let's see if it was because we ran out of swap. 1333 if (G1ExitOnExpansionFailure && 1334 _hrm.available() >= regions_to_expand) { 1335 // We had head room... 1336 vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion"); 1337 } 1338 } 1339 return regions_to_expand > 0; 1340 } 1341 1342 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) { 1343 size_t aligned_shrink_bytes = 1344 ReservedSpace::page_align_size_down(shrink_bytes); 1345 aligned_shrink_bytes = align_down(aligned_shrink_bytes, 1346 HeapRegion::GrainBytes); 1347 uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes); 1348 1349 uint num_regions_removed = _hrm.shrink_by(num_regions_to_remove); 1350 size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes; 1351 1352 1353 log_debug(gc, ergo, heap)("Shrink the heap. requested shrinking amount: " SIZE_FORMAT "B aligned shrinking amount: " SIZE_FORMAT "B attempted shrinking amount: " SIZE_FORMAT "B", 1354 shrink_bytes, aligned_shrink_bytes, shrunk_bytes); 1355 if (num_regions_removed > 0) { 1356 g1_policy()->record_new_heap_size(num_regions()); 1357 } else { 1358 log_debug(gc, ergo, heap)("Did not expand the heap (heap shrinking operation failed)"); 1359 } 1360 } 1361 1362 void G1CollectedHeap::shrink(size_t shrink_bytes) { 1363 _verifier->verify_region_sets_optional(); 1364 1365 // We should only reach here at the end of a Full GC which means we 1366 // should not not be holding to any GC alloc regions. The method 1367 // below will make sure of that and do any remaining clean up. 1368 _allocator->abandon_gc_alloc_regions(); 1369 1370 // Instead of tearing down / rebuilding the free lists here, we 1371 // could instead use the remove_all_pending() method on free_list to 1372 // remove only the ones that we need to remove. 1373 tear_down_region_sets(true /* free_list_only */); 1374 shrink_helper(shrink_bytes); 1375 rebuild_region_sets(true /* free_list_only */); 1376 1377 _hrm.verify_optional(); 1378 _verifier->verify_region_sets_optional(); 1379 } 1380 1381 // Public methods. 1382 1383 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* collector_policy) : 1384 CollectedHeap(), 1385 _young_gen_sampling_thread(NULL), 1386 _collector_policy(collector_policy), 1387 _soft_ref_policy(), 1388 _card_table(NULL), 1389 _memory_manager("G1 Young Generation", "end of minor GC"), 1390 _full_gc_memory_manager("G1 Old Generation", "end of major GC"), 1391 _eden_pool(NULL), 1392 _survivor_pool(NULL), 1393 _old_pool(NULL), 1394 _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()), 1395 _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()), 1396 _g1_policy(new G1Policy(_gc_timer_stw)), 1397 _collection_set(this, _g1_policy), 1398 _dirty_card_queue_set(false), 1399 _is_alive_closure_cm(this), 1400 _is_alive_closure_stw(this), 1401 _ref_processor_cm(NULL), 1402 _ref_processor_stw(NULL), 1403 _bot(NULL), 1404 _hot_card_cache(NULL), 1405 _g1_rem_set(NULL), 1406 _cr(NULL), 1407 _g1mm(NULL), 1408 _preserved_marks_set(true /* in_c_heap */), 1409 _old_set("Old Set", false /* humongous */, new OldRegionSetMtSafeChecker()), 1410 _humongous_set("Master Humongous Set", true /* humongous */, new HumongousRegionSetMtSafeChecker()), 1411 _humongous_reclaim_candidates(), 1412 _has_humongous_reclaim_candidates(false), 1413 _archive_allocator(NULL), 1414 _summary_bytes_used(0), 1415 _survivor_evac_stats("Young", YoungPLABSize, PLABWeight), 1416 _old_evac_stats("Old", OldPLABSize, PLABWeight), 1417 _expand_heap_after_alloc_failure(true), 1418 _old_marking_cycles_started(0), 1419 _old_marking_cycles_completed(0), 1420 _in_cset_fast_test() { 1421 1422 _workers = new WorkGang("GC Thread", ParallelGCThreads, 1423 /* are_GC_task_threads */true, 1424 /* are_ConcurrentGC_threads */false); 1425 _workers->initialize_workers(); 1426 _verifier = new G1HeapVerifier(this); 1427 1428 _allocator = new G1DefaultAllocator(this); 1429 1430 _heap_sizing_policy = G1HeapSizingPolicy::create(this, _g1_policy->analytics()); 1431 1432 _humongous_object_threshold_in_words = humongous_threshold_for(HeapRegion::GrainWords); 1433 1434 // Override the default _filler_array_max_size so that no humongous filler 1435 // objects are created. 1436 _filler_array_max_size = _humongous_object_threshold_in_words; 1437 1438 uint n_queues = ParallelGCThreads; 1439 _task_queues = new RefToScanQueueSet(n_queues); 1440 1441 _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC); 1442 1443 for (uint i = 0; i < n_queues; i++) { 1444 RefToScanQueue* q = new RefToScanQueue(); 1445 q->initialize(); 1446 _task_queues->register_queue(i, q); 1447 ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo(); 1448 } 1449 1450 // Initialize the G1EvacuationFailureALot counters and flags. 1451 NOT_PRODUCT(reset_evacuation_should_fail();) 1452 1453 guarantee(_task_queues != NULL, "task_queues allocation failure."); 1454 } 1455 1456 G1RegionToSpaceMapper* G1CollectedHeap::create_aux_memory_mapper(const char* description, 1457 size_t size, 1458 size_t translation_factor) { 1459 size_t preferred_page_size = os::page_size_for_region_unaligned(size, 1); 1460 // Allocate a new reserved space, preferring to use large pages. 1461 ReservedSpace rs(size, preferred_page_size); 1462 G1RegionToSpaceMapper* result = 1463 G1RegionToSpaceMapper::create_mapper(rs, 1464 size, 1465 rs.alignment(), 1466 HeapRegion::GrainBytes, 1467 translation_factor, 1468 mtGC); 1469 1470 os::trace_page_sizes_for_requested_size(description, 1471 size, 1472 preferred_page_size, 1473 rs.alignment(), 1474 rs.base(), 1475 rs.size()); 1476 1477 return result; 1478 } 1479 1480 jint G1CollectedHeap::initialize_concurrent_refinement() { 1481 jint ecode = JNI_OK; 1482 _cr = G1ConcurrentRefine::create(&ecode); 1483 return ecode; 1484 } 1485 1486 jint G1CollectedHeap::initialize_young_gen_sampling_thread() { 1487 _young_gen_sampling_thread = new G1YoungRemSetSamplingThread(); 1488 if (_young_gen_sampling_thread->osthread() == NULL) { 1489 vm_shutdown_during_initialization("Could not create G1YoungRemSetSamplingThread"); 1490 return JNI_ENOMEM; 1491 } 1492 return JNI_OK; 1493 } 1494 1495 jint G1CollectedHeap::initialize() { 1496 os::enable_vtime(); 1497 1498 // Necessary to satisfy locking discipline assertions. 1499 1500 MutexLocker x(Heap_lock); 1501 1502 // While there are no constraints in the GC code that HeapWordSize 1503 // be any particular value, there are multiple other areas in the 1504 // system which believe this to be true (e.g. oop->object_size in some 1505 // cases incorrectly returns the size in wordSize units rather than 1506 // HeapWordSize). 1507 guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize"); 1508 1509 size_t init_byte_size = collector_policy()->initial_heap_byte_size(); 1510 size_t max_byte_size = collector_policy()->max_heap_byte_size(); 1511 size_t heap_alignment = collector_policy()->heap_alignment(); 1512 1513 // Ensure that the sizes are properly aligned. 1514 Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap"); 1515 Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap"); 1516 Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap"); 1517 1518 // Reserve the maximum. 1519 1520 // When compressed oops are enabled, the preferred heap base 1521 // is calculated by subtracting the requested size from the 1522 // 32Gb boundary and using the result as the base address for 1523 // heap reservation. If the requested size is not aligned to 1524 // HeapRegion::GrainBytes (i.e. the alignment that is passed 1525 // into the ReservedHeapSpace constructor) then the actual 1526 // base of the reserved heap may end up differing from the 1527 // address that was requested (i.e. the preferred heap base). 1528 // If this happens then we could end up using a non-optimal 1529 // compressed oops mode. 1530 1531 ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size, 1532 heap_alignment); 1533 1534 initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size())); 1535 1536 // Create the barrier set for the entire reserved region. 1537 G1CardTable* ct = new G1CardTable(reserved_region()); 1538 ct->initialize(); 1539 G1BarrierSet* bs = new G1BarrierSet(ct); 1540 bs->initialize(); 1541 assert(bs->is_a(BarrierSet::G1BarrierSet), "sanity"); 1542 set_barrier_set(bs); 1543 _card_table = ct; 1544 1545 // Create the hot card cache. 1546 _hot_card_cache = new G1HotCardCache(this); 1547 1548 // Carve out the G1 part of the heap. 1549 ReservedSpace g1_rs = heap_rs.first_part(max_byte_size); 1550 size_t page_size = UseLargePages ? os::large_page_size() : os::vm_page_size(); 1551 G1RegionToSpaceMapper* heap_storage = 1552 G1RegionToSpaceMapper::create_mapper(g1_rs, 1553 g1_rs.size(), 1554 page_size, 1555 HeapRegion::GrainBytes, 1556 1, 1557 mtJavaHeap); 1558 os::trace_page_sizes("Heap", 1559 collector_policy()->min_heap_byte_size(), 1560 max_byte_size, 1561 page_size, 1562 heap_rs.base(), 1563 heap_rs.size()); 1564 heap_storage->set_mapping_changed_listener(&_listener); 1565 1566 // Create storage for the BOT, card table, card counts table (hot card cache) and the bitmaps. 1567 G1RegionToSpaceMapper* bot_storage = 1568 create_aux_memory_mapper("Block Offset Table", 1569 G1BlockOffsetTable::compute_size(g1_rs.size() / HeapWordSize), 1570 G1BlockOffsetTable::heap_map_factor()); 1571 1572 G1RegionToSpaceMapper* cardtable_storage = 1573 create_aux_memory_mapper("Card Table", 1574 G1CardTable::compute_size(g1_rs.size() / HeapWordSize), 1575 G1CardTable::heap_map_factor()); 1576 1577 G1RegionToSpaceMapper* card_counts_storage = 1578 create_aux_memory_mapper("Card Counts Table", 1579 G1CardCounts::compute_size(g1_rs.size() / HeapWordSize), 1580 G1CardCounts::heap_map_factor()); 1581 1582 size_t bitmap_size = G1CMBitMap::compute_size(g1_rs.size()); 1583 G1RegionToSpaceMapper* prev_bitmap_storage = 1584 create_aux_memory_mapper("Prev Bitmap", bitmap_size, G1CMBitMap::heap_map_factor()); 1585 G1RegionToSpaceMapper* next_bitmap_storage = 1586 create_aux_memory_mapper("Next Bitmap", bitmap_size, G1CMBitMap::heap_map_factor()); 1587 1588 _hrm.initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage); 1589 _card_table->initialize(cardtable_storage); 1590 // Do later initialization work for concurrent refinement. 1591 _hot_card_cache->initialize(card_counts_storage); 1592 1593 // 6843694 - ensure that the maximum region index can fit 1594 // in the remembered set structures. 1595 const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1; 1596 guarantee((max_regions() - 1) <= max_region_idx, "too many regions"); 1597 1598 // Also create a G1 rem set. 1599 _g1_rem_set = new G1RemSet(this, _card_table, _hot_card_cache); 1600 _g1_rem_set->initialize(max_capacity(), max_regions()); 1601 1602 size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1; 1603 guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized"); 1604 guarantee(HeapRegion::CardsPerRegion < max_cards_per_region, 1605 "too many cards per region"); 1606 1607 FreeRegionList::set_unrealistically_long_length(max_regions() + 1); 1608 1609 _bot = new G1BlockOffsetTable(reserved_region(), bot_storage); 1610 1611 { 1612 HeapWord* start = _hrm.reserved().start(); 1613 HeapWord* end = _hrm.reserved().end(); 1614 size_t granularity = HeapRegion::GrainBytes; 1615 1616 _in_cset_fast_test.initialize(start, end, granularity); 1617 _humongous_reclaim_candidates.initialize(start, end, granularity); 1618 } 1619 1620 // Create the G1ConcurrentMark data structure and thread. 1621 // (Must do this late, so that "max_regions" is defined.) 1622 _cm = new G1ConcurrentMark(this, prev_bitmap_storage, next_bitmap_storage); 1623 if (_cm == NULL || !_cm->completed_initialization()) { 1624 vm_shutdown_during_initialization("Could not create/initialize G1ConcurrentMark"); 1625 return JNI_ENOMEM; 1626 } 1627 _cmThread = _cm->cm_thread(); 1628 1629 // Now expand into the initial heap size. 1630 if (!expand(init_byte_size, _workers)) { 1631 vm_shutdown_during_initialization("Failed to allocate initial heap."); 1632 return JNI_ENOMEM; 1633 } 1634 1635 // Perform any initialization actions delegated to the policy. 1636 g1_policy()->init(this, &_collection_set); 1637 1638 JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon, 1639 SATB_Q_FL_lock, 1640 G1SATBProcessCompletedThreshold, 1641 Shared_SATB_Q_lock); 1642 1643 jint ecode = initialize_concurrent_refinement(); 1644 if (ecode != JNI_OK) { 1645 return ecode; 1646 } 1647 1648 ecode = initialize_young_gen_sampling_thread(); 1649 if (ecode != JNI_OK) { 1650 return ecode; 1651 } 1652 1653 JavaThread::dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon, 1654 DirtyCardQ_FL_lock, 1655 (int)concurrent_refine()->yellow_zone(), 1656 (int)concurrent_refine()->red_zone(), 1657 Shared_DirtyCardQ_lock, 1658 NULL, // fl_owner 1659 true); // init_free_ids 1660 1661 dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon, 1662 DirtyCardQ_FL_lock, 1663 -1, // never trigger processing 1664 -1, // no limit on length 1665 Shared_DirtyCardQ_lock, 1666 &JavaThread::dirty_card_queue_set()); 1667 1668 // Here we allocate the dummy HeapRegion that is required by the 1669 // G1AllocRegion class. 1670 HeapRegion* dummy_region = _hrm.get_dummy_region(); 1671 1672 // We'll re-use the same region whether the alloc region will 1673 // require BOT updates or not and, if it doesn't, then a non-young 1674 // region will complain that it cannot support allocations without 1675 // BOT updates. So we'll tag the dummy region as eden to avoid that. 1676 dummy_region->set_eden(); 1677 // Make sure it's full. 1678 dummy_region->set_top(dummy_region->end()); 1679 G1AllocRegion::setup(this, dummy_region); 1680 1681 _allocator->init_mutator_alloc_region(); 1682 1683 // Do create of the monitoring and management support so that 1684 // values in the heap have been properly initialized. 1685 _g1mm = new G1MonitoringSupport(this); 1686 1687 G1StringDedup::initialize(); 1688 1689 _preserved_marks_set.init(ParallelGCThreads); 1690 1691 _collection_set.initialize(max_regions()); 1692 1693 return JNI_OK; 1694 } 1695 1696 void G1CollectedHeap::initialize_serviceability() { 1697 _eden_pool = new G1EdenPool(this); 1698 _survivor_pool = new G1SurvivorPool(this); 1699 _old_pool = new G1OldGenPool(this); 1700 1701 _full_gc_memory_manager.add_pool(_eden_pool); 1702 _full_gc_memory_manager.add_pool(_survivor_pool); 1703 _full_gc_memory_manager.add_pool(_old_pool); 1704 1705 _memory_manager.add_pool(_eden_pool); 1706 _memory_manager.add_pool(_survivor_pool); 1707 1708 } 1709 1710 void G1CollectedHeap::stop() { 1711 // Stop all concurrent threads. We do this to make sure these threads 1712 // do not continue to execute and access resources (e.g. logging) 1713 // that are destroyed during shutdown. 1714 _cr->stop(); 1715 _young_gen_sampling_thread->stop(); 1716 _cmThread->stop(); 1717 if (G1StringDedup::is_enabled()) { 1718 G1StringDedup::stop(); 1719 } 1720 } 1721 1722 void G1CollectedHeap::safepoint_synchronize_begin() { 1723 SuspendibleThreadSet::synchronize(); 1724 } 1725 1726 void G1CollectedHeap::safepoint_synchronize_end() { 1727 SuspendibleThreadSet::desynchronize(); 1728 } 1729 1730 size_t G1CollectedHeap::conservative_max_heap_alignment() { 1731 return HeapRegion::max_region_size(); 1732 } 1733 1734 void G1CollectedHeap::post_initialize() { 1735 CollectedHeap::post_initialize(); 1736 ref_processing_init(); 1737 } 1738 1739 void G1CollectedHeap::ref_processing_init() { 1740 // Reference processing in G1 currently works as follows: 1741 // 1742 // * There are two reference processor instances. One is 1743 // used to record and process discovered references 1744 // during concurrent marking; the other is used to 1745 // record and process references during STW pauses 1746 // (both full and incremental). 1747 // * Both ref processors need to 'span' the entire heap as 1748 // the regions in the collection set may be dotted around. 1749 // 1750 // * For the concurrent marking ref processor: 1751 // * Reference discovery is enabled at initial marking. 1752 // * Reference discovery is disabled and the discovered 1753 // references processed etc during remarking. 1754 // * Reference discovery is MT (see below). 1755 // * Reference discovery requires a barrier (see below). 1756 // * Reference processing may or may not be MT 1757 // (depending on the value of ParallelRefProcEnabled 1758 // and ParallelGCThreads). 1759 // * A full GC disables reference discovery by the CM 1760 // ref processor and abandons any entries on it's 1761 // discovered lists. 1762 // 1763 // * For the STW processor: 1764 // * Non MT discovery is enabled at the start of a full GC. 1765 // * Processing and enqueueing during a full GC is non-MT. 1766 // * During a full GC, references are processed after marking. 1767 // 1768 // * Discovery (may or may not be MT) is enabled at the start 1769 // of an incremental evacuation pause. 1770 // * References are processed near the end of a STW evacuation pause. 1771 // * For both types of GC: 1772 // * Discovery is atomic - i.e. not concurrent. 1773 // * Reference discovery will not need a barrier. 1774 1775 MemRegion mr = reserved_region(); 1776 1777 bool mt_processing = ParallelRefProcEnabled && (ParallelGCThreads > 1); 1778 1779 // Concurrent Mark ref processor 1780 _ref_processor_cm = 1781 new ReferenceProcessor(mr, // span 1782 mt_processing, 1783 // mt processing 1784 ParallelGCThreads, 1785 // degree of mt processing 1786 (ParallelGCThreads > 1) || (ConcGCThreads > 1), 1787 // mt discovery 1788 MAX2(ParallelGCThreads, ConcGCThreads), 1789 // degree of mt discovery 1790 false, 1791 // Reference discovery is not atomic 1792 &_is_alive_closure_cm); 1793 // is alive closure 1794 // (for efficiency/performance) 1795 1796 // STW ref processor 1797 _ref_processor_stw = 1798 new ReferenceProcessor(mr, // span 1799 mt_processing, 1800 // mt processing 1801 ParallelGCThreads, 1802 // degree of mt processing 1803 (ParallelGCThreads > 1), 1804 // mt discovery 1805 ParallelGCThreads, 1806 // degree of mt discovery 1807 true, 1808 // Reference discovery is atomic 1809 &_is_alive_closure_stw); 1810 // is alive closure 1811 // (for efficiency/performance) 1812 } 1813 1814 CollectorPolicy* G1CollectedHeap::collector_policy() const { 1815 return _collector_policy; 1816 } 1817 1818 SoftRefPolicy* G1CollectedHeap::soft_ref_policy() { 1819 return &_soft_ref_policy; 1820 } 1821 1822 size_t G1CollectedHeap::capacity() const { 1823 return _hrm.length() * HeapRegion::GrainBytes; 1824 } 1825 1826 size_t G1CollectedHeap::unused_committed_regions_in_bytes() const { 1827 return _hrm.total_free_bytes(); 1828 } 1829 1830 void G1CollectedHeap::iterate_hcc_closure(CardTableEntryClosure* cl, uint worker_i) { 1831 _hot_card_cache->drain(cl, worker_i); 1832 } 1833 1834 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl, uint worker_i) { 1835 DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set(); 1836 size_t n_completed_buffers = 0; 1837 while (dcqs.apply_closure_during_gc(cl, worker_i)) { 1838 n_completed_buffers++; 1839 } 1840 g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::UpdateRS, worker_i, n_completed_buffers); 1841 dcqs.clear_n_completed_buffers(); 1842 assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!"); 1843 } 1844 1845 // Computes the sum of the storage used by the various regions. 1846 size_t G1CollectedHeap::used() const { 1847 size_t result = _summary_bytes_used + _allocator->used_in_alloc_regions(); 1848 if (_archive_allocator != NULL) { 1849 result += _archive_allocator->used(); 1850 } 1851 return result; 1852 } 1853 1854 size_t G1CollectedHeap::used_unlocked() const { 1855 return _summary_bytes_used; 1856 } 1857 1858 class SumUsedClosure: public HeapRegionClosure { 1859 size_t _used; 1860 public: 1861 SumUsedClosure() : _used(0) {} 1862 bool do_heap_region(HeapRegion* r) { 1863 _used += r->used(); 1864 return false; 1865 } 1866 size_t result() { return _used; } 1867 }; 1868 1869 size_t G1CollectedHeap::recalculate_used() const { 1870 double recalculate_used_start = os::elapsedTime(); 1871 1872 SumUsedClosure blk; 1873 heap_region_iterate(&blk); 1874 1875 g1_policy()->phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0); 1876 return blk.result(); 1877 } 1878 1879 bool G1CollectedHeap::is_user_requested_concurrent_full_gc(GCCause::Cause cause) { 1880 switch (cause) { 1881 case GCCause::_java_lang_system_gc: return ExplicitGCInvokesConcurrent; 1882 case GCCause::_dcmd_gc_run: return ExplicitGCInvokesConcurrent; 1883 case GCCause::_wb_conc_mark: return true; 1884 default : return false; 1885 } 1886 } 1887 1888 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) { 1889 switch (cause) { 1890 case GCCause::_gc_locker: return GCLockerInvokesConcurrent; 1891 case GCCause::_g1_humongous_allocation: return true; 1892 default: return is_user_requested_concurrent_full_gc(cause); 1893 } 1894 } 1895 1896 #ifndef PRODUCT 1897 void G1CollectedHeap::allocate_dummy_regions() { 1898 // Let's fill up most of the region 1899 size_t word_size = HeapRegion::GrainWords - 1024; 1900 // And as a result the region we'll allocate will be humongous. 1901 guarantee(is_humongous(word_size), "sanity"); 1902 1903 // _filler_array_max_size is set to humongous object threshold 1904 // but temporarily change it to use CollectedHeap::fill_with_object(). 1905 SizeTFlagSetting fs(_filler_array_max_size, word_size); 1906 1907 for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) { 1908 // Let's use the existing mechanism for the allocation 1909 HeapWord* dummy_obj = humongous_obj_allocate(word_size); 1910 if (dummy_obj != NULL) { 1911 MemRegion mr(dummy_obj, word_size); 1912 CollectedHeap::fill_with_object(mr); 1913 } else { 1914 // If we can't allocate once, we probably cannot allocate 1915 // again. Let's get out of the loop. 1916 break; 1917 } 1918 } 1919 } 1920 #endif // !PRODUCT 1921 1922 void G1CollectedHeap::increment_old_marking_cycles_started() { 1923 assert(_old_marking_cycles_started == _old_marking_cycles_completed || 1924 _old_marking_cycles_started == _old_marking_cycles_completed + 1, 1925 "Wrong marking cycle count (started: %d, completed: %d)", 1926 _old_marking_cycles_started, _old_marking_cycles_completed); 1927 1928 _old_marking_cycles_started++; 1929 } 1930 1931 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) { 1932 MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag); 1933 1934 // We assume that if concurrent == true, then the caller is a 1935 // concurrent thread that was joined the Suspendible Thread 1936 // Set. If there's ever a cheap way to check this, we should add an 1937 // assert here. 1938 1939 // Given that this method is called at the end of a Full GC or of a 1940 // concurrent cycle, and those can be nested (i.e., a Full GC can 1941 // interrupt a concurrent cycle), the number of full collections 1942 // completed should be either one (in the case where there was no 1943 // nesting) or two (when a Full GC interrupted a concurrent cycle) 1944 // behind the number of full collections started. 1945 1946 // This is the case for the inner caller, i.e. a Full GC. 1947 assert(concurrent || 1948 (_old_marking_cycles_started == _old_marking_cycles_completed + 1) || 1949 (_old_marking_cycles_started == _old_marking_cycles_completed + 2), 1950 "for inner caller (Full GC): _old_marking_cycles_started = %u " 1951 "is inconsistent with _old_marking_cycles_completed = %u", 1952 _old_marking_cycles_started, _old_marking_cycles_completed); 1953 1954 // This is the case for the outer caller, i.e. the concurrent cycle. 1955 assert(!concurrent || 1956 (_old_marking_cycles_started == _old_marking_cycles_completed + 1), 1957 "for outer caller (concurrent cycle): " 1958 "_old_marking_cycles_started = %u " 1959 "is inconsistent with _old_marking_cycles_completed = %u", 1960 _old_marking_cycles_started, _old_marking_cycles_completed); 1961 1962 _old_marking_cycles_completed += 1; 1963 1964 // We need to clear the "in_progress" flag in the CM thread before 1965 // we wake up any waiters (especially when ExplicitInvokesConcurrent 1966 // is set) so that if a waiter requests another System.gc() it doesn't 1967 // incorrectly see that a marking cycle is still in progress. 1968 if (concurrent) { 1969 _cmThread->set_idle(); 1970 } 1971 1972 // This notify_all() will ensure that a thread that called 1973 // System.gc() with (with ExplicitGCInvokesConcurrent set or not) 1974 // and it's waiting for a full GC to finish will be woken up. It is 1975 // waiting in VM_G1CollectForAllocation::doit_epilogue(). 1976 FullGCCount_lock->notify_all(); 1977 } 1978 1979 void G1CollectedHeap::collect(GCCause::Cause cause) { 1980 assert_heap_not_locked(); 1981 1982 uint gc_count_before; 1983 uint old_marking_count_before; 1984 uint full_gc_count_before; 1985 bool retry_gc; 1986 1987 do { 1988 retry_gc = false; 1989 1990 { 1991 MutexLocker ml(Heap_lock); 1992 1993 // Read the GC count while holding the Heap_lock 1994 gc_count_before = total_collections(); 1995 full_gc_count_before = total_full_collections(); 1996 old_marking_count_before = _old_marking_cycles_started; 1997 } 1998 1999 if (should_do_concurrent_full_gc(cause)) { 2000 // Schedule an initial-mark evacuation pause that will start a 2001 // concurrent cycle. We're setting word_size to 0 which means that 2002 // we are not requesting a post-GC allocation. 2003 VM_G1CollectForAllocation op(0, /* word_size */ 2004 gc_count_before, 2005 cause, 2006 true, /* should_initiate_conc_mark */ 2007 g1_policy()->max_pause_time_ms()); 2008 VMThread::execute(&op); 2009 if (!op.pause_succeeded()) { 2010 if (old_marking_count_before == _old_marking_cycles_started) { 2011 retry_gc = op.should_retry_gc(); 2012 } else { 2013 // A Full GC happened while we were trying to schedule the 2014 // initial-mark GC. No point in starting a new cycle given 2015 // that the whole heap was collected anyway. 2016 } 2017 2018 if (retry_gc) { 2019 if (GCLocker::is_active_and_needs_gc()) { 2020 GCLocker::stall_until_clear(); 2021 } 2022 } 2023 } 2024 } else { 2025 if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc 2026 DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) { 2027 2028 // Schedule a standard evacuation pause. We're setting word_size 2029 // to 0 which means that we are not requesting a post-GC allocation. 2030 VM_G1CollectForAllocation op(0, /* word_size */ 2031 gc_count_before, 2032 cause, 2033 false, /* should_initiate_conc_mark */ 2034 g1_policy()->max_pause_time_ms()); 2035 VMThread::execute(&op); 2036 } else { 2037 // Schedule a Full GC. 2038 VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause); 2039 VMThread::execute(&op); 2040 } 2041 } 2042 } while (retry_gc); 2043 } 2044 2045 bool G1CollectedHeap::is_in(const void* p) const { 2046 if (_hrm.reserved().contains(p)) { 2047 // Given that we know that p is in the reserved space, 2048 // heap_region_containing() should successfully 2049 // return the containing region. 2050 HeapRegion* hr = heap_region_containing(p); 2051 return hr->is_in(p); 2052 } else { 2053 return false; 2054 } 2055 } 2056 2057 #ifdef ASSERT 2058 bool G1CollectedHeap::is_in_exact(const void* p) const { 2059 bool contains = reserved_region().contains(p); 2060 bool available = _hrm.is_available(addr_to_region((HeapWord*)p)); 2061 if (contains && available) { 2062 return true; 2063 } else { 2064 return false; 2065 } 2066 } 2067 #endif 2068 2069 // Iteration functions. 2070 2071 // Iterates an ObjectClosure over all objects within a HeapRegion. 2072 2073 class IterateObjectClosureRegionClosure: public HeapRegionClosure { 2074 ObjectClosure* _cl; 2075 public: 2076 IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {} 2077 bool do_heap_region(HeapRegion* r) { 2078 if (!r->is_continues_humongous()) { 2079 r->object_iterate(_cl); 2080 } 2081 return false; 2082 } 2083 }; 2084 2085 void G1CollectedHeap::object_iterate(ObjectClosure* cl) { 2086 IterateObjectClosureRegionClosure blk(cl); 2087 heap_region_iterate(&blk); 2088 } 2089 2090 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const { 2091 _hrm.iterate(cl); 2092 } 2093 2094 void G1CollectedHeap::heap_region_par_iterate_from_worker_offset(HeapRegionClosure* cl, 2095 HeapRegionClaimer *hrclaimer, 2096 uint worker_id) const { 2097 _hrm.par_iterate(cl, hrclaimer, hrclaimer->offset_for_worker(worker_id)); 2098 } 2099 2100 void G1CollectedHeap::heap_region_par_iterate_from_start(HeapRegionClosure* cl, 2101 HeapRegionClaimer *hrclaimer) const { 2102 _hrm.par_iterate(cl, hrclaimer, 0); 2103 } 2104 2105 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) { 2106 _collection_set.iterate(cl); 2107 } 2108 2109 void G1CollectedHeap::collection_set_iterate_from(HeapRegionClosure *cl, uint worker_id) { 2110 _collection_set.iterate_from(cl, worker_id, workers()->active_workers()); 2111 } 2112 2113 HeapWord* G1CollectedHeap::block_start(const void* addr) const { 2114 HeapRegion* hr = heap_region_containing(addr); 2115 return hr->block_start(addr); 2116 } 2117 2118 size_t G1CollectedHeap::block_size(const HeapWord* addr) const { 2119 HeapRegion* hr = heap_region_containing(addr); 2120 return hr->block_size(addr); 2121 } 2122 2123 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const { 2124 HeapRegion* hr = heap_region_containing(addr); 2125 return hr->block_is_obj(addr); 2126 } 2127 2128 bool G1CollectedHeap::supports_tlab_allocation() const { 2129 return true; 2130 } 2131 2132 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const { 2133 return (_g1_policy->young_list_target_length() - _survivor.length()) * HeapRegion::GrainBytes; 2134 } 2135 2136 size_t G1CollectedHeap::tlab_used(Thread* ignored) const { 2137 return _eden.length() * HeapRegion::GrainBytes; 2138 } 2139 2140 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size 2141 // must be equal to the humongous object limit. 2142 size_t G1CollectedHeap::max_tlab_size() const { 2143 return align_down(_humongous_object_threshold_in_words, MinObjAlignment); 2144 } 2145 2146 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const { 2147 return _allocator->unsafe_max_tlab_alloc(); 2148 } 2149 2150 size_t G1CollectedHeap::max_capacity() const { 2151 return _hrm.reserved().byte_size(); 2152 } 2153 2154 jlong G1CollectedHeap::millis_since_last_gc() { 2155 // See the notes in GenCollectedHeap::millis_since_last_gc() 2156 // for more information about the implementation. 2157 jlong ret_val = (os::javaTimeNanos() / NANOSECS_PER_MILLISEC) - 2158 _g1_policy->collection_pause_end_millis(); 2159 if (ret_val < 0) { 2160 log_warning(gc)("millis_since_last_gc() would return : " JLONG_FORMAT 2161 ". returning zero instead.", ret_val); 2162 return 0; 2163 } 2164 return ret_val; 2165 } 2166 2167 void G1CollectedHeap::prepare_for_verify() { 2168 _verifier->prepare_for_verify(); 2169 } 2170 2171 void G1CollectedHeap::verify(VerifyOption vo) { 2172 _verifier->verify(vo); 2173 } 2174 2175 bool G1CollectedHeap::supports_concurrent_phase_control() const { 2176 return true; 2177 } 2178 2179 const char* const* G1CollectedHeap::concurrent_phases() const { 2180 return _cmThread->concurrent_phases(); 2181 } 2182 2183 bool G1CollectedHeap::request_concurrent_phase(const char* phase) { 2184 return _cmThread->request_concurrent_phase(phase); 2185 } 2186 2187 class PrintRegionClosure: public HeapRegionClosure { 2188 outputStream* _st; 2189 public: 2190 PrintRegionClosure(outputStream* st) : _st(st) {} 2191 bool do_heap_region(HeapRegion* r) { 2192 r->print_on(_st); 2193 return false; 2194 } 2195 }; 2196 2197 bool G1CollectedHeap::is_obj_dead_cond(const oop obj, 2198 const HeapRegion* hr, 2199 const VerifyOption vo) const { 2200 switch (vo) { 2201 case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr); 2202 case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr); 2203 case VerifyOption_G1UseFullMarking: return is_obj_dead_full(obj, hr); 2204 default: ShouldNotReachHere(); 2205 } 2206 return false; // keep some compilers happy 2207 } 2208 2209 bool G1CollectedHeap::is_obj_dead_cond(const oop obj, 2210 const VerifyOption vo) const { 2211 switch (vo) { 2212 case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj); 2213 case VerifyOption_G1UseNextMarking: return is_obj_ill(obj); 2214 case VerifyOption_G1UseFullMarking: return is_obj_dead_full(obj); 2215 default: ShouldNotReachHere(); 2216 } 2217 return false; // keep some compilers happy 2218 } 2219 2220 void G1CollectedHeap::print_heap_regions() const { 2221 LogTarget(Trace, gc, heap, region) lt; 2222 if (lt.is_enabled()) { 2223 LogStream ls(lt); 2224 print_regions_on(&ls); 2225 } 2226 } 2227 2228 void G1CollectedHeap::print_on(outputStream* st) const { 2229 st->print(" %-20s", "garbage-first heap"); 2230 st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K", 2231 capacity()/K, used_unlocked()/K); 2232 st->print(" [" PTR_FORMAT ", " PTR_FORMAT ")", 2233 p2i(_hrm.reserved().start()), 2234 p2i(_hrm.reserved().end())); 2235 st->cr(); 2236 st->print(" region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K); 2237 uint young_regions = young_regions_count(); 2238 st->print("%u young (" SIZE_FORMAT "K), ", young_regions, 2239 (size_t) young_regions * HeapRegion::GrainBytes / K); 2240 uint survivor_regions = survivor_regions_count(); 2241 st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions, 2242 (size_t) survivor_regions * HeapRegion::GrainBytes / K); 2243 st->cr(); 2244 MetaspaceUtils::print_on(st); 2245 } 2246 2247 void G1CollectedHeap::print_regions_on(outputStream* st) const { 2248 st->print_cr("Heap Regions: E=young(eden), S=young(survivor), O=old, " 2249 "HS=humongous(starts), HC=humongous(continues), " 2250 "CS=collection set, F=free, A=archive, " 2251 "TAMS=top-at-mark-start (previous, next)"); 2252 PrintRegionClosure blk(st); 2253 heap_region_iterate(&blk); 2254 } 2255 2256 void G1CollectedHeap::print_extended_on(outputStream* st) const { 2257 print_on(st); 2258 2259 // Print the per-region information. 2260 print_regions_on(st); 2261 } 2262 2263 void G1CollectedHeap::print_on_error(outputStream* st) const { 2264 this->CollectedHeap::print_on_error(st); 2265 2266 if (_cm != NULL) { 2267 st->cr(); 2268 _cm->print_on_error(st); 2269 } 2270 } 2271 2272 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const { 2273 workers()->print_worker_threads_on(st); 2274 _cmThread->print_on(st); 2275 st->cr(); 2276 _cm->print_worker_threads_on(st); 2277 _cr->print_threads_on(st); 2278 _young_gen_sampling_thread->print_on(st); 2279 if (G1StringDedup::is_enabled()) { 2280 G1StringDedup::print_worker_threads_on(st); 2281 } 2282 } 2283 2284 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const { 2285 workers()->threads_do(tc); 2286 tc->do_thread(_cmThread); 2287 _cm->threads_do(tc); 2288 _cr->threads_do(tc); 2289 tc->do_thread(_young_gen_sampling_thread); 2290 if (G1StringDedup::is_enabled()) { 2291 G1StringDedup::threads_do(tc); 2292 } 2293 } 2294 2295 void G1CollectedHeap::print_tracing_info() const { 2296 g1_rem_set()->print_summary_info(); 2297 concurrent_mark()->print_summary_info(); 2298 } 2299 2300 #ifndef PRODUCT 2301 // Helpful for debugging RSet issues. 2302 2303 class PrintRSetsClosure : public HeapRegionClosure { 2304 private: 2305 const char* _msg; 2306 size_t _occupied_sum; 2307 2308 public: 2309 bool do_heap_region(HeapRegion* r) { 2310 HeapRegionRemSet* hrrs = r->rem_set(); 2311 size_t occupied = hrrs->occupied(); 2312 _occupied_sum += occupied; 2313 2314 tty->print_cr("Printing RSet for region " HR_FORMAT, HR_FORMAT_PARAMS(r)); 2315 if (occupied == 0) { 2316 tty->print_cr(" RSet is empty"); 2317 } else { 2318 hrrs->print(); 2319 } 2320 tty->print_cr("----------"); 2321 return false; 2322 } 2323 2324 PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) { 2325 tty->cr(); 2326 tty->print_cr("========================================"); 2327 tty->print_cr("%s", msg); 2328 tty->cr(); 2329 } 2330 2331 ~PrintRSetsClosure() { 2332 tty->print_cr("Occupied Sum: " SIZE_FORMAT, _occupied_sum); 2333 tty->print_cr("========================================"); 2334 tty->cr(); 2335 } 2336 }; 2337 2338 void G1CollectedHeap::print_cset_rsets() { 2339 PrintRSetsClosure cl("Printing CSet RSets"); 2340 collection_set_iterate(&cl); 2341 } 2342 2343 void G1CollectedHeap::print_all_rsets() { 2344 PrintRSetsClosure cl("Printing All RSets");; 2345 heap_region_iterate(&cl); 2346 } 2347 #endif // PRODUCT 2348 2349 G1HeapSummary G1CollectedHeap::create_g1_heap_summary() { 2350 2351 size_t eden_used_bytes = heap()->eden_regions_count() * HeapRegion::GrainBytes; 2352 size_t survivor_used_bytes = heap()->survivor_regions_count() * HeapRegion::GrainBytes; 2353 size_t heap_used = Heap_lock->owned_by_self() ? used() : used_unlocked(); 2354 2355 size_t eden_capacity_bytes = 2356 (g1_policy()->young_list_target_length() * HeapRegion::GrainBytes) - survivor_used_bytes; 2357 2358 VirtualSpaceSummary heap_summary = create_heap_space_summary(); 2359 return G1HeapSummary(heap_summary, heap_used, eden_used_bytes, 2360 eden_capacity_bytes, survivor_used_bytes, num_regions()); 2361 } 2362 2363 G1EvacSummary G1CollectedHeap::create_g1_evac_summary(G1EvacStats* stats) { 2364 return G1EvacSummary(stats->allocated(), stats->wasted(), stats->undo_wasted(), 2365 stats->unused(), stats->used(), stats->region_end_waste(), 2366 stats->regions_filled(), stats->direct_allocated(), 2367 stats->failure_used(), stats->failure_waste()); 2368 } 2369 2370 void G1CollectedHeap::trace_heap(GCWhen::Type when, const GCTracer* gc_tracer) { 2371 const G1HeapSummary& heap_summary = create_g1_heap_summary(); 2372 gc_tracer->report_gc_heap_summary(when, heap_summary); 2373 2374 const MetaspaceSummary& metaspace_summary = create_metaspace_summary(); 2375 gc_tracer->report_metaspace_summary(when, metaspace_summary); 2376 } 2377 2378 G1CollectedHeap* G1CollectedHeap::heap() { 2379 CollectedHeap* heap = Universe::heap(); 2380 assert(heap != NULL, "Uninitialized access to G1CollectedHeap::heap()"); 2381 assert(heap->kind() == CollectedHeap::G1, "Invalid name"); 2382 return (G1CollectedHeap*)heap; 2383 } 2384 2385 void G1CollectedHeap::gc_prologue(bool full) { 2386 // always_do_update_barrier = false; 2387 assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer"); 2388 2389 // This summary needs to be printed before incrementing total collections. 2390 g1_rem_set()->print_periodic_summary_info("Before GC RS summary", total_collections()); 2391 2392 // Update common counters. 2393 increment_total_collections(full /* full gc */); 2394 if (full) { 2395 increment_old_marking_cycles_started(); 2396 } 2397 2398 // Fill TLAB's and such 2399 double start = os::elapsedTime(); 2400 accumulate_statistics_all_tlabs(); 2401 ensure_parsability(true); 2402 g1_policy()->phase_times()->record_prepare_tlab_time_ms((os::elapsedTime() - start) * 1000.0); 2403 } 2404 2405 void G1CollectedHeap::gc_epilogue(bool full) { 2406 // Update common counters. 2407 if (full) { 2408 // Update the number of full collections that have been completed. 2409 increment_old_marking_cycles_completed(false /* concurrent */); 2410 } 2411 2412 // We are at the end of the GC. Total collections has already been increased. 2413 g1_rem_set()->print_periodic_summary_info("After GC RS summary", total_collections() - 1); 2414 2415 // FIXME: what is this about? 2416 // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled" 2417 // is set. 2418 #if COMPILER2_OR_JVMCI 2419 assert(DerivedPointerTable::is_empty(), "derived pointer present"); 2420 #endif 2421 // always_do_update_barrier = true; 2422 2423 double start = os::elapsedTime(); 2424 resize_all_tlabs(); 2425 g1_policy()->phase_times()->record_resize_tlab_time_ms((os::elapsedTime() - start) * 1000.0); 2426 2427 MemoryService::track_memory_usage(); 2428 // We have just completed a GC. Update the soft reference 2429 // policy with the new heap occupancy 2430 Universe::update_heap_info_at_gc(); 2431 } 2432 2433 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size, 2434 uint gc_count_before, 2435 bool* succeeded, 2436 GCCause::Cause gc_cause) { 2437 assert_heap_not_locked_and_not_at_safepoint(); 2438 VM_G1CollectForAllocation op(word_size, 2439 gc_count_before, 2440 gc_cause, 2441 false, /* should_initiate_conc_mark */ 2442 g1_policy()->max_pause_time_ms()); 2443 VMThread::execute(&op); 2444 2445 HeapWord* result = op.result(); 2446 bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded(); 2447 assert(result == NULL || ret_succeeded, 2448 "the result should be NULL if the VM did not succeed"); 2449 *succeeded = ret_succeeded; 2450 2451 assert_heap_not_locked(); 2452 return result; 2453 } 2454 2455 void G1CollectedHeap::do_concurrent_mark() { 2456 MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag); 2457 if (!_cmThread->in_progress()) { 2458 _cmThread->set_started(); 2459 CGC_lock->notify(); 2460 } 2461 } 2462 2463 size_t G1CollectedHeap::pending_card_num() { 2464 size_t extra_cards = 0; 2465 for (JavaThreadIteratorWithHandle jtiwh; JavaThread *curr = jtiwh.next(); ) { 2466 DirtyCardQueue& dcq = curr->dirty_card_queue(); 2467 extra_cards += dcq.size(); 2468 } 2469 DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set(); 2470 size_t buffer_size = dcqs.buffer_size(); 2471 size_t buffer_num = dcqs.completed_buffers_num(); 2472 2473 return buffer_size * buffer_num + extra_cards; 2474 } 2475 2476 bool G1CollectedHeap::is_potential_eager_reclaim_candidate(HeapRegion* r) const { 2477 // We don't nominate objects with many remembered set entries, on 2478 // the assumption that such objects are likely still live. 2479 HeapRegionRemSet* rem_set = r->rem_set(); 2480 2481 return G1EagerReclaimHumongousObjectsWithStaleRefs ? 2482 rem_set->occupancy_less_or_equal_than(G1RSetSparseRegionEntries) : 2483 G1EagerReclaimHumongousObjects && rem_set->is_empty(); 2484 } 2485 2486 class RegisterHumongousWithInCSetFastTestClosure : public HeapRegionClosure { 2487 private: 2488 size_t _total_humongous; 2489 size_t _candidate_humongous; 2490 2491 DirtyCardQueue _dcq; 2492 2493 bool humongous_region_is_candidate(G1CollectedHeap* g1h, HeapRegion* region) const { 2494 assert(region->is_starts_humongous(), "Must start a humongous object"); 2495 2496 oop obj = oop(region->bottom()); 2497 2498 // Dead objects cannot be eager reclaim candidates. Due to class 2499 // unloading it is unsafe to query their classes so we return early. 2500 if (g1h->is_obj_dead(obj, region)) { 2501 return false; 2502 } 2503 2504 // If we do not have a complete remembered set for the region, then we can 2505 // not be sure that we have all references to it. 2506 if (!region->rem_set()->is_complete()) { 2507 return false; 2508 } 2509 // Candidate selection must satisfy the following constraints 2510 // while concurrent marking is in progress: 2511 // 2512 // * In order to maintain SATB invariants, an object must not be 2513 // reclaimed if it was allocated before the start of marking and 2514 // has not had its references scanned. Such an object must have 2515 // its references (including type metadata) scanned to ensure no 2516 // live objects are missed by the marking process. Objects 2517 // allocated after the start of concurrent marking don't need to 2518 // be scanned. 2519 // 2520 // * An object must not be reclaimed if it is on the concurrent 2521 // mark stack. Objects allocated after the start of concurrent 2522 // marking are never pushed on the mark stack. 2523 // 2524 // Nominating only objects allocated after the start of concurrent 2525 // marking is sufficient to meet both constraints. This may miss 2526 // some objects that satisfy the constraints, but the marking data 2527 // structures don't support efficiently performing the needed 2528 // additional tests or scrubbing of the mark stack. 2529 // 2530 // However, we presently only nominate is_typeArray() objects. 2531 // A humongous object containing references induces remembered 2532 // set entries on other regions. In order to reclaim such an 2533 // object, those remembered sets would need to be cleaned up. 2534 // 2535 // We also treat is_typeArray() objects specially, allowing them 2536 // to be reclaimed even if allocated before the start of 2537 // concurrent mark. For this we rely on mark stack insertion to 2538 // exclude is_typeArray() objects, preventing reclaiming an object 2539 // that is in the mark stack. We also rely on the metadata for 2540 // such objects to be built-in and so ensured to be kept live. 2541 // Frequent allocation and drop of large binary blobs is an 2542 // important use case for eager reclaim, and this special handling 2543 // may reduce needed headroom. 2544 2545 return obj->is_typeArray() && 2546 g1h->is_potential_eager_reclaim_candidate(region); 2547 } 2548 2549 public: 2550 RegisterHumongousWithInCSetFastTestClosure() 2551 : _total_humongous(0), 2552 _candidate_humongous(0), 2553 _dcq(&JavaThread::dirty_card_queue_set()) { 2554 } 2555 2556 virtual bool do_heap_region(HeapRegion* r) { 2557 if (!r->is_starts_humongous()) { 2558 return false; 2559 } 2560 G1CollectedHeap* g1h = G1CollectedHeap::heap(); 2561 2562 bool is_candidate = humongous_region_is_candidate(g1h, r); 2563 uint rindex = r->hrm_index(); 2564 g1h->set_humongous_reclaim_candidate(rindex, is_candidate); 2565 if (is_candidate) { 2566 _candidate_humongous++; 2567 g1h->register_humongous_region_with_cset(rindex); 2568 // Is_candidate already filters out humongous object with large remembered sets. 2569 // If we have a humongous object with a few remembered sets, we simply flush these 2570 // remembered set entries into the DCQS. That will result in automatic 2571 // re-evaluation of their remembered set entries during the following evacuation 2572 // phase. 2573 if (!r->rem_set()->is_empty()) { 2574 guarantee(r->rem_set()->occupancy_less_or_equal_than(G1RSetSparseRegionEntries), 2575 "Found a not-small remembered set here. This is inconsistent with previous assumptions."); 2576 G1CardTable* ct = g1h->card_table(); 2577 HeapRegionRemSetIterator hrrs(r->rem_set()); 2578 size_t card_index; 2579 while (hrrs.has_next(card_index)) { 2580 jbyte* card_ptr = (jbyte*)ct->byte_for_index(card_index); 2581 // The remembered set might contain references to already freed 2582 // regions. Filter out such entries to avoid failing card table 2583 // verification. 2584 if (g1h->is_in_closed_subset(ct->addr_for(card_ptr))) { 2585 if (*card_ptr != G1CardTable::dirty_card_val()) { 2586 *card_ptr = G1CardTable::dirty_card_val(); 2587 _dcq.enqueue(card_ptr); 2588 } 2589 } 2590 } 2591 assert(hrrs.n_yielded() == r->rem_set()->occupied(), 2592 "Remembered set hash maps out of sync, cur: " SIZE_FORMAT " entries, next: " SIZE_FORMAT " entries", 2593 hrrs.n_yielded(), r->rem_set()->occupied()); 2594 // We should only clear the card based remembered set here as we will not 2595 // implicitly rebuild anything else during eager reclaim. Note that at the moment 2596 // (and probably never) we do not enter this path if there are other kind of 2597 // remembered sets for this region. 2598 r->rem_set()->clear_locked(true /* only_cardset */); 2599 // Clear_locked() above sets the state to Empty. However we want to continue 2600 // collecting remembered set entries for humongous regions that were not 2601 // reclaimed. 2602 r->rem_set()->set_state_complete(); 2603 } 2604 assert(r->rem_set()->is_empty(), "At this point any humongous candidate remembered set must be empty."); 2605 } 2606 _total_humongous++; 2607 2608 return false; 2609 } 2610 2611 size_t total_humongous() const { return _total_humongous; } 2612 size_t candidate_humongous() const { return _candidate_humongous; } 2613 2614 void flush_rem_set_entries() { _dcq.flush(); } 2615 }; 2616 2617 void G1CollectedHeap::register_humongous_regions_with_cset() { 2618 if (!G1EagerReclaimHumongousObjects) { 2619 g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(0.0, 0, 0); 2620 return; 2621 } 2622 double time = os::elapsed_counter(); 2623 2624 // Collect reclaim candidate information and register candidates with cset. 2625 RegisterHumongousWithInCSetFastTestClosure cl; 2626 heap_region_iterate(&cl); 2627 2628 time = ((double)(os::elapsed_counter() - time) / os::elapsed_frequency()) * 1000.0; 2629 g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(time, 2630 cl.total_humongous(), 2631 cl.candidate_humongous()); 2632 _has_humongous_reclaim_candidates = cl.candidate_humongous() > 0; 2633 2634 // Finally flush all remembered set entries to re-check into the global DCQS. 2635 cl.flush_rem_set_entries(); 2636 } 2637 2638 class VerifyRegionRemSetClosure : public HeapRegionClosure { 2639 public: 2640 bool do_heap_region(HeapRegion* hr) { 2641 if (!hr->is_archive() && !hr->is_continues_humongous()) { 2642 hr->verify_rem_set(); 2643 } 2644 return false; 2645 } 2646 }; 2647 2648 uint G1CollectedHeap::num_task_queues() const { 2649 return _task_queues->size(); 2650 } 2651 2652 #if TASKQUEUE_STATS 2653 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) { 2654 st->print_raw_cr("GC Task Stats"); 2655 st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr(); 2656 st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr(); 2657 } 2658 2659 void G1CollectedHeap::print_taskqueue_stats() const { 2660 if (!log_is_enabled(Trace, gc, task, stats)) { 2661 return; 2662 } 2663 Log(gc, task, stats) log; 2664 ResourceMark rm; 2665 LogStream ls(log.trace()); 2666 outputStream* st = &ls; 2667 2668 print_taskqueue_stats_hdr(st); 2669 2670 TaskQueueStats totals; 2671 const uint n = num_task_queues(); 2672 for (uint i = 0; i < n; ++i) { 2673 st->print("%3u ", i); task_queue(i)->stats.print(st); st->cr(); 2674 totals += task_queue(i)->stats; 2675 } 2676 st->print_raw("tot "); totals.print(st); st->cr(); 2677 2678 DEBUG_ONLY(totals.verify()); 2679 } 2680 2681 void G1CollectedHeap::reset_taskqueue_stats() { 2682 const uint n = num_task_queues(); 2683 for (uint i = 0; i < n; ++i) { 2684 task_queue(i)->stats.reset(); 2685 } 2686 } 2687 #endif // TASKQUEUE_STATS 2688 2689 void G1CollectedHeap::wait_for_root_region_scanning() { 2690 double scan_wait_start = os::elapsedTime(); 2691 // We have to wait until the CM threads finish scanning the 2692 // root regions as it's the only way to ensure that all the 2693 // objects on them have been correctly scanned before we start 2694 // moving them during the GC. 2695 bool waited = _cm->root_regions()->wait_until_scan_finished(); 2696 double wait_time_ms = 0.0; 2697 if (waited) { 2698 double scan_wait_end = os::elapsedTime(); 2699 wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0; 2700 } 2701 g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms); 2702 } 2703 2704 class G1PrintCollectionSetClosure : public HeapRegionClosure { 2705 private: 2706 G1HRPrinter* _hr_printer; 2707 public: 2708 G1PrintCollectionSetClosure(G1HRPrinter* hr_printer) : HeapRegionClosure(), _hr_printer(hr_printer) { } 2709 2710 virtual bool do_heap_region(HeapRegion* r) { 2711 _hr_printer->cset(r); 2712 return false; 2713 } 2714 }; 2715 2716 void G1CollectedHeap::start_new_collection_set() { 2717 collection_set()->start_incremental_building(); 2718 2719 clear_cset_fast_test(); 2720 2721 guarantee(_eden.length() == 0, "eden should have been cleared"); 2722 g1_policy()->transfer_survivors_to_cset(survivor()); 2723 } 2724 2725 bool 2726 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) { 2727 assert_at_safepoint_on_vm_thread(); 2728 guarantee(!is_gc_active(), "collection is not reentrant"); 2729 2730 if (GCLocker::check_active_before_gc()) { 2731 return false; 2732 } 2733 2734 _gc_timer_stw->register_gc_start(); 2735 2736 GCIdMark gc_id_mark; 2737 _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start()); 2738 2739 SvcGCMarker sgcm(SvcGCMarker::MINOR); 2740 ResourceMark rm; 2741 2742 g1_policy()->note_gc_start(); 2743 2744 wait_for_root_region_scanning(); 2745 2746 print_heap_before_gc(); 2747 print_heap_regions(); 2748 trace_heap_before_gc(_gc_tracer_stw); 2749 2750 _verifier->verify_region_sets_optional(); 2751 _verifier->verify_dirty_young_regions(); 2752 2753 // We should not be doing initial mark unless the conc mark thread is running 2754 if (!_cmThread->should_terminate()) { 2755 // This call will decide whether this pause is an initial-mark 2756 // pause. If it is, in_initial_mark_gc() will return true 2757 // for the duration of this pause. 2758 g1_policy()->decide_on_conc_mark_initiation(); 2759 } 2760 2761 // We do not allow initial-mark to be piggy-backed on a mixed GC. 2762 assert(!collector_state()->in_initial_mark_gc() || 2763 collector_state()->in_young_only_phase(), "sanity"); 2764 2765 // We also do not allow mixed GCs during marking. 2766 assert(!collector_state()->mark_or_rebuild_in_progress() || collector_state()->in_young_only_phase(), "sanity"); 2767 2768 // Record whether this pause is an initial mark. When the current 2769 // thread has completed its logging output and it's safe to signal 2770 // the CM thread, the flag's value in the policy has been reset. 2771 bool should_start_conc_mark = collector_state()->in_initial_mark_gc(); 2772 2773 // Inner scope for scope based logging, timers, and stats collection 2774 { 2775 EvacuationInfo evacuation_info; 2776 2777 if (collector_state()->in_initial_mark_gc()) { 2778 // We are about to start a marking cycle, so we increment the 2779 // full collection counter. 2780 increment_old_marking_cycles_started(); 2781 _cm->gc_tracer_cm()->set_gc_cause(gc_cause()); 2782 } 2783 2784 _gc_tracer_stw->report_yc_type(collector_state()->yc_type()); 2785 2786 GCTraceCPUTime tcpu; 2787 2788 G1HeapVerifier::G1VerifyType verify_type; 2789 FormatBuffer<> gc_string("Pause "); 2790 if (collector_state()->in_initial_mark_gc()) { 2791 gc_string.append("Initial Mark"); 2792 verify_type = G1HeapVerifier::G1VerifyInitialMark; 2793 } else if (collector_state()->in_young_only_phase()) { 2794 gc_string.append("Young"); 2795 verify_type = G1HeapVerifier::G1VerifyYoungOnly; 2796 } else { 2797 gc_string.append("Mixed"); 2798 verify_type = G1HeapVerifier::G1VerifyMixed; 2799 } 2800 GCTraceTime(Info, gc) tm(gc_string, NULL, gc_cause(), true); 2801 2802 uint active_workers = AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(), 2803 workers()->active_workers(), 2804 Threads::number_of_non_daemon_threads()); 2805 active_workers = workers()->update_active_workers(active_workers); 2806 log_info(gc,task)("Using %u workers of %u for evacuation", active_workers, workers()->total_workers()); 2807 2808 TraceCollectorStats tcs(g1mm()->incremental_collection_counters()); 2809 TraceMemoryManagerStats tms(&_memory_manager, gc_cause()); 2810 2811 G1HeapTransition heap_transition(this); 2812 size_t heap_used_bytes_before_gc = used(); 2813 2814 // Don't dynamically change the number of GC threads this early. A value of 2815 // 0 is used to indicate serial work. When parallel work is done, 2816 // it will be set. 2817 2818 { // Call to jvmpi::post_class_unload_events must occur outside of active GC 2819 IsGCActiveMark x; 2820 2821 gc_prologue(false); 2822 2823 if (VerifyRememberedSets) { 2824 log_info(gc, verify)("[Verifying RemSets before GC]"); 2825 VerifyRegionRemSetClosure v_cl; 2826 heap_region_iterate(&v_cl); 2827 } 2828 2829 _verifier->verify_before_gc(verify_type); 2830 2831 _verifier->check_bitmaps("GC Start"); 2832 2833 #if COMPILER2_OR_JVMCI 2834 DerivedPointerTable::clear(); 2835 #endif 2836 2837 // Please see comment in g1CollectedHeap.hpp and 2838 // G1CollectedHeap::ref_processing_init() to see how 2839 // reference processing currently works in G1. 2840 2841 // Enable discovery in the STW reference processor 2842 if (g1_policy()->should_process_references()) { 2843 ref_processor_stw()->enable_discovery(); 2844 } else { 2845 ref_processor_stw()->disable_discovery(); 2846 } 2847 2848 { 2849 // We want to temporarily turn off discovery by the 2850 // CM ref processor, if necessary, and turn it back on 2851 // on again later if we do. Using a scoped 2852 // NoRefDiscovery object will do this. 2853 NoRefDiscovery no_cm_discovery(ref_processor_cm()); 2854 2855 // Forget the current alloc region (we might even choose it to be part 2856 // of the collection set!). 2857 _allocator->release_mutator_alloc_region(); 2858 2859 // This timing is only used by the ergonomics to handle our pause target. 2860 // It is unclear why this should not include the full pause. We will 2861 // investigate this in CR 7178365. 2862 // 2863 // Preserving the old comment here if that helps the investigation: 2864 // 2865 // The elapsed time induced by the start time below deliberately elides 2866 // the possible verification above. 2867 double sample_start_time_sec = os::elapsedTime(); 2868 2869 g1_policy()->record_collection_pause_start(sample_start_time_sec); 2870 2871 if (collector_state()->in_initial_mark_gc()) { 2872 concurrent_mark()->pre_initial_mark(); 2873 } 2874 2875 g1_policy()->finalize_collection_set(target_pause_time_ms, &_survivor); 2876 2877 evacuation_info.set_collectionset_regions(collection_set()->region_length()); 2878 2879 // Make sure the remembered sets are up to date. This needs to be 2880 // done before register_humongous_regions_with_cset(), because the 2881 // remembered sets are used there to choose eager reclaim candidates. 2882 // If the remembered sets are not up to date we might miss some 2883 // entries that need to be handled. 2884 g1_rem_set()->cleanupHRRS(); 2885 2886 register_humongous_regions_with_cset(); 2887 2888 assert(_verifier->check_cset_fast_test(), "Inconsistency in the InCSetState table."); 2889 2890 // We call this after finalize_cset() to 2891 // ensure that the CSet has been finalized. 2892 _cm->verify_no_cset_oops(); 2893 2894 if (_hr_printer.is_active()) { 2895 G1PrintCollectionSetClosure cl(&_hr_printer); 2896 _collection_set.iterate(&cl); 2897 } 2898 2899 // Initialize the GC alloc regions. 2900 _allocator->init_gc_alloc_regions(evacuation_info); 2901 2902 G1ParScanThreadStateSet per_thread_states(this, workers()->active_workers(), collection_set()->young_region_length()); 2903 pre_evacuate_collection_set(); 2904 2905 // Actually do the work... 2906 evacuate_collection_set(&per_thread_states); 2907 2908 post_evacuate_collection_set(evacuation_info, &per_thread_states); 2909 2910 const size_t* surviving_young_words = per_thread_states.surviving_young_words(); 2911 free_collection_set(&_collection_set, evacuation_info, surviving_young_words); 2912 2913 eagerly_reclaim_humongous_regions(); 2914 2915 record_obj_copy_mem_stats(); 2916 _survivor_evac_stats.adjust_desired_plab_sz(); 2917 _old_evac_stats.adjust_desired_plab_sz(); 2918 2919 double start = os::elapsedTime(); 2920 start_new_collection_set(); 2921 g1_policy()->phase_times()->record_start_new_cset_time_ms((os::elapsedTime() - start) * 1000.0); 2922 2923 if (evacuation_failed()) { 2924 set_used(recalculate_used()); 2925 if (_archive_allocator != NULL) { 2926 _archive_allocator->clear_used(); 2927 } 2928 for (uint i = 0; i < ParallelGCThreads; i++) { 2929 if (_evacuation_failed_info_array[i].has_failed()) { 2930 _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]); 2931 } 2932 } 2933 } else { 2934 // The "used" of the the collection set have already been subtracted 2935 // when they were freed. Add in the bytes evacuated. 2936 increase_used(g1_policy()->bytes_copied_during_gc()); 2937 } 2938 2939 if (collector_state()->in_initial_mark_gc()) { 2940 // We have to do this before we notify the CM threads that 2941 // they can start working to make sure that all the 2942 // appropriate initialization is done on the CM object. 2943 concurrent_mark()->post_initial_mark(); 2944 // Note that we don't actually trigger the CM thread at 2945 // this point. We do that later when we're sure that 2946 // the current thread has completed its logging output. 2947 } 2948 2949 allocate_dummy_regions(); 2950 2951 _allocator->init_mutator_alloc_region(); 2952 2953 { 2954 size_t expand_bytes = _heap_sizing_policy->expansion_amount(); 2955 if (expand_bytes > 0) { 2956 size_t bytes_before = capacity(); 2957 // No need for an ergo logging here, 2958 // expansion_amount() does this when it returns a value > 0. 2959 double expand_ms; 2960 if (!expand(expand_bytes, _workers, &expand_ms)) { 2961 // We failed to expand the heap. Cannot do anything about it. 2962 } 2963 g1_policy()->phase_times()->record_expand_heap_time(expand_ms); 2964 } 2965 } 2966 2967 // We redo the verification but now wrt to the new CSet which 2968 // has just got initialized after the previous CSet was freed. 2969 _cm->verify_no_cset_oops(); 2970 2971 // This timing is only used by the ergonomics to handle our pause target. 2972 // It is unclear why this should not include the full pause. We will 2973 // investigate this in CR 7178365. 2974 double sample_end_time_sec = os::elapsedTime(); 2975 double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS; 2976 size_t total_cards_scanned = g1_policy()->phase_times()->sum_thread_work_items(G1GCPhaseTimes::ScanRS, G1GCPhaseTimes::ScanRSScannedCards); 2977 g1_policy()->record_collection_pause_end(pause_time_ms, total_cards_scanned, heap_used_bytes_before_gc); 2978 2979 evacuation_info.set_collectionset_used_before(collection_set()->bytes_used_before()); 2980 evacuation_info.set_bytes_copied(g1_policy()->bytes_copied_during_gc()); 2981 2982 if (VerifyRememberedSets) { 2983 log_info(gc, verify)("[Verifying RemSets after GC]"); 2984 VerifyRegionRemSetClosure v_cl; 2985 heap_region_iterate(&v_cl); 2986 } 2987 2988 _verifier->verify_after_gc(verify_type); 2989 _verifier->check_bitmaps("GC End"); 2990 2991 assert(!ref_processor_stw()->discovery_enabled(), "Postcondition"); 2992 ref_processor_stw()->verify_no_references_recorded(); 2993 2994 // CM reference discovery will be re-enabled if necessary. 2995 } 2996 2997 #ifdef TRACESPINNING 2998 ParallelTaskTerminator::print_termination_counts(); 2999 #endif 3000 3001 gc_epilogue(false); 3002 } 3003 3004 // Print the remainder of the GC log output. 3005 if (evacuation_failed()) { 3006 log_info(gc)("To-space exhausted"); 3007 } 3008 3009 g1_policy()->print_phases(); 3010 heap_transition.print(); 3011 3012 // It is not yet to safe to tell the concurrent mark to 3013 // start as we have some optional output below. We don't want the 3014 // output from the concurrent mark thread interfering with this 3015 // logging output either. 3016 3017 _hrm.verify_optional(); 3018 _verifier->verify_region_sets_optional(); 3019 3020 TASKQUEUE_STATS_ONLY(print_taskqueue_stats()); 3021 TASKQUEUE_STATS_ONLY(reset_taskqueue_stats()); 3022 3023 print_heap_after_gc(); 3024 print_heap_regions(); 3025 trace_heap_after_gc(_gc_tracer_stw); 3026 3027 // We must call G1MonitoringSupport::update_sizes() in the same scoping level 3028 // as an active TraceMemoryManagerStats object (i.e. before the destructor for the 3029 // TraceMemoryManagerStats is called) so that the G1 memory pools are updated 3030 // before any GC notifications are raised. 3031 g1mm()->update_sizes(); 3032 3033 _gc_tracer_stw->report_evacuation_info(&evacuation_info); 3034 _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold()); 3035 _gc_timer_stw->register_gc_end(); 3036 _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions()); 3037 } 3038 // It should now be safe to tell the concurrent mark thread to start 3039 // without its logging output interfering with the logging output 3040 // that came from the pause. 3041 3042 if (should_start_conc_mark) { 3043 // CAUTION: after the doConcurrentMark() call below, 3044 // the concurrent marking thread(s) could be running 3045 // concurrently with us. Make sure that anything after 3046 // this point does not assume that we are the only GC thread 3047 // running. Note: of course, the actual marking work will 3048 // not start until the safepoint itself is released in 3049 // SuspendibleThreadSet::desynchronize(). 3050 do_concurrent_mark(); 3051 } 3052 3053 return true; 3054 } 3055 3056 void G1CollectedHeap::remove_self_forwarding_pointers() { 3057 G1ParRemoveSelfForwardPtrsTask rsfp_task; 3058 workers()->run_task(&rsfp_task); 3059 } 3060 3061 void G1CollectedHeap::restore_after_evac_failure() { 3062 double remove_self_forwards_start = os::elapsedTime(); 3063 3064 remove_self_forwarding_pointers(); 3065 SharedRestorePreservedMarksTaskExecutor task_executor(workers()); 3066 _preserved_marks_set.restore(&task_executor); 3067 3068 g1_policy()->phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0); 3069 } 3070 3071 void G1CollectedHeap::preserve_mark_during_evac_failure(uint worker_id, oop obj, markOop m) { 3072 if (!_evacuation_failed) { 3073 _evacuation_failed = true; 3074 } 3075 3076 _evacuation_failed_info_array[worker_id].register_copy_failure(obj->size()); 3077 _preserved_marks_set.get(worker_id)->push_if_necessary(obj, m); 3078 } 3079 3080 bool G1ParEvacuateFollowersClosure::offer_termination() { 3081 G1ParScanThreadState* const pss = par_scan_state(); 3082 start_term_time(); 3083 const bool res = terminator()->offer_termination(); 3084 end_term_time(); 3085 return res; 3086 } 3087 3088 void G1ParEvacuateFollowersClosure::do_void() { 3089 G1ParScanThreadState* const pss = par_scan_state(); 3090 pss->trim_queue(); 3091 do { 3092 pss->steal_and_trim_queue(queues()); 3093 } while (!offer_termination()); 3094 } 3095 3096 class G1ParTask : public AbstractGangTask { 3097 protected: 3098 G1CollectedHeap* _g1h; 3099 G1ParScanThreadStateSet* _pss; 3100 RefToScanQueueSet* _queues; 3101 G1RootProcessor* _root_processor; 3102 ParallelTaskTerminator _terminator; 3103 uint _n_workers; 3104 3105 public: 3106 G1ParTask(G1CollectedHeap* g1h, G1ParScanThreadStateSet* per_thread_states, RefToScanQueueSet *task_queues, G1RootProcessor* root_processor, uint n_workers) 3107 : AbstractGangTask("G1 collection"), 3108 _g1h(g1h), 3109 _pss(per_thread_states), 3110 _queues(task_queues), 3111 _root_processor(root_processor), 3112 _terminator(n_workers, _queues), 3113 _n_workers(n_workers) 3114 {} 3115 3116 void work(uint worker_id) { 3117 if (worker_id >= _n_workers) return; // no work needed this round 3118 3119 double start_sec = os::elapsedTime(); 3120 _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerStart, worker_id, start_sec); 3121 3122 { 3123 ResourceMark rm; 3124 HandleMark hm; 3125 3126 ReferenceProcessor* rp = _g1h->ref_processor_stw(); 3127 3128 G1ParScanThreadState* pss = _pss->state_for_worker(worker_id); 3129 pss->set_ref_processor(rp); 3130 3131 double start_strong_roots_sec = os::elapsedTime(); 3132 3133 _root_processor->evacuate_roots(pss->closures(), worker_id); 3134 3135 // We pass a weak code blobs closure to the remembered set scanning because we want to avoid 3136 // treating the nmethods visited to act as roots for concurrent marking. 3137 // We only want to make sure that the oops in the nmethods are adjusted with regard to the 3138 // objects copied by the current evacuation. 3139 _g1h->g1_rem_set()->oops_into_collection_set_do(pss, worker_id); 3140 3141 double strong_roots_sec = os::elapsedTime() - start_strong_roots_sec; 3142 3143 double term_sec = 0.0; 3144 size_t evac_term_attempts = 0; 3145 { 3146 double start = os::elapsedTime(); 3147 G1ParEvacuateFollowersClosure evac(_g1h, pss, _queues, &_terminator); 3148 evac.do_void(); 3149 3150 evac_term_attempts = evac.term_attempts(); 3151 term_sec = evac.term_time(); 3152 double elapsed_sec = os::elapsedTime() - start; 3153 3154 G1GCPhaseTimes* p = _g1h->g1_policy()->phase_times(); 3155 p->add_time_secs(G1GCPhaseTimes::ObjCopy, worker_id, elapsed_sec - term_sec); 3156 p->record_time_secs(G1GCPhaseTimes::Termination, worker_id, term_sec); 3157 p->record_thread_work_item(G1GCPhaseTimes::Termination, worker_id, evac_term_attempts); 3158 } 3159 3160 assert(pss->queue_is_empty(), "should be empty"); 3161 3162 if (log_is_enabled(Debug, gc, task, stats)) { 3163 MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag); 3164 size_t lab_waste; 3165 size_t lab_undo_waste; 3166 pss->waste(lab_waste, lab_undo_waste); 3167 _g1h->print_termination_stats(worker_id, 3168 (os::elapsedTime() - start_sec) * 1000.0, /* elapsed time */ 3169 strong_roots_sec * 1000.0, /* strong roots time */ 3170 term_sec * 1000.0, /* evac term time */ 3171 evac_term_attempts, /* evac term attempts */ 3172 lab_waste, /* alloc buffer waste */ 3173 lab_undo_waste /* undo waste */ 3174 ); 3175 } 3176 3177 // Close the inner scope so that the ResourceMark and HandleMark 3178 // destructors are executed here and are included as part of the 3179 // "GC Worker Time". 3180 } 3181 _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerEnd, worker_id, os::elapsedTime()); 3182 } 3183 }; 3184 3185 void G1CollectedHeap::print_termination_stats_hdr() { 3186 log_debug(gc, task, stats)("GC Termination Stats"); 3187 log_debug(gc, task, stats)(" elapsed --strong roots-- -------termination------- ------waste (KiB)------"); 3188 log_debug(gc, task, stats)("thr ms ms %% ms %% attempts total alloc undo"); 3189 log_debug(gc, task, stats)("--- --------- --------- ------ --------- ------ -------- ------- ------- -------"); 3190 } 3191 3192 void G1CollectedHeap::print_termination_stats(uint worker_id, 3193 double elapsed_ms, 3194 double strong_roots_ms, 3195 double term_ms, 3196 size_t term_attempts, 3197 size_t alloc_buffer_waste, 3198 size_t undo_waste) const { 3199 log_debug(gc, task, stats) 3200 ("%3d %9.2f %9.2f %6.2f " 3201 "%9.2f %6.2f " SIZE_FORMAT_W(8) " " 3202 SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7), 3203 worker_id, elapsed_ms, strong_roots_ms, strong_roots_ms * 100 / elapsed_ms, 3204 term_ms, term_ms * 100 / elapsed_ms, term_attempts, 3205 (alloc_buffer_waste + undo_waste) * HeapWordSize / K, 3206 alloc_buffer_waste * HeapWordSize / K, 3207 undo_waste * HeapWordSize / K); 3208 } 3209 3210 class G1StringAndSymbolCleaningTask : public AbstractGangTask { 3211 private: 3212 BoolObjectClosure* _is_alive; 3213 G1StringDedupUnlinkOrOopsDoClosure _dedup_closure; 3214 3215 int _initial_string_table_size; 3216 int _initial_symbol_table_size; 3217 3218 bool _process_strings; 3219 int _strings_processed; 3220 int _strings_removed; 3221 3222 bool _process_symbols; 3223 int _symbols_processed; 3224 int _symbols_removed; 3225 3226 bool _process_string_dedup; 3227 3228 public: 3229 G1StringAndSymbolCleaningTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols, bool process_string_dedup) : 3230 AbstractGangTask("String/Symbol Unlinking"), 3231 _is_alive(is_alive), 3232 _dedup_closure(is_alive, NULL, false), 3233 _process_strings(process_strings), _strings_processed(0), _strings_removed(0), 3234 _process_symbols(process_symbols), _symbols_processed(0), _symbols_removed(0), 3235 _process_string_dedup(process_string_dedup) { 3236 3237 _initial_string_table_size = StringTable::the_table()->table_size(); 3238 _initial_symbol_table_size = SymbolTable::the_table()->table_size(); 3239 if (process_strings) { 3240 StringTable::clear_parallel_claimed_index(); 3241 } 3242 if (process_symbols) { 3243 SymbolTable::clear_parallel_claimed_index(); 3244 } 3245 } 3246 3247 ~G1StringAndSymbolCleaningTask() { 3248 guarantee(!_process_strings || StringTable::parallel_claimed_index() >= _initial_string_table_size, 3249 "claim value %d after unlink less than initial string table size %d", 3250 StringTable::parallel_claimed_index(), _initial_string_table_size); 3251 guarantee(!_process_symbols || SymbolTable::parallel_claimed_index() >= _initial_symbol_table_size, 3252 "claim value %d after unlink less than initial symbol table size %d", 3253 SymbolTable::parallel_claimed_index(), _initial_symbol_table_size); 3254 3255 log_info(gc, stringtable)( 3256 "Cleaned string and symbol table, " 3257 "strings: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed, " 3258 "symbols: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed", 3259 strings_processed(), strings_removed(), 3260 symbols_processed(), symbols_removed()); 3261 } 3262 3263 void work(uint worker_id) { 3264 int strings_processed = 0; 3265 int strings_removed = 0; 3266 int symbols_processed = 0; 3267 int symbols_removed = 0; 3268 if (_process_strings) { 3269 StringTable::possibly_parallel_unlink(_is_alive, &strings_processed, &strings_removed); 3270 Atomic::add(strings_processed, &_strings_processed); 3271 Atomic::add(strings_removed, &_strings_removed); 3272 } 3273 if (_process_symbols) { 3274 SymbolTable::possibly_parallel_unlink(&symbols_processed, &symbols_removed); 3275 Atomic::add(symbols_processed, &_symbols_processed); 3276 Atomic::add(symbols_removed, &_symbols_removed); 3277 } 3278 if (_process_string_dedup) { 3279 G1StringDedup::parallel_unlink(&_dedup_closure, worker_id); 3280 } 3281 } 3282 3283 size_t strings_processed() const { return (size_t)_strings_processed; } 3284 size_t strings_removed() const { return (size_t)_strings_removed; } 3285 3286 size_t symbols_processed() const { return (size_t)_symbols_processed; } 3287 size_t symbols_removed() const { return (size_t)_symbols_removed; } 3288 }; 3289 3290 class G1CodeCacheUnloadingTask { 3291 private: 3292 static Monitor* _lock; 3293 3294 BoolObjectClosure* const _is_alive; 3295 const bool _unloading_occurred; 3296 const uint _num_workers; 3297 3298 // Variables used to claim nmethods. 3299 CompiledMethod* _first_nmethod; 3300 CompiledMethod* volatile _claimed_nmethod; 3301 3302 // The list of nmethods that need to be processed by the second pass. 3303 CompiledMethod* volatile _postponed_list; 3304 volatile uint _num_entered_barrier; 3305 3306 public: 3307 G1CodeCacheUnloadingTask(uint num_workers, BoolObjectClosure* is_alive, bool unloading_occurred) : 3308 _is_alive(is_alive), 3309 _unloading_occurred(unloading_occurred), 3310 _num_workers(num_workers), 3311 _first_nmethod(NULL), 3312 _claimed_nmethod(NULL), 3313 _postponed_list(NULL), 3314 _num_entered_barrier(0) 3315 { 3316 CompiledMethod::increase_unloading_clock(); 3317 // Get first alive nmethod 3318 CompiledMethodIterator iter = CompiledMethodIterator(); 3319 if(iter.next_alive()) { 3320 _first_nmethod = iter.method(); 3321 } 3322 _claimed_nmethod = _first_nmethod; 3323 } 3324 3325 ~G1CodeCacheUnloadingTask() { 3326 CodeCache::verify_clean_inline_caches(); 3327 3328 CodeCache::set_needs_cache_clean(false); 3329 guarantee(CodeCache::scavenge_root_nmethods() == NULL, "Must be"); 3330 3331 CodeCache::verify_icholder_relocations(); 3332 } 3333 3334 private: 3335 void add_to_postponed_list(CompiledMethod* nm) { 3336 CompiledMethod* old; 3337 do { 3338 old = _postponed_list; 3339 nm->set_unloading_next(old); 3340 } while (Atomic::cmpxchg(nm, &_postponed_list, old) != old); 3341 } 3342 3343 void clean_nmethod(CompiledMethod* nm) { 3344 bool postponed = nm->do_unloading_parallel(_is_alive, _unloading_occurred); 3345 3346 if (postponed) { 3347 // This nmethod referred to an nmethod that has not been cleaned/unloaded yet. 3348 add_to_postponed_list(nm); 3349 } 3350 3351 // Mark that this thread has been cleaned/unloaded. 3352 // After this call, it will be safe to ask if this nmethod was unloaded or not. 3353 nm->set_unloading_clock(CompiledMethod::global_unloading_clock()); 3354 } 3355 3356 void clean_nmethod_postponed(CompiledMethod* nm) { 3357 nm->do_unloading_parallel_postponed(_is_alive, _unloading_occurred); 3358 } 3359 3360 static const int MaxClaimNmethods = 16; 3361 3362 void claim_nmethods(CompiledMethod** claimed_nmethods, int *num_claimed_nmethods) { 3363 CompiledMethod* first; 3364 CompiledMethodIterator last; 3365 3366 do { 3367 *num_claimed_nmethods = 0; 3368 3369 first = _claimed_nmethod; 3370 last = CompiledMethodIterator(first); 3371 3372 if (first != NULL) { 3373 3374 for (int i = 0; i < MaxClaimNmethods; i++) { 3375 if (!last.next_alive()) { 3376 break; 3377 } 3378 claimed_nmethods[i] = last.method(); 3379 (*num_claimed_nmethods)++; 3380 } 3381 } 3382 3383 } while (Atomic::cmpxchg(last.method(), &_claimed_nmethod, first) != first); 3384 } 3385 3386 CompiledMethod* claim_postponed_nmethod() { 3387 CompiledMethod* claim; 3388 CompiledMethod* next; 3389 3390 do { 3391 claim = _postponed_list; 3392 if (claim == NULL) { 3393 return NULL; 3394 } 3395 3396 next = claim->unloading_next(); 3397 3398 } while (Atomic::cmpxchg(next, &_postponed_list, claim) != claim); 3399 3400 return claim; 3401 } 3402 3403 public: 3404 // Mark that we're done with the first pass of nmethod cleaning. 3405 void barrier_mark(uint worker_id) { 3406 MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag); 3407 _num_entered_barrier++; 3408 if (_num_entered_barrier == _num_workers) { 3409 ml.notify_all(); 3410 } 3411 } 3412 3413 // See if we have to wait for the other workers to 3414 // finish their first-pass nmethod cleaning work. 3415 void barrier_wait(uint worker_id) { 3416 if (_num_entered_barrier < _num_workers) { 3417 MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag); 3418 while (_num_entered_barrier < _num_workers) { 3419 ml.wait(Mutex::_no_safepoint_check_flag, 0, false); 3420 } 3421 } 3422 } 3423 3424 // Cleaning and unloading of nmethods. Some work has to be postponed 3425 // to the second pass, when we know which nmethods survive. 3426 void work_first_pass(uint worker_id) { 3427 // The first nmethods is claimed by the first worker. 3428 if (worker_id == 0 && _first_nmethod != NULL) { 3429 clean_nmethod(_first_nmethod); 3430 _first_nmethod = NULL; 3431 } 3432 3433 int num_claimed_nmethods; 3434 CompiledMethod* claimed_nmethods[MaxClaimNmethods]; 3435 3436 while (true) { 3437 claim_nmethods(claimed_nmethods, &num_claimed_nmethods); 3438 3439 if (num_claimed_nmethods == 0) { 3440 break; 3441 } 3442 3443 for (int i = 0; i < num_claimed_nmethods; i++) { 3444 clean_nmethod(claimed_nmethods[i]); 3445 } 3446 } 3447 } 3448 3449 void work_second_pass(uint worker_id) { 3450 CompiledMethod* nm; 3451 // Take care of postponed nmethods. 3452 while ((nm = claim_postponed_nmethod()) != NULL) { 3453 clean_nmethod_postponed(nm); 3454 } 3455 } 3456 }; 3457 3458 Monitor* G1CodeCacheUnloadingTask::_lock = new Monitor(Mutex::leaf, "Code Cache Unload lock", false, Monitor::_safepoint_check_never); 3459 3460 class G1KlassCleaningTask : public StackObj { 3461 BoolObjectClosure* _is_alive; 3462 volatile int _clean_klass_tree_claimed; 3463 ClassLoaderDataGraphKlassIteratorAtomic _klass_iterator; 3464 3465 public: 3466 G1KlassCleaningTask(BoolObjectClosure* is_alive) : 3467 _is_alive(is_alive), 3468 _clean_klass_tree_claimed(0), 3469 _klass_iterator() { 3470 } 3471 3472 private: 3473 bool claim_clean_klass_tree_task() { 3474 if (_clean_klass_tree_claimed) { 3475 return false; 3476 } 3477 3478 return Atomic::cmpxchg(1, &_clean_klass_tree_claimed, 0) == 0; 3479 } 3480 3481 InstanceKlass* claim_next_klass() { 3482 Klass* klass; 3483 do { 3484 klass =_klass_iterator.next_klass(); 3485 } while (klass != NULL && !klass->is_instance_klass()); 3486 3487 // this can be null so don't call InstanceKlass::cast 3488 return static_cast<InstanceKlass*>(klass); 3489 } 3490 3491 public: 3492 3493 void clean_klass(InstanceKlass* ik) { 3494 ik->clean_weak_instanceklass_links(_is_alive); 3495 } 3496 3497 void work() { 3498 ResourceMark rm; 3499 3500 // One worker will clean the subklass/sibling klass tree. 3501 if (claim_clean_klass_tree_task()) { 3502 Klass::clean_subklass_tree(_is_alive); 3503 } 3504 3505 // All workers will help cleaning the classes, 3506 InstanceKlass* klass; 3507 while ((klass = claim_next_klass()) != NULL) { 3508 clean_klass(klass); 3509 } 3510 } 3511 }; 3512 3513 class G1ResolvedMethodCleaningTask : public StackObj { 3514 BoolObjectClosure* _is_alive; 3515 volatile int _resolved_method_task_claimed; 3516 public: 3517 G1ResolvedMethodCleaningTask(BoolObjectClosure* is_alive) : 3518 _is_alive(is_alive), _resolved_method_task_claimed(0) {} 3519 3520 bool claim_resolved_method_task() { 3521 if (_resolved_method_task_claimed) { 3522 return false; 3523 } 3524 return Atomic::cmpxchg(1, &_resolved_method_task_claimed, 0) == 0; 3525 } 3526 3527 // These aren't big, one thread can do it all. 3528 void work() { 3529 if (claim_resolved_method_task()) { 3530 ResolvedMethodTable::unlink(_is_alive); 3531 } 3532 } 3533 }; 3534 3535 3536 // To minimize the remark pause times, the tasks below are done in parallel. 3537 class G1ParallelCleaningTask : public AbstractGangTask { 3538 private: 3539 G1StringAndSymbolCleaningTask _string_symbol_task; 3540 G1CodeCacheUnloadingTask _code_cache_task; 3541 G1KlassCleaningTask _klass_cleaning_task; 3542 G1ResolvedMethodCleaningTask _resolved_method_cleaning_task; 3543 3544 public: 3545 // The constructor is run in the VMThread. 3546 G1ParallelCleaningTask(BoolObjectClosure* is_alive, uint num_workers, bool unloading_occurred) : 3547 AbstractGangTask("Parallel Cleaning"), 3548 _string_symbol_task(is_alive, true, true, G1StringDedup::is_enabled()), 3549 _code_cache_task(num_workers, is_alive, unloading_occurred), 3550 _klass_cleaning_task(is_alive), 3551 _resolved_method_cleaning_task(is_alive) { 3552 } 3553 3554 // The parallel work done by all worker threads. 3555 void work(uint worker_id) { 3556 // Do first pass of code cache cleaning. 3557 _code_cache_task.work_first_pass(worker_id); 3558 3559 // Let the threads mark that the first pass is done. 3560 _code_cache_task.barrier_mark(worker_id); 3561 3562 // Clean the Strings and Symbols. 3563 _string_symbol_task.work(worker_id); 3564 3565 // Clean unreferenced things in the ResolvedMethodTable 3566 _resolved_method_cleaning_task.work(); 3567 3568 // Wait for all workers to finish the first code cache cleaning pass. 3569 _code_cache_task.barrier_wait(worker_id); 3570 3571 // Do the second code cache cleaning work, which realize on 3572 // the liveness information gathered during the first pass. 3573 _code_cache_task.work_second_pass(worker_id); 3574 3575 // Clean all klasses that were not unloaded. 3576 _klass_cleaning_task.work(); 3577 } 3578 }; 3579 3580 3581 void G1CollectedHeap::complete_cleaning(BoolObjectClosure* is_alive, 3582 bool class_unloading_occurred) { 3583 uint n_workers = workers()->active_workers(); 3584 3585 G1ParallelCleaningTask g1_unlink_task(is_alive, n_workers, class_unloading_occurred); 3586 workers()->run_task(&g1_unlink_task); 3587 } 3588 3589 void G1CollectedHeap::partial_cleaning(BoolObjectClosure* is_alive, 3590 bool process_strings, 3591 bool process_symbols, 3592 bool process_string_dedup) { 3593 if (!process_strings && !process_symbols && !process_string_dedup) { 3594 // Nothing to clean. 3595 return; 3596 } 3597 3598 G1StringAndSymbolCleaningTask g1_unlink_task(is_alive, process_strings, process_symbols, process_string_dedup); 3599 workers()->run_task(&g1_unlink_task); 3600 3601 } 3602 3603 class G1RedirtyLoggedCardsTask : public AbstractGangTask { 3604 private: 3605 DirtyCardQueueSet* _queue; 3606 G1CollectedHeap* _g1h; 3607 public: 3608 G1RedirtyLoggedCardsTask(DirtyCardQueueSet* queue, G1CollectedHeap* g1h) : AbstractGangTask("Redirty Cards"), 3609 _queue(queue), _g1h(g1h) { } 3610 3611 virtual void work(uint worker_id) { 3612 G1GCPhaseTimes* phase_times = _g1h->g1_policy()->phase_times(); 3613 G1GCParPhaseTimesTracker x(phase_times, G1GCPhaseTimes::RedirtyCards, worker_id); 3614 3615 RedirtyLoggedCardTableEntryClosure cl(_g1h); 3616 _queue->par_apply_closure_to_all_completed_buffers(&cl); 3617 3618 phase_times->record_thread_work_item(G1GCPhaseTimes::RedirtyCards, worker_id, cl.num_dirtied()); 3619 } 3620 }; 3621 3622 void G1CollectedHeap::redirty_logged_cards() { 3623 double redirty_logged_cards_start = os::elapsedTime(); 3624 3625 G1RedirtyLoggedCardsTask redirty_task(&dirty_card_queue_set(), this); 3626 dirty_card_queue_set().reset_for_par_iteration(); 3627 workers()->run_task(&redirty_task); 3628 3629 DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set(); 3630 dcq.merge_bufferlists(&dirty_card_queue_set()); 3631 assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed"); 3632 3633 g1_policy()->phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0); 3634 } 3635 3636 // Weak Reference Processing support 3637 3638 // An always "is_alive" closure that is used to preserve referents. 3639 // If the object is non-null then it's alive. Used in the preservation 3640 // of referent objects that are pointed to by reference objects 3641 // discovered by the CM ref processor. 3642 class G1AlwaysAliveClosure: public BoolObjectClosure { 3643 public: 3644 bool do_object_b(oop p) { 3645 if (p != NULL) { 3646 return true; 3647 } 3648 return false; 3649 } 3650 }; 3651 3652 bool G1STWIsAliveClosure::do_object_b(oop p) { 3653 // An object is reachable if it is outside the collection set, 3654 // or is inside and copied. 3655 return !_g1h->is_in_cset(p) || p->is_forwarded(); 3656 } 3657 3658 // Non Copying Keep Alive closure 3659 class G1KeepAliveClosure: public OopClosure { 3660 G1CollectedHeap*_g1h; 3661 public: 3662 G1KeepAliveClosure(G1CollectedHeap* g1h) :_g1h(g1h) {} 3663 void do_oop(narrowOop* p) { guarantee(false, "Not needed"); } 3664 void do_oop(oop* p) { 3665 oop obj = *p; 3666 assert(obj != NULL, "the caller should have filtered out NULL values"); 3667 3668 const InCSetState cset_state =_g1h->in_cset_state(obj); 3669 if (!cset_state.is_in_cset_or_humongous()) { 3670 return; 3671 } 3672 if (cset_state.is_in_cset()) { 3673 assert( obj->is_forwarded(), "invariant" ); 3674 *p = obj->forwardee(); 3675 } else { 3676 assert(!obj->is_forwarded(), "invariant" ); 3677 assert(cset_state.is_humongous(), 3678 "Only allowed InCSet state is IsHumongous, but is %d", cset_state.value()); 3679 _g1h->set_humongous_is_live(obj); 3680 } 3681 } 3682 }; 3683 3684 // Copying Keep Alive closure - can be called from both 3685 // serial and parallel code as long as different worker 3686 // threads utilize different G1ParScanThreadState instances 3687 // and different queues. 3688 3689 class G1CopyingKeepAliveClosure: public OopClosure { 3690 G1CollectedHeap* _g1h; 3691 OopClosure* _copy_non_heap_obj_cl; 3692 G1ParScanThreadState* _par_scan_state; 3693 3694 public: 3695 G1CopyingKeepAliveClosure(G1CollectedHeap* g1h, 3696 OopClosure* non_heap_obj_cl, 3697 G1ParScanThreadState* pss): 3698 _g1h(g1h), 3699 _copy_non_heap_obj_cl(non_heap_obj_cl), 3700 _par_scan_state(pss) 3701 {} 3702 3703 virtual void do_oop(narrowOop* p) { do_oop_work(p); } 3704 virtual void do_oop( oop* p) { do_oop_work(p); } 3705 3706 template <class T> void do_oop_work(T* p) { 3707 oop obj = RawAccess<>::oop_load(p); 3708 3709 if (_g1h->is_in_cset_or_humongous(obj)) { 3710 // If the referent object has been forwarded (either copied 3711 // to a new location or to itself in the event of an 3712 // evacuation failure) then we need to update the reference 3713 // field and, if both reference and referent are in the G1 3714 // heap, update the RSet for the referent. 3715 // 3716 // If the referent has not been forwarded then we have to keep 3717 // it alive by policy. Therefore we have copy the referent. 3718 // 3719 // If the reference field is in the G1 heap then we can push 3720 // on the PSS queue. When the queue is drained (after each 3721 // phase of reference processing) the object and it's followers 3722 // will be copied, the reference field set to point to the 3723 // new location, and the RSet updated. Otherwise we need to 3724 // use the the non-heap or metadata closures directly to copy 3725 // the referent object and update the pointer, while avoiding 3726 // updating the RSet. 3727 3728 if (_g1h->is_in_g1_reserved(p)) { 3729 _par_scan_state->push_on_queue(p); 3730 } else { 3731 assert(!Metaspace::contains((const void*)p), 3732 "Unexpectedly found a pointer from metadata: " PTR_FORMAT, p2i(p)); 3733 _copy_non_heap_obj_cl->do_oop(p); 3734 } 3735 } 3736 } 3737 }; 3738 3739 // Serial drain queue closure. Called as the 'complete_gc' 3740 // closure for each discovered list in some of the 3741 // reference processing phases. 3742 3743 class G1STWDrainQueueClosure: public VoidClosure { 3744 protected: 3745 G1CollectedHeap* _g1h; 3746 G1ParScanThreadState* _par_scan_state; 3747 3748 G1ParScanThreadState* par_scan_state() { return _par_scan_state; } 3749 3750 public: 3751 G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) : 3752 _g1h(g1h), 3753 _par_scan_state(pss) 3754 { } 3755 3756 void do_void() { 3757 G1ParScanThreadState* const pss = par_scan_state(); 3758 pss->trim_queue(); 3759 } 3760 }; 3761 3762 // Parallel Reference Processing closures 3763 3764 // Implementation of AbstractRefProcTaskExecutor for parallel reference 3765 // processing during G1 evacuation pauses. 3766 3767 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor { 3768 private: 3769 G1CollectedHeap* _g1h; 3770 G1ParScanThreadStateSet* _pss; 3771 RefToScanQueueSet* _queues; 3772 WorkGang* _workers; 3773 uint _active_workers; 3774 3775 public: 3776 G1STWRefProcTaskExecutor(G1CollectedHeap* g1h, 3777 G1ParScanThreadStateSet* per_thread_states, 3778 WorkGang* workers, 3779 RefToScanQueueSet *task_queues, 3780 uint n_workers) : 3781 _g1h(g1h), 3782 _pss(per_thread_states), 3783 _queues(task_queues), 3784 _workers(workers), 3785 _active_workers(n_workers) 3786 { 3787 g1h->ref_processor_stw()->set_active_mt_degree(n_workers); 3788 } 3789 3790 // Executes the given task using concurrent marking worker threads. 3791 virtual void execute(ProcessTask& task); 3792 virtual void execute(EnqueueTask& task); 3793 }; 3794 3795 // Gang task for possibly parallel reference processing 3796 3797 class G1STWRefProcTaskProxy: public AbstractGangTask { 3798 typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask; 3799 ProcessTask& _proc_task; 3800 G1CollectedHeap* _g1h; 3801 G1ParScanThreadStateSet* _pss; 3802 RefToScanQueueSet* _task_queues; 3803 ParallelTaskTerminator* _terminator; 3804 3805 public: 3806 G1STWRefProcTaskProxy(ProcessTask& proc_task, 3807 G1CollectedHeap* g1h, 3808 G1ParScanThreadStateSet* per_thread_states, 3809 RefToScanQueueSet *task_queues, 3810 ParallelTaskTerminator* terminator) : 3811 AbstractGangTask("Process reference objects in parallel"), 3812 _proc_task(proc_task), 3813 _g1h(g1h), 3814 _pss(per_thread_states), 3815 _task_queues(task_queues), 3816 _terminator(terminator) 3817 {} 3818 3819 virtual void work(uint worker_id) { 3820 // The reference processing task executed by a single worker. 3821 ResourceMark rm; 3822 HandleMark hm; 3823 3824 G1STWIsAliveClosure is_alive(_g1h); 3825 3826 G1ParScanThreadState* pss = _pss->state_for_worker(worker_id); 3827 pss->set_ref_processor(NULL); 3828 3829 // Keep alive closure. 3830 G1CopyingKeepAliveClosure keep_alive(_g1h, pss->closures()->raw_strong_oops(), pss); 3831 3832 // Complete GC closure 3833 G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _task_queues, _terminator); 3834 3835 // Call the reference processing task's work routine. 3836 _proc_task.work(worker_id, is_alive, keep_alive, drain_queue); 3837 3838 // Note we cannot assert that the refs array is empty here as not all 3839 // of the processing tasks (specifically phase2 - pp2_work) execute 3840 // the complete_gc closure (which ordinarily would drain the queue) so 3841 // the queue may not be empty. 3842 } 3843 }; 3844 3845 // Driver routine for parallel reference processing. 3846 // Creates an instance of the ref processing gang 3847 // task and has the worker threads execute it. 3848 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) { 3849 assert(_workers != NULL, "Need parallel worker threads."); 3850 3851 ParallelTaskTerminator terminator(_active_workers, _queues); 3852 G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _pss, _queues, &terminator); 3853 3854 _workers->run_task(&proc_task_proxy); 3855 } 3856 3857 // Gang task for parallel reference enqueueing. 3858 3859 class G1STWRefEnqueueTaskProxy: public AbstractGangTask { 3860 typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask; 3861 EnqueueTask& _enq_task; 3862 3863 public: 3864 G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) : 3865 AbstractGangTask("Enqueue reference objects in parallel"), 3866 _enq_task(enq_task) 3867 { } 3868 3869 virtual void work(uint worker_id) { 3870 _enq_task.work(worker_id); 3871 } 3872 }; 3873 3874 // Driver routine for parallel reference enqueueing. 3875 // Creates an instance of the ref enqueueing gang 3876 // task and has the worker threads execute it. 3877 3878 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) { 3879 assert(_workers != NULL, "Need parallel worker threads."); 3880 3881 G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task); 3882 3883 _workers->run_task(&enq_task_proxy); 3884 } 3885 3886 // End of weak reference support closures 3887 3888 // Abstract task used to preserve (i.e. copy) any referent objects 3889 // that are in the collection set and are pointed to by reference 3890 // objects discovered by the CM ref processor. 3891 3892 class G1ParPreserveCMReferentsTask: public AbstractGangTask { 3893 protected: 3894 G1CollectedHeap* _g1h; 3895 G1ParScanThreadStateSet* _pss; 3896 RefToScanQueueSet* _queues; 3897 ParallelTaskTerminator _terminator; 3898 uint _n_workers; 3899 3900 public: 3901 G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h, G1ParScanThreadStateSet* per_thread_states, int workers, RefToScanQueueSet *task_queues) : 3902 AbstractGangTask("ParPreserveCMReferents"), 3903 _g1h(g1h), 3904 _pss(per_thread_states), 3905 _queues(task_queues), 3906 _terminator(workers, _queues), 3907 _n_workers(workers) 3908 { 3909 g1h->ref_processor_cm()->set_active_mt_degree(workers); 3910 } 3911 3912 void work(uint worker_id) { 3913 G1GCParPhaseTimesTracker x(_g1h->g1_policy()->phase_times(), G1GCPhaseTimes::PreserveCMReferents, worker_id); 3914 3915 ResourceMark rm; 3916 HandleMark hm; 3917 3918 G1ParScanThreadState* pss = _pss->state_for_worker(worker_id); 3919 pss->set_ref_processor(NULL); 3920 assert(pss->queue_is_empty(), "both queue and overflow should be empty"); 3921 3922 // Is alive closure 3923 G1AlwaysAliveClosure always_alive; 3924 3925 // Copying keep alive closure. Applied to referent objects that need 3926 // to be copied. 3927 G1CopyingKeepAliveClosure keep_alive(_g1h, pss->closures()->raw_strong_oops(), pss); 3928 3929 ReferenceProcessor* rp = _g1h->ref_processor_cm(); 3930 3931 uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q(); 3932 uint stride = MIN2(MAX2(_n_workers, 1U), limit); 3933 3934 // limit is set using max_num_q() - which was set using ParallelGCThreads. 3935 // So this must be true - but assert just in case someone decides to 3936 // change the worker ids. 3937 assert(worker_id < limit, "sanity"); 3938 assert(!rp->discovery_is_atomic(), "check this code"); 3939 3940 // Select discovered lists [i, i+stride, i+2*stride,...,limit) 3941 for (uint idx = worker_id; idx < limit; idx += stride) { 3942 DiscoveredList& ref_list = rp->discovered_refs()[idx]; 3943 3944 DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive); 3945 while (iter.has_next()) { 3946 // Since discovery is not atomic for the CM ref processor, we 3947 // can see some null referent objects. 3948 iter.load_ptrs(DEBUG_ONLY(true)); 3949 oop ref = iter.obj(); 3950 3951 // This will filter nulls. 3952 if (iter.is_referent_alive()) { 3953 iter.make_referent_alive(); 3954 } 3955 iter.move_to_next(); 3956 } 3957 } 3958 3959 // Drain the queue - which may cause stealing 3960 G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _queues, &_terminator); 3961 drain_queue.do_void(); 3962 // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure 3963 assert(pss->queue_is_empty(), "should be"); 3964 } 3965 }; 3966 3967 void G1CollectedHeap::preserve_cm_referents(G1ParScanThreadStateSet* per_thread_states) { 3968 // Any reference objects, in the collection set, that were 'discovered' 3969 // by the CM ref processor should have already been copied (either by 3970 // applying the external root copy closure to the discovered lists, or 3971 // by following an RSet entry). 3972 // 3973 // But some of the referents, that are in the collection set, that these 3974 // reference objects point to may not have been copied: the STW ref 3975 // processor would have seen that the reference object had already 3976 // been 'discovered' and would have skipped discovering the reference, 3977 // but would not have treated the reference object as a regular oop. 3978 // As a result the copy closure would not have been applied to the 3979 // referent object. 3980 // 3981 // We need to explicitly copy these referent objects - the references 3982 // will be processed at the end of remarking. 3983 // 3984 // We also need to do this copying before we process the reference 3985 // objects discovered by the STW ref processor in case one of these 3986 // referents points to another object which is also referenced by an 3987 // object discovered by the STW ref processor. 3988 double preserve_cm_referents_time = 0.0; 3989 3990 // To avoid spawning task when there is no work to do, check that 3991 // a concurrent cycle is active and that some references have been 3992 // discovered. 3993 if (concurrent_mark()->cm_thread()->during_cycle() && 3994 ref_processor_cm()->has_discovered_references()) { 3995 double preserve_cm_referents_start = os::elapsedTime(); 3996 uint no_of_gc_workers = workers()->active_workers(); 3997 G1ParPreserveCMReferentsTask keep_cm_referents(this, 3998 per_thread_states, 3999 no_of_gc_workers, 4000 _task_queues); 4001 workers()->run_task(&keep_cm_referents); 4002 preserve_cm_referents_time = os::elapsedTime() - preserve_cm_referents_start; 4003 } 4004 4005 g1_policy()->phase_times()->record_preserve_cm_referents_time_ms(preserve_cm_referents_time * 1000.0); 4006 } 4007 4008 // Weak Reference processing during an evacuation pause (part 1). 4009 void G1CollectedHeap::process_discovered_references(G1ParScanThreadStateSet* per_thread_states) { 4010 double ref_proc_start = os::elapsedTime(); 4011 4012 ReferenceProcessor* rp = _ref_processor_stw; 4013 assert(rp->discovery_enabled(), "should have been enabled"); 4014 4015 // Closure to test whether a referent is alive. 4016 G1STWIsAliveClosure is_alive(this); 4017 4018 // Even when parallel reference processing is enabled, the processing 4019 // of JNI refs is serial and performed serially by the current thread 4020 // rather than by a worker. The following PSS will be used for processing 4021 // JNI refs. 4022 4023 // Use only a single queue for this PSS. 4024 G1ParScanThreadState* pss = per_thread_states->state_for_worker(0); 4025 pss->set_ref_processor(NULL); 4026 assert(pss->queue_is_empty(), "pre-condition"); 4027 4028 // Keep alive closure. 4029 G1CopyingKeepAliveClosure keep_alive(this, pss->closures()->raw_strong_oops(), pss); 4030 4031 // Serial Complete GC closure 4032 G1STWDrainQueueClosure drain_queue(this, pss); 4033 4034 // Setup the soft refs policy... 4035 rp->setup_policy(false); 4036 4037 ReferenceProcessorPhaseTimes* pt = g1_policy()->phase_times()->ref_phase_times(); 4038 4039 ReferenceProcessorStats stats; 4040 if (!rp->processing_is_mt()) { 4041 // Serial reference processing... 4042 stats = rp->process_discovered_references(&is_alive, 4043 &keep_alive, 4044 &drain_queue, 4045 NULL, 4046 pt); 4047 } else { 4048 uint no_of_gc_workers = workers()->active_workers(); 4049 4050 // Parallel reference processing 4051 assert(no_of_gc_workers <= rp->max_num_q(), 4052 "Mismatch between the number of GC workers %u and the maximum number of Reference process queues %u", 4053 no_of_gc_workers, rp->max_num_q()); 4054 4055 G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues, no_of_gc_workers); 4056 stats = rp->process_discovered_references(&is_alive, 4057 &keep_alive, 4058 &drain_queue, 4059 &par_task_executor, 4060 pt); 4061 } 4062 4063 _gc_tracer_stw->report_gc_reference_stats(stats); 4064 4065 // We have completed copying any necessary live referent objects. 4066 assert(pss->queue_is_empty(), "both queue and overflow should be empty"); 4067 4068 double ref_proc_time = os::elapsedTime() - ref_proc_start; 4069 g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0); 4070 } 4071 4072 // Weak Reference processing during an evacuation pause (part 2). 4073 void G1CollectedHeap::enqueue_discovered_references(G1ParScanThreadStateSet* per_thread_states) { 4074 double ref_enq_start = os::elapsedTime(); 4075 4076 ReferenceProcessor* rp = _ref_processor_stw; 4077 assert(!rp->discovery_enabled(), "should have been disabled as part of processing"); 4078 4079 ReferenceProcessorPhaseTimes* pt = g1_policy()->phase_times()->ref_phase_times(); 4080 4081 // Now enqueue any remaining on the discovered lists on to 4082 // the pending list. 4083 if (!rp->processing_is_mt()) { 4084 // Serial reference processing... 4085 rp->enqueue_discovered_references(NULL, pt); 4086 } else { 4087 // Parallel reference enqueueing 4088 4089 uint n_workers = workers()->active_workers(); 4090 4091 assert(n_workers <= rp->max_num_q(), 4092 "Mismatch between the number of GC workers %u and the maximum number of Reference process queues %u", 4093 n_workers, rp->max_num_q()); 4094 4095 G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues, n_workers); 4096 rp->enqueue_discovered_references(&par_task_executor, pt); 4097 } 4098 4099 rp->verify_no_references_recorded(); 4100 assert(!rp->discovery_enabled(), "should have been disabled"); 4101 4102 // If during an initial mark pause we install a pending list head which is not otherwise reachable 4103 // ensure that it is marked in the bitmap for concurrent marking to discover. 4104 if (collector_state()->in_initial_mark_gc()) { 4105 oop pll_head = Universe::reference_pending_list(); 4106 if (pll_head != NULL) { 4107 // Any valid worker id is fine here as we are in the VM thread and single-threaded. 4108 _cm->mark_in_next_bitmap(0 /* worker_id */, pll_head); 4109 } 4110 } 4111 4112 // FIXME 4113 // CM's reference processing also cleans up the string and symbol tables. 4114 // Should we do that here also? We could, but it is a serial operation 4115 // and could significantly increase the pause time. 4116 4117 double ref_enq_time = os::elapsedTime() - ref_enq_start; 4118 g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0); 4119 } 4120 4121 void G1CollectedHeap::merge_per_thread_state_info(G1ParScanThreadStateSet* per_thread_states) { 4122 double merge_pss_time_start = os::elapsedTime(); 4123 per_thread_states->flush(); 4124 g1_policy()->phase_times()->record_merge_pss_time_ms((os::elapsedTime() - merge_pss_time_start) * 1000.0); 4125 } 4126 4127 void G1CollectedHeap::pre_evacuate_collection_set() { 4128 _expand_heap_after_alloc_failure = true; 4129 _evacuation_failed = false; 4130 4131 // Disable the hot card cache. 4132 _hot_card_cache->reset_hot_cache_claimed_index(); 4133 _hot_card_cache->set_use_cache(false); 4134 4135 g1_rem_set()->prepare_for_oops_into_collection_set_do(); 4136 _preserved_marks_set.assert_empty(); 4137 4138 G1GCPhaseTimes* phase_times = g1_policy()->phase_times(); 4139 4140 // InitialMark needs claim bits to keep track of the marked-through CLDs. 4141 if (collector_state()->in_initial_mark_gc()) { 4142 double start_clear_claimed_marks = os::elapsedTime(); 4143 4144 ClassLoaderDataGraph::clear_claimed_marks(); 4145 4146 double recorded_clear_claimed_marks_time_ms = (os::elapsedTime() - start_clear_claimed_marks) * 1000.0; 4147 phase_times->record_clear_claimed_marks_time_ms(recorded_clear_claimed_marks_time_ms); 4148 } 4149 } 4150 4151 void G1CollectedHeap::evacuate_collection_set(G1ParScanThreadStateSet* per_thread_states) { 4152 // Should G1EvacuationFailureALot be in effect for this GC? 4153 NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();) 4154 4155 assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty"); 4156 4157 G1GCPhaseTimes* phase_times = g1_policy()->phase_times(); 4158 4159 double start_par_time_sec = os::elapsedTime(); 4160 double end_par_time_sec; 4161 4162 { 4163 const uint n_workers = workers()->active_workers(); 4164 G1RootProcessor root_processor(this, n_workers); 4165 G1ParTask g1_par_task(this, per_thread_states, _task_queues, &root_processor, n_workers); 4166 4167 print_termination_stats_hdr(); 4168 4169 workers()->run_task(&g1_par_task); 4170 end_par_time_sec = os::elapsedTime(); 4171 4172 // Closing the inner scope will execute the destructor 4173 // for the G1RootProcessor object. We record the current 4174 // elapsed time before closing the scope so that time 4175 // taken for the destructor is NOT included in the 4176 // reported parallel time. 4177 } 4178 4179 double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0; 4180 phase_times->record_par_time(par_time_ms); 4181 4182 double code_root_fixup_time_ms = 4183 (os::elapsedTime() - end_par_time_sec) * 1000.0; 4184 phase_times->record_code_root_fixup_time(code_root_fixup_time_ms); 4185 } 4186 4187 void G1CollectedHeap::post_evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) { 4188 // Process any discovered reference objects - we have 4189 // to do this _before_ we retire the GC alloc regions 4190 // as we may have to copy some 'reachable' referent 4191 // objects (and their reachable sub-graphs) that were 4192 // not copied during the pause. 4193 if (g1_policy()->should_process_references()) { 4194 preserve_cm_referents(per_thread_states); 4195 process_discovered_references(per_thread_states); 4196 } else { 4197 ref_processor_stw()->verify_no_references_recorded(); 4198 } 4199 4200 G1STWIsAliveClosure is_alive(this); 4201 G1KeepAliveClosure keep_alive(this); 4202 4203 { 4204 double start = os::elapsedTime(); 4205 4206 WeakProcessor::weak_oops_do(&is_alive, &keep_alive); 4207 4208 double time_ms = (os::elapsedTime() - start) * 1000.0; 4209 g1_policy()->phase_times()->record_ref_proc_time(time_ms); 4210 } 4211 4212 if (G1StringDedup::is_enabled()) { 4213 double fixup_start = os::elapsedTime(); 4214 4215 G1StringDedup::unlink_or_oops_do(&is_alive, &keep_alive, true, g1_policy()->phase_times()); 4216 4217 double fixup_time_ms = (os::elapsedTime() - fixup_start) * 1000.0; 4218 g1_policy()->phase_times()->record_string_dedup_fixup_time(fixup_time_ms); 4219 } 4220 4221 g1_rem_set()->cleanup_after_oops_into_collection_set_do(); 4222 4223 if (evacuation_failed()) { 4224 restore_after_evac_failure(); 4225 4226 // Reset the G1EvacuationFailureALot counters and flags 4227 // Note: the values are reset only when an actual 4228 // evacuation failure occurs. 4229 NOT_PRODUCT(reset_evacuation_should_fail();) 4230 } 4231 4232 _preserved_marks_set.assert_empty(); 4233 4234 // Enqueue any remaining references remaining on the STW 4235 // reference processor's discovered lists. We need to do 4236 // this after the card table is cleaned (and verified) as 4237 // the act of enqueueing entries on to the pending list 4238 // will log these updates (and dirty their associated 4239 // cards). We need these updates logged to update any 4240 // RSets. 4241 if (g1_policy()->should_process_references()) { 4242 enqueue_discovered_references(per_thread_states); 4243 } else { 4244 g1_policy()->phase_times()->record_ref_enq_time(0); 4245 } 4246 4247 _allocator->release_gc_alloc_regions(evacuation_info); 4248 4249 merge_per_thread_state_info(per_thread_states); 4250 4251 // Reset and re-enable the hot card cache. 4252 // Note the counts for the cards in the regions in the 4253 // collection set are reset when the collection set is freed. 4254 _hot_card_cache->reset_hot_cache(); 4255 _hot_card_cache->set_use_cache(true); 4256 4257 purge_code_root_memory(); 4258 4259 redirty_logged_cards(); 4260 #if COMPILER2_OR_JVMCI 4261 double start = os::elapsedTime(); 4262 DerivedPointerTable::update_pointers(); 4263 g1_policy()->phase_times()->record_derived_pointer_table_update_time((os::elapsedTime() - start) * 1000.0); 4264 #endif 4265 g1_policy()->print_age_table(); 4266 } 4267 4268 void G1CollectedHeap::record_obj_copy_mem_stats() { 4269 g1_policy()->add_bytes_allocated_in_old_since_last_gc(_old_evac_stats.allocated() * HeapWordSize); 4270 4271 _gc_tracer_stw->report_evacuation_statistics(create_g1_evac_summary(&_survivor_evac_stats), 4272 create_g1_evac_summary(&_old_evac_stats)); 4273 } 4274 4275 void G1CollectedHeap::free_region(HeapRegion* hr, 4276 FreeRegionList* free_list, 4277 bool skip_remset, 4278 bool skip_hot_card_cache, 4279 bool locked) { 4280 assert(!hr->is_free(), "the region should not be free"); 4281 assert(!hr->is_empty(), "the region should not be empty"); 4282 assert(_hrm.is_available(hr->hrm_index()), "region should be committed"); 4283 assert(free_list != NULL, "pre-condition"); 4284 4285 if (G1VerifyBitmaps) { 4286 MemRegion mr(hr->bottom(), hr->end()); 4287 concurrent_mark()->clear_range_in_prev_bitmap(mr); 4288 } 4289 4290 // Clear the card counts for this region. 4291 // Note: we only need to do this if the region is not young 4292 // (since we don't refine cards in young regions). 4293 if (!skip_hot_card_cache && !hr->is_young()) { 4294 _hot_card_cache->reset_card_counts(hr); 4295 } 4296 hr->hr_clear(skip_remset, true /* clear_space */, locked /* locked */); 4297 _g1_policy->remset_tracker()->update_at_free(hr); 4298 free_list->add_ordered(hr); 4299 } 4300 4301 void G1CollectedHeap::free_humongous_region(HeapRegion* hr, 4302 FreeRegionList* free_list) { 4303 assert(hr->is_humongous(), "this is only for humongous regions"); 4304 assert(free_list != NULL, "pre-condition"); 4305 hr->clear_humongous(); 4306 free_region(hr, free_list, false /* skip_remset */, false /* skip_hcc */, true /* locked */); 4307 } 4308 4309 void G1CollectedHeap::remove_from_old_sets(const uint old_regions_removed, 4310 const uint humongous_regions_removed) { 4311 if (old_regions_removed > 0 || humongous_regions_removed > 0) { 4312 MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag); 4313 _old_set.bulk_remove(old_regions_removed); 4314 _humongous_set.bulk_remove(humongous_regions_removed); 4315 } 4316 4317 } 4318 4319 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) { 4320 assert(list != NULL, "list can't be null"); 4321 if (!list->is_empty()) { 4322 MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag); 4323 _hrm.insert_list_into_free_list(list); 4324 } 4325 } 4326 4327 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) { 4328 decrease_used(bytes); 4329 } 4330 4331 class G1FreeCollectionSetTask : public AbstractGangTask { 4332 private: 4333 4334 // Closure applied to all regions in the collection set to do work that needs to 4335 // be done serially in a single thread. 4336 class G1SerialFreeCollectionSetClosure : public HeapRegionClosure { 4337 private: 4338 EvacuationInfo* _evacuation_info; 4339 const size_t* _surviving_young_words; 4340 4341 // Bytes used in successfully evacuated regions before the evacuation. 4342 size_t _before_used_bytes; 4343 // Bytes used in unsucessfully evacuated regions before the evacuation 4344 size_t _after_used_bytes; 4345 4346 size_t _bytes_allocated_in_old_since_last_gc; 4347 4348 size_t _failure_used_words; 4349 size_t _failure_waste_words; 4350 4351 FreeRegionList _local_free_list; 4352 public: 4353 G1SerialFreeCollectionSetClosure(EvacuationInfo* evacuation_info, const size_t* surviving_young_words) : 4354 HeapRegionClosure(), 4355 _evacuation_info(evacuation_info), 4356 _surviving_young_words(surviving_young_words), 4357 _before_used_bytes(0), 4358 _after_used_bytes(0), 4359 _bytes_allocated_in_old_since_last_gc(0), 4360 _failure_used_words(0), 4361 _failure_waste_words(0), 4362 _local_free_list("Local Region List for CSet Freeing") { 4363 } 4364 4365 virtual bool do_heap_region(HeapRegion* r) { 4366 G1CollectedHeap* g1h = G1CollectedHeap::heap(); 4367 4368 assert(r->in_collection_set(), "Region %u should be in collection set.", r->hrm_index()); 4369 g1h->clear_in_cset(r); 4370 4371 if (r->is_young()) { 4372 assert(r->young_index_in_cset() != -1 && (uint)r->young_index_in_cset() < g1h->collection_set()->young_region_length(), 4373 "Young index %d is wrong for region %u of type %s with %u young regions", 4374 r->young_index_in_cset(), 4375 r->hrm_index(), 4376 r->get_type_str(), 4377 g1h->collection_set()->young_region_length()); 4378 size_t words_survived = _surviving_young_words[r->young_index_in_cset()]; 4379 r->record_surv_words_in_group(words_survived); 4380 } 4381 4382 if (!r->evacuation_failed()) { 4383 assert(r->not_empty(), "Region %u is an empty region in the collection set.", r->hrm_index()); 4384 _before_used_bytes += r->used(); 4385 g1h->free_region(r, 4386 &_local_free_list, 4387 true, /* skip_remset */ 4388 true, /* skip_hot_card_cache */ 4389 true /* locked */); 4390 } else { 4391 r->uninstall_surv_rate_group(); 4392 r->set_young_index_in_cset(-1); 4393 r->set_evacuation_failed(false); 4394 // When moving a young gen region to old gen, we "allocate" that whole region 4395 // there. This is in addition to any already evacuated objects. Notify the 4396 // policy about that. 4397 // Old gen regions do not cause an additional allocation: both the objects 4398 // still in the region and the ones already moved are accounted for elsewhere. 4399 if (r->is_young()) { 4400 _bytes_allocated_in_old_since_last_gc += HeapRegion::GrainBytes; 4401 } 4402 // The region is now considered to be old. 4403 r->set_old(); 4404 // Do some allocation statistics accounting. Regions that failed evacuation 4405 // are always made old, so there is no need to update anything in the young 4406 // gen statistics, but we need to update old gen statistics. 4407 size_t used_words = r->marked_bytes() / HeapWordSize; 4408 4409 _failure_used_words += used_words; 4410 _failure_waste_words += HeapRegion::GrainWords - used_words; 4411 4412 g1h->old_set_add(r); 4413 _after_used_bytes += r->used(); 4414 } 4415 return false; 4416 } 4417 4418 void complete_work() { 4419 G1CollectedHeap* g1h = G1CollectedHeap::heap(); 4420 4421 _evacuation_info->set_regions_freed(_local_free_list.length()); 4422 _evacuation_info->increment_collectionset_used_after(_after_used_bytes); 4423 4424 g1h->prepend_to_freelist(&_local_free_list); 4425 g1h->decrement_summary_bytes(_before_used_bytes); 4426 4427 G1Policy* policy = g1h->g1_policy(); 4428 policy->add_bytes_allocated_in_old_since_last_gc(_bytes_allocated_in_old_since_last_gc); 4429 4430 g1h->alloc_buffer_stats(InCSetState::Old)->add_failure_used_and_waste(_failure_used_words, _failure_waste_words); 4431 } 4432 }; 4433 4434 G1CollectionSet* _collection_set; 4435 G1SerialFreeCollectionSetClosure _cl; 4436 const size_t* _surviving_young_words; 4437 4438 size_t _rs_lengths; 4439 4440 volatile jint _serial_work_claim; 4441 4442 struct WorkItem { 4443 uint region_idx; 4444 bool is_young; 4445 bool evacuation_failed; 4446 4447 WorkItem(HeapRegion* r) { 4448 region_idx = r->hrm_index(); 4449 is_young = r->is_young(); 4450 evacuation_failed = r->evacuation_failed(); 4451 } 4452 }; 4453 4454 volatile size_t _parallel_work_claim; 4455 size_t _num_work_items; 4456 WorkItem* _work_items; 4457 4458 void do_serial_work() { 4459 // Need to grab the lock to be allowed to modify the old region list. 4460 MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag); 4461 _collection_set->iterate(&_cl); 4462 } 4463 4464 void do_parallel_work_for_region(uint region_idx, bool is_young, bool evacuation_failed) { 4465 G1CollectedHeap* g1h = G1CollectedHeap::heap(); 4466 4467 HeapRegion* r = g1h->region_at(region_idx); 4468 assert(!g1h->is_on_master_free_list(r), "sanity"); 4469 4470 Atomic::add(r->rem_set()->occupied_locked(), &_rs_lengths); 4471 4472 if (!is_young) { 4473 g1h->_hot_card_cache->reset_card_counts(r); 4474 } 4475 4476 if (!evacuation_failed) { 4477 r->rem_set()->clear_locked(); 4478 } 4479 } 4480 4481 class G1PrepareFreeCollectionSetClosure : public HeapRegionClosure { 4482 private: 4483 size_t _cur_idx; 4484 WorkItem* _work_items; 4485 public: 4486 G1PrepareFreeCollectionSetClosure(WorkItem* work_items) : HeapRegionClosure(), _cur_idx(0), _work_items(work_items) { } 4487 4488 virtual bool do_heap_region(HeapRegion* r) { 4489 _work_items[_cur_idx++] = WorkItem(r); 4490 return false; 4491 } 4492 }; 4493 4494 void prepare_work() { 4495 G1PrepareFreeCollectionSetClosure cl(_work_items); 4496 _collection_set->iterate(&cl); 4497 } 4498 4499 void complete_work() { 4500 _cl.complete_work(); 4501 4502 G1Policy* policy = G1CollectedHeap::heap()->g1_policy(); 4503 policy->record_max_rs_lengths(_rs_lengths); 4504 policy->cset_regions_freed(); 4505 } 4506 public: 4507 G1FreeCollectionSetTask(G1CollectionSet* collection_set, EvacuationInfo* evacuation_info, const size_t* surviving_young_words) : 4508 AbstractGangTask("G1 Free Collection Set"), 4509 _cl(evacuation_info, surviving_young_words), 4510 _collection_set(collection_set), 4511 _surviving_young_words(surviving_young_words), 4512 _serial_work_claim(0), 4513 _rs_lengths(0), 4514 _parallel_work_claim(0), 4515 _num_work_items(collection_set->region_length()), 4516 _work_items(NEW_C_HEAP_ARRAY(WorkItem, _num_work_items, mtGC)) { 4517 prepare_work(); 4518 } 4519 4520 ~G1FreeCollectionSetTask() { 4521 complete_work(); 4522 FREE_C_HEAP_ARRAY(WorkItem, _work_items); 4523 } 4524 4525 // Chunk size for work distribution. The chosen value has been determined experimentally 4526 // to be a good tradeoff between overhead and achievable parallelism. 4527 static uint chunk_size() { return 32; } 4528 4529 virtual void work(uint worker_id) { 4530 G1GCPhaseTimes* timer = G1CollectedHeap::heap()->g1_policy()->phase_times(); 4531 4532 // Claim serial work. 4533 if (_serial_work_claim == 0) { 4534 jint value = Atomic::add(1, &_serial_work_claim) - 1; 4535 if (value == 0) { 4536 double serial_time = os::elapsedTime(); 4537 do_serial_work(); 4538 timer->record_serial_free_cset_time_ms((os::elapsedTime() - serial_time) * 1000.0); 4539 } 4540 } 4541 4542 // Start parallel work. 4543 double young_time = 0.0; 4544 bool has_young_time = false; 4545 double non_young_time = 0.0; 4546 bool has_non_young_time = false; 4547 4548 while (true) { 4549 size_t end = Atomic::add(chunk_size(), &_parallel_work_claim); 4550 size_t cur = end - chunk_size(); 4551 4552 if (cur >= _num_work_items) { 4553 break; 4554 } 4555 4556 double start_time = os::elapsedTime(); 4557 4558 end = MIN2(end, _num_work_items); 4559 4560 for (; cur < end; cur++) { 4561 bool is_young = _work_items[cur].is_young; 4562 4563 do_parallel_work_for_region(_work_items[cur].region_idx, is_young, _work_items[cur].evacuation_failed); 4564 4565 double end_time = os::elapsedTime(); 4566 double time_taken = end_time - start_time; 4567 if (is_young) { 4568 young_time += time_taken; 4569 has_young_time = true; 4570 } else { 4571 non_young_time += time_taken; 4572 has_non_young_time = true; 4573 } 4574 start_time = end_time; 4575 } 4576 } 4577 4578 if (has_young_time) { 4579 timer->record_time_secs(G1GCPhaseTimes::YoungFreeCSet, worker_id, young_time); 4580 } 4581 if (has_non_young_time) { 4582 timer->record_time_secs(G1GCPhaseTimes::NonYoungFreeCSet, worker_id, non_young_time); 4583 } 4584 } 4585 }; 4586 4587 void G1CollectedHeap::free_collection_set(G1CollectionSet* collection_set, EvacuationInfo& evacuation_info, const size_t* surviving_young_words) { 4588 _eden.clear(); 4589 4590 double free_cset_start_time = os::elapsedTime(); 4591 4592 { 4593 uint const num_chunks = MAX2(_collection_set.region_length() / G1FreeCollectionSetTask::chunk_size(), 1U); 4594 uint const num_workers = MIN2(workers()->active_workers(), num_chunks); 4595 4596 G1FreeCollectionSetTask cl(collection_set, &evacuation_info, surviving_young_words); 4597 4598 log_debug(gc, ergo)("Running %s using %u workers for collection set length %u", 4599 cl.name(), 4600 num_workers, 4601 _collection_set.region_length()); 4602 workers()->run_task(&cl, num_workers); 4603 } 4604 g1_policy()->phase_times()->record_total_free_cset_time_ms((os::elapsedTime() - free_cset_start_time) * 1000.0); 4605 4606 collection_set->clear(); 4607 } 4608 4609 class G1FreeHumongousRegionClosure : public HeapRegionClosure { 4610 private: 4611 FreeRegionList* _free_region_list; 4612 HeapRegionSet* _proxy_set; 4613 uint _humongous_objects_reclaimed; 4614 uint _humongous_regions_reclaimed; 4615 size_t _freed_bytes; 4616 public: 4617 4618 G1FreeHumongousRegionClosure(FreeRegionList* free_region_list) : 4619 _free_region_list(free_region_list), _humongous_objects_reclaimed(0), _humongous_regions_reclaimed(0), _freed_bytes(0) { 4620 } 4621 4622 virtual bool do_heap_region(HeapRegion* r) { 4623 if (!r->is_starts_humongous()) { 4624 return false; 4625 } 4626 4627 G1CollectedHeap* g1h = G1CollectedHeap::heap(); 4628 4629 oop obj = (oop)r->bottom(); 4630 G1CMBitMap* next_bitmap = g1h->concurrent_mark()->next_mark_bitmap(); 4631 4632 // The following checks whether the humongous object is live are sufficient. 4633 // The main additional check (in addition to having a reference from the roots 4634 // or the young gen) is whether the humongous object has a remembered set entry. 4635 // 4636 // A humongous object cannot be live if there is no remembered set for it 4637 // because: 4638 // - there can be no references from within humongous starts regions referencing 4639 // the object because we never allocate other objects into them. 4640 // (I.e. there are no intra-region references that may be missed by the 4641 // remembered set) 4642 // - as soon there is a remembered set entry to the humongous starts region 4643 // (i.e. it has "escaped" to an old object) this remembered set entry will stay 4644 // until the end of a concurrent mark. 4645 // 4646 // It is not required to check whether the object has been found dead by marking 4647 // or not, in fact it would prevent reclamation within a concurrent cycle, as 4648 // all objects allocated during that time are considered live. 4649 // SATB marking is even more conservative than the remembered set. 4650 // So if at this point in the collection there is no remembered set entry, 4651 // nobody has a reference to it. 4652 // At the start of collection we flush all refinement logs, and remembered sets 4653 // are completely up-to-date wrt to references to the humongous object. 4654 // 4655 // Other implementation considerations: 4656 // - never consider object arrays at this time because they would pose 4657 // considerable effort for cleaning up the the remembered sets. This is 4658 // required because stale remembered sets might reference locations that 4659 // are currently allocated into. 4660 uint region_idx = r->hrm_index(); 4661 if (!g1h->is_humongous_reclaim_candidate(region_idx) || 4662 !r->rem_set()->is_empty()) { 4663 log_debug(gc, humongous)("Live humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT " with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d", 4664 region_idx, 4665 (size_t)obj->size() * HeapWordSize, 4666 p2i(r->bottom()), 4667 r->rem_set()->occupied(), 4668 r->rem_set()->strong_code_roots_list_length(), 4669 next_bitmap->is_marked(r->bottom()), 4670 g1h->is_humongous_reclaim_candidate(region_idx), 4671 obj->is_typeArray() 4672 ); 4673 return false; 4674 } 4675 4676 guarantee(obj->is_typeArray(), 4677 "Only eagerly reclaiming type arrays is supported, but the object " 4678 PTR_FORMAT " is not.", p2i(r->bottom())); 4679 4680 log_debug(gc, humongous)("Dead humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT " with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d", 4681 region_idx, 4682 (size_t)obj->size() * HeapWordSize, 4683 p2i(r->bottom()), 4684 r->rem_set()->occupied(), 4685 r->rem_set()->strong_code_roots_list_length(), 4686 next_bitmap->is_marked(r->bottom()), 4687 g1h->is_humongous_reclaim_candidate(region_idx), 4688 obj->is_typeArray() 4689 ); 4690 4691 G1ConcurrentMark* const cm = g1h->concurrent_mark(); 4692 cm->humongous_object_eagerly_reclaimed(r); 4693 assert(!cm->is_marked_in_prev_bitmap(obj) && !cm->is_marked_in_next_bitmap(obj), 4694 "Eagerly reclaimed humongous region %u should not be marked at all but is in prev %s next %s", 4695 region_idx, 4696 BOOL_TO_STR(cm->is_marked_in_prev_bitmap(obj)), 4697 BOOL_TO_STR(cm->is_marked_in_next_bitmap(obj))); 4698 _humongous_objects_reclaimed++; 4699 do { 4700 HeapRegion* next = g1h->next_region_in_humongous(r); 4701 _freed_bytes += r->used(); 4702 r->set_containing_set(NULL); 4703 _humongous_regions_reclaimed++; 4704 g1h->free_humongous_region(r, _free_region_list); 4705 r = next; 4706 } while (r != NULL); 4707 4708 return false; 4709 } 4710 4711 uint humongous_objects_reclaimed() { 4712 return _humongous_objects_reclaimed; 4713 } 4714 4715 uint humongous_regions_reclaimed() { 4716 return _humongous_regions_reclaimed; 4717 } 4718 4719 size_t bytes_freed() const { 4720 return _freed_bytes; 4721 } 4722 }; 4723 4724 void G1CollectedHeap::eagerly_reclaim_humongous_regions() { 4725 assert_at_safepoint_on_vm_thread(); 4726 4727 if (!G1EagerReclaimHumongousObjects || 4728 (!_has_humongous_reclaim_candidates && !log_is_enabled(Debug, gc, humongous))) { 4729 g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0); 4730 return; 4731 } 4732 4733 double start_time = os::elapsedTime(); 4734 4735 FreeRegionList local_cleanup_list("Local Humongous Cleanup List"); 4736 4737 G1FreeHumongousRegionClosure cl(&local_cleanup_list); 4738 heap_region_iterate(&cl); 4739 4740 remove_from_old_sets(0, cl.humongous_regions_reclaimed()); 4741 4742 G1HRPrinter* hrp = hr_printer(); 4743 if (hrp->is_active()) { 4744 FreeRegionListIterator iter(&local_cleanup_list); 4745 while (iter.more_available()) { 4746 HeapRegion* hr = iter.get_next(); 4747 hrp->cleanup(hr); 4748 } 4749 } 4750 4751 prepend_to_freelist(&local_cleanup_list); 4752 decrement_summary_bytes(cl.bytes_freed()); 4753 4754 g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms((os::elapsedTime() - start_time) * 1000.0, 4755 cl.humongous_objects_reclaimed()); 4756 } 4757 4758 class G1AbandonCollectionSetClosure : public HeapRegionClosure { 4759 public: 4760 virtual bool do_heap_region(HeapRegion* r) { 4761 assert(r->in_collection_set(), "Region %u must have been in collection set", r->hrm_index()); 4762 G1CollectedHeap::heap()->clear_in_cset(r); 4763 r->set_young_index_in_cset(-1); 4764 return false; 4765 } 4766 }; 4767 4768 void G1CollectedHeap::abandon_collection_set(G1CollectionSet* collection_set) { 4769 G1AbandonCollectionSetClosure cl; 4770 collection_set->iterate(&cl); 4771 4772 collection_set->clear(); 4773 collection_set->stop_incremental_building(); 4774 } 4775 4776 bool G1CollectedHeap::is_old_gc_alloc_region(HeapRegion* hr) { 4777 return _allocator->is_retained_old_region(hr); 4778 } 4779 4780 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) { 4781 _eden.add(hr); 4782 _g1_policy->set_region_eden(hr); 4783 } 4784 4785 #ifdef ASSERT 4786 4787 class NoYoungRegionsClosure: public HeapRegionClosure { 4788 private: 4789 bool _success; 4790 public: 4791 NoYoungRegionsClosure() : _success(true) { } 4792 bool do_heap_region(HeapRegion* r) { 4793 if (r->is_young()) { 4794 log_error(gc, verify)("Region [" PTR_FORMAT ", " PTR_FORMAT ") tagged as young", 4795 p2i(r->bottom()), p2i(r->end())); 4796 _success = false; 4797 } 4798 return false; 4799 } 4800 bool success() { return _success; } 4801 }; 4802 4803 bool G1CollectedHeap::check_young_list_empty() { 4804 bool ret = (young_regions_count() == 0); 4805 4806 NoYoungRegionsClosure closure; 4807 heap_region_iterate(&closure); 4808 ret = ret && closure.success(); 4809 4810 return ret; 4811 } 4812 4813 #endif // ASSERT 4814 4815 class TearDownRegionSetsClosure : public HeapRegionClosure { 4816 private: 4817 HeapRegionSet *_old_set; 4818 4819 public: 4820 TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { } 4821 4822 bool do_heap_region(HeapRegion* r) { 4823 if (r->is_old()) { 4824 _old_set->remove(r); 4825 } else if(r->is_young()) { 4826 r->uninstall_surv_rate_group(); 4827 } else { 4828 // We ignore free regions, we'll empty the free list afterwards. 4829 // We ignore humongous regions, we're not tearing down the 4830 // humongous regions set. 4831 assert(r->is_free() || r->is_humongous(), 4832 "it cannot be another type"); 4833 } 4834 return false; 4835 } 4836 4837 ~TearDownRegionSetsClosure() { 4838 assert(_old_set->is_empty(), "post-condition"); 4839 } 4840 }; 4841 4842 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) { 4843 assert_at_safepoint_on_vm_thread(); 4844 4845 if (!free_list_only) { 4846 TearDownRegionSetsClosure cl(&_old_set); 4847 heap_region_iterate(&cl); 4848 4849 // Note that emptying the _young_list is postponed and instead done as 4850 // the first step when rebuilding the regions sets again. The reason for 4851 // this is that during a full GC string deduplication needs to know if 4852 // a collected region was young or old when the full GC was initiated. 4853 } 4854 _hrm.remove_all_free_regions(); 4855 } 4856 4857 void G1CollectedHeap::increase_used(size_t bytes) { 4858 _summary_bytes_used += bytes; 4859 } 4860 4861 void G1CollectedHeap::decrease_used(size_t bytes) { 4862 assert(_summary_bytes_used >= bytes, 4863 "invariant: _summary_bytes_used: " SIZE_FORMAT " should be >= bytes: " SIZE_FORMAT, 4864 _summary_bytes_used, bytes); 4865 _summary_bytes_used -= bytes; 4866 } 4867 4868 void G1CollectedHeap::set_used(size_t bytes) { 4869 _summary_bytes_used = bytes; 4870 } 4871 4872 class RebuildRegionSetsClosure : public HeapRegionClosure { 4873 private: 4874 bool _free_list_only; 4875 HeapRegionSet* _old_set; 4876 HeapRegionManager* _hrm; 4877 size_t _total_used; 4878 4879 public: 4880 RebuildRegionSetsClosure(bool free_list_only, 4881 HeapRegionSet* old_set, HeapRegionManager* hrm) : 4882 _free_list_only(free_list_only), 4883 _old_set(old_set), _hrm(hrm), _total_used(0) { 4884 assert(_hrm->num_free_regions() == 0, "pre-condition"); 4885 if (!free_list_only) { 4886 assert(_old_set->is_empty(), "pre-condition"); 4887 } 4888 } 4889 4890 bool do_heap_region(HeapRegion* r) { 4891 // After full GC, no region should have a remembered set. 4892 r->rem_set()->clear(true); 4893 if (r->is_empty()) { 4894 // Add free regions to the free list 4895 r->set_free(); 4896 _hrm->insert_into_free_list(r); 4897 } else if (!_free_list_only) { 4898 4899 if (r->is_humongous()) { 4900 // We ignore humongous regions. We left the humongous set unchanged. 4901 } else { 4902 assert(r->is_young() || r->is_free() || r->is_old(), "invariant"); 4903 // We now move all (non-humongous, non-old) regions to old gen, and register them as such. 4904 r->move_to_old(); 4905 _old_set->add(r); 4906 } 4907 _total_used += r->used(); 4908 } 4909 4910 return false; 4911 } 4912 4913 size_t total_used() { 4914 return _total_used; 4915 } 4916 }; 4917 4918 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) { 4919 assert_at_safepoint_on_vm_thread(); 4920 4921 if (!free_list_only) { 4922 _eden.clear(); 4923 _survivor.clear(); 4924 } 4925 4926 RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_hrm); 4927 heap_region_iterate(&cl); 4928 4929 if (!free_list_only) { 4930 set_used(cl.total_used()); 4931 if (_archive_allocator != NULL) { 4932 _archive_allocator->clear_used(); 4933 } 4934 } 4935 assert(used_unlocked() == recalculate_used(), 4936 "inconsistent used_unlocked(), " 4937 "value: " SIZE_FORMAT " recalculated: " SIZE_FORMAT, 4938 used_unlocked(), recalculate_used()); 4939 } 4940 4941 bool G1CollectedHeap::is_in_closed_subset(const void* p) const { 4942 HeapRegion* hr = heap_region_containing(p); 4943 return hr->is_in(p); 4944 } 4945 4946 // Methods for the mutator alloc region 4947 4948 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size, 4949 bool force) { 4950 assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */); 4951 bool should_allocate = g1_policy()->should_allocate_mutator_region(); 4952 if (force || should_allocate) { 4953 HeapRegion* new_alloc_region = new_region(word_size, 4954 false /* is_old */, 4955 false /* do_expand */); 4956 if (new_alloc_region != NULL) { 4957 set_region_short_lived_locked(new_alloc_region); 4958 _hr_printer.alloc(new_alloc_region, !should_allocate); 4959 _verifier->check_bitmaps("Mutator Region Allocation", new_alloc_region); 4960 _g1_policy->remset_tracker()->update_at_allocate(new_alloc_region); 4961 return new_alloc_region; 4962 } 4963 } 4964 return NULL; 4965 } 4966 4967 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region, 4968 size_t allocated_bytes) { 4969 assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */); 4970 assert(alloc_region->is_eden(), "all mutator alloc regions should be eden"); 4971 4972 collection_set()->add_eden_region(alloc_region); 4973 increase_used(allocated_bytes); 4974 _hr_printer.retire(alloc_region); 4975 // We update the eden sizes here, when the region is retired, 4976 // instead of when it's allocated, since this is the point that its 4977 // used space has been recored in _summary_bytes_used. 4978 g1mm()->update_eden_size(); 4979 } 4980 4981 // Methods for the GC alloc regions 4982 4983 bool G1CollectedHeap::has_more_regions(InCSetState dest) { 4984 if (dest.is_old()) { 4985 return true; 4986 } else { 4987 return survivor_regions_count() < g1_policy()->max_survivor_regions(); 4988 } 4989 } 4990 4991 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size, InCSetState dest) { 4992 assert(FreeList_lock->owned_by_self(), "pre-condition"); 4993 4994 if (!has_more_regions(dest)) { 4995 return NULL; 4996 } 4997 4998 const bool is_survivor = dest.is_young(); 4999 5000 HeapRegion* new_alloc_region = new_region(word_size, 5001 !is_survivor, 5002 true /* do_expand */); 5003 if (new_alloc_region != NULL) { 5004 if (is_survivor) { 5005 new_alloc_region->set_survivor(); 5006 _survivor.add(new_alloc_region); 5007 _verifier->check_bitmaps("Survivor Region Allocation", new_alloc_region); 5008 } else { 5009 new_alloc_region->set_old(); 5010 _verifier->check_bitmaps("Old Region Allocation", new_alloc_region); 5011 } 5012 _g1_policy->remset_tracker()->update_at_allocate(new_alloc_region); 5013 _hr_printer.alloc(new_alloc_region); 5014 bool during_im = collector_state()->in_initial_mark_gc(); 5015 new_alloc_region->note_start_of_copying(during_im); 5016 return new_alloc_region; 5017 } 5018 return NULL; 5019 } 5020 5021 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region, 5022 size_t allocated_bytes, 5023 InCSetState dest) { 5024 bool during_im = collector_state()->in_initial_mark_gc(); 5025 alloc_region->note_end_of_copying(during_im); 5026 g1_policy()->record_bytes_copied_during_gc(allocated_bytes); 5027 if (dest.is_old()) { 5028 _old_set.add(alloc_region); 5029 } 5030 _hr_printer.retire(alloc_region); 5031 } 5032 5033 HeapRegion* G1CollectedHeap::alloc_highest_free_region() { 5034 bool expanded = false; 5035 uint index = _hrm.find_highest_free(&expanded); 5036 5037 if (index != G1_NO_HRM_INDEX) { 5038 if (expanded) { 5039 log_debug(gc, ergo, heap)("Attempt heap expansion (requested address range outside heap bounds). region size: " SIZE_FORMAT "B", 5040 HeapRegion::GrainWords * HeapWordSize); 5041 } 5042 _hrm.allocate_free_regions_starting_at(index, 1); 5043 return region_at(index); 5044 } 5045 return NULL; 5046 } 5047 5048 // Optimized nmethod scanning 5049 5050 class RegisterNMethodOopClosure: public OopClosure { 5051 G1CollectedHeap* _g1h; 5052 nmethod* _nm; 5053 5054 template <class T> void do_oop_work(T* p) { 5055 T heap_oop = RawAccess<>::oop_load(p); 5056 if (!CompressedOops::is_null(heap_oop)) { 5057 oop obj = CompressedOops::decode_not_null(heap_oop); 5058 HeapRegion* hr = _g1h->heap_region_containing(obj); 5059 assert(!hr->is_continues_humongous(), 5060 "trying to add code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT 5061 " starting at " HR_FORMAT, 5062 p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())); 5063 5064 // HeapRegion::add_strong_code_root_locked() avoids adding duplicate entries. 5065 hr->add_strong_code_root_locked(_nm); 5066 } 5067 } 5068 5069 public: 5070 RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) : 5071 _g1h(g1h), _nm(nm) {} 5072 5073 void do_oop(oop* p) { do_oop_work(p); } 5074 void do_oop(narrowOop* p) { do_oop_work(p); } 5075 }; 5076 5077 class UnregisterNMethodOopClosure: public OopClosure { 5078 G1CollectedHeap* _g1h; 5079 nmethod* _nm; 5080 5081 template <class T> void do_oop_work(T* p) { 5082 T heap_oop = RawAccess<>::oop_load(p); 5083 if (!CompressedOops::is_null(heap_oop)) { 5084 oop obj = CompressedOops::decode_not_null(heap_oop); 5085 HeapRegion* hr = _g1h->heap_region_containing(obj); 5086 assert(!hr->is_continues_humongous(), 5087 "trying to remove code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT 5088 " starting at " HR_FORMAT, 5089 p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())); 5090 5091 hr->remove_strong_code_root(_nm); 5092 } 5093 } 5094 5095 public: 5096 UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) : 5097 _g1h(g1h), _nm(nm) {} 5098 5099 void do_oop(oop* p) { do_oop_work(p); } 5100 void do_oop(narrowOop* p) { do_oop_work(p); } 5101 }; 5102 5103 // Returns true if the reference points to an object that 5104 // can move in an incremental collection. 5105 bool G1CollectedHeap::is_scavengable(oop obj) { 5106 HeapRegion* hr = heap_region_containing(obj); 5107 return !hr->is_pinned(); 5108 } 5109 5110 void G1CollectedHeap::register_nmethod(nmethod* nm) { 5111 guarantee(nm != NULL, "sanity"); 5112 RegisterNMethodOopClosure reg_cl(this, nm); 5113 nm->oops_do(®_cl); 5114 } 5115 5116 void G1CollectedHeap::unregister_nmethod(nmethod* nm) { 5117 guarantee(nm != NULL, "sanity"); 5118 UnregisterNMethodOopClosure reg_cl(this, nm); 5119 nm->oops_do(®_cl, true); 5120 } 5121 5122 void G1CollectedHeap::purge_code_root_memory() { 5123 double purge_start = os::elapsedTime(); 5124 G1CodeRootSet::purge(); 5125 double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0; 5126 g1_policy()->phase_times()->record_strong_code_root_purge_time(purge_time_ms); 5127 } 5128 5129 class RebuildStrongCodeRootClosure: public CodeBlobClosure { 5130 G1CollectedHeap* _g1h; 5131 5132 public: 5133 RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) : 5134 _g1h(g1h) {} 5135 5136 void do_code_blob(CodeBlob* cb) { 5137 nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL; 5138 if (nm == NULL) { 5139 return; 5140 } 5141 5142 if (ScavengeRootsInCode) { 5143 _g1h->register_nmethod(nm); 5144 } 5145 } 5146 }; 5147 5148 void G1CollectedHeap::rebuild_strong_code_roots() { 5149 RebuildStrongCodeRootClosure blob_cl(this); 5150 CodeCache::blobs_do(&blob_cl); 5151 } 5152 5153 GrowableArray<GCMemoryManager*> G1CollectedHeap::memory_managers() { 5154 GrowableArray<GCMemoryManager*> memory_managers(2); 5155 memory_managers.append(&_memory_manager); 5156 memory_managers.append(&_full_gc_memory_manager); 5157 return memory_managers; 5158 } 5159 5160 GrowableArray<MemoryPool*> G1CollectedHeap::memory_pools() { 5161 GrowableArray<MemoryPool*> memory_pools(3); 5162 memory_pools.append(_eden_pool); 5163 memory_pools.append(_survivor_pool); 5164 memory_pools.append(_old_pool); 5165 return memory_pools; 5166 }