1 /* 2 * Copyright (c) 1998, 2019, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #ifndef SHARE_OPTO_LOOPNODE_HPP 26 #define SHARE_OPTO_LOOPNODE_HPP 27 28 #include "opto/cfgnode.hpp" 29 #include "opto/multnode.hpp" 30 #include "opto/phaseX.hpp" 31 #include "opto/subnode.hpp" 32 #include "opto/type.hpp" 33 34 class CmpNode; 35 class CountedLoopEndNode; 36 class CountedLoopNode; 37 class IdealLoopTree; 38 class LoopNode; 39 class Node; 40 class OuterStripMinedLoopEndNode; 41 class PathFrequency; 42 class PhaseIdealLoop; 43 class CountedLoopReserveKit; 44 class VectorSet; 45 class Invariance; 46 struct small_cache; 47 48 // 49 // I D E A L I Z E D L O O P S 50 // 51 // Idealized loops are the set of loops I perform more interesting 52 // transformations on, beyond simple hoisting. 53 54 //------------------------------LoopNode--------------------------------------- 55 // Simple loop header. Fall in path on left, loop-back path on right. 56 class LoopNode : public RegionNode { 57 // Size is bigger to hold the flags. However, the flags do not change 58 // the semantics so it does not appear in the hash & cmp functions. 59 virtual uint size_of() const { return sizeof(*this); } 60 protected: 61 uint _loop_flags; 62 // Names for flag bitfields 63 enum { Normal=0, Pre=1, Main=2, Post=3, PreMainPostFlagsMask=3, 64 MainHasNoPreLoop=4, 65 HasExactTripCount=8, 66 InnerLoop=16, 67 PartialPeelLoop=32, 68 PartialPeelFailed=64, 69 HasReductions=128, 70 WasSlpAnalyzed=256, 71 PassedSlpAnalysis=512, 72 DoUnrollOnly=1024, 73 VectorizedLoop=2048, 74 HasAtomicPostLoop=4096, 75 HasRangeChecks=8192, 76 IsMultiversioned=16384, 77 StripMined=32768, 78 SubwordLoop=65536, 79 ProfileTripFailed=131072}; 80 char _unswitch_count; 81 enum { _unswitch_max=3 }; 82 char _postloop_flags; 83 enum { LoopNotRCEChecked = 0, LoopRCEChecked = 1, RCEPostLoop = 2 }; 84 85 // Expected trip count from profile data 86 float _profile_trip_cnt; 87 88 public: 89 // Names for edge indices 90 enum { Self=0, EntryControl, LoopBackControl }; 91 92 bool is_inner_loop() const { return _loop_flags & InnerLoop; } 93 void set_inner_loop() { _loop_flags |= InnerLoop; } 94 95 bool range_checks_present() const { return _loop_flags & HasRangeChecks; } 96 bool is_multiversioned() const { return _loop_flags & IsMultiversioned; } 97 bool is_vectorized_loop() const { return _loop_flags & VectorizedLoop; } 98 bool is_partial_peel_loop() const { return _loop_flags & PartialPeelLoop; } 99 void set_partial_peel_loop() { _loop_flags |= PartialPeelLoop; } 100 bool partial_peel_has_failed() const { return _loop_flags & PartialPeelFailed; } 101 bool is_strip_mined() const { return _loop_flags & StripMined; } 102 bool is_profile_trip_failed() const { return _loop_flags & ProfileTripFailed; } 103 bool is_subword_loop() const { return _loop_flags & SubwordLoop; } 104 105 void mark_partial_peel_failed() { _loop_flags |= PartialPeelFailed; } 106 void mark_has_reductions() { _loop_flags |= HasReductions; } 107 void mark_was_slp() { _loop_flags |= WasSlpAnalyzed; } 108 void mark_passed_slp() { _loop_flags |= PassedSlpAnalysis; } 109 void mark_do_unroll_only() { _loop_flags |= DoUnrollOnly; } 110 void mark_loop_vectorized() { _loop_flags |= VectorizedLoop; } 111 void mark_has_atomic_post_loop() { _loop_flags |= HasAtomicPostLoop; } 112 void mark_has_range_checks() { _loop_flags |= HasRangeChecks; } 113 void mark_is_multiversioned() { _loop_flags |= IsMultiversioned; } 114 void mark_strip_mined() { _loop_flags |= StripMined; } 115 void clear_strip_mined() { _loop_flags &= ~StripMined; } 116 void mark_profile_trip_failed() { _loop_flags |= ProfileTripFailed; } 117 void mark_subword_loop() { _loop_flags |= SubwordLoop; } 118 119 int unswitch_max() { return _unswitch_max; } 120 int unswitch_count() { return _unswitch_count; } 121 122 int has_been_range_checked() const { return _postloop_flags & LoopRCEChecked; } 123 void set_has_been_range_checked() { _postloop_flags |= LoopRCEChecked; } 124 int is_rce_post_loop() const { return _postloop_flags & RCEPostLoop; } 125 void set_is_rce_post_loop() { _postloop_flags |= RCEPostLoop; } 126 127 void set_unswitch_count(int val) { 128 assert (val <= unswitch_max(), "too many unswitches"); 129 _unswitch_count = val; 130 } 131 132 void set_profile_trip_cnt(float ptc) { _profile_trip_cnt = ptc; } 133 float profile_trip_cnt() { return _profile_trip_cnt; } 134 135 LoopNode(Node *entry, Node *backedge) 136 : RegionNode(3), _loop_flags(0), _unswitch_count(0), 137 _postloop_flags(0), _profile_trip_cnt(COUNT_UNKNOWN) { 138 init_class_id(Class_Loop); 139 init_req(EntryControl, entry); 140 init_req(LoopBackControl, backedge); 141 } 142 143 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); 144 virtual int Opcode() const; 145 bool can_be_counted_loop(PhaseTransform* phase) const { 146 return req() == 3 && in(0) != NULL && 147 in(1) != NULL && phase->type(in(1)) != Type::TOP && 148 in(2) != NULL && phase->type(in(2)) != Type::TOP; 149 } 150 bool is_valid_counted_loop() const; 151 #ifndef PRODUCT 152 virtual void dump_spec(outputStream *st) const; 153 #endif 154 155 void verify_strip_mined(int expect_skeleton) const; 156 virtual LoopNode* skip_strip_mined(int expect_skeleton = 1) { return this; } 157 virtual IfTrueNode* outer_loop_tail() const { ShouldNotReachHere(); return NULL; } 158 virtual OuterStripMinedLoopEndNode* outer_loop_end() const { ShouldNotReachHere(); return NULL; } 159 virtual IfFalseNode* outer_loop_exit() const { ShouldNotReachHere(); return NULL; } 160 virtual SafePointNode* outer_safepoint() const { ShouldNotReachHere(); return NULL; } 161 }; 162 163 //------------------------------Counted Loops---------------------------------- 164 // Counted loops are all trip-counted loops, with exactly 1 trip-counter exit 165 // path (and maybe some other exit paths). The trip-counter exit is always 166 // last in the loop. The trip-counter have to stride by a constant; 167 // the exit value is also loop invariant. 168 169 // CountedLoopNodes and CountedLoopEndNodes come in matched pairs. The 170 // CountedLoopNode has the incoming loop control and the loop-back-control 171 // which is always the IfTrue before the matching CountedLoopEndNode. The 172 // CountedLoopEndNode has an incoming control (possibly not the 173 // CountedLoopNode if there is control flow in the loop), the post-increment 174 // trip-counter value, and the limit. The trip-counter value is always of 175 // the form (Op old-trip-counter stride). The old-trip-counter is produced 176 // by a Phi connected to the CountedLoopNode. The stride is constant. 177 // The Op is any commutable opcode, including Add, Mul, Xor. The 178 // CountedLoopEndNode also takes in the loop-invariant limit value. 179 180 // From a CountedLoopNode I can reach the matching CountedLoopEndNode via the 181 // loop-back control. From CountedLoopEndNodes I can reach CountedLoopNodes 182 // via the old-trip-counter from the Op node. 183 184 //------------------------------CountedLoopNode-------------------------------- 185 // CountedLoopNodes head simple counted loops. CountedLoopNodes have as 186 // inputs the incoming loop-start control and the loop-back control, so they 187 // act like RegionNodes. They also take in the initial trip counter, the 188 // loop-invariant stride and the loop-invariant limit value. CountedLoopNodes 189 // produce a loop-body control and the trip counter value. Since 190 // CountedLoopNodes behave like RegionNodes I still have a standard CFG model. 191 192 class CountedLoopNode : public LoopNode { 193 // Size is bigger to hold _main_idx. However, _main_idx does not change 194 // the semantics so it does not appear in the hash & cmp functions. 195 virtual uint size_of() const { return sizeof(*this); } 196 197 // For Pre- and Post-loops during debugging ONLY, this holds the index of 198 // the Main CountedLoop. Used to assert that we understand the graph shape. 199 node_idx_t _main_idx; 200 201 // Known trip count calculated by compute_exact_trip_count() 202 uint _trip_count; 203 204 // Log2 of original loop bodies in unrolled loop 205 int _unrolled_count_log2; 206 207 // Node count prior to last unrolling - used to decide if 208 // unroll,optimize,unroll,optimize,... is making progress 209 int _node_count_before_unroll; 210 211 // If slp analysis is performed we record the maximum 212 // vector mapped unroll factor here 213 int _slp_maximum_unroll_factor; 214 215 public: 216 CountedLoopNode( Node *entry, Node *backedge ) 217 : LoopNode(entry, backedge), _main_idx(0), _trip_count(max_juint), 218 _unrolled_count_log2(0), _node_count_before_unroll(0), 219 _slp_maximum_unroll_factor(0) { 220 init_class_id(Class_CountedLoop); 221 // Initialize _trip_count to the largest possible value. 222 // Will be reset (lower) if the loop's trip count is known. 223 } 224 225 virtual int Opcode() const; 226 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); 227 228 Node *init_control() const { return in(EntryControl); } 229 Node *back_control() const { return in(LoopBackControl); } 230 CountedLoopEndNode *loopexit_or_null() const; 231 CountedLoopEndNode *loopexit() const; 232 Node *init_trip() const; 233 Node *stride() const; 234 int stride_con() const; 235 bool stride_is_con() const; 236 Node *limit() const; 237 Node *incr() const; 238 Node *phi() const; 239 240 // Match increment with optional truncation 241 static Node* match_incr_with_optional_truncation(Node* expr, Node** trunc1, Node** trunc2, const TypeInt** trunc_type); 242 243 // A 'main' loop has a pre-loop and a post-loop. The 'main' loop 244 // can run short a few iterations and may start a few iterations in. 245 // It will be RCE'd and unrolled and aligned. 246 247 // A following 'post' loop will run any remaining iterations. Used 248 // during Range Check Elimination, the 'post' loop will do any final 249 // iterations with full checks. Also used by Loop Unrolling, where 250 // the 'post' loop will do any epilog iterations needed. Basically, 251 // a 'post' loop can not profitably be further unrolled or RCE'd. 252 253 // A preceding 'pre' loop will run at least 1 iteration (to do peeling), 254 // it may do under-flow checks for RCE and may do alignment iterations 255 // so the following main loop 'knows' that it is striding down cache 256 // lines. 257 258 // A 'main' loop that is ONLY unrolled or peeled, never RCE'd or 259 // Aligned, may be missing it's pre-loop. 260 bool is_normal_loop () const { return (_loop_flags&PreMainPostFlagsMask) == Normal; } 261 bool is_pre_loop () const { return (_loop_flags&PreMainPostFlagsMask) == Pre; } 262 bool is_main_loop () const { return (_loop_flags&PreMainPostFlagsMask) == Main; } 263 bool is_post_loop () const { return (_loop_flags&PreMainPostFlagsMask) == Post; } 264 bool is_reduction_loop() const { return (_loop_flags&HasReductions) == HasReductions; } 265 bool was_slp_analyzed () const { return (_loop_flags&WasSlpAnalyzed) == WasSlpAnalyzed; } 266 bool has_passed_slp () const { return (_loop_flags&PassedSlpAnalysis) == PassedSlpAnalysis; } 267 bool is_unroll_only () const { return (_loop_flags&DoUnrollOnly) == DoUnrollOnly; } 268 bool is_main_no_pre_loop() const { return _loop_flags & MainHasNoPreLoop; } 269 bool has_atomic_post_loop () const { return (_loop_flags & HasAtomicPostLoop) == HasAtomicPostLoop; } 270 void set_main_no_pre_loop() { _loop_flags |= MainHasNoPreLoop; } 271 272 int main_idx() const { return _main_idx; } 273 274 275 void set_pre_loop (CountedLoopNode *main) { assert(is_normal_loop(),""); _loop_flags |= Pre ; _main_idx = main->_idx; } 276 void set_main_loop ( ) { assert(is_normal_loop(),""); _loop_flags |= Main; } 277 void set_post_loop (CountedLoopNode *main) { assert(is_normal_loop(),""); _loop_flags |= Post; _main_idx = main->_idx; } 278 void set_normal_loop( ) { _loop_flags &= ~PreMainPostFlagsMask; } 279 280 void set_trip_count(uint tc) { _trip_count = tc; } 281 uint trip_count() { return _trip_count; } 282 283 bool has_exact_trip_count() const { return (_loop_flags & HasExactTripCount) != 0; } 284 void set_exact_trip_count(uint tc) { 285 _trip_count = tc; 286 _loop_flags |= HasExactTripCount; 287 } 288 void set_nonexact_trip_count() { 289 _loop_flags &= ~HasExactTripCount; 290 } 291 void set_notpassed_slp() { 292 _loop_flags &= ~PassedSlpAnalysis; 293 } 294 295 void double_unrolled_count() { _unrolled_count_log2++; } 296 int unrolled_count() { return 1 << MIN2(_unrolled_count_log2, BitsPerInt-3); } 297 298 void set_node_count_before_unroll(int ct) { _node_count_before_unroll = ct; } 299 int node_count_before_unroll() { return _node_count_before_unroll; } 300 void set_slp_max_unroll(int unroll_factor) { _slp_maximum_unroll_factor = unroll_factor; } 301 int slp_max_unroll() const { return _slp_maximum_unroll_factor; } 302 303 virtual LoopNode* skip_strip_mined(int expect_skeleton = 1); 304 OuterStripMinedLoopNode* outer_loop() const; 305 virtual IfTrueNode* outer_loop_tail() const; 306 virtual OuterStripMinedLoopEndNode* outer_loop_end() const; 307 virtual IfFalseNode* outer_loop_exit() const; 308 virtual SafePointNode* outer_safepoint() const; 309 310 // If this is a main loop in a pre/main/post loop nest, walk over 311 // the predicates that were inserted by 312 // duplicate_predicates()/add_range_check_predicate() 313 static Node* skip_predicates_from_entry(Node* ctrl); 314 Node* skip_predicates(); 315 316 #ifndef PRODUCT 317 virtual void dump_spec(outputStream *st) const; 318 #endif 319 }; 320 321 //------------------------------CountedLoopEndNode----------------------------- 322 // CountedLoopEndNodes end simple trip counted loops. They act much like 323 // IfNodes. 324 class CountedLoopEndNode : public IfNode { 325 public: 326 enum { TestControl, TestValue }; 327 328 CountedLoopEndNode( Node *control, Node *test, float prob, float cnt ) 329 : IfNode( control, test, prob, cnt) { 330 init_class_id(Class_CountedLoopEnd); 331 } 332 virtual int Opcode() const; 333 334 Node *cmp_node() const { return (in(TestValue)->req() >=2) ? in(TestValue)->in(1) : NULL; } 335 Node *incr() const { Node *tmp = cmp_node(); return (tmp && tmp->req()==3) ? tmp->in(1) : NULL; } 336 Node *limit() const { Node *tmp = cmp_node(); return (tmp && tmp->req()==3) ? tmp->in(2) : NULL; } 337 Node *stride() const { Node *tmp = incr (); return (tmp && tmp->req()==3) ? tmp->in(2) : NULL; } 338 Node *init_trip() const { Node *tmp = phi (); return (tmp && tmp->req()==3) ? tmp->in(1) : NULL; } 339 int stride_con() const; 340 bool stride_is_con() const { Node *tmp = stride (); return (tmp != NULL && tmp->is_Con()); } 341 BoolTest::mask test_trip() const { return in(TestValue)->as_Bool()->_test._test; } 342 PhiNode *phi() const { 343 Node *tmp = incr(); 344 if (tmp && tmp->req() == 3) { 345 Node* phi = tmp->in(1); 346 if (phi->is_Phi()) { 347 return phi->as_Phi(); 348 } 349 } 350 return NULL; 351 } 352 CountedLoopNode *loopnode() const { 353 // The CountedLoopNode that goes with this CountedLoopEndNode may 354 // have been optimized out by the IGVN so be cautious with the 355 // pattern matching on the graph 356 PhiNode* iv_phi = phi(); 357 if (iv_phi == NULL) { 358 return NULL; 359 } 360 Node *ln = iv_phi->in(0); 361 if (ln->is_CountedLoop() && ln->as_CountedLoop()->loopexit_or_null() == this) { 362 return (CountedLoopNode*)ln; 363 } 364 return NULL; 365 } 366 367 #ifndef PRODUCT 368 virtual void dump_spec(outputStream *st) const; 369 #endif 370 }; 371 372 373 inline CountedLoopEndNode* CountedLoopNode::loopexit_or_null() const { 374 Node* bctrl = back_control(); 375 if (bctrl == NULL) return NULL; 376 377 Node* lexit = bctrl->in(0); 378 return (CountedLoopEndNode*) 379 (lexit->Opcode() == Op_CountedLoopEnd ? lexit : NULL); 380 } 381 382 inline CountedLoopEndNode* CountedLoopNode::loopexit() const { 383 CountedLoopEndNode* cle = loopexit_or_null(); 384 assert(cle != NULL, "loopexit is NULL"); 385 return cle; 386 } 387 388 inline Node* CountedLoopNode::init_trip() const { 389 CountedLoopEndNode* cle = loopexit_or_null(); 390 return cle != NULL ? cle->init_trip() : NULL; 391 } 392 inline Node* CountedLoopNode::stride() const { 393 CountedLoopEndNode* cle = loopexit_or_null(); 394 return cle != NULL ? cle->stride() : NULL; 395 } 396 inline int CountedLoopNode::stride_con() const { 397 CountedLoopEndNode* cle = loopexit_or_null(); 398 return cle != NULL ? cle->stride_con() : 0; 399 } 400 inline bool CountedLoopNode::stride_is_con() const { 401 CountedLoopEndNode* cle = loopexit_or_null(); 402 return cle != NULL && cle->stride_is_con(); 403 } 404 inline Node* CountedLoopNode::limit() const { 405 CountedLoopEndNode* cle = loopexit_or_null(); 406 return cle != NULL ? cle->limit() : NULL; 407 } 408 inline Node* CountedLoopNode::incr() const { 409 CountedLoopEndNode* cle = loopexit_or_null(); 410 return cle != NULL ? cle->incr() : NULL; 411 } 412 inline Node* CountedLoopNode::phi() const { 413 CountedLoopEndNode* cle = loopexit_or_null(); 414 return cle != NULL ? cle->phi() : NULL; 415 } 416 417 //------------------------------LoopLimitNode----------------------------- 418 // Counted Loop limit node which represents exact final iterator value: 419 // trip_count = (limit - init_trip + stride - 1)/stride 420 // final_value= trip_count * stride + init_trip. 421 // Use HW instructions to calculate it when it can overflow in integer. 422 // Note, final_value should fit into integer since counted loop has 423 // limit check: limit <= max_int-stride. 424 class LoopLimitNode : public Node { 425 enum { Init=1, Limit=2, Stride=3 }; 426 public: 427 LoopLimitNode( Compile* C, Node *init, Node *limit, Node *stride ) : Node(0,init,limit,stride) { 428 // Put it on the Macro nodes list to optimize during macro nodes expansion. 429 init_flags(Flag_is_macro); 430 C->add_macro_node(this); 431 } 432 virtual int Opcode() const; 433 virtual const Type *bottom_type() const { return TypeInt::INT; } 434 virtual uint ideal_reg() const { return Op_RegI; } 435 virtual const Type* Value(PhaseGVN* phase) const; 436 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); 437 virtual Node* Identity(PhaseGVN* phase); 438 }; 439 440 // Support for strip mining 441 class OuterStripMinedLoopNode : public LoopNode { 442 private: 443 CountedLoopNode* inner_loop() const; 444 public: 445 OuterStripMinedLoopNode(Compile* C, Node *entry, Node *backedge) 446 : LoopNode(entry, backedge) { 447 init_class_id(Class_OuterStripMinedLoop); 448 init_flags(Flag_is_macro); 449 C->add_macro_node(this); 450 } 451 452 virtual int Opcode() const; 453 454 virtual IfTrueNode* outer_loop_tail() const; 455 virtual OuterStripMinedLoopEndNode* outer_loop_end() const; 456 virtual IfFalseNode* outer_loop_exit() const; 457 virtual SafePointNode* outer_safepoint() const; 458 void adjust_strip_mined_loop(PhaseIterGVN* igvn); 459 }; 460 461 class OuterStripMinedLoopEndNode : public IfNode { 462 public: 463 OuterStripMinedLoopEndNode(Node *control, Node *test, float prob, float cnt) 464 : IfNode(control, test, prob, cnt) { 465 init_class_id(Class_OuterStripMinedLoopEnd); 466 } 467 468 virtual int Opcode() const; 469 470 virtual const Type* Value(PhaseGVN* phase) const; 471 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); 472 }; 473 474 // -----------------------------IdealLoopTree---------------------------------- 475 class IdealLoopTree : public ResourceObj { 476 public: 477 IdealLoopTree *_parent; // Parent in loop tree 478 IdealLoopTree *_next; // Next sibling in loop tree 479 IdealLoopTree *_child; // First child in loop tree 480 481 // The head-tail backedge defines the loop. 482 // If a loop has multiple backedges, this is addressed during cleanup where 483 // we peel off the multiple backedges, merging all edges at the bottom and 484 // ensuring that one proper backedge flow into the loop. 485 Node *_head; // Head of loop 486 Node *_tail; // Tail of loop 487 inline Node *tail(); // Handle lazy update of _tail field 488 PhaseIdealLoop* _phase; 489 int _local_loop_unroll_limit; 490 int _local_loop_unroll_factor; 491 492 Node_List _body; // Loop body for inner loops 493 494 uint8_t _nest; // Nesting depth 495 uint8_t _irreducible:1, // True if irreducible 496 _has_call:1, // True if has call safepoint 497 _has_sfpt:1, // True if has non-call safepoint 498 _rce_candidate:1; // True if candidate for range check elimination 499 500 Node_List* _safepts; // List of safepoints in this loop 501 Node_List* _required_safept; // A inner loop cannot delete these safepts; 502 bool _allow_optimizations; // Allow loop optimizations 503 504 IdealLoopTree( PhaseIdealLoop* phase, Node *head, Node *tail ) 505 : _parent(0), _next(0), _child(0), 506 _head(head), _tail(tail), 507 _phase(phase), 508 _local_loop_unroll_limit(0), _local_loop_unroll_factor(0), 509 _nest(0), _irreducible(0), _has_call(0), _has_sfpt(0), _rce_candidate(0), 510 _safepts(NULL), 511 _required_safept(NULL), 512 _allow_optimizations(true) 513 { 514 precond(_head != NULL); 515 precond(_tail != NULL); 516 } 517 518 // Is 'l' a member of 'this'? 519 bool is_member(const IdealLoopTree *l) const; // Test for nested membership 520 521 // Set loop nesting depth. Accumulate has_call bits. 522 int set_nest( uint depth ); 523 524 // Split out multiple fall-in edges from the loop header. Move them to a 525 // private RegionNode before the loop. This becomes the loop landing pad. 526 void split_fall_in( PhaseIdealLoop *phase, int fall_in_cnt ); 527 528 // Split out the outermost loop from this shared header. 529 void split_outer_loop( PhaseIdealLoop *phase ); 530 531 // Merge all the backedges from the shared header into a private Region. 532 // Feed that region as the one backedge to this loop. 533 void merge_many_backedges( PhaseIdealLoop *phase ); 534 535 // Split shared headers and insert loop landing pads. 536 // Insert a LoopNode to replace the RegionNode. 537 // Returns TRUE if loop tree is structurally changed. 538 bool beautify_loops( PhaseIdealLoop *phase ); 539 540 // Perform optimization to use the loop predicates for null checks and range checks. 541 // Applies to any loop level (not just the innermost one) 542 bool loop_predication( PhaseIdealLoop *phase); 543 544 // Perform iteration-splitting on inner loops. Split iterations to 545 // avoid range checks or one-shot null checks. Returns false if the 546 // current round of loop opts should stop. 547 bool iteration_split( PhaseIdealLoop *phase, Node_List &old_new ); 548 549 // Driver for various flavors of iteration splitting. Returns false 550 // if the current round of loop opts should stop. 551 bool iteration_split_impl( PhaseIdealLoop *phase, Node_List &old_new ); 552 553 // Given dominators, try to find loops with calls that must always be 554 // executed (call dominates loop tail). These loops do not need non-call 555 // safepoints (ncsfpt). 556 void check_safepts(VectorSet &visited, Node_List &stack); 557 558 // Allpaths backwards scan from loop tail, terminating each path at first safepoint 559 // encountered. 560 void allpaths_check_safepts(VectorSet &visited, Node_List &stack); 561 562 // Remove safepoints from loop. Optionally keeping one. 563 void remove_safepoints(PhaseIdealLoop* phase, bool keep_one); 564 565 // Convert to counted loops where possible 566 void counted_loop( PhaseIdealLoop *phase ); 567 568 // Check for Node being a loop-breaking test 569 Node *is_loop_exit(Node *iff) const; 570 571 // Remove simplistic dead code from loop body 572 void DCE_loop_body(); 573 574 // Look for loop-exit tests with my 50/50 guesses from the Parsing stage. 575 // Replace with a 1-in-10 exit guess. 576 void adjust_loop_exit_prob( PhaseIdealLoop *phase ); 577 578 // Return TRUE or FALSE if the loop should never be RCE'd or aligned. 579 // Useful for unrolling loops with NO array accesses. 580 bool policy_peel_only( PhaseIdealLoop *phase ) const; 581 582 // Return TRUE or FALSE if the loop should be unswitched -- clone 583 // loop with an invariant test 584 bool policy_unswitching( PhaseIdealLoop *phase ) const; 585 586 // Micro-benchmark spamming. Remove empty loops. 587 bool do_remove_empty_loop( PhaseIdealLoop *phase ); 588 589 // Convert one iteration loop into normal code. 590 bool do_one_iteration_loop( PhaseIdealLoop *phase ); 591 592 // Return TRUE or FALSE if the loop should be peeled or not. Peel if we can 593 // move some loop-invariant test (usually a null-check) before the loop. 594 bool policy_peeling(PhaseIdealLoop *phase); 595 596 uint estimate_peeling(PhaseIdealLoop *phase); 597 598 // Return TRUE or FALSE if the loop should be maximally unrolled. Stash any 599 // known trip count in the counted loop node. 600 bool policy_maximally_unroll(PhaseIdealLoop *phase) const; 601 602 // Return TRUE or FALSE if the loop should be unrolled or not. Apply unroll 603 // if the loop is a counted loop and the loop body is small enough. 604 bool policy_unroll(PhaseIdealLoop *phase); 605 606 // Loop analyses to map to a maximal superword unrolling for vectorization. 607 void policy_unroll_slp_analysis(CountedLoopNode *cl, PhaseIdealLoop *phase, int future_unroll_ct); 608 609 // Return TRUE or FALSE if the loop should be range-check-eliminated. 610 // Gather a list of IF tests that are dominated by iteration splitting; 611 // also gather the end of the first split and the start of the 2nd split. 612 bool policy_range_check( PhaseIdealLoop *phase ) const; 613 614 // Return TRUE or FALSE if the loop should be cache-line aligned. 615 // Gather the expression that does the alignment. Note that only 616 // one array base can be aligned in a loop (unless the VM guarantees 617 // mutual alignment). Note that if we vectorize short memory ops 618 // into longer memory ops, we may want to increase alignment. 619 bool policy_align( PhaseIdealLoop *phase ) const; 620 621 // Return TRUE if "iff" is a range check. 622 bool is_range_check_if(IfNode *iff, PhaseIdealLoop *phase, Invariance& invar) const; 623 624 // Estimate the number of nodes required when cloning a loop (body). 625 uint est_loop_clone_sz(uint factor) const; 626 // Estimate the number of nodes required when unrolling a loop (body). 627 uint est_loop_unroll_sz(uint factor) const; 628 629 // Compute loop trip count if possible 630 void compute_trip_count(PhaseIdealLoop* phase); 631 632 // Compute loop trip count from profile data 633 float compute_profile_trip_cnt_helper(Node* n); 634 void compute_profile_trip_cnt( PhaseIdealLoop *phase ); 635 636 // Reassociate invariant expressions. 637 void reassociate_invariants(PhaseIdealLoop *phase); 638 // Reassociate invariant add and subtract expressions. 639 Node* reassociate_add_sub(Node* n1, PhaseIdealLoop *phase); 640 // Return nonzero index of invariant operand if invariant and variant 641 // are combined with an Add or Sub. Helper for reassociate_invariants. 642 int is_invariant_addition(Node* n, PhaseIdealLoop *phase); 643 644 // Return true if n is invariant 645 bool is_invariant(Node* n) const; 646 647 // Put loop body on igvn work list 648 void record_for_igvn(); 649 650 bool is_root() { return _parent == NULL; } 651 // A proper/reducible loop w/o any (occasional) dead back-edge. 652 bool is_loop() { return !_irreducible && !tail()->is_top(); } 653 bool is_counted() { return is_loop() && _head->is_CountedLoop(); } 654 bool is_innermost() { return is_loop() && _child == NULL; } 655 656 void remove_main_post_loops(CountedLoopNode *cl, PhaseIdealLoop *phase); 657 658 #ifndef PRODUCT 659 void dump_head() const; // Dump loop head only 660 void dump() const; // Dump this loop recursively 661 void verify_tree(IdealLoopTree *loop, const IdealLoopTree *parent) const; 662 #endif 663 664 private: 665 enum { EMPTY_LOOP_SIZE = 7 }; // Number of nodes in an empty loop. 666 667 // Estimate the number of nodes resulting from control and data flow merge. 668 uint est_loop_flow_merge_sz() const; 669 }; 670 671 // -----------------------------PhaseIdealLoop--------------------------------- 672 // Computes the mapping from Nodes to IdealLoopTrees. Organizes IdealLoopTrees 673 // into a loop tree. Drives the loop-based transformations on the ideal graph. 674 class PhaseIdealLoop : public PhaseTransform { 675 friend class IdealLoopTree; 676 friend class SuperWord; 677 friend class CountedLoopReserveKit; 678 friend class ShenandoahBarrierC2Support; 679 friend class AutoNodeBudget; 680 681 // Pre-computed def-use info 682 PhaseIterGVN &_igvn; 683 684 // Head of loop tree 685 IdealLoopTree* _ltree_root; 686 687 // Array of pre-order numbers, plus post-visited bit. 688 // ZERO for not pre-visited. EVEN for pre-visited but not post-visited. 689 // ODD for post-visited. Other bits are the pre-order number. 690 uint *_preorders; 691 uint _max_preorder; 692 693 const PhaseIdealLoop* _verify_me; 694 bool _verify_only; 695 696 // Allocate _preorders[] array 697 void allocate_preorders() { 698 _max_preorder = C->unique()+8; 699 _preorders = NEW_RESOURCE_ARRAY(uint, _max_preorder); 700 memset(_preorders, 0, sizeof(uint) * _max_preorder); 701 } 702 703 // Allocate _preorders[] array 704 void reallocate_preorders() { 705 if ( _max_preorder < C->unique() ) { 706 _preorders = REALLOC_RESOURCE_ARRAY(uint, _preorders, _max_preorder, C->unique()); 707 _max_preorder = C->unique(); 708 } 709 memset(_preorders, 0, sizeof(uint) * _max_preorder); 710 } 711 712 // Check to grow _preorders[] array for the case when build_loop_tree_impl() 713 // adds new nodes. 714 void check_grow_preorders( ) { 715 if ( _max_preorder < C->unique() ) { 716 uint newsize = _max_preorder<<1; // double size of array 717 _preorders = REALLOC_RESOURCE_ARRAY(uint, _preorders, _max_preorder, newsize); 718 memset(&_preorders[_max_preorder],0,sizeof(uint)*(newsize-_max_preorder)); 719 _max_preorder = newsize; 720 } 721 } 722 // Check for pre-visited. Zero for NOT visited; non-zero for visited. 723 int is_visited( Node *n ) const { return _preorders[n->_idx]; } 724 // Pre-order numbers are written to the Nodes array as low-bit-set values. 725 void set_preorder_visited( Node *n, int pre_order ) { 726 assert( !is_visited( n ), "already set" ); 727 _preorders[n->_idx] = (pre_order<<1); 728 }; 729 // Return pre-order number. 730 int get_preorder( Node *n ) const { assert( is_visited(n), "" ); return _preorders[n->_idx]>>1; } 731 732 // Check for being post-visited. 733 // Should be previsited already (checked with assert(is_visited(n))). 734 int is_postvisited( Node *n ) const { assert( is_visited(n), "" ); return _preorders[n->_idx]&1; } 735 736 // Mark as post visited 737 void set_postvisited( Node *n ) { assert( !is_postvisited( n ), "" ); _preorders[n->_idx] |= 1; } 738 739 public: 740 // Set/get control node out. Set lower bit to distinguish from IdealLoopTree 741 // Returns true if "n" is a data node, false if it's a control node. 742 bool has_ctrl( Node *n ) const { return ((intptr_t)_nodes[n->_idx]) & 1; } 743 744 private: 745 // clear out dead code after build_loop_late 746 Node_List _deadlist; 747 748 // Support for faster execution of get_late_ctrl()/dom_lca() 749 // when a node has many uses and dominator depth is deep. 750 Node_Array _dom_lca_tags; 751 void init_dom_lca_tags(); 752 void clear_dom_lca_tags(); 753 754 // Helper for debugging bad dominance relationships 755 bool verify_dominance(Node* n, Node* use, Node* LCA, Node* early); 756 757 Node* compute_lca_of_uses(Node* n, Node* early, bool verify = false); 758 759 // Inline wrapper for frequent cases: 760 // 1) only one use 761 // 2) a use is the same as the current LCA passed as 'n1' 762 Node *dom_lca_for_get_late_ctrl( Node *lca, Node *n, Node *tag ) { 763 assert( n->is_CFG(), "" ); 764 // Fast-path NULL lca 765 if( lca != NULL && lca != n ) { 766 assert( lca->is_CFG(), "" ); 767 // find LCA of all uses 768 n = dom_lca_for_get_late_ctrl_internal( lca, n, tag ); 769 } 770 return find_non_split_ctrl(n); 771 } 772 Node *dom_lca_for_get_late_ctrl_internal( Node *lca, Node *n, Node *tag ); 773 774 // Helper function for directing control inputs away from CFG split points. 775 Node *find_non_split_ctrl( Node *ctrl ) const { 776 if (ctrl != NULL) { 777 if (ctrl->is_MultiBranch()) { 778 ctrl = ctrl->in(0); 779 } 780 assert(ctrl->is_CFG(), "CFG"); 781 } 782 return ctrl; 783 } 784 785 Node* cast_incr_before_loop(Node* incr, Node* ctrl, Node* loop); 786 void duplicate_predicates_helper(Node* predicate, Node* start, Node* end, IdealLoopTree* outer_loop, 787 LoopNode* outer_main_head, uint dd_main_head); 788 void duplicate_predicates(CountedLoopNode* pre_head, Node* start, Node* end, IdealLoopTree* outer_loop, 789 LoopNode* outer_main_head, uint dd_main_head); 790 Node* clone_skeleton_predicate(Node* iff, Node* value, Node* predicate, Node* uncommon_proj, 791 Node* current_proj, IdealLoopTree* outer_loop, Node* prev_proj); 792 bool skeleton_predicate_has_opaque(IfNode* iff); 793 void update_skeleton_predicates(Node* ctrl, CountedLoopNode* loop_head, Node* init, int stride_con); 794 void insert_loop_limit_check(ProjNode* limit_check_proj, Node* cmp_limit, Node* bol); 795 796 public: 797 798 PhaseIterGVN &igvn() const { return _igvn; } 799 800 static bool is_canonical_loop_entry(CountedLoopNode* cl); 801 802 bool has_node( Node* n ) const { 803 guarantee(n != NULL, "No Node."); 804 return _nodes[n->_idx] != NULL; 805 } 806 // check if transform created new nodes that need _ctrl recorded 807 Node *get_late_ctrl( Node *n, Node *early ); 808 Node *get_early_ctrl( Node *n ); 809 Node *get_early_ctrl_for_expensive(Node *n, Node* earliest); 810 void set_early_ctrl( Node *n ); 811 void set_subtree_ctrl( Node *root ); 812 void set_ctrl( Node *n, Node *ctrl ) { 813 assert( !has_node(n) || has_ctrl(n), "" ); 814 assert( ctrl->in(0), "cannot set dead control node" ); 815 assert( ctrl == find_non_split_ctrl(ctrl), "must set legal crtl" ); 816 _nodes.map( n->_idx, (Node*)((intptr_t)ctrl + 1) ); 817 } 818 // Set control and update loop membership 819 void set_ctrl_and_loop(Node* n, Node* ctrl) { 820 IdealLoopTree* old_loop = get_loop(get_ctrl(n)); 821 IdealLoopTree* new_loop = get_loop(ctrl); 822 if (old_loop != new_loop) { 823 if (old_loop->_child == NULL) old_loop->_body.yank(n); 824 if (new_loop->_child == NULL) new_loop->_body.push(n); 825 } 826 set_ctrl(n, ctrl); 827 } 828 // Control nodes can be replaced or subsumed. During this pass they 829 // get their replacement Node in slot 1. Instead of updating the block 830 // location of all Nodes in the subsumed block, we lazily do it. As we 831 // pull such a subsumed block out of the array, we write back the final 832 // correct block. 833 Node *get_ctrl( Node *i ) { 834 835 assert(has_node(i), ""); 836 Node *n = get_ctrl_no_update(i); 837 _nodes.map( i->_idx, (Node*)((intptr_t)n + 1) ); 838 assert(has_node(i) && has_ctrl(i), ""); 839 assert(n == find_non_split_ctrl(n), "must return legal ctrl" ); 840 return n; 841 } 842 // true if CFG node d dominates CFG node n 843 bool is_dominator(Node *d, Node *n); 844 // return get_ctrl for a data node and self(n) for a CFG node 845 Node* ctrl_or_self(Node* n) { 846 if (has_ctrl(n)) 847 return get_ctrl(n); 848 else { 849 assert (n->is_CFG(), "must be a CFG node"); 850 return n; 851 } 852 } 853 854 Node *get_ctrl_no_update_helper(Node *i) const { 855 assert(has_ctrl(i), "should be control, not loop"); 856 return (Node*)(((intptr_t)_nodes[i->_idx]) & ~1); 857 } 858 859 Node *get_ctrl_no_update(Node *i) const { 860 assert( has_ctrl(i), "" ); 861 Node *n = get_ctrl_no_update_helper(i); 862 if (!n->in(0)) { 863 // Skip dead CFG nodes 864 do { 865 n = get_ctrl_no_update_helper(n); 866 } while (!n->in(0)); 867 n = find_non_split_ctrl(n); 868 } 869 return n; 870 } 871 872 // Check for loop being set 873 // "n" must be a control node. Returns true if "n" is known to be in a loop. 874 bool has_loop( Node *n ) const { 875 assert(!has_node(n) || !has_ctrl(n), ""); 876 return has_node(n); 877 } 878 // Set loop 879 void set_loop( Node *n, IdealLoopTree *loop ) { 880 _nodes.map(n->_idx, (Node*)loop); 881 } 882 // Lazy-dazy update of 'get_ctrl' and 'idom_at' mechanisms. Replace 883 // the 'old_node' with 'new_node'. Kill old-node. Add a reference 884 // from old_node to new_node to support the lazy update. Reference 885 // replaces loop reference, since that is not needed for dead node. 886 void lazy_update(Node *old_node, Node *new_node) { 887 assert(old_node != new_node, "no cycles please"); 888 // Re-use the side array slot for this node to provide the 889 // forwarding pointer. 890 _nodes.map(old_node->_idx, (Node*)((intptr_t)new_node + 1)); 891 } 892 void lazy_replace(Node *old_node, Node *new_node) { 893 _igvn.replace_node(old_node, new_node); 894 lazy_update(old_node, new_node); 895 } 896 897 private: 898 899 // Place 'n' in some loop nest, where 'n' is a CFG node 900 void build_loop_tree(); 901 int build_loop_tree_impl( Node *n, int pre_order ); 902 // Insert loop into the existing loop tree. 'innermost' is a leaf of the 903 // loop tree, not the root. 904 IdealLoopTree *sort( IdealLoopTree *loop, IdealLoopTree *innermost ); 905 906 // Place Data nodes in some loop nest 907 void build_loop_early( VectorSet &visited, Node_List &worklist, Node_Stack &nstack ); 908 void build_loop_late ( VectorSet &visited, Node_List &worklist, Node_Stack &nstack ); 909 void build_loop_late_post_work(Node* n, bool pinned); 910 void build_loop_late_post(Node* n); 911 void verify_strip_mined_scheduling(Node *n, Node* least); 912 913 // Array of immediate dominance info for each CFG node indexed by node idx 914 private: 915 uint _idom_size; 916 Node **_idom; // Array of immediate dominators 917 uint *_dom_depth; // Used for fast LCA test 918 GrowableArray<uint>* _dom_stk; // For recomputation of dom depth 919 920 // Perform verification that the graph is valid. 921 PhaseIdealLoop( PhaseIterGVN &igvn) : 922 PhaseTransform(Ideal_Loop), 923 _igvn(igvn), 924 _verify_me(NULL), 925 _verify_only(true), 926 _dom_lca_tags(arena()), // Thread::resource_area 927 _nodes_required(UINT_MAX) { 928 build_and_optimize(LoopOptsVerify); 929 } 930 931 // build the loop tree and perform any requested optimizations 932 void build_and_optimize(LoopOptsMode mode); 933 934 // Dominators for the sea of nodes 935 void Dominators(); 936 937 // Compute the Ideal Node to Loop mapping 938 PhaseIdealLoop(PhaseIterGVN &igvn, LoopOptsMode mode) : 939 PhaseTransform(Ideal_Loop), 940 _igvn(igvn), 941 _verify_me(NULL), 942 _verify_only(false), 943 _dom_lca_tags(arena()), // Thread::resource_area 944 _nodes_required(UINT_MAX) { 945 build_and_optimize(mode); 946 } 947 948 // Verify that verify_me made the same decisions as a fresh run. 949 PhaseIdealLoop(PhaseIterGVN &igvn, const PhaseIdealLoop *verify_me) : 950 PhaseTransform(Ideal_Loop), 951 _igvn(igvn), 952 _verify_me(verify_me), 953 _verify_only(false), 954 _dom_lca_tags(arena()), // Thread::resource_area 955 _nodes_required(UINT_MAX) { 956 build_and_optimize(LoopOptsVerify); 957 } 958 959 public: 960 Node* idom_no_update(Node* d) const { 961 return idom_no_update(d->_idx); 962 } 963 964 Node* idom_no_update(uint didx) const { 965 assert(didx < _idom_size, "oob"); 966 Node* n = _idom[didx]; 967 assert(n != NULL,"Bad immediate dominator info."); 968 while (n->in(0) == NULL) { // Skip dead CFG nodes 969 n = (Node*)(((intptr_t)_nodes[n->_idx]) & ~1); 970 assert(n != NULL,"Bad immediate dominator info."); 971 } 972 return n; 973 } 974 975 Node *idom(Node* d) const { 976 return idom(d->_idx); 977 } 978 979 Node *idom(uint didx) const { 980 Node *n = idom_no_update(didx); 981 _idom[didx] = n; // Lazily remove dead CFG nodes from table. 982 return n; 983 } 984 985 uint dom_depth(Node* d) const { 986 guarantee(d != NULL, "Null dominator info."); 987 guarantee(d->_idx < _idom_size, ""); 988 return _dom_depth[d->_idx]; 989 } 990 void set_idom(Node* d, Node* n, uint dom_depth); 991 // Locally compute IDOM using dom_lca call 992 Node *compute_idom( Node *region ) const; 993 // Recompute dom_depth 994 void recompute_dom_depth(); 995 996 // Is safept not required by an outer loop? 997 bool is_deleteable_safept(Node* sfpt); 998 999 // Replace parallel induction variable (parallel to trip counter) 1000 void replace_parallel_iv(IdealLoopTree *loop); 1001 1002 Node *dom_lca( Node *n1, Node *n2 ) const { 1003 return find_non_split_ctrl(dom_lca_internal(n1, n2)); 1004 } 1005 Node *dom_lca_internal( Node *n1, Node *n2 ) const; 1006 1007 // Build and verify the loop tree without modifying the graph. This 1008 // is useful to verify that all inputs properly dominate their uses. 1009 static void verify(PhaseIterGVN& igvn) { 1010 #ifdef ASSERT 1011 ResourceMark rm; 1012 PhaseIdealLoop v(igvn); 1013 #endif 1014 } 1015 1016 // Recommended way to use PhaseIdealLoop. 1017 // Run PhaseIdealLoop in some mode and allocates a local scope for memory allocations. 1018 static void optimize(PhaseIterGVN &igvn, LoopOptsMode mode) { 1019 ResourceMark rm; 1020 PhaseIdealLoop v(igvn, mode); 1021 } 1022 1023 // True if the method has at least 1 irreducible loop 1024 bool _has_irreducible_loops; 1025 1026 // Per-Node transform 1027 virtual Node* transform(Node* n) { return 0; } 1028 1029 bool is_counted_loop(Node* n, IdealLoopTree* &loop); 1030 IdealLoopTree* create_outer_strip_mined_loop(BoolNode *test, Node *cmp, Node *init_control, 1031 IdealLoopTree* loop, float cl_prob, float le_fcnt, 1032 Node*& entry_control, Node*& iffalse); 1033 1034 Node* exact_limit( IdealLoopTree *loop ); 1035 1036 // Return a post-walked LoopNode 1037 IdealLoopTree *get_loop( Node *n ) const { 1038 // Dead nodes have no loop, so return the top level loop instead 1039 if (!has_node(n)) return _ltree_root; 1040 assert(!has_ctrl(n), ""); 1041 return (IdealLoopTree*)_nodes[n->_idx]; 1042 } 1043 1044 IdealLoopTree* ltree_root() const { return _ltree_root; } 1045 1046 // Is 'n' a (nested) member of 'loop'? 1047 int is_member( const IdealLoopTree *loop, Node *n ) const { 1048 return loop->is_member(get_loop(n)); } 1049 1050 // This is the basic building block of the loop optimizations. It clones an 1051 // entire loop body. It makes an old_new loop body mapping; with this 1052 // mapping you can find the new-loop equivalent to an old-loop node. All 1053 // new-loop nodes are exactly equal to their old-loop counterparts, all 1054 // edges are the same. All exits from the old-loop now have a RegionNode 1055 // that merges the equivalent new-loop path. This is true even for the 1056 // normal "loop-exit" condition. All uses of loop-invariant old-loop values 1057 // now come from (one or more) Phis that merge their new-loop equivalents. 1058 // Parameter side_by_side_idom: 1059 // When side_by_size_idom is NULL, the dominator tree is constructed for 1060 // the clone loop to dominate the original. Used in construction of 1061 // pre-main-post loop sequence. 1062 // When nonnull, the clone and original are side-by-side, both are 1063 // dominated by the passed in side_by_side_idom node. Used in 1064 // construction of unswitched loops. 1065 enum CloneLoopMode { 1066 IgnoreStripMined = 0, // Only clone inner strip mined loop 1067 CloneIncludesStripMined = 1, // clone both inner and outer strip mined loops 1068 ControlAroundStripMined = 2 // Only clone inner strip mined loop, 1069 // result control flow branches 1070 // either to inner clone or outer 1071 // strip mined loop. 1072 }; 1073 void clone_loop( IdealLoopTree *loop, Node_List &old_new, int dom_depth, 1074 CloneLoopMode mode, Node* side_by_side_idom = NULL); 1075 void clone_loop_handle_data_uses(Node* old, Node_List &old_new, 1076 IdealLoopTree* loop, IdealLoopTree* companion_loop, 1077 Node_List*& split_if_set, Node_List*& split_bool_set, 1078 Node_List*& split_cex_set, Node_List& worklist, 1079 uint new_counter, CloneLoopMode mode); 1080 void clone_outer_loop(LoopNode* head, CloneLoopMode mode, IdealLoopTree *loop, 1081 IdealLoopTree* outer_loop, int dd, Node_List &old_new, 1082 Node_List& extra_data_nodes); 1083 1084 // If we got the effect of peeling, either by actually peeling or by 1085 // making a pre-loop which must execute at least once, we can remove 1086 // all loop-invariant dominated tests in the main body. 1087 void peeled_dom_test_elim( IdealLoopTree *loop, Node_List &old_new ); 1088 1089 // Generate code to do a loop peel for the given loop (and body). 1090 // old_new is a temp array. 1091 void do_peeling( IdealLoopTree *loop, Node_List &old_new ); 1092 1093 // Add pre and post loops around the given loop. These loops are used 1094 // during RCE, unrolling and aligning loops. 1095 void insert_pre_post_loops( IdealLoopTree *loop, Node_List &old_new, bool peel_only ); 1096 1097 // Add post loop after the given loop. 1098 Node *insert_post_loop(IdealLoopTree *loop, Node_List &old_new, 1099 CountedLoopNode *main_head, CountedLoopEndNode *main_end, 1100 Node *incr, Node *limit, CountedLoopNode *&post_head); 1101 1102 // Add an RCE'd post loop which we will multi-version adapt for run time test path usage 1103 void insert_scalar_rced_post_loop( IdealLoopTree *loop, Node_List &old_new ); 1104 1105 // Add a vector post loop between a vector main loop and the current post loop 1106 void insert_vector_post_loop(IdealLoopTree *loop, Node_List &old_new); 1107 // If Node n lives in the back_ctrl block, we clone a private version of n 1108 // in preheader_ctrl block and return that, otherwise return n. 1109 Node *clone_up_backedge_goo( Node *back_ctrl, Node *preheader_ctrl, Node *n, VectorSet &visited, Node_Stack &clones ); 1110 1111 // Take steps to maximally unroll the loop. Peel any odd iterations, then 1112 // unroll to do double iterations. The next round of major loop transforms 1113 // will repeat till the doubled loop body does all remaining iterations in 1 1114 // pass. 1115 void do_maximally_unroll( IdealLoopTree *loop, Node_List &old_new ); 1116 1117 // Unroll the loop body one step - make each trip do 2 iterations. 1118 void do_unroll( IdealLoopTree *loop, Node_List &old_new, bool adjust_min_trip ); 1119 1120 // Mark vector reduction candidates before loop unrolling 1121 void mark_reductions( IdealLoopTree *loop ); 1122 1123 // Return true if exp is a constant times an induction var 1124 bool is_scaled_iv(Node* exp, Node* iv, int* p_scale); 1125 1126 // Return true if exp is a scaled induction var plus (or minus) constant 1127 bool is_scaled_iv_plus_offset(Node* exp, Node* iv, int* p_scale, Node** p_offset, int depth = 0); 1128 1129 // Create a new if above the uncommon_trap_if_pattern for the predicate to be promoted 1130 ProjNode* create_new_if_for_predicate(ProjNode* cont_proj, Node* new_entry, 1131 Deoptimization::DeoptReason reason, 1132 int opcode); 1133 void register_control(Node* n, IdealLoopTree *loop, Node* pred); 1134 1135 // Clone loop predicates to cloned loops (peeled, unswitched) 1136 static ProjNode* clone_predicate(ProjNode* predicate_proj, Node* new_entry, 1137 Deoptimization::DeoptReason reason, 1138 PhaseIdealLoop* loop_phase, 1139 PhaseIterGVN* igvn); 1140 1141 static Node* clone_loop_predicates(Node* old_entry, Node* new_entry, 1142 bool clone_limit_check, 1143 PhaseIdealLoop* loop_phase, 1144 PhaseIterGVN* igvn); 1145 Node* clone_loop_predicates(Node* old_entry, Node* new_entry, bool clone_limit_check); 1146 1147 static Node* skip_all_loop_predicates(Node* entry); 1148 static Node* skip_loop_predicates(Node* entry); 1149 1150 // Find a good location to insert a predicate 1151 static ProjNode* find_predicate_insertion_point(Node* start_c, Deoptimization::DeoptReason reason); 1152 // Find a predicate 1153 static Node* find_predicate(Node* entry); 1154 // Construct a range check for a predicate if 1155 BoolNode* rc_predicate(IdealLoopTree *loop, Node* ctrl, 1156 int scale, Node* offset, 1157 Node* init, Node* limit, jint stride, 1158 Node* range, bool upper, bool &overflow); 1159 1160 // Implementation of the loop predication to promote checks outside the loop 1161 bool loop_predication_impl(IdealLoopTree *loop); 1162 bool loop_predication_impl_helper(IdealLoopTree *loop, ProjNode* proj, ProjNode *predicate_proj, 1163 CountedLoopNode *cl, ConNode* zero, Invariance& invar, 1164 Deoptimization::DeoptReason reason); 1165 bool loop_predication_should_follow_branches(IdealLoopTree *loop, ProjNode *predicate_proj, float& loop_trip_cnt); 1166 void loop_predication_follow_branches(Node *c, IdealLoopTree *loop, float loop_trip_cnt, 1167 PathFrequency& pf, Node_Stack& stack, VectorSet& seen, 1168 Node_List& if_proj_list); 1169 ProjNode* insert_skeleton_predicate(IfNode* iff, IdealLoopTree *loop, 1170 ProjNode* proj, ProjNode *predicate_proj, 1171 ProjNode* upper_bound_proj, 1172 int scale, Node* offset, 1173 Node* init, Node* limit, jint stride, 1174 Node* rng, bool& overflow, 1175 Deoptimization::DeoptReason reason); 1176 Node* add_range_check_predicate(IdealLoopTree* loop, CountedLoopNode* cl, 1177 Node* predicate_proj, int scale_con, Node* offset, 1178 Node* limit, jint stride_con, Node* value); 1179 1180 // Helper function to collect predicate for eliminating the useless ones 1181 void collect_potentially_useful_predicates(IdealLoopTree *loop, Unique_Node_List &predicate_opaque1); 1182 void eliminate_useless_predicates(); 1183 1184 // Change the control input of expensive nodes to allow commoning by 1185 // IGVN when it is guaranteed to not result in a more frequent 1186 // execution of the expensive node. Return true if progress. 1187 bool process_expensive_nodes(); 1188 1189 // Check whether node has become unreachable 1190 bool is_node_unreachable(Node *n) const { 1191 return !has_node(n) || n->is_unreachable(_igvn); 1192 } 1193 1194 // Eliminate range-checks and other trip-counter vs loop-invariant tests. 1195 int do_range_check( IdealLoopTree *loop, Node_List &old_new ); 1196 1197 // Check to see if do_range_check(...) cleaned the main loop of range-checks 1198 void has_range_checks(IdealLoopTree *loop); 1199 1200 // Process post loops which have range checks and try to build a multi-version 1201 // guard to safely determine if we can execute the post loop which was RCE'd. 1202 bool multi_version_post_loops(IdealLoopTree *rce_loop, IdealLoopTree *legacy_loop); 1203 1204 // Cause the rce'd post loop to optimized away, this happens if we cannot complete multiverioning 1205 void poison_rce_post_loop(IdealLoopTree *rce_loop); 1206 1207 // Create a slow version of the loop by cloning the loop 1208 // and inserting an if to select fast-slow versions. 1209 ProjNode* create_slow_version_of_loop(IdealLoopTree *loop, 1210 Node_List &old_new, 1211 int opcode, 1212 CloneLoopMode mode); 1213 1214 // Clone a loop and return the clone head (clone_loop_head). 1215 // Added nodes include int(1), int(0) - disconnected, If, IfTrue, IfFalse, 1216 // This routine was created for usage in CountedLoopReserveKit. 1217 // 1218 // int(1) -> If -> IfTrue -> original_loop_head 1219 // | 1220 // V 1221 // IfFalse -> clone_loop_head (returned by function pointer) 1222 // 1223 LoopNode* create_reserve_version_of_loop(IdealLoopTree *loop, CountedLoopReserveKit* lk); 1224 // Clone loop with an invariant test (that does not exit) and 1225 // insert a clone of the test that selects which version to 1226 // execute. 1227 void do_unswitching (IdealLoopTree *loop, Node_List &old_new); 1228 1229 // Find candidate "if" for unswitching 1230 IfNode* find_unswitching_candidate(const IdealLoopTree *loop) const; 1231 1232 // Range Check Elimination uses this function! 1233 // Constrain the main loop iterations so the affine function: 1234 // low_limit <= scale_con * I + offset < upper_limit 1235 // always holds true. That is, either increase the number of iterations in 1236 // the pre-loop or the post-loop until the condition holds true in the main 1237 // loop. Scale_con, offset and limit are all loop invariant. 1238 void add_constraint( int stride_con, int scale_con, Node *offset, Node *low_limit, Node *upper_limit, Node *pre_ctrl, Node **pre_limit, Node **main_limit ); 1239 // Helper function for add_constraint(). 1240 Node* adjust_limit(int stride_con, Node * scale, Node *offset, Node *rc_limit, Node *loop_limit, Node *pre_ctrl, bool round_up); 1241 1242 // Partially peel loop up through last_peel node. 1243 bool partial_peel( IdealLoopTree *loop, Node_List &old_new ); 1244 1245 // Create a scheduled list of nodes control dependent on ctrl set. 1246 void scheduled_nodelist( IdealLoopTree *loop, VectorSet& ctrl, Node_List &sched ); 1247 // Has a use in the vector set 1248 bool has_use_in_set( Node* n, VectorSet& vset ); 1249 // Has use internal to the vector set (ie. not in a phi at the loop head) 1250 bool has_use_internal_to_set( Node* n, VectorSet& vset, IdealLoopTree *loop ); 1251 // clone "n" for uses that are outside of loop 1252 int clone_for_use_outside_loop( IdealLoopTree *loop, Node* n, Node_List& worklist ); 1253 // clone "n" for special uses that are in the not_peeled region 1254 void clone_for_special_use_inside_loop( IdealLoopTree *loop, Node* n, 1255 VectorSet& not_peel, Node_List& sink_list, Node_List& worklist ); 1256 // Insert phi(lp_entry_val, back_edge_val) at use->in(idx) for loop lp if phi does not already exist 1257 void insert_phi_for_loop( Node* use, uint idx, Node* lp_entry_val, Node* back_edge_val, LoopNode* lp ); 1258 #ifdef ASSERT 1259 // Validate the loop partition sets: peel and not_peel 1260 bool is_valid_loop_partition( IdealLoopTree *loop, VectorSet& peel, Node_List& peel_list, VectorSet& not_peel ); 1261 // Ensure that uses outside of loop are of the right form 1262 bool is_valid_clone_loop_form( IdealLoopTree *loop, Node_List& peel_list, 1263 uint orig_exit_idx, uint clone_exit_idx); 1264 bool is_valid_clone_loop_exit_use( IdealLoopTree *loop, Node* use, uint exit_idx); 1265 #endif 1266 1267 // Returns nonzero constant stride if-node is a possible iv test (otherwise returns zero.) 1268 int stride_of_possible_iv( Node* iff ); 1269 bool is_possible_iv_test( Node* iff ) { return stride_of_possible_iv(iff) != 0; } 1270 // Return the (unique) control output node that's in the loop (if it exists.) 1271 Node* stay_in_loop( Node* n, IdealLoopTree *loop); 1272 // Insert a signed compare loop exit cloned from an unsigned compare. 1273 IfNode* insert_cmpi_loop_exit(IfNode* if_cmpu, IdealLoopTree *loop); 1274 void remove_cmpi_loop_exit(IfNode* if_cmp, IdealLoopTree *loop); 1275 // Utility to register node "n" with PhaseIdealLoop 1276 void register_node(Node* n, IdealLoopTree *loop, Node* pred, int ddepth); 1277 // Utility to create an if-projection 1278 ProjNode* proj_clone(ProjNode* p, IfNode* iff); 1279 // Force the iff control output to be the live_proj 1280 Node* short_circuit_if(IfNode* iff, ProjNode* live_proj); 1281 // Insert a region before an if projection 1282 RegionNode* insert_region_before_proj(ProjNode* proj); 1283 // Insert a new if before an if projection 1284 ProjNode* insert_if_before_proj(Node* left, bool Signed, BoolTest::mask relop, Node* right, ProjNode* proj); 1285 1286 // Passed in a Phi merging (recursively) some nearly equivalent Bool/Cmps. 1287 // "Nearly" because all Nodes have been cloned from the original in the loop, 1288 // but the fall-in edges to the Cmp are different. Clone bool/Cmp pairs 1289 // through the Phi recursively, and return a Bool. 1290 Node *clone_iff( PhiNode *phi, IdealLoopTree *loop ); 1291 CmpNode *clone_bool( PhiNode *phi, IdealLoopTree *loop ); 1292 1293 1294 // Rework addressing expressions to get the most loop-invariant stuff 1295 // moved out. We'd like to do all associative operators, but it's especially 1296 // important (common) to do address expressions. 1297 Node *remix_address_expressions( Node *n ); 1298 1299 // Convert add to muladd to generate MuladdS2I under certain criteria 1300 Node * convert_add_to_muladd(Node * n); 1301 1302 // Attempt to use a conditional move instead of a phi/branch 1303 Node *conditional_move( Node *n ); 1304 1305 // Reorganize offset computations to lower register pressure. 1306 // Mostly prevent loop-fallout uses of the pre-incremented trip counter 1307 // (which are then alive with the post-incremented trip counter 1308 // forcing an extra register move) 1309 void reorg_offsets( IdealLoopTree *loop ); 1310 1311 // Check for aggressive application of 'split-if' optimization, 1312 // using basic block level info. 1313 void split_if_with_blocks ( VectorSet &visited, Node_Stack &nstack); 1314 Node *split_if_with_blocks_pre ( Node *n ); 1315 void split_if_with_blocks_post( Node *n ); 1316 Node *has_local_phi_input( Node *n ); 1317 // Mark an IfNode as being dominated by a prior test, 1318 // without actually altering the CFG (and hence IDOM info). 1319 void dominated_by( Node *prevdom, Node *iff, bool flip = false, bool exclude_loop_predicate = false ); 1320 1321 // Split Node 'n' through merge point 1322 Node *split_thru_region( Node *n, Node *region ); 1323 // Split Node 'n' through merge point if there is enough win. 1324 Node *split_thru_phi( Node *n, Node *region, int policy ); 1325 // Found an If getting its condition-code input from a Phi in the 1326 // same block. Split thru the Region. 1327 void do_split_if( Node *iff ); 1328 1329 // Conversion of fill/copy patterns into intrinsic versions 1330 bool do_intrinsify_fill(); 1331 bool intrinsify_fill(IdealLoopTree* lpt); 1332 bool match_fill_loop(IdealLoopTree* lpt, Node*& store, Node*& store_value, 1333 Node*& shift, Node*& offset); 1334 1335 private: 1336 // Return a type based on condition control flow 1337 const TypeInt* filtered_type( Node *n, Node* n_ctrl); 1338 const TypeInt* filtered_type( Node *n ) { return filtered_type(n, NULL); } 1339 // Helpers for filtered type 1340 const TypeInt* filtered_type_from_dominators( Node* val, Node *val_ctrl); 1341 1342 // Helper functions 1343 Node *spinup( Node *iff, Node *new_false, Node *new_true, Node *region, Node *phi, small_cache *cache ); 1344 Node *find_use_block( Node *use, Node *def, Node *old_false, Node *new_false, Node *old_true, Node *new_true ); 1345 void handle_use( Node *use, Node *def, small_cache *cache, Node *region_dom, Node *new_false, Node *new_true, Node *old_false, Node *old_true ); 1346 bool split_up( Node *n, Node *blk1, Node *blk2 ); 1347 void sink_use( Node *use, Node *post_loop ); 1348 Node *place_near_use( Node *useblock ) const; 1349 Node* try_move_store_before_loop(Node* n, Node *n_ctrl); 1350 void try_move_store_after_loop(Node* n); 1351 bool identical_backtoback_ifs(Node *n); 1352 bool can_split_if(Node *n_ctrl); 1353 1354 // Determine if a method is too big for a/another round of split-if, based on 1355 // a magic (approximate) ratio derived from the equally magic constant 35000, 1356 // previously used for this purpose (but without relating to the node limit). 1357 bool must_throttle_split_if() { 1358 uint threshold = C->max_node_limit() * 2 / 5; 1359 return C->live_nodes() > threshold; 1360 } 1361 1362 // A simplistic node request tracking mechanism, where 1363 // = UINT_MAX Request not valid or made final. 1364 // < UINT_MAX Nodes currently requested (estimate). 1365 uint _nodes_required; 1366 1367 enum { REQUIRE_MIN = 70 }; 1368 1369 uint nodes_required() const { return _nodes_required; } 1370 1371 // Given the _currently_ available number of nodes, check whether there is 1372 // "room" for an additional request or not, considering the already required 1373 // number of nodes. Return TRUE if the new request is exceeding the node 1374 // budget limit, otherwise return FALSE. Note that this interpretation will 1375 // act pessimistic on additional requests when new nodes have already been 1376 // generated since the 'begin'. This behaviour fits with the intention that 1377 // node estimates/requests should be made upfront. 1378 bool exceeding_node_budget(uint required = 0) { 1379 assert(C->live_nodes() < C->max_node_limit(), "sanity"); 1380 uint available = C->max_node_limit() - C->live_nodes(); 1381 return available < required + _nodes_required + REQUIRE_MIN; 1382 } 1383 1384 uint require_nodes(uint require, uint minreq = REQUIRE_MIN) { 1385 precond(require > 0); 1386 _nodes_required += MAX2(require, minreq); 1387 return _nodes_required; 1388 } 1389 1390 bool may_require_nodes(uint require, uint minreq = REQUIRE_MIN) { 1391 return !exceeding_node_budget(require) && require_nodes(require, minreq) > 0; 1392 } 1393 1394 uint require_nodes_begin() { 1395 assert(_nodes_required == UINT_MAX, "Bad state (begin)."); 1396 _nodes_required = 0; 1397 return C->live_nodes(); 1398 } 1399 1400 // When a node request is final, optionally check that the requested number 1401 // of nodes was reasonably correct with respect to the number of new nodes 1402 // introduced since the last 'begin'. Always check that we have not exceeded 1403 // the maximum node limit. 1404 void require_nodes_final(uint live_at_begin, bool check_estimate) { 1405 assert(_nodes_required < UINT_MAX, "Bad state (final)."); 1406 1407 if (check_estimate) { 1408 // Assert that the node budget request was not off by too much (x2). 1409 // Should this be the case we _surely_ need to improve the estimates 1410 // used in our budget calculations. 1411 assert(C->live_nodes() - live_at_begin <= 2 * _nodes_required, 1412 "Bad node estimate: actual = %d >> request = %d", 1413 C->live_nodes() - live_at_begin, _nodes_required); 1414 } 1415 // Assert that we have stayed within the node budget limit. 1416 assert(C->live_nodes() < C->max_node_limit(), 1417 "Exceeding node budget limit: %d + %d > %d (request = %d)", 1418 C->live_nodes() - live_at_begin, live_at_begin, 1419 C->max_node_limit(), _nodes_required); 1420 1421 _nodes_required = UINT_MAX; 1422 } 1423 1424 bool _created_loop_node; 1425 1426 public: 1427 void set_created_loop_node() { _created_loop_node = true; } 1428 bool created_loop_node() { return _created_loop_node; } 1429 void register_new_node(Node* n, Node* blk); 1430 1431 #ifdef ASSERT 1432 void dump_bad_graph(const char* msg, Node* n, Node* early, Node* LCA); 1433 #endif 1434 1435 #ifndef PRODUCT 1436 void dump() const; 1437 void dump(IdealLoopTree* loop, uint rpo_idx, Node_List &rpo_list) const; 1438 void verify() const; // Major slow :-) 1439 void verify_compare(Node* n, const PhaseIdealLoop* loop_verify, VectorSet &visited) const; 1440 IdealLoopTree* get_loop_idx(Node* n) const { 1441 // Dead nodes have no loop, so return the top level loop instead 1442 return _nodes[n->_idx] ? (IdealLoopTree*)_nodes[n->_idx] : _ltree_root; 1443 } 1444 // Print some stats 1445 static void print_statistics(); 1446 static int _loop_invokes; // Count of PhaseIdealLoop invokes 1447 static int _loop_work; // Sum of PhaseIdealLoop x _unique 1448 #endif 1449 1450 void rpo(Node* start, Node_Stack &stk, VectorSet &visited, Node_List &rpo_list) const; 1451 }; 1452 1453 1454 class AutoNodeBudget : public StackObj 1455 { 1456 public: 1457 enum budget_check_t { BUDGET_CHECK, NO_BUDGET_CHECK }; 1458 1459 AutoNodeBudget(PhaseIdealLoop* phase, budget_check_t chk = BUDGET_CHECK) 1460 : _phase(phase), 1461 _check_at_final(chk == BUDGET_CHECK), 1462 _nodes_at_begin(0) 1463 { 1464 precond(_phase != NULL); 1465 1466 _nodes_at_begin = _phase->require_nodes_begin(); 1467 } 1468 1469 ~AutoNodeBudget() { 1470 #ifndef PRODUCT 1471 if (TraceLoopOpts) { 1472 uint request = _phase->nodes_required(); 1473 uint delta = _phase->C->live_nodes() - _nodes_at_begin; 1474 1475 if (request < delta) { 1476 tty->print_cr("Exceeding node budget: %d < %d", request, delta); 1477 } else { 1478 uint const REQUIRE_MIN = PhaseIdealLoop::REQUIRE_MIN; 1479 // Identify the worst estimates as "poor" ones. 1480 if (request > REQUIRE_MIN && delta > 0) { 1481 if ((delta > REQUIRE_MIN && request > 3 * delta) || 1482 (delta <= REQUIRE_MIN && request > 10 * delta)) { 1483 tty->print_cr("Poor node estimate: %d >> %d", request, delta); 1484 } 1485 } 1486 } 1487 } 1488 #endif // PRODUCT 1489 _phase->require_nodes_final(_nodes_at_begin, _check_at_final); 1490 } 1491 1492 private: 1493 PhaseIdealLoop* _phase; 1494 bool _check_at_final; 1495 uint _nodes_at_begin; 1496 }; 1497 1498 1499 // This kit may be used for making of a reserved copy of a loop before this loop 1500 // goes under non-reversible changes. 1501 // 1502 // Function create_reserve() creates a reserved copy (clone) of the loop. 1503 // The reserved copy is created by calling 1504 // PhaseIdealLoop::create_reserve_version_of_loop - see there how 1505 // the original and reserved loops are connected in the outer graph. 1506 // If create_reserve succeeded, it returns 'true' and _has_reserved is set to 'true'. 1507 // 1508 // By default the reserved copy (clone) of the loop is created as dead code - it is 1509 // dominated in the outer loop by this node chain: 1510 // intcon(1)->If->IfFalse->reserved_copy. 1511 // The original loop is dominated by the the same node chain but IfTrue projection: 1512 // intcon(0)->If->IfTrue->original_loop. 1513 // 1514 // In this implementation of CountedLoopReserveKit the ctor includes create_reserve() 1515 // and the dtor, checks _use_new value. 1516 // If _use_new == false, it "switches" control to reserved copy of the loop 1517 // by simple replacing of node intcon(1) with node intcon(0). 1518 // 1519 // Here is a proposed example of usage (see also SuperWord::output in superword.cpp). 1520 // 1521 // void CountedLoopReserveKit_example() 1522 // { 1523 // CountedLoopReserveKit lrk((phase, lpt, DoReserveCopy = true); // create local object 1524 // if (DoReserveCopy && !lrk.has_reserved()) { 1525 // return; //failed to create reserved loop copy 1526 // } 1527 // ... 1528 // //something is wrong, switch to original loop 1529 /// if(something_is_wrong) return; // ~CountedLoopReserveKit makes the switch 1530 // ... 1531 // //everything worked ok, return with the newly modified loop 1532 // lrk.use_new(); 1533 // return; // ~CountedLoopReserveKit does nothing once use_new() was called 1534 // } 1535 // 1536 // Keep in mind, that by default if create_reserve() is not followed by use_new() 1537 // the dtor will "switch to the original" loop. 1538 // NOTE. You you modify outside of the original loop this class is no help. 1539 // 1540 class CountedLoopReserveKit { 1541 private: 1542 PhaseIdealLoop* _phase; 1543 IdealLoopTree* _lpt; 1544 LoopNode* _lp; 1545 IfNode* _iff; 1546 LoopNode* _lp_reserved; 1547 bool _has_reserved; 1548 bool _use_new; 1549 const bool _active; //may be set to false in ctor, then the object is dummy 1550 1551 public: 1552 CountedLoopReserveKit(PhaseIdealLoop* phase, IdealLoopTree *loop, bool active); 1553 ~CountedLoopReserveKit(); 1554 void use_new() {_use_new = true;} 1555 void set_iff(IfNode* x) {_iff = x;} 1556 bool has_reserved() const { return _active && _has_reserved;} 1557 private: 1558 bool create_reserve(); 1559 };// class CountedLoopReserveKit 1560 1561 inline Node* IdealLoopTree::tail() { 1562 // Handle lazy update of _tail field. 1563 if (_tail->in(0) == NULL) { 1564 _tail = _phase->get_ctrl(_tail); 1565 } 1566 return _tail; 1567 } 1568 1569 1570 // Iterate over the loop tree using a preorder, left-to-right traversal. 1571 // 1572 // Example that visits all counted loops from within PhaseIdealLoop 1573 // 1574 // for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) { 1575 // IdealLoopTree* lpt = iter.current(); 1576 // if (!lpt->is_counted()) continue; 1577 // ... 1578 class LoopTreeIterator : public StackObj { 1579 private: 1580 IdealLoopTree* _root; 1581 IdealLoopTree* _curnt; 1582 1583 public: 1584 LoopTreeIterator(IdealLoopTree* root) : _root(root), _curnt(root) {} 1585 1586 bool done() { return _curnt == NULL; } // Finished iterating? 1587 1588 void next(); // Advance to next loop tree 1589 1590 IdealLoopTree* current() { return _curnt; } // Return current value of iterator. 1591 }; 1592 1593 #endif // SHARE_OPTO_LOOPNODE_HPP