1 /* 2 * Copyright (c) 1998, 2015, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "classfile/systemDictionary.hpp" 27 #include "classfile/vmSymbols.hpp" 28 #include "code/codeCache.hpp" 29 #include "code/compiledIC.hpp" 30 #include "code/icBuffer.hpp" 31 #include "code/nmethod.hpp" 32 #include "code/pcDesc.hpp" 33 #include "code/scopeDesc.hpp" 34 #include "code/vtableStubs.hpp" 35 #include "compiler/compileBroker.hpp" 36 #include "compiler/oopMap.hpp" 37 #include "gc/g1/g1SATBCardTableModRefBS.hpp" 38 #include "gc/g1/heapRegion.hpp" 39 #include "gc/shared/barrierSet.hpp" 40 #include "gc/shared/collectedHeap.hpp" 41 #include "gc/shared/gcLocker.inline.hpp" 42 #include "interpreter/bytecode.hpp" 43 #include "interpreter/interpreter.hpp" 44 #include "interpreter/linkResolver.hpp" 45 #include "logging/log.hpp" 46 #include "memory/oopFactory.hpp" 47 #include "oops/objArrayKlass.hpp" 48 #include "oops/oop.inline.hpp" 49 #include "oops/typeArrayOop.inline.hpp" 50 #include "oops/valueArrayKlass.hpp" 51 #include "opto/ad.hpp" 52 #include "opto/addnode.hpp" 53 #include "opto/callnode.hpp" 54 #include "opto/cfgnode.hpp" 55 #include "opto/graphKit.hpp" 56 #include "opto/machnode.hpp" 57 #include "opto/matcher.hpp" 58 #include "opto/memnode.hpp" 59 #include "opto/mulnode.hpp" 60 #include "opto/runtime.hpp" 61 #include "opto/subnode.hpp" 62 #include "runtime/atomic.inline.hpp" 63 #include "runtime/fprofiler.hpp" 64 #include "runtime/handles.inline.hpp" 65 #include "runtime/interfaceSupport.hpp" 66 #include "runtime/javaCalls.hpp" 67 #include "runtime/sharedRuntime.hpp" 68 #include "runtime/signature.hpp" 69 #include "runtime/threadCritical.hpp" 70 #include "runtime/vframe.hpp" 71 #include "runtime/vframeArray.hpp" 72 #include "runtime/vframe_hp.hpp" 73 #include "utilities/copy.hpp" 74 #include "utilities/preserveException.hpp" 75 76 77 // For debugging purposes: 78 // To force FullGCALot inside a runtime function, add the following two lines 79 // 80 // Universe::release_fullgc_alot_dummy(); 81 // MarkSweep::invoke(0, "Debugging"); 82 // 83 // At command line specify the parameters: -XX:+FullGCALot -XX:FullGCALotStart=100000000 84 85 86 87 88 // Compiled code entry points 89 address OptoRuntime::_new_instance_Java = NULL; 90 address OptoRuntime::_new_array_Java = NULL; 91 address OptoRuntime::_new_array_nozero_Java = NULL; 92 address OptoRuntime::_multianewarray2_Java = NULL; 93 address OptoRuntime::_multianewarray3_Java = NULL; 94 address OptoRuntime::_multianewarray4_Java = NULL; 95 address OptoRuntime::_multianewarray5_Java = NULL; 96 address OptoRuntime::_multianewarrayN_Java = NULL; 97 address OptoRuntime::_g1_wb_pre_Java = NULL; 98 address OptoRuntime::_g1_wb_post_Java = NULL; 99 address OptoRuntime::_vtable_must_compile_Java = NULL; 100 address OptoRuntime::_complete_monitor_locking_Java = NULL; 101 address OptoRuntime::_monitor_notify_Java = NULL; 102 address OptoRuntime::_monitor_notifyAll_Java = NULL; 103 address OptoRuntime::_rethrow_Java = NULL; 104 105 address OptoRuntime::_slow_arraycopy_Java = NULL; 106 address OptoRuntime::_register_finalizer_Java = NULL; 107 108 ExceptionBlob* OptoRuntime::_exception_blob; 109 110 // This should be called in an assertion at the start of OptoRuntime routines 111 // which are entered from compiled code (all of them) 112 #ifdef ASSERT 113 static bool check_compiled_frame(JavaThread* thread) { 114 assert(thread->last_frame().is_runtime_frame(), "cannot call runtime directly from compiled code"); 115 RegisterMap map(thread, false); 116 frame caller = thread->last_frame().sender(&map); 117 assert(caller.is_compiled_frame(), "not being called from compiled like code"); 118 return true; 119 } 120 #endif // ASSERT 121 122 123 #define gen(env, var, type_func_gen, c_func, fancy_jump, pass_tls, save_arg_regs, return_pc) \ 124 var = generate_stub(env, type_func_gen, CAST_FROM_FN_PTR(address, c_func), #var, fancy_jump, pass_tls, save_arg_regs, return_pc); \ 125 if (var == NULL) { return false; } 126 127 bool OptoRuntime::generate(ciEnv* env) { 128 129 generate_exception_blob(); 130 131 // Note: tls: Means fetching the return oop out of the thread-local storage 132 // 133 // variable/name type-function-gen , runtime method ,fncy_jp, tls,save_args,retpc 134 // ------------------------------------------------------------------------------------------------------------------------------- 135 gen(env, _new_instance_Java , new_instance_Type , new_instance_C , 0 , true , false, false); 136 gen(env, _new_array_Java , new_array_Type , new_array_C , 0 , true , false, false); 137 gen(env, _new_array_nozero_Java , new_array_Type , new_array_nozero_C , 0 , true , false, false); 138 gen(env, _multianewarray2_Java , multianewarray2_Type , multianewarray2_C , 0 , true , false, false); 139 gen(env, _multianewarray3_Java , multianewarray3_Type , multianewarray3_C , 0 , true , false, false); 140 gen(env, _multianewarray4_Java , multianewarray4_Type , multianewarray4_C , 0 , true , false, false); 141 gen(env, _multianewarray5_Java , multianewarray5_Type , multianewarray5_C , 0 , true , false, false); 142 gen(env, _multianewarrayN_Java , multianewarrayN_Type , multianewarrayN_C , 0 , true , false, false); 143 gen(env, _g1_wb_pre_Java , g1_wb_pre_Type , SharedRuntime::g1_wb_pre , 0 , false, false, false); 144 gen(env, _g1_wb_post_Java , g1_wb_post_Type , SharedRuntime::g1_wb_post , 0 , false, false, false); 145 gen(env, _complete_monitor_locking_Java , complete_monitor_enter_Type , SharedRuntime::complete_monitor_locking_C, 0, false, false, false); 146 gen(env, _monitor_notify_Java , monitor_notify_Type , monitor_notify_C , 0 , false, false, false); 147 gen(env, _monitor_notifyAll_Java , monitor_notify_Type , monitor_notifyAll_C , 0 , false, false, false); 148 gen(env, _rethrow_Java , rethrow_Type , rethrow_C , 2 , true , false, true ); 149 150 gen(env, _slow_arraycopy_Java , slow_arraycopy_Type , SharedRuntime::slow_arraycopy_C , 0 , false, false, false); 151 gen(env, _register_finalizer_Java , register_finalizer_Type , register_finalizer , 0 , false, false, false); 152 153 return true; 154 } 155 156 #undef gen 157 158 159 // Helper method to do generation of RunTimeStub's 160 address OptoRuntime::generate_stub( ciEnv* env, 161 TypeFunc_generator gen, address C_function, 162 const char *name, int is_fancy_jump, 163 bool pass_tls, 164 bool save_argument_registers, 165 bool return_pc) { 166 167 // Matching the default directive, we currently have no method to match. 168 DirectiveSet* directive = DirectivesStack::getDefaultDirective(CompileBroker::compiler(CompLevel_full_optimization)); 169 ResourceMark rm; 170 Compile C( env, gen, C_function, name, is_fancy_jump, pass_tls, save_argument_registers, return_pc, directive); 171 DirectivesStack::release(directive); 172 return C.stub_entry_point(); 173 } 174 175 const char* OptoRuntime::stub_name(address entry) { 176 #ifndef PRODUCT 177 CodeBlob* cb = CodeCache::find_blob(entry); 178 RuntimeStub* rs =(RuntimeStub *)cb; 179 assert(rs != NULL && rs->is_runtime_stub(), "not a runtime stub"); 180 return rs->name(); 181 #else 182 // Fast implementation for product mode (maybe it should be inlined too) 183 return "runtime stub"; 184 #endif 185 } 186 187 188 //============================================================================= 189 // Opto compiler runtime routines 190 //============================================================================= 191 192 193 //=============================allocation====================================== 194 // We failed the fast-path allocation. Now we need to do a scavenge or GC 195 // and try allocation again. 196 197 void OptoRuntime::new_store_pre_barrier(JavaThread* thread) { 198 // After any safepoint, just before going back to compiled code, 199 // we inform the GC that we will be doing initializing writes to 200 // this object in the future without emitting card-marks, so 201 // GC may take any compensating steps. 202 // NOTE: Keep this code consistent with GraphKit::store_barrier. 203 204 oop new_obj = thread->vm_result(); 205 if (new_obj == NULL) return; 206 207 assert(Universe::heap()->can_elide_tlab_store_barriers(), 208 "compiler must check this first"); 209 // GC may decide to give back a safer copy of new_obj. 210 new_obj = Universe::heap()->new_store_pre_barrier(thread, new_obj); 211 thread->set_vm_result(new_obj); 212 } 213 214 // object allocation 215 JRT_BLOCK_ENTRY(void, OptoRuntime::new_instance_C(Klass* klass, JavaThread* thread)) 216 JRT_BLOCK; 217 #ifndef PRODUCT 218 SharedRuntime::_new_instance_ctr++; // new instance requires GC 219 #endif 220 assert(check_compiled_frame(thread), "incorrect caller"); 221 222 // These checks are cheap to make and support reflective allocation. 223 int lh = klass->layout_helper(); 224 if (Klass::layout_helper_needs_slow_path(lh) 225 || !InstanceKlass::cast(klass)->is_initialized()) { 226 KlassHandle kh(THREAD, klass); 227 kh->check_valid_for_instantiation(false, THREAD); 228 if (!HAS_PENDING_EXCEPTION) { 229 InstanceKlass::cast(kh())->initialize(THREAD); 230 } 231 if (!HAS_PENDING_EXCEPTION) { 232 klass = kh(); 233 } else { 234 klass = NULL; 235 } 236 } 237 238 if (klass != NULL) { 239 // Scavenge and allocate an instance. 240 oop result = InstanceKlass::cast(klass)->allocate_instance(THREAD); 241 thread->set_vm_result(result); 242 243 // Pass oops back through thread local storage. Our apparent type to Java 244 // is that we return an oop, but we can block on exit from this routine and 245 // a GC can trash the oop in C's return register. The generated stub will 246 // fetch the oop from TLS after any possible GC. 247 } 248 249 deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION); 250 JRT_BLOCK_END; 251 252 if (GraphKit::use_ReduceInitialCardMarks()) { 253 // inform GC that we won't do card marks for initializing writes. 254 new_store_pre_barrier(thread); 255 } 256 JRT_END 257 258 259 // array allocation 260 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_C(Klass* array_type, int len, JavaThread *thread)) 261 JRT_BLOCK; 262 #ifndef PRODUCT 263 SharedRuntime::_new_array_ctr++; // new array requires GC 264 #endif 265 assert(check_compiled_frame(thread), "incorrect caller"); 266 267 // Scavenge and allocate an instance. 268 oop result; 269 270 if (array_type->is_valueArray_klass()) { 271 // TODO refactor all these checks, is_typeArray_klass should not be true for a value type array 272 // TODO use oopFactory::new_array 273 Klass* elem_type = ValueArrayKlass::cast(array_type)->element_klass(); 274 result = oopFactory::new_valueArray(elem_type, len, THREAD); 275 } else if (array_type->is_typeArray_klass()) { 276 // The oopFactory likes to work with the element type. 277 // (We could bypass the oopFactory, since it doesn't add much value.) 278 BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type(); 279 result = oopFactory::new_typeArray(elem_type, len, THREAD); 280 } else { 281 // Although the oopFactory likes to work with the elem_type, 282 // the compiler prefers the array_type, since it must already have 283 // that latter value in hand for the fast path. 284 Klass* elem_type = ObjArrayKlass::cast(array_type)->element_klass(); 285 result = oopFactory::new_objArray(elem_type, len, THREAD); 286 } 287 288 // Pass oops back through thread local storage. Our apparent type to Java 289 // is that we return an oop, but we can block on exit from this routine and 290 // a GC can trash the oop in C's return register. The generated stub will 291 // fetch the oop from TLS after any possible GC. 292 deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION); 293 thread->set_vm_result(result); 294 JRT_BLOCK_END; 295 296 if (GraphKit::use_ReduceInitialCardMarks()) { 297 // inform GC that we won't do card marks for initializing writes. 298 new_store_pre_barrier(thread); 299 } 300 JRT_END 301 302 // array allocation without zeroing 303 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_nozero_C(Klass* array_type, int len, JavaThread *thread)) 304 JRT_BLOCK; 305 #ifndef PRODUCT 306 SharedRuntime::_new_array_ctr++; // new array requires GC 307 #endif 308 assert(check_compiled_frame(thread), "incorrect caller"); 309 310 // Scavenge and allocate an instance. 311 oop result; 312 313 assert(array_type->is_typeArray_klass(), "should be called only for type array"); 314 // The oopFactory likes to work with the element type. 315 BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type(); 316 result = oopFactory::new_typeArray_nozero(elem_type, len, THREAD); 317 318 // Pass oops back through thread local storage. Our apparent type to Java 319 // is that we return an oop, but we can block on exit from this routine and 320 // a GC can trash the oop in C's return register. The generated stub will 321 // fetch the oop from TLS after any possible GC. 322 deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION); 323 thread->set_vm_result(result); 324 JRT_BLOCK_END; 325 326 if (GraphKit::use_ReduceInitialCardMarks()) { 327 // inform GC that we won't do card marks for initializing writes. 328 new_store_pre_barrier(thread); 329 } 330 331 oop result = thread->vm_result(); 332 if ((len > 0) && (result != NULL) && 333 is_deoptimized_caller_frame(thread)) { 334 // Zero array here if the caller is deoptimized. 335 int size = ((typeArrayOop)result)->object_size(); 336 BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type(); 337 const size_t hs = arrayOopDesc::header_size(elem_type); 338 // Align to next 8 bytes to avoid trashing arrays's length. 339 const size_t aligned_hs = align_object_offset(hs); 340 HeapWord* obj = (HeapWord*)result; 341 if (aligned_hs > hs) { 342 Copy::zero_to_words(obj+hs, aligned_hs-hs); 343 } 344 // Optimized zeroing. 345 Copy::fill_to_aligned_words(obj+aligned_hs, size-aligned_hs); 346 } 347 348 JRT_END 349 350 // Note: multianewarray for one dimension is handled inline by GraphKit::new_array. 351 352 // multianewarray for 2 dimensions 353 JRT_ENTRY(void, OptoRuntime::multianewarray2_C(Klass* elem_type, int len1, int len2, JavaThread *thread)) 354 #ifndef PRODUCT 355 SharedRuntime::_multi2_ctr++; // multianewarray for 1 dimension 356 #endif 357 assert(check_compiled_frame(thread), "incorrect caller"); 358 assert(elem_type->is_klass(), "not a class"); 359 jint dims[2]; 360 dims[0] = len1; 361 dims[1] = len2; 362 oop obj = ArrayKlass::cast(elem_type)->multi_allocate(2, dims, THREAD); 363 deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION); 364 thread->set_vm_result(obj); 365 JRT_END 366 367 // multianewarray for 3 dimensions 368 JRT_ENTRY(void, OptoRuntime::multianewarray3_C(Klass* elem_type, int len1, int len2, int len3, JavaThread *thread)) 369 #ifndef PRODUCT 370 SharedRuntime::_multi3_ctr++; // multianewarray for 1 dimension 371 #endif 372 assert(check_compiled_frame(thread), "incorrect caller"); 373 assert(elem_type->is_klass(), "not a class"); 374 jint dims[3]; 375 dims[0] = len1; 376 dims[1] = len2; 377 dims[2] = len3; 378 oop obj = ArrayKlass::cast(elem_type)->multi_allocate(3, dims, THREAD); 379 deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION); 380 thread->set_vm_result(obj); 381 JRT_END 382 383 // multianewarray for 4 dimensions 384 JRT_ENTRY(void, OptoRuntime::multianewarray4_C(Klass* elem_type, int len1, int len2, int len3, int len4, JavaThread *thread)) 385 #ifndef PRODUCT 386 SharedRuntime::_multi4_ctr++; // multianewarray for 1 dimension 387 #endif 388 assert(check_compiled_frame(thread), "incorrect caller"); 389 assert(elem_type->is_klass(), "not a class"); 390 jint dims[4]; 391 dims[0] = len1; 392 dims[1] = len2; 393 dims[2] = len3; 394 dims[3] = len4; 395 oop obj = ArrayKlass::cast(elem_type)->multi_allocate(4, dims, THREAD); 396 deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION); 397 thread->set_vm_result(obj); 398 JRT_END 399 400 // multianewarray for 5 dimensions 401 JRT_ENTRY(void, OptoRuntime::multianewarray5_C(Klass* elem_type, int len1, int len2, int len3, int len4, int len5, JavaThread *thread)) 402 #ifndef PRODUCT 403 SharedRuntime::_multi5_ctr++; // multianewarray for 1 dimension 404 #endif 405 assert(check_compiled_frame(thread), "incorrect caller"); 406 assert(elem_type->is_klass(), "not a class"); 407 jint dims[5]; 408 dims[0] = len1; 409 dims[1] = len2; 410 dims[2] = len3; 411 dims[3] = len4; 412 dims[4] = len5; 413 oop obj = ArrayKlass::cast(elem_type)->multi_allocate(5, dims, THREAD); 414 deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION); 415 thread->set_vm_result(obj); 416 JRT_END 417 418 JRT_ENTRY(void, OptoRuntime::multianewarrayN_C(Klass* elem_type, arrayOopDesc* dims, JavaThread *thread)) 419 assert(check_compiled_frame(thread), "incorrect caller"); 420 assert(elem_type->is_klass(), "not a class"); 421 assert(oop(dims)->is_typeArray(), "not an array"); 422 423 ResourceMark rm; 424 jint len = dims->length(); 425 assert(len > 0, "Dimensions array should contain data"); 426 jint *j_dims = typeArrayOop(dims)->int_at_addr(0); 427 jint *c_dims = NEW_RESOURCE_ARRAY(jint, len); 428 Copy::conjoint_jints_atomic(j_dims, c_dims, len); 429 430 oop obj = ArrayKlass::cast(elem_type)->multi_allocate(len, c_dims, THREAD); 431 deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION); 432 thread->set_vm_result(obj); 433 JRT_END 434 435 JRT_BLOCK_ENTRY(void, OptoRuntime::monitor_notify_C(oopDesc* obj, JavaThread *thread)) 436 437 // Very few notify/notifyAll operations find any threads on the waitset, so 438 // the dominant fast-path is to simply return. 439 // Relatedly, it's critical that notify/notifyAll be fast in order to 440 // reduce lock hold times. 441 if (!SafepointSynchronize::is_synchronizing()) { 442 if (ObjectSynchronizer::quick_notify(obj, thread, false)) { 443 return; 444 } 445 } 446 447 // This is the case the fast-path above isn't provisioned to handle. 448 // The fast-path is designed to handle frequently arising cases in an efficient manner. 449 // (The fast-path is just a degenerate variant of the slow-path). 450 // Perform the dreaded state transition and pass control into the slow-path. 451 JRT_BLOCK; 452 Handle h_obj(THREAD, obj); 453 ObjectSynchronizer::notify(h_obj, CHECK); 454 JRT_BLOCK_END; 455 JRT_END 456 457 JRT_BLOCK_ENTRY(void, OptoRuntime::monitor_notifyAll_C(oopDesc* obj, JavaThread *thread)) 458 459 if (!SafepointSynchronize::is_synchronizing() ) { 460 if (ObjectSynchronizer::quick_notify(obj, thread, true)) { 461 return; 462 } 463 } 464 465 // This is the case the fast-path above isn't provisioned to handle. 466 // The fast-path is designed to handle frequently arising cases in an efficient manner. 467 // (The fast-path is just a degenerate variant of the slow-path). 468 // Perform the dreaded state transition and pass control into the slow-path. 469 JRT_BLOCK; 470 Handle h_obj(THREAD, obj); 471 ObjectSynchronizer::notifyall(h_obj, CHECK); 472 JRT_BLOCK_END; 473 JRT_END 474 475 const TypeFunc *OptoRuntime::new_instance_Type() { 476 // create input type (domain) 477 const Type **fields = TypeTuple::fields(1); 478 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated 479 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields); 480 481 // create result type (range) 482 fields = TypeTuple::fields(1); 483 fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop 484 485 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); 486 487 return TypeFunc::make(domain, range); 488 } 489 490 491 const TypeFunc *OptoRuntime::athrow_Type() { 492 // create input type (domain) 493 const Type **fields = TypeTuple::fields(1); 494 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated 495 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields); 496 497 // create result type (range) 498 fields = TypeTuple::fields(0); 499 500 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields); 501 502 return TypeFunc::make(domain, range); 503 } 504 505 506 const TypeFunc *OptoRuntime::new_array_Type() { 507 // create input type (domain) 508 const Type **fields = TypeTuple::fields(2); 509 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // element klass 510 fields[TypeFunc::Parms+1] = TypeInt::INT; // array size 511 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields); 512 513 // create result type (range) 514 fields = TypeTuple::fields(1); 515 fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop 516 517 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); 518 519 return TypeFunc::make(domain, range); 520 } 521 522 const TypeFunc *OptoRuntime::multianewarray_Type(int ndim) { 523 // create input type (domain) 524 const int nargs = ndim + 1; 525 const Type **fields = TypeTuple::fields(nargs); 526 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // element klass 527 for( int i = 1; i < nargs; i++ ) 528 fields[TypeFunc::Parms + i] = TypeInt::INT; // array size 529 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+nargs, fields); 530 531 // create result type (range) 532 fields = TypeTuple::fields(1); 533 fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop 534 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); 535 536 return TypeFunc::make(domain, range); 537 } 538 539 const TypeFunc *OptoRuntime::multianewarray2_Type() { 540 return multianewarray_Type(2); 541 } 542 543 const TypeFunc *OptoRuntime::multianewarray3_Type() { 544 return multianewarray_Type(3); 545 } 546 547 const TypeFunc *OptoRuntime::multianewarray4_Type() { 548 return multianewarray_Type(4); 549 } 550 551 const TypeFunc *OptoRuntime::multianewarray5_Type() { 552 return multianewarray_Type(5); 553 } 554 555 const TypeFunc *OptoRuntime::multianewarrayN_Type() { 556 // create input type (domain) 557 const Type **fields = TypeTuple::fields(2); 558 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // element klass 559 fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL; // array of dim sizes 560 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields); 561 562 // create result type (range) 563 fields = TypeTuple::fields(1); 564 fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop 565 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); 566 567 return TypeFunc::make(domain, range); 568 } 569 570 const TypeFunc *OptoRuntime::g1_wb_pre_Type() { 571 const Type **fields = TypeTuple::fields(2); 572 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // original field value 573 fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL; // thread 574 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields); 575 576 // create result type (range) 577 fields = TypeTuple::fields(0); 578 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields); 579 580 return TypeFunc::make(domain, range); 581 } 582 583 const TypeFunc *OptoRuntime::g1_wb_post_Type() { 584 585 const Type **fields = TypeTuple::fields(2); 586 fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Card addr 587 fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL; // thread 588 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields); 589 590 // create result type (range) 591 fields = TypeTuple::fields(0); 592 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields); 593 594 return TypeFunc::make(domain, range); 595 } 596 597 const TypeFunc *OptoRuntime::uncommon_trap_Type() { 598 // create input type (domain) 599 const Type **fields = TypeTuple::fields(1); 600 fields[TypeFunc::Parms+0] = TypeInt::INT; // trap_reason (deopt reason and action) 601 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields); 602 603 // create result type (range) 604 fields = TypeTuple::fields(0); 605 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields); 606 607 return TypeFunc::make(domain, range); 608 } 609 610 //----------------------------------------------------------------------------- 611 // Monitor Handling 612 const TypeFunc *OptoRuntime::complete_monitor_enter_Type() { 613 // create input type (domain) 614 const Type **fields = TypeTuple::fields(2); 615 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Object to be Locked 616 fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // Address of stack location for lock 617 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields); 618 619 // create result type (range) 620 fields = TypeTuple::fields(0); 621 622 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields); 623 624 return TypeFunc::make(domain, range); 625 } 626 627 628 //----------------------------------------------------------------------------- 629 const TypeFunc *OptoRuntime::complete_monitor_exit_Type() { 630 // create input type (domain) 631 const Type **fields = TypeTuple::fields(3); 632 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Object to be Locked 633 fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // Address of stack location for lock - BasicLock 634 fields[TypeFunc::Parms+2] = TypeRawPtr::BOTTOM; // Thread pointer (Self) 635 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+3, fields); 636 637 // create result type (range) 638 fields = TypeTuple::fields(0); 639 640 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields); 641 642 return TypeFunc::make(domain, range); 643 } 644 645 const TypeFunc *OptoRuntime::monitor_notify_Type() { 646 // create input type (domain) 647 const Type **fields = TypeTuple::fields(1); 648 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Object to be Locked 649 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields); 650 651 // create result type (range) 652 fields = TypeTuple::fields(0); 653 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields); 654 return TypeFunc::make(domain, range); 655 } 656 657 const TypeFunc* OptoRuntime::flush_windows_Type() { 658 // create input type (domain) 659 const Type** fields = TypeTuple::fields(1); 660 fields[TypeFunc::Parms+0] = NULL; // void 661 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms, fields); 662 663 // create result type 664 fields = TypeTuple::fields(1); 665 fields[TypeFunc::Parms+0] = NULL; // void 666 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields); 667 668 return TypeFunc::make(domain, range); 669 } 670 671 const TypeFunc* OptoRuntime::l2f_Type() { 672 // create input type (domain) 673 const Type **fields = TypeTuple::fields(2); 674 fields[TypeFunc::Parms+0] = TypeLong::LONG; 675 fields[TypeFunc::Parms+1] = Type::HALF; 676 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields); 677 678 // create result type (range) 679 fields = TypeTuple::fields(1); 680 fields[TypeFunc::Parms+0] = Type::FLOAT; 681 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); 682 683 return TypeFunc::make(domain, range); 684 } 685 686 const TypeFunc* OptoRuntime::modf_Type() { 687 const Type **fields = TypeTuple::fields(2); 688 fields[TypeFunc::Parms+0] = Type::FLOAT; 689 fields[TypeFunc::Parms+1] = Type::FLOAT; 690 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields); 691 692 // create result type (range) 693 fields = TypeTuple::fields(1); 694 fields[TypeFunc::Parms+0] = Type::FLOAT; 695 696 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); 697 698 return TypeFunc::make(domain, range); 699 } 700 701 const TypeFunc *OptoRuntime::Math_D_D_Type() { 702 // create input type (domain) 703 const Type **fields = TypeTuple::fields(2); 704 // Symbol* name of class to be loaded 705 fields[TypeFunc::Parms+0] = Type::DOUBLE; 706 fields[TypeFunc::Parms+1] = Type::HALF; 707 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields); 708 709 // create result type (range) 710 fields = TypeTuple::fields(2); 711 fields[TypeFunc::Parms+0] = Type::DOUBLE; 712 fields[TypeFunc::Parms+1] = Type::HALF; 713 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields); 714 715 return TypeFunc::make(domain, range); 716 } 717 718 const TypeFunc* OptoRuntime::Math_DD_D_Type() { 719 const Type **fields = TypeTuple::fields(4); 720 fields[TypeFunc::Parms+0] = Type::DOUBLE; 721 fields[TypeFunc::Parms+1] = Type::HALF; 722 fields[TypeFunc::Parms+2] = Type::DOUBLE; 723 fields[TypeFunc::Parms+3] = Type::HALF; 724 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+4, fields); 725 726 // create result type (range) 727 fields = TypeTuple::fields(2); 728 fields[TypeFunc::Parms+0] = Type::DOUBLE; 729 fields[TypeFunc::Parms+1] = Type::HALF; 730 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields); 731 732 return TypeFunc::make(domain, range); 733 } 734 735 //-------------- currentTimeMillis, currentTimeNanos, etc 736 737 const TypeFunc* OptoRuntime::void_long_Type() { 738 // create input type (domain) 739 const Type **fields = TypeTuple::fields(0); 740 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+0, fields); 741 742 // create result type (range) 743 fields = TypeTuple::fields(2); 744 fields[TypeFunc::Parms+0] = TypeLong::LONG; 745 fields[TypeFunc::Parms+1] = Type::HALF; 746 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields); 747 748 return TypeFunc::make(domain, range); 749 } 750 751 // arraycopy stub variations: 752 enum ArrayCopyType { 753 ac_fast, // void(ptr, ptr, size_t) 754 ac_checkcast, // int(ptr, ptr, size_t, size_t, ptr) 755 ac_slow, // void(ptr, int, ptr, int, int) 756 ac_generic // int(ptr, int, ptr, int, int) 757 }; 758 759 static const TypeFunc* make_arraycopy_Type(ArrayCopyType act) { 760 // create input type (domain) 761 int num_args = (act == ac_fast ? 3 : 5); 762 int num_size_args = (act == ac_fast ? 1 : act == ac_checkcast ? 2 : 0); 763 int argcnt = num_args; 764 LP64_ONLY(argcnt += num_size_args); // halfwords for lengths 765 const Type** fields = TypeTuple::fields(argcnt); 766 int argp = TypeFunc::Parms; 767 fields[argp++] = TypePtr::NOTNULL; // src 768 if (num_size_args == 0) { 769 fields[argp++] = TypeInt::INT; // src_pos 770 } 771 fields[argp++] = TypePtr::NOTNULL; // dest 772 if (num_size_args == 0) { 773 fields[argp++] = TypeInt::INT; // dest_pos 774 fields[argp++] = TypeInt::INT; // length 775 } 776 while (num_size_args-- > 0) { 777 fields[argp++] = TypeX_X; // size in whatevers (size_t) 778 LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length 779 } 780 if (act == ac_checkcast) { 781 fields[argp++] = TypePtr::NOTNULL; // super_klass 782 } 783 assert(argp == TypeFunc::Parms+argcnt, "correct decoding of act"); 784 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 785 786 // create result type if needed 787 int retcnt = (act == ac_checkcast || act == ac_generic ? 1 : 0); 788 fields = TypeTuple::fields(1); 789 if (retcnt == 0) 790 fields[TypeFunc::Parms+0] = NULL; // void 791 else 792 fields[TypeFunc::Parms+0] = TypeInt::INT; // status result, if needed 793 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+retcnt, fields); 794 return TypeFunc::make(domain, range); 795 } 796 797 const TypeFunc* OptoRuntime::fast_arraycopy_Type() { 798 // This signature is simple: Two base pointers and a size_t. 799 return make_arraycopy_Type(ac_fast); 800 } 801 802 const TypeFunc* OptoRuntime::checkcast_arraycopy_Type() { 803 // An extension of fast_arraycopy_Type which adds type checking. 804 return make_arraycopy_Type(ac_checkcast); 805 } 806 807 const TypeFunc* OptoRuntime::slow_arraycopy_Type() { 808 // This signature is exactly the same as System.arraycopy. 809 // There are no intptr_t (int/long) arguments. 810 return make_arraycopy_Type(ac_slow); 811 } 812 813 const TypeFunc* OptoRuntime::generic_arraycopy_Type() { 814 // This signature is like System.arraycopy, except that it returns status. 815 return make_arraycopy_Type(ac_generic); 816 } 817 818 819 const TypeFunc* OptoRuntime::array_fill_Type() { 820 const Type** fields; 821 int argp = TypeFunc::Parms; 822 // create input type (domain): pointer, int, size_t 823 fields = TypeTuple::fields(3 LP64_ONLY( + 1)); 824 fields[argp++] = TypePtr::NOTNULL; 825 fields[argp++] = TypeInt::INT; 826 fields[argp++] = TypeX_X; // size in whatevers (size_t) 827 LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length 828 const TypeTuple *domain = TypeTuple::make(argp, fields); 829 830 // create result type 831 fields = TypeTuple::fields(1); 832 fields[TypeFunc::Parms+0] = NULL; // void 833 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields); 834 835 return TypeFunc::make(domain, range); 836 } 837 838 // for aescrypt encrypt/decrypt operations, just three pointers returning void (length is constant) 839 const TypeFunc* OptoRuntime::aescrypt_block_Type() { 840 // create input type (domain) 841 int num_args = 3; 842 if (Matcher::pass_original_key_for_aes()) { 843 num_args = 4; 844 } 845 int argcnt = num_args; 846 const Type** fields = TypeTuple::fields(argcnt); 847 int argp = TypeFunc::Parms; 848 fields[argp++] = TypePtr::NOTNULL; // src 849 fields[argp++] = TypePtr::NOTNULL; // dest 850 fields[argp++] = TypePtr::NOTNULL; // k array 851 if (Matcher::pass_original_key_for_aes()) { 852 fields[argp++] = TypePtr::NOTNULL; // original k array 853 } 854 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 855 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 856 857 // no result type needed 858 fields = TypeTuple::fields(1); 859 fields[TypeFunc::Parms+0] = NULL; // void 860 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 861 return TypeFunc::make(domain, range); 862 } 863 864 /** 865 * int updateBytesCRC32(int crc, byte* b, int len) 866 */ 867 const TypeFunc* OptoRuntime::updateBytesCRC32_Type() { 868 // create input type (domain) 869 int num_args = 3; 870 int argcnt = num_args; 871 const Type** fields = TypeTuple::fields(argcnt); 872 int argp = TypeFunc::Parms; 873 fields[argp++] = TypeInt::INT; // crc 874 fields[argp++] = TypePtr::NOTNULL; // src 875 fields[argp++] = TypeInt::INT; // len 876 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 877 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 878 879 // result type needed 880 fields = TypeTuple::fields(1); 881 fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result 882 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields); 883 return TypeFunc::make(domain, range); 884 } 885 886 /** 887 * int updateBytesCRC32C(int crc, byte* buf, int len, int* table) 888 */ 889 const TypeFunc* OptoRuntime::updateBytesCRC32C_Type() { 890 // create input type (domain) 891 int num_args = 4; 892 int argcnt = num_args; 893 const Type** fields = TypeTuple::fields(argcnt); 894 int argp = TypeFunc::Parms; 895 fields[argp++] = TypeInt::INT; // crc 896 fields[argp++] = TypePtr::NOTNULL; // buf 897 fields[argp++] = TypeInt::INT; // len 898 fields[argp++] = TypePtr::NOTNULL; // table 899 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 900 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 901 902 // result type needed 903 fields = TypeTuple::fields(1); 904 fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result 905 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields); 906 return TypeFunc::make(domain, range); 907 } 908 909 /** 910 * int updateBytesAdler32(int adler, bytes* b, int off, int len) 911 */ 912 const TypeFunc* OptoRuntime::updateBytesAdler32_Type() { 913 // create input type (domain) 914 int num_args = 3; 915 int argcnt = num_args; 916 const Type** fields = TypeTuple::fields(argcnt); 917 int argp = TypeFunc::Parms; 918 fields[argp++] = TypeInt::INT; // crc 919 fields[argp++] = TypePtr::NOTNULL; // src + offset 920 fields[argp++] = TypeInt::INT; // len 921 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 922 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 923 924 // result type needed 925 fields = TypeTuple::fields(1); 926 fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result 927 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields); 928 return TypeFunc::make(domain, range); 929 } 930 931 // for cipherBlockChaining calls of aescrypt encrypt/decrypt, four pointers and a length, returning int 932 const TypeFunc* OptoRuntime::cipherBlockChaining_aescrypt_Type() { 933 // create input type (domain) 934 int num_args = 5; 935 if (Matcher::pass_original_key_for_aes()) { 936 num_args = 6; 937 } 938 int argcnt = num_args; 939 const Type** fields = TypeTuple::fields(argcnt); 940 int argp = TypeFunc::Parms; 941 fields[argp++] = TypePtr::NOTNULL; // src 942 fields[argp++] = TypePtr::NOTNULL; // dest 943 fields[argp++] = TypePtr::NOTNULL; // k array 944 fields[argp++] = TypePtr::NOTNULL; // r array 945 fields[argp++] = TypeInt::INT; // src len 946 if (Matcher::pass_original_key_for_aes()) { 947 fields[argp++] = TypePtr::NOTNULL; // original k array 948 } 949 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 950 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 951 952 // returning cipher len (int) 953 fields = TypeTuple::fields(1); 954 fields[TypeFunc::Parms+0] = TypeInt::INT; 955 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields); 956 return TypeFunc::make(domain, range); 957 } 958 959 //for counterMode calls of aescrypt encrypt/decrypt, four pointers and a length, returning int 960 const TypeFunc* OptoRuntime::counterMode_aescrypt_Type() { 961 // create input type (domain) 962 int num_args = 7; 963 if (Matcher::pass_original_key_for_aes()) { 964 num_args = 8; 965 } 966 int argcnt = num_args; 967 const Type** fields = TypeTuple::fields(argcnt); 968 int argp = TypeFunc::Parms; 969 fields[argp++] = TypePtr::NOTNULL; // src 970 fields[argp++] = TypePtr::NOTNULL; // dest 971 fields[argp++] = TypePtr::NOTNULL; // k array 972 fields[argp++] = TypePtr::NOTNULL; // counter array 973 fields[argp++] = TypeInt::INT; // src len 974 fields[argp++] = TypePtr::NOTNULL; // saved_encCounter 975 fields[argp++] = TypePtr::NOTNULL; // saved used addr 976 if (Matcher::pass_original_key_for_aes()) { 977 fields[argp++] = TypePtr::NOTNULL; // original k array 978 } 979 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 980 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 981 // returning cipher len (int) 982 fields = TypeTuple::fields(1); 983 fields[TypeFunc::Parms + 0] = TypeInt::INT; 984 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 985 return TypeFunc::make(domain, range); 986 } 987 988 /* 989 * void implCompress(byte[] buf, int ofs) 990 */ 991 const TypeFunc* OptoRuntime::sha_implCompress_Type() { 992 // create input type (domain) 993 int num_args = 2; 994 int argcnt = num_args; 995 const Type** fields = TypeTuple::fields(argcnt); 996 int argp = TypeFunc::Parms; 997 fields[argp++] = TypePtr::NOTNULL; // buf 998 fields[argp++] = TypePtr::NOTNULL; // state 999 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1000 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1001 1002 // no result type needed 1003 fields = TypeTuple::fields(1); 1004 fields[TypeFunc::Parms+0] = NULL; // void 1005 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1006 return TypeFunc::make(domain, range); 1007 } 1008 1009 /* 1010 * int implCompressMultiBlock(byte[] b, int ofs, int limit) 1011 */ 1012 const TypeFunc* OptoRuntime::digestBase_implCompressMB_Type() { 1013 // create input type (domain) 1014 int num_args = 4; 1015 int argcnt = num_args; 1016 const Type** fields = TypeTuple::fields(argcnt); 1017 int argp = TypeFunc::Parms; 1018 fields[argp++] = TypePtr::NOTNULL; // buf 1019 fields[argp++] = TypePtr::NOTNULL; // state 1020 fields[argp++] = TypeInt::INT; // ofs 1021 fields[argp++] = TypeInt::INT; // limit 1022 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1023 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1024 1025 // returning ofs (int) 1026 fields = TypeTuple::fields(1); 1027 fields[TypeFunc::Parms+0] = TypeInt::INT; // ofs 1028 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields); 1029 return TypeFunc::make(domain, range); 1030 } 1031 1032 const TypeFunc* OptoRuntime::multiplyToLen_Type() { 1033 // create input type (domain) 1034 int num_args = 6; 1035 int argcnt = num_args; 1036 const Type** fields = TypeTuple::fields(argcnt); 1037 int argp = TypeFunc::Parms; 1038 fields[argp++] = TypePtr::NOTNULL; // x 1039 fields[argp++] = TypeInt::INT; // xlen 1040 fields[argp++] = TypePtr::NOTNULL; // y 1041 fields[argp++] = TypeInt::INT; // ylen 1042 fields[argp++] = TypePtr::NOTNULL; // z 1043 fields[argp++] = TypeInt::INT; // zlen 1044 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1045 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1046 1047 // no result type needed 1048 fields = TypeTuple::fields(1); 1049 fields[TypeFunc::Parms+0] = NULL; 1050 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1051 return TypeFunc::make(domain, range); 1052 } 1053 1054 const TypeFunc* OptoRuntime::squareToLen_Type() { 1055 // create input type (domain) 1056 int num_args = 4; 1057 int argcnt = num_args; 1058 const Type** fields = TypeTuple::fields(argcnt); 1059 int argp = TypeFunc::Parms; 1060 fields[argp++] = TypePtr::NOTNULL; // x 1061 fields[argp++] = TypeInt::INT; // len 1062 fields[argp++] = TypePtr::NOTNULL; // z 1063 fields[argp++] = TypeInt::INT; // zlen 1064 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1065 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1066 1067 // no result type needed 1068 fields = TypeTuple::fields(1); 1069 fields[TypeFunc::Parms+0] = NULL; 1070 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1071 return TypeFunc::make(domain, range); 1072 } 1073 1074 // for mulAdd calls, 2 pointers and 3 ints, returning int 1075 const TypeFunc* OptoRuntime::mulAdd_Type() { 1076 // create input type (domain) 1077 int num_args = 5; 1078 int argcnt = num_args; 1079 const Type** fields = TypeTuple::fields(argcnt); 1080 int argp = TypeFunc::Parms; 1081 fields[argp++] = TypePtr::NOTNULL; // out 1082 fields[argp++] = TypePtr::NOTNULL; // in 1083 fields[argp++] = TypeInt::INT; // offset 1084 fields[argp++] = TypeInt::INT; // len 1085 fields[argp++] = TypeInt::INT; // k 1086 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1087 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1088 1089 // returning carry (int) 1090 fields = TypeTuple::fields(1); 1091 fields[TypeFunc::Parms+0] = TypeInt::INT; 1092 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields); 1093 return TypeFunc::make(domain, range); 1094 } 1095 1096 const TypeFunc* OptoRuntime::montgomeryMultiply_Type() { 1097 // create input type (domain) 1098 int num_args = 7; 1099 int argcnt = num_args; 1100 const Type** fields = TypeTuple::fields(argcnt); 1101 int argp = TypeFunc::Parms; 1102 fields[argp++] = TypePtr::NOTNULL; // a 1103 fields[argp++] = TypePtr::NOTNULL; // b 1104 fields[argp++] = TypePtr::NOTNULL; // n 1105 fields[argp++] = TypeInt::INT; // len 1106 fields[argp++] = TypeLong::LONG; // inv 1107 fields[argp++] = Type::HALF; 1108 fields[argp++] = TypePtr::NOTNULL; // result 1109 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1110 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1111 1112 // result type needed 1113 fields = TypeTuple::fields(1); 1114 fields[TypeFunc::Parms+0] = TypePtr::NOTNULL; 1115 1116 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1117 return TypeFunc::make(domain, range); 1118 } 1119 1120 const TypeFunc* OptoRuntime::montgomerySquare_Type() { 1121 // create input type (domain) 1122 int num_args = 6; 1123 int argcnt = num_args; 1124 const Type** fields = TypeTuple::fields(argcnt); 1125 int argp = TypeFunc::Parms; 1126 fields[argp++] = TypePtr::NOTNULL; // a 1127 fields[argp++] = TypePtr::NOTNULL; // n 1128 fields[argp++] = TypeInt::INT; // len 1129 fields[argp++] = TypeLong::LONG; // inv 1130 fields[argp++] = Type::HALF; 1131 fields[argp++] = TypePtr::NOTNULL; // result 1132 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1133 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1134 1135 // result type needed 1136 fields = TypeTuple::fields(1); 1137 fields[TypeFunc::Parms+0] = TypePtr::NOTNULL; 1138 1139 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1140 return TypeFunc::make(domain, range); 1141 } 1142 1143 const TypeFunc* OptoRuntime::vectorizedMismatch_Type() { 1144 // create input type (domain) 1145 int num_args = 4; 1146 int argcnt = num_args; 1147 const Type** fields = TypeTuple::fields(argcnt); 1148 int argp = TypeFunc::Parms; 1149 fields[argp++] = TypePtr::NOTNULL; // obja 1150 fields[argp++] = TypePtr::NOTNULL; // objb 1151 fields[argp++] = TypeInt::INT; // length, number of elements 1152 fields[argp++] = TypeInt::INT; // log2scale, element size 1153 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1154 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1155 1156 //return mismatch index (int) 1157 fields = TypeTuple::fields(1); 1158 fields[TypeFunc::Parms + 0] = TypeInt::INT; 1159 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1160 return TypeFunc::make(domain, range); 1161 } 1162 1163 // GHASH block processing 1164 const TypeFunc* OptoRuntime::ghash_processBlocks_Type() { 1165 int argcnt = 4; 1166 1167 const Type** fields = TypeTuple::fields(argcnt); 1168 int argp = TypeFunc::Parms; 1169 fields[argp++] = TypePtr::NOTNULL; // state 1170 fields[argp++] = TypePtr::NOTNULL; // subkeyH 1171 fields[argp++] = TypePtr::NOTNULL; // data 1172 fields[argp++] = TypeInt::INT; // blocks 1173 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1174 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1175 1176 // result type needed 1177 fields = TypeTuple::fields(1); 1178 fields[TypeFunc::Parms+0] = NULL; // void 1179 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1180 return TypeFunc::make(domain, range); 1181 } 1182 1183 //------------- Interpreter state access for on stack replacement 1184 const TypeFunc* OptoRuntime::osr_end_Type() { 1185 // create input type (domain) 1186 const Type **fields = TypeTuple::fields(1); 1187 fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // OSR temp buf 1188 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields); 1189 1190 // create result type 1191 fields = TypeTuple::fields(1); 1192 // fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // locked oop 1193 fields[TypeFunc::Parms+0] = NULL; // void 1194 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields); 1195 return TypeFunc::make(domain, range); 1196 } 1197 1198 //-------------- methodData update helpers 1199 1200 const TypeFunc* OptoRuntime::profile_receiver_type_Type() { 1201 // create input type (domain) 1202 const Type **fields = TypeTuple::fields(2); 1203 fields[TypeFunc::Parms+0] = TypeAryPtr::NOTNULL; // methodData pointer 1204 fields[TypeFunc::Parms+1] = TypeInstPtr::BOTTOM; // receiver oop 1205 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields); 1206 1207 // create result type 1208 fields = TypeTuple::fields(1); 1209 fields[TypeFunc::Parms+0] = NULL; // void 1210 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields); 1211 return TypeFunc::make(domain, range); 1212 } 1213 1214 JRT_LEAF(void, OptoRuntime::profile_receiver_type_C(DataLayout* data, oopDesc* receiver)) 1215 if (receiver == NULL) return; 1216 Klass* receiver_klass = receiver->klass(); 1217 1218 intptr_t* mdp = ((intptr_t*)(data)) + DataLayout::header_size_in_cells(); 1219 int empty_row = -1; // free row, if any is encountered 1220 1221 // ReceiverTypeData* vc = new ReceiverTypeData(mdp); 1222 for (uint row = 0; row < ReceiverTypeData::row_limit(); row++) { 1223 // if (vc->receiver(row) == receiver_klass) 1224 int receiver_off = ReceiverTypeData::receiver_cell_index(row); 1225 intptr_t row_recv = *(mdp + receiver_off); 1226 if (row_recv == (intptr_t) receiver_klass) { 1227 // vc->set_receiver_count(row, vc->receiver_count(row) + DataLayout::counter_increment); 1228 int count_off = ReceiverTypeData::receiver_count_cell_index(row); 1229 *(mdp + count_off) += DataLayout::counter_increment; 1230 return; 1231 } else if (row_recv == 0) { 1232 // else if (vc->receiver(row) == NULL) 1233 empty_row = (int) row; 1234 } 1235 } 1236 1237 if (empty_row != -1) { 1238 int receiver_off = ReceiverTypeData::receiver_cell_index(empty_row); 1239 // vc->set_receiver(empty_row, receiver_klass); 1240 *(mdp + receiver_off) = (intptr_t) receiver_klass; 1241 // vc->set_receiver_count(empty_row, DataLayout::counter_increment); 1242 int count_off = ReceiverTypeData::receiver_count_cell_index(empty_row); 1243 *(mdp + count_off) = DataLayout::counter_increment; 1244 } else { 1245 // Receiver did not match any saved receiver and there is no empty row for it. 1246 // Increment total counter to indicate polymorphic case. 1247 intptr_t* count_p = (intptr_t*)(((uint8_t*)(data)) + in_bytes(CounterData::count_offset())); 1248 *count_p += DataLayout::counter_increment; 1249 } 1250 JRT_END 1251 1252 //------------------------------------------------------------------------------------- 1253 // register policy 1254 1255 bool OptoRuntime::is_callee_saved_register(MachRegisterNumbers reg) { 1256 assert(reg >= 0 && reg < _last_Mach_Reg, "must be a machine register"); 1257 switch (register_save_policy[reg]) { 1258 case 'C': return false; //SOC 1259 case 'E': return true ; //SOE 1260 case 'N': return false; //NS 1261 case 'A': return false; //AS 1262 } 1263 ShouldNotReachHere(); 1264 return false; 1265 } 1266 1267 //----------------------------------------------------------------------- 1268 // Exceptions 1269 // 1270 1271 static void trace_exception(outputStream* st, oop exception_oop, address exception_pc, const char* msg); 1272 1273 // The method is an entry that is always called by a C++ method not 1274 // directly from compiled code. Compiled code will call the C++ method following. 1275 // We can't allow async exception to be installed during exception processing. 1276 JRT_ENTRY_NO_ASYNC(address, OptoRuntime::handle_exception_C_helper(JavaThread* thread, nmethod* &nm)) 1277 1278 // Do not confuse exception_oop with pending_exception. The exception_oop 1279 // is only used to pass arguments into the method. Not for general 1280 // exception handling. DO NOT CHANGE IT to use pending_exception, since 1281 // the runtime stubs checks this on exit. 1282 assert(thread->exception_oop() != NULL, "exception oop is found"); 1283 address handler_address = NULL; 1284 1285 Handle exception(thread, thread->exception_oop()); 1286 address pc = thread->exception_pc(); 1287 1288 // Clear out the exception oop and pc since looking up an 1289 // exception handler can cause class loading, which might throw an 1290 // exception and those fields are expected to be clear during 1291 // normal bytecode execution. 1292 thread->clear_exception_oop_and_pc(); 1293 1294 if (log_is_enabled(Info, exceptions)) { 1295 ResourceMark rm; 1296 trace_exception(LogHandle(exceptions)::info_stream(), exception(), pc, ""); 1297 } 1298 1299 // for AbortVMOnException flag 1300 Exceptions::debug_check_abort(exception); 1301 1302 #ifdef ASSERT 1303 if (!(exception->is_a(SystemDictionary::Throwable_klass()))) { 1304 // should throw an exception here 1305 ShouldNotReachHere(); 1306 } 1307 #endif 1308 1309 // new exception handling: this method is entered only from adapters 1310 // exceptions from compiled java methods are handled in compiled code 1311 // using rethrow node 1312 1313 nm = CodeCache::find_nmethod(pc); 1314 assert(nm != NULL, "No NMethod found"); 1315 if (nm->is_native_method()) { 1316 fatal("Native method should not have path to exception handling"); 1317 } else { 1318 // we are switching to old paradigm: search for exception handler in caller_frame 1319 // instead in exception handler of caller_frame.sender() 1320 1321 if (JvmtiExport::can_post_on_exceptions()) { 1322 // "Full-speed catching" is not necessary here, 1323 // since we're notifying the VM on every catch. 1324 // Force deoptimization and the rest of the lookup 1325 // will be fine. 1326 deoptimize_caller_frame(thread); 1327 } 1328 1329 // Check the stack guard pages. If enabled, look for handler in this frame; 1330 // otherwise, forcibly unwind the frame. 1331 // 1332 // 4826555: use default current sp for reguard_stack instead of &nm: it's more accurate. 1333 bool force_unwind = !thread->reguard_stack(); 1334 bool deopting = false; 1335 if (nm->is_deopt_pc(pc)) { 1336 deopting = true; 1337 RegisterMap map(thread, false); 1338 frame deoptee = thread->last_frame().sender(&map); 1339 assert(deoptee.is_deoptimized_frame(), "must be deopted"); 1340 // Adjust the pc back to the original throwing pc 1341 pc = deoptee.pc(); 1342 } 1343 1344 // If we are forcing an unwind because of stack overflow then deopt is 1345 // irrelevant since we are throwing the frame away anyway. 1346 1347 if (deopting && !force_unwind) { 1348 handler_address = SharedRuntime::deopt_blob()->unpack_with_exception(); 1349 } else { 1350 1351 handler_address = 1352 force_unwind ? NULL : nm->handler_for_exception_and_pc(exception, pc); 1353 1354 if (handler_address == NULL) { 1355 Handle original_exception(thread, exception()); 1356 handler_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true); 1357 assert (handler_address != NULL, "must have compiled handler"); 1358 // Update the exception cache only when the unwind was not forced 1359 // and there didn't happen another exception during the computation of the 1360 // compiled exception handler. 1361 if (!force_unwind && original_exception() == exception()) { 1362 nm->add_handler_for_exception_and_pc(exception,pc,handler_address); 1363 } 1364 } else { 1365 assert(handler_address == SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true), "Must be the same"); 1366 } 1367 } 1368 1369 thread->set_exception_pc(pc); 1370 thread->set_exception_handler_pc(handler_address); 1371 1372 // Check if the exception PC is a MethodHandle call site. 1373 thread->set_is_method_handle_return(nm->is_method_handle_return(pc)); 1374 } 1375 1376 // Restore correct return pc. Was saved above. 1377 thread->set_exception_oop(exception()); 1378 return handler_address; 1379 1380 JRT_END 1381 1382 // We are entering here from exception_blob 1383 // If there is a compiled exception handler in this method, we will continue there; 1384 // otherwise we will unwind the stack and continue at the caller of top frame method 1385 // Note we enter without the usual JRT wrapper. We will call a helper routine that 1386 // will do the normal VM entry. We do it this way so that we can see if the nmethod 1387 // we looked up the handler for has been deoptimized in the meantime. If it has been 1388 // we must not use the handler and instead return the deopt blob. 1389 address OptoRuntime::handle_exception_C(JavaThread* thread) { 1390 // 1391 // We are in Java not VM and in debug mode we have a NoHandleMark 1392 // 1393 #ifndef PRODUCT 1394 SharedRuntime::_find_handler_ctr++; // find exception handler 1395 #endif 1396 debug_only(NoHandleMark __hm;) 1397 nmethod* nm = NULL; 1398 address handler_address = NULL; 1399 { 1400 // Enter the VM 1401 1402 ResetNoHandleMark rnhm; 1403 handler_address = handle_exception_C_helper(thread, nm); 1404 } 1405 1406 // Back in java: Use no oops, DON'T safepoint 1407 1408 // Now check to see if the handler we are returning is in a now 1409 // deoptimized frame 1410 1411 if (nm != NULL) { 1412 RegisterMap map(thread, false); 1413 frame caller = thread->last_frame().sender(&map); 1414 #ifdef ASSERT 1415 assert(caller.is_compiled_frame(), "must be"); 1416 #endif // ASSERT 1417 if (caller.is_deoptimized_frame()) { 1418 handler_address = SharedRuntime::deopt_blob()->unpack_with_exception(); 1419 } 1420 } 1421 return handler_address; 1422 } 1423 1424 //------------------------------rethrow---------------------------------------- 1425 // We get here after compiled code has executed a 'RethrowNode'. The callee 1426 // is either throwing or rethrowing an exception. The callee-save registers 1427 // have been restored, synchronized objects have been unlocked and the callee 1428 // stack frame has been removed. The return address was passed in. 1429 // Exception oop is passed as the 1st argument. This routine is then called 1430 // from the stub. On exit, we know where to jump in the caller's code. 1431 // After this C code exits, the stub will pop his frame and end in a jump 1432 // (instead of a return). We enter the caller's default handler. 1433 // 1434 // This must be JRT_LEAF: 1435 // - caller will not change its state as we cannot block on exit, 1436 // therefore raw_exception_handler_for_return_address is all it takes 1437 // to handle deoptimized blobs 1438 // 1439 // However, there needs to be a safepoint check in the middle! So compiled 1440 // safepoints are completely watertight. 1441 // 1442 // Thus, it cannot be a leaf since it contains the NoGCVerifier. 1443 // 1444 // *THIS IS NOT RECOMMENDED PROGRAMMING STYLE* 1445 // 1446 address OptoRuntime::rethrow_C(oopDesc* exception, JavaThread* thread, address ret_pc) { 1447 #ifndef PRODUCT 1448 SharedRuntime::_rethrow_ctr++; // count rethrows 1449 #endif 1450 assert (exception != NULL, "should have thrown a NULLPointerException"); 1451 #ifdef ASSERT 1452 if (!(exception->is_a(SystemDictionary::Throwable_klass()))) { 1453 // should throw an exception here 1454 ShouldNotReachHere(); 1455 } 1456 #endif 1457 1458 thread->set_vm_result(exception); 1459 // Frame not compiled (handles deoptimization blob) 1460 return SharedRuntime::raw_exception_handler_for_return_address(thread, ret_pc); 1461 } 1462 1463 1464 const TypeFunc *OptoRuntime::rethrow_Type() { 1465 // create input type (domain) 1466 const Type **fields = TypeTuple::fields(1); 1467 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop 1468 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields); 1469 1470 // create result type (range) 1471 fields = TypeTuple::fields(1); 1472 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop 1473 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); 1474 1475 return TypeFunc::make(domain, range); 1476 } 1477 1478 1479 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread, bool doit) { 1480 // Deoptimize the caller before continuing, as the compiled 1481 // exception handler table may not be valid. 1482 if (!StressCompiledExceptionHandlers && doit) { 1483 deoptimize_caller_frame(thread); 1484 } 1485 } 1486 1487 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread) { 1488 // Called from within the owner thread, so no need for safepoint 1489 RegisterMap reg_map(thread); 1490 frame stub_frame = thread->last_frame(); 1491 assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check"); 1492 frame caller_frame = stub_frame.sender(®_map); 1493 1494 // Deoptimize the caller frame. 1495 Deoptimization::deoptimize_frame(thread, caller_frame.id()); 1496 } 1497 1498 1499 bool OptoRuntime::is_deoptimized_caller_frame(JavaThread *thread) { 1500 // Called from within the owner thread, so no need for safepoint 1501 RegisterMap reg_map(thread); 1502 frame stub_frame = thread->last_frame(); 1503 assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check"); 1504 frame caller_frame = stub_frame.sender(®_map); 1505 return caller_frame.is_deoptimized_frame(); 1506 } 1507 1508 1509 const TypeFunc *OptoRuntime::register_finalizer_Type() { 1510 // create input type (domain) 1511 const Type **fields = TypeTuple::fields(1); 1512 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // oop; Receiver 1513 // // The JavaThread* is passed to each routine as the last argument 1514 // fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL; // JavaThread *; Executing thread 1515 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields); 1516 1517 // create result type (range) 1518 fields = TypeTuple::fields(0); 1519 1520 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields); 1521 1522 return TypeFunc::make(domain, range); 1523 } 1524 1525 1526 //----------------------------------------------------------------------------- 1527 // Dtrace support. entry and exit probes have the same signature 1528 const TypeFunc *OptoRuntime::dtrace_method_entry_exit_Type() { 1529 // create input type (domain) 1530 const Type **fields = TypeTuple::fields(2); 1531 fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage 1532 fields[TypeFunc::Parms+1] = TypeMetadataPtr::BOTTOM; // Method*; Method we are entering 1533 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields); 1534 1535 // create result type (range) 1536 fields = TypeTuple::fields(0); 1537 1538 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields); 1539 1540 return TypeFunc::make(domain, range); 1541 } 1542 1543 const TypeFunc *OptoRuntime::dtrace_object_alloc_Type() { 1544 // create input type (domain) 1545 const Type **fields = TypeTuple::fields(2); 1546 fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage 1547 fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL; // oop; newly allocated object 1548 1549 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields); 1550 1551 // create result type (range) 1552 fields = TypeTuple::fields(0); 1553 1554 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields); 1555 1556 return TypeFunc::make(domain, range); 1557 } 1558 1559 1560 JRT_ENTRY_NO_ASYNC(void, OptoRuntime::register_finalizer(oopDesc* obj, JavaThread* thread)) 1561 assert(obj->is_oop(), "must be a valid oop"); 1562 assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise"); 1563 InstanceKlass::register_finalizer(instanceOop(obj), CHECK); 1564 JRT_END 1565 1566 //----------------------------------------------------------------------------- 1567 1568 NamedCounter * volatile OptoRuntime::_named_counters = NULL; 1569 1570 // 1571 // dump the collected NamedCounters. 1572 // 1573 void OptoRuntime::print_named_counters() { 1574 int total_lock_count = 0; 1575 int eliminated_lock_count = 0; 1576 1577 NamedCounter* c = _named_counters; 1578 while (c) { 1579 if (c->tag() == NamedCounter::LockCounter || c->tag() == NamedCounter::EliminatedLockCounter) { 1580 int count = c->count(); 1581 if (count > 0) { 1582 bool eliminated = c->tag() == NamedCounter::EliminatedLockCounter; 1583 if (Verbose) { 1584 tty->print_cr("%d %s%s", count, c->name(), eliminated ? " (eliminated)" : ""); 1585 } 1586 total_lock_count += count; 1587 if (eliminated) { 1588 eliminated_lock_count += count; 1589 } 1590 } 1591 } else if (c->tag() == NamedCounter::BiasedLockingCounter) { 1592 BiasedLockingCounters* blc = ((BiasedLockingNamedCounter*)c)->counters(); 1593 if (blc->nonzero()) { 1594 tty->print_cr("%s", c->name()); 1595 blc->print_on(tty); 1596 } 1597 #if INCLUDE_RTM_OPT 1598 } else if (c->tag() == NamedCounter::RTMLockingCounter) { 1599 RTMLockingCounters* rlc = ((RTMLockingNamedCounter*)c)->counters(); 1600 if (rlc->nonzero()) { 1601 tty->print_cr("%s", c->name()); 1602 rlc->print_on(tty); 1603 } 1604 #endif 1605 } 1606 c = c->next(); 1607 } 1608 if (total_lock_count > 0) { 1609 tty->print_cr("dynamic locks: %d", total_lock_count); 1610 if (eliminated_lock_count) { 1611 tty->print_cr("eliminated locks: %d (%d%%)", eliminated_lock_count, 1612 (int)(eliminated_lock_count * 100.0 / total_lock_count)); 1613 } 1614 } 1615 } 1616 1617 // 1618 // Allocate a new NamedCounter. The JVMState is used to generate the 1619 // name which consists of method@line for the inlining tree. 1620 // 1621 1622 NamedCounter* OptoRuntime::new_named_counter(JVMState* youngest_jvms, NamedCounter::CounterTag tag) { 1623 int max_depth = youngest_jvms->depth(); 1624 1625 // Visit scopes from youngest to oldest. 1626 bool first = true; 1627 stringStream st; 1628 for (int depth = max_depth; depth >= 1; depth--) { 1629 JVMState* jvms = youngest_jvms->of_depth(depth); 1630 ciMethod* m = jvms->has_method() ? jvms->method() : NULL; 1631 if (!first) { 1632 st.print(" "); 1633 } else { 1634 first = false; 1635 } 1636 int bci = jvms->bci(); 1637 if (bci < 0) bci = 0; 1638 st.print("%s.%s@%d", m->holder()->name()->as_utf8(), m->name()->as_utf8(), bci); 1639 // To print linenumbers instead of bci use: m->line_number_from_bci(bci) 1640 } 1641 NamedCounter* c; 1642 if (tag == NamedCounter::BiasedLockingCounter) { 1643 c = new BiasedLockingNamedCounter(st.as_string()); 1644 } else if (tag == NamedCounter::RTMLockingCounter) { 1645 c = new RTMLockingNamedCounter(st.as_string()); 1646 } else { 1647 c = new NamedCounter(st.as_string(), tag); 1648 } 1649 1650 // atomically add the new counter to the head of the list. We only 1651 // add counters so this is safe. 1652 NamedCounter* head; 1653 do { 1654 c->set_next(NULL); 1655 head = _named_counters; 1656 c->set_next(head); 1657 } while (Atomic::cmpxchg_ptr(c, &_named_counters, head) != head); 1658 return c; 1659 } 1660 1661 int trace_exception_counter = 0; 1662 static void trace_exception(outputStream* st, oop exception_oop, address exception_pc, const char* msg) { 1663 trace_exception_counter++; 1664 stringStream tempst; 1665 1666 tempst.print("%d [Exception (%s): ", trace_exception_counter, msg); 1667 exception_oop->print_value_on(&tempst); 1668 tempst.print(" in "); 1669 CodeBlob* blob = CodeCache::find_blob(exception_pc); 1670 if (blob->is_nmethod()) { 1671 nmethod* nm = blob->as_nmethod_or_null(); 1672 nm->method()->print_value_on(&tempst); 1673 } else if (blob->is_runtime_stub()) { 1674 tempst.print("<runtime-stub>"); 1675 } else { 1676 tempst.print("<unknown>"); 1677 } 1678 tempst.print(" at " INTPTR_FORMAT, p2i(exception_pc)); 1679 tempst.print("]"); 1680 1681 st->print_raw_cr(tempst.as_string()); 1682 } --- EOF ---