1 /* 2 * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "classfile/systemDictionary.hpp" 27 #include "compiler/compileLog.hpp" 28 #include "memory/allocation.inline.hpp" 29 #include "oops/objArrayKlass.hpp" 30 #include "opto/addnode.hpp" 31 #include "opto/arraycopynode.hpp" 32 #include "opto/cfgnode.hpp" 33 #include "opto/compile.hpp" 34 #include "opto/connode.hpp" 35 #include "opto/convertnode.hpp" 36 #include "opto/loopnode.hpp" 37 #include "opto/machnode.hpp" 38 #include "opto/matcher.hpp" 39 #include "opto/memnode.hpp" 40 #include "opto/mulnode.hpp" 41 #include "opto/narrowptrnode.hpp" 42 #include "opto/phaseX.hpp" 43 #include "opto/regmask.hpp" 44 #include "utilities/copy.hpp" 45 46 // Portions of code courtesy of Clifford Click 47 48 // Optimization - Graph Style 49 50 static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem, const TypePtr *tp, const TypePtr *adr_check, outputStream *st); 51 52 //============================================================================= 53 uint MemNode::size_of() const { return sizeof(*this); } 54 55 const TypePtr *MemNode::adr_type() const { 56 Node* adr = in(Address); 57 if (adr == NULL) return NULL; // node is dead 58 const TypePtr* cross_check = NULL; 59 DEBUG_ONLY(cross_check = _adr_type); 60 return calculate_adr_type(adr->bottom_type(), cross_check); 61 } 62 63 #ifndef PRODUCT 64 void MemNode::dump_spec(outputStream *st) const { 65 if (in(Address) == NULL) return; // node is dead 66 #ifndef ASSERT 67 // fake the missing field 68 const TypePtr* _adr_type = NULL; 69 if (in(Address) != NULL) 70 _adr_type = in(Address)->bottom_type()->isa_ptr(); 71 #endif 72 dump_adr_type(this, _adr_type, st); 73 74 Compile* C = Compile::current(); 75 if (C->alias_type(_adr_type)->is_volatile()) { 76 st->print(" Volatile!"); 77 } 78 if (_unaligned_access) { 79 st->print(" unaligned"); 80 } 81 if (_mismatched_access) { 82 st->print(" mismatched"); 83 } 84 } 85 86 void MemNode::dump_adr_type(const Node* mem, const TypePtr* adr_type, outputStream *st) { 87 st->print(" @"); 88 if (adr_type == NULL) { 89 st->print("NULL"); 90 } else { 91 adr_type->dump_on(st); 92 Compile* C = Compile::current(); 93 Compile::AliasType* atp = NULL; 94 if (C->have_alias_type(adr_type)) atp = C->alias_type(adr_type); 95 if (atp == NULL) 96 st->print(", idx=?\?;"); 97 else if (atp->index() == Compile::AliasIdxBot) 98 st->print(", idx=Bot;"); 99 else if (atp->index() == Compile::AliasIdxTop) 100 st->print(", idx=Top;"); 101 else if (atp->index() == Compile::AliasIdxRaw) 102 st->print(", idx=Raw;"); 103 else { 104 ciField* field = atp->field(); 105 if (field) { 106 st->print(", name="); 107 field->print_name_on(st); 108 } 109 st->print(", idx=%d;", atp->index()); 110 } 111 } 112 } 113 114 extern void print_alias_types(); 115 116 #endif 117 118 Node *MemNode::optimize_simple_memory_chain(Node *mchain, const TypeOopPtr *t_oop, Node *load, PhaseGVN *phase) { 119 assert((t_oop != NULL), "sanity"); 120 bool is_instance = t_oop->is_known_instance_field(); 121 bool is_boxed_value_load = t_oop->is_ptr_to_boxed_value() && 122 (load != NULL) && load->is_Load() && 123 (phase->is_IterGVN() != NULL); 124 if (!(is_instance || is_boxed_value_load)) 125 return mchain; // don't try to optimize non-instance types 126 uint instance_id = t_oop->instance_id(); 127 Node *start_mem = phase->C->start()->proj_out(TypeFunc::Memory); 128 Node *prev = NULL; 129 Node *result = mchain; 130 while (prev != result) { 131 prev = result; 132 if (result == start_mem) 133 break; // hit one of our sentinels 134 // skip over a call which does not affect this memory slice 135 if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) { 136 Node *proj_in = result->in(0); 137 if (proj_in->is_Allocate() && proj_in->_idx == instance_id) { 138 break; // hit one of our sentinels 139 } else if (proj_in->is_Call()) { 140 // ArrayCopyNodes processed here as well 141 CallNode *call = proj_in->as_Call(); 142 if (!call->may_modify(t_oop, phase)) { // returns false for instances 143 result = call->in(TypeFunc::Memory); 144 } 145 } else if (proj_in->is_Initialize()) { 146 AllocateNode* alloc = proj_in->as_Initialize()->allocation(); 147 // Stop if this is the initialization for the object instance which 148 // contains this memory slice, otherwise skip over it. 149 if ((alloc == NULL) || (alloc->_idx == instance_id)) { 150 break; 151 } 152 if (is_instance) { 153 result = proj_in->in(TypeFunc::Memory); 154 } else if (is_boxed_value_load) { 155 Node* klass = alloc->in(AllocateNode::KlassNode); 156 const TypeKlassPtr* tklass = phase->type(klass)->is_klassptr(); 157 if (tklass->klass_is_exact() && !tklass->klass()->equals(t_oop->klass())) { 158 result = proj_in->in(TypeFunc::Memory); // not related allocation 159 } 160 } 161 } else if (proj_in->is_MemBar()) { 162 if (ArrayCopyNode::may_modify(t_oop, proj_in->as_MemBar(), phase)) { 163 break; 164 } 165 result = proj_in->in(TypeFunc::Memory); 166 } else { 167 assert(false, "unexpected projection"); 168 } 169 } else if (result->is_ClearArray()) { 170 if (!is_instance || !ClearArrayNode::step_through(&result, instance_id, phase)) { 171 // Can not bypass initialization of the instance 172 // we are looking for. 173 break; 174 } 175 // Otherwise skip it (the call updated 'result' value). 176 } else if (result->is_MergeMem()) { 177 result = step_through_mergemem(phase, result->as_MergeMem(), t_oop, NULL, tty); 178 } 179 } 180 return result; 181 } 182 183 Node *MemNode::optimize_memory_chain(Node *mchain, const TypePtr *t_adr, Node *load, PhaseGVN *phase) { 184 const TypeOopPtr* t_oop = t_adr->isa_oopptr(); 185 if (t_oop == NULL) 186 return mchain; // don't try to optimize non-oop types 187 Node* result = optimize_simple_memory_chain(mchain, t_oop, load, phase); 188 bool is_instance = t_oop->is_known_instance_field(); 189 PhaseIterGVN *igvn = phase->is_IterGVN(); 190 if (is_instance && igvn != NULL && result->is_Phi()) { 191 PhiNode *mphi = result->as_Phi(); 192 assert(mphi->bottom_type() == Type::MEMORY, "memory phi required"); 193 const TypePtr *t = mphi->adr_type(); 194 if (t == TypePtr::BOTTOM || t == TypeRawPtr::BOTTOM || 195 t->isa_oopptr() && !t->is_oopptr()->is_known_instance() && 196 t->is_oopptr()->cast_to_exactness(true) 197 ->is_oopptr()->cast_to_ptr_type(t_oop->ptr()) 198 ->is_oopptr()->cast_to_instance_id(t_oop->instance_id()) == t_oop) { 199 // clone the Phi with our address type 200 result = mphi->split_out_instance(t_adr, igvn); 201 } else { 202 assert(phase->C->get_alias_index(t) == phase->C->get_alias_index(t_adr), "correct memory chain"); 203 } 204 } 205 return result; 206 } 207 208 static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem, const TypePtr *tp, const TypePtr *adr_check, outputStream *st) { 209 uint alias_idx = phase->C->get_alias_index(tp); 210 Node *mem = mmem; 211 #ifdef ASSERT 212 { 213 // Check that current type is consistent with the alias index used during graph construction 214 assert(alias_idx >= Compile::AliasIdxRaw, "must not be a bad alias_idx"); 215 bool consistent = adr_check == NULL || adr_check->empty() || 216 phase->C->must_alias(adr_check, alias_idx ); 217 // Sometimes dead array references collapse to a[-1], a[-2], or a[-3] 218 if( !consistent && adr_check != NULL && !adr_check->empty() && 219 tp->isa_aryptr() && tp->offset() == Type::OffsetBot && 220 adr_check->isa_aryptr() && adr_check->offset() != Type::OffsetBot && 221 ( adr_check->offset() == arrayOopDesc::length_offset_in_bytes() || 222 adr_check->offset() == oopDesc::klass_offset_in_bytes() || 223 adr_check->offset() == oopDesc::mark_offset_in_bytes() ) ) { 224 // don't assert if it is dead code. 225 consistent = true; 226 } 227 if( !consistent ) { 228 st->print("alias_idx==%d, adr_check==", alias_idx); 229 if( adr_check == NULL ) { 230 st->print("NULL"); 231 } else { 232 adr_check->dump(); 233 } 234 st->cr(); 235 print_alias_types(); 236 assert(consistent, "adr_check must match alias idx"); 237 } 238 } 239 #endif 240 // TypeOopPtr::NOTNULL+any is an OOP with unknown offset - generally 241 // means an array I have not precisely typed yet. Do not do any 242 // alias stuff with it any time soon. 243 const TypeOopPtr *toop = tp->isa_oopptr(); 244 if( tp->base() != Type::AnyPtr && 245 !(toop && 246 toop->klass() != NULL && 247 toop->klass()->is_java_lang_Object() && 248 toop->offset() == Type::OffsetBot) ) { 249 // compress paths and change unreachable cycles to TOP 250 // If not, we can update the input infinitely along a MergeMem cycle 251 // Equivalent code in PhiNode::Ideal 252 Node* m = phase->transform(mmem); 253 // If transformed to a MergeMem, get the desired slice 254 // Otherwise the returned node represents memory for every slice 255 mem = (m->is_MergeMem())? m->as_MergeMem()->memory_at(alias_idx) : m; 256 // Update input if it is progress over what we have now 257 } 258 return mem; 259 } 260 261 //--------------------------Ideal_common--------------------------------------- 262 // Look for degenerate control and memory inputs. Bypass MergeMem inputs. 263 // Unhook non-raw memories from complete (macro-expanded) initializations. 264 Node *MemNode::Ideal_common(PhaseGVN *phase, bool can_reshape) { 265 // If our control input is a dead region, kill all below the region 266 Node *ctl = in(MemNode::Control); 267 if (ctl && remove_dead_region(phase, can_reshape)) 268 return this; 269 ctl = in(MemNode::Control); 270 // Don't bother trying to transform a dead node 271 if (ctl && ctl->is_top()) return NodeSentinel; 272 273 PhaseIterGVN *igvn = phase->is_IterGVN(); 274 // Wait if control on the worklist. 275 if (ctl && can_reshape && igvn != NULL) { 276 Node* bol = NULL; 277 Node* cmp = NULL; 278 if (ctl->in(0)->is_If()) { 279 assert(ctl->is_IfTrue() || ctl->is_IfFalse(), "sanity"); 280 bol = ctl->in(0)->in(1); 281 if (bol->is_Bool()) 282 cmp = ctl->in(0)->in(1)->in(1); 283 } 284 if (igvn->_worklist.member(ctl) || 285 (bol != NULL && igvn->_worklist.member(bol)) || 286 (cmp != NULL && igvn->_worklist.member(cmp)) ) { 287 // This control path may be dead. 288 // Delay this memory node transformation until the control is processed. 289 phase->is_IterGVN()->_worklist.push(this); 290 return NodeSentinel; // caller will return NULL 291 } 292 } 293 // Ignore if memory is dead, or self-loop 294 Node *mem = in(MemNode::Memory); 295 if (phase->type( mem ) == Type::TOP) return NodeSentinel; // caller will return NULL 296 assert(mem != this, "dead loop in MemNode::Ideal"); 297 298 if (can_reshape && igvn != NULL && igvn->_worklist.member(mem)) { 299 // This memory slice may be dead. 300 // Delay this mem node transformation until the memory is processed. 301 phase->is_IterGVN()->_worklist.push(this); 302 return NodeSentinel; // caller will return NULL 303 } 304 305 Node *address = in(MemNode::Address); 306 const Type *t_adr = phase->type(address); 307 if (t_adr == Type::TOP) return NodeSentinel; // caller will return NULL 308 309 if (can_reshape && igvn != NULL && 310 (igvn->_worklist.member(address) || 311 igvn->_worklist.size() > 0 && (t_adr != adr_type())) ) { 312 // The address's base and type may change when the address is processed. 313 // Delay this mem node transformation until the address is processed. 314 phase->is_IterGVN()->_worklist.push(this); 315 return NodeSentinel; // caller will return NULL 316 } 317 318 // Do NOT remove or optimize the next lines: ensure a new alias index 319 // is allocated for an oop pointer type before Escape Analysis. 320 // Note: C++ will not remove it since the call has side effect. 321 if (t_adr->isa_oopptr()) { 322 int alias_idx = phase->C->get_alias_index(t_adr->is_ptr()); 323 } 324 325 Node* base = NULL; 326 if (address->is_AddP()) { 327 base = address->in(AddPNode::Base); 328 } 329 if (base != NULL && phase->type(base)->higher_equal(TypePtr::NULL_PTR) && 330 !t_adr->isa_rawptr()) { 331 // Note: raw address has TOP base and top->higher_equal(TypePtr::NULL_PTR) is true. 332 // Skip this node optimization if its address has TOP base. 333 return NodeSentinel; // caller will return NULL 334 } 335 336 // Avoid independent memory operations 337 Node* old_mem = mem; 338 339 // The code which unhooks non-raw memories from complete (macro-expanded) 340 // initializations was removed. After macro-expansion all stores catched 341 // by Initialize node became raw stores and there is no information 342 // which memory slices they modify. So it is unsafe to move any memory 343 // operation above these stores. Also in most cases hooked non-raw memories 344 // were already unhooked by using information from detect_ptr_independence() 345 // and find_previous_store(). 346 347 if (mem->is_MergeMem()) { 348 MergeMemNode* mmem = mem->as_MergeMem(); 349 const TypePtr *tp = t_adr->is_ptr(); 350 351 mem = step_through_mergemem(phase, mmem, tp, adr_type(), tty); 352 } 353 354 if (mem != old_mem) { 355 set_req(MemNode::Memory, mem); 356 if (can_reshape && old_mem->outcnt() == 0) { 357 igvn->_worklist.push(old_mem); 358 } 359 if (phase->type( mem ) == Type::TOP) return NodeSentinel; 360 return this; 361 } 362 363 // let the subclass continue analyzing... 364 return NULL; 365 } 366 367 // Helper function for proving some simple control dominations. 368 // Attempt to prove that all control inputs of 'dom' dominate 'sub'. 369 // Already assumes that 'dom' is available at 'sub', and that 'sub' 370 // is not a constant (dominated by the method's StartNode). 371 // Used by MemNode::find_previous_store to prove that the 372 // control input of a memory operation predates (dominates) 373 // an allocation it wants to look past. 374 bool MemNode::all_controls_dominate(Node* dom, Node* sub) { 375 if (dom == NULL || dom->is_top() || sub == NULL || sub->is_top()) 376 return false; // Conservative answer for dead code 377 378 // Check 'dom'. Skip Proj and CatchProj nodes. 379 dom = dom->find_exact_control(dom); 380 if (dom == NULL || dom->is_top()) 381 return false; // Conservative answer for dead code 382 383 if (dom == sub) { 384 // For the case when, for example, 'sub' is Initialize and the original 385 // 'dom' is Proj node of the 'sub'. 386 return false; 387 } 388 389 if (dom->is_Con() || dom->is_Start() || dom->is_Root() || dom == sub) 390 return true; 391 392 // 'dom' dominates 'sub' if its control edge and control edges 393 // of all its inputs dominate or equal to sub's control edge. 394 395 // Currently 'sub' is either Allocate, Initialize or Start nodes. 396 // Or Region for the check in LoadNode::Ideal(); 397 // 'sub' should have sub->in(0) != NULL. 398 assert(sub->is_Allocate() || sub->is_Initialize() || sub->is_Start() || 399 sub->is_Region() || sub->is_Call(), "expecting only these nodes"); 400 401 // Get control edge of 'sub'. 402 Node* orig_sub = sub; 403 sub = sub->find_exact_control(sub->in(0)); 404 if (sub == NULL || sub->is_top()) 405 return false; // Conservative answer for dead code 406 407 assert(sub->is_CFG(), "expecting control"); 408 409 if (sub == dom) 410 return true; 411 412 if (sub->is_Start() || sub->is_Root()) 413 return false; 414 415 { 416 // Check all control edges of 'dom'. 417 418 ResourceMark rm; 419 Arena* arena = Thread::current()->resource_area(); 420 Node_List nlist(arena); 421 Unique_Node_List dom_list(arena); 422 423 dom_list.push(dom); 424 bool only_dominating_controls = false; 425 426 for (uint next = 0; next < dom_list.size(); next++) { 427 Node* n = dom_list.at(next); 428 if (n == orig_sub) 429 return false; // One of dom's inputs dominated by sub. 430 if (!n->is_CFG() && n->pinned()) { 431 // Check only own control edge for pinned non-control nodes. 432 n = n->find_exact_control(n->in(0)); 433 if (n == NULL || n->is_top()) 434 return false; // Conservative answer for dead code 435 assert(n->is_CFG(), "expecting control"); 436 dom_list.push(n); 437 } else if (n->is_Con() || n->is_Start() || n->is_Root()) { 438 only_dominating_controls = true; 439 } else if (n->is_CFG()) { 440 if (n->dominates(sub, nlist)) 441 only_dominating_controls = true; 442 else 443 return false; 444 } else { 445 // First, own control edge. 446 Node* m = n->find_exact_control(n->in(0)); 447 if (m != NULL) { 448 if (m->is_top()) 449 return false; // Conservative answer for dead code 450 dom_list.push(m); 451 } 452 // Now, the rest of edges. 453 uint cnt = n->req(); 454 for (uint i = 1; i < cnt; i++) { 455 m = n->find_exact_control(n->in(i)); 456 if (m == NULL || m->is_top()) 457 continue; 458 dom_list.push(m); 459 } 460 } 461 } 462 return only_dominating_controls; 463 } 464 } 465 466 //---------------------detect_ptr_independence--------------------------------- 467 // Used by MemNode::find_previous_store to prove that two base 468 // pointers are never equal. 469 // The pointers are accompanied by their associated allocations, 470 // if any, which have been previously discovered by the caller. 471 bool MemNode::detect_ptr_independence(Node* p1, AllocateNode* a1, 472 Node* p2, AllocateNode* a2, 473 PhaseTransform* phase) { 474 // Attempt to prove that these two pointers cannot be aliased. 475 // They may both manifestly be allocations, and they should differ. 476 // Or, if they are not both allocations, they can be distinct constants. 477 // Otherwise, one is an allocation and the other a pre-existing value. 478 if (a1 == NULL && a2 == NULL) { // neither an allocation 479 return (p1 != p2) && p1->is_Con() && p2->is_Con(); 480 } else if (a1 != NULL && a2 != NULL) { // both allocations 481 return (a1 != a2); 482 } else if (a1 != NULL) { // one allocation a1 483 // (Note: p2->is_Con implies p2->in(0)->is_Root, which dominates.) 484 return all_controls_dominate(p2, a1); 485 } else { //(a2 != NULL) // one allocation a2 486 return all_controls_dominate(p1, a2); 487 } 488 return false; 489 } 490 491 492 // Find an arraycopy that must have set (can_see_stored_value=true) or 493 // could have set (can_see_stored_value=false) the value for this load 494 Node* LoadNode::find_previous_arraycopy(PhaseTransform* phase, Node* ld_alloc, Node*& mem, bool can_see_stored_value) const { 495 if (mem->is_Proj() && mem->in(0) != NULL && (mem->in(0)->Opcode() == Op_MemBarStoreStore || 496 mem->in(0)->Opcode() == Op_MemBarCPUOrder)) { 497 Node* mb = mem->in(0); 498 if (mb->in(0) != NULL && mb->in(0)->is_Proj() && 499 mb->in(0)->in(0) != NULL && mb->in(0)->in(0)->is_ArrayCopy()) { 500 ArrayCopyNode* ac = mb->in(0)->in(0)->as_ArrayCopy(); 501 if (ac->is_clonebasic()) { 502 intptr_t offset; 503 AllocateNode* alloc = AllocateNode::Ideal_allocation(ac->in(ArrayCopyNode::Dest), phase, offset); 504 assert(alloc != NULL && alloc->initialization()->is_complete_with_arraycopy(), "broken allocation"); 505 if (alloc == ld_alloc) { 506 return ac; 507 } 508 } 509 } 510 } else if (mem->is_Proj() && mem->in(0) != NULL && mem->in(0)->is_ArrayCopy()) { 511 ArrayCopyNode* ac = mem->in(0)->as_ArrayCopy(); 512 513 if (ac->is_arraycopy_validated() || 514 ac->is_copyof_validated() || 515 ac->is_copyofrange_validated()) { 516 Node* ld_addp = in(MemNode::Address); 517 if (ld_addp->is_AddP()) { 518 Node* ld_base = ld_addp->in(AddPNode::Address); 519 Node* ld_offs = ld_addp->in(AddPNode::Offset); 520 521 Node* dest = ac->in(ArrayCopyNode::Dest); 522 523 if (dest == ld_base) { 524 const TypeX *ld_offs_t = phase->type(ld_offs)->isa_intptr_t(); 525 if (ac->modifies(ld_offs_t->_lo, ld_offs_t->_hi, phase, can_see_stored_value)) { 526 return ac; 527 } 528 if (!can_see_stored_value) { 529 mem = ac->in(TypeFunc::Memory); 530 } 531 } 532 } 533 } 534 } 535 return NULL; 536 } 537 538 // The logic for reordering loads and stores uses four steps: 539 // (a) Walk carefully past stores and initializations which we 540 // can prove are independent of this load. 541 // (b) Observe that the next memory state makes an exact match 542 // with self (load or store), and locate the relevant store. 543 // (c) Ensure that, if we were to wire self directly to the store, 544 // the optimizer would fold it up somehow. 545 // (d) Do the rewiring, and return, depending on some other part of 546 // the optimizer to fold up the load. 547 // This routine handles steps (a) and (b). Steps (c) and (d) are 548 // specific to loads and stores, so they are handled by the callers. 549 // (Currently, only LoadNode::Ideal has steps (c), (d). More later.) 550 // 551 Node* MemNode::find_previous_store(PhaseTransform* phase) { 552 Node* ctrl = in(MemNode::Control); 553 Node* adr = in(MemNode::Address); 554 intptr_t offset = 0; 555 Node* base = AddPNode::Ideal_base_and_offset(adr, phase, offset); 556 AllocateNode* alloc = AllocateNode::Ideal_allocation(base, phase); 557 558 if (offset == Type::OffsetBot) 559 return NULL; // cannot unalias unless there are precise offsets 560 561 const TypeOopPtr *addr_t = adr->bottom_type()->isa_oopptr(); 562 563 intptr_t size_in_bytes = memory_size(); 564 565 Node* mem = in(MemNode::Memory); // start searching here... 566 567 int cnt = 50; // Cycle limiter 568 for (;;) { // While we can dance past unrelated stores... 569 if (--cnt < 0) break; // Caught in cycle or a complicated dance? 570 571 Node* prev = mem; 572 if (mem->is_Store()) { 573 Node* st_adr = mem->in(MemNode::Address); 574 intptr_t st_offset = 0; 575 Node* st_base = AddPNode::Ideal_base_and_offset(st_adr, phase, st_offset); 576 if (st_base == NULL) 577 break; // inscrutable pointer 578 if (st_offset != offset && st_offset != Type::OffsetBot) { 579 const int MAX_STORE = BytesPerLong; 580 if (st_offset >= offset + size_in_bytes || 581 st_offset <= offset - MAX_STORE || 582 st_offset <= offset - mem->as_Store()->memory_size()) { 583 // Success: The offsets are provably independent. 584 // (You may ask, why not just test st_offset != offset and be done? 585 // The answer is that stores of different sizes can co-exist 586 // in the same sequence of RawMem effects. We sometimes initialize 587 // a whole 'tile' of array elements with a single jint or jlong.) 588 mem = mem->in(MemNode::Memory); 589 continue; // (a) advance through independent store memory 590 } 591 } 592 if (st_base != base && 593 detect_ptr_independence(base, alloc, 594 st_base, 595 AllocateNode::Ideal_allocation(st_base, phase), 596 phase)) { 597 // Success: The bases are provably independent. 598 mem = mem->in(MemNode::Memory); 599 continue; // (a) advance through independent store memory 600 } 601 602 // (b) At this point, if the bases or offsets do not agree, we lose, 603 // since we have not managed to prove 'this' and 'mem' independent. 604 if (st_base == base && st_offset == offset) { 605 return mem; // let caller handle steps (c), (d) 606 } 607 608 } else if (mem->is_Proj() && mem->in(0)->is_Initialize()) { 609 InitializeNode* st_init = mem->in(0)->as_Initialize(); 610 AllocateNode* st_alloc = st_init->allocation(); 611 if (st_alloc == NULL) 612 break; // something degenerated 613 bool known_identical = false; 614 bool known_independent = false; 615 if (alloc == st_alloc) 616 known_identical = true; 617 else if (alloc != NULL) 618 known_independent = true; 619 else if (all_controls_dominate(this, st_alloc)) 620 known_independent = true; 621 622 if (known_independent) { 623 // The bases are provably independent: Either they are 624 // manifestly distinct allocations, or else the control 625 // of this load dominates the store's allocation. 626 int alias_idx = phase->C->get_alias_index(adr_type()); 627 if (alias_idx == Compile::AliasIdxRaw) { 628 mem = st_alloc->in(TypeFunc::Memory); 629 } else { 630 mem = st_init->memory(alias_idx); 631 } 632 continue; // (a) advance through independent store memory 633 } 634 635 // (b) at this point, if we are not looking at a store initializing 636 // the same allocation we are loading from, we lose. 637 if (known_identical) { 638 // From caller, can_see_stored_value will consult find_captured_store. 639 return mem; // let caller handle steps (c), (d) 640 } 641 642 } else if (find_previous_arraycopy(phase, alloc, mem, false) != NULL) { 643 if (prev != mem) { 644 // Found an arraycopy but it doesn't affect that load 645 continue; 646 } 647 // Found an arraycopy that may affect that load 648 return mem; 649 } else if (addr_t != NULL && addr_t->is_known_instance_field()) { 650 // Can't use optimize_simple_memory_chain() since it needs PhaseGVN. 651 if (mem->is_Proj() && mem->in(0)->is_Call()) { 652 // ArrayCopyNodes processed here as well. 653 CallNode *call = mem->in(0)->as_Call(); 654 if (!call->may_modify(addr_t, phase)) { 655 mem = call->in(TypeFunc::Memory); 656 continue; // (a) advance through independent call memory 657 } 658 } else if (mem->is_Proj() && mem->in(0)->is_MemBar()) { 659 if (ArrayCopyNode::may_modify(addr_t, mem->in(0)->as_MemBar(), phase)) { 660 break; 661 } 662 mem = mem->in(0)->in(TypeFunc::Memory); 663 continue; // (a) advance through independent MemBar memory 664 } else if (mem->is_ClearArray()) { 665 if (ClearArrayNode::step_through(&mem, (uint)addr_t->instance_id(), phase)) { 666 // (the call updated 'mem' value) 667 continue; // (a) advance through independent allocation memory 668 } else { 669 // Can not bypass initialization of the instance 670 // we are looking for. 671 return mem; 672 } 673 } else if (mem->is_MergeMem()) { 674 int alias_idx = phase->C->get_alias_index(adr_type()); 675 mem = mem->as_MergeMem()->memory_at(alias_idx); 676 continue; // (a) advance through independent MergeMem memory 677 } 678 } 679 680 // Unless there is an explicit 'continue', we must bail out here, 681 // because 'mem' is an inscrutable memory state (e.g., a call). 682 break; 683 } 684 685 return NULL; // bail out 686 } 687 688 //----------------------calculate_adr_type------------------------------------- 689 // Helper function. Notices when the given type of address hits top or bottom. 690 // Also, asserts a cross-check of the type against the expected address type. 691 const TypePtr* MemNode::calculate_adr_type(const Type* t, const TypePtr* cross_check) { 692 if (t == Type::TOP) return NULL; // does not touch memory any more? 693 #ifdef PRODUCT 694 cross_check = NULL; 695 #else 696 if (!VerifyAliases || is_error_reported() || Node::in_dump()) cross_check = NULL; 697 #endif 698 const TypePtr* tp = t->isa_ptr(); 699 if (tp == NULL) { 700 assert(cross_check == NULL || cross_check == TypePtr::BOTTOM, "expected memory type must be wide"); 701 return TypePtr::BOTTOM; // touches lots of memory 702 } else { 703 #ifdef ASSERT 704 // %%%% [phh] We don't check the alias index if cross_check is 705 // TypeRawPtr::BOTTOM. Needs to be investigated. 706 if (cross_check != NULL && 707 cross_check != TypePtr::BOTTOM && 708 cross_check != TypeRawPtr::BOTTOM) { 709 // Recheck the alias index, to see if it has changed (due to a bug). 710 Compile* C = Compile::current(); 711 assert(C->get_alias_index(cross_check) == C->get_alias_index(tp), 712 "must stay in the original alias category"); 713 // The type of the address must be contained in the adr_type, 714 // disregarding "null"-ness. 715 // (We make an exception for TypeRawPtr::BOTTOM, which is a bit bucket.) 716 const TypePtr* tp_notnull = tp->join(TypePtr::NOTNULL)->is_ptr(); 717 assert(cross_check->meet(tp_notnull) == cross_check->remove_speculative(), 718 "real address must not escape from expected memory type"); 719 } 720 #endif 721 return tp; 722 } 723 } 724 725 //============================================================================= 726 // Should LoadNode::Ideal() attempt to remove control edges? 727 bool LoadNode::can_remove_control() const { 728 return true; 729 } 730 uint LoadNode::size_of() const { return sizeof(*this); } 731 uint LoadNode::cmp( const Node &n ) const 732 { return !Type::cmp( _type, ((LoadNode&)n)._type ); } 733 const Type *LoadNode::bottom_type() const { return _type; } 734 uint LoadNode::ideal_reg() const { 735 return _type->ideal_reg(); 736 } 737 738 #ifndef PRODUCT 739 void LoadNode::dump_spec(outputStream *st) const { 740 MemNode::dump_spec(st); 741 if( !Verbose && !WizardMode ) { 742 // standard dump does this in Verbose and WizardMode 743 st->print(" #"); _type->dump_on(st); 744 } 745 if (!_depends_only_on_test) { 746 st->print(" (does not depend only on test)"); 747 } 748 } 749 #endif 750 751 #ifdef ASSERT 752 //----------------------------is_immutable_value------------------------------- 753 // Helper function to allow a raw load without control edge for some cases 754 bool LoadNode::is_immutable_value(Node* adr) { 755 return (adr->is_AddP() && adr->in(AddPNode::Base)->is_top() && 756 adr->in(AddPNode::Address)->Opcode() == Op_ThreadLocal && 757 (adr->in(AddPNode::Offset)->find_intptr_t_con(-1) == 758 in_bytes(JavaThread::osthread_offset()))); 759 } 760 #endif 761 762 //----------------------------LoadNode::make----------------------------------- 763 // Polymorphic factory method: 764 Node *LoadNode::make(PhaseGVN& gvn, Node *ctl, Node *mem, Node *adr, const TypePtr* adr_type, const Type *rt, BasicType bt, MemOrd mo, 765 ControlDependency control_dependency, bool unaligned, bool mismatched) { 766 Compile* C = gvn.C; 767 768 // sanity check the alias category against the created node type 769 assert(!(adr_type->isa_oopptr() && 770 adr_type->offset() == oopDesc::klass_offset_in_bytes()), 771 "use LoadKlassNode instead"); 772 assert(!(adr_type->isa_aryptr() && 773 adr_type->offset() == arrayOopDesc::length_offset_in_bytes()), 774 "use LoadRangeNode instead"); 775 // Check control edge of raw loads 776 assert( ctl != NULL || C->get_alias_index(adr_type) != Compile::AliasIdxRaw || 777 // oop will be recorded in oop map if load crosses safepoint 778 rt->isa_oopptr() || is_immutable_value(adr), 779 "raw memory operations should have control edge"); 780 LoadNode* load = NULL; 781 switch (bt) { 782 case T_BOOLEAN: load = new LoadUBNode(ctl, mem, adr, adr_type, rt->is_int(), mo, control_dependency); break; 783 case T_BYTE: load = new LoadBNode (ctl, mem, adr, adr_type, rt->is_int(), mo, control_dependency); break; 784 case T_INT: load = new LoadINode (ctl, mem, adr, adr_type, rt->is_int(), mo, control_dependency); break; 785 case T_CHAR: load = new LoadUSNode(ctl, mem, adr, adr_type, rt->is_int(), mo, control_dependency); break; 786 case T_SHORT: load = new LoadSNode (ctl, mem, adr, adr_type, rt->is_int(), mo, control_dependency); break; 787 case T_LONG: load = new LoadLNode (ctl, mem, adr, adr_type, rt->is_long(), mo, control_dependency); break; 788 case T_FLOAT: load = new LoadFNode (ctl, mem, adr, adr_type, rt, mo, control_dependency); break; 789 case T_DOUBLE: load = new LoadDNode (ctl, mem, adr, adr_type, rt, mo, control_dependency); break; 790 case T_ADDRESS: load = new LoadPNode (ctl, mem, adr, adr_type, rt->is_ptr(), mo, control_dependency); break; 791 case T_VALUETYPE: 792 case T_OBJECT: 793 #ifdef _LP64 794 if (adr->bottom_type()->is_ptr_to_narrowoop()) { 795 load = new LoadNNode(ctl, mem, adr, adr_type, rt->make_narrowoop(), mo, control_dependency); 796 } else 797 #endif 798 { 799 assert(!adr->bottom_type()->is_ptr_to_narrowoop() && !adr->bottom_type()->is_ptr_to_narrowklass(), "should have got back a narrow oop"); 800 load = new LoadPNode(ctl, mem, adr, adr_type, rt->is_oopptr(), mo, control_dependency); 801 } 802 break; 803 } 804 assert(load != NULL, "LoadNode should have been created"); 805 if (unaligned) { 806 load->set_unaligned_access(); 807 } 808 if (mismatched) { 809 load->set_mismatched_access(); 810 } 811 if (load->Opcode() == Op_LoadN) { 812 Node* ld = gvn.transform(load); 813 return new DecodeNNode(ld, ld->bottom_type()->make_ptr()); 814 } 815 816 return load; 817 } 818 819 LoadLNode* LoadLNode::make_atomic(Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, const Type* rt, MemOrd mo, 820 ControlDependency control_dependency, bool unaligned, bool mismatched) { 821 bool require_atomic = true; 822 LoadLNode* load = new LoadLNode(ctl, mem, adr, adr_type, rt->is_long(), mo, control_dependency, require_atomic); 823 if (unaligned) { 824 load->set_unaligned_access(); 825 } 826 if (mismatched) { 827 load->set_mismatched_access(); 828 } 829 return load; 830 } 831 832 LoadDNode* LoadDNode::make_atomic(Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, const Type* rt, MemOrd mo, 833 ControlDependency control_dependency, bool unaligned, bool mismatched) { 834 bool require_atomic = true; 835 LoadDNode* load = new LoadDNode(ctl, mem, adr, adr_type, rt, mo, control_dependency, require_atomic); 836 if (unaligned) { 837 load->set_unaligned_access(); 838 } 839 if (mismatched) { 840 load->set_mismatched_access(); 841 } 842 return load; 843 } 844 845 846 847 //------------------------------hash------------------------------------------- 848 uint LoadNode::hash() const { 849 // unroll addition of interesting fields 850 return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address); 851 } 852 853 static bool skip_through_membars(Compile::AliasType* atp, const TypeInstPtr* tp, bool eliminate_boxing) { 854 if ((atp != NULL) && (atp->index() >= Compile::AliasIdxRaw)) { 855 bool non_volatile = (atp->field() != NULL) && !atp->field()->is_volatile(); 856 bool is_stable_ary = FoldStableValues && 857 (tp != NULL) && (tp->isa_aryptr() != NULL) && 858 tp->isa_aryptr()->is_stable(); 859 860 return (eliminate_boxing && non_volatile) || is_stable_ary; 861 } 862 863 return false; 864 } 865 866 // Is the value loaded previously stored by an arraycopy? If so return 867 // a load node that reads from the source array so we may be able to 868 // optimize out the ArrayCopy node later. 869 Node* LoadNode::can_see_arraycopy_value(Node* st, PhaseTransform* phase) const { 870 Node* ld_adr = in(MemNode::Address); 871 intptr_t ld_off = 0; 872 AllocateNode* ld_alloc = AllocateNode::Ideal_allocation(ld_adr, phase, ld_off); 873 Node* ac = find_previous_arraycopy(phase, ld_alloc, st, true); 874 if (ac != NULL) { 875 assert(ac->is_ArrayCopy(), "what kind of node can this be?"); 876 877 Node* ld = clone(); 878 if (ac->as_ArrayCopy()->is_clonebasic()) { 879 assert(ld_alloc != NULL, "need an alloc"); 880 Node* addp = in(MemNode::Address)->clone(); 881 assert(addp->is_AddP(), "address must be addp"); 882 assert(addp->in(AddPNode::Base) == ac->in(ArrayCopyNode::Dest)->in(AddPNode::Base), "strange pattern"); 883 assert(addp->in(AddPNode::Address) == ac->in(ArrayCopyNode::Dest)->in(AddPNode::Address), "strange pattern"); 884 addp->set_req(AddPNode::Base, ac->in(ArrayCopyNode::Src)->in(AddPNode::Base)); 885 addp->set_req(AddPNode::Address, ac->in(ArrayCopyNode::Src)->in(AddPNode::Address)); 886 ld->set_req(MemNode::Address, phase->transform(addp)); 887 if (in(0) != NULL) { 888 assert(ld_alloc->in(0) != NULL, "alloc must have control"); 889 ld->set_req(0, ld_alloc->in(0)); 890 } 891 } else { 892 Node* addp = in(MemNode::Address)->clone(); 893 assert(addp->in(AddPNode::Base) == addp->in(AddPNode::Address), "should be"); 894 addp->set_req(AddPNode::Base, ac->in(ArrayCopyNode::Src)); 895 addp->set_req(AddPNode::Address, ac->in(ArrayCopyNode::Src)); 896 897 const TypeAryPtr* ary_t = phase->type(in(MemNode::Address))->isa_aryptr(); 898 BasicType ary_elem = ary_t->klass()->as_array_klass()->element_type()->basic_type(); 899 uint header = arrayOopDesc::base_offset_in_bytes(ary_elem); 900 uint shift = exact_log2(type2aelembytes(ary_elem)); 901 902 Node* diff = phase->transform(new SubINode(ac->in(ArrayCopyNode::SrcPos), ac->in(ArrayCopyNode::DestPos))); 903 #ifdef _LP64 904 diff = phase->transform(new ConvI2LNode(diff)); 905 #endif 906 diff = phase->transform(new LShiftXNode(diff, phase->intcon(shift))); 907 908 Node* offset = phase->transform(new AddXNode(addp->in(AddPNode::Offset), diff)); 909 addp->set_req(AddPNode::Offset, offset); 910 ld->set_req(MemNode::Address, phase->transform(addp)); 911 912 if (in(0) != NULL) { 913 assert(ac->in(0) != NULL, "alloc must have control"); 914 ld->set_req(0, ac->in(0)); 915 } 916 } 917 // load depends on the tests that validate the arraycopy 918 ld->as_Load()->_depends_only_on_test = Pinned; 919 return ld; 920 } 921 return NULL; 922 } 923 924 925 //---------------------------can_see_stored_value------------------------------ 926 // This routine exists to make sure this set of tests is done the same 927 // everywhere. We need to make a coordinated change: first LoadNode::Ideal 928 // will change the graph shape in a way which makes memory alive twice at the 929 // same time (uses the Oracle model of aliasing), then some 930 // LoadXNode::Identity will fold things back to the equivalence-class model 931 // of aliasing. 932 Node* MemNode::can_see_stored_value(Node* st, PhaseTransform* phase) const { 933 Node* ld_adr = in(MemNode::Address); 934 intptr_t ld_off = 0; 935 AllocateNode* ld_alloc = AllocateNode::Ideal_allocation(ld_adr, phase, ld_off); 936 const TypeInstPtr* tp = phase->type(ld_adr)->isa_instptr(); 937 Compile::AliasType* atp = (tp != NULL) ? phase->C->alias_type(tp) : NULL; 938 // This is more general than load from boxing objects. 939 if (skip_through_membars(atp, tp, phase->C->eliminate_boxing())) { 940 uint alias_idx = atp->index(); 941 bool final = !atp->is_rewritable(); 942 Node* result = NULL; 943 Node* current = st; 944 // Skip through chains of MemBarNodes checking the MergeMems for 945 // new states for the slice of this load. Stop once any other 946 // kind of node is encountered. Loads from final memory can skip 947 // through any kind of MemBar but normal loads shouldn't skip 948 // through MemBarAcquire since the could allow them to move out of 949 // a synchronized region. 950 while (current->is_Proj()) { 951 int opc = current->in(0)->Opcode(); 952 if ((final && (opc == Op_MemBarAcquire || 953 opc == Op_MemBarAcquireLock || 954 opc == Op_LoadFence)) || 955 opc == Op_MemBarRelease || 956 opc == Op_StoreFence || 957 opc == Op_MemBarReleaseLock || 958 opc == Op_MemBarStoreStore || 959 opc == Op_MemBarCPUOrder) { 960 Node* mem = current->in(0)->in(TypeFunc::Memory); 961 if (mem->is_MergeMem()) { 962 MergeMemNode* merge = mem->as_MergeMem(); 963 Node* new_st = merge->memory_at(alias_idx); 964 if (new_st == merge->base_memory()) { 965 // Keep searching 966 current = new_st; 967 continue; 968 } 969 // Save the new memory state for the slice and fall through 970 // to exit. 971 result = new_st; 972 } 973 } 974 break; 975 } 976 if (result != NULL) { 977 st = result; 978 } 979 } 980 981 // Loop around twice in the case Load -> Initialize -> Store. 982 // (See PhaseIterGVN::add_users_to_worklist, which knows about this case.) 983 for (int trip = 0; trip <= 1; trip++) { 984 985 if (st->is_Store()) { 986 Node* st_adr = st->in(MemNode::Address); 987 if (!phase->eqv(st_adr, ld_adr)) { 988 // Try harder before giving up... Match raw and non-raw pointers. 989 intptr_t st_off = 0; 990 AllocateNode* alloc = AllocateNode::Ideal_allocation(st_adr, phase, st_off); 991 if (alloc == NULL) return NULL; 992 if (alloc != ld_alloc) return NULL; 993 if (ld_off != st_off) return NULL; 994 // At this point we have proven something like this setup: 995 // A = Allocate(...) 996 // L = LoadQ(, AddP(CastPP(, A.Parm),, #Off)) 997 // S = StoreQ(, AddP(, A.Parm , #Off), V) 998 // (Actually, we haven't yet proven the Q's are the same.) 999 // In other words, we are loading from a casted version of 1000 // the same pointer-and-offset that we stored to. 1001 // Thus, we are able to replace L by V. 1002 } 1003 // Now prove that we have a LoadQ matched to a StoreQ, for some Q. 1004 if (store_Opcode() != st->Opcode()) 1005 return NULL; 1006 return st->in(MemNode::ValueIn); 1007 } 1008 1009 // A load from a freshly-created object always returns zero. 1010 // (This can happen after LoadNode::Ideal resets the load's memory input 1011 // to find_captured_store, which returned InitializeNode::zero_memory.) 1012 if (st->is_Proj() && st->in(0)->is_Allocate() && 1013 (st->in(0) == ld_alloc) && 1014 (ld_off >= st->in(0)->as_Allocate()->minimum_header_size())) { 1015 // return a zero value for the load's basic type 1016 // (This is one of the few places where a generic PhaseTransform 1017 // can create new nodes. Think of it as lazily manifesting 1018 // virtually pre-existing constants.) 1019 return phase->zerocon(memory_type()); 1020 } 1021 1022 // A load from an initialization barrier can match a captured store. 1023 if (st->is_Proj() && st->in(0)->is_Initialize()) { 1024 InitializeNode* init = st->in(0)->as_Initialize(); 1025 AllocateNode* alloc = init->allocation(); 1026 if ((alloc != NULL) && (alloc == ld_alloc)) { 1027 // examine a captured store value 1028 st = init->find_captured_store(ld_off, memory_size(), phase); 1029 if (st != NULL) { 1030 continue; // take one more trip around 1031 } 1032 } 1033 } 1034 1035 // Load boxed value from result of valueOf() call is input parameter. 1036 if (this->is_Load() && ld_adr->is_AddP() && 1037 (tp != NULL) && tp->is_ptr_to_boxed_value()) { 1038 intptr_t ignore = 0; 1039 Node* base = AddPNode::Ideal_base_and_offset(ld_adr, phase, ignore); 1040 if (base != NULL && base->is_Proj() && 1041 base->as_Proj()->_con == TypeFunc::Parms && 1042 base->in(0)->is_CallStaticJava() && 1043 base->in(0)->as_CallStaticJava()->is_boxing_method()) { 1044 return base->in(0)->in(TypeFunc::Parms); 1045 } 1046 } 1047 1048 break; 1049 } 1050 1051 return NULL; 1052 } 1053 1054 //----------------------is_instance_field_load_with_local_phi------------------ 1055 bool LoadNode::is_instance_field_load_with_local_phi(Node* ctrl) { 1056 if( in(Memory)->is_Phi() && in(Memory)->in(0) == ctrl && 1057 in(Address)->is_AddP() ) { 1058 const TypeOopPtr* t_oop = in(Address)->bottom_type()->isa_oopptr(); 1059 // Only instances and boxed values. 1060 if( t_oop != NULL && 1061 (t_oop->is_ptr_to_boxed_value() || 1062 t_oop->is_known_instance_field()) && 1063 t_oop->offset() != Type::OffsetBot && 1064 t_oop->offset() != Type::OffsetTop) { 1065 return true; 1066 } 1067 } 1068 return false; 1069 } 1070 1071 //------------------------------Identity--------------------------------------- 1072 // Loads are identity if previous store is to same address 1073 Node* LoadNode::Identity(PhaseGVN* phase) { 1074 // If the previous store-maker is the right kind of Store, and the store is 1075 // to the same address, then we are equal to the value stored. 1076 Node* mem = in(Memory); 1077 Node* value = can_see_stored_value(mem, phase); 1078 if( value ) { 1079 // byte, short & char stores truncate naturally. 1080 // A load has to load the truncated value which requires 1081 // some sort of masking operation and that requires an 1082 // Ideal call instead of an Identity call. 1083 if (memory_size() < BytesPerInt) { 1084 // If the input to the store does not fit with the load's result type, 1085 // it must be truncated via an Ideal call. 1086 if (!phase->type(value)->higher_equal(phase->type(this))) 1087 return this; 1088 } 1089 // (This works even when value is a Con, but LoadNode::Value 1090 // usually runs first, producing the singleton type of the Con.) 1091 return value; 1092 } 1093 1094 // Search for an existing data phi which was generated before for the same 1095 // instance's field to avoid infinite generation of phis in a loop. 1096 Node *region = mem->in(0); 1097 if (is_instance_field_load_with_local_phi(region)) { 1098 const TypeOopPtr *addr_t = in(Address)->bottom_type()->isa_oopptr(); 1099 int this_index = phase->C->get_alias_index(addr_t); 1100 int this_offset = addr_t->offset(); 1101 int this_iid = addr_t->instance_id(); 1102 if (!addr_t->is_known_instance() && 1103 addr_t->is_ptr_to_boxed_value()) { 1104 // Use _idx of address base (could be Phi node) for boxed values. 1105 intptr_t ignore = 0; 1106 Node* base = AddPNode::Ideal_base_and_offset(in(Address), phase, ignore); 1107 this_iid = base->_idx; 1108 } 1109 const Type* this_type = bottom_type(); 1110 for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) { 1111 Node* phi = region->fast_out(i); 1112 if (phi->is_Phi() && phi != mem && 1113 phi->as_Phi()->is_same_inst_field(this_type, this_iid, this_index, this_offset)) { 1114 return phi; 1115 } 1116 } 1117 } 1118 1119 return this; 1120 } 1121 1122 // We're loading from an object which has autobox behaviour. 1123 // If this object is result of a valueOf call we'll have a phi 1124 // merging a newly allocated object and a load from the cache. 1125 // We want to replace this load with the original incoming 1126 // argument to the valueOf call. 1127 Node* LoadNode::eliminate_autobox(PhaseGVN* phase) { 1128 assert(phase->C->eliminate_boxing(), "sanity"); 1129 intptr_t ignore = 0; 1130 Node* base = AddPNode::Ideal_base_and_offset(in(Address), phase, ignore); 1131 if ((base == NULL) || base->is_Phi()) { 1132 // Push the loads from the phi that comes from valueOf up 1133 // through it to allow elimination of the loads and the recovery 1134 // of the original value. It is done in split_through_phi(). 1135 return NULL; 1136 } else if (base->is_Load() || 1137 base->is_DecodeN() && base->in(1)->is_Load()) { 1138 // Eliminate the load of boxed value for integer types from the cache 1139 // array by deriving the value from the index into the array. 1140 // Capture the offset of the load and then reverse the computation. 1141 1142 // Get LoadN node which loads a boxing object from 'cache' array. 1143 if (base->is_DecodeN()) { 1144 base = base->in(1); 1145 } 1146 if (!base->in(Address)->is_AddP()) { 1147 return NULL; // Complex address 1148 } 1149 AddPNode* address = base->in(Address)->as_AddP(); 1150 Node* cache_base = address->in(AddPNode::Base); 1151 if ((cache_base != NULL) && cache_base->is_DecodeN()) { 1152 // Get ConP node which is static 'cache' field. 1153 cache_base = cache_base->in(1); 1154 } 1155 if ((cache_base != NULL) && cache_base->is_Con()) { 1156 const TypeAryPtr* base_type = cache_base->bottom_type()->isa_aryptr(); 1157 if ((base_type != NULL) && base_type->is_autobox_cache()) { 1158 Node* elements[4]; 1159 int shift = exact_log2(type2aelembytes(T_OBJECT)); 1160 int count = address->unpack_offsets(elements, ARRAY_SIZE(elements)); 1161 if ((count > 0) && elements[0]->is_Con() && 1162 ((count == 1) || 1163 (count == 2) && elements[1]->Opcode() == Op_LShiftX && 1164 elements[1]->in(2) == phase->intcon(shift))) { 1165 ciObjArray* array = base_type->const_oop()->as_obj_array(); 1166 // Fetch the box object cache[0] at the base of the array and get its value 1167 ciInstance* box = array->obj_at(0)->as_instance(); 1168 ciInstanceKlass* ik = box->klass()->as_instance_klass(); 1169 assert(ik->is_box_klass(), "sanity"); 1170 assert(ik->nof_nonstatic_fields() == 1, "change following code"); 1171 if (ik->nof_nonstatic_fields() == 1) { 1172 // This should be true nonstatic_field_at requires calling 1173 // nof_nonstatic_fields so check it anyway 1174 ciConstant c = box->field_value(ik->nonstatic_field_at(0)); 1175 BasicType bt = c.basic_type(); 1176 // Only integer types have boxing cache. 1177 assert(bt == T_BOOLEAN || bt == T_CHAR || 1178 bt == T_BYTE || bt == T_SHORT || 1179 bt == T_INT || bt == T_LONG, "wrong type = %s", type2name(bt)); 1180 jlong cache_low = (bt == T_LONG) ? c.as_long() : c.as_int(); 1181 if (cache_low != (int)cache_low) { 1182 return NULL; // should not happen since cache is array indexed by value 1183 } 1184 jlong offset = arrayOopDesc::base_offset_in_bytes(T_OBJECT) - (cache_low << shift); 1185 if (offset != (int)offset) { 1186 return NULL; // should not happen since cache is array indexed by value 1187 } 1188 // Add up all the offsets making of the address of the load 1189 Node* result = elements[0]; 1190 for (int i = 1; i < count; i++) { 1191 result = phase->transform(new AddXNode(result, elements[i])); 1192 } 1193 // Remove the constant offset from the address and then 1194 result = phase->transform(new AddXNode(result, phase->MakeConX(-(int)offset))); 1195 // remove the scaling of the offset to recover the original index. 1196 if (result->Opcode() == Op_LShiftX && result->in(2) == phase->intcon(shift)) { 1197 // Peel the shift off directly but wrap it in a dummy node 1198 // since Ideal can't return existing nodes 1199 result = new RShiftXNode(result->in(1), phase->intcon(0)); 1200 } else if (result->is_Add() && result->in(2)->is_Con() && 1201 result->in(1)->Opcode() == Op_LShiftX && 1202 result->in(1)->in(2) == phase->intcon(shift)) { 1203 // We can't do general optimization: ((X<<Z) + Y) >> Z ==> X + (Y>>Z) 1204 // but for boxing cache access we know that X<<Z will not overflow 1205 // (there is range check) so we do this optimizatrion by hand here. 1206 Node* add_con = new RShiftXNode(result->in(2), phase->intcon(shift)); 1207 result = new AddXNode(result->in(1)->in(1), phase->transform(add_con)); 1208 } else { 1209 result = new RShiftXNode(result, phase->intcon(shift)); 1210 } 1211 #ifdef _LP64 1212 if (bt != T_LONG) { 1213 result = new ConvL2INode(phase->transform(result)); 1214 } 1215 #else 1216 if (bt == T_LONG) { 1217 result = new ConvI2LNode(phase->transform(result)); 1218 } 1219 #endif 1220 // Boxing/unboxing can be done from signed & unsigned loads (e.g. LoadUB -> ... -> LoadB pair). 1221 // Need to preserve unboxing load type if it is unsigned. 1222 switch(this->Opcode()) { 1223 case Op_LoadUB: 1224 result = new AndINode(phase->transform(result), phase->intcon(0xFF)); 1225 break; 1226 case Op_LoadUS: 1227 result = new AndINode(phase->transform(result), phase->intcon(0xFFFF)); 1228 break; 1229 } 1230 return result; 1231 } 1232 } 1233 } 1234 } 1235 } 1236 return NULL; 1237 } 1238 1239 static bool stable_phi(PhiNode* phi, PhaseGVN *phase) { 1240 Node* region = phi->in(0); 1241 if (region == NULL) { 1242 return false; // Wait stable graph 1243 } 1244 uint cnt = phi->req(); 1245 for (uint i = 1; i < cnt; i++) { 1246 Node* rc = region->in(i); 1247 if (rc == NULL || phase->type(rc) == Type::TOP) 1248 return false; // Wait stable graph 1249 Node* in = phi->in(i); 1250 if (in == NULL || phase->type(in) == Type::TOP) 1251 return false; // Wait stable graph 1252 } 1253 return true; 1254 } 1255 //------------------------------split_through_phi------------------------------ 1256 // Split instance or boxed field load through Phi. 1257 Node *LoadNode::split_through_phi(PhaseGVN *phase) { 1258 Node* mem = in(Memory); 1259 Node* address = in(Address); 1260 const TypeOopPtr *t_oop = phase->type(address)->isa_oopptr(); 1261 1262 assert((t_oop != NULL) && 1263 (t_oop->is_known_instance_field() || 1264 t_oop->is_ptr_to_boxed_value()), "invalide conditions"); 1265 1266 Compile* C = phase->C; 1267 intptr_t ignore = 0; 1268 Node* base = AddPNode::Ideal_base_and_offset(address, phase, ignore); 1269 bool base_is_phi = (base != NULL) && base->is_Phi(); 1270 bool load_boxed_values = t_oop->is_ptr_to_boxed_value() && C->aggressive_unboxing() && 1271 (base != NULL) && (base == address->in(AddPNode::Base)) && 1272 phase->type(base)->higher_equal(TypePtr::NOTNULL); 1273 1274 if (!((mem->is_Phi() || base_is_phi) && 1275 (load_boxed_values || t_oop->is_known_instance_field()))) { 1276 return NULL; // memory is not Phi 1277 } 1278 1279 if (mem->is_Phi()) { 1280 if (!stable_phi(mem->as_Phi(), phase)) { 1281 return NULL; // Wait stable graph 1282 } 1283 uint cnt = mem->req(); 1284 // Check for loop invariant memory. 1285 if (cnt == 3) { 1286 for (uint i = 1; i < cnt; i++) { 1287 Node* in = mem->in(i); 1288 Node* m = optimize_memory_chain(in, t_oop, this, phase); 1289 if (m == mem) { 1290 set_req(Memory, mem->in(cnt - i)); 1291 return this; // made change 1292 } 1293 } 1294 } 1295 } 1296 if (base_is_phi) { 1297 if (!stable_phi(base->as_Phi(), phase)) { 1298 return NULL; // Wait stable graph 1299 } 1300 uint cnt = base->req(); 1301 // Check for loop invariant memory. 1302 if (cnt == 3) { 1303 for (uint i = 1; i < cnt; i++) { 1304 if (base->in(i) == base) { 1305 return NULL; // Wait stable graph 1306 } 1307 } 1308 } 1309 } 1310 1311 bool load_boxed_phi = load_boxed_values && base_is_phi && (base->in(0) == mem->in(0)); 1312 1313 // Split through Phi (see original code in loopopts.cpp). 1314 assert(C->have_alias_type(t_oop), "instance should have alias type"); 1315 1316 // Do nothing here if Identity will find a value 1317 // (to avoid infinite chain of value phis generation). 1318 if (!phase->eqv(this, this->Identity(phase))) 1319 return NULL; 1320 1321 // Select Region to split through. 1322 Node* region; 1323 if (!base_is_phi) { 1324 assert(mem->is_Phi(), "sanity"); 1325 region = mem->in(0); 1326 // Skip if the region dominates some control edge of the address. 1327 if (!MemNode::all_controls_dominate(address, region)) 1328 return NULL; 1329 } else if (!mem->is_Phi()) { 1330 assert(base_is_phi, "sanity"); 1331 region = base->in(0); 1332 // Skip if the region dominates some control edge of the memory. 1333 if (!MemNode::all_controls_dominate(mem, region)) 1334 return NULL; 1335 } else if (base->in(0) != mem->in(0)) { 1336 assert(base_is_phi && mem->is_Phi(), "sanity"); 1337 if (MemNode::all_controls_dominate(mem, base->in(0))) { 1338 region = base->in(0); 1339 } else if (MemNode::all_controls_dominate(address, mem->in(0))) { 1340 region = mem->in(0); 1341 } else { 1342 return NULL; // complex graph 1343 } 1344 } else { 1345 assert(base->in(0) == mem->in(0), "sanity"); 1346 region = mem->in(0); 1347 } 1348 1349 const Type* this_type = this->bottom_type(); 1350 int this_index = C->get_alias_index(t_oop); 1351 int this_offset = t_oop->offset(); 1352 int this_iid = t_oop->instance_id(); 1353 if (!t_oop->is_known_instance() && load_boxed_values) { 1354 // Use _idx of address base for boxed values. 1355 this_iid = base->_idx; 1356 } 1357 PhaseIterGVN* igvn = phase->is_IterGVN(); 1358 Node* phi = new PhiNode(region, this_type, NULL, this_iid, this_index, this_offset); 1359 for (uint i = 1; i < region->req(); i++) { 1360 Node* x; 1361 Node* the_clone = NULL; 1362 if (region->in(i) == C->top()) { 1363 x = C->top(); // Dead path? Use a dead data op 1364 } else { 1365 x = this->clone(); // Else clone up the data op 1366 the_clone = x; // Remember for possible deletion. 1367 // Alter data node to use pre-phi inputs 1368 if (this->in(0) == region) { 1369 x->set_req(0, region->in(i)); 1370 } else { 1371 x->set_req(0, NULL); 1372 } 1373 if (mem->is_Phi() && (mem->in(0) == region)) { 1374 x->set_req(Memory, mem->in(i)); // Use pre-Phi input for the clone. 1375 } 1376 if (address->is_Phi() && address->in(0) == region) { 1377 x->set_req(Address, address->in(i)); // Use pre-Phi input for the clone 1378 } 1379 if (base_is_phi && (base->in(0) == region)) { 1380 Node* base_x = base->in(i); // Clone address for loads from boxed objects. 1381 Node* adr_x = phase->transform(new AddPNode(base_x,base_x,address->in(AddPNode::Offset))); 1382 x->set_req(Address, adr_x); 1383 } 1384 } 1385 // Check for a 'win' on some paths 1386 const Type *t = x->Value(igvn); 1387 1388 bool singleton = t->singleton(); 1389 1390 // See comments in PhaseIdealLoop::split_thru_phi(). 1391 if (singleton && t == Type::TOP) { 1392 singleton &= region->is_Loop() && (i != LoopNode::EntryControl); 1393 } 1394 1395 if (singleton) { 1396 x = igvn->makecon(t); 1397 } else { 1398 // We now call Identity to try to simplify the cloned node. 1399 // Note that some Identity methods call phase->type(this). 1400 // Make sure that the type array is big enough for 1401 // our new node, even though we may throw the node away. 1402 // (This tweaking with igvn only works because x is a new node.) 1403 igvn->set_type(x, t); 1404 // If x is a TypeNode, capture any more-precise type permanently into Node 1405 // otherwise it will be not updated during igvn->transform since 1406 // igvn->type(x) is set to x->Value() already. 1407 x->raise_bottom_type(t); 1408 Node *y = x->Identity(igvn); 1409 if (y != x) { 1410 x = y; 1411 } else { 1412 y = igvn->hash_find_insert(x); 1413 if (y) { 1414 x = y; 1415 } else { 1416 // Else x is a new node we are keeping 1417 // We do not need register_new_node_with_optimizer 1418 // because set_type has already been called. 1419 igvn->_worklist.push(x); 1420 } 1421 } 1422 } 1423 if (x != the_clone && the_clone != NULL) { 1424 igvn->remove_dead_node(the_clone); 1425 } 1426 phi->set_req(i, x); 1427 } 1428 // Record Phi 1429 igvn->register_new_node_with_optimizer(phi); 1430 return phi; 1431 } 1432 1433 //------------------------------Ideal------------------------------------------ 1434 // If the load is from Field memory and the pointer is non-null, it might be possible to 1435 // zero out the control input. 1436 // If the offset is constant and the base is an object allocation, 1437 // try to hook me up to the exact initializing store. 1438 Node *LoadNode::Ideal(PhaseGVN *phase, bool can_reshape) { 1439 Node* p = MemNode::Ideal_common(phase, can_reshape); 1440 if (p) return (p == NodeSentinel) ? NULL : p; 1441 1442 Node* ctrl = in(MemNode::Control); 1443 Node* address = in(MemNode::Address); 1444 bool progress = false; 1445 1446 // Skip up past a SafePoint control. Cannot do this for Stores because 1447 // pointer stores & cardmarks must stay on the same side of a SafePoint. 1448 if( ctrl != NULL && ctrl->Opcode() == Op_SafePoint && 1449 phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw ) { 1450 ctrl = ctrl->in(0); 1451 set_req(MemNode::Control,ctrl); 1452 progress = true; 1453 } 1454 1455 intptr_t ignore = 0; 1456 Node* base = AddPNode::Ideal_base_and_offset(address, phase, ignore); 1457 if (base != NULL 1458 && phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw) { 1459 // Check for useless control edge in some common special cases 1460 if (in(MemNode::Control) != NULL 1461 && can_remove_control() 1462 && phase->type(base)->higher_equal(TypePtr::NOTNULL) 1463 && all_controls_dominate(base, phase->C->start())) { 1464 // A method-invariant, non-null address (constant or 'this' argument). 1465 set_req(MemNode::Control, NULL); 1466 progress = true; 1467 } 1468 } 1469 1470 Node* mem = in(MemNode::Memory); 1471 const TypePtr *addr_t = phase->type(address)->isa_ptr(); 1472 1473 if (can_reshape && (addr_t != NULL)) { 1474 // try to optimize our memory input 1475 Node* opt_mem = MemNode::optimize_memory_chain(mem, addr_t, this, phase); 1476 if (opt_mem != mem) { 1477 set_req(MemNode::Memory, opt_mem); 1478 if (phase->type( opt_mem ) == Type::TOP) return NULL; 1479 return this; 1480 } 1481 const TypeOopPtr *t_oop = addr_t->isa_oopptr(); 1482 if ((t_oop != NULL) && 1483 (t_oop->is_known_instance_field() || 1484 t_oop->is_ptr_to_boxed_value())) { 1485 PhaseIterGVN *igvn = phase->is_IterGVN(); 1486 if (igvn != NULL && igvn->_worklist.member(opt_mem)) { 1487 // Delay this transformation until memory Phi is processed. 1488 phase->is_IterGVN()->_worklist.push(this); 1489 return NULL; 1490 } 1491 // Split instance field load through Phi. 1492 Node* result = split_through_phi(phase); 1493 if (result != NULL) return result; 1494 1495 if (t_oop->is_ptr_to_boxed_value()) { 1496 Node* result = eliminate_autobox(phase); 1497 if (result != NULL) return result; 1498 } 1499 } 1500 } 1501 1502 // Is there a dominating load that loads the same value? Leave 1503 // anything that is not a load of a field/array element (like 1504 // barriers etc.) alone 1505 if (in(0) != NULL && adr_type() != TypeRawPtr::BOTTOM && can_reshape) { 1506 for (DUIterator_Fast imax, i = mem->fast_outs(imax); i < imax; i++) { 1507 Node *use = mem->fast_out(i); 1508 if (use != this && 1509 use->Opcode() == Opcode() && 1510 use->in(0) != NULL && 1511 use->in(0) != in(0) && 1512 use->in(Address) == in(Address)) { 1513 Node* ctl = in(0); 1514 for (int i = 0; i < 10 && ctl != NULL; i++) { 1515 ctl = IfNode::up_one_dom(ctl); 1516 if (ctl == use->in(0)) { 1517 set_req(0, use->in(0)); 1518 return this; 1519 } 1520 } 1521 } 1522 } 1523 } 1524 1525 // Check for prior store with a different base or offset; make Load 1526 // independent. Skip through any number of them. Bail out if the stores 1527 // are in an endless dead cycle and report no progress. This is a key 1528 // transform for Reflection. However, if after skipping through the Stores 1529 // we can't then fold up against a prior store do NOT do the transform as 1530 // this amounts to using the 'Oracle' model of aliasing. It leaves the same 1531 // array memory alive twice: once for the hoisted Load and again after the 1532 // bypassed Store. This situation only works if EVERYBODY who does 1533 // anti-dependence work knows how to bypass. I.e. we need all 1534 // anti-dependence checks to ask the same Oracle. Right now, that Oracle is 1535 // the alias index stuff. So instead, peek through Stores and IFF we can 1536 // fold up, do so. 1537 Node* prev_mem = find_previous_store(phase); 1538 if (prev_mem != NULL) { 1539 Node* value = can_see_arraycopy_value(prev_mem, phase); 1540 if (value != NULL) { 1541 return value; 1542 } 1543 } 1544 // Steps (a), (b): Walk past independent stores to find an exact match. 1545 if (prev_mem != NULL && prev_mem != in(MemNode::Memory)) { 1546 // (c) See if we can fold up on the spot, but don't fold up here. 1547 // Fold-up might require truncation (for LoadB/LoadS/LoadUS) or 1548 // just return a prior value, which is done by Identity calls. 1549 if (can_see_stored_value(prev_mem, phase)) { 1550 // Make ready for step (d): 1551 set_req(MemNode::Memory, prev_mem); 1552 return this; 1553 } 1554 } 1555 1556 return progress ? this : NULL; 1557 } 1558 1559 // Helper to recognize certain Klass fields which are invariant across 1560 // some group of array types (e.g., int[] or all T[] where T < Object). 1561 const Type* 1562 LoadNode::load_array_final_field(const TypeKlassPtr *tkls, 1563 ciKlass* klass) const { 1564 if (tkls->offset() == in_bytes(Klass::modifier_flags_offset())) { 1565 // The field is Klass::_modifier_flags. Return its (constant) value. 1566 // (Folds up the 2nd indirection in aClassConstant.getModifiers().) 1567 assert(this->Opcode() == Op_LoadI, "must load an int from _modifier_flags"); 1568 return TypeInt::make(klass->modifier_flags()); 1569 } 1570 if (tkls->offset() == in_bytes(Klass::access_flags_offset())) { 1571 // The field is Klass::_access_flags. Return its (constant) value. 1572 // (Folds up the 2nd indirection in Reflection.getClassAccessFlags(aClassConstant).) 1573 assert(this->Opcode() == Op_LoadI, "must load an int from _access_flags"); 1574 return TypeInt::make(klass->access_flags()); 1575 } 1576 if (tkls->offset() == in_bytes(Klass::layout_helper_offset())) { 1577 // The field is Klass::_layout_helper. Return its constant value if known. 1578 assert(this->Opcode() == Op_LoadI, "must load an int from _layout_helper"); 1579 return TypeInt::make(klass->layout_helper()); 1580 } 1581 1582 // No match. 1583 return NULL; 1584 } 1585 1586 static bool is_mismatched_access(ciConstant con, BasicType loadbt) { 1587 BasicType conbt = con.basic_type(); 1588 switch (conbt) { 1589 case T_BOOLEAN: conbt = T_BYTE; break; 1590 case T_ARRAY: conbt = T_OBJECT; break; 1591 } 1592 switch (loadbt) { 1593 case T_BOOLEAN: loadbt = T_BYTE; break; 1594 case T_NARROWOOP: loadbt = T_OBJECT; break; 1595 case T_ARRAY: loadbt = T_OBJECT; break; 1596 case T_ADDRESS: loadbt = T_OBJECT; break; 1597 } 1598 return (conbt != loadbt); 1599 } 1600 1601 // Try to constant-fold a stable array element. 1602 static const Type* fold_stable_ary_elem(const TypeAryPtr* ary, int off, BasicType loadbt) { 1603 assert(ary->const_oop(), "array should be constant"); 1604 assert(ary->is_stable(), "array should be stable"); 1605 1606 // Decode the results of GraphKit::array_element_address. 1607 ciArray* aobj = ary->const_oop()->as_array(); 1608 ciConstant con = aobj->element_value_by_offset(off); 1609 if (con.basic_type() != T_ILLEGAL && !con.is_null_or_zero()) { 1610 bool is_mismatched = is_mismatched_access(con, loadbt); 1611 assert(!is_mismatched, "conbt=%s; loadbt=%s", type2name(con.basic_type()), type2name(loadbt)); 1612 const Type* con_type = Type::make_from_constant(con); 1613 // Guard against erroneous constant folding. 1614 if (!is_mismatched && con_type != NULL) { 1615 if (con_type->isa_aryptr()) { 1616 // Join with the array element type, in case it is also stable. 1617 int dim = ary->stable_dimension(); 1618 con_type = con_type->is_aryptr()->cast_to_stable(true, dim-1); 1619 } 1620 if (loadbt == T_NARROWOOP && con_type->isa_oopptr()) { 1621 con_type = con_type->make_narrowoop(); 1622 } 1623 #ifndef PRODUCT 1624 if (TraceIterativeGVN) { 1625 tty->print("FoldStableValues: array element [off=%d]: con_type=", off); 1626 con_type->dump(); tty->cr(); 1627 } 1628 #endif //PRODUCT 1629 return con_type; 1630 } 1631 } 1632 return NULL; 1633 } 1634 1635 //------------------------------Value----------------------------------------- 1636 const Type* LoadNode::Value(PhaseGVN* phase) const { 1637 // Either input is TOP ==> the result is TOP 1638 Node* mem = in(MemNode::Memory); 1639 const Type *t1 = phase->type(mem); 1640 if (t1 == Type::TOP) return Type::TOP; 1641 Node* adr = in(MemNode::Address); 1642 const TypePtr* tp = phase->type(adr)->isa_ptr(); 1643 if (tp == NULL || tp->empty()) return Type::TOP; 1644 int off = tp->offset(); 1645 assert(off != Type::OffsetTop, "case covered by TypePtr::empty"); 1646 Compile* C = phase->C; 1647 1648 // Try to guess loaded type from pointer type 1649 if (tp->isa_aryptr()) { 1650 const TypeAryPtr* ary = tp->is_aryptr(); 1651 const Type* t = ary->elem(); 1652 1653 // Determine whether the reference is beyond the header or not, by comparing 1654 // the offset against the offset of the start of the array's data. 1655 // Different array types begin at slightly different offsets (12 vs. 16). 1656 // We choose T_BYTE as an example base type that is least restrictive 1657 // as to alignment, which will therefore produce the smallest 1658 // possible base offset. 1659 const int min_base_off = arrayOopDesc::base_offset_in_bytes(T_BYTE); 1660 const bool off_beyond_header = ((uint)off >= (uint)min_base_off); 1661 1662 // Try to constant-fold a stable array element. 1663 if (FoldStableValues && !is_mismatched_access() && ary->is_stable() && ary->const_oop() != NULL) { 1664 // Make sure the reference is not into the header and the offset is constant 1665 if (off_beyond_header && adr->is_AddP() && off != Type::OffsetBot) { 1666 const Type* con_type = fold_stable_ary_elem(ary, off, memory_type()); 1667 if (con_type != NULL) { 1668 return con_type; 1669 } 1670 } 1671 } 1672 1673 // Don't do this for integer types. There is only potential profit if 1674 // the element type t is lower than _type; that is, for int types, if _type is 1675 // more restrictive than t. This only happens here if one is short and the other 1676 // char (both 16 bits), and in those cases we've made an intentional decision 1677 // to use one kind of load over the other. See AndINode::Ideal and 4965907. 1678 // Also, do not try to narrow the type for a LoadKlass, regardless of offset. 1679 // 1680 // Yes, it is possible to encounter an expression like (LoadKlass p1:(AddP x x 8)) 1681 // where the _gvn.type of the AddP is wider than 8. This occurs when an earlier 1682 // copy p0 of (AddP x x 8) has been proven equal to p1, and the p0 has been 1683 // subsumed by p1. If p1 is on the worklist but has not yet been re-transformed, 1684 // it is possible that p1 will have a type like Foo*[int+]:NotNull*+any. 1685 // In fact, that could have been the original type of p1, and p1 could have 1686 // had an original form like p1:(AddP x x (LShiftL quux 3)), where the 1687 // expression (LShiftL quux 3) independently optimized to the constant 8. 1688 if ((t->isa_int() == NULL) && (t->isa_long() == NULL) 1689 && (_type->isa_vect() == NULL) 1690 && Opcode() != Op_LoadKlass && Opcode() != Op_LoadNKlass) { 1691 // t might actually be lower than _type, if _type is a unique 1692 // concrete subclass of abstract class t. 1693 if (off_beyond_header) { // is the offset beyond the header? 1694 const Type* jt = t->join_speculative(_type); 1695 // In any case, do not allow the join, per se, to empty out the type. 1696 if (jt->empty() && !t->empty()) { 1697 // This can happen if a interface-typed array narrows to a class type. 1698 jt = _type; 1699 } 1700 #ifdef ASSERT 1701 if (phase->C->eliminate_boxing() && adr->is_AddP()) { 1702 // The pointers in the autobox arrays are always non-null 1703 Node* base = adr->in(AddPNode::Base); 1704 if ((base != NULL) && base->is_DecodeN()) { 1705 // Get LoadN node which loads IntegerCache.cache field 1706 base = base->in(1); 1707 } 1708 if ((base != NULL) && base->is_Con()) { 1709 const TypeAryPtr* base_type = base->bottom_type()->isa_aryptr(); 1710 if ((base_type != NULL) && base_type->is_autobox_cache()) { 1711 // It could be narrow oop 1712 assert(jt->make_ptr()->ptr() == TypePtr::NotNull,"sanity"); 1713 } 1714 } 1715 } 1716 #endif 1717 return jt; 1718 } 1719 } 1720 } else if (tp->base() == Type::InstPtr) { 1721 ciEnv* env = C->env(); 1722 const TypeInstPtr* tinst = tp->is_instptr(); 1723 ciKlass* klass = tinst->klass(); 1724 assert( off != Type::OffsetBot || 1725 // arrays can be cast to Objects 1726 tp->is_oopptr()->klass()->is_java_lang_Object() || 1727 // unsafe field access may not have a constant offset 1728 C->has_unsafe_access(), 1729 "Field accesses must be precise" ); 1730 // For oop loads, we expect the _type to be precise. 1731 // Optimizations for constant objects 1732 ciObject* const_oop = tinst->const_oop(); 1733 if (const_oop != NULL) { 1734 // For constant CallSites treat the target field as a compile time constant. 1735 if (const_oop->is_call_site()) { 1736 ciCallSite* call_site = const_oop->as_call_site(); 1737 ciField* field = call_site->klass()->as_instance_klass()->get_field_by_offset(off, /*is_static=*/ false); 1738 if (field != NULL && field->is_call_site_target()) { 1739 ciMethodHandle* target = call_site->get_target(); 1740 if (target != NULL) { // just in case 1741 ciConstant constant(T_OBJECT, target); 1742 const Type* t; 1743 if (adr->bottom_type()->is_ptr_to_narrowoop()) { 1744 t = TypeNarrowOop::make_from_constant(constant.as_object(), true); 1745 } else { 1746 t = TypeOopPtr::make_from_constant(constant.as_object(), true); 1747 } 1748 // Add a dependence for invalidation of the optimization. 1749 if (!call_site->is_constant_call_site()) { 1750 C->dependencies()->assert_call_site_target_value(call_site, target); 1751 } 1752 return t; 1753 } 1754 } 1755 } 1756 } 1757 } else if (tp->base() == Type::KlassPtr) { 1758 assert( off != Type::OffsetBot || 1759 // arrays can be cast to Objects 1760 tp->is_klassptr()->klass()->is_java_lang_Object() || 1761 // also allow array-loading from the primary supertype 1762 // array during subtype checks 1763 Opcode() == Op_LoadKlass, 1764 "Field accesses must be precise" ); 1765 // For klass/static loads, we expect the _type to be precise 1766 } 1767 1768 const TypeKlassPtr *tkls = tp->isa_klassptr(); 1769 if (tkls != NULL && !StressReflectiveCode) { 1770 ciKlass* klass = tkls->klass(); 1771 if (klass->is_loaded() && tkls->klass_is_exact()) { 1772 // We are loading a field from a Klass metaobject whose identity 1773 // is known at compile time (the type is "exact" or "precise"). 1774 // Check for fields we know are maintained as constants by the VM. 1775 if (tkls->offset() == in_bytes(Klass::super_check_offset_offset())) { 1776 // The field is Klass::_super_check_offset. Return its (constant) value. 1777 // (Folds up type checking code.) 1778 assert(Opcode() == Op_LoadI, "must load an int from _super_check_offset"); 1779 return TypeInt::make(klass->super_check_offset()); 1780 } 1781 // Compute index into primary_supers array 1782 juint depth = (tkls->offset() - in_bytes(Klass::primary_supers_offset())) / sizeof(Klass*); 1783 // Check for overflowing; use unsigned compare to handle the negative case. 1784 if( depth < ciKlass::primary_super_limit() ) { 1785 // The field is an element of Klass::_primary_supers. Return its (constant) value. 1786 // (Folds up type checking code.) 1787 assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers"); 1788 ciKlass *ss = klass->super_of_depth(depth); 1789 return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR; 1790 } 1791 const Type* aift = load_array_final_field(tkls, klass); 1792 if (aift != NULL) return aift; 1793 if (tkls->offset() == in_bytes(Klass::java_mirror_offset())) { 1794 // The field is Klass::_java_mirror. Return its (constant) value. 1795 // (Folds up the 2nd indirection in anObjConstant.getClass().) 1796 assert(Opcode() == Op_LoadP, "must load an oop from _java_mirror"); 1797 return TypeInstPtr::make(klass->java_mirror()); 1798 } 1799 } 1800 1801 // We can still check if we are loading from the primary_supers array at a 1802 // shallow enough depth. Even though the klass is not exact, entries less 1803 // than or equal to its super depth are correct. 1804 if (klass->is_loaded() ) { 1805 ciType *inner = klass; 1806 while( inner->is_obj_array_klass() ) 1807 inner = inner->as_obj_array_klass()->base_element_type(); 1808 if( inner->is_instance_klass() && 1809 !inner->as_instance_klass()->flags().is_interface() ) { 1810 // Compute index into primary_supers array 1811 juint depth = (tkls->offset() - in_bytes(Klass::primary_supers_offset())) / sizeof(Klass*); 1812 // Check for overflowing; use unsigned compare to handle the negative case. 1813 if( depth < ciKlass::primary_super_limit() && 1814 depth <= klass->super_depth() ) { // allow self-depth checks to handle self-check case 1815 // The field is an element of Klass::_primary_supers. Return its (constant) value. 1816 // (Folds up type checking code.) 1817 assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers"); 1818 ciKlass *ss = klass->super_of_depth(depth); 1819 return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR; 1820 } 1821 } 1822 } 1823 1824 // If the type is enough to determine that the thing is not an array, 1825 // we can give the layout_helper a positive interval type. 1826 // This will help short-circuit some reflective code. 1827 if (tkls->offset() == in_bytes(Klass::layout_helper_offset()) 1828 && !klass->is_array_klass() // not directly typed as an array 1829 && !klass->is_interface() // specifically not Serializable & Cloneable 1830 && !klass->is_java_lang_Object() // not the supertype of all T[] 1831 ) { 1832 // Note: When interfaces are reliable, we can narrow the interface 1833 // test to (klass != Serializable && klass != Cloneable). 1834 assert(Opcode() == Op_LoadI, "must load an int from _layout_helper"); 1835 jint min_size = Klass::instance_layout_helper(oopDesc::header_size(), false); 1836 // The key property of this type is that it folds up tests 1837 // for array-ness, since it proves that the layout_helper is positive. 1838 // Thus, a generic value like the basic object layout helper works fine. 1839 return TypeInt::make(min_size, max_jint, Type::WidenMin); 1840 } 1841 } 1842 1843 // If we are loading from a freshly-allocated object, produce a zero, 1844 // if the load is provably beyond the header of the object. 1845 // (Also allow a variable load from a fresh array to produce zero.) 1846 const TypeOopPtr *tinst = tp->isa_oopptr(); 1847 bool is_instance = (tinst != NULL) && tinst->is_known_instance_field(); 1848 bool is_boxed_value = (tinst != NULL) && tinst->is_ptr_to_boxed_value(); 1849 if (ReduceFieldZeroing || is_instance || is_boxed_value) { 1850 Node* value = can_see_stored_value(mem,phase); 1851 if (value != NULL && value->is_Con()) { 1852 assert(value->bottom_type()->higher_equal(_type),"sanity"); 1853 return value->bottom_type(); 1854 } 1855 } 1856 1857 if (is_instance) { 1858 // If we have an instance type and our memory input is the 1859 // programs's initial memory state, there is no matching store, 1860 // so just return a zero of the appropriate type 1861 Node *mem = in(MemNode::Memory); 1862 if (mem->is_Parm() && mem->in(0)->is_Start()) { 1863 assert(mem->as_Parm()->_con == TypeFunc::Memory, "must be memory Parm"); 1864 return Type::get_zero_type(_type->basic_type()); 1865 } 1866 } 1867 return _type; 1868 } 1869 1870 //------------------------------match_edge------------------------------------- 1871 // Do we Match on this edge index or not? Match only the address. 1872 uint LoadNode::match_edge(uint idx) const { 1873 return idx == MemNode::Address; 1874 } 1875 1876 //--------------------------LoadBNode::Ideal-------------------------------------- 1877 // 1878 // If the previous store is to the same address as this load, 1879 // and the value stored was larger than a byte, replace this load 1880 // with the value stored truncated to a byte. If no truncation is 1881 // needed, the replacement is done in LoadNode::Identity(). 1882 // 1883 Node *LoadBNode::Ideal(PhaseGVN *phase, bool can_reshape) { 1884 Node* mem = in(MemNode::Memory); 1885 Node* value = can_see_stored_value(mem,phase); 1886 if( value && !phase->type(value)->higher_equal( _type ) ) { 1887 Node *result = phase->transform( new LShiftINode(value, phase->intcon(24)) ); 1888 return new RShiftINode(result, phase->intcon(24)); 1889 } 1890 // Identity call will handle the case where truncation is not needed. 1891 return LoadNode::Ideal(phase, can_reshape); 1892 } 1893 1894 const Type* LoadBNode::Value(PhaseGVN* phase) const { 1895 Node* mem = in(MemNode::Memory); 1896 Node* value = can_see_stored_value(mem,phase); 1897 if (value != NULL && value->is_Con() && 1898 !value->bottom_type()->higher_equal(_type)) { 1899 // If the input to the store does not fit with the load's result type, 1900 // it must be truncated. We can't delay until Ideal call since 1901 // a singleton Value is needed for split_thru_phi optimization. 1902 int con = value->get_int(); 1903 return TypeInt::make((con << 24) >> 24); 1904 } 1905 return LoadNode::Value(phase); 1906 } 1907 1908 //--------------------------LoadUBNode::Ideal------------------------------------- 1909 // 1910 // If the previous store is to the same address as this load, 1911 // and the value stored was larger than a byte, replace this load 1912 // with the value stored truncated to a byte. If no truncation is 1913 // needed, the replacement is done in LoadNode::Identity(). 1914 // 1915 Node* LoadUBNode::Ideal(PhaseGVN* phase, bool can_reshape) { 1916 Node* mem = in(MemNode::Memory); 1917 Node* value = can_see_stored_value(mem, phase); 1918 if (value && !phase->type(value)->higher_equal(_type)) 1919 return new AndINode(value, phase->intcon(0xFF)); 1920 // Identity call will handle the case where truncation is not needed. 1921 return LoadNode::Ideal(phase, can_reshape); 1922 } 1923 1924 const Type* LoadUBNode::Value(PhaseGVN* phase) const { 1925 Node* mem = in(MemNode::Memory); 1926 Node* value = can_see_stored_value(mem,phase); 1927 if (value != NULL && value->is_Con() && 1928 !value->bottom_type()->higher_equal(_type)) { 1929 // If the input to the store does not fit with the load's result type, 1930 // it must be truncated. We can't delay until Ideal call since 1931 // a singleton Value is needed for split_thru_phi optimization. 1932 int con = value->get_int(); 1933 return TypeInt::make(con & 0xFF); 1934 } 1935 return LoadNode::Value(phase); 1936 } 1937 1938 //--------------------------LoadUSNode::Ideal------------------------------------- 1939 // 1940 // If the previous store is to the same address as this load, 1941 // and the value stored was larger than a char, replace this load 1942 // with the value stored truncated to a char. If no truncation is 1943 // needed, the replacement is done in LoadNode::Identity(). 1944 // 1945 Node *LoadUSNode::Ideal(PhaseGVN *phase, bool can_reshape) { 1946 Node* mem = in(MemNode::Memory); 1947 Node* value = can_see_stored_value(mem,phase); 1948 if( value && !phase->type(value)->higher_equal( _type ) ) 1949 return new AndINode(value,phase->intcon(0xFFFF)); 1950 // Identity call will handle the case where truncation is not needed. 1951 return LoadNode::Ideal(phase, can_reshape); 1952 } 1953 1954 const Type* LoadUSNode::Value(PhaseGVN* phase) const { 1955 Node* mem = in(MemNode::Memory); 1956 Node* value = can_see_stored_value(mem,phase); 1957 if (value != NULL && value->is_Con() && 1958 !value->bottom_type()->higher_equal(_type)) { 1959 // If the input to the store does not fit with the load's result type, 1960 // it must be truncated. We can't delay until Ideal call since 1961 // a singleton Value is needed for split_thru_phi optimization. 1962 int con = value->get_int(); 1963 return TypeInt::make(con & 0xFFFF); 1964 } 1965 return LoadNode::Value(phase); 1966 } 1967 1968 //--------------------------LoadSNode::Ideal-------------------------------------- 1969 // 1970 // If the previous store is to the same address as this load, 1971 // and the value stored was larger than a short, replace this load 1972 // with the value stored truncated to a short. If no truncation is 1973 // needed, the replacement is done in LoadNode::Identity(). 1974 // 1975 Node *LoadSNode::Ideal(PhaseGVN *phase, bool can_reshape) { 1976 Node* mem = in(MemNode::Memory); 1977 Node* value = can_see_stored_value(mem,phase); 1978 if( value && !phase->type(value)->higher_equal( _type ) ) { 1979 Node *result = phase->transform( new LShiftINode(value, phase->intcon(16)) ); 1980 return new RShiftINode(result, phase->intcon(16)); 1981 } 1982 // Identity call will handle the case where truncation is not needed. 1983 return LoadNode::Ideal(phase, can_reshape); 1984 } 1985 1986 const Type* LoadSNode::Value(PhaseGVN* phase) const { 1987 Node* mem = in(MemNode::Memory); 1988 Node* value = can_see_stored_value(mem,phase); 1989 if (value != NULL && value->is_Con() && 1990 !value->bottom_type()->higher_equal(_type)) { 1991 // If the input to the store does not fit with the load's result type, 1992 // it must be truncated. We can't delay until Ideal call since 1993 // a singleton Value is needed for split_thru_phi optimization. 1994 int con = value->get_int(); 1995 return TypeInt::make((con << 16) >> 16); 1996 } 1997 return LoadNode::Value(phase); 1998 } 1999 2000 //============================================================================= 2001 //----------------------------LoadKlassNode::make------------------------------ 2002 // Polymorphic factory method: 2003 Node* LoadKlassNode::make(PhaseGVN& gvn, Node* ctl, Node* mem, Node* adr, const TypePtr* at, const TypeKlassPtr* tk) { 2004 // sanity check the alias category against the created node type 2005 const TypePtr *adr_type = adr->bottom_type()->isa_ptr(); 2006 assert(adr_type != NULL, "expecting TypeKlassPtr"); 2007 #ifdef _LP64 2008 if (adr_type->is_ptr_to_narrowklass()) { 2009 assert(UseCompressedClassPointers, "no compressed klasses"); 2010 Node* load_klass = gvn.transform(new LoadNKlassNode(ctl, mem, adr, at, tk->make_narrowklass(), MemNode::unordered)); 2011 return new DecodeNKlassNode(load_klass, load_klass->bottom_type()->make_ptr()); 2012 } 2013 #endif 2014 assert(!adr_type->is_ptr_to_narrowklass() && !adr_type->is_ptr_to_narrowoop(), "should have got back a narrow oop"); 2015 return new LoadKlassNode(ctl, mem, adr, at, tk, MemNode::unordered); 2016 } 2017 2018 //------------------------------Value------------------------------------------ 2019 const Type* LoadKlassNode::Value(PhaseGVN* phase) const { 2020 return klass_value_common(phase); 2021 } 2022 2023 // In most cases, LoadKlassNode does not have the control input set. If the control 2024 // input is set, it must not be removed (by LoadNode::Ideal()). 2025 bool LoadKlassNode::can_remove_control() const { 2026 return false; 2027 } 2028 2029 const Type* LoadNode::klass_value_common(PhaseGVN* phase) const { 2030 // Either input is TOP ==> the result is TOP 2031 const Type *t1 = phase->type( in(MemNode::Memory) ); 2032 if (t1 == Type::TOP) return Type::TOP; 2033 Node *adr = in(MemNode::Address); 2034 const Type *t2 = phase->type( adr ); 2035 if (t2 == Type::TOP) return Type::TOP; 2036 const TypePtr *tp = t2->is_ptr(); 2037 if (TypePtr::above_centerline(tp->ptr()) || 2038 tp->ptr() == TypePtr::Null) return Type::TOP; 2039 2040 // Return a more precise klass, if possible 2041 const TypeInstPtr *tinst = tp->isa_instptr(); 2042 if (tinst != NULL) { 2043 ciInstanceKlass* ik = tinst->klass()->as_instance_klass(); 2044 int offset = tinst->offset(); 2045 if (ik == phase->C->env()->Class_klass() 2046 && (offset == java_lang_Class::klass_offset_in_bytes() || 2047 offset == java_lang_Class::array_klass_offset_in_bytes())) { 2048 // We are loading a special hidden field from a Class mirror object, 2049 // the field which points to the VM's Klass metaobject. 2050 ciType* t = tinst->java_mirror_type(); 2051 // java_mirror_type returns non-null for compile-time Class constants. 2052 if (t != NULL) { 2053 // constant oop => constant klass 2054 if (offset == java_lang_Class::array_klass_offset_in_bytes()) { 2055 if (t->is_void()) { 2056 // We cannot create a void array. Since void is a primitive type return null 2057 // klass. Users of this result need to do a null check on the returned klass. 2058 return TypePtr::NULL_PTR; 2059 } 2060 return TypeKlassPtr::make(ciArrayKlass::make(t)); 2061 } 2062 if (!t->is_klass()) { 2063 // a primitive Class (e.g., int.class) has NULL for a klass field 2064 return TypePtr::NULL_PTR; 2065 } 2066 // (Folds up the 1st indirection in aClassConstant.getModifiers().) 2067 return TypeKlassPtr::make(t->as_klass()); 2068 } 2069 // non-constant mirror, so we can't tell what's going on 2070 } 2071 if( !ik->is_loaded() ) 2072 return _type; // Bail out if not loaded 2073 if (offset == oopDesc::klass_offset_in_bytes()) { 2074 if (tinst->klass_is_exact()) { 2075 return TypeKlassPtr::make(ik); 2076 } 2077 // See if we can become precise: no subklasses and no interface 2078 // (Note: We need to support verified interfaces.) 2079 if (!ik->is_interface() && !ik->has_subklass()) { 2080 //assert(!UseExactTypes, "this code should be useless with exact types"); 2081 // Add a dependence; if any subclass added we need to recompile 2082 if (!ik->is_final()) { 2083 // %%% should use stronger assert_unique_concrete_subtype instead 2084 phase->C->dependencies()->assert_leaf_type(ik); 2085 } 2086 // Return precise klass 2087 return TypeKlassPtr::make(ik); 2088 } 2089 2090 // Return root of possible klass 2091 return TypeKlassPtr::make(TypePtr::NotNull, ik, 0/*offset*/); 2092 } 2093 } 2094 2095 // Check for loading klass from an array 2096 const TypeAryPtr *tary = tp->isa_aryptr(); 2097 if( tary != NULL ) { 2098 ciKlass *tary_klass = tary->klass(); 2099 if (tary_klass != NULL // can be NULL when at BOTTOM or TOP 2100 && tary->offset() == oopDesc::klass_offset_in_bytes()) { 2101 if (tary->klass_is_exact()) { 2102 return TypeKlassPtr::make(tary_klass); 2103 } 2104 ciArrayKlass *ak = tary->klass()->as_array_klass(); 2105 // If the klass is an object array, we defer the question to the 2106 // array component klass. 2107 if( ak->is_obj_array_klass() ) { 2108 assert( ak->is_loaded(), "" ); 2109 ciKlass *base_k = ak->as_obj_array_klass()->base_element_klass(); 2110 if( base_k->is_loaded() && base_k->is_instance_klass() ) { 2111 ciInstanceKlass* ik = base_k->as_instance_klass(); 2112 // See if we can become precise: no subklasses and no interface 2113 if (!ik->is_interface() && !ik->has_subklass()) { 2114 //assert(!UseExactTypes, "this code should be useless with exact types"); 2115 // Add a dependence; if any subclass added we need to recompile 2116 if (!ik->is_final()) { 2117 phase->C->dependencies()->assert_leaf_type(ik); 2118 } 2119 // Return precise array klass 2120 return TypeKlassPtr::make(ak); 2121 } 2122 } 2123 return TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/); 2124 } else { // Found a type-array? 2125 //assert(!UseExactTypes, "this code should be useless with exact types"); 2126 assert( ak->is_type_array_klass(), "" ); 2127 return TypeKlassPtr::make(ak); // These are always precise 2128 } 2129 } 2130 } 2131 2132 // Check for loading klass from an array klass 2133 const TypeKlassPtr *tkls = tp->isa_klassptr(); 2134 if (tkls != NULL && !StressReflectiveCode) { 2135 ciKlass* klass = tkls->klass(); 2136 if( !klass->is_loaded() ) 2137 return _type; // Bail out if not loaded 2138 if( klass->is_obj_array_klass() && 2139 tkls->offset() == in_bytes(ObjArrayKlass::element_klass_offset())) { 2140 ciKlass* elem = klass->as_obj_array_klass()->element_klass(); 2141 // // Always returning precise element type is incorrect, 2142 // // e.g., element type could be object and array may contain strings 2143 // return TypeKlassPtr::make(TypePtr::Constant, elem, 0); 2144 2145 // The array's TypeKlassPtr was declared 'precise' or 'not precise' 2146 // according to the element type's subclassing. 2147 return TypeKlassPtr::make(tkls->ptr(), elem, 0/*offset*/); 2148 } 2149 if( klass->is_instance_klass() && tkls->klass_is_exact() && 2150 tkls->offset() == in_bytes(Klass::super_offset())) { 2151 ciKlass* sup = klass->as_instance_klass()->super(); 2152 // The field is Klass::_super. Return its (constant) value. 2153 // (Folds up the 2nd indirection in aClassConstant.getSuperClass().) 2154 return sup ? TypeKlassPtr::make(sup) : TypePtr::NULL_PTR; 2155 } 2156 } 2157 2158 // Bailout case 2159 return LoadNode::Value(phase); 2160 } 2161 2162 //------------------------------Identity--------------------------------------- 2163 // To clean up reflective code, simplify k.java_mirror.as_klass to plain k. 2164 // Also feed through the klass in Allocate(...klass...)._klass. 2165 Node* LoadKlassNode::Identity(PhaseGVN* phase) { 2166 return klass_identity_common(phase); 2167 } 2168 2169 Node* LoadNode::klass_identity_common(PhaseGVN* phase) { 2170 Node* x = LoadNode::Identity(phase); 2171 if (x != this) return x; 2172 2173 // Take apart the address into an oop and and offset. 2174 // Return 'this' if we cannot. 2175 Node* adr = in(MemNode::Address); 2176 intptr_t offset = 0; 2177 Node* base = AddPNode::Ideal_base_and_offset(adr, phase, offset); 2178 if (base == NULL) return this; 2179 const TypeOopPtr* toop = phase->type(adr)->isa_oopptr(); 2180 if (toop == NULL) return this; 2181 2182 // We can fetch the klass directly through an AllocateNode. 2183 // This works even if the klass is not constant (clone or newArray). 2184 if (offset == oopDesc::klass_offset_in_bytes()) { 2185 Node* allocated_klass = AllocateNode::Ideal_klass(base, phase); 2186 if (allocated_klass != NULL) { 2187 return allocated_klass; 2188 } 2189 } 2190 2191 // Simplify k.java_mirror.as_klass to plain k, where k is a Klass*. 2192 // See inline_native_Class_query for occurrences of these patterns. 2193 // Java Example: x.getClass().isAssignableFrom(y) 2194 // 2195 // This improves reflective code, often making the Class 2196 // mirror go completely dead. (Current exception: Class 2197 // mirrors may appear in debug info, but we could clean them out by 2198 // introducing a new debug info operator for Klass*.java_mirror). 2199 if (toop->isa_instptr() && toop->klass() == phase->C->env()->Class_klass() 2200 && offset == java_lang_Class::klass_offset_in_bytes()) { 2201 // We are loading a special hidden field from a Class mirror, 2202 // the field which points to its Klass or ArrayKlass metaobject. 2203 if (base->is_Load()) { 2204 Node* adr2 = base->in(MemNode::Address); 2205 const TypeKlassPtr* tkls = phase->type(adr2)->isa_klassptr(); 2206 if (tkls != NULL && !tkls->empty() 2207 && (tkls->klass()->is_instance_klass() || 2208 tkls->klass()->is_array_klass()) 2209 && adr2->is_AddP() 2210 ) { 2211 int mirror_field = in_bytes(Klass::java_mirror_offset()); 2212 if (tkls->offset() == mirror_field) { 2213 return adr2->in(AddPNode::Base); 2214 } 2215 } 2216 } 2217 } 2218 2219 return this; 2220 } 2221 2222 2223 //------------------------------Value------------------------------------------ 2224 const Type* LoadNKlassNode::Value(PhaseGVN* phase) const { 2225 const Type *t = klass_value_common(phase); 2226 if (t == Type::TOP) 2227 return t; 2228 2229 return t->make_narrowklass(); 2230 } 2231 2232 //------------------------------Identity--------------------------------------- 2233 // To clean up reflective code, simplify k.java_mirror.as_klass to narrow k. 2234 // Also feed through the klass in Allocate(...klass...)._klass. 2235 Node* LoadNKlassNode::Identity(PhaseGVN* phase) { 2236 Node *x = klass_identity_common(phase); 2237 2238 const Type *t = phase->type( x ); 2239 if( t == Type::TOP ) return x; 2240 if( t->isa_narrowklass()) return x; 2241 assert (!t->isa_narrowoop(), "no narrow oop here"); 2242 2243 return phase->transform(new EncodePKlassNode(x, t->make_narrowklass())); 2244 } 2245 2246 //------------------------------Value----------------------------------------- 2247 const Type* LoadRangeNode::Value(PhaseGVN* phase) const { 2248 // Either input is TOP ==> the result is TOP 2249 const Type *t1 = phase->type( in(MemNode::Memory) ); 2250 if( t1 == Type::TOP ) return Type::TOP; 2251 Node *adr = in(MemNode::Address); 2252 const Type *t2 = phase->type( adr ); 2253 if( t2 == Type::TOP ) return Type::TOP; 2254 const TypePtr *tp = t2->is_ptr(); 2255 if (TypePtr::above_centerline(tp->ptr())) return Type::TOP; 2256 const TypeAryPtr *tap = tp->isa_aryptr(); 2257 if( !tap ) return _type; 2258 return tap->size(); 2259 } 2260 2261 //-------------------------------Ideal--------------------------------------- 2262 // Feed through the length in AllocateArray(...length...)._length. 2263 Node *LoadRangeNode::Ideal(PhaseGVN *phase, bool can_reshape) { 2264 Node* p = MemNode::Ideal_common(phase, can_reshape); 2265 if (p) return (p == NodeSentinel) ? NULL : p; 2266 2267 // Take apart the address into an oop and and offset. 2268 // Return 'this' if we cannot. 2269 Node* adr = in(MemNode::Address); 2270 intptr_t offset = 0; 2271 Node* base = AddPNode::Ideal_base_and_offset(adr, phase, offset); 2272 if (base == NULL) return NULL; 2273 const TypeAryPtr* tary = phase->type(adr)->isa_aryptr(); 2274 if (tary == NULL) return NULL; 2275 2276 // We can fetch the length directly through an AllocateArrayNode. 2277 // This works even if the length is not constant (clone or newArray). 2278 if (offset == arrayOopDesc::length_offset_in_bytes()) { 2279 AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(base, phase); 2280 if (alloc != NULL) { 2281 Node* allocated_length = alloc->Ideal_length(); 2282 Node* len = alloc->make_ideal_length(tary, phase); 2283 if (allocated_length != len) { 2284 // New CastII improves on this. 2285 return len; 2286 } 2287 } 2288 } 2289 2290 return NULL; 2291 } 2292 2293 //------------------------------Identity--------------------------------------- 2294 // Feed through the length in AllocateArray(...length...)._length. 2295 Node* LoadRangeNode::Identity(PhaseGVN* phase) { 2296 Node* x = LoadINode::Identity(phase); 2297 if (x != this) return x; 2298 2299 // Take apart the address into an oop and and offset. 2300 // Return 'this' if we cannot. 2301 Node* adr = in(MemNode::Address); 2302 intptr_t offset = 0; 2303 Node* base = AddPNode::Ideal_base_and_offset(adr, phase, offset); 2304 if (base == NULL) return this; 2305 const TypeAryPtr* tary = phase->type(adr)->isa_aryptr(); 2306 if (tary == NULL) return this; 2307 2308 // We can fetch the length directly through an AllocateArrayNode. 2309 // This works even if the length is not constant (clone or newArray). 2310 if (offset == arrayOopDesc::length_offset_in_bytes()) { 2311 AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(base, phase); 2312 if (alloc != NULL) { 2313 Node* allocated_length = alloc->Ideal_length(); 2314 // Do not allow make_ideal_length to allocate a CastII node. 2315 Node* len = alloc->make_ideal_length(tary, phase, false); 2316 if (allocated_length == len) { 2317 // Return allocated_length only if it would not be improved by a CastII. 2318 return allocated_length; 2319 } 2320 } 2321 } 2322 2323 return this; 2324 2325 } 2326 2327 //============================================================================= 2328 //---------------------------StoreNode::make----------------------------------- 2329 // Polymorphic factory method: 2330 StoreNode* StoreNode::make(PhaseGVN& gvn, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, BasicType bt, MemOrd mo) { 2331 assert((mo == unordered || mo == release), "unexpected"); 2332 Compile* C = gvn.C; 2333 assert(C->get_alias_index(adr_type) != Compile::AliasIdxRaw || 2334 ctl != NULL, "raw memory operations should have control edge"); 2335 2336 switch (bt) { 2337 case T_BOOLEAN: 2338 case T_BYTE: return new StoreBNode(ctl, mem, adr, adr_type, val, mo); 2339 case T_INT: return new StoreINode(ctl, mem, adr, adr_type, val, mo); 2340 case T_CHAR: 2341 case T_SHORT: return new StoreCNode(ctl, mem, adr, adr_type, val, mo); 2342 case T_LONG: return new StoreLNode(ctl, mem, adr, adr_type, val, mo); 2343 case T_FLOAT: return new StoreFNode(ctl, mem, adr, adr_type, val, mo); 2344 case T_DOUBLE: return new StoreDNode(ctl, mem, adr, adr_type, val, mo); 2345 case T_METADATA: 2346 case T_ADDRESS: 2347 case T_VALUETYPE: 2348 case T_OBJECT: 2349 #ifdef _LP64 2350 if (adr->bottom_type()->is_ptr_to_narrowoop()) { 2351 val = gvn.transform(new EncodePNode(val, val->bottom_type()->make_narrowoop())); 2352 return new StoreNNode(ctl, mem, adr, adr_type, val, mo); 2353 } else if (adr->bottom_type()->is_ptr_to_narrowklass() || 2354 (UseCompressedClassPointers && val->bottom_type()->isa_klassptr() && 2355 adr->bottom_type()->isa_rawptr())) { 2356 val = gvn.transform(new EncodePKlassNode(val, val->bottom_type()->make_narrowklass())); 2357 return new StoreNKlassNode(ctl, mem, adr, adr_type, val, mo); 2358 } 2359 #endif 2360 { 2361 return new StorePNode(ctl, mem, adr, adr_type, val, mo); 2362 } 2363 } 2364 ShouldNotReachHere(); 2365 return (StoreNode*)NULL; 2366 } 2367 2368 StoreLNode* StoreLNode::make_atomic(Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, MemOrd mo) { 2369 bool require_atomic = true; 2370 return new StoreLNode(ctl, mem, adr, adr_type, val, mo, require_atomic); 2371 } 2372 2373 StoreDNode* StoreDNode::make_atomic(Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, MemOrd mo) { 2374 bool require_atomic = true; 2375 return new StoreDNode(ctl, mem, adr, adr_type, val, mo, require_atomic); 2376 } 2377 2378 2379 //--------------------------bottom_type---------------------------------------- 2380 const Type *StoreNode::bottom_type() const { 2381 return Type::MEMORY; 2382 } 2383 2384 //------------------------------hash------------------------------------------- 2385 uint StoreNode::hash() const { 2386 // unroll addition of interesting fields 2387 //return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address) + (uintptr_t)in(ValueIn); 2388 2389 // Since they are not commoned, do not hash them: 2390 return NO_HASH; 2391 } 2392 2393 //------------------------------Ideal------------------------------------------ 2394 // Change back-to-back Store(, p, x) -> Store(m, p, y) to Store(m, p, x). 2395 // When a store immediately follows a relevant allocation/initialization, 2396 // try to capture it into the initialization, or hoist it above. 2397 Node *StoreNode::Ideal(PhaseGVN *phase, bool can_reshape) { 2398 Node* p = MemNode::Ideal_common(phase, can_reshape); 2399 if (p) return (p == NodeSentinel) ? NULL : p; 2400 2401 Node* mem = in(MemNode::Memory); 2402 Node* address = in(MemNode::Address); 2403 // Back-to-back stores to same address? Fold em up. Generally 2404 // unsafe if I have intervening uses... Also disallowed for StoreCM 2405 // since they must follow each StoreP operation. Redundant StoreCMs 2406 // are eliminated just before matching in final_graph_reshape. 2407 { 2408 Node* st = mem; 2409 // If Store 'st' has more than one use, we cannot fold 'st' away. 2410 // For example, 'st' might be the final state at a conditional 2411 // return. Or, 'st' might be used by some node which is live at 2412 // the same time 'st' is live, which might be unschedulable. So, 2413 // require exactly ONE user until such time as we clone 'mem' for 2414 // each of 'mem's uses (thus making the exactly-1-user-rule hold 2415 // true). 2416 while (st->is_Store() && st->outcnt() == 1 && st->Opcode() != Op_StoreCM) { 2417 // Looking at a dead closed cycle of memory? 2418 assert(st != st->in(MemNode::Memory), "dead loop in StoreNode::Ideal"); 2419 assert(Opcode() == st->Opcode() || 2420 st->Opcode() == Op_StoreVector || 2421 Opcode() == Op_StoreVector || 2422 phase->C->get_alias_index(adr_type()) == Compile::AliasIdxRaw || 2423 (Opcode() == Op_StoreL && st->Opcode() == Op_StoreI) || // expanded ClearArrayNode 2424 (is_mismatched_access() || st->as_Store()->is_mismatched_access()), 2425 "no mismatched stores, except on raw memory: %s %s", NodeClassNames[Opcode()], NodeClassNames[st->Opcode()]); 2426 2427 if (st->in(MemNode::Address)->eqv_uncast(address) && 2428 st->as_Store()->memory_size() <= this->memory_size()) { 2429 Node* use = st->raw_out(0); 2430 phase->igvn_rehash_node_delayed(use); 2431 if (can_reshape) { 2432 use->set_req_X(MemNode::Memory, st->in(MemNode::Memory), phase->is_IterGVN()); 2433 } else { 2434 // It's OK to do this in the parser, since DU info is always accurate, 2435 // and the parser always refers to nodes via SafePointNode maps. 2436 use->set_req(MemNode::Memory, st->in(MemNode::Memory)); 2437 } 2438 return this; 2439 } 2440 st = st->in(MemNode::Memory); 2441 } 2442 } 2443 2444 2445 // Capture an unaliased, unconditional, simple store into an initializer. 2446 // Or, if it is independent of the allocation, hoist it above the allocation. 2447 if (ReduceFieldZeroing && /*can_reshape &&*/ 2448 mem->is_Proj() && mem->in(0)->is_Initialize()) { 2449 InitializeNode* init = mem->in(0)->as_Initialize(); 2450 intptr_t offset = init->can_capture_store(this, phase, can_reshape); 2451 if (offset > 0) { 2452 Node* moved = init->capture_store(this, offset, phase, can_reshape); 2453 // If the InitializeNode captured me, it made a raw copy of me, 2454 // and I need to disappear. 2455 if (moved != NULL) { 2456 // %%% hack to ensure that Ideal returns a new node: 2457 mem = MergeMemNode::make(mem); 2458 return mem; // fold me away 2459 } 2460 } 2461 } 2462 2463 return NULL; // No further progress 2464 } 2465 2466 //------------------------------Value----------------------------------------- 2467 const Type* StoreNode::Value(PhaseGVN* phase) const { 2468 // Either input is TOP ==> the result is TOP 2469 const Type *t1 = phase->type( in(MemNode::Memory) ); 2470 if( t1 == Type::TOP ) return Type::TOP; 2471 const Type *t2 = phase->type( in(MemNode::Address) ); 2472 if( t2 == Type::TOP ) return Type::TOP; 2473 const Type *t3 = phase->type( in(MemNode::ValueIn) ); 2474 if( t3 == Type::TOP ) return Type::TOP; 2475 return Type::MEMORY; 2476 } 2477 2478 //------------------------------Identity--------------------------------------- 2479 // Remove redundant stores: 2480 // Store(m, p, Load(m, p)) changes to m. 2481 // Store(, p, x) -> Store(m, p, x) changes to Store(m, p, x). 2482 Node* StoreNode::Identity(PhaseGVN* phase) { 2483 Node* mem = in(MemNode::Memory); 2484 Node* adr = in(MemNode::Address); 2485 Node* val = in(MemNode::ValueIn); 2486 2487 // Load then Store? Then the Store is useless 2488 if (val->is_Load() && 2489 val->in(MemNode::Address)->eqv_uncast(adr) && 2490 val->in(MemNode::Memory )->eqv_uncast(mem) && 2491 val->as_Load()->store_Opcode() == Opcode()) { 2492 return mem; 2493 } 2494 2495 // Two stores in a row of the same value? 2496 if (mem->is_Store() && 2497 mem->in(MemNode::Address)->eqv_uncast(adr) && 2498 mem->in(MemNode::ValueIn)->eqv_uncast(val) && 2499 mem->Opcode() == Opcode()) { 2500 return mem; 2501 } 2502 2503 // Store of zero anywhere into a freshly-allocated object? 2504 // Then the store is useless. 2505 // (It must already have been captured by the InitializeNode.) 2506 if (ReduceFieldZeroing && phase->type(val)->is_zero_type()) { 2507 // a newly allocated object is already all-zeroes everywhere 2508 if (mem->is_Proj() && mem->in(0)->is_Allocate()) { 2509 return mem; 2510 } 2511 2512 // the store may also apply to zero-bits in an earlier object 2513 Node* prev_mem = find_previous_store(phase); 2514 // Steps (a), (b): Walk past independent stores to find an exact match. 2515 if (prev_mem != NULL) { 2516 Node* prev_val = can_see_stored_value(prev_mem, phase); 2517 if (prev_val != NULL && phase->eqv(prev_val, val)) { 2518 // prev_val and val might differ by a cast; it would be good 2519 // to keep the more informative of the two. 2520 return mem; 2521 } 2522 } 2523 } 2524 2525 return this; 2526 } 2527 2528 //------------------------------match_edge------------------------------------- 2529 // Do we Match on this edge index or not? Match only memory & value 2530 uint StoreNode::match_edge(uint idx) const { 2531 return idx == MemNode::Address || idx == MemNode::ValueIn; 2532 } 2533 2534 //------------------------------cmp-------------------------------------------- 2535 // Do not common stores up together. They generally have to be split 2536 // back up anyways, so do not bother. 2537 uint StoreNode::cmp( const Node &n ) const { 2538 return (&n == this); // Always fail except on self 2539 } 2540 2541 //------------------------------Ideal_masked_input----------------------------- 2542 // Check for a useless mask before a partial-word store 2543 // (StoreB ... (AndI valIn conIa) ) 2544 // If (conIa & mask == mask) this simplifies to 2545 // (StoreB ... (valIn) ) 2546 Node *StoreNode::Ideal_masked_input(PhaseGVN *phase, uint mask) { 2547 Node *val = in(MemNode::ValueIn); 2548 if( val->Opcode() == Op_AndI ) { 2549 const TypeInt *t = phase->type( val->in(2) )->isa_int(); 2550 if( t && t->is_con() && (t->get_con() & mask) == mask ) { 2551 set_req(MemNode::ValueIn, val->in(1)); 2552 return this; 2553 } 2554 } 2555 return NULL; 2556 } 2557 2558 2559 //------------------------------Ideal_sign_extended_input---------------------- 2560 // Check for useless sign-extension before a partial-word store 2561 // (StoreB ... (RShiftI _ (LShiftI _ valIn conIL ) conIR) ) 2562 // If (conIL == conIR && conIR <= num_bits) this simplifies to 2563 // (StoreB ... (valIn) ) 2564 Node *StoreNode::Ideal_sign_extended_input(PhaseGVN *phase, int num_bits) { 2565 Node *val = in(MemNode::ValueIn); 2566 if( val->Opcode() == Op_RShiftI ) { 2567 const TypeInt *t = phase->type( val->in(2) )->isa_int(); 2568 if( t && t->is_con() && (t->get_con() <= num_bits) ) { 2569 Node *shl = val->in(1); 2570 if( shl->Opcode() == Op_LShiftI ) { 2571 const TypeInt *t2 = phase->type( shl->in(2) )->isa_int(); 2572 if( t2 && t2->is_con() && (t2->get_con() == t->get_con()) ) { 2573 set_req(MemNode::ValueIn, shl->in(1)); 2574 return this; 2575 } 2576 } 2577 } 2578 } 2579 return NULL; 2580 } 2581 2582 //------------------------------value_never_loaded----------------------------------- 2583 // Determine whether there are any possible loads of the value stored. 2584 // For simplicity, we actually check if there are any loads from the 2585 // address stored to, not just for loads of the value stored by this node. 2586 // 2587 bool StoreNode::value_never_loaded( PhaseTransform *phase) const { 2588 Node *adr = in(Address); 2589 const TypeOopPtr *adr_oop = phase->type(adr)->isa_oopptr(); 2590 if (adr_oop == NULL) 2591 return false; 2592 if (!adr_oop->is_known_instance_field()) 2593 return false; // if not a distinct instance, there may be aliases of the address 2594 for (DUIterator_Fast imax, i = adr->fast_outs(imax); i < imax; i++) { 2595 Node *use = adr->fast_out(i); 2596 if (use->is_Load() || use->is_LoadStore()) { 2597 return false; 2598 } 2599 } 2600 return true; 2601 } 2602 2603 //============================================================================= 2604 //------------------------------Ideal------------------------------------------ 2605 // If the store is from an AND mask that leaves the low bits untouched, then 2606 // we can skip the AND operation. If the store is from a sign-extension 2607 // (a left shift, then right shift) we can skip both. 2608 Node *StoreBNode::Ideal(PhaseGVN *phase, bool can_reshape){ 2609 Node *progress = StoreNode::Ideal_masked_input(phase, 0xFF); 2610 if( progress != NULL ) return progress; 2611 2612 progress = StoreNode::Ideal_sign_extended_input(phase, 24); 2613 if( progress != NULL ) return progress; 2614 2615 // Finally check the default case 2616 return StoreNode::Ideal(phase, can_reshape); 2617 } 2618 2619 //============================================================================= 2620 //------------------------------Ideal------------------------------------------ 2621 // If the store is from an AND mask that leaves the low bits untouched, then 2622 // we can skip the AND operation 2623 Node *StoreCNode::Ideal(PhaseGVN *phase, bool can_reshape){ 2624 Node *progress = StoreNode::Ideal_masked_input(phase, 0xFFFF); 2625 if( progress != NULL ) return progress; 2626 2627 progress = StoreNode::Ideal_sign_extended_input(phase, 16); 2628 if( progress != NULL ) return progress; 2629 2630 // Finally check the default case 2631 return StoreNode::Ideal(phase, can_reshape); 2632 } 2633 2634 //============================================================================= 2635 //------------------------------Identity--------------------------------------- 2636 Node* StoreCMNode::Identity(PhaseGVN* phase) { 2637 // No need to card mark when storing a null ptr 2638 Node* my_store = in(MemNode::OopStore); 2639 if (my_store->is_Store()) { 2640 const Type *t1 = phase->type( my_store->in(MemNode::ValueIn) ); 2641 if( t1 == TypePtr::NULL_PTR ) { 2642 return in(MemNode::Memory); 2643 } 2644 } 2645 return this; 2646 } 2647 2648 //============================================================================= 2649 //------------------------------Ideal--------------------------------------- 2650 Node *StoreCMNode::Ideal(PhaseGVN *phase, bool can_reshape){ 2651 Node* progress = StoreNode::Ideal(phase, can_reshape); 2652 if (progress != NULL) return progress; 2653 2654 Node* my_store = in(MemNode::OopStore); 2655 if (my_store->is_MergeMem()) { 2656 Node* mem = my_store->as_MergeMem()->memory_at(oop_alias_idx()); 2657 set_req(MemNode::OopStore, mem); 2658 return this; 2659 } 2660 2661 return NULL; 2662 } 2663 2664 //------------------------------Value----------------------------------------- 2665 const Type* StoreCMNode::Value(PhaseGVN* phase) const { 2666 // Either input is TOP ==> the result is TOP 2667 const Type *t = phase->type( in(MemNode::Memory) ); 2668 if( t == Type::TOP ) return Type::TOP; 2669 t = phase->type( in(MemNode::Address) ); 2670 if( t == Type::TOP ) return Type::TOP; 2671 t = phase->type( in(MemNode::ValueIn) ); 2672 if( t == Type::TOP ) return Type::TOP; 2673 // If extra input is TOP ==> the result is TOP 2674 t = phase->type( in(MemNode::OopStore) ); 2675 if( t == Type::TOP ) return Type::TOP; 2676 2677 return StoreNode::Value( phase ); 2678 } 2679 2680 2681 //============================================================================= 2682 //----------------------------------SCMemProjNode------------------------------ 2683 const Type* SCMemProjNode::Value(PhaseGVN* phase) const 2684 { 2685 return bottom_type(); 2686 } 2687 2688 //============================================================================= 2689 //----------------------------------LoadStoreNode------------------------------ 2690 LoadStoreNode::LoadStoreNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at, const Type* rt, uint required ) 2691 : Node(required), 2692 _type(rt), 2693 _adr_type(at) 2694 { 2695 init_req(MemNode::Control, c ); 2696 init_req(MemNode::Memory , mem); 2697 init_req(MemNode::Address, adr); 2698 init_req(MemNode::ValueIn, val); 2699 init_class_id(Class_LoadStore); 2700 } 2701 2702 uint LoadStoreNode::ideal_reg() const { 2703 return _type->ideal_reg(); 2704 } 2705 2706 bool LoadStoreNode::result_not_used() const { 2707 for( DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++ ) { 2708 Node *x = fast_out(i); 2709 if (x->Opcode() == Op_SCMemProj) continue; 2710 return false; 2711 } 2712 return true; 2713 } 2714 2715 uint LoadStoreNode::size_of() const { return sizeof(*this); } 2716 2717 //============================================================================= 2718 //----------------------------------LoadStoreConditionalNode-------------------- 2719 LoadStoreConditionalNode::LoadStoreConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex ) : LoadStoreNode(c, mem, adr, val, NULL, TypeInt::BOOL, 5) { 2720 init_req(ExpectedIn, ex ); 2721 } 2722 2723 //============================================================================= 2724 //-------------------------------adr_type-------------------------------------- 2725 const TypePtr* ClearArrayNode::adr_type() const { 2726 Node *adr = in(3); 2727 if (adr == NULL) return NULL; // node is dead 2728 return MemNode::calculate_adr_type(adr->bottom_type()); 2729 } 2730 2731 //------------------------------match_edge------------------------------------- 2732 // Do we Match on this edge index or not? Do not match memory 2733 uint ClearArrayNode::match_edge(uint idx) const { 2734 return idx > 1; 2735 } 2736 2737 //------------------------------Identity--------------------------------------- 2738 // Clearing a zero length array does nothing 2739 Node* ClearArrayNode::Identity(PhaseGVN* phase) { 2740 return phase->type(in(2))->higher_equal(TypeX::ZERO) ? in(1) : this; 2741 } 2742 2743 //------------------------------Idealize--------------------------------------- 2744 // Clearing a short array is faster with stores 2745 Node *ClearArrayNode::Ideal(PhaseGVN *phase, bool can_reshape){ 2746 const int unit = BytesPerLong; 2747 const TypeX* t = phase->type(in(2))->isa_intptr_t(); 2748 if (!t) return NULL; 2749 if (!t->is_con()) return NULL; 2750 intptr_t raw_count = t->get_con(); 2751 intptr_t size = raw_count; 2752 if (!Matcher::init_array_count_is_in_bytes) size *= unit; 2753 // Clearing nothing uses the Identity call. 2754 // Negative clears are possible on dead ClearArrays 2755 // (see jck test stmt114.stmt11402.val). 2756 if (size <= 0 || size % unit != 0) return NULL; 2757 intptr_t count = size / unit; 2758 // Length too long; use fast hardware clear 2759 if (size > Matcher::init_array_short_size) return NULL; 2760 Node *mem = in(1); 2761 if( phase->type(mem)==Type::TOP ) return NULL; 2762 Node *adr = in(3); 2763 const Type* at = phase->type(adr); 2764 if( at==Type::TOP ) return NULL; 2765 const TypePtr* atp = at->isa_ptr(); 2766 // adjust atp to be the correct array element address type 2767 if (atp == NULL) atp = TypePtr::BOTTOM; 2768 else atp = atp->add_offset(Type::OffsetBot); 2769 // Get base for derived pointer purposes 2770 if( adr->Opcode() != Op_AddP ) Unimplemented(); 2771 Node *base = adr->in(1); 2772 2773 Node *zero = phase->makecon(TypeLong::ZERO); 2774 Node *off = phase->MakeConX(BytesPerLong); 2775 mem = new StoreLNode(in(0),mem,adr,atp,zero,MemNode::unordered,false); 2776 count--; 2777 while( count-- ) { 2778 mem = phase->transform(mem); 2779 adr = phase->transform(new AddPNode(base,adr,off)); 2780 mem = new StoreLNode(in(0),mem,adr,atp,zero,MemNode::unordered,false); 2781 } 2782 return mem; 2783 } 2784 2785 //----------------------------step_through---------------------------------- 2786 // Return allocation input memory edge if it is different instance 2787 // or itself if it is the one we are looking for. 2788 bool ClearArrayNode::step_through(Node** np, uint instance_id, PhaseTransform* phase) { 2789 Node* n = *np; 2790 assert(n->is_ClearArray(), "sanity"); 2791 intptr_t offset; 2792 AllocateNode* alloc = AllocateNode::Ideal_allocation(n->in(3), phase, offset); 2793 // This method is called only before Allocate nodes are expanded 2794 // during macro nodes expansion. Before that ClearArray nodes are 2795 // only generated in PhaseMacroExpand::generate_arraycopy() (before 2796 // Allocate nodes are expanded) which follows allocations. 2797 assert(alloc != NULL, "should have allocation"); 2798 if (alloc->_idx == instance_id) { 2799 // Can not bypass initialization of the instance we are looking for. 2800 return false; 2801 } 2802 // Otherwise skip it. 2803 InitializeNode* init = alloc->initialization(); 2804 if (init != NULL) 2805 *np = init->in(TypeFunc::Memory); 2806 else 2807 *np = alloc->in(TypeFunc::Memory); 2808 return true; 2809 } 2810 2811 //----------------------------clear_memory------------------------------------- 2812 // Generate code to initialize object storage to zero. 2813 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest, 2814 intptr_t start_offset, 2815 Node* end_offset, 2816 PhaseGVN* phase) { 2817 intptr_t offset = start_offset; 2818 2819 int unit = BytesPerLong; 2820 if ((offset % unit) != 0) { 2821 Node* adr = new AddPNode(dest, dest, phase->MakeConX(offset)); 2822 adr = phase->transform(adr); 2823 const TypePtr* atp = TypeRawPtr::BOTTOM; 2824 mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT, MemNode::unordered); 2825 mem = phase->transform(mem); 2826 offset += BytesPerInt; 2827 } 2828 assert((offset % unit) == 0, ""); 2829 2830 // Initialize the remaining stuff, if any, with a ClearArray. 2831 return clear_memory(ctl, mem, dest, phase->MakeConX(offset), end_offset, phase); 2832 } 2833 2834 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest, 2835 Node* start_offset, 2836 Node* end_offset, 2837 PhaseGVN* phase) { 2838 if (start_offset == end_offset) { 2839 // nothing to do 2840 return mem; 2841 } 2842 2843 int unit = BytesPerLong; 2844 Node* zbase = start_offset; 2845 Node* zend = end_offset; 2846 2847 // Scale to the unit required by the CPU: 2848 if (!Matcher::init_array_count_is_in_bytes) { 2849 Node* shift = phase->intcon(exact_log2(unit)); 2850 zbase = phase->transform(new URShiftXNode(zbase, shift) ); 2851 zend = phase->transform(new URShiftXNode(zend, shift) ); 2852 } 2853 2854 // Bulk clear double-words 2855 Node* zsize = phase->transform(new SubXNode(zend, zbase) ); 2856 Node* adr = phase->transform(new AddPNode(dest, dest, start_offset) ); 2857 mem = new ClearArrayNode(ctl, mem, zsize, adr); 2858 return phase->transform(mem); 2859 } 2860 2861 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest, 2862 intptr_t start_offset, 2863 intptr_t end_offset, 2864 PhaseGVN* phase) { 2865 if (start_offset == end_offset) { 2866 // nothing to do 2867 return mem; 2868 } 2869 2870 assert((end_offset % BytesPerInt) == 0, "odd end offset"); 2871 intptr_t done_offset = end_offset; 2872 if ((done_offset % BytesPerLong) != 0) { 2873 done_offset -= BytesPerInt; 2874 } 2875 if (done_offset > start_offset) { 2876 mem = clear_memory(ctl, mem, dest, 2877 start_offset, phase->MakeConX(done_offset), phase); 2878 } 2879 if (done_offset < end_offset) { // emit the final 32-bit store 2880 Node* adr = new AddPNode(dest, dest, phase->MakeConX(done_offset)); 2881 adr = phase->transform(adr); 2882 const TypePtr* atp = TypeRawPtr::BOTTOM; 2883 mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT, MemNode::unordered); 2884 mem = phase->transform(mem); 2885 done_offset += BytesPerInt; 2886 } 2887 assert(done_offset == end_offset, ""); 2888 return mem; 2889 } 2890 2891 //============================================================================= 2892 MemBarNode::MemBarNode(Compile* C, int alias_idx, Node* precedent) 2893 : MultiNode(TypeFunc::Parms + (precedent == NULL? 0: 1)), 2894 _adr_type(C->get_adr_type(alias_idx)) 2895 { 2896 init_class_id(Class_MemBar); 2897 Node* top = C->top(); 2898 init_req(TypeFunc::I_O,top); 2899 init_req(TypeFunc::FramePtr,top); 2900 init_req(TypeFunc::ReturnAdr,top); 2901 if (precedent != NULL) 2902 init_req(TypeFunc::Parms, precedent); 2903 } 2904 2905 //------------------------------cmp-------------------------------------------- 2906 uint MemBarNode::hash() const { return NO_HASH; } 2907 uint MemBarNode::cmp( const Node &n ) const { 2908 return (&n == this); // Always fail except on self 2909 } 2910 2911 //------------------------------make------------------------------------------- 2912 MemBarNode* MemBarNode::make(Compile* C, int opcode, int atp, Node* pn) { 2913 switch (opcode) { 2914 case Op_MemBarAcquire: return new MemBarAcquireNode(C, atp, pn); 2915 case Op_LoadFence: return new LoadFenceNode(C, atp, pn); 2916 case Op_MemBarRelease: return new MemBarReleaseNode(C, atp, pn); 2917 case Op_StoreFence: return new StoreFenceNode(C, atp, pn); 2918 case Op_MemBarAcquireLock: return new MemBarAcquireLockNode(C, atp, pn); 2919 case Op_MemBarReleaseLock: return new MemBarReleaseLockNode(C, atp, pn); 2920 case Op_MemBarVolatile: return new MemBarVolatileNode(C, atp, pn); 2921 case Op_MemBarCPUOrder: return new MemBarCPUOrderNode(C, atp, pn); 2922 case Op_Initialize: return new InitializeNode(C, atp, pn); 2923 case Op_MemBarStoreStore: return new MemBarStoreStoreNode(C, atp, pn); 2924 default: ShouldNotReachHere(); return NULL; 2925 } 2926 } 2927 2928 //------------------------------Ideal------------------------------------------ 2929 // Return a node which is more "ideal" than the current node. Strip out 2930 // control copies 2931 Node *MemBarNode::Ideal(PhaseGVN *phase, bool can_reshape) { 2932 if (remove_dead_region(phase, can_reshape)) return this; 2933 // Don't bother trying to transform a dead node 2934 if (in(0) && in(0)->is_top()) { 2935 return NULL; 2936 } 2937 2938 bool progress = false; 2939 // Eliminate volatile MemBars for scalar replaced objects. 2940 if (can_reshape && req() == (Precedent+1)) { 2941 bool eliminate = false; 2942 int opc = Opcode(); 2943 if ((opc == Op_MemBarAcquire || opc == Op_MemBarVolatile)) { 2944 // Volatile field loads and stores. 2945 Node* my_mem = in(MemBarNode::Precedent); 2946 // The MembarAquire may keep an unused LoadNode alive through the Precedent edge 2947 if ((my_mem != NULL) && (opc == Op_MemBarAcquire) && (my_mem->outcnt() == 1)) { 2948 // if the Precedent is a decodeN and its input (a Load) is used at more than one place, 2949 // replace this Precedent (decodeN) with the Load instead. 2950 if ((my_mem->Opcode() == Op_DecodeN) && (my_mem->in(1)->outcnt() > 1)) { 2951 Node* load_node = my_mem->in(1); 2952 set_req(MemBarNode::Precedent, load_node); 2953 phase->is_IterGVN()->_worklist.push(my_mem); 2954 my_mem = load_node; 2955 } else { 2956 assert(my_mem->unique_out() == this, "sanity"); 2957 del_req(Precedent); 2958 phase->is_IterGVN()->_worklist.push(my_mem); // remove dead node later 2959 my_mem = NULL; 2960 } 2961 progress = true; 2962 } 2963 if (my_mem != NULL && my_mem->is_Mem()) { 2964 const TypeOopPtr* t_oop = my_mem->in(MemNode::Address)->bottom_type()->isa_oopptr(); 2965 // Check for scalar replaced object reference. 2966 if( t_oop != NULL && t_oop->is_known_instance_field() && 2967 t_oop->offset() != Type::OffsetBot && 2968 t_oop->offset() != Type::OffsetTop) { 2969 eliminate = true; 2970 } 2971 } 2972 } else if (opc == Op_MemBarRelease) { 2973 // Final field stores. 2974 Node* alloc = AllocateNode::Ideal_allocation(in(MemBarNode::Precedent), phase); 2975 if ((alloc != NULL) && alloc->is_Allocate() && 2976 alloc->as_Allocate()->does_not_escape_thread()) { 2977 // The allocated object does not escape. 2978 eliminate = true; 2979 } 2980 } 2981 if (eliminate) { 2982 // Replace MemBar projections by its inputs. 2983 PhaseIterGVN* igvn = phase->is_IterGVN(); 2984 igvn->replace_node(proj_out(TypeFunc::Memory), in(TypeFunc::Memory)); 2985 igvn->replace_node(proj_out(TypeFunc::Control), in(TypeFunc::Control)); 2986 // Must return either the original node (now dead) or a new node 2987 // (Do not return a top here, since that would break the uniqueness of top.) 2988 return new ConINode(TypeInt::ZERO); 2989 } 2990 } 2991 return progress ? this : NULL; 2992 } 2993 2994 //------------------------------Value------------------------------------------ 2995 const Type* MemBarNode::Value(PhaseGVN* phase) const { 2996 if( !in(0) ) return Type::TOP; 2997 if( phase->type(in(0)) == Type::TOP ) 2998 return Type::TOP; 2999 return TypeTuple::MEMBAR; 3000 } 3001 3002 //------------------------------match------------------------------------------ 3003 // Construct projections for memory. 3004 Node *MemBarNode::match( const ProjNode *proj, const Matcher *m ) { 3005 switch (proj->_con) { 3006 case TypeFunc::Control: 3007 case TypeFunc::Memory: 3008 return new MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj); 3009 } 3010 ShouldNotReachHere(); 3011 return NULL; 3012 } 3013 3014 //===========================InitializeNode==================================== 3015 // SUMMARY: 3016 // This node acts as a memory barrier on raw memory, after some raw stores. 3017 // The 'cooked' oop value feeds from the Initialize, not the Allocation. 3018 // The Initialize can 'capture' suitably constrained stores as raw inits. 3019 // It can coalesce related raw stores into larger units (called 'tiles'). 3020 // It can avoid zeroing new storage for memory units which have raw inits. 3021 // At macro-expansion, it is marked 'complete', and does not optimize further. 3022 // 3023 // EXAMPLE: 3024 // The object 'new short[2]' occupies 16 bytes in a 32-bit machine. 3025 // ctl = incoming control; mem* = incoming memory 3026 // (Note: A star * on a memory edge denotes I/O and other standard edges.) 3027 // First allocate uninitialized memory and fill in the header: 3028 // alloc = (Allocate ctl mem* 16 #short[].klass ...) 3029 // ctl := alloc.Control; mem* := alloc.Memory* 3030 // rawmem = alloc.Memory; rawoop = alloc.RawAddress 3031 // Then initialize to zero the non-header parts of the raw memory block: 3032 // init = (Initialize alloc.Control alloc.Memory* alloc.RawAddress) 3033 // ctl := init.Control; mem.SLICE(#short[*]) := init.Memory 3034 // After the initialize node executes, the object is ready for service: 3035 // oop := (CheckCastPP init.Control alloc.RawAddress #short[]) 3036 // Suppose its body is immediately initialized as {1,2}: 3037 // store1 = (StoreC init.Control init.Memory (+ oop 12) 1) 3038 // store2 = (StoreC init.Control store1 (+ oop 14) 2) 3039 // mem.SLICE(#short[*]) := store2 3040 // 3041 // DETAILS: 3042 // An InitializeNode collects and isolates object initialization after 3043 // an AllocateNode and before the next possible safepoint. As a 3044 // memory barrier (MemBarNode), it keeps critical stores from drifting 3045 // down past any safepoint or any publication of the allocation. 3046 // Before this barrier, a newly-allocated object may have uninitialized bits. 3047 // After this barrier, it may be treated as a real oop, and GC is allowed. 3048 // 3049 // The semantics of the InitializeNode include an implicit zeroing of 3050 // the new object from object header to the end of the object. 3051 // (The object header and end are determined by the AllocateNode.) 3052 // 3053 // Certain stores may be added as direct inputs to the InitializeNode. 3054 // These stores must update raw memory, and they must be to addresses 3055 // derived from the raw address produced by AllocateNode, and with 3056 // a constant offset. They must be ordered by increasing offset. 3057 // The first one is at in(RawStores), the last at in(req()-1). 3058 // Unlike most memory operations, they are not linked in a chain, 3059 // but are displayed in parallel as users of the rawmem output of 3060 // the allocation. 3061 // 3062 // (See comments in InitializeNode::capture_store, which continue 3063 // the example given above.) 3064 // 3065 // When the associated Allocate is macro-expanded, the InitializeNode 3066 // may be rewritten to optimize collected stores. A ClearArrayNode 3067 // may also be created at that point to represent any required zeroing. 3068 // The InitializeNode is then marked 'complete', prohibiting further 3069 // capturing of nearby memory operations. 3070 // 3071 // During macro-expansion, all captured initializations which store 3072 // constant values of 32 bits or smaller are coalesced (if advantageous) 3073 // into larger 'tiles' 32 or 64 bits. This allows an object to be 3074 // initialized in fewer memory operations. Memory words which are 3075 // covered by neither tiles nor non-constant stores are pre-zeroed 3076 // by explicit stores of zero. (The code shape happens to do all 3077 // zeroing first, then all other stores, with both sequences occurring 3078 // in order of ascending offsets.) 3079 // 3080 // Alternatively, code may be inserted between an AllocateNode and its 3081 // InitializeNode, to perform arbitrary initialization of the new object. 3082 // E.g., the object copying intrinsics insert complex data transfers here. 3083 // The initialization must then be marked as 'complete' disable the 3084 // built-in zeroing semantics and the collection of initializing stores. 3085 // 3086 // While an InitializeNode is incomplete, reads from the memory state 3087 // produced by it are optimizable if they match the control edge and 3088 // new oop address associated with the allocation/initialization. 3089 // They return a stored value (if the offset matches) or else zero. 3090 // A write to the memory state, if it matches control and address, 3091 // and if it is to a constant offset, may be 'captured' by the 3092 // InitializeNode. It is cloned as a raw memory operation and rewired 3093 // inside the initialization, to the raw oop produced by the allocation. 3094 // Operations on addresses which are provably distinct (e.g., to 3095 // other AllocateNodes) are allowed to bypass the initialization. 3096 // 3097 // The effect of all this is to consolidate object initialization 3098 // (both arrays and non-arrays, both piecewise and bulk) into a 3099 // single location, where it can be optimized as a unit. 3100 // 3101 // Only stores with an offset less than TrackedInitializationLimit words 3102 // will be considered for capture by an InitializeNode. This puts a 3103 // reasonable limit on the complexity of optimized initializations. 3104 3105 //---------------------------InitializeNode------------------------------------ 3106 InitializeNode::InitializeNode(Compile* C, int adr_type, Node* rawoop) 3107 : _is_complete(Incomplete), _does_not_escape(false), 3108 MemBarNode(C, adr_type, rawoop) 3109 { 3110 init_class_id(Class_Initialize); 3111 3112 assert(adr_type == Compile::AliasIdxRaw, "only valid atp"); 3113 assert(in(RawAddress) == rawoop, "proper init"); 3114 // Note: allocation() can be NULL, for secondary initialization barriers 3115 } 3116 3117 // Since this node is not matched, it will be processed by the 3118 // register allocator. Declare that there are no constraints 3119 // on the allocation of the RawAddress edge. 3120 const RegMask &InitializeNode::in_RegMask(uint idx) const { 3121 // This edge should be set to top, by the set_complete. But be conservative. 3122 if (idx == InitializeNode::RawAddress) 3123 return *(Compile::current()->matcher()->idealreg2spillmask[in(idx)->ideal_reg()]); 3124 return RegMask::Empty; 3125 } 3126 3127 Node* InitializeNode::memory(uint alias_idx) { 3128 Node* mem = in(Memory); 3129 if (mem->is_MergeMem()) { 3130 return mem->as_MergeMem()->memory_at(alias_idx); 3131 } else { 3132 // incoming raw memory is not split 3133 return mem; 3134 } 3135 } 3136 3137 bool InitializeNode::is_non_zero() { 3138 if (is_complete()) return false; 3139 remove_extra_zeroes(); 3140 return (req() > RawStores); 3141 } 3142 3143 void InitializeNode::set_complete(PhaseGVN* phase) { 3144 assert(!is_complete(), "caller responsibility"); 3145 _is_complete = Complete; 3146 3147 // After this node is complete, it contains a bunch of 3148 // raw-memory initializations. There is no need for 3149 // it to have anything to do with non-raw memory effects. 3150 // Therefore, tell all non-raw users to re-optimize themselves, 3151 // after skipping the memory effects of this initialization. 3152 PhaseIterGVN* igvn = phase->is_IterGVN(); 3153 if (igvn) igvn->add_users_to_worklist(this); 3154 } 3155 3156 // convenience function 3157 // return false if the init contains any stores already 3158 bool AllocateNode::maybe_set_complete(PhaseGVN* phase) { 3159 InitializeNode* init = initialization(); 3160 if (init == NULL || init->is_complete()) return false; 3161 init->remove_extra_zeroes(); 3162 // for now, if this allocation has already collected any inits, bail: 3163 if (init->is_non_zero()) return false; 3164 init->set_complete(phase); 3165 return true; 3166 } 3167 3168 void InitializeNode::remove_extra_zeroes() { 3169 if (req() == RawStores) return; 3170 Node* zmem = zero_memory(); 3171 uint fill = RawStores; 3172 for (uint i = fill; i < req(); i++) { 3173 Node* n = in(i); 3174 if (n->is_top() || n == zmem) continue; // skip 3175 if (fill < i) set_req(fill, n); // compact 3176 ++fill; 3177 } 3178 // delete any empty spaces created: 3179 while (fill < req()) { 3180 del_req(fill); 3181 } 3182 } 3183 3184 // Helper for remembering which stores go with which offsets. 3185 intptr_t InitializeNode::get_store_offset(Node* st, PhaseTransform* phase) { 3186 if (!st->is_Store()) return -1; // can happen to dead code via subsume_node 3187 intptr_t offset = -1; 3188 Node* base = AddPNode::Ideal_base_and_offset(st->in(MemNode::Address), 3189 phase, offset); 3190 if (base == NULL) return -1; // something is dead, 3191 if (offset < 0) return -1; // dead, dead 3192 return offset; 3193 } 3194 3195 // Helper for proving that an initialization expression is 3196 // "simple enough" to be folded into an object initialization. 3197 // Attempts to prove that a store's initial value 'n' can be captured 3198 // within the initialization without creating a vicious cycle, such as: 3199 // { Foo p = new Foo(); p.next = p; } 3200 // True for constants and parameters and small combinations thereof. 3201 bool InitializeNode::detect_init_independence(Node* n, int& count) { 3202 if (n == NULL) return true; // (can this really happen?) 3203 if (n->is_Proj()) n = n->in(0); 3204 if (n == this) return false; // found a cycle 3205 if (n->is_Con()) return true; 3206 if (n->is_Start()) return true; // params, etc., are OK 3207 if (n->is_Root()) return true; // even better 3208 3209 Node* ctl = n->in(0); 3210 if (ctl != NULL && !ctl->is_top()) { 3211 if (ctl->is_Proj()) ctl = ctl->in(0); 3212 if (ctl == this) return false; 3213 3214 // If we already know that the enclosing memory op is pinned right after 3215 // the init, then any control flow that the store has picked up 3216 // must have preceded the init, or else be equal to the init. 3217 // Even after loop optimizations (which might change control edges) 3218 // a store is never pinned *before* the availability of its inputs. 3219 if (!MemNode::all_controls_dominate(n, this)) 3220 return false; // failed to prove a good control 3221 } 3222 3223 // Check data edges for possible dependencies on 'this'. 3224 if ((count += 1) > 20) return false; // complexity limit 3225 for (uint i = 1; i < n->req(); i++) { 3226 Node* m = n->in(i); 3227 if (m == NULL || m == n || m->is_top()) continue; 3228 uint first_i = n->find_edge(m); 3229 if (i != first_i) continue; // process duplicate edge just once 3230 if (!detect_init_independence(m, count)) { 3231 return false; 3232 } 3233 } 3234 3235 return true; 3236 } 3237 3238 // Here are all the checks a Store must pass before it can be moved into 3239 // an initialization. Returns zero if a check fails. 3240 // On success, returns the (constant) offset to which the store applies, 3241 // within the initialized memory. 3242 intptr_t InitializeNode::can_capture_store(StoreNode* st, PhaseTransform* phase, bool can_reshape) { 3243 const int FAIL = 0; 3244 if (st->is_unaligned_access()) { 3245 return FAIL; 3246 } 3247 if (st->req() != MemNode::ValueIn + 1) 3248 return FAIL; // an inscrutable StoreNode (card mark?) 3249 Node* ctl = st->in(MemNode::Control); 3250 if (!(ctl != NULL && ctl->is_Proj() && ctl->in(0) == this)) 3251 return FAIL; // must be unconditional after the initialization 3252 Node* mem = st->in(MemNode::Memory); 3253 if (!(mem->is_Proj() && mem->in(0) == this)) 3254 return FAIL; // must not be preceded by other stores 3255 Node* adr = st->in(MemNode::Address); 3256 intptr_t offset; 3257 AllocateNode* alloc = AllocateNode::Ideal_allocation(adr, phase, offset); 3258 if (alloc == NULL) 3259 return FAIL; // inscrutable address 3260 if (alloc != allocation()) 3261 return FAIL; // wrong allocation! (store needs to float up) 3262 Node* val = st->in(MemNode::ValueIn); 3263 int complexity_count = 0; 3264 if (!detect_init_independence(val, complexity_count)) 3265 return FAIL; // stored value must be 'simple enough' 3266 3267 // The Store can be captured only if nothing after the allocation 3268 // and before the Store is using the memory location that the store 3269 // overwrites. 3270 bool failed = false; 3271 // If is_complete_with_arraycopy() is true the shape of the graph is 3272 // well defined and is safe so no need for extra checks. 3273 if (!is_complete_with_arraycopy()) { 3274 // We are going to look at each use of the memory state following 3275 // the allocation to make sure nothing reads the memory that the 3276 // Store writes. 3277 const TypePtr* t_adr = phase->type(adr)->isa_ptr(); 3278 int alias_idx = phase->C->get_alias_index(t_adr); 3279 ResourceMark rm; 3280 Unique_Node_List mems; 3281 mems.push(mem); 3282 Node* unique_merge = NULL; 3283 for (uint next = 0; next < mems.size(); ++next) { 3284 Node *m = mems.at(next); 3285 for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) { 3286 Node *n = m->fast_out(j); 3287 if (n->outcnt() == 0) { 3288 continue; 3289 } 3290 if (n == st) { 3291 continue; 3292 } else if (n->in(0) != NULL && n->in(0) != ctl) { 3293 // If the control of this use is different from the control 3294 // of the Store which is right after the InitializeNode then 3295 // this node cannot be between the InitializeNode and the 3296 // Store. 3297 continue; 3298 } else if (n->is_MergeMem()) { 3299 if (n->as_MergeMem()->memory_at(alias_idx) == m) { 3300 // We can hit a MergeMemNode (that will likely go away 3301 // later) that is a direct use of the memory state 3302 // following the InitializeNode on the same slice as the 3303 // store node that we'd like to capture. We need to check 3304 // the uses of the MergeMemNode. 3305 mems.push(n); 3306 } 3307 } else if (n->is_Mem()) { 3308 Node* other_adr = n->in(MemNode::Address); 3309 if (other_adr == adr) { 3310 failed = true; 3311 break; 3312 } else { 3313 const TypePtr* other_t_adr = phase->type(other_adr)->isa_ptr(); 3314 if (other_t_adr != NULL) { 3315 int other_alias_idx = phase->C->get_alias_index(other_t_adr); 3316 if (other_alias_idx == alias_idx) { 3317 // A load from the same memory slice as the store right 3318 // after the InitializeNode. We check the control of the 3319 // object/array that is loaded from. If it's the same as 3320 // the store control then we cannot capture the store. 3321 assert(!n->is_Store(), "2 stores to same slice on same control?"); 3322 Node* base = other_adr; 3323 assert(base->is_AddP(), "should be addp but is %s", base->Name()); 3324 base = base->in(AddPNode::Base); 3325 if (base != NULL) { 3326 base = base->uncast(); 3327 if (base->is_Proj() && base->in(0) == alloc) { 3328 failed = true; 3329 break; 3330 } 3331 } 3332 } 3333 } 3334 } 3335 } else { 3336 failed = true; 3337 break; 3338 } 3339 } 3340 } 3341 } 3342 if (failed) { 3343 if (!can_reshape) { 3344 // We decided we couldn't capture the store during parsing. We 3345 // should try again during the next IGVN once the graph is 3346 // cleaner. 3347 phase->C->record_for_igvn(st); 3348 } 3349 return FAIL; 3350 } 3351 3352 return offset; // success 3353 } 3354 3355 // Find the captured store in(i) which corresponds to the range 3356 // [start..start+size) in the initialized object. 3357 // If there is one, return its index i. If there isn't, return the 3358 // negative of the index where it should be inserted. 3359 // Return 0 if the queried range overlaps an initialization boundary 3360 // or if dead code is encountered. 3361 // If size_in_bytes is zero, do not bother with overlap checks. 3362 int InitializeNode::captured_store_insertion_point(intptr_t start, 3363 int size_in_bytes, 3364 PhaseTransform* phase) { 3365 const int FAIL = 0, MAX_STORE = BytesPerLong; 3366 3367 if (is_complete()) 3368 return FAIL; // arraycopy got here first; punt 3369 3370 assert(allocation() != NULL, "must be present"); 3371 3372 // no negatives, no header fields: 3373 if (start < (intptr_t) allocation()->minimum_header_size()) return FAIL; 3374 3375 // after a certain size, we bail out on tracking all the stores: 3376 intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize); 3377 if (start >= ti_limit) return FAIL; 3378 3379 for (uint i = InitializeNode::RawStores, limit = req(); ; ) { 3380 if (i >= limit) return -(int)i; // not found; here is where to put it 3381 3382 Node* st = in(i); 3383 intptr_t st_off = get_store_offset(st, phase); 3384 if (st_off < 0) { 3385 if (st != zero_memory()) { 3386 return FAIL; // bail out if there is dead garbage 3387 } 3388 } else if (st_off > start) { 3389 // ...we are done, since stores are ordered 3390 if (st_off < start + size_in_bytes) { 3391 return FAIL; // the next store overlaps 3392 } 3393 return -(int)i; // not found; here is where to put it 3394 } else if (st_off < start) { 3395 if (size_in_bytes != 0 && 3396 start < st_off + MAX_STORE && 3397 start < st_off + st->as_Store()->memory_size()) { 3398 return FAIL; // the previous store overlaps 3399 } 3400 } else { 3401 if (size_in_bytes != 0 && 3402 st->as_Store()->memory_size() != size_in_bytes) { 3403 return FAIL; // mismatched store size 3404 } 3405 return i; 3406 } 3407 3408 ++i; 3409 } 3410 } 3411 3412 // Look for a captured store which initializes at the offset 'start' 3413 // with the given size. If there is no such store, and no other 3414 // initialization interferes, then return zero_memory (the memory 3415 // projection of the AllocateNode). 3416 Node* InitializeNode::find_captured_store(intptr_t start, int size_in_bytes, 3417 PhaseTransform* phase) { 3418 assert(stores_are_sane(phase), ""); 3419 int i = captured_store_insertion_point(start, size_in_bytes, phase); 3420 if (i == 0) { 3421 return NULL; // something is dead 3422 } else if (i < 0) { 3423 return zero_memory(); // just primordial zero bits here 3424 } else { 3425 Node* st = in(i); // here is the store at this position 3426 assert(get_store_offset(st->as_Store(), phase) == start, "sanity"); 3427 return st; 3428 } 3429 } 3430 3431 // Create, as a raw pointer, an address within my new object at 'offset'. 3432 Node* InitializeNode::make_raw_address(intptr_t offset, 3433 PhaseTransform* phase) { 3434 Node* addr = in(RawAddress); 3435 if (offset != 0) { 3436 Compile* C = phase->C; 3437 addr = phase->transform( new AddPNode(C->top(), addr, 3438 phase->MakeConX(offset)) ); 3439 } 3440 return addr; 3441 } 3442 3443 // Clone the given store, converting it into a raw store 3444 // initializing a field or element of my new object. 3445 // Caller is responsible for retiring the original store, 3446 // with subsume_node or the like. 3447 // 3448 // From the example above InitializeNode::InitializeNode, 3449 // here are the old stores to be captured: 3450 // store1 = (StoreC init.Control init.Memory (+ oop 12) 1) 3451 // store2 = (StoreC init.Control store1 (+ oop 14) 2) 3452 // 3453 // Here is the changed code; note the extra edges on init: 3454 // alloc = (Allocate ...) 3455 // rawoop = alloc.RawAddress 3456 // rawstore1 = (StoreC alloc.Control alloc.Memory (+ rawoop 12) 1) 3457 // rawstore2 = (StoreC alloc.Control alloc.Memory (+ rawoop 14) 2) 3458 // init = (Initialize alloc.Control alloc.Memory rawoop 3459 // rawstore1 rawstore2) 3460 // 3461 Node* InitializeNode::capture_store(StoreNode* st, intptr_t start, 3462 PhaseTransform* phase, bool can_reshape) { 3463 assert(stores_are_sane(phase), ""); 3464 3465 if (start < 0) return NULL; 3466 assert(can_capture_store(st, phase, can_reshape) == start, "sanity"); 3467 3468 Compile* C = phase->C; 3469 int size_in_bytes = st->memory_size(); 3470 int i = captured_store_insertion_point(start, size_in_bytes, phase); 3471 if (i == 0) return NULL; // bail out 3472 Node* prev_mem = NULL; // raw memory for the captured store 3473 if (i > 0) { 3474 prev_mem = in(i); // there is a pre-existing store under this one 3475 set_req(i, C->top()); // temporarily disconnect it 3476 // See StoreNode::Ideal 'st->outcnt() == 1' for the reason to disconnect. 3477 } else { 3478 i = -i; // no pre-existing store 3479 prev_mem = zero_memory(); // a slice of the newly allocated object 3480 if (i > InitializeNode::RawStores && in(i-1) == prev_mem) 3481 set_req(--i, C->top()); // reuse this edge; it has been folded away 3482 else 3483 ins_req(i, C->top()); // build a new edge 3484 } 3485 Node* new_st = st->clone(); 3486 new_st->set_req(MemNode::Control, in(Control)); 3487 new_st->set_req(MemNode::Memory, prev_mem); 3488 new_st->set_req(MemNode::Address, make_raw_address(start, phase)); 3489 new_st = phase->transform(new_st); 3490 3491 // At this point, new_st might have swallowed a pre-existing store 3492 // at the same offset, or perhaps new_st might have disappeared, 3493 // if it redundantly stored the same value (or zero to fresh memory). 3494 3495 // In any case, wire it in: 3496 phase->igvn_rehash_node_delayed(this); 3497 set_req(i, new_st); 3498 3499 // The caller may now kill the old guy. 3500 DEBUG_ONLY(Node* check_st = find_captured_store(start, size_in_bytes, phase)); 3501 assert(check_st == new_st || check_st == NULL, "must be findable"); 3502 assert(!is_complete(), ""); 3503 return new_st; 3504 } 3505 3506 static bool store_constant(jlong* tiles, int num_tiles, 3507 intptr_t st_off, int st_size, 3508 jlong con) { 3509 if ((st_off & (st_size-1)) != 0) 3510 return false; // strange store offset (assume size==2**N) 3511 address addr = (address)tiles + st_off; 3512 assert(st_off >= 0 && addr+st_size <= (address)&tiles[num_tiles], "oob"); 3513 switch (st_size) { 3514 case sizeof(jbyte): *(jbyte*) addr = (jbyte) con; break; 3515 case sizeof(jchar): *(jchar*) addr = (jchar) con; break; 3516 case sizeof(jint): *(jint*) addr = (jint) con; break; 3517 case sizeof(jlong): *(jlong*) addr = (jlong) con; break; 3518 default: return false; // strange store size (detect size!=2**N here) 3519 } 3520 return true; // return success to caller 3521 } 3522 3523 // Coalesce subword constants into int constants and possibly 3524 // into long constants. The goal, if the CPU permits, 3525 // is to initialize the object with a small number of 64-bit tiles. 3526 // Also, convert floating-point constants to bit patterns. 3527 // Non-constants are not relevant to this pass. 3528 // 3529 // In terms of the running example on InitializeNode::InitializeNode 3530 // and InitializeNode::capture_store, here is the transformation 3531 // of rawstore1 and rawstore2 into rawstore12: 3532 // alloc = (Allocate ...) 3533 // rawoop = alloc.RawAddress 3534 // tile12 = 0x00010002 3535 // rawstore12 = (StoreI alloc.Control alloc.Memory (+ rawoop 12) tile12) 3536 // init = (Initialize alloc.Control alloc.Memory rawoop rawstore12) 3537 // 3538 void 3539 InitializeNode::coalesce_subword_stores(intptr_t header_size, 3540 Node* size_in_bytes, 3541 PhaseGVN* phase) { 3542 Compile* C = phase->C; 3543 3544 assert(stores_are_sane(phase), ""); 3545 // Note: After this pass, they are not completely sane, 3546 // since there may be some overlaps. 3547 3548 int old_subword = 0, old_long = 0, new_int = 0, new_long = 0; 3549 3550 intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize); 3551 intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, ti_limit); 3552 size_limit = MIN2(size_limit, ti_limit); 3553 size_limit = align_size_up(size_limit, BytesPerLong); 3554 int num_tiles = size_limit / BytesPerLong; 3555 3556 // allocate space for the tile map: 3557 const int small_len = DEBUG_ONLY(true ? 3 :) 30; // keep stack frames small 3558 jlong tiles_buf[small_len]; 3559 Node* nodes_buf[small_len]; 3560 jlong inits_buf[small_len]; 3561 jlong* tiles = ((num_tiles <= small_len) ? &tiles_buf[0] 3562 : NEW_RESOURCE_ARRAY(jlong, num_tiles)); 3563 Node** nodes = ((num_tiles <= small_len) ? &nodes_buf[0] 3564 : NEW_RESOURCE_ARRAY(Node*, num_tiles)); 3565 jlong* inits = ((num_tiles <= small_len) ? &inits_buf[0] 3566 : NEW_RESOURCE_ARRAY(jlong, num_tiles)); 3567 // tiles: exact bitwise model of all primitive constants 3568 // nodes: last constant-storing node subsumed into the tiles model 3569 // inits: which bytes (in each tile) are touched by any initializations 3570 3571 //// Pass A: Fill in the tile model with any relevant stores. 3572 3573 Copy::zero_to_bytes(tiles, sizeof(tiles[0]) * num_tiles); 3574 Copy::zero_to_bytes(nodes, sizeof(nodes[0]) * num_tiles); 3575 Copy::zero_to_bytes(inits, sizeof(inits[0]) * num_tiles); 3576 Node* zmem = zero_memory(); // initially zero memory state 3577 for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) { 3578 Node* st = in(i); 3579 intptr_t st_off = get_store_offset(st, phase); 3580 3581 // Figure out the store's offset and constant value: 3582 if (st_off < header_size) continue; //skip (ignore header) 3583 if (st->in(MemNode::Memory) != zmem) continue; //skip (odd store chain) 3584 int st_size = st->as_Store()->memory_size(); 3585 if (st_off + st_size > size_limit) break; 3586 3587 // Record which bytes are touched, whether by constant or not. 3588 if (!store_constant(inits, num_tiles, st_off, st_size, (jlong) -1)) 3589 continue; // skip (strange store size) 3590 3591 const Type* val = phase->type(st->in(MemNode::ValueIn)); 3592 if (!val->singleton()) continue; //skip (non-con store) 3593 BasicType type = val->basic_type(); 3594 3595 jlong con = 0; 3596 switch (type) { 3597 case T_INT: con = val->is_int()->get_con(); break; 3598 case T_LONG: con = val->is_long()->get_con(); break; 3599 case T_FLOAT: con = jint_cast(val->getf()); break; 3600 case T_DOUBLE: con = jlong_cast(val->getd()); break; 3601 default: continue; //skip (odd store type) 3602 } 3603 3604 if (type == T_LONG && Matcher::isSimpleConstant64(con) && 3605 st->Opcode() == Op_StoreL) { 3606 continue; // This StoreL is already optimal. 3607 } 3608 3609 // Store down the constant. 3610 store_constant(tiles, num_tiles, st_off, st_size, con); 3611 3612 intptr_t j = st_off >> LogBytesPerLong; 3613 3614 if (type == T_INT && st_size == BytesPerInt 3615 && (st_off & BytesPerInt) == BytesPerInt) { 3616 jlong lcon = tiles[j]; 3617 if (!Matcher::isSimpleConstant64(lcon) && 3618 st->Opcode() == Op_StoreI) { 3619 // This StoreI is already optimal by itself. 3620 jint* intcon = (jint*) &tiles[j]; 3621 intcon[1] = 0; // undo the store_constant() 3622 3623 // If the previous store is also optimal by itself, back up and 3624 // undo the action of the previous loop iteration... if we can. 3625 // But if we can't, just let the previous half take care of itself. 3626 st = nodes[j]; 3627 st_off -= BytesPerInt; 3628 con = intcon[0]; 3629 if (con != 0 && st != NULL && st->Opcode() == Op_StoreI) { 3630 assert(st_off >= header_size, "still ignoring header"); 3631 assert(get_store_offset(st, phase) == st_off, "must be"); 3632 assert(in(i-1) == zmem, "must be"); 3633 DEBUG_ONLY(const Type* tcon = phase->type(st->in(MemNode::ValueIn))); 3634 assert(con == tcon->is_int()->get_con(), "must be"); 3635 // Undo the effects of the previous loop trip, which swallowed st: 3636 intcon[0] = 0; // undo store_constant() 3637 set_req(i-1, st); // undo set_req(i, zmem) 3638 nodes[j] = NULL; // undo nodes[j] = st 3639 --old_subword; // undo ++old_subword 3640 } 3641 continue; // This StoreI is already optimal. 3642 } 3643 } 3644 3645 // This store is not needed. 3646 set_req(i, zmem); 3647 nodes[j] = st; // record for the moment 3648 if (st_size < BytesPerLong) // something has changed 3649 ++old_subword; // includes int/float, but who's counting... 3650 else ++old_long; 3651 } 3652 3653 if ((old_subword + old_long) == 0) 3654 return; // nothing more to do 3655 3656 //// Pass B: Convert any non-zero tiles into optimal constant stores. 3657 // Be sure to insert them before overlapping non-constant stores. 3658 // (E.g., byte[] x = { 1,2,y,4 } => x[int 0] = 0x01020004, x[2]=y.) 3659 for (int j = 0; j < num_tiles; j++) { 3660 jlong con = tiles[j]; 3661 jlong init = inits[j]; 3662 if (con == 0) continue; 3663 jint con0, con1; // split the constant, address-wise 3664 jint init0, init1; // split the init map, address-wise 3665 { union { jlong con; jint intcon[2]; } u; 3666 u.con = con; 3667 con0 = u.intcon[0]; 3668 con1 = u.intcon[1]; 3669 u.con = init; 3670 init0 = u.intcon[0]; 3671 init1 = u.intcon[1]; 3672 } 3673 3674 Node* old = nodes[j]; 3675 assert(old != NULL, "need the prior store"); 3676 intptr_t offset = (j * BytesPerLong); 3677 3678 bool split = !Matcher::isSimpleConstant64(con); 3679 3680 if (offset < header_size) { 3681 assert(offset + BytesPerInt >= header_size, "second int counts"); 3682 assert(*(jint*)&tiles[j] == 0, "junk in header"); 3683 split = true; // only the second word counts 3684 // Example: int a[] = { 42 ... } 3685 } else if (con0 == 0 && init0 == -1) { 3686 split = true; // first word is covered by full inits 3687 // Example: int a[] = { ... foo(), 42 ... } 3688 } else if (con1 == 0 && init1 == -1) { 3689 split = true; // second word is covered by full inits 3690 // Example: int a[] = { ... 42, foo() ... } 3691 } 3692 3693 // Here's a case where init0 is neither 0 nor -1: 3694 // byte a[] = { ... 0,0,foo(),0, 0,0,0,42 ... } 3695 // Assuming big-endian memory, init0, init1 are 0x0000FF00, 0x000000FF. 3696 // In this case the tile is not split; it is (jlong)42. 3697 // The big tile is stored down, and then the foo() value is inserted. 3698 // (If there were foo(),foo() instead of foo(),0, init0 would be -1.) 3699 3700 Node* ctl = old->in(MemNode::Control); 3701 Node* adr = make_raw_address(offset, phase); 3702 const TypePtr* atp = TypeRawPtr::BOTTOM; 3703 3704 // One or two coalesced stores to plop down. 3705 Node* st[2]; 3706 intptr_t off[2]; 3707 int nst = 0; 3708 if (!split) { 3709 ++new_long; 3710 off[nst] = offset; 3711 st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp, 3712 phase->longcon(con), T_LONG, MemNode::unordered); 3713 } else { 3714 // Omit either if it is a zero. 3715 if (con0 != 0) { 3716 ++new_int; 3717 off[nst] = offset; 3718 st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp, 3719 phase->intcon(con0), T_INT, MemNode::unordered); 3720 } 3721 if (con1 != 0) { 3722 ++new_int; 3723 offset += BytesPerInt; 3724 adr = make_raw_address(offset, phase); 3725 off[nst] = offset; 3726 st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp, 3727 phase->intcon(con1), T_INT, MemNode::unordered); 3728 } 3729 } 3730 3731 // Insert second store first, then the first before the second. 3732 // Insert each one just before any overlapping non-constant stores. 3733 while (nst > 0) { 3734 Node* st1 = st[--nst]; 3735 C->copy_node_notes_to(st1, old); 3736 st1 = phase->transform(st1); 3737 offset = off[nst]; 3738 assert(offset >= header_size, "do not smash header"); 3739 int ins_idx = captured_store_insertion_point(offset, /*size:*/0, phase); 3740 guarantee(ins_idx != 0, "must re-insert constant store"); 3741 if (ins_idx < 0) ins_idx = -ins_idx; // never overlap 3742 if (ins_idx > InitializeNode::RawStores && in(ins_idx-1) == zmem) 3743 set_req(--ins_idx, st1); 3744 else 3745 ins_req(ins_idx, st1); 3746 } 3747 } 3748 3749 if (PrintCompilation && WizardMode) 3750 tty->print_cr("Changed %d/%d subword/long constants into %d/%d int/long", 3751 old_subword, old_long, new_int, new_long); 3752 if (C->log() != NULL) 3753 C->log()->elem("comment that='%d/%d subword/long to %d/%d int/long'", 3754 old_subword, old_long, new_int, new_long); 3755 3756 // Clean up any remaining occurrences of zmem: 3757 remove_extra_zeroes(); 3758 } 3759 3760 // Explore forward from in(start) to find the first fully initialized 3761 // word, and return its offset. Skip groups of subword stores which 3762 // together initialize full words. If in(start) is itself part of a 3763 // fully initialized word, return the offset of in(start). If there 3764 // are no following full-word stores, or if something is fishy, return 3765 // a negative value. 3766 intptr_t InitializeNode::find_next_fullword_store(uint start, PhaseGVN* phase) { 3767 int int_map = 0; 3768 intptr_t int_map_off = 0; 3769 const int FULL_MAP = right_n_bits(BytesPerInt); // the int_map we hope for 3770 3771 for (uint i = start, limit = req(); i < limit; i++) { 3772 Node* st = in(i); 3773 3774 intptr_t st_off = get_store_offset(st, phase); 3775 if (st_off < 0) break; // return conservative answer 3776 3777 int st_size = st->as_Store()->memory_size(); 3778 if (st_size >= BytesPerInt && (st_off % BytesPerInt) == 0) { 3779 return st_off; // we found a complete word init 3780 } 3781 3782 // update the map: 3783 3784 intptr_t this_int_off = align_size_down(st_off, BytesPerInt); 3785 if (this_int_off != int_map_off) { 3786 // reset the map: 3787 int_map = 0; 3788 int_map_off = this_int_off; 3789 } 3790 3791 int subword_off = st_off - this_int_off; 3792 int_map |= right_n_bits(st_size) << subword_off; 3793 if ((int_map & FULL_MAP) == FULL_MAP) { 3794 return this_int_off; // we found a complete word init 3795 } 3796 3797 // Did this store hit or cross the word boundary? 3798 intptr_t next_int_off = align_size_down(st_off + st_size, BytesPerInt); 3799 if (next_int_off == this_int_off + BytesPerInt) { 3800 // We passed the current int, without fully initializing it. 3801 int_map_off = next_int_off; 3802 int_map >>= BytesPerInt; 3803 } else if (next_int_off > this_int_off + BytesPerInt) { 3804 // We passed the current and next int. 3805 return this_int_off + BytesPerInt; 3806 } 3807 } 3808 3809 return -1; 3810 } 3811 3812 3813 // Called when the associated AllocateNode is expanded into CFG. 3814 // At this point, we may perform additional optimizations. 3815 // Linearize the stores by ascending offset, to make memory 3816 // activity as coherent as possible. 3817 Node* InitializeNode::complete_stores(Node* rawctl, Node* rawmem, Node* rawptr, 3818 intptr_t header_size, 3819 Node* size_in_bytes, 3820 PhaseGVN* phase) { 3821 assert(!is_complete(), "not already complete"); 3822 assert(stores_are_sane(phase), ""); 3823 assert(allocation() != NULL, "must be present"); 3824 3825 remove_extra_zeroes(); 3826 3827 if (ReduceFieldZeroing || ReduceBulkZeroing) 3828 // reduce instruction count for common initialization patterns 3829 coalesce_subword_stores(header_size, size_in_bytes, phase); 3830 3831 Node* zmem = zero_memory(); // initially zero memory state 3832 Node* inits = zmem; // accumulating a linearized chain of inits 3833 #ifdef ASSERT 3834 intptr_t first_offset = allocation()->minimum_header_size(); 3835 intptr_t last_init_off = first_offset; // previous init offset 3836 intptr_t last_init_end = first_offset; // previous init offset+size 3837 intptr_t last_tile_end = first_offset; // previous tile offset+size 3838 #endif 3839 intptr_t zeroes_done = header_size; 3840 3841 bool do_zeroing = true; // we might give up if inits are very sparse 3842 int big_init_gaps = 0; // how many large gaps have we seen? 3843 3844 if (UseTLAB && ZeroTLAB) do_zeroing = false; 3845 if (!ReduceFieldZeroing && !ReduceBulkZeroing) do_zeroing = false; 3846 3847 for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) { 3848 Node* st = in(i); 3849 intptr_t st_off = get_store_offset(st, phase); 3850 if (st_off < 0) 3851 break; // unknown junk in the inits 3852 if (st->in(MemNode::Memory) != zmem) 3853 break; // complicated store chains somehow in list 3854 3855 int st_size = st->as_Store()->memory_size(); 3856 intptr_t next_init_off = st_off + st_size; 3857 3858 if (do_zeroing && zeroes_done < next_init_off) { 3859 // See if this store needs a zero before it or under it. 3860 intptr_t zeroes_needed = st_off; 3861 3862 if (st_size < BytesPerInt) { 3863 // Look for subword stores which only partially initialize words. 3864 // If we find some, we must lay down some word-level zeroes first, 3865 // underneath the subword stores. 3866 // 3867 // Examples: 3868 // byte[] a = { p,q,r,s } => a[0]=p,a[1]=q,a[2]=r,a[3]=s 3869 // byte[] a = { x,y,0,0 } => a[0..3] = 0, a[0]=x,a[1]=y 3870 // byte[] a = { 0,0,z,0 } => a[0..3] = 0, a[2]=z 3871 // 3872 // Note: coalesce_subword_stores may have already done this, 3873 // if it was prompted by constant non-zero subword initializers. 3874 // But this case can still arise with non-constant stores. 3875 3876 intptr_t next_full_store = find_next_fullword_store(i, phase); 3877 3878 // In the examples above: 3879 // in(i) p q r s x y z 3880 // st_off 12 13 14 15 12 13 14 3881 // st_size 1 1 1 1 1 1 1 3882 // next_full_s. 12 16 16 16 16 16 16 3883 // z's_done 12 16 16 16 12 16 12 3884 // z's_needed 12 16 16 16 16 16 16 3885 // zsize 0 0 0 0 4 0 4 3886 if (next_full_store < 0) { 3887 // Conservative tack: Zero to end of current word. 3888 zeroes_needed = align_size_up(zeroes_needed, BytesPerInt); 3889 } else { 3890 // Zero to beginning of next fully initialized word. 3891 // Or, don't zero at all, if we are already in that word. 3892 assert(next_full_store >= zeroes_needed, "must go forward"); 3893 assert((next_full_store & (BytesPerInt-1)) == 0, "even boundary"); 3894 zeroes_needed = next_full_store; 3895 } 3896 } 3897 3898 if (zeroes_needed > zeroes_done) { 3899 intptr_t zsize = zeroes_needed - zeroes_done; 3900 // Do some incremental zeroing on rawmem, in parallel with inits. 3901 zeroes_done = align_size_down(zeroes_done, BytesPerInt); 3902 rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr, 3903 zeroes_done, zeroes_needed, 3904 phase); 3905 zeroes_done = zeroes_needed; 3906 if (zsize > Matcher::init_array_short_size && ++big_init_gaps > 2) 3907 do_zeroing = false; // leave the hole, next time 3908 } 3909 } 3910 3911 // Collect the store and move on: 3912 st->set_req(MemNode::Memory, inits); 3913 inits = st; // put it on the linearized chain 3914 set_req(i, zmem); // unhook from previous position 3915 3916 if (zeroes_done == st_off) 3917 zeroes_done = next_init_off; 3918 3919 assert(!do_zeroing || zeroes_done >= next_init_off, "don't miss any"); 3920 3921 #ifdef ASSERT 3922 // Various order invariants. Weaker than stores_are_sane because 3923 // a large constant tile can be filled in by smaller non-constant stores. 3924 assert(st_off >= last_init_off, "inits do not reverse"); 3925 last_init_off = st_off; 3926 const Type* val = NULL; 3927 if (st_size >= BytesPerInt && 3928 (val = phase->type(st->in(MemNode::ValueIn)))->singleton() && 3929 (int)val->basic_type() < (int)T_OBJECT) { 3930 assert(st_off >= last_tile_end, "tiles do not overlap"); 3931 assert(st_off >= last_init_end, "tiles do not overwrite inits"); 3932 last_tile_end = MAX2(last_tile_end, next_init_off); 3933 } else { 3934 intptr_t st_tile_end = align_size_up(next_init_off, BytesPerLong); 3935 assert(st_tile_end >= last_tile_end, "inits stay with tiles"); 3936 assert(st_off >= last_init_end, "inits do not overlap"); 3937 last_init_end = next_init_off; // it's a non-tile 3938 } 3939 #endif //ASSERT 3940 } 3941 3942 remove_extra_zeroes(); // clear out all the zmems left over 3943 add_req(inits); 3944 3945 if (!(UseTLAB && ZeroTLAB)) { 3946 // If anything remains to be zeroed, zero it all now. 3947 zeroes_done = align_size_down(zeroes_done, BytesPerInt); 3948 // if it is the last unused 4 bytes of an instance, forget about it 3949 intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, max_jint); 3950 if (zeroes_done + BytesPerLong >= size_limit) { 3951 assert(allocation() != NULL, ""); 3952 if (allocation()->Opcode() == Op_Allocate) { 3953 Node* klass_node = allocation()->in(AllocateNode::KlassNode); 3954 ciKlass* k = phase->type(klass_node)->is_klassptr()->klass(); 3955 if (zeroes_done == k->layout_helper()) 3956 zeroes_done = size_limit; 3957 } 3958 } 3959 if (zeroes_done < size_limit) { 3960 rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr, 3961 zeroes_done, size_in_bytes, phase); 3962 } 3963 } 3964 3965 set_complete(phase); 3966 return rawmem; 3967 } 3968 3969 3970 #ifdef ASSERT 3971 bool InitializeNode::stores_are_sane(PhaseTransform* phase) { 3972 if (is_complete()) 3973 return true; // stores could be anything at this point 3974 assert(allocation() != NULL, "must be present"); 3975 intptr_t last_off = allocation()->minimum_header_size(); 3976 for (uint i = InitializeNode::RawStores; i < req(); i++) { 3977 Node* st = in(i); 3978 intptr_t st_off = get_store_offset(st, phase); 3979 if (st_off < 0) continue; // ignore dead garbage 3980 if (last_off > st_off) { 3981 tty->print_cr("*** bad store offset at %d: " INTX_FORMAT " > " INTX_FORMAT, i, last_off, st_off); 3982 this->dump(2); 3983 assert(false, "ascending store offsets"); 3984 return false; 3985 } 3986 last_off = st_off + st->as_Store()->memory_size(); 3987 } 3988 return true; 3989 } 3990 #endif //ASSERT 3991 3992 3993 3994 3995 //============================MergeMemNode===================================== 3996 // 3997 // SEMANTICS OF MEMORY MERGES: A MergeMem is a memory state assembled from several 3998 // contributing store or call operations. Each contributor provides the memory 3999 // state for a particular "alias type" (see Compile::alias_type). For example, 4000 // if a MergeMem has an input X for alias category #6, then any memory reference 4001 // to alias category #6 may use X as its memory state input, as an exact equivalent 4002 // to using the MergeMem as a whole. 4003 // Load<6>( MergeMem(<6>: X, ...), p ) <==> Load<6>(X,p) 4004 // 4005 // (Here, the <N> notation gives the index of the relevant adr_type.) 4006 // 4007 // In one special case (and more cases in the future), alias categories overlap. 4008 // The special alias category "Bot" (Compile::AliasIdxBot) includes all memory 4009 // states. Therefore, if a MergeMem has only one contributing input W for Bot, 4010 // it is exactly equivalent to that state W: 4011 // MergeMem(<Bot>: W) <==> W 4012 // 4013 // Usually, the merge has more than one input. In that case, where inputs 4014 // overlap (i.e., one is Bot), the narrower alias type determines the memory 4015 // state for that type, and the wider alias type (Bot) fills in everywhere else: 4016 // Load<5>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<5>(W,p) 4017 // Load<6>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<6>(X,p) 4018 // 4019 // A merge can take a "wide" memory state as one of its narrow inputs. 4020 // This simply means that the merge observes out only the relevant parts of 4021 // the wide input. That is, wide memory states arriving at narrow merge inputs 4022 // are implicitly "filtered" or "sliced" as necessary. (This is rare.) 4023 // 4024 // These rules imply that MergeMem nodes may cascade (via their <Bot> links), 4025 // and that memory slices "leak through": 4026 // MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y)) <==> MergeMem(<Bot>: W, <7>: Y) 4027 // 4028 // But, in such a cascade, repeated memory slices can "block the leak": 4029 // MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y), <7>: Y') <==> MergeMem(<Bot>: W, <7>: Y') 4030 // 4031 // In the last example, Y is not part of the combined memory state of the 4032 // outermost MergeMem. The system must, of course, prevent unschedulable 4033 // memory states from arising, so you can be sure that the state Y is somehow 4034 // a precursor to state Y'. 4035 // 4036 // 4037 // REPRESENTATION OF MEMORY MERGES: The indexes used to address the Node::in array 4038 // of each MergeMemNode array are exactly the numerical alias indexes, including 4039 // but not limited to AliasIdxTop, AliasIdxBot, and AliasIdxRaw. The functions 4040 // Compile::alias_type (and kin) produce and manage these indexes. 4041 // 4042 // By convention, the value of in(AliasIdxTop) (i.e., in(1)) is always the top node. 4043 // (Note that this provides quick access to the top node inside MergeMem methods, 4044 // without the need to reach out via TLS to Compile::current.) 4045 // 4046 // As a consequence of what was just described, a MergeMem that represents a full 4047 // memory state has an edge in(AliasIdxBot) which is a "wide" memory state, 4048 // containing all alias categories. 4049 // 4050 // MergeMem nodes never (?) have control inputs, so in(0) is NULL. 4051 // 4052 // All other edges in(N) (including in(AliasIdxRaw), which is in(3)) are either 4053 // a memory state for the alias type <N>, or else the top node, meaning that 4054 // there is no particular input for that alias type. Note that the length of 4055 // a MergeMem is variable, and may be extended at any time to accommodate new 4056 // memory states at larger alias indexes. When merges grow, they are of course 4057 // filled with "top" in the unused in() positions. 4058 // 4059 // This use of top is named "empty_memory()", or "empty_mem" (no-memory) as a variable. 4060 // (Top was chosen because it works smoothly with passes like GCM.) 4061 // 4062 // For convenience, we hardwire the alias index for TypeRawPtr::BOTTOM. (It is 4063 // the type of random VM bits like TLS references.) Since it is always the 4064 // first non-Bot memory slice, some low-level loops use it to initialize an 4065 // index variable: for (i = AliasIdxRaw; i < req(); i++). 4066 // 4067 // 4068 // ACCESSORS: There is a special accessor MergeMemNode::base_memory which returns 4069 // the distinguished "wide" state. The accessor MergeMemNode::memory_at(N) returns 4070 // the memory state for alias type <N>, or (if there is no particular slice at <N>, 4071 // it returns the base memory. To prevent bugs, memory_at does not accept <Top> 4072 // or <Bot> indexes. The iterator MergeMemStream provides robust iteration over 4073 // MergeMem nodes or pairs of such nodes, ensuring that the non-top edges are visited. 4074 // 4075 // %%%% We may get rid of base_memory as a separate accessor at some point; it isn't 4076 // really that different from the other memory inputs. An abbreviation called 4077 // "bot_memory()" for "memory_at(AliasIdxBot)" would keep code tidy. 4078 // 4079 // 4080 // PARTIAL MEMORY STATES: During optimization, MergeMem nodes may arise that represent 4081 // partial memory states. When a Phi splits through a MergeMem, the copy of the Phi 4082 // that "emerges though" the base memory will be marked as excluding the alias types 4083 // of the other (narrow-memory) copies which "emerged through" the narrow edges: 4084 // 4085 // Phi<Bot>(U, MergeMem(<Bot>: W, <8>: Y)) 4086 // ==Ideal=> MergeMem(<Bot>: Phi<Bot-8>(U, W), Phi<8>(U, Y)) 4087 // 4088 // This strange "subtraction" effect is necessary to ensure IGVN convergence. 4089 // (It is currently unimplemented.) As you can see, the resulting merge is 4090 // actually a disjoint union of memory states, rather than an overlay. 4091 // 4092 4093 //------------------------------MergeMemNode----------------------------------- 4094 Node* MergeMemNode::make_empty_memory() { 4095 Node* empty_memory = (Node*) Compile::current()->top(); 4096 assert(empty_memory->is_top(), "correct sentinel identity"); 4097 return empty_memory; 4098 } 4099 4100 MergeMemNode::MergeMemNode(Node *new_base) : Node(1+Compile::AliasIdxRaw) { 4101 init_class_id(Class_MergeMem); 4102 // all inputs are nullified in Node::Node(int) 4103 // set_input(0, NULL); // no control input 4104 4105 // Initialize the edges uniformly to top, for starters. 4106 Node* empty_mem = make_empty_memory(); 4107 for (uint i = Compile::AliasIdxTop; i < req(); i++) { 4108 init_req(i,empty_mem); 4109 } 4110 assert(empty_memory() == empty_mem, ""); 4111 4112 if( new_base != NULL && new_base->is_MergeMem() ) { 4113 MergeMemNode* mdef = new_base->as_MergeMem(); 4114 assert(mdef->empty_memory() == empty_mem, "consistent sentinels"); 4115 for (MergeMemStream mms(this, mdef); mms.next_non_empty2(); ) { 4116 mms.set_memory(mms.memory2()); 4117 } 4118 assert(base_memory() == mdef->base_memory(), ""); 4119 } else { 4120 set_base_memory(new_base); 4121 } 4122 } 4123 4124 // Make a new, untransformed MergeMem with the same base as 'mem'. 4125 // If mem is itself a MergeMem, populate the result with the same edges. 4126 MergeMemNode* MergeMemNode::make(Node* mem) { 4127 return new MergeMemNode(mem); 4128 } 4129 4130 //------------------------------cmp-------------------------------------------- 4131 uint MergeMemNode::hash() const { return NO_HASH; } 4132 uint MergeMemNode::cmp( const Node &n ) const { 4133 return (&n == this); // Always fail except on self 4134 } 4135 4136 //------------------------------Identity--------------------------------------- 4137 Node* MergeMemNode::Identity(PhaseGVN* phase) { 4138 // Identity if this merge point does not record any interesting memory 4139 // disambiguations. 4140 Node* base_mem = base_memory(); 4141 Node* empty_mem = empty_memory(); 4142 if (base_mem != empty_mem) { // Memory path is not dead? 4143 for (uint i = Compile::AliasIdxRaw; i < req(); i++) { 4144 Node* mem = in(i); 4145 if (mem != empty_mem && mem != base_mem) { 4146 return this; // Many memory splits; no change 4147 } 4148 } 4149 } 4150 return base_mem; // No memory splits; ID on the one true input 4151 } 4152 4153 //------------------------------Ideal------------------------------------------ 4154 // This method is invoked recursively on chains of MergeMem nodes 4155 Node *MergeMemNode::Ideal(PhaseGVN *phase, bool can_reshape) { 4156 // Remove chain'd MergeMems 4157 // 4158 // This is delicate, because the each "in(i)" (i >= Raw) is interpreted 4159 // relative to the "in(Bot)". Since we are patching both at the same time, 4160 // we have to be careful to read each "in(i)" relative to the old "in(Bot)", 4161 // but rewrite each "in(i)" relative to the new "in(Bot)". 4162 Node *progress = NULL; 4163 4164 4165 Node* old_base = base_memory(); 4166 Node* empty_mem = empty_memory(); 4167 if (old_base == empty_mem) 4168 return NULL; // Dead memory path. 4169 4170 MergeMemNode* old_mbase; 4171 if (old_base != NULL && old_base->is_MergeMem()) 4172 old_mbase = old_base->as_MergeMem(); 4173 else 4174 old_mbase = NULL; 4175 Node* new_base = old_base; 4176 4177 // simplify stacked MergeMems in base memory 4178 if (old_mbase) new_base = old_mbase->base_memory(); 4179 4180 // the base memory might contribute new slices beyond my req() 4181 if (old_mbase) grow_to_match(old_mbase); 4182 4183 // Look carefully at the base node if it is a phi. 4184 PhiNode* phi_base; 4185 if (new_base != NULL && new_base->is_Phi()) 4186 phi_base = new_base->as_Phi(); 4187 else 4188 phi_base = NULL; 4189 4190 Node* phi_reg = NULL; 4191 uint phi_len = (uint)-1; 4192 if (phi_base != NULL && !phi_base->is_copy()) { 4193 // do not examine phi if degraded to a copy 4194 phi_reg = phi_base->region(); 4195 phi_len = phi_base->req(); 4196 // see if the phi is unfinished 4197 for (uint i = 1; i < phi_len; i++) { 4198 if (phi_base->in(i) == NULL) { 4199 // incomplete phi; do not look at it yet! 4200 phi_reg = NULL; 4201 phi_len = (uint)-1; 4202 break; 4203 } 4204 } 4205 } 4206 4207 // Note: We do not call verify_sparse on entry, because inputs 4208 // can normalize to the base_memory via subsume_node or similar 4209 // mechanisms. This method repairs that damage. 4210 4211 assert(!old_mbase || old_mbase->is_empty_memory(empty_mem), "consistent sentinels"); 4212 4213 // Look at each slice. 4214 for (uint i = Compile::AliasIdxRaw; i < req(); i++) { 4215 Node* old_in = in(i); 4216 // calculate the old memory value 4217 Node* old_mem = old_in; 4218 if (old_mem == empty_mem) old_mem = old_base; 4219 assert(old_mem == memory_at(i), ""); 4220 4221 // maybe update (reslice) the old memory value 4222 4223 // simplify stacked MergeMems 4224 Node* new_mem = old_mem; 4225 MergeMemNode* old_mmem; 4226 if (old_mem != NULL && old_mem->is_MergeMem()) 4227 old_mmem = old_mem->as_MergeMem(); 4228 else 4229 old_mmem = NULL; 4230 if (old_mmem == this) { 4231 // This can happen if loops break up and safepoints disappear. 4232 // A merge of BotPtr (default) with a RawPtr memory derived from a 4233 // safepoint can be rewritten to a merge of the same BotPtr with 4234 // the BotPtr phi coming into the loop. If that phi disappears 4235 // also, we can end up with a self-loop of the mergemem. 4236 // In general, if loops degenerate and memory effects disappear, 4237 // a mergemem can be left looking at itself. This simply means 4238 // that the mergemem's default should be used, since there is 4239 // no longer any apparent effect on this slice. 4240 // Note: If a memory slice is a MergeMem cycle, it is unreachable 4241 // from start. Update the input to TOP. 4242 new_mem = (new_base == this || new_base == empty_mem)? empty_mem : new_base; 4243 } 4244 else if (old_mmem != NULL) { 4245 new_mem = old_mmem->memory_at(i); 4246 } 4247 // else preceding memory was not a MergeMem 4248 4249 // replace equivalent phis (unfortunately, they do not GVN together) 4250 if (new_mem != NULL && new_mem != new_base && 4251 new_mem->req() == phi_len && new_mem->in(0) == phi_reg) { 4252 if (new_mem->is_Phi()) { 4253 PhiNode* phi_mem = new_mem->as_Phi(); 4254 for (uint i = 1; i < phi_len; i++) { 4255 if (phi_base->in(i) != phi_mem->in(i)) { 4256 phi_mem = NULL; 4257 break; 4258 } 4259 } 4260 if (phi_mem != NULL) { 4261 // equivalent phi nodes; revert to the def 4262 new_mem = new_base; 4263 } 4264 } 4265 } 4266 4267 // maybe store down a new value 4268 Node* new_in = new_mem; 4269 if (new_in == new_base) new_in = empty_mem; 4270 4271 if (new_in != old_in) { 4272 // Warning: Do not combine this "if" with the previous "if" 4273 // A memory slice might have be be rewritten even if it is semantically 4274 // unchanged, if the base_memory value has changed. 4275 set_req(i, new_in); 4276 progress = this; // Report progress 4277 } 4278 } 4279 4280 if (new_base != old_base) { 4281 set_req(Compile::AliasIdxBot, new_base); 4282 // Don't use set_base_memory(new_base), because we need to update du. 4283 assert(base_memory() == new_base, ""); 4284 progress = this; 4285 } 4286 4287 if( base_memory() == this ) { 4288 // a self cycle indicates this memory path is dead 4289 set_req(Compile::AliasIdxBot, empty_mem); 4290 } 4291 4292 // Resolve external cycles by calling Ideal on a MergeMem base_memory 4293 // Recursion must occur after the self cycle check above 4294 if( base_memory()->is_MergeMem() ) { 4295 MergeMemNode *new_mbase = base_memory()->as_MergeMem(); 4296 Node *m = phase->transform(new_mbase); // Rollup any cycles 4297 if( m != NULL && (m->is_top() || 4298 m->is_MergeMem() && m->as_MergeMem()->base_memory() == empty_mem) ) { 4299 // propagate rollup of dead cycle to self 4300 set_req(Compile::AliasIdxBot, empty_mem); 4301 } 4302 } 4303 4304 if( base_memory() == empty_mem ) { 4305 progress = this; 4306 // Cut inputs during Parse phase only. 4307 // During Optimize phase a dead MergeMem node will be subsumed by Top. 4308 if( !can_reshape ) { 4309 for (uint i = Compile::AliasIdxRaw; i < req(); i++) { 4310 if( in(i) != empty_mem ) { set_req(i, empty_mem); } 4311 } 4312 } 4313 } 4314 4315 if( !progress && base_memory()->is_Phi() && can_reshape ) { 4316 // Check if PhiNode::Ideal's "Split phis through memory merges" 4317 // transform should be attempted. Look for this->phi->this cycle. 4318 uint merge_width = req(); 4319 if (merge_width > Compile::AliasIdxRaw) { 4320 PhiNode* phi = base_memory()->as_Phi(); 4321 for( uint i = 1; i < phi->req(); ++i ) {// For all paths in 4322 if (phi->in(i) == this) { 4323 phase->is_IterGVN()->_worklist.push(phi); 4324 break; 4325 } 4326 } 4327 } 4328 } 4329 4330 assert(progress || verify_sparse(), "please, no dups of base"); 4331 return progress; 4332 } 4333 4334 //-------------------------set_base_memory------------------------------------- 4335 void MergeMemNode::set_base_memory(Node *new_base) { 4336 Node* empty_mem = empty_memory(); 4337 set_req(Compile::AliasIdxBot, new_base); 4338 assert(memory_at(req()) == new_base, "must set default memory"); 4339 // Clear out other occurrences of new_base: 4340 if (new_base != empty_mem) { 4341 for (uint i = Compile::AliasIdxRaw; i < req(); i++) { 4342 if (in(i) == new_base) set_req(i, empty_mem); 4343 } 4344 } 4345 } 4346 4347 //------------------------------out_RegMask------------------------------------ 4348 const RegMask &MergeMemNode::out_RegMask() const { 4349 return RegMask::Empty; 4350 } 4351 4352 //------------------------------dump_spec-------------------------------------- 4353 #ifndef PRODUCT 4354 void MergeMemNode::dump_spec(outputStream *st) const { 4355 st->print(" {"); 4356 Node* base_mem = base_memory(); 4357 for( uint i = Compile::AliasIdxRaw; i < req(); i++ ) { 4358 Node* mem = (in(i) != NULL) ? memory_at(i) : base_mem; 4359 if (mem == base_mem) { st->print(" -"); continue; } 4360 st->print( " N%d:", mem->_idx ); 4361 Compile::current()->get_adr_type(i)->dump_on(st); 4362 } 4363 st->print(" }"); 4364 } 4365 #endif // !PRODUCT 4366 4367 4368 #ifdef ASSERT 4369 static bool might_be_same(Node* a, Node* b) { 4370 if (a == b) return true; 4371 if (!(a->is_Phi() || b->is_Phi())) return false; 4372 // phis shift around during optimization 4373 return true; // pretty stupid... 4374 } 4375 4376 // verify a narrow slice (either incoming or outgoing) 4377 static void verify_memory_slice(const MergeMemNode* m, int alias_idx, Node* n) { 4378 if (!VerifyAliases) return; // don't bother to verify unless requested 4379 if (is_error_reported()) return; // muzzle asserts when debugging an error 4380 if (Node::in_dump()) return; // muzzle asserts when printing 4381 assert(alias_idx >= Compile::AliasIdxRaw, "must not disturb base_memory or sentinel"); 4382 assert(n != NULL, ""); 4383 // Elide intervening MergeMem's 4384 while (n->is_MergeMem()) { 4385 n = n->as_MergeMem()->memory_at(alias_idx); 4386 } 4387 Compile* C = Compile::current(); 4388 const TypePtr* n_adr_type = n->adr_type(); 4389 if (n == m->empty_memory()) { 4390 // Implicit copy of base_memory() 4391 } else if (n_adr_type != TypePtr::BOTTOM) { 4392 assert(n_adr_type != NULL, "new memory must have a well-defined adr_type"); 4393 assert(C->must_alias(n_adr_type, alias_idx), "new memory must match selected slice"); 4394 } else { 4395 // A few places like make_runtime_call "know" that VM calls are narrow, 4396 // and can be used to update only the VM bits stored as TypeRawPtr::BOTTOM. 4397 bool expected_wide_mem = false; 4398 if (n == m->base_memory()) { 4399 expected_wide_mem = true; 4400 } else if (alias_idx == Compile::AliasIdxRaw || 4401 n == m->memory_at(Compile::AliasIdxRaw)) { 4402 expected_wide_mem = true; 4403 } else if (!C->alias_type(alias_idx)->is_rewritable()) { 4404 // memory can "leak through" calls on channels that 4405 // are write-once. Allow this also. 4406 expected_wide_mem = true; 4407 } 4408 assert(expected_wide_mem, "expected narrow slice replacement"); 4409 } 4410 } 4411 #else // !ASSERT 4412 #define verify_memory_slice(m,i,n) (void)(0) // PRODUCT version is no-op 4413 #endif 4414 4415 4416 //-----------------------------memory_at--------------------------------------- 4417 Node* MergeMemNode::memory_at(uint alias_idx) const { 4418 assert(alias_idx >= Compile::AliasIdxRaw || 4419 alias_idx == Compile::AliasIdxBot && Compile::current()->AliasLevel() == 0, 4420 "must avoid base_memory and AliasIdxTop"); 4421 4422 // Otherwise, it is a narrow slice. 4423 Node* n = alias_idx < req() ? in(alias_idx) : empty_memory(); 4424 Compile *C = Compile::current(); 4425 if (is_empty_memory(n)) { 4426 // the array is sparse; empty slots are the "top" node 4427 n = base_memory(); 4428 assert(Node::in_dump() 4429 || n == NULL || n->bottom_type() == Type::TOP 4430 || n->adr_type() == NULL // address is TOP 4431 || n->adr_type() == TypePtr::BOTTOM 4432 || n->adr_type() == TypeRawPtr::BOTTOM 4433 || Compile::current()->AliasLevel() == 0, 4434 "must be a wide memory"); 4435 // AliasLevel == 0 if we are organizing the memory states manually. 4436 // See verify_memory_slice for comments on TypeRawPtr::BOTTOM. 4437 } else { 4438 // make sure the stored slice is sane 4439 #ifdef ASSERT 4440 if (is_error_reported() || Node::in_dump()) { 4441 } else if (might_be_same(n, base_memory())) { 4442 // Give it a pass: It is a mostly harmless repetition of the base. 4443 // This can arise normally from node subsumption during optimization. 4444 } else { 4445 verify_memory_slice(this, alias_idx, n); 4446 } 4447 #endif 4448 } 4449 return n; 4450 } 4451 4452 //---------------------------set_memory_at------------------------------------- 4453 void MergeMemNode::set_memory_at(uint alias_idx, Node *n) { 4454 verify_memory_slice(this, alias_idx, n); 4455 Node* empty_mem = empty_memory(); 4456 if (n == base_memory()) n = empty_mem; // collapse default 4457 uint need_req = alias_idx+1; 4458 if (req() < need_req) { 4459 if (n == empty_mem) return; // already the default, so do not grow me 4460 // grow the sparse array 4461 do { 4462 add_req(empty_mem); 4463 } while (req() < need_req); 4464 } 4465 set_req( alias_idx, n ); 4466 } 4467 4468 4469 4470 //--------------------------iteration_setup------------------------------------ 4471 void MergeMemNode::iteration_setup(const MergeMemNode* other) { 4472 if (other != NULL) { 4473 grow_to_match(other); 4474 // invariant: the finite support of mm2 is within mm->req() 4475 #ifdef ASSERT 4476 for (uint i = req(); i < other->req(); i++) { 4477 assert(other->is_empty_memory(other->in(i)), "slice left uncovered"); 4478 } 4479 #endif 4480 } 4481 // Replace spurious copies of base_memory by top. 4482 Node* base_mem = base_memory(); 4483 if (base_mem != NULL && !base_mem->is_top()) { 4484 for (uint i = Compile::AliasIdxBot+1, imax = req(); i < imax; i++) { 4485 if (in(i) == base_mem) 4486 set_req(i, empty_memory()); 4487 } 4488 } 4489 } 4490 4491 //---------------------------grow_to_match------------------------------------- 4492 void MergeMemNode::grow_to_match(const MergeMemNode* other) { 4493 Node* empty_mem = empty_memory(); 4494 assert(other->is_empty_memory(empty_mem), "consistent sentinels"); 4495 // look for the finite support of the other memory 4496 for (uint i = other->req(); --i >= req(); ) { 4497 if (other->in(i) != empty_mem) { 4498 uint new_len = i+1; 4499 while (req() < new_len) add_req(empty_mem); 4500 break; 4501 } 4502 } 4503 } 4504 4505 //---------------------------verify_sparse------------------------------------- 4506 #ifndef PRODUCT 4507 bool MergeMemNode::verify_sparse() const { 4508 assert(is_empty_memory(make_empty_memory()), "sane sentinel"); 4509 Node* base_mem = base_memory(); 4510 // The following can happen in degenerate cases, since empty==top. 4511 if (is_empty_memory(base_mem)) return true; 4512 for (uint i = Compile::AliasIdxRaw; i < req(); i++) { 4513 assert(in(i) != NULL, "sane slice"); 4514 if (in(i) == base_mem) return false; // should have been the sentinel value! 4515 } 4516 return true; 4517 } 4518 4519 bool MergeMemStream::match_memory(Node* mem, const MergeMemNode* mm, int idx) { 4520 Node* n; 4521 n = mm->in(idx); 4522 if (mem == n) return true; // might be empty_memory() 4523 n = (idx == Compile::AliasIdxBot)? mm->base_memory(): mm->memory_at(idx); 4524 if (mem == n) return true; 4525 while (n->is_Phi() && (n = n->as_Phi()->is_copy()) != NULL) { 4526 if (mem == n) return true; 4527 if (n == NULL) break; 4528 } 4529 return false; 4530 } 4531 #endif // !PRODUCT