1 /*
2 * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #include "precompiled.hpp"
26 #include "classfile/systemDictionary.hpp"
27 #include "code/codeCache.hpp"
28 #include "code/debugInfoRec.hpp"
29 #include "code/nmethod.hpp"
30 #include "code/pcDesc.hpp"
31 #include "code/scopeDesc.hpp"
32 #include "interpreter/bytecode.hpp"
33 #include "interpreter/interpreter.hpp"
34 #include "interpreter/oopMapCache.hpp"
35 #include "memory/allocation.inline.hpp"
36 #include "memory/oopFactory.hpp"
37 #include "memory/resourceArea.hpp"
38 #include "oops/method.hpp"
39 #include "oops/objArrayOop.inline.hpp"
40 #include "oops/oop.inline.hpp"
41 #include "oops/fieldStreams.hpp"
42 #include "oops/valueKlass.hpp"
43 #include "oops/verifyOopClosure.hpp"
44 #include "prims/jvmtiThreadState.hpp"
45 #include "runtime/biasedLocking.hpp"
46 #include "runtime/compilationPolicy.hpp"
47 #include "runtime/deoptimization.hpp"
48 #include "runtime/interfaceSupport.hpp"
49 #include "runtime/sharedRuntime.hpp"
50 #include "runtime/signature.hpp"
51 #include "runtime/stubRoutines.hpp"
52 #include "runtime/thread.hpp"
53 #include "runtime/vframe.hpp"
54 #include "runtime/vframeArray.hpp"
55 #include "runtime/vframe_hp.hpp"
56 #include "utilities/events.hpp"
57 #include "utilities/xmlstream.hpp"
58
59 #if INCLUDE_JVMCI
60 #include "jvmci/jvmciRuntime.hpp"
61 #include "jvmci/jvmciJavaClasses.hpp"
62 #endif
63
64
65 bool DeoptimizationMarker::_is_active = false;
66
67 Deoptimization::UnrollBlock::UnrollBlock(int size_of_deoptimized_frame,
68 int caller_adjustment,
69 int caller_actual_parameters,
70 int number_of_frames,
71 intptr_t* frame_sizes,
72 address* frame_pcs,
73 BasicType return_type,
74 int exec_mode) {
75 _size_of_deoptimized_frame = size_of_deoptimized_frame;
76 _caller_adjustment = caller_adjustment;
77 _caller_actual_parameters = caller_actual_parameters;
78 _number_of_frames = number_of_frames;
79 _frame_sizes = frame_sizes;
80 _frame_pcs = frame_pcs;
81 _register_block = NEW_C_HEAP_ARRAY(intptr_t, RegisterMap::reg_count * 2, mtCompiler);
82 _return_type = return_type;
83 _initial_info = 0;
84 // PD (x86 only)
85 _counter_temp = 0;
86 _unpack_kind = exec_mode;
87 _sender_sp_temp = 0;
88
89 _total_frame_sizes = size_of_frames();
90 assert(exec_mode >= 0 && exec_mode < Unpack_LIMIT, "Unexpected exec_mode");
91 }
92
93
94 Deoptimization::UnrollBlock::~UnrollBlock() {
95 FREE_C_HEAP_ARRAY(intptr_t, _frame_sizes);
96 FREE_C_HEAP_ARRAY(intptr_t, _frame_pcs);
97 FREE_C_HEAP_ARRAY(intptr_t, _register_block);
98 }
99
100
101 intptr_t* Deoptimization::UnrollBlock::value_addr_at(int register_number) const {
102 assert(register_number < RegisterMap::reg_count, "checking register number");
103 return &_register_block[register_number * 2];
104 }
105
106
107
108 int Deoptimization::UnrollBlock::size_of_frames() const {
109 // Acount first for the adjustment of the initial frame
110 int result = _caller_adjustment;
111 for (int index = 0; index < number_of_frames(); index++) {
112 result += frame_sizes()[index];
113 }
114 return result;
115 }
116
117
118 void Deoptimization::UnrollBlock::print() {
119 ttyLocker ttyl;
120 tty->print_cr("UnrollBlock");
121 tty->print_cr(" size_of_deoptimized_frame = %d", _size_of_deoptimized_frame);
122 tty->print( " frame_sizes: ");
123 for (int index = 0; index < number_of_frames(); index++) {
124 tty->print(INTX_FORMAT " ", frame_sizes()[index]);
125 }
126 tty->cr();
127 }
128
129
130 // In order to make fetch_unroll_info work properly with escape
131 // analysis, The method was changed from JRT_LEAF to JRT_BLOCK_ENTRY and
132 // ResetNoHandleMark and HandleMark were removed from it. The actual reallocation
133 // of previously eliminated objects occurs in realloc_objects, which is
134 // called from the method fetch_unroll_info_helper below.
135 JRT_BLOCK_ENTRY(Deoptimization::UnrollBlock*, Deoptimization::fetch_unroll_info(JavaThread* thread, int exec_mode))
136 // It is actually ok to allocate handles in a leaf method. It causes no safepoints,
137 // but makes the entry a little slower. There is however a little dance we have to
138 // do in debug mode to get around the NoHandleMark code in the JRT_LEAF macro
139
140 // fetch_unroll_info() is called at the beginning of the deoptimization
141 // handler. Note this fact before we start generating temporary frames
142 // that can confuse an asynchronous stack walker. This counter is
143 // decremented at the end of unpack_frames().
144 if (TraceDeoptimization) {
145 tty->print_cr("Deoptimizing thread " INTPTR_FORMAT, p2i(thread));
146 }
147 thread->inc_in_deopt_handler();
148
149 return fetch_unroll_info_helper(thread, exec_mode);
150 JRT_END
151
152
153 // This is factored, since it is both called from a JRT_LEAF (deoptimization) and a JRT_ENTRY (uncommon_trap)
154 Deoptimization::UnrollBlock* Deoptimization::fetch_unroll_info_helper(JavaThread* thread, int exec_mode) {
155
156 // Note: there is a safepoint safety issue here. No matter whether we enter
157 // via vanilla deopt or uncommon trap we MUST NOT stop at a safepoint once
158 // the vframeArray is created.
159 //
160
161 // Allocate our special deoptimization ResourceMark
162 DeoptResourceMark* dmark = new DeoptResourceMark(thread);
163 assert(thread->deopt_mark() == NULL, "Pending deopt!");
164 thread->set_deopt_mark(dmark);
165
166 frame stub_frame = thread->last_frame(); // Makes stack walkable as side effect
167 RegisterMap map(thread, true);
168 RegisterMap dummy_map(thread, false);
169 // Now get the deoptee with a valid map
170 frame deoptee = stub_frame.sender(&map);
171 // Set the deoptee nmethod
172 assert(thread->deopt_nmethod() == NULL, "Pending deopt!");
173 thread->set_deopt_nmethod(deoptee.cb()->as_nmethod_or_null());
174 bool skip_internal = thread->deopt_nmethod() != NULL && !thread->deopt_nmethod()->compiler()->is_jvmci();
175
176 if (VerifyStack) {
177 thread->validate_frame_layout();
178 }
179
180 // Create a growable array of VFrames where each VFrame represents an inlined
181 // Java frame. This storage is allocated with the usual system arena.
182 assert(deoptee.is_compiled_frame(), "Wrong frame type");
183 GrowableArray<compiledVFrame*>* chunk = new GrowableArray<compiledVFrame*>(10);
184 vframe* vf = vframe::new_vframe(&deoptee, &map, thread);
185 while (!vf->is_top()) {
186 assert(vf->is_compiled_frame(), "Wrong frame type");
187 chunk->push(compiledVFrame::cast(vf));
188 vf = vf->sender();
189 }
190 assert(vf->is_compiled_frame(), "Wrong frame type");
191 chunk->push(compiledVFrame::cast(vf));
192
193 ScopeDesc* trap_scope = chunk->at(0)->scope();
194 Handle exceptionObject;
195 if (trap_scope->rethrow_exception()) {
196 if (PrintDeoptimizationDetails) {
197 tty->print_cr("Exception to be rethrown in the interpreter for method %s::%s at bci %d", trap_scope->method()->method_holder()->name()->as_C_string(), trap_scope->method()->name()->as_C_string(), trap_scope->bci());
198 }
199 GrowableArray<ScopeValue*>* expressions = trap_scope->expressions();
200 guarantee(expressions != NULL && expressions->length() > 0, "must have exception to throw");
201 ScopeValue* topOfStack = expressions->top();
202 exceptionObject = StackValue::create_stack_value(&deoptee, &map, topOfStack)->get_obj();
203 assert(exceptionObject() != NULL, "exception oop can not be null");
204 }
205
206 bool realloc_failures = false;
207
208 #if defined(COMPILER2) || INCLUDE_JVMCI
209 // Reallocate the non-escaping objects and restore their fields. Then
210 // relock objects if synchronization on them was eliminated.
211 #ifndef INCLUDE_JVMCI
212 if (DoEscapeAnalysis || EliminateNestedLocks) {
213 if (EliminateAllocations) {
214 #endif // INCLUDE_JVMCI
215 assert (chunk->at(0)->scope() != NULL,"expect only compiled java frames");
216 GrowableArray<ScopeValue*>* objects = chunk->at(0)->scope()->objects();
217
218 // The flag return_oop() indicates call sites which return oop
219 // in compiled code. Such sites include java method calls,
220 // runtime calls (for example, used to allocate new objects/arrays
221 // on slow code path) and any other calls generated in compiled code.
222 // It is not guaranteed that we can get such information here only
223 // by analyzing bytecode in deoptimized frames. This is why this flag
224 // is set during method compilation (see Compile::Process_OopMap_Node()).
225 // If the previous frame was popped, we don't have a result.
226 bool save_oop_result = chunk->at(0)->scope()->return_oop() && !thread->popframe_forcing_deopt_reexecution();
227 Handle return_value;
228 if (save_oop_result) {
229 // Reallocation may trigger GC. If deoptimization happened on return from
230 // call which returns oop we need to save it since it is not in oopmap.
231 oop result = deoptee.saved_oop_result(&map);
232 assert(result == NULL || result->is_oop(), "must be oop");
233 return_value = Handle(thread, result);
234 assert(Universe::heap()->is_in_or_null(result), "must be heap pointer");
235 if (TraceDeoptimization) {
236 ttyLocker ttyl;
237 tty->print_cr("SAVED OOP RESULT " INTPTR_FORMAT " in thread " INTPTR_FORMAT, p2i(result), p2i(thread));
238 }
239 }
240 if (objects != NULL) {
241 JRT_BLOCK
242 realloc_failures = realloc_objects(thread, &deoptee, objects, THREAD);
243 reassign_fields(&deoptee, &map, objects, realloc_failures, skip_internal, THREAD);
244 JRT_END
245 #ifndef PRODUCT
246 if (TraceDeoptimization) {
247 ttyLocker ttyl;
248 tty->print_cr("REALLOC OBJECTS in thread " INTPTR_FORMAT, p2i(thread));
249 print_objects(objects, realloc_failures);
250 }
251 #endif
252 }
253 if (save_oop_result) {
254 // Restore result.
255 deoptee.set_saved_oop_result(&map, return_value());
256 }
257 #ifndef INCLUDE_JVMCI
258 }
259 if (EliminateLocks) {
260 #endif // INCLUDE_JVMCI
261 #ifndef PRODUCT
262 bool first = true;
263 #endif
264 for (int i = 0; i < chunk->length(); i++) {
265 compiledVFrame* cvf = chunk->at(i);
266 assert (cvf->scope() != NULL,"expect only compiled java frames");
267 GrowableArray<MonitorInfo*>* monitors = cvf->monitors();
268 if (monitors->is_nonempty()) {
269 relock_objects(monitors, thread, realloc_failures);
270 #ifndef PRODUCT
271 if (PrintDeoptimizationDetails) {
272 ttyLocker ttyl;
273 for (int j = 0; j < monitors->length(); j++) {
274 MonitorInfo* mi = monitors->at(j);
275 if (mi->eliminated()) {
276 if (first) {
277 first = false;
278 tty->print_cr("RELOCK OBJECTS in thread " INTPTR_FORMAT, p2i(thread));
279 }
280 if (mi->owner_is_scalar_replaced()) {
281 Klass* k = java_lang_Class::as_Klass(mi->owner_klass());
282 tty->print_cr(" failed reallocation for klass %s", k->external_name());
283 } else {
284 tty->print_cr(" object <" INTPTR_FORMAT "> locked", p2i(mi->owner()));
285 }
286 }
287 }
288 }
289 #endif // !PRODUCT
290 }
291 }
292 #ifndef INCLUDE_JVMCI
293 }
294 }
295 #endif // INCLUDE_JVMCI
296 #endif // COMPILER2 || INCLUDE_JVMCI
297
298 // Ensure that no safepoint is taken after pointers have been stored
299 // in fields of rematerialized objects. If a safepoint occurs from here on
300 // out the java state residing in the vframeArray will be missed.
301 NoSafepointVerifier no_safepoint;
302
303 vframeArray* array = create_vframeArray(thread, deoptee, &map, chunk, realloc_failures);
304 #if defined(COMPILER2) || INCLUDE_JVMCI
305 if (realloc_failures) {
306 pop_frames_failed_reallocs(thread, array);
307 }
308 #endif
309
310 assert(thread->vframe_array_head() == NULL, "Pending deopt!");
311 thread->set_vframe_array_head(array);
312
313 // Now that the vframeArray has been created if we have any deferred local writes
314 // added by jvmti then we can free up that structure as the data is now in the
315 // vframeArray
316
317 if (thread->deferred_locals() != NULL) {
318 GrowableArray<jvmtiDeferredLocalVariableSet*>* list = thread->deferred_locals();
319 int i = 0;
320 do {
321 // Because of inlining we could have multiple vframes for a single frame
322 // and several of the vframes could have deferred writes. Find them all.
323 if (list->at(i)->id() == array->original().id()) {
324 jvmtiDeferredLocalVariableSet* dlv = list->at(i);
325 list->remove_at(i);
326 // individual jvmtiDeferredLocalVariableSet are CHeapObj's
327 delete dlv;
328 } else {
329 i++;
330 }
331 } while ( i < list->length() );
332 if (list->length() == 0) {
333 thread->set_deferred_locals(NULL);
334 // free the list and elements back to C heap.
335 delete list;
336 }
337
338 }
339
340 #ifndef SHARK
341 // Compute the caller frame based on the sender sp of stub_frame and stored frame sizes info.
342 CodeBlob* cb = stub_frame.cb();
343 // Verify we have the right vframeArray
344 assert(cb->frame_size() >= 0, "Unexpected frame size");
345 intptr_t* unpack_sp = stub_frame.sp() + cb->frame_size();
346
347 // If the deopt call site is a MethodHandle invoke call site we have
348 // to adjust the unpack_sp.
349 nmethod* deoptee_nm = deoptee.cb()->as_nmethod_or_null();
350 if (deoptee_nm != NULL && deoptee_nm->is_method_handle_return(deoptee.pc()))
351 unpack_sp = deoptee.unextended_sp();
352
353 #ifdef ASSERT
354 assert(cb->is_deoptimization_stub() ||
355 cb->is_uncommon_trap_stub() ||
356 strcmp("Stub<DeoptimizationStub.deoptimizationHandler>", cb->name()) == 0 ||
357 strcmp("Stub<UncommonTrapStub.uncommonTrapHandler>", cb->name()) == 0,
358 "unexpected code blob: %s", cb->name());
359 #endif
360 #else
361 intptr_t* unpack_sp = stub_frame.sender(&dummy_map).unextended_sp();
362 #endif // !SHARK
363
364 // This is a guarantee instead of an assert because if vframe doesn't match
365 // we will unpack the wrong deoptimized frame and wind up in strange places
366 // where it will be very difficult to figure out what went wrong. Better
367 // to die an early death here than some very obscure death later when the
368 // trail is cold.
369 // Note: on ia64 this guarantee can be fooled by frames with no memory stack
370 // in that it will fail to detect a problem when there is one. This needs
371 // more work in tiger timeframe.
372 guarantee(array->unextended_sp() == unpack_sp, "vframe_array_head must contain the vframeArray to unpack");
373
374 int number_of_frames = array->frames();
375
376 // Compute the vframes' sizes. Note that frame_sizes[] entries are ordered from outermost to innermost
377 // virtual activation, which is the reverse of the elements in the vframes array.
378 intptr_t* frame_sizes = NEW_C_HEAP_ARRAY(intptr_t, number_of_frames, mtCompiler);
379 // +1 because we always have an interpreter return address for the final slot.
380 address* frame_pcs = NEW_C_HEAP_ARRAY(address, number_of_frames + 1, mtCompiler);
381 int popframe_extra_args = 0;
382 // Create an interpreter return address for the stub to use as its return
383 // address so the skeletal frames are perfectly walkable
384 frame_pcs[number_of_frames] = Interpreter::deopt_entry(vtos, 0);
385
386 // PopFrame requires that the preserved incoming arguments from the recently-popped topmost
387 // activation be put back on the expression stack of the caller for reexecution
388 if (JvmtiExport::can_pop_frame() && thread->popframe_forcing_deopt_reexecution()) {
389 popframe_extra_args = in_words(thread->popframe_preserved_args_size_in_words());
390 }
391
392 // Find the current pc for sender of the deoptee. Since the sender may have been deoptimized
393 // itself since the deoptee vframeArray was created we must get a fresh value of the pc rather
394 // than simply use array->sender.pc(). This requires us to walk the current set of frames
395 //
396 frame deopt_sender = stub_frame.sender(&dummy_map); // First is the deoptee frame
397 deopt_sender = deopt_sender.sender(&dummy_map); // Now deoptee caller
398
399 // It's possible that the number of parameters at the call site is
400 // different than number of arguments in the callee when method
401 // handles are used. If the caller is interpreted get the real
402 // value so that the proper amount of space can be added to it's
403 // frame.
404 bool caller_was_method_handle = false;
405 if (deopt_sender.is_interpreted_frame()) {
406 methodHandle method = deopt_sender.interpreter_frame_method();
407 Bytecode_invoke cur = Bytecode_invoke_check(method, deopt_sender.interpreter_frame_bci());
408 if (cur.is_invokedynamic() || cur.is_invokehandle()) {
409 // Method handle invokes may involve fairly arbitrary chains of
410 // calls so it's impossible to know how much actual space the
411 // caller has for locals.
412 caller_was_method_handle = true;
413 }
414 }
415
416 //
417 // frame_sizes/frame_pcs[0] oldest frame (int or c2i)
418 // frame_sizes/frame_pcs[1] next oldest frame (int)
419 // frame_sizes/frame_pcs[n] youngest frame (int)
420 //
421 // Now a pc in frame_pcs is actually the return address to the frame's caller (a frame
422 // owns the space for the return address to it's caller). Confusing ain't it.
423 //
424 // The vframe array can address vframes with indices running from
425 // 0.._frames-1. Index 0 is the youngest frame and _frame - 1 is the oldest (root) frame.
426 // When we create the skeletal frames we need the oldest frame to be in the zero slot
427 // in the frame_sizes/frame_pcs so the assembly code can do a trivial walk.
428 // so things look a little strange in this loop.
429 //
430 int callee_parameters = 0;
431 int callee_locals = 0;
432 for (int index = 0; index < array->frames(); index++ ) {
433 // frame[number_of_frames - 1 ] = on_stack_size(youngest)
434 // frame[number_of_frames - 2 ] = on_stack_size(sender(youngest))
435 // frame[number_of_frames - 3 ] = on_stack_size(sender(sender(youngest)))
436 frame_sizes[number_of_frames - 1 - index] = BytesPerWord * array->element(index)->on_stack_size(callee_parameters,
437 callee_locals,
438 index == 0,
439 popframe_extra_args);
440 // This pc doesn't have to be perfect just good enough to identify the frame
441 // as interpreted so the skeleton frame will be walkable
442 // The correct pc will be set when the skeleton frame is completely filled out
443 // The final pc we store in the loop is wrong and will be overwritten below
444 frame_pcs[number_of_frames - 1 - index ] = Interpreter::deopt_entry(vtos, 0) - frame::pc_return_offset;
445
446 callee_parameters = array->element(index)->method()->size_of_parameters();
447 callee_locals = array->element(index)->method()->max_locals();
448 popframe_extra_args = 0;
449 }
450
451 // Compute whether the root vframe returns a float or double value.
452 BasicType return_type;
453 {
454 HandleMark hm;
455 methodHandle method(thread, array->element(0)->method());
456 Bytecode_invoke invoke = Bytecode_invoke_check(method, array->element(0)->bci());
457 return_type = invoke.is_valid() ? invoke.result_type() : T_ILLEGAL;
458 }
459
460 // Compute information for handling adapters and adjusting the frame size of the caller.
461 int caller_adjustment = 0;
462
463 // Compute the amount the oldest interpreter frame will have to adjust
464 // its caller's stack by. If the caller is a compiled frame then
465 // we pretend that the callee has no parameters so that the
466 // extension counts for the full amount of locals and not just
467 // locals-parms. This is because without a c2i adapter the parm
468 // area as created by the compiled frame will not be usable by
469 // the interpreter. (Depending on the calling convention there
470 // may not even be enough space).
471
472 // QQQ I'd rather see this pushed down into last_frame_adjust
473 // and have it take the sender (aka caller).
474
475 if (deopt_sender.is_compiled_frame() || caller_was_method_handle) {
476 caller_adjustment = last_frame_adjust(0, callee_locals);
477 } else if (callee_locals > callee_parameters) {
478 // The caller frame may need extending to accommodate
479 // non-parameter locals of the first unpacked interpreted frame.
480 // Compute that adjustment.
481 caller_adjustment = last_frame_adjust(callee_parameters, callee_locals);
482 }
483
484 // If the sender is deoptimized the we must retrieve the address of the handler
485 // since the frame will "magically" show the original pc before the deopt
486 // and we'd undo the deopt.
487
488 frame_pcs[0] = deopt_sender.raw_pc();
489
490 #ifndef SHARK
491 assert(CodeCache::find_blob_unsafe(frame_pcs[0]) != NULL, "bad pc");
492 #endif // SHARK
493
494 #ifdef INCLUDE_JVMCI
495 if (exceptionObject() != NULL) {
496 thread->set_exception_oop(exceptionObject());
497 exec_mode = Unpack_exception;
498 }
499 #endif
500
501 UnrollBlock* info = new UnrollBlock(array->frame_size() * BytesPerWord,
502 caller_adjustment * BytesPerWord,
503 caller_was_method_handle ? 0 : callee_parameters,
504 number_of_frames,
505 frame_sizes,
506 frame_pcs,
507 return_type,
508 exec_mode);
509 // On some platforms, we need a way to pass some platform dependent
510 // information to the unpacking code so the skeletal frames come out
511 // correct (initial fp value, unextended sp, ...)
512 info->set_initial_info((intptr_t) array->sender().initial_deoptimization_info());
513
514 if (array->frames() > 1) {
515 if (VerifyStack && TraceDeoptimization) {
516 ttyLocker ttyl;
517 tty->print_cr("Deoptimizing method containing inlining");
518 }
519 }
520
521 array->set_unroll_block(info);
522 return info;
523 }
524
525 // Called to cleanup deoptimization data structures in normal case
526 // after unpacking to stack and when stack overflow error occurs
527 void Deoptimization::cleanup_deopt_info(JavaThread *thread,
528 vframeArray *array) {
529
530 // Get array if coming from exception
531 if (array == NULL) {
532 array = thread->vframe_array_head();
533 }
534 thread->set_vframe_array_head(NULL);
535
536 // Free the previous UnrollBlock
537 vframeArray* old_array = thread->vframe_array_last();
538 thread->set_vframe_array_last(array);
539
540 if (old_array != NULL) {
541 UnrollBlock* old_info = old_array->unroll_block();
542 old_array->set_unroll_block(NULL);
543 delete old_info;
544 delete old_array;
545 }
546
547 // Deallocate any resource creating in this routine and any ResourceObjs allocated
548 // inside the vframeArray (StackValueCollections)
549
550 delete thread->deopt_mark();
551 thread->set_deopt_mark(NULL);
552 thread->set_deopt_nmethod(NULL);
553
554
555 if (JvmtiExport::can_pop_frame()) {
556 #ifndef CC_INTERP
557 // Regardless of whether we entered this routine with the pending
558 // popframe condition bit set, we should always clear it now
559 thread->clear_popframe_condition();
560 #else
561 // C++ interpreter will clear has_pending_popframe when it enters
562 // with method_resume. For deopt_resume2 we clear it now.
563 if (thread->popframe_forcing_deopt_reexecution())
564 thread->clear_popframe_condition();
565 #endif /* CC_INTERP */
566 }
567
568 // unpack_frames() is called at the end of the deoptimization handler
569 // and (in C2) at the end of the uncommon trap handler. Note this fact
570 // so that an asynchronous stack walker can work again. This counter is
571 // incremented at the beginning of fetch_unroll_info() and (in C2) at
572 // the beginning of uncommon_trap().
573 thread->dec_in_deopt_handler();
574 }
575
576 // Moved from cpu directories because none of the cpus has callee save values.
577 // If a cpu implements callee save values, move this to deoptimization_<cpu>.cpp.
578 void Deoptimization::unwind_callee_save_values(frame* f, vframeArray* vframe_array) {
579
580 // This code is sort of the equivalent of C2IAdapter::setup_stack_frame back in
581 // the days we had adapter frames. When we deoptimize a situation where a
582 // compiled caller calls a compiled caller will have registers it expects
583 // to survive the call to the callee. If we deoptimize the callee the only
584 // way we can restore these registers is to have the oldest interpreter
585 // frame that we create restore these values. That is what this routine
586 // will accomplish.
587
588 // At the moment we have modified c2 to not have any callee save registers
589 // so this problem does not exist and this routine is just a place holder.
590
591 assert(f->is_interpreted_frame(), "must be interpreted");
592 }
593
594 // Return BasicType of value being returned
595 JRT_LEAF(BasicType, Deoptimization::unpack_frames(JavaThread* thread, int exec_mode))
596
597 // We are already active int he special DeoptResourceMark any ResourceObj's we
598 // allocate will be freed at the end of the routine.
599
600 // It is actually ok to allocate handles in a leaf method. It causes no safepoints,
601 // but makes the entry a little slower. There is however a little dance we have to
602 // do in debug mode to get around the NoHandleMark code in the JRT_LEAF macro
603 ResetNoHandleMark rnhm; // No-op in release/product versions
604 HandleMark hm;
605
606 frame stub_frame = thread->last_frame();
607
608 // Since the frame to unpack is the top frame of this thread, the vframe_array_head
609 // must point to the vframeArray for the unpack frame.
610 vframeArray* array = thread->vframe_array_head();
611
612 #ifndef PRODUCT
613 if (TraceDeoptimization) {
614 ttyLocker ttyl;
615 tty->print_cr("DEOPT UNPACKING thread " INTPTR_FORMAT " vframeArray " INTPTR_FORMAT " mode %d",
616 p2i(thread), p2i(array), exec_mode);
617 }
618 #endif
619 Events::log(thread, "DEOPT UNPACKING pc=" INTPTR_FORMAT " sp=" INTPTR_FORMAT " mode %d",
620 p2i(stub_frame.pc()), p2i(stub_frame.sp()), exec_mode);
621
622 UnrollBlock* info = array->unroll_block();
623
624 // Unpack the interpreter frames and any adapter frame (c2 only) we might create.
625 array->unpack_to_stack(stub_frame, exec_mode, info->caller_actual_parameters());
626
627 BasicType bt = info->return_type();
628
629 // If we have an exception pending, claim that the return type is an oop
630 // so the deopt_blob does not overwrite the exception_oop.
631
632 if (exec_mode == Unpack_exception)
633 bt = T_OBJECT;
634
635 // Cleanup thread deopt data
636 cleanup_deopt_info(thread, array);
637
638 #ifndef PRODUCT
639 if (VerifyStack) {
640 ResourceMark res_mark;
641
642 thread->validate_frame_layout();
643
644 // Verify that the just-unpacked frames match the interpreter's
645 // notions of expression stack and locals
646 vframeArray* cur_array = thread->vframe_array_last();
647 RegisterMap rm(thread, false);
648 rm.set_include_argument_oops(false);
649 bool is_top_frame = true;
650 int callee_size_of_parameters = 0;
651 int callee_max_locals = 0;
652 for (int i = 0; i < cur_array->frames(); i++) {
653 vframeArrayElement* el = cur_array->element(i);
654 frame* iframe = el->iframe();
655 guarantee(iframe->is_interpreted_frame(), "Wrong frame type");
656
657 // Get the oop map for this bci
658 InterpreterOopMap mask;
659 int cur_invoke_parameter_size = 0;
660 bool try_next_mask = false;
661 int next_mask_expression_stack_size = -1;
662 int top_frame_expression_stack_adjustment = 0;
663 methodHandle mh(thread, iframe->interpreter_frame_method());
664 OopMapCache::compute_one_oop_map(mh, iframe->interpreter_frame_bci(), &mask);
665 BytecodeStream str(mh);
666 str.set_start(iframe->interpreter_frame_bci());
667 int max_bci = mh->code_size();
668 // Get to the next bytecode if possible
669 assert(str.bci() < max_bci, "bci in interpreter frame out of bounds");
670 // Check to see if we can grab the number of outgoing arguments
671 // at an uncommon trap for an invoke (where the compiler
672 // generates debug info before the invoke has executed)
673 Bytecodes::Code cur_code = str.next();
674 if (cur_code == Bytecodes::_invokevirtual ||
675 cur_code == Bytecodes::_invokedirect ||
676 cur_code == Bytecodes::_invokespecial ||
677 cur_code == Bytecodes::_invokestatic ||
678 cur_code == Bytecodes::_invokeinterface ||
679 cur_code == Bytecodes::_invokedynamic) {
680 Bytecode_invoke invoke(mh, iframe->interpreter_frame_bci());
681 Symbol* signature = invoke.signature();
682 ArgumentSizeComputer asc(signature);
683 cur_invoke_parameter_size = asc.size();
684 if (invoke.has_receiver()) {
685 // Add in receiver
686 ++cur_invoke_parameter_size;
687 }
688 if (i != 0 && !invoke.is_invokedynamic() && MethodHandles::has_member_arg(invoke.klass(), invoke.name())) {
689 callee_size_of_parameters++;
690 }
691 }
692 if (str.bci() < max_bci) {
693 Bytecodes::Code bc = str.next();
694 if (bc >= 0) {
695 // The interpreter oop map generator reports results before
696 // the current bytecode has executed except in the case of
697 // calls. It seems to be hard to tell whether the compiler
698 // has emitted debug information matching the "state before"
699 // a given bytecode or the state after, so we try both
700 switch (cur_code) {
701 case Bytecodes::_invokevirtual:
702 case Bytecodes::_invokedirect:
703 case Bytecodes::_invokespecial:
704 case Bytecodes::_invokestatic:
705 case Bytecodes::_invokeinterface:
706 case Bytecodes::_invokedynamic:
707 case Bytecodes::_athrow:
708 break;
709 default: {
710 InterpreterOopMap next_mask;
711 OopMapCache::compute_one_oop_map(mh, str.bci(), &next_mask);
712 next_mask_expression_stack_size = next_mask.expression_stack_size();
713 // Need to subtract off the size of the result type of
714 // the bytecode because this is not described in the
715 // debug info but returned to the interpreter in the TOS
716 // caching register
717 BasicType bytecode_result_type = Bytecodes::result_type(cur_code);
718 if (bytecode_result_type != T_ILLEGAL) {
719 top_frame_expression_stack_adjustment = type2size[bytecode_result_type];
720 }
721 assert(top_frame_expression_stack_adjustment >= 0, "");
722 try_next_mask = true;
723 break;
724 }
725 }
726 }
727 }
728
729 // Verify stack depth and oops in frame
730 // This assertion may be dependent on the platform we're running on and may need modification (tested on x86 and sparc)
731 if (!(
732 /* SPARC */
733 (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_size_of_parameters) ||
734 /* x86 */
735 (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_max_locals) ||
736 (try_next_mask &&
737 (iframe->interpreter_frame_expression_stack_size() == (next_mask_expression_stack_size -
738 top_frame_expression_stack_adjustment))) ||
739 (is_top_frame && (exec_mode == Unpack_exception) && iframe->interpreter_frame_expression_stack_size() == 0) ||
740 (is_top_frame && (exec_mode == Unpack_uncommon_trap || exec_mode == Unpack_reexecute || el->should_reexecute()) &&
741 (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + cur_invoke_parameter_size))
742 )) {
743 ttyLocker ttyl;
744
745 // Print out some information that will help us debug the problem
746 tty->print_cr("Wrong number of expression stack elements during deoptimization");
747 tty->print_cr(" Error occurred while verifying frame %d (0..%d, 0 is topmost)", i, cur_array->frames() - 1);
748 tty->print_cr(" Fabricated interpreter frame had %d expression stack elements",
749 iframe->interpreter_frame_expression_stack_size());
750 tty->print_cr(" Interpreter oop map had %d expression stack elements", mask.expression_stack_size());
751 tty->print_cr(" try_next_mask = %d", try_next_mask);
752 tty->print_cr(" next_mask_expression_stack_size = %d", next_mask_expression_stack_size);
753 tty->print_cr(" callee_size_of_parameters = %d", callee_size_of_parameters);
754 tty->print_cr(" callee_max_locals = %d", callee_max_locals);
755 tty->print_cr(" top_frame_expression_stack_adjustment = %d", top_frame_expression_stack_adjustment);
756 tty->print_cr(" exec_mode = %d", exec_mode);
757 tty->print_cr(" cur_invoke_parameter_size = %d", cur_invoke_parameter_size);
758 tty->print_cr(" Thread = " INTPTR_FORMAT ", thread ID = %d", p2i(thread), thread->osthread()->thread_id());
759 tty->print_cr(" Interpreted frames:");
760 for (int k = 0; k < cur_array->frames(); k++) {
761 vframeArrayElement* el = cur_array->element(k);
762 tty->print_cr(" %s (bci %d)", el->method()->name_and_sig_as_C_string(), el->bci());
763 }
764 cur_array->print_on_2(tty);
765 guarantee(false, "wrong number of expression stack elements during deopt");
766 }
767 VerifyOopClosure verify;
768 iframe->oops_interpreted_do(&verify, NULL, &rm, false);
769 callee_size_of_parameters = mh->size_of_parameters();
770 callee_max_locals = mh->max_locals();
771 is_top_frame = false;
772 }
773 }
774 #endif /* !PRODUCT */
775
776
777 return bt;
778 JRT_END
779
780
781 int Deoptimization::deoptimize_dependents() {
782 Threads::deoptimized_wrt_marked_nmethods();
783 return 0;
784 }
785
786 Deoptimization::DeoptAction Deoptimization::_unloaded_action
787 = Deoptimization::Action_reinterpret;
788
789 #if defined(COMPILER2) || INCLUDE_JVMCI
790 bool Deoptimization::realloc_objects(JavaThread* thread, frame* fr, GrowableArray<ScopeValue*>* objects, TRAPS) {
791 Handle pending_exception(thread->pending_exception());
792 const char* exception_file = thread->exception_file();
793 int exception_line = thread->exception_line();
794 thread->clear_pending_exception();
795
796 bool failures = false;
797
798 for (int i = 0; i < objects->length(); i++) {
799 assert(objects->at(i)->is_object(), "invalid debug information");
800 ObjectValue* sv = (ObjectValue*) objects->at(i);
801
802 KlassHandle k(java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()()));
803 oop obj = NULL;
804
805 if (k->is_instance_klass()) {
806 InstanceKlass* ik = InstanceKlass::cast(k());
807 obj = ik->allocate_instance(THREAD);
808 } else if (k->is_typeArray_klass()) {
809 TypeArrayKlass* ak = TypeArrayKlass::cast(k());
810 assert(sv->field_size() % type2size[ak->element_type()] == 0, "non-integral array length");
811 int len = sv->field_size() / type2size[ak->element_type()];
812 obj = ak->allocate(len, THREAD);
813 } else if (k->is_objArray_klass()) {
814 ObjArrayKlass* ak = ObjArrayKlass::cast(k());
815 obj = ak->allocate(sv->field_size(), THREAD);
816 }
817
818 if (obj == NULL) {
819 failures = true;
820 }
821
822 assert(sv->value().is_null(), "redundant reallocation");
823 assert(obj != NULL || HAS_PENDING_EXCEPTION, "allocation should succeed or we should get an exception");
824 CLEAR_PENDING_EXCEPTION;
825 sv->set_value(obj);
826 }
827
828 if (failures) {
829 THROW_OOP_(Universe::out_of_memory_error_realloc_objects(), failures);
830 } else if (pending_exception.not_null()) {
831 thread->set_pending_exception(pending_exception(), exception_file, exception_line);
832 }
833
834 return failures;
835 }
836
837 // restore elements of an eliminated type array
838 void Deoptimization::reassign_type_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, typeArrayOop obj, BasicType type) {
839 int index = 0;
840 intptr_t val;
841
842 for (int i = 0; i < sv->field_size(); i++) {
843 StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i));
844 switch(type) {
845 case T_LONG: case T_DOUBLE: {
846 assert(value->type() == T_INT, "Agreement.");
847 StackValue* low =
848 StackValue::create_stack_value(fr, reg_map, sv->field_at(++i));
849 #ifdef _LP64
850 jlong res = (jlong)low->get_int();
851 #else
852 #ifdef SPARC
853 // For SPARC we have to swap high and low words.
854 jlong res = jlong_from((jint)low->get_int(), (jint)value->get_int());
855 #else
856 jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int());
857 #endif //SPARC
858 #endif
859 obj->long_at_put(index, res);
860 break;
861 }
862
863 // Have to cast to INT (32 bits) pointer to avoid little/big-endian problem.
864 case T_INT: case T_FLOAT: { // 4 bytes.
865 assert(value->type() == T_INT, "Agreement.");
866 bool big_value = false;
867 if (i + 1 < sv->field_size() && type == T_INT) {
868 if (sv->field_at(i)->is_location()) {
869 Location::Type type = ((LocationValue*) sv->field_at(i))->location().type();
870 if (type == Location::dbl || type == Location::lng) {
871 big_value = true;
872 }
873 } else if (sv->field_at(i)->is_constant_int()) {
874 ScopeValue* next_scope_field = sv->field_at(i + 1);
875 if (next_scope_field->is_constant_long() || next_scope_field->is_constant_double()) {
876 big_value = true;
877 }
878 }
879 }
880
881 if (big_value) {
882 StackValue* low = StackValue::create_stack_value(fr, reg_map, sv->field_at(++i));
883 #ifdef _LP64
884 jlong res = (jlong)low->get_int();
885 #else
886 #ifdef SPARC
887 // For SPARC we have to swap high and low words.
888 jlong res = jlong_from((jint)low->get_int(), (jint)value->get_int());
889 #else
890 jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int());
891 #endif //SPARC
892 #endif
893 obj->int_at_put(index, (jint)*((jint*)&res));
894 obj->int_at_put(++index, (jint)*(((jint*)&res) + 1));
895 } else {
896 val = value->get_int();
897 obj->int_at_put(index, (jint)*((jint*)&val));
898 }
899 break;
900 }
901
902 case T_SHORT: case T_CHAR: // 2 bytes
903 assert(value->type() == T_INT, "Agreement.");
904 val = value->get_int();
905 obj->short_at_put(index, (jshort)*((jint*)&val));
906 break;
907
908 case T_BOOLEAN: case T_BYTE: // 1 byte
909 assert(value->type() == T_INT, "Agreement.");
910 val = value->get_int();
911 obj->bool_at_put(index, (jboolean)*((jint*)&val));
912 break;
913
914 default:
915 ShouldNotReachHere();
916 }
917 index++;
918 }
919 }
920
921
922 // restore fields of an eliminated object array
923 void Deoptimization::reassign_object_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, objArrayOop obj) {
924 for (int i = 0; i < sv->field_size(); i++) {
925 StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i));
926 assert(value->type() == T_OBJECT, "object element expected");
927 obj->obj_at_put(i, value->get_obj()());
928 }
929 }
930
931 class ReassignedField {
932 public:
933 int _offset;
934 BasicType _type;
935 InstanceKlass* _klass;
936 public:
937 ReassignedField() {
938 _offset = 0;
939 _type = T_ILLEGAL;
940 _klass = NULL;
941 }
942 };
943
944 int compare(ReassignedField* left, ReassignedField* right) {
945 return left->_offset - right->_offset;
946 }
947
948 // Restore fields of an eliminated instance object using the same field order
949 // returned by HotSpotResolvedObjectTypeImpl.getInstanceFields(true)
950 static int reassign_fields_by_klass(InstanceKlass* klass, frame* fr, RegisterMap* reg_map, ObjectValue* sv, int svIndex, oop obj, bool skip_internal, int base_offset, TRAPS) {
951 if (klass->superklass() != NULL) {
952 svIndex = reassign_fields_by_klass(klass->superklass(), fr, reg_map, sv, svIndex, obj, skip_internal, 0, CHECK_0);
953 }
954
955 GrowableArray<ReassignedField>* fields = new GrowableArray<ReassignedField>();
956 for (AllFieldStream fs(klass); !fs.done(); fs.next()) {
957 if (!fs.access_flags().is_static() && (!skip_internal || !fs.access_flags().is_internal())) {
958 ReassignedField field;
959 field._offset = fs.offset();
960 field._type = FieldType::basic_type(fs.signature());
961 if (field._type == T_VALUETYPE) {
962 // Resolve klass of flattened value type field
963 SignatureStream ss(fs.signature(), false);
964 Klass* vk = ss.as_klass(Handle(klass->class_loader()), Handle(klass->protection_domain()), SignatureStream::NCDFError, CHECK_0);
965 assert(vk->is_value(), "must be a ValueKlass");
966 field._klass = InstanceKlass::cast(vk);
967 }
968 fields->append(field);
969 }
970 }
971 fields->sort(compare);
972 for (int i = 0; i < fields->length(); i++) {
973 intptr_t val;
974 ScopeValue* scope_field = sv->field_at(svIndex);
975 StackValue* value = StackValue::create_stack_value(fr, reg_map, scope_field);
976 int offset = base_offset + fields->at(i)._offset;
977 BasicType type = fields->at(i)._type;
978 switch (type) {
979 case T_OBJECT: case T_ARRAY:
980 assert(value->type() == T_OBJECT, "Agreement.");
981 obj->obj_field_put(offset, value->get_obj()());
982 break;
983
984 case T_VALUETYPE: {
985 // Recursively re-assign flattened value type fields
986 InstanceKlass* vk = fields->at(i)._klass;
987 assert(vk != NULL, "must be resolved");
988 offset -= ValueKlass::cast(vk)->first_field_offset(); // Adjust offset to omit oop header
989 svIndex = reassign_fields_by_klass(vk, fr, reg_map, sv, svIndex, obj, skip_internal, offset, CHECK_0);
990 continue; // Continue because we don't need to increment svIndex
991 }
992
993 // Have to cast to INT (32 bits) pointer to avoid little/big-endian problem.
994 case T_INT: case T_FLOAT: { // 4 bytes.
995 assert(value->type() == T_INT, "Agreement.");
996 bool big_value = false;
997 if (i+1 < fields->length() && fields->at(i+1)._type == T_INT) {
998 if (scope_field->is_location()) {
999 Location::Type type = ((LocationValue*) scope_field)->location().type();
1000 if (type == Location::dbl || type == Location::lng) {
1001 big_value = true;
1002 }
1003 }
1004 if (scope_field->is_constant_int()) {
1005 ScopeValue* next_scope_field = sv->field_at(svIndex + 1);
1006 if (next_scope_field->is_constant_long() || next_scope_field->is_constant_double()) {
1007 big_value = true;
1008 }
1009 }
1010 }
1011
1012 if (big_value) {
1013 i++;
1014 assert(i < fields->length(), "second T_INT field needed");
1015 assert(fields->at(i)._type == T_INT, "T_INT field needed");
1016 } else {
1017 val = value->get_int();
1018 obj->int_field_put(offset, (jint)*((jint*)&val));
1019 break;
1020 }
1021 }
1022 /* no break */
1023
1024 case T_LONG: case T_DOUBLE: {
1025 assert(value->type() == T_INT, "Agreement.");
1026 StackValue* low = StackValue::create_stack_value(fr, reg_map, sv->field_at(++svIndex));
1027 #ifdef _LP64
1028 jlong res = (jlong)low->get_int();
1029 #else
1030 #ifdef SPARC
1031 // For SPARC we have to swap high and low words.
1032 jlong res = jlong_from((jint)low->get_int(), (jint)value->get_int());
1033 #else
1034 jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int());
1035 #endif //SPARC
1036 #endif
1037 obj->long_field_put(offset, res);
1038 break;
1039 }
1040
1041 case T_SHORT: case T_CHAR: // 2 bytes
1042 assert(value->type() == T_INT, "Agreement.");
1043 val = value->get_int();
1044 obj->short_field_put(offset, (jshort)*((jint*)&val));
1045 break;
1046
1047 case T_BOOLEAN: case T_BYTE: // 1 byte
1048 assert(value->type() == T_INT, "Agreement.");
1049 val = value->get_int();
1050 obj->bool_field_put(offset, (jboolean)*((jint*)&val));
1051 break;
1052
1053 default:
1054 ShouldNotReachHere();
1055 }
1056 svIndex++;
1057 }
1058 return svIndex;
1059 }
1060
1061 // restore fields of all eliminated objects and arrays
1062 void Deoptimization::reassign_fields(frame* fr, RegisterMap* reg_map, GrowableArray<ScopeValue*>* objects, bool realloc_failures, bool skip_internal, TRAPS) {
1063 for (int i = 0; i < objects->length(); i++) {
1064 ObjectValue* sv = (ObjectValue*) objects->at(i);
1065 KlassHandle k(java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()()));
1066 Handle obj = sv->value();
1067 assert(obj.not_null() || realloc_failures, "reallocation was missed");
1068 if (PrintDeoptimizationDetails) {
1069 tty->print_cr("reassign fields for object of type %s!", k->name()->as_C_string());
1070 }
1071 if (obj.is_null()) {
1072 continue;
1073 }
1074
1075 if (k->is_instance_klass()) {
1076 InstanceKlass* ik = InstanceKlass::cast(k());
1077 reassign_fields_by_klass(ik, fr, reg_map, sv, 0, obj(), skip_internal, 0, CHECK);
1078 } else if (k->is_typeArray_klass()) {
1079 TypeArrayKlass* ak = TypeArrayKlass::cast(k());
1080 reassign_type_array_elements(fr, reg_map, sv, (typeArrayOop) obj(), ak->element_type());
1081 } else if (k->is_objArray_klass()) {
1082 reassign_object_array_elements(fr, reg_map, sv, (objArrayOop) obj());
1083 }
1084 }
1085 }
1086
1087
1088 // relock objects for which synchronization was eliminated
1089 void Deoptimization::relock_objects(GrowableArray<MonitorInfo*>* monitors, JavaThread* thread, bool realloc_failures) {
1090 for (int i = 0; i < monitors->length(); i++) {
1091 MonitorInfo* mon_info = monitors->at(i);
1092 if (mon_info->eliminated()) {
1093 assert(!mon_info->owner_is_scalar_replaced() || realloc_failures, "reallocation was missed");
1094 if (!mon_info->owner_is_scalar_replaced()) {
1095 Handle obj = Handle(mon_info->owner());
1096 markOop mark = obj->mark();
1097 if (UseBiasedLocking && mark->has_bias_pattern()) {
1098 // New allocated objects may have the mark set to anonymously biased.
1099 // Also the deoptimized method may called methods with synchronization
1100 // where the thread-local object is bias locked to the current thread.
1101 assert(mark->is_biased_anonymously() ||
1102 mark->biased_locker() == thread, "should be locked to current thread");
1103 // Reset mark word to unbiased prototype.
1104 markOop unbiased_prototype = markOopDesc::prototype()->set_age(mark->age());
1105 obj->set_mark(unbiased_prototype);
1106 }
1107 BasicLock* lock = mon_info->lock();
1108 ObjectSynchronizer::slow_enter(obj, lock, thread);
1109 assert(mon_info->owner()->is_locked(), "object must be locked now");
1110 }
1111 }
1112 }
1113 }
1114
1115
1116 #ifndef PRODUCT
1117 // print information about reallocated objects
1118 void Deoptimization::print_objects(GrowableArray<ScopeValue*>* objects, bool realloc_failures) {
1119 fieldDescriptor fd;
1120
1121 for (int i = 0; i < objects->length(); i++) {
1122 ObjectValue* sv = (ObjectValue*) objects->at(i);
1123 KlassHandle k(java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()()));
1124 Handle obj = sv->value();
1125
1126 tty->print(" object <" INTPTR_FORMAT "> of type ", p2i(sv->value()()));
1127 k->print_value();
1128 assert(obj.not_null() || realloc_failures, "reallocation was missed");
1129 if (obj.is_null()) {
1130 tty->print(" allocation failed");
1131 } else {
1132 tty->print(" allocated (%d bytes)", obj->size() * HeapWordSize);
1133 }
1134 tty->cr();
1135
1136 if (Verbose && !obj.is_null()) {
1137 k->oop_print_on(obj(), tty);
1138 }
1139 }
1140 }
1141 #endif
1142 #endif // COMPILER2 || INCLUDE_JVMCI
1143
1144 vframeArray* Deoptimization::create_vframeArray(JavaThread* thread, frame fr, RegisterMap *reg_map, GrowableArray<compiledVFrame*>* chunk, bool realloc_failures) {
1145 Events::log(thread, "DEOPT PACKING pc=" INTPTR_FORMAT " sp=" INTPTR_FORMAT, p2i(fr.pc()), p2i(fr.sp()));
1146
1147 #ifndef PRODUCT
1148 if (PrintDeoptimizationDetails) {
1149 ttyLocker ttyl;
1150 tty->print("DEOPT PACKING thread " INTPTR_FORMAT " ", p2i(thread));
1151 fr.print_on(tty);
1152 tty->print_cr(" Virtual frames (innermost first):");
1153 for (int index = 0; index < chunk->length(); index++) {
1154 compiledVFrame* vf = chunk->at(index);
1155 tty->print(" %2d - ", index);
1156 vf->print_value();
1157 int bci = chunk->at(index)->raw_bci();
1158 const char* code_name;
1159 if (bci == SynchronizationEntryBCI) {
1160 code_name = "sync entry";
1161 } else {
1162 Bytecodes::Code code = vf->method()->code_at(bci);
1163 code_name = Bytecodes::name(code);
1164 }
1165 tty->print(" - %s", code_name);
1166 tty->print_cr(" @ bci %d ", bci);
1167 if (Verbose) {
1168 vf->print();
1169 tty->cr();
1170 }
1171 }
1172 }
1173 #endif
1174
1175 // Register map for next frame (used for stack crawl). We capture
1176 // the state of the deopt'ing frame's caller. Thus if we need to
1177 // stuff a C2I adapter we can properly fill in the callee-save
1178 // register locations.
1179 frame caller = fr.sender(reg_map);
1180 int frame_size = caller.sp() - fr.sp();
1181
1182 frame sender = caller;
1183
1184 // Since the Java thread being deoptimized will eventually adjust it's own stack,
1185 // the vframeArray containing the unpacking information is allocated in the C heap.
1186 // For Compiler1, the caller of the deoptimized frame is saved for use by unpack_frames().
1187 vframeArray* array = vframeArray::allocate(thread, frame_size, chunk, reg_map, sender, caller, fr, realloc_failures);
1188
1189 // Compare the vframeArray to the collected vframes
1190 assert(array->structural_compare(thread, chunk), "just checking");
1191
1192 #ifndef PRODUCT
1193 if (PrintDeoptimizationDetails) {
1194 ttyLocker ttyl;
1195 tty->print_cr(" Created vframeArray " INTPTR_FORMAT, p2i(array));
1196 }
1197 #endif // PRODUCT
1198
1199 return array;
1200 }
1201
1202 #if defined(COMPILER2) || INCLUDE_JVMCI
1203 void Deoptimization::pop_frames_failed_reallocs(JavaThread* thread, vframeArray* array) {
1204 // Reallocation of some scalar replaced objects failed. Record
1205 // that we need to pop all the interpreter frames for the
1206 // deoptimized compiled frame.
1207 assert(thread->frames_to_pop_failed_realloc() == 0, "missed frames to pop?");
1208 thread->set_frames_to_pop_failed_realloc(array->frames());
1209 // Unlock all monitors here otherwise the interpreter will see a
1210 // mix of locked and unlocked monitors (because of failed
1211 // reallocations of synchronized objects) and be confused.
1212 for (int i = 0; i < array->frames(); i++) {
1213 MonitorChunk* monitors = array->element(i)->monitors();
1214 if (monitors != NULL) {
1215 for (int j = 0; j < monitors->number_of_monitors(); j++) {
1216 BasicObjectLock* src = monitors->at(j);
1217 if (src->obj() != NULL) {
1218 ObjectSynchronizer::fast_exit(src->obj(), src->lock(), thread);
1219 }
1220 }
1221 array->element(i)->free_monitors(thread);
1222 #ifdef ASSERT
1223 array->element(i)->set_removed_monitors();
1224 #endif
1225 }
1226 }
1227 }
1228 #endif
1229
1230 static void collect_monitors(compiledVFrame* cvf, GrowableArray<Handle>* objects_to_revoke) {
1231 GrowableArray<MonitorInfo*>* monitors = cvf->monitors();
1232 for (int i = 0; i < monitors->length(); i++) {
1233 MonitorInfo* mon_info = monitors->at(i);
1234 if (!mon_info->eliminated() && mon_info->owner() != NULL) {
1235 objects_to_revoke->append(Handle(mon_info->owner()));
1236 }
1237 }
1238 }
1239
1240
1241 void Deoptimization::revoke_biases_of_monitors(JavaThread* thread, frame fr, RegisterMap* map) {
1242 if (!UseBiasedLocking) {
1243 return;
1244 }
1245
1246 GrowableArray<Handle>* objects_to_revoke = new GrowableArray<Handle>();
1247
1248 // Unfortunately we don't have a RegisterMap available in most of
1249 // the places we want to call this routine so we need to walk the
1250 // stack again to update the register map.
1251 if (map == NULL || !map->update_map()) {
1252 StackFrameStream sfs(thread, true);
1253 bool found = false;
1254 while (!found && !sfs.is_done()) {
1255 frame* cur = sfs.current();
1256 sfs.next();
1257 found = cur->id() == fr.id();
1258 }
1259 assert(found, "frame to be deoptimized not found on target thread's stack");
1260 map = sfs.register_map();
1261 }
1262
1263 vframe* vf = vframe::new_vframe(&fr, map, thread);
1264 compiledVFrame* cvf = compiledVFrame::cast(vf);
1265 // Revoke monitors' biases in all scopes
1266 while (!cvf->is_top()) {
1267 collect_monitors(cvf, objects_to_revoke);
1268 cvf = compiledVFrame::cast(cvf->sender());
1269 }
1270 collect_monitors(cvf, objects_to_revoke);
1271
1272 if (SafepointSynchronize::is_at_safepoint()) {
1273 BiasedLocking::revoke_at_safepoint(objects_to_revoke);
1274 } else {
1275 BiasedLocking::revoke(objects_to_revoke);
1276 }
1277 }
1278
1279
1280 void Deoptimization::revoke_biases_of_monitors(CodeBlob* cb) {
1281 if (!UseBiasedLocking) {
1282 return;
1283 }
1284
1285 assert(SafepointSynchronize::is_at_safepoint(), "must only be called from safepoint");
1286 GrowableArray<Handle>* objects_to_revoke = new GrowableArray<Handle>();
1287 for (JavaThread* jt = Threads::first(); jt != NULL ; jt = jt->next()) {
1288 if (jt->has_last_Java_frame()) {
1289 StackFrameStream sfs(jt, true);
1290 while (!sfs.is_done()) {
1291 frame* cur = sfs.current();
1292 if (cb->contains(cur->pc())) {
1293 vframe* vf = vframe::new_vframe(cur, sfs.register_map(), jt);
1294 compiledVFrame* cvf = compiledVFrame::cast(vf);
1295 // Revoke monitors' biases in all scopes
1296 while (!cvf->is_top()) {
1297 collect_monitors(cvf, objects_to_revoke);
1298 cvf = compiledVFrame::cast(cvf->sender());
1299 }
1300 collect_monitors(cvf, objects_to_revoke);
1301 }
1302 sfs.next();
1303 }
1304 }
1305 }
1306 BiasedLocking::revoke_at_safepoint(objects_to_revoke);
1307 }
1308
1309
1310 void Deoptimization::deoptimize_single_frame(JavaThread* thread, frame fr, Deoptimization::DeoptReason reason) {
1311 assert(fr.can_be_deoptimized(), "checking frame type");
1312
1313 gather_statistics(reason, Action_none, Bytecodes::_illegal);
1314
1315 if (LogCompilation && xtty != NULL) {
1316 nmethod* nm = fr.cb()->as_nmethod_or_null();
1317 assert(nm != NULL, "only compiled methods can deopt");
1318
1319 ttyLocker ttyl;
1320 xtty->begin_head("deoptimized thread='" UINTX_FORMAT "'", (uintx)thread->osthread()->thread_id());
1321 nm->log_identity(xtty);
1322 xtty->end_head();
1323 for (ScopeDesc* sd = nm->scope_desc_at(fr.pc()); ; sd = sd->sender()) {
1324 xtty->begin_elem("jvms bci='%d'", sd->bci());
1325 xtty->method(sd->method());
1326 xtty->end_elem();
1327 if (sd->is_top()) break;
1328 }
1329 xtty->tail("deoptimized");
1330 }
1331
1332 // Patch the compiled method so that when execution returns to it we will
1333 // deopt the execution state and return to the interpreter.
1334 fr.deoptimize(thread);
1335 }
1336
1337 void Deoptimization::deoptimize(JavaThread* thread, frame fr, RegisterMap *map) {
1338 deoptimize(thread, fr, map, Reason_constraint);
1339 }
1340
1341 void Deoptimization::deoptimize(JavaThread* thread, frame fr, RegisterMap *map, DeoptReason reason) {
1342 // Deoptimize only if the frame comes from compile code.
1343 // Do not deoptimize the frame which is already patched
1344 // during the execution of the loops below.
1345 if (!fr.is_compiled_frame() || fr.is_deoptimized_frame()) {
1346 return;
1347 }
1348 ResourceMark rm;
1349 DeoptimizationMarker dm;
1350 if (UseBiasedLocking) {
1351 revoke_biases_of_monitors(thread, fr, map);
1352 }
1353 deoptimize_single_frame(thread, fr, reason);
1354
1355 }
1356
1357
1358 void Deoptimization::deoptimize_frame_internal(JavaThread* thread, intptr_t* id, DeoptReason reason) {
1359 assert(thread == Thread::current() || SafepointSynchronize::is_at_safepoint(),
1360 "can only deoptimize other thread at a safepoint");
1361 // Compute frame and register map based on thread and sp.
1362 RegisterMap reg_map(thread, UseBiasedLocking);
1363 frame fr = thread->last_frame();
1364 while (fr.id() != id) {
1365 fr = fr.sender(®_map);
1366 }
1367 deoptimize(thread, fr, ®_map, reason);
1368 }
1369
1370
1371 void Deoptimization::deoptimize_frame(JavaThread* thread, intptr_t* id, DeoptReason reason) {
1372 if (thread == Thread::current()) {
1373 Deoptimization::deoptimize_frame_internal(thread, id, reason);
1374 } else {
1375 VM_DeoptimizeFrame deopt(thread, id, reason);
1376 VMThread::execute(&deopt);
1377 }
1378 }
1379
1380 void Deoptimization::deoptimize_frame(JavaThread* thread, intptr_t* id) {
1381 deoptimize_frame(thread, id, Reason_constraint);
1382 }
1383
1384 // JVMTI PopFrame support
1385 JRT_LEAF(void, Deoptimization::popframe_preserve_args(JavaThread* thread, int bytes_to_save, void* start_address))
1386 {
1387 thread->popframe_preserve_args(in_ByteSize(bytes_to_save), start_address);
1388 }
1389 JRT_END
1390
1391 MethodData*
1392 Deoptimization::get_method_data(JavaThread* thread, methodHandle m,
1393 bool create_if_missing) {
1394 Thread* THREAD = thread;
1395 MethodData* mdo = m()->method_data();
1396 if (mdo == NULL && create_if_missing && !HAS_PENDING_EXCEPTION) {
1397 // Build an MDO. Ignore errors like OutOfMemory;
1398 // that simply means we won't have an MDO to update.
1399 Method::build_interpreter_method_data(m, THREAD);
1400 if (HAS_PENDING_EXCEPTION) {
1401 assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), "we expect only an OOM error here");
1402 CLEAR_PENDING_EXCEPTION;
1403 }
1404 mdo = m()->method_data();
1405 }
1406 return mdo;
1407 }
1408
1409 #if defined(COMPILER2) || defined(SHARK) || INCLUDE_JVMCI
1410 void Deoptimization::load_class_by_index(const constantPoolHandle& constant_pool, int index, TRAPS) {
1411 // in case of an unresolved klass entry, load the class.
1412 if (constant_pool->tag_at(index).is_unresolved_klass()) {
1413 Klass* tk = constant_pool->klass_at_ignore_error(index, CHECK);
1414 return;
1415 }
1416
1417 if (!constant_pool->tag_at(index).is_symbol()) return;
1418
1419 Handle class_loader (THREAD, constant_pool->pool_holder()->class_loader());
1420 Symbol* symbol = constant_pool->symbol_at(index);
1421
1422 // class name?
1423 if (symbol->byte_at(0) != '(') {
1424 Handle protection_domain (THREAD, constant_pool->pool_holder()->protection_domain());
1425 SystemDictionary::resolve_or_null(symbol, class_loader, protection_domain, CHECK);
1426 return;
1427 }
1428
1429 // then it must be a signature!
1430 ResourceMark rm(THREAD);
1431 for (SignatureStream ss(symbol); !ss.is_done(); ss.next()) {
1432 if (ss.is_object()) {
1433 Symbol* class_name = ss.as_symbol(CHECK);
1434 Handle protection_domain (THREAD, constant_pool->pool_holder()->protection_domain());
1435 SystemDictionary::resolve_or_null(class_name, class_loader, protection_domain, CHECK);
1436 }
1437 }
1438 }
1439
1440
1441 void Deoptimization::load_class_by_index(const constantPoolHandle& constant_pool, int index) {
1442 EXCEPTION_MARK;
1443 load_class_by_index(constant_pool, index, THREAD);
1444 if (HAS_PENDING_EXCEPTION) {
1445 // Exception happened during classloading. We ignore the exception here, since it
1446 // is going to be rethrown since the current activation is going to be deoptimized and
1447 // the interpreter will re-execute the bytecode.
1448 CLEAR_PENDING_EXCEPTION;
1449 // Class loading called java code which may have caused a stack
1450 // overflow. If the exception was thrown right before the return
1451 // to the runtime the stack is no longer guarded. Reguard the
1452 // stack otherwise if we return to the uncommon trap blob and the
1453 // stack bang causes a stack overflow we crash.
1454 assert(THREAD->is_Java_thread(), "only a java thread can be here");
1455 JavaThread* thread = (JavaThread*)THREAD;
1456 bool guard_pages_enabled = thread->stack_guards_enabled();
1457 if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
1458 assert(guard_pages_enabled, "stack banging in uncommon trap blob may cause crash");
1459 }
1460 }
1461
1462 JRT_ENTRY(void, Deoptimization::uncommon_trap_inner(JavaThread* thread, jint trap_request)) {
1463 HandleMark hm;
1464
1465 // uncommon_trap() is called at the beginning of the uncommon trap
1466 // handler. Note this fact before we start generating temporary frames
1467 // that can confuse an asynchronous stack walker. This counter is
1468 // decremented at the end of unpack_frames().
1469 thread->inc_in_deopt_handler();
1470
1471 // We need to update the map if we have biased locking.
1472 #if INCLUDE_JVMCI
1473 // JVMCI might need to get an exception from the stack, which in turn requires the register map to be valid
1474 RegisterMap reg_map(thread, true);
1475 #else
1476 RegisterMap reg_map(thread, UseBiasedLocking);
1477 #endif
1478 frame stub_frame = thread->last_frame();
1479 frame fr = stub_frame.sender(®_map);
1480 // Make sure the calling nmethod is not getting deoptimized and removed
1481 // before we are done with it.
1482 nmethodLocker nl(fr.pc());
1483
1484 // Log a message
1485 Events::log(thread, "Uncommon trap: trap_request=" PTR32_FORMAT " fr.pc=" INTPTR_FORMAT " relative=" INTPTR_FORMAT,
1486 trap_request, p2i(fr.pc()), fr.pc() - fr.cb()->code_begin());
1487
1488 {
1489 ResourceMark rm;
1490
1491 // Revoke biases of any monitors in the frame to ensure we can migrate them
1492 revoke_biases_of_monitors(thread, fr, ®_map);
1493
1494 DeoptReason reason = trap_request_reason(trap_request);
1495 DeoptAction action = trap_request_action(trap_request);
1496 #if INCLUDE_JVMCI
1497 int debug_id = trap_request_debug_id(trap_request);
1498 #endif
1499 jint unloaded_class_index = trap_request_index(trap_request); // CP idx or -1
1500
1501 vframe* vf = vframe::new_vframe(&fr, ®_map, thread);
1502 compiledVFrame* cvf = compiledVFrame::cast(vf);
1503
1504 nmethod* nm = cvf->code();
1505
1506 ScopeDesc* trap_scope = cvf->scope();
1507
1508 if (TraceDeoptimization) {
1509 ttyLocker ttyl;
1510 tty->print_cr(" bci=%d pc=" INTPTR_FORMAT ", relative_pc=" INTPTR_FORMAT ", method=%s" JVMCI_ONLY(", debug_id=%d"), trap_scope->bci(), p2i(fr.pc()), fr.pc() - nm->code_begin(), trap_scope->method()->name_and_sig_as_C_string()
1511 #if INCLUDE_JVMCI
1512 , debug_id
1513 #endif
1514 );
1515 }
1516
1517 methodHandle trap_method = trap_scope->method();
1518 int trap_bci = trap_scope->bci();
1519 #if INCLUDE_JVMCI
1520 oop speculation = thread->pending_failed_speculation();
1521 if (nm->is_compiled_by_jvmci()) {
1522 if (speculation != NULL) {
1523 oop speculation_log = nm->speculation_log();
1524 if (speculation_log != NULL) {
1525 if (TraceDeoptimization || TraceUncollectedSpeculations) {
1526 if (HotSpotSpeculationLog::lastFailed(speculation_log) != NULL) {
1527 tty->print_cr("A speculation that was not collected by the compiler is being overwritten");
1528 }
1529 }
1530 if (TraceDeoptimization) {
1531 tty->print_cr("Saving speculation to speculation log");
1532 }
1533 HotSpotSpeculationLog::set_lastFailed(speculation_log, speculation);
1534 } else {
1535 if (TraceDeoptimization) {
1536 tty->print_cr("Speculation present but no speculation log");
1537 }
1538 }
1539 thread->set_pending_failed_speculation(NULL);
1540 } else {
1541 if (TraceDeoptimization) {
1542 tty->print_cr("No speculation");
1543 }
1544 }
1545 } else {
1546 assert(speculation == NULL, "There should not be a speculation for method compiled by non-JVMCI compilers");
1547 }
1548
1549 if (trap_bci == SynchronizationEntryBCI) {
1550 trap_bci = 0;
1551 thread->set_pending_monitorenter(true);
1552 }
1553
1554 if (reason == Deoptimization::Reason_transfer_to_interpreter) {
1555 thread->set_pending_transfer_to_interpreter(true);
1556 }
1557 #endif
1558
1559 Bytecodes::Code trap_bc = trap_method->java_code_at(trap_bci);
1560 // Record this event in the histogram.
1561 gather_statistics(reason, action, trap_bc);
1562
1563 // Ensure that we can record deopt. history:
1564 // Need MDO to record RTM code generation state.
1565 bool create_if_missing = ProfileTraps || UseCodeAging RTM_OPT_ONLY( || UseRTMLocking );
1566
1567 methodHandle profiled_method;
1568 #if INCLUDE_JVMCI
1569 if (nm->is_compiled_by_jvmci()) {
1570 profiled_method = nm->method();
1571 } else {
1572 profiled_method = trap_method;
1573 }
1574 #else
1575 profiled_method = trap_method;
1576 #endif
1577
1578 MethodData* trap_mdo =
1579 get_method_data(thread, profiled_method, create_if_missing);
1580
1581 // Log a message
1582 Events::log_deopt_message(thread, "Uncommon trap: reason=%s action=%s pc=" INTPTR_FORMAT " method=%s @ %d",
1583 trap_reason_name(reason), trap_action_name(action), p2i(fr.pc()),
1584 trap_method->name_and_sig_as_C_string(), trap_bci);
1585
1586 // Print a bunch of diagnostics, if requested.
1587 if (TraceDeoptimization || LogCompilation) {
1588 ResourceMark rm;
1589 ttyLocker ttyl;
1590 char buf[100];
1591 if (xtty != NULL) {
1592 xtty->begin_head("uncommon_trap thread='" UINTX_FORMAT "' %s",
1593 os::current_thread_id(),
1594 format_trap_request(buf, sizeof(buf), trap_request));
1595 nm->log_identity(xtty);
1596 }
1597 Symbol* class_name = NULL;
1598 bool unresolved = false;
1599 if (unloaded_class_index >= 0) {
1600 constantPoolHandle constants (THREAD, trap_method->constants());
1601 if (constants->tag_at(unloaded_class_index).is_unresolved_klass()) {
1602 class_name = constants->klass_name_at(unloaded_class_index);
1603 unresolved = true;
1604 if (xtty != NULL)
1605 xtty->print(" unresolved='1'");
1606 } else if (constants->tag_at(unloaded_class_index).is_symbol()) {
1607 class_name = constants->symbol_at(unloaded_class_index);
1608 }
1609 if (xtty != NULL)
1610 xtty->name(class_name);
1611 }
1612 if (xtty != NULL && trap_mdo != NULL && (int)reason < (int)MethodData::_trap_hist_limit) {
1613 // Dump the relevant MDO state.
1614 // This is the deopt count for the current reason, any previous
1615 // reasons or recompiles seen at this point.
1616 int dcnt = trap_mdo->trap_count(reason);
1617 if (dcnt != 0)
1618 xtty->print(" count='%d'", dcnt);
1619 ProfileData* pdata = trap_mdo->bci_to_data(trap_bci);
1620 int dos = (pdata == NULL)? 0: pdata->trap_state();
1621 if (dos != 0) {
1622 xtty->print(" state='%s'", format_trap_state(buf, sizeof(buf), dos));
1623 if (trap_state_is_recompiled(dos)) {
1624 int recnt2 = trap_mdo->overflow_recompile_count();
1625 if (recnt2 != 0)
1626 xtty->print(" recompiles2='%d'", recnt2);
1627 }
1628 }
1629 }
1630 if (xtty != NULL) {
1631 xtty->stamp();
1632 xtty->end_head();
1633 }
1634 if (TraceDeoptimization) { // make noise on the tty
1635 tty->print("Uncommon trap occurred in");
1636 nm->method()->print_short_name(tty);
1637 tty->print(" compiler=%s compile_id=%d", nm->compiler() == NULL ? "" : nm->compiler()->name(), nm->compile_id());
1638 #if INCLUDE_JVMCI
1639 oop installedCode = nm->jvmci_installed_code();
1640 if (installedCode != NULL) {
1641 oop installedCodeName = NULL;
1642 if (installedCode->is_a(InstalledCode::klass())) {
1643 installedCodeName = InstalledCode::name(installedCode);
1644 }
1645 if (installedCodeName != NULL) {
1646 tty->print(" (JVMCI: installedCodeName=%s) ", java_lang_String::as_utf8_string(installedCodeName));
1647 } else {
1648 tty->print(" (JVMCI: installed code has no name) ");
1649 }
1650 } else if (nm->is_compiled_by_jvmci()) {
1651 tty->print(" (JVMCI: no installed code) ");
1652 }
1653 #endif
1654 tty->print(" (@" INTPTR_FORMAT ") thread=" UINTX_FORMAT " reason=%s action=%s unloaded_class_index=%d" JVMCI_ONLY(" debug_id=%d"),
1655 p2i(fr.pc()),
1656 os::current_thread_id(),
1657 trap_reason_name(reason),
1658 trap_action_name(action),
1659 unloaded_class_index
1660 #if INCLUDE_JVMCI
1661 , debug_id
1662 #endif
1663 );
1664 if (class_name != NULL) {
1665 tty->print(unresolved ? " unresolved class: " : " symbol: ");
1666 class_name->print_symbol_on(tty);
1667 }
1668 tty->cr();
1669 }
1670 if (xtty != NULL) {
1671 // Log the precise location of the trap.
1672 for (ScopeDesc* sd = trap_scope; ; sd = sd->sender()) {
1673 xtty->begin_elem("jvms bci='%d'", sd->bci());
1674 xtty->method(sd->method());
1675 xtty->end_elem();
1676 if (sd->is_top()) break;
1677 }
1678 xtty->tail("uncommon_trap");
1679 }
1680 }
1681 // (End diagnostic printout.)
1682
1683 // Load class if necessary
1684 if (unloaded_class_index >= 0) {
1685 constantPoolHandle constants(THREAD, trap_method->constants());
1686 load_class_by_index(constants, unloaded_class_index);
1687 }
1688
1689 // Flush the nmethod if necessary and desirable.
1690 //
1691 // We need to avoid situations where we are re-flushing the nmethod
1692 // because of a hot deoptimization site. Repeated flushes at the same
1693 // point need to be detected by the compiler and avoided. If the compiler
1694 // cannot avoid them (or has a bug and "refuses" to avoid them), this
1695 // module must take measures to avoid an infinite cycle of recompilation
1696 // and deoptimization. There are several such measures:
1697 //
1698 // 1. If a recompilation is ordered a second time at some site X
1699 // and for the same reason R, the action is adjusted to 'reinterpret',
1700 // to give the interpreter time to exercise the method more thoroughly.
1701 // If this happens, the method's overflow_recompile_count is incremented.
1702 //
1703 // 2. If the compiler fails to reduce the deoptimization rate, then
1704 // the method's overflow_recompile_count will begin to exceed the set
1705 // limit PerBytecodeRecompilationCutoff. If this happens, the action
1706 // is adjusted to 'make_not_compilable', and the method is abandoned
1707 // to the interpreter. This is a performance hit for hot methods,
1708 // but is better than a disastrous infinite cycle of recompilations.
1709 // (Actually, only the method containing the site X is abandoned.)
1710 //
1711 // 3. In parallel with the previous measures, if the total number of
1712 // recompilations of a method exceeds the much larger set limit
1713 // PerMethodRecompilationCutoff, the method is abandoned.
1714 // This should only happen if the method is very large and has
1715 // many "lukewarm" deoptimizations. The code which enforces this
1716 // limit is elsewhere (class nmethod, class Method).
1717 //
1718 // Note that the per-BCI 'is_recompiled' bit gives the compiler one chance
1719 // to recompile at each bytecode independently of the per-BCI cutoff.
1720 //
1721 // The decision to update code is up to the compiler, and is encoded
1722 // in the Action_xxx code. If the compiler requests Action_none
1723 // no trap state is changed, no compiled code is changed, and the
1724 // computation suffers along in the interpreter.
1725 //
1726 // The other action codes specify various tactics for decompilation
1727 // and recompilation. Action_maybe_recompile is the loosest, and
1728 // allows the compiled code to stay around until enough traps are seen,
1729 // and until the compiler gets around to recompiling the trapping method.
1730 //
1731 // The other actions cause immediate removal of the present code.
1732
1733 // Traps caused by injected profile shouldn't pollute trap counts.
1734 bool injected_profile_trap = trap_method->has_injected_profile() &&
1735 (reason == Reason_intrinsic || reason == Reason_unreached);
1736
1737 bool update_trap_state = (reason != Reason_tenured) && !injected_profile_trap;
1738 bool make_not_entrant = false;
1739 bool make_not_compilable = false;
1740 bool reprofile = false;
1741 switch (action) {
1742 case Action_none:
1743 // Keep the old code.
1744 update_trap_state = false;
1745 break;
1746 case Action_maybe_recompile:
1747 // Do not need to invalidate the present code, but we can
1748 // initiate another
1749 // Start compiler without (necessarily) invalidating the nmethod.
1750 // The system will tolerate the old code, but new code should be
1751 // generated when possible.
1752 break;
1753 case Action_reinterpret:
1754 // Go back into the interpreter for a while, and then consider
1755 // recompiling form scratch.
1756 make_not_entrant = true;
1757 // Reset invocation counter for outer most method.
1758 // This will allow the interpreter to exercise the bytecodes
1759 // for a while before recompiling.
1760 // By contrast, Action_make_not_entrant is immediate.
1761 //
1762 // Note that the compiler will track null_check, null_assert,
1763 // range_check, and class_check events and log them as if they
1764 // had been traps taken from compiled code. This will update
1765 // the MDO trap history so that the next compilation will
1766 // properly detect hot trap sites.
1767 reprofile = true;
1768 break;
1769 case Action_make_not_entrant:
1770 // Request immediate recompilation, and get rid of the old code.
1771 // Make them not entrant, so next time they are called they get
1772 // recompiled. Unloaded classes are loaded now so recompile before next
1773 // time they are called. Same for uninitialized. The interpreter will
1774 // link the missing class, if any.
1775 make_not_entrant = true;
1776 break;
1777 case Action_make_not_compilable:
1778 // Give up on compiling this method at all.
1779 make_not_entrant = true;
1780 make_not_compilable = true;
1781 break;
1782 default:
1783 ShouldNotReachHere();
1784 }
1785
1786 // Setting +ProfileTraps fixes the following, on all platforms:
1787 // 4852688: ProfileInterpreter is off by default for ia64. The result is
1788 // infinite heroic-opt-uncommon-trap/deopt/recompile cycles, since the
1789 // recompile relies on a MethodData* to record heroic opt failures.
1790
1791 // Whether the interpreter is producing MDO data or not, we also need
1792 // to use the MDO to detect hot deoptimization points and control
1793 // aggressive optimization.
1794 bool inc_recompile_count = false;
1795 ProfileData* pdata = NULL;
1796 if (ProfileTraps && update_trap_state && trap_mdo != NULL) {
1797 assert(trap_mdo == get_method_data(thread, profiled_method, false), "sanity");
1798 uint this_trap_count = 0;
1799 bool maybe_prior_trap = false;
1800 bool maybe_prior_recompile = false;
1801 pdata = query_update_method_data(trap_mdo, trap_bci, reason, true,
1802 #if INCLUDE_JVMCI
1803 nm->is_compiled_by_jvmci() && nm->is_osr_method(),
1804 #endif
1805 nm->method(),
1806 //outputs:
1807 this_trap_count,
1808 maybe_prior_trap,
1809 maybe_prior_recompile);
1810 // Because the interpreter also counts null, div0, range, and class
1811 // checks, these traps from compiled code are double-counted.
1812 // This is harmless; it just means that the PerXTrapLimit values
1813 // are in effect a little smaller than they look.
1814
1815 DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason);
1816 if (per_bc_reason != Reason_none) {
1817 // Now take action based on the partially known per-BCI history.
1818 if (maybe_prior_trap
1819 && this_trap_count >= (uint)PerBytecodeTrapLimit) {
1820 // If there are too many traps at this BCI, force a recompile.
1821 // This will allow the compiler to see the limit overflow, and
1822 // take corrective action, if possible. The compiler generally
1823 // does not use the exact PerBytecodeTrapLimit value, but instead
1824 // changes its tactics if it sees any traps at all. This provides
1825 // a little hysteresis, delaying a recompile until a trap happens
1826 // several times.
1827 //
1828 // Actually, since there is only one bit of counter per BCI,
1829 // the possible per-BCI counts are {0,1,(per-method count)}.
1830 // This produces accurate results if in fact there is only
1831 // one hot trap site, but begins to get fuzzy if there are
1832 // many sites. For example, if there are ten sites each
1833 // trapping two or more times, they each get the blame for
1834 // all of their traps.
1835 make_not_entrant = true;
1836 }
1837
1838 // Detect repeated recompilation at the same BCI, and enforce a limit.
1839 if (make_not_entrant && maybe_prior_recompile) {
1840 // More than one recompile at this point.
1841 inc_recompile_count = maybe_prior_trap;
1842 }
1843 } else {
1844 // For reasons which are not recorded per-bytecode, we simply
1845 // force recompiles unconditionally.
1846 // (Note that PerMethodRecompilationCutoff is enforced elsewhere.)
1847 make_not_entrant = true;
1848 }
1849
1850 // Go back to the compiler if there are too many traps in this method.
1851 if (this_trap_count >= per_method_trap_limit(reason)) {
1852 // If there are too many traps in this method, force a recompile.
1853 // This will allow the compiler to see the limit overflow, and
1854 // take corrective action, if possible.
1855 // (This condition is an unlikely backstop only, because the
1856 // PerBytecodeTrapLimit is more likely to take effect first,
1857 // if it is applicable.)
1858 make_not_entrant = true;
1859 }
1860
1861 // Here's more hysteresis: If there has been a recompile at
1862 // this trap point already, run the method in the interpreter
1863 // for a while to exercise it more thoroughly.
1864 if (make_not_entrant && maybe_prior_recompile && maybe_prior_trap) {
1865 reprofile = true;
1866 }
1867 }
1868
1869 // Take requested actions on the method:
1870
1871 // Recompile
1872 if (make_not_entrant) {
1873 if (!nm->make_not_entrant()) {
1874 return; // the call did not change nmethod's state
1875 }
1876
1877 if (pdata != NULL) {
1878 // Record the recompilation event, if any.
1879 int tstate0 = pdata->trap_state();
1880 int tstate1 = trap_state_set_recompiled(tstate0, true);
1881 if (tstate1 != tstate0)
1882 pdata->set_trap_state(tstate1);
1883 }
1884
1885 #if INCLUDE_RTM_OPT
1886 // Restart collecting RTM locking abort statistic if the method
1887 // is recompiled for a reason other than RTM state change.
1888 // Assume that in new recompiled code the statistic could be different,
1889 // for example, due to different inlining.
1890 if ((reason != Reason_rtm_state_change) && (trap_mdo != NULL) &&
1891 UseRTMDeopt && (nm->rtm_state() != ProfileRTM)) {
1892 trap_mdo->atomic_set_rtm_state(ProfileRTM);
1893 }
1894 #endif
1895 // For code aging we count traps separately here, using make_not_entrant()
1896 // as a guard against simultaneous deopts in multiple threads.
1897 if (reason == Reason_tenured && trap_mdo != NULL) {
1898 trap_mdo->inc_tenure_traps();
1899 }
1900 }
1901
1902 if (inc_recompile_count) {
1903 trap_mdo->inc_overflow_recompile_count();
1904 if ((uint)trap_mdo->overflow_recompile_count() >
1905 (uint)PerBytecodeRecompilationCutoff) {
1906 // Give up on the method containing the bad BCI.
1907 if (trap_method() == nm->method()) {
1908 make_not_compilable = true;
1909 } else {
1910 trap_method->set_not_compilable(CompLevel_full_optimization, true, "overflow_recompile_count > PerBytecodeRecompilationCutoff");
1911 // But give grace to the enclosing nm->method().
1912 }
1913 }
1914 }
1915
1916 // Reprofile
1917 if (reprofile) {
1918 CompilationPolicy::policy()->reprofile(trap_scope, nm->is_osr_method());
1919 }
1920
1921 // Give up compiling
1922 if (make_not_compilable && !nm->method()->is_not_compilable(CompLevel_full_optimization)) {
1923 assert(make_not_entrant, "consistent");
1924 nm->method()->set_not_compilable(CompLevel_full_optimization);
1925 }
1926
1927 } // Free marked resources
1928
1929 }
1930 JRT_END
1931
1932 ProfileData*
1933 Deoptimization::query_update_method_data(MethodData* trap_mdo,
1934 int trap_bci,
1935 Deoptimization::DeoptReason reason,
1936 bool update_total_trap_count,
1937 #if INCLUDE_JVMCI
1938 bool is_osr,
1939 #endif
1940 Method* compiled_method,
1941 //outputs:
1942 uint& ret_this_trap_count,
1943 bool& ret_maybe_prior_trap,
1944 bool& ret_maybe_prior_recompile) {
1945 bool maybe_prior_trap = false;
1946 bool maybe_prior_recompile = false;
1947 uint this_trap_count = 0;
1948 if (update_total_trap_count) {
1949 uint idx = reason;
1950 #if INCLUDE_JVMCI
1951 if (is_osr) {
1952 idx += Reason_LIMIT;
1953 }
1954 #endif
1955 uint prior_trap_count = trap_mdo->trap_count(idx);
1956 this_trap_count = trap_mdo->inc_trap_count(idx);
1957
1958 // If the runtime cannot find a place to store trap history,
1959 // it is estimated based on the general condition of the method.
1960 // If the method has ever been recompiled, or has ever incurred
1961 // a trap with the present reason , then this BCI is assumed
1962 // (pessimistically) to be the culprit.
1963 maybe_prior_trap = (prior_trap_count != 0);
1964 maybe_prior_recompile = (trap_mdo->decompile_count() != 0);
1965 }
1966 ProfileData* pdata = NULL;
1967
1968
1969 // For reasons which are recorded per bytecode, we check per-BCI data.
1970 DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason);
1971 assert(per_bc_reason != Reason_none || update_total_trap_count, "must be");
1972 if (per_bc_reason != Reason_none) {
1973 // Find the profile data for this BCI. If there isn't one,
1974 // try to allocate one from the MDO's set of spares.
1975 // This will let us detect a repeated trap at this point.
1976 pdata = trap_mdo->allocate_bci_to_data(trap_bci, reason_is_speculate(reason) ? compiled_method : NULL);
1977
1978 if (pdata != NULL) {
1979 if (reason_is_speculate(reason) && !pdata->is_SpeculativeTrapData()) {
1980 if (LogCompilation && xtty != NULL) {
1981 ttyLocker ttyl;
1982 // no more room for speculative traps in this MDO
1983 xtty->elem("speculative_traps_oom");
1984 }
1985 }
1986 // Query the trap state of this profile datum.
1987 int tstate0 = pdata->trap_state();
1988 if (!trap_state_has_reason(tstate0, per_bc_reason))
1989 maybe_prior_trap = false;
1990 if (!trap_state_is_recompiled(tstate0))
1991 maybe_prior_recompile = false;
1992
1993 // Update the trap state of this profile datum.
1994 int tstate1 = tstate0;
1995 // Record the reason.
1996 tstate1 = trap_state_add_reason(tstate1, per_bc_reason);
1997 // Store the updated state on the MDO, for next time.
1998 if (tstate1 != tstate0)
1999 pdata->set_trap_state(tstate1);
2000 } else {
2001 if (LogCompilation && xtty != NULL) {
2002 ttyLocker ttyl;
2003 // Missing MDP? Leave a small complaint in the log.
2004 xtty->elem("missing_mdp bci='%d'", trap_bci);
2005 }
2006 }
2007 }
2008
2009 // Return results:
2010 ret_this_trap_count = this_trap_count;
2011 ret_maybe_prior_trap = maybe_prior_trap;
2012 ret_maybe_prior_recompile = maybe_prior_recompile;
2013 return pdata;
2014 }
2015
2016 void
2017 Deoptimization::update_method_data_from_interpreter(MethodData* trap_mdo, int trap_bci, int reason) {
2018 ResourceMark rm;
2019 // Ignored outputs:
2020 uint ignore_this_trap_count;
2021 bool ignore_maybe_prior_trap;
2022 bool ignore_maybe_prior_recompile;
2023 assert(!reason_is_speculate(reason), "reason speculate only used by compiler");
2024 // JVMCI uses the total counts to determine if deoptimizations are happening too frequently -> do not adjust total counts
2025 bool update_total_counts = JVMCI_ONLY(false) NOT_JVMCI(true);
2026 query_update_method_data(trap_mdo, trap_bci,
2027 (DeoptReason)reason,
2028 update_total_counts,
2029 #if INCLUDE_JVMCI
2030 false,
2031 #endif
2032 NULL,
2033 ignore_this_trap_count,
2034 ignore_maybe_prior_trap,
2035 ignore_maybe_prior_recompile);
2036 }
2037
2038 Deoptimization::UnrollBlock* Deoptimization::uncommon_trap(JavaThread* thread, jint trap_request, jint exec_mode) {
2039 if (TraceDeoptimization) {
2040 tty->print("Uncommon trap ");
2041 }
2042 // Still in Java no safepoints
2043 {
2044 // This enters VM and may safepoint
2045 uncommon_trap_inner(thread, trap_request);
2046 }
2047 return fetch_unroll_info_helper(thread, exec_mode);
2048 }
2049
2050 // Local derived constants.
2051 // Further breakdown of DataLayout::trap_state, as promised by DataLayout.
2052 const int DS_REASON_MASK = DataLayout::trap_mask >> 1;
2053 const int DS_RECOMPILE_BIT = DataLayout::trap_mask - DS_REASON_MASK;
2054
2055 //---------------------------trap_state_reason---------------------------------
2056 Deoptimization::DeoptReason
2057 Deoptimization::trap_state_reason(int trap_state) {
2058 // This assert provides the link between the width of DataLayout::trap_bits
2059 // and the encoding of "recorded" reasons. It ensures there are enough
2060 // bits to store all needed reasons in the per-BCI MDO profile.
2061 assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits");
2062 int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
2063 trap_state -= recompile_bit;
2064 if (trap_state == DS_REASON_MASK) {
2065 return Reason_many;
2066 } else {
2067 assert((int)Reason_none == 0, "state=0 => Reason_none");
2068 return (DeoptReason)trap_state;
2069 }
2070 }
2071 //-------------------------trap_state_has_reason-------------------------------
2072 int Deoptimization::trap_state_has_reason(int trap_state, int reason) {
2073 assert(reason_is_recorded_per_bytecode((DeoptReason)reason), "valid reason");
2074 assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits");
2075 int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
2076 trap_state -= recompile_bit;
2077 if (trap_state == DS_REASON_MASK) {
2078 return -1; // true, unspecifically (bottom of state lattice)
2079 } else if (trap_state == reason) {
2080 return 1; // true, definitely
2081 } else if (trap_state == 0) {
2082 return 0; // false, definitely (top of state lattice)
2083 } else {
2084 return 0; // false, definitely
2085 }
2086 }
2087 //-------------------------trap_state_add_reason-------------------------------
2088 int Deoptimization::trap_state_add_reason(int trap_state, int reason) {
2089 assert(reason_is_recorded_per_bytecode((DeoptReason)reason) || reason == Reason_many, "valid reason");
2090 int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
2091 trap_state -= recompile_bit;
2092 if (trap_state == DS_REASON_MASK) {
2093 return trap_state + recompile_bit; // already at state lattice bottom
2094 } else if (trap_state == reason) {
2095 return trap_state + recompile_bit; // the condition is already true
2096 } else if (trap_state == 0) {
2097 return reason + recompile_bit; // no condition has yet been true
2098 } else {
2099 return DS_REASON_MASK + recompile_bit; // fall to state lattice bottom
2100 }
2101 }
2102 //-----------------------trap_state_is_recompiled------------------------------
2103 bool Deoptimization::trap_state_is_recompiled(int trap_state) {
2104 return (trap_state & DS_RECOMPILE_BIT) != 0;
2105 }
2106 //-----------------------trap_state_set_recompiled-----------------------------
2107 int Deoptimization::trap_state_set_recompiled(int trap_state, bool z) {
2108 if (z) return trap_state | DS_RECOMPILE_BIT;
2109 else return trap_state & ~DS_RECOMPILE_BIT;
2110 }
2111 //---------------------------format_trap_state---------------------------------
2112 // This is used for debugging and diagnostics, including LogFile output.
2113 const char* Deoptimization::format_trap_state(char* buf, size_t buflen,
2114 int trap_state) {
2115 assert(buflen > 0, "sanity");
2116 DeoptReason reason = trap_state_reason(trap_state);
2117 bool recomp_flag = trap_state_is_recompiled(trap_state);
2118 // Re-encode the state from its decoded components.
2119 int decoded_state = 0;
2120 if (reason_is_recorded_per_bytecode(reason) || reason == Reason_many)
2121 decoded_state = trap_state_add_reason(decoded_state, reason);
2122 if (recomp_flag)
2123 decoded_state = trap_state_set_recompiled(decoded_state, recomp_flag);
2124 // If the state re-encodes properly, format it symbolically.
2125 // Because this routine is used for debugging and diagnostics,
2126 // be robust even if the state is a strange value.
2127 size_t len;
2128 if (decoded_state != trap_state) {
2129 // Random buggy state that doesn't decode??
2130 len = jio_snprintf(buf, buflen, "#%d", trap_state);
2131 } else {
2132 len = jio_snprintf(buf, buflen, "%s%s",
2133 trap_reason_name(reason),
2134 recomp_flag ? " recompiled" : "");
2135 }
2136 return buf;
2137 }
2138
2139
2140 //--------------------------------statics--------------------------------------
2141 const char* Deoptimization::_trap_reason_name[] = {
2142 // Note: Keep this in sync. with enum DeoptReason.
2143 "none",
2144 "null_check",
2145 "null_assert" JVMCI_ONLY("_or_unreached0"),
2146 "range_check",
2147 "class_check",
2148 "array_check",
2149 "intrinsic" JVMCI_ONLY("_or_type_checked_inlining"),
2150 "bimorphic" JVMCI_ONLY("_or_optimized_type_check"),
2151 "unloaded",
2152 "uninitialized",
2153 "unreached",
2154 "unhandled",
2155 "constraint",
2156 "div0_check",
2157 "age",
2158 "predicate",
2159 "loop_limit_check",
2160 "speculate_class_check",
2161 "speculate_null_check",
2162 "rtm_state_change",
2163 "unstable_if",
2164 "unstable_fused_if",
2165 #if INCLUDE_JVMCI
2166 "aliasing",
2167 "transfer_to_interpreter",
2168 "not_compiled_exception_handler",
2169 "unresolved",
2170 "jsr_mismatch",
2171 #endif
2172 "tenured"
2173 };
2174 const char* Deoptimization::_trap_action_name[] = {
2175 // Note: Keep this in sync. with enum DeoptAction.
2176 "none",
2177 "maybe_recompile",
2178 "reinterpret",
2179 "make_not_entrant",
2180 "make_not_compilable"
2181 };
2182
2183 const char* Deoptimization::trap_reason_name(int reason) {
2184 // Check that every reason has a name
2185 STATIC_ASSERT(sizeof(_trap_reason_name)/sizeof(const char*) == Reason_LIMIT);
2186
2187 if (reason == Reason_many) return "many";
2188 if ((uint)reason < Reason_LIMIT)
2189 return _trap_reason_name[reason];
2190 static char buf[20];
2191 sprintf(buf, "reason%d", reason);
2192 return buf;
2193 }
2194 const char* Deoptimization::trap_action_name(int action) {
2195 // Check that every action has a name
2196 STATIC_ASSERT(sizeof(_trap_action_name)/sizeof(const char*) == Action_LIMIT);
2197
2198 if ((uint)action < Action_LIMIT)
2199 return _trap_action_name[action];
2200 static char buf[20];
2201 sprintf(buf, "action%d", action);
2202 return buf;
2203 }
2204
2205 // This is used for debugging and diagnostics, including LogFile output.
2206 const char* Deoptimization::format_trap_request(char* buf, size_t buflen,
2207 int trap_request) {
2208 jint unloaded_class_index = trap_request_index(trap_request);
2209 const char* reason = trap_reason_name(trap_request_reason(trap_request));
2210 const char* action = trap_action_name(trap_request_action(trap_request));
2211 #if INCLUDE_JVMCI
2212 int debug_id = trap_request_debug_id(trap_request);
2213 #endif
2214 size_t len;
2215 if (unloaded_class_index < 0) {
2216 len = jio_snprintf(buf, buflen, "reason='%s' action='%s'" JVMCI_ONLY(" debug_id='%d'"),
2217 reason, action
2218 #if INCLUDE_JVMCI
2219 ,debug_id
2220 #endif
2221 );
2222 } else {
2223 len = jio_snprintf(buf, buflen, "reason='%s' action='%s' index='%d'" JVMCI_ONLY(" debug_id='%d'"),
2224 reason, action, unloaded_class_index
2225 #if INCLUDE_JVMCI
2226 ,debug_id
2227 #endif
2228 );
2229 }
2230 return buf;
2231 }
2232
2233 juint Deoptimization::_deoptimization_hist
2234 [Deoptimization::Reason_LIMIT]
2235 [1 + Deoptimization::Action_LIMIT]
2236 [Deoptimization::BC_CASE_LIMIT]
2237 = {0};
2238
2239 enum {
2240 LSB_BITS = 8,
2241 LSB_MASK = right_n_bits(LSB_BITS)
2242 };
2243
2244 void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action,
2245 Bytecodes::Code bc) {
2246 assert(reason >= 0 && reason < Reason_LIMIT, "oob");
2247 assert(action >= 0 && action < Action_LIMIT, "oob");
2248 _deoptimization_hist[Reason_none][0][0] += 1; // total
2249 _deoptimization_hist[reason][0][0] += 1; // per-reason total
2250 juint* cases = _deoptimization_hist[reason][1+action];
2251 juint* bc_counter_addr = NULL;
2252 juint bc_counter = 0;
2253 // Look for an unused counter, or an exact match to this BC.
2254 if (bc != Bytecodes::_illegal) {
2255 for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
2256 juint* counter_addr = &cases[bc_case];
2257 juint counter = *counter_addr;
2258 if ((counter == 0 && bc_counter_addr == NULL)
2259 || (Bytecodes::Code)(counter & LSB_MASK) == bc) {
2260 // this counter is either free or is already devoted to this BC
2261 bc_counter_addr = counter_addr;
2262 bc_counter = counter | bc;
2263 }
2264 }
2265 }
2266 if (bc_counter_addr == NULL) {
2267 // Overflow, or no given bytecode.
2268 bc_counter_addr = &cases[BC_CASE_LIMIT-1];
2269 bc_counter = (*bc_counter_addr & ~LSB_MASK); // clear LSB
2270 }
2271 *bc_counter_addr = bc_counter + (1 << LSB_BITS);
2272 }
2273
2274 jint Deoptimization::total_deoptimization_count() {
2275 return _deoptimization_hist[Reason_none][0][0];
2276 }
2277
2278 jint Deoptimization::deoptimization_count(DeoptReason reason) {
2279 assert(reason >= 0 && reason < Reason_LIMIT, "oob");
2280 return _deoptimization_hist[reason][0][0];
2281 }
2282
2283 void Deoptimization::print_statistics() {
2284 juint total = total_deoptimization_count();
2285 juint account = total;
2286 if (total != 0) {
2287 ttyLocker ttyl;
2288 if (xtty != NULL) xtty->head("statistics type='deoptimization'");
2289 tty->print_cr("Deoptimization traps recorded:");
2290 #define PRINT_STAT_LINE(name, r) \
2291 tty->print_cr(" %4d (%4.1f%%) %s", (int)(r), ((r) * 100.0) / total, name);
2292 PRINT_STAT_LINE("total", total);
2293 // For each non-zero entry in the histogram, print the reason,
2294 // the action, and (if specifically known) the type of bytecode.
2295 for (int reason = 0; reason < Reason_LIMIT; reason++) {
2296 for (int action = 0; action < Action_LIMIT; action++) {
2297 juint* cases = _deoptimization_hist[reason][1+action];
2298 for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
2299 juint counter = cases[bc_case];
2300 if (counter != 0) {
2301 char name[1*K];
2302 Bytecodes::Code bc = (Bytecodes::Code)(counter & LSB_MASK);
2303 if (bc_case == BC_CASE_LIMIT && (int)bc == 0)
2304 bc = Bytecodes::_illegal;
2305 sprintf(name, "%s/%s/%s",
2306 trap_reason_name(reason),
2307 trap_action_name(action),
2308 Bytecodes::is_defined(bc)? Bytecodes::name(bc): "other");
2309 juint r = counter >> LSB_BITS;
2310 tty->print_cr(" %40s: " UINT32_FORMAT " (%.1f%%)", name, r, (r * 100.0) / total);
2311 account -= r;
2312 }
2313 }
2314 }
2315 }
2316 if (account != 0) {
2317 PRINT_STAT_LINE("unaccounted", account);
2318 }
2319 #undef PRINT_STAT_LINE
2320 if (xtty != NULL) xtty->tail("statistics");
2321 }
2322 }
2323 #else // COMPILER2 || SHARK || INCLUDE_JVMCI
2324
2325
2326 // Stubs for C1 only system.
2327 bool Deoptimization::trap_state_is_recompiled(int trap_state) {
2328 return false;
2329 }
2330
2331 const char* Deoptimization::trap_reason_name(int reason) {
2332 return "unknown";
2333 }
2334
2335 void Deoptimization::print_statistics() {
2336 // no output
2337 }
2338
2339 void
2340 Deoptimization::update_method_data_from_interpreter(MethodData* trap_mdo, int trap_bci, int reason) {
2341 // no udpate
2342 }
2343
2344 int Deoptimization::trap_state_has_reason(int trap_state, int reason) {
2345 return 0;
2346 }
2347
2348 void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action,
2349 Bytecodes::Code bc) {
2350 // no update
2351 }
2352
2353 const char* Deoptimization::format_trap_state(char* buf, size_t buflen,
2354 int trap_state) {
2355 jio_snprintf(buf, buflen, "#%d", trap_state);
2356 return buf;
2357 }
2358
2359 #endif // COMPILER2 || SHARK || INCLUDE_JVMCI
--- EOF ---