1 /* 2 * Copyright (c) 2005, 2018, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "compiler/compileLog.hpp" 27 #include "gc/shared/collectedHeap.inline.hpp" 28 #include "libadt/vectset.hpp" 29 #include "opto/addnode.hpp" 30 #include "opto/arraycopynode.hpp" 31 #include "opto/callnode.hpp" 32 #include "opto/castnode.hpp" 33 #include "opto/cfgnode.hpp" 34 #include "opto/compile.hpp" 35 #include "opto/convertnode.hpp" 36 #include "opto/graphKit.hpp" 37 #include "opto/locknode.hpp" 38 #include "opto/loopnode.hpp" 39 #include "opto/macro.hpp" 40 #include "opto/memnode.hpp" 41 #include "opto/narrowptrnode.hpp" 42 #include "opto/node.hpp" 43 #include "opto/opaquenode.hpp" 44 #include "opto/phaseX.hpp" 45 #include "opto/rootnode.hpp" 46 #include "opto/runtime.hpp" 47 #include "opto/subnode.hpp" 48 #include "opto/type.hpp" 49 #include "opto/valuetypenode.hpp" 50 #include "runtime/sharedRuntime.hpp" 51 #if INCLUDE_G1GC 52 #include "gc/g1/g1ThreadLocalData.hpp" 53 #endif // INCLUDE_G1GC 54 55 56 // 57 // Replace any references to "oldref" in inputs to "use" with "newref". 58 // Returns the number of replacements made. 59 // 60 int PhaseMacroExpand::replace_input(Node *use, Node *oldref, Node *newref) { 61 int nreplacements = 0; 62 uint req = use->req(); 63 for (uint j = 0; j < use->len(); j++) { 64 Node *uin = use->in(j); 65 if (uin == oldref) { 66 if (j < req) 67 use->set_req(j, newref); 68 else 69 use->set_prec(j, newref); 70 nreplacements++; 71 } else if (j >= req && uin == NULL) { 72 break; 73 } 74 } 75 return nreplacements; 76 } 77 78 void PhaseMacroExpand::copy_call_debug_info(CallNode *oldcall, CallNode * newcall) { 79 // Copy debug information and adjust JVMState information 80 uint old_dbg_start = oldcall->tf()->domain_sig()->cnt(); 81 uint new_dbg_start = newcall->tf()->domain_sig()->cnt(); 82 int jvms_adj = new_dbg_start - old_dbg_start; 83 assert (new_dbg_start == newcall->req(), "argument count mismatch"); 84 85 // SafePointScalarObject node could be referenced several times in debug info. 86 // Use Dict to record cloned nodes. 87 Dict* sosn_map = new Dict(cmpkey,hashkey); 88 for (uint i = old_dbg_start; i < oldcall->req(); i++) { 89 Node* old_in = oldcall->in(i); 90 // Clone old SafePointScalarObjectNodes, adjusting their field contents. 91 if (old_in != NULL && old_in->is_SafePointScalarObject()) { 92 SafePointScalarObjectNode* old_sosn = old_in->as_SafePointScalarObject(); 93 uint old_unique = C->unique(); 94 Node* new_in = old_sosn->clone(sosn_map); 95 if (old_unique != C->unique()) { // New node? 96 new_in->set_req(0, C->root()); // reset control edge 97 new_in = transform_later(new_in); // Register new node. 98 } 99 old_in = new_in; 100 } 101 newcall->add_req(old_in); 102 } 103 104 // JVMS may be shared so clone it before we modify it 105 newcall->set_jvms(oldcall->jvms() != NULL ? oldcall->jvms()->clone_deep(C) : NULL); 106 for (JVMState *jvms = newcall->jvms(); jvms != NULL; jvms = jvms->caller()) { 107 jvms->set_map(newcall); 108 jvms->set_locoff(jvms->locoff()+jvms_adj); 109 jvms->set_stkoff(jvms->stkoff()+jvms_adj); 110 jvms->set_monoff(jvms->monoff()+jvms_adj); 111 jvms->set_scloff(jvms->scloff()+jvms_adj); 112 jvms->set_endoff(jvms->endoff()+jvms_adj); 113 } 114 } 115 116 Node* PhaseMacroExpand::opt_bits_test(Node* ctrl, Node* region, int edge, Node* word, int mask, int bits, bool return_fast_path) { 117 Node* cmp; 118 if (mask != 0) { 119 Node* and_node = transform_later(new AndXNode(word, MakeConX(mask))); 120 cmp = transform_later(new CmpXNode(and_node, MakeConX(bits))); 121 } else { 122 cmp = word; 123 } 124 Node* bol = transform_later(new BoolNode(cmp, BoolTest::ne)); 125 IfNode* iff = new IfNode( ctrl, bol, PROB_MIN, COUNT_UNKNOWN ); 126 transform_later(iff); 127 128 // Fast path taken. 129 Node *fast_taken = transform_later(new IfFalseNode(iff)); 130 131 // Fast path not-taken, i.e. slow path 132 Node *slow_taken = transform_later(new IfTrueNode(iff)); 133 134 if (return_fast_path) { 135 region->init_req(edge, slow_taken); // Capture slow-control 136 return fast_taken; 137 } else { 138 region->init_req(edge, fast_taken); // Capture fast-control 139 return slow_taken; 140 } 141 } 142 143 //--------------------copy_predefined_input_for_runtime_call-------------------- 144 void PhaseMacroExpand::copy_predefined_input_for_runtime_call(Node * ctrl, CallNode* oldcall, CallNode* call) { 145 // Set fixed predefined input arguments 146 call->init_req( TypeFunc::Control, ctrl ); 147 call->init_req( TypeFunc::I_O , oldcall->in( TypeFunc::I_O) ); 148 call->init_req( TypeFunc::Memory , oldcall->in( TypeFunc::Memory ) ); // ????? 149 call->init_req( TypeFunc::ReturnAdr, oldcall->in( TypeFunc::ReturnAdr ) ); 150 call->init_req( TypeFunc::FramePtr, oldcall->in( TypeFunc::FramePtr ) ); 151 } 152 153 //------------------------------make_slow_call--------------------------------- 154 CallNode* PhaseMacroExpand::make_slow_call(CallNode *oldcall, const TypeFunc* slow_call_type, 155 address slow_call, const char* leaf_name, Node* slow_path, 156 Node* parm0, Node* parm1, Node* parm2) { 157 158 // Slow-path call 159 CallNode *call = leaf_name 160 ? (CallNode*)new CallLeafNode ( slow_call_type, slow_call, leaf_name, TypeRawPtr::BOTTOM ) 161 : (CallNode*)new CallStaticJavaNode( slow_call_type, slow_call, OptoRuntime::stub_name(slow_call), oldcall->jvms()->bci(), TypeRawPtr::BOTTOM ); 162 163 // Slow path call has no side-effects, uses few values 164 copy_predefined_input_for_runtime_call(slow_path, oldcall, call ); 165 if (parm0 != NULL) call->init_req(TypeFunc::Parms+0, parm0); 166 if (parm1 != NULL) call->init_req(TypeFunc::Parms+1, parm1); 167 if (parm2 != NULL) call->init_req(TypeFunc::Parms+2, parm2); 168 copy_call_debug_info(oldcall, call); 169 call->set_cnt(PROB_UNLIKELY_MAG(4)); // Same effect as RC_UNCOMMON. 170 _igvn.replace_node(oldcall, call); 171 transform_later(call); 172 173 return call; 174 } 175 176 void PhaseMacroExpand::extract_call_projections(CallNode *call) { 177 _fallthroughproj = NULL; 178 _fallthroughcatchproj = NULL; 179 _ioproj_fallthrough = NULL; 180 _ioproj_catchall = NULL; 181 _catchallcatchproj = NULL; 182 _memproj_fallthrough = NULL; 183 _memproj_catchall = NULL; 184 _resproj = NULL; 185 for (DUIterator_Fast imax, i = call->fast_outs(imax); i < imax; i++) { 186 ProjNode *pn = call->fast_out(i)->as_Proj(); 187 switch (pn->_con) { 188 case TypeFunc::Control: 189 { 190 // For Control (fallthrough) and I_O (catch_all_index) we have CatchProj -> Catch -> Proj 191 _fallthroughproj = pn; 192 DUIterator_Fast jmax, j = pn->fast_outs(jmax); 193 const Node *cn = pn->fast_out(j); 194 if (cn->is_Catch()) { 195 ProjNode *cpn = NULL; 196 for (DUIterator_Fast kmax, k = cn->fast_outs(kmax); k < kmax; k++) { 197 cpn = cn->fast_out(k)->as_Proj(); 198 assert(cpn->is_CatchProj(), "must be a CatchProjNode"); 199 if (cpn->_con == CatchProjNode::fall_through_index) 200 _fallthroughcatchproj = cpn; 201 else { 202 assert(cpn->_con == CatchProjNode::catch_all_index, "must be correct index."); 203 _catchallcatchproj = cpn; 204 } 205 } 206 } 207 break; 208 } 209 case TypeFunc::I_O: 210 if (pn->_is_io_use) 211 _ioproj_catchall = pn; 212 else 213 _ioproj_fallthrough = pn; 214 break; 215 case TypeFunc::Memory: 216 if (pn->_is_io_use) 217 _memproj_catchall = pn; 218 else 219 _memproj_fallthrough = pn; 220 break; 221 case TypeFunc::Parms: 222 _resproj = pn; 223 break; 224 default: 225 assert(false, "unexpected projection from allocation node."); 226 } 227 } 228 229 } 230 231 void PhaseMacroExpand::eliminate_gc_barrier(Node* p2x) { 232 BarrierSetC2 *bs = BarrierSet::barrier_set()->barrier_set_c2(); 233 bs->eliminate_gc_barrier(this, p2x); 234 } 235 236 // Search for a memory operation for the specified memory slice. 237 static Node *scan_mem_chain(Node *mem, int alias_idx, int offset, Node *start_mem, Node *alloc, PhaseGVN *phase) { 238 Node *orig_mem = mem; 239 Node *alloc_mem = alloc->in(TypeFunc::Memory); 240 const TypeOopPtr *tinst = phase->C->get_adr_type(alias_idx)->isa_oopptr(); 241 while (true) { 242 if (mem == alloc_mem || mem == start_mem ) { 243 return mem; // hit one of our sentinels 244 } else if (mem->is_MergeMem()) { 245 mem = mem->as_MergeMem()->memory_at(alias_idx); 246 } else if (mem->is_Proj() && mem->as_Proj()->_con == TypeFunc::Memory) { 247 Node *in = mem->in(0); 248 // we can safely skip over safepoints, calls, locks and membars because we 249 // already know that the object is safe to eliminate. 250 if (in->is_Initialize() && in->as_Initialize()->allocation() == alloc) { 251 return in; 252 } else if (in->is_Call()) { 253 CallNode *call = in->as_Call(); 254 if (call->may_modify(tinst, phase)) { 255 assert(call->is_ArrayCopy(), "ArrayCopy is the only call node that doesn't make allocation escape"); 256 if (call->as_ArrayCopy()->modifies(offset, offset, phase, false)) { 257 return in; 258 } 259 } 260 mem = in->in(TypeFunc::Memory); 261 } else if (in->is_MemBar()) { 262 ArrayCopyNode* ac = NULL; 263 if (ArrayCopyNode::may_modify(tinst, in->as_MemBar(), phase, ac)) { 264 assert(ac != NULL && ac->is_clonebasic(), "Only basic clone is a non escaping clone"); 265 return ac; 266 } 267 mem = in->in(TypeFunc::Memory); 268 } else { 269 assert(false, "unexpected projection"); 270 } 271 } else if (mem->is_Store()) { 272 const TypePtr* atype = mem->as_Store()->adr_type(); 273 int adr_idx = phase->C->get_alias_index(atype); 274 if (adr_idx == alias_idx) { 275 assert(atype->isa_oopptr(), "address type must be oopptr"); 276 int adr_offset = atype->flattened_offset(); 277 uint adr_iid = atype->is_oopptr()->instance_id(); 278 // Array elements references have the same alias_idx 279 // but different offset and different instance_id. 280 if (adr_offset == offset && adr_iid == alloc->_idx) 281 return mem; 282 } else { 283 assert(adr_idx == Compile::AliasIdxRaw, "address must match or be raw"); 284 } 285 mem = mem->in(MemNode::Memory); 286 } else if (mem->is_ClearArray()) { 287 if (!ClearArrayNode::step_through(&mem, alloc->_idx, phase)) { 288 // Can not bypass initialization of the instance 289 // we are looking. 290 debug_only(intptr_t offset;) 291 assert(alloc == AllocateNode::Ideal_allocation(mem->in(3), phase, offset), "sanity"); 292 InitializeNode* init = alloc->as_Allocate()->initialization(); 293 // We are looking for stored value, return Initialize node 294 // or memory edge from Allocate node. 295 if (init != NULL) 296 return init; 297 else 298 return alloc->in(TypeFunc::Memory); // It will produce zero value (see callers). 299 } 300 // Otherwise skip it (the call updated 'mem' value). 301 } else if (mem->Opcode() == Op_SCMemProj) { 302 mem = mem->in(0); 303 Node* adr = NULL; 304 if (mem->is_LoadStore()) { 305 adr = mem->in(MemNode::Address); 306 } else { 307 assert(mem->Opcode() == Op_EncodeISOArray || 308 mem->Opcode() == Op_StrCompressedCopy, "sanity"); 309 adr = mem->in(3); // Destination array 310 } 311 const TypePtr* atype = adr->bottom_type()->is_ptr(); 312 int adr_idx = phase->C->get_alias_index(atype); 313 if (adr_idx == alias_idx) { 314 DEBUG_ONLY(mem->dump();) 315 assert(false, "Object is not scalar replaceable if a LoadStore node accesses its field"); 316 return NULL; 317 } 318 mem = mem->in(MemNode::Memory); 319 } else if (mem->Opcode() == Op_StrInflatedCopy) { 320 Node* adr = mem->in(3); // Destination array 321 const TypePtr* atype = adr->bottom_type()->is_ptr(); 322 int adr_idx = phase->C->get_alias_index(atype); 323 if (adr_idx == alias_idx) { 324 DEBUG_ONLY(mem->dump();) 325 assert(false, "Object is not scalar replaceable if a StrInflatedCopy node accesses its field"); 326 return NULL; 327 } 328 mem = mem->in(MemNode::Memory); 329 } else { 330 return mem; 331 } 332 assert(mem != orig_mem, "dead memory loop"); 333 } 334 } 335 336 // Generate loads from source of the arraycopy for fields of 337 // destination needed at a deoptimization point 338 Node* PhaseMacroExpand::make_arraycopy_load(ArrayCopyNode* ac, intptr_t offset, Node* ctl, Node* mem, BasicType ft, const Type *ftype, AllocateNode *alloc) { 339 BasicType bt = ft; 340 const Type *type = ftype; 341 if (ft == T_NARROWOOP) { 342 bt = T_OBJECT; 343 type = ftype->make_oopptr(); 344 } 345 Node* res = NULL; 346 if (ac->is_clonebasic()) { 347 Node* base = ac->in(ArrayCopyNode::Src)->in(AddPNode::Base); 348 Node* adr = _igvn.transform(new AddPNode(base, base, MakeConX(offset))); 349 const TypePtr* adr_type = _igvn.type(base)->is_ptr()->add_offset(offset); 350 res = LoadNode::make(_igvn, ctl, mem, adr, adr_type, type, bt, MemNode::unordered, LoadNode::Pinned); 351 } else { 352 if (ac->modifies(offset, offset, &_igvn, true)) { 353 assert(ac->in(ArrayCopyNode::Dest) == alloc->result_cast(), "arraycopy destination should be allocation's result"); 354 uint shift = exact_log2(type2aelembytes(bt)); 355 Node* diff = _igvn.transform(new SubINode(ac->in(ArrayCopyNode::SrcPos), ac->in(ArrayCopyNode::DestPos))); 356 #ifdef _LP64 357 diff = _igvn.transform(new ConvI2LNode(diff)); 358 #endif 359 diff = _igvn.transform(new LShiftXNode(diff, intcon(shift))); 360 361 Node* off = _igvn.transform(new AddXNode(MakeConX(offset), diff)); 362 Node* base = ac->in(ArrayCopyNode::Src); 363 Node* adr = _igvn.transform(new AddPNode(base, base, off)); 364 const TypePtr* adr_type = _igvn.type(base)->is_ptr()->add_offset(offset); 365 res = LoadNode::make(_igvn, ctl, mem, adr, adr_type, type, bt, MemNode::unordered, LoadNode::Pinned); 366 } 367 } 368 if (res != NULL) { 369 res = _igvn.transform(res); 370 if (ftype->isa_narrowoop()) { 371 // PhaseMacroExpand::scalar_replacement adds DecodeN nodes 372 res = _igvn.transform(new EncodePNode(res, ftype)); 373 } 374 return res; 375 } 376 return NULL; 377 } 378 379 // 380 // Given a Memory Phi, compute a value Phi containing the values from stores 381 // on the input paths. 382 // Note: this function is recursive, its depth is limited by the "level" argument 383 // Returns the computed Phi, or NULL if it cannot compute it. 384 Node *PhaseMacroExpand::value_from_mem_phi(Node *mem, BasicType ft, const Type *phi_type, const TypeOopPtr *adr_t, AllocateNode *alloc, Node_Stack *value_phis, int level) { 385 assert(mem->is_Phi(), "sanity"); 386 int alias_idx = C->get_alias_index(adr_t); 387 int offset = adr_t->flattened_offset(); 388 int instance_id = adr_t->instance_id(); 389 390 // Check if an appropriate value phi already exists. 391 Node* region = mem->in(0); 392 for (DUIterator_Fast kmax, k = region->fast_outs(kmax); k < kmax; k++) { 393 Node* phi = region->fast_out(k); 394 if (phi->is_Phi() && phi != mem && 395 phi->as_Phi()->is_same_inst_field(phi_type, (int)mem->_idx, instance_id, alias_idx, offset)) { 396 return phi; 397 } 398 } 399 // Check if an appropriate new value phi already exists. 400 Node* new_phi = value_phis->find(mem->_idx); 401 if (new_phi != NULL) 402 return new_phi; 403 404 if (level <= 0) { 405 return NULL; // Give up: phi tree too deep 406 } 407 Node *start_mem = C->start()->proj_out_or_null(TypeFunc::Memory); 408 Node *alloc_mem = alloc->in(TypeFunc::Memory); 409 410 uint length = mem->req(); 411 GrowableArray <Node *> values(length, length, NULL, false); 412 413 // create a new Phi for the value 414 PhiNode *phi = new PhiNode(mem->in(0), phi_type, NULL, mem->_idx, instance_id, alias_idx, offset); 415 transform_later(phi); 416 value_phis->push(phi, mem->_idx); 417 418 for (uint j = 1; j < length; j++) { 419 Node *in = mem->in(j); 420 if (in == NULL || in->is_top()) { 421 values.at_put(j, in); 422 } else { 423 Node *val = scan_mem_chain(in, alias_idx, offset, start_mem, alloc, &_igvn); 424 if (val == start_mem || val == alloc_mem) { 425 // hit a sentinel, return appropriate 0 value 426 values.at_put(j, _igvn.zerocon(ft)); 427 continue; 428 } 429 if (val->is_Initialize()) { 430 val = val->as_Initialize()->find_captured_store(offset, type2aelembytes(ft), &_igvn); 431 } 432 if (val == NULL) { 433 return NULL; // can't find a value on this path 434 } 435 if (val == mem) { 436 values.at_put(j, mem); 437 } else if (val->is_Store()) { 438 values.at_put(j, val->in(MemNode::ValueIn)); 439 } else if(val->is_Proj() && val->in(0) == alloc) { 440 values.at_put(j, _igvn.zerocon(ft)); 441 } else if (val->is_Phi()) { 442 val = value_from_mem_phi(val, ft, phi_type, adr_t, alloc, value_phis, level-1); 443 if (val == NULL) { 444 return NULL; 445 } 446 values.at_put(j, val); 447 } else if (val->Opcode() == Op_SCMemProj) { 448 assert(val->in(0)->is_LoadStore() || 449 val->in(0)->Opcode() == Op_EncodeISOArray || 450 val->in(0)->Opcode() == Op_StrCompressedCopy, "sanity"); 451 assert(false, "Object is not scalar replaceable if a LoadStore node accesses its field"); 452 return NULL; 453 } else if (val->is_ArrayCopy()) { 454 Node* res = make_arraycopy_load(val->as_ArrayCopy(), offset, val->in(0), val->in(TypeFunc::Memory), ft, phi_type, alloc); 455 if (res == NULL) { 456 return NULL; 457 } 458 values.at_put(j, res); 459 } else { 460 #ifdef ASSERT 461 val->dump(); 462 assert(false, "unknown node on this path"); 463 #endif 464 return NULL; // unknown node on this path 465 } 466 } 467 } 468 // Set Phi's inputs 469 for (uint j = 1; j < length; j++) { 470 if (values.at(j) == mem) { 471 phi->init_req(j, phi); 472 } else { 473 phi->init_req(j, values.at(j)); 474 } 475 } 476 return phi; 477 } 478 479 // Search the last value stored into the object's field. 480 Node *PhaseMacroExpand::value_from_mem(Node *sfpt_mem, Node *sfpt_ctl, BasicType ft, const Type *ftype, const TypeOopPtr *adr_t, AllocateNode *alloc) { 481 assert(adr_t->is_known_instance_field(), "instance required"); 482 int instance_id = adr_t->instance_id(); 483 assert((uint)instance_id == alloc->_idx, "wrong allocation"); 484 485 int alias_idx = C->get_alias_index(adr_t); 486 int offset = adr_t->flattened_offset(); 487 Node *start_mem = C->start()->proj_out_or_null(TypeFunc::Memory); 488 Node *alloc_ctrl = alloc->in(TypeFunc::Control); 489 Node *alloc_mem = alloc->in(TypeFunc::Memory); 490 Arena *a = Thread::current()->resource_area(); 491 VectorSet visited(a); 492 493 bool done = sfpt_mem == alloc_mem; 494 Node *mem = sfpt_mem; 495 while (!done) { 496 if (visited.test_set(mem->_idx)) { 497 return NULL; // found a loop, give up 498 } 499 mem = scan_mem_chain(mem, alias_idx, offset, start_mem, alloc, &_igvn); 500 if (mem == start_mem || mem == alloc_mem) { 501 done = true; // hit a sentinel, return appropriate 0 value 502 } else if (mem->is_Initialize()) { 503 mem = mem->as_Initialize()->find_captured_store(offset, type2aelembytes(ft), &_igvn); 504 if (mem == NULL) { 505 done = true; // Something went wrong. 506 } else if (mem->is_Store()) { 507 const TypePtr* atype = mem->as_Store()->adr_type(); 508 assert(C->get_alias_index(atype) == Compile::AliasIdxRaw, "store is correct memory slice"); 509 done = true; 510 } 511 } else if (mem->is_Store()) { 512 const TypeOopPtr* atype = mem->as_Store()->adr_type()->isa_oopptr(); 513 assert(atype != NULL, "address type must be oopptr"); 514 assert(C->get_alias_index(atype) == alias_idx && 515 atype->is_known_instance_field() && atype->flattened_offset() == offset && 516 atype->instance_id() == instance_id, "store is correct memory slice"); 517 done = true; 518 } else if (mem->is_Phi()) { 519 // try to find a phi's unique input 520 Node *unique_input = NULL; 521 Node *top = C->top(); 522 for (uint i = 1; i < mem->req(); i++) { 523 Node *n = scan_mem_chain(mem->in(i), alias_idx, offset, start_mem, alloc, &_igvn); 524 if (n == NULL || n == top || n == mem) { 525 continue; 526 } else if (unique_input == NULL) { 527 unique_input = n; 528 } else if (unique_input != n) { 529 unique_input = top; 530 break; 531 } 532 } 533 if (unique_input != NULL && unique_input != top) { 534 mem = unique_input; 535 } else { 536 done = true; 537 } 538 } else if (mem->is_ArrayCopy()) { 539 done = true; 540 } else { 541 assert(false, "unexpected node"); 542 } 543 } 544 if (mem != NULL) { 545 if (mem == start_mem || mem == alloc_mem) { 546 // hit a sentinel, return appropriate 0 value 547 Node* default_value = alloc->in(AllocateNode::DefaultValue); 548 if (default_value != NULL) { 549 return default_value; 550 } 551 assert(alloc->in(AllocateNode::RawDefaultValue) == NULL, "default value may not be null"); 552 return _igvn.zerocon(ft); 553 } else if (mem->is_Store()) { 554 return mem->in(MemNode::ValueIn); 555 } else if (mem->is_Phi()) { 556 // attempt to produce a Phi reflecting the values on the input paths of the Phi 557 Node_Stack value_phis(a, 8); 558 Node * phi = value_from_mem_phi(mem, ft, ftype, adr_t, alloc, &value_phis, ValueSearchLimit); 559 if (phi != NULL) { 560 return phi; 561 } else { 562 // Kill all new Phis 563 while(value_phis.is_nonempty()) { 564 Node* n = value_phis.node(); 565 _igvn.replace_node(n, C->top()); 566 value_phis.pop(); 567 } 568 } 569 } else if (mem->is_ArrayCopy()) { 570 Node* ctl = mem->in(0); 571 Node* m = mem->in(TypeFunc::Memory); 572 if (sfpt_ctl->is_Proj() && sfpt_ctl->as_Proj()->is_uncommon_trap_proj(Deoptimization::Reason_none)) { 573 // pin the loads in the uncommon trap path 574 ctl = sfpt_ctl; 575 m = sfpt_mem; 576 } 577 return make_arraycopy_load(mem->as_ArrayCopy(), offset, ctl, m, ft, ftype, alloc); 578 } 579 } 580 // Something went wrong. 581 return NULL; 582 } 583 584 // Search the last value stored into the value type's fields. 585 Node* PhaseMacroExpand::value_type_from_mem(Node* mem, Node* ctl, ciValueKlass* vk, const TypeAryPtr* adr_type, int offset, AllocateNode* alloc) { 586 // Subtract the offset of the first field to account for the missing oop header 587 offset -= vk->first_field_offset(); 588 // Create a new ValueTypeNode and retrieve the field values from memory 589 ValueTypeNode* vt = ValueTypeNode::make_uninitialized(_igvn, vk)->as_ValueType(); 590 for (int i = 0; i < vk->nof_declared_nonstatic_fields(); ++i) { 591 ciType* field_type = vt->field_type(i); 592 int field_offset = offset + vt->field_offset(i); 593 // Each value type field has its own memory slice 594 adr_type = adr_type->with_field_offset(field_offset); 595 Node* value = NULL; 596 if (vt->field_is_flattened(i)) { 597 value = value_type_from_mem(mem, ctl, field_type->as_value_klass(), adr_type, field_offset, alloc); 598 } else { 599 const Type* ft = Type::get_const_type(field_type); 600 BasicType bt = field_type->basic_type(); 601 if (UseCompressedOops && !is_java_primitive(bt)) { 602 ft = ft->make_narrowoop(); 603 bt = T_NARROWOOP; 604 } 605 value = value_from_mem(mem, ctl, bt, ft, adr_type, alloc); 606 if (value != NULL && ft->isa_narrowoop()) { 607 assert(UseCompressedOops, "unexpected narrow oop"); 608 value = transform_later(new DecodeNNode(value, value->get_ptr_type())); 609 } 610 /* 611 // TODO attempt scalarization here? 612 if (vt->field_is_flattenable(i)) { 613 // Loading a non-flattened but flattenable value type from memory 614 if (field_type->as_value_klass()->is_scalarizable()) { 615 value = ValueTypeNode::make_from_oop(kit, value, ft->as_value_klass()); 616 } else { 617 value = kit->filter_null(value, true, ft->as_value_klass()); 618 } 619 } 620 */ 621 } 622 if (value != NULL) { 623 vt->set_field_value(i, value); 624 } else { 625 // We might have reached the TrackedInitializationLimit 626 return NULL; 627 } 628 } 629 return vt; 630 } 631 632 // Check the possibility of scalar replacement. 633 bool PhaseMacroExpand::can_eliminate_allocation(AllocateNode *alloc, GrowableArray <SafePointNode *>& safepoints) { 634 // Scan the uses of the allocation to check for anything that would 635 // prevent us from eliminating it. 636 NOT_PRODUCT( const char* fail_eliminate = NULL; ) 637 DEBUG_ONLY( Node* disq_node = NULL; ) 638 bool can_eliminate = true; 639 640 Node* res = alloc->result_cast(); 641 const TypeOopPtr* res_type = NULL; 642 if (res == NULL) { 643 // All users were eliminated. 644 } else if (!res->is_CheckCastPP()) { 645 NOT_PRODUCT(fail_eliminate = "Allocation does not have unique CheckCastPP";) 646 can_eliminate = false; 647 } else { 648 res_type = _igvn.type(res)->isa_oopptr(); 649 if (res_type == NULL) { 650 NOT_PRODUCT(fail_eliminate = "Neither instance or array allocation";) 651 can_eliminate = false; 652 } else if (res_type->isa_aryptr()) { 653 int length = alloc->in(AllocateNode::ALength)->find_int_con(-1); 654 if (length < 0) { 655 NOT_PRODUCT(fail_eliminate = "Array's size is not constant";) 656 can_eliminate = false; 657 } 658 } 659 } 660 661 if (can_eliminate && res != NULL) { 662 for (DUIterator_Fast jmax, j = res->fast_outs(jmax); 663 j < jmax && can_eliminate; j++) { 664 Node* use = res->fast_out(j); 665 666 if (use->is_AddP()) { 667 const TypePtr* addp_type = _igvn.type(use)->is_ptr(); 668 int offset = addp_type->offset(); 669 670 if (offset == Type::OffsetTop || offset == Type::OffsetBot) { 671 NOT_PRODUCT(fail_eliminate = "Undefined field referrence";) 672 can_eliminate = false; 673 break; 674 } 675 for (DUIterator_Fast kmax, k = use->fast_outs(kmax); 676 k < kmax && can_eliminate; k++) { 677 Node* n = use->fast_out(k); 678 if (!n->is_Store() && n->Opcode() != Op_CastP2X && 679 !(n->is_ArrayCopy() && 680 n->as_ArrayCopy()->is_clonebasic() && 681 n->in(ArrayCopyNode::Dest) == use)) { 682 DEBUG_ONLY(disq_node = n;) 683 if (n->is_Load() || n->is_LoadStore()) { 684 NOT_PRODUCT(fail_eliminate = "Field load";) 685 } else { 686 NOT_PRODUCT(fail_eliminate = "Not store field reference";) 687 } 688 can_eliminate = false; 689 } 690 } 691 } else if (use->is_ArrayCopy() && 692 (use->as_ArrayCopy()->is_arraycopy_validated() || 693 use->as_ArrayCopy()->is_copyof_validated() || 694 use->as_ArrayCopy()->is_copyofrange_validated()) && 695 use->in(ArrayCopyNode::Dest) == res) { 696 // ok to eliminate 697 } else if (use->is_SafePoint()) { 698 SafePointNode* sfpt = use->as_SafePoint(); 699 if (sfpt->is_Call() && sfpt->as_Call()->has_non_debug_use(res)) { 700 // Object is passed as argument. 701 DEBUG_ONLY(disq_node = use;) 702 NOT_PRODUCT(fail_eliminate = "Object is passed as argument";) 703 can_eliminate = false; 704 } 705 Node* sfptMem = sfpt->memory(); 706 if (sfptMem == NULL || sfptMem->is_top()) { 707 DEBUG_ONLY(disq_node = use;) 708 NOT_PRODUCT(fail_eliminate = "NULL or TOP memory";) 709 can_eliminate = false; 710 } else { 711 safepoints.append_if_missing(sfpt); 712 } 713 } else if (use->Opcode() != Op_CastP2X) { // CastP2X is used by card mark 714 if (use->is_Phi()) { 715 if (use->outcnt() == 1 && use->unique_out()->Opcode() == Op_Return) { 716 NOT_PRODUCT(fail_eliminate = "Object is return value";) 717 } else { 718 NOT_PRODUCT(fail_eliminate = "Object is referenced by Phi";) 719 } 720 DEBUG_ONLY(disq_node = use;) 721 } else { 722 if (use->Opcode() == Op_Return) { 723 NOT_PRODUCT(fail_eliminate = "Object is return value";) 724 } else { 725 NOT_PRODUCT(fail_eliminate = "Object is referenced by node";) 726 } 727 DEBUG_ONLY(disq_node = use;) 728 } 729 can_eliminate = false; 730 } else { 731 assert(use->Opcode() == Op_CastP2X, "should be"); 732 assert(!use->has_out_with(Op_OrL), "should have been removed because oop is never null"); 733 } 734 } 735 } 736 737 #ifndef PRODUCT 738 if (PrintEliminateAllocations) { 739 if (can_eliminate) { 740 tty->print("Scalar "); 741 if (res == NULL) 742 alloc->dump(); 743 else 744 res->dump(); 745 } else if (alloc->_is_scalar_replaceable) { 746 tty->print("NotScalar (%s)", fail_eliminate); 747 if (res == NULL) 748 alloc->dump(); 749 else 750 res->dump(); 751 #ifdef ASSERT 752 if (disq_node != NULL) { 753 tty->print(" >>>> "); 754 disq_node->dump(); 755 } 756 #endif /*ASSERT*/ 757 } 758 } 759 #endif 760 return can_eliminate; 761 } 762 763 // Do scalar replacement. 764 bool PhaseMacroExpand::scalar_replacement(AllocateNode *alloc, GrowableArray <SafePointNode *>& safepoints) { 765 GrowableArray <SafePointNode *> safepoints_done; 766 767 ciKlass* klass = NULL; 768 ciInstanceKlass* iklass = NULL; 769 int nfields = 0; 770 int array_base = 0; 771 int element_size = 0; 772 BasicType basic_elem_type = T_ILLEGAL; 773 ciType* elem_type = NULL; 774 775 Node* res = alloc->result_cast(); 776 assert(res == NULL || res->is_CheckCastPP(), "unexpected AllocateNode result"); 777 const TypeOopPtr* res_type = NULL; 778 if (res != NULL) { // Could be NULL when there are no users 779 res_type = _igvn.type(res)->isa_oopptr(); 780 } 781 782 if (res != NULL) { 783 klass = res_type->klass(); 784 if (res_type->isa_instptr()) { 785 // find the fields of the class which will be needed for safepoint debug information 786 assert(klass->is_instance_klass(), "must be an instance klass."); 787 iklass = klass->as_instance_klass(); 788 nfields = iklass->nof_nonstatic_fields(); 789 } else { 790 // find the array's elements which will be needed for safepoint debug information 791 nfields = alloc->in(AllocateNode::ALength)->find_int_con(-1); 792 assert(klass->is_array_klass() && nfields >= 0, "must be an array klass."); 793 elem_type = klass->as_array_klass()->element_type(); 794 basic_elem_type = elem_type->basic_type(); 795 if (elem_type->is_valuetype()) { 796 ciValueKlass* vk = elem_type->as_value_klass(); 797 if (!vk->flatten_array()) { 798 assert(basic_elem_type == T_VALUETYPE, "unexpected element basic type"); 799 basic_elem_type = T_OBJECT; 800 } 801 } 802 array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type); 803 element_size = type2aelembytes(basic_elem_type); 804 if (klass->is_value_array_klass()) { 805 // Flattened value type array 806 element_size = klass->as_value_array_klass()->element_byte_size(); 807 } 808 } 809 } 810 // 811 // Process the safepoint uses 812 // 813 Unique_Node_List value_worklist; 814 while (safepoints.length() > 0) { 815 SafePointNode* sfpt = safepoints.pop(); 816 Node* mem = sfpt->memory(); 817 Node* ctl = sfpt->control(); 818 assert(sfpt->jvms() != NULL, "missed JVMS"); 819 // Fields of scalar objs are referenced only at the end 820 // of regular debuginfo at the last (youngest) JVMS. 821 // Record relative start index. 822 uint first_ind = (sfpt->req() - sfpt->jvms()->scloff()); 823 SafePointScalarObjectNode* sobj = new SafePointScalarObjectNode(res_type, 824 #ifdef ASSERT 825 alloc, 826 #endif 827 first_ind, nfields); 828 sobj->init_req(0, C->root()); 829 transform_later(sobj); 830 831 // Scan object's fields adding an input to the safepoint for each field. 832 for (int j = 0; j < nfields; j++) { 833 intptr_t offset; 834 ciField* field = NULL; 835 if (iklass != NULL) { 836 field = iklass->nonstatic_field_at(j); 837 offset = field->offset(); 838 elem_type = field->type(); 839 basic_elem_type = field->layout_type(); 840 assert(!field->is_flattened(), "flattened value type fields should not have safepoint uses"); 841 } else { 842 offset = array_base + j * (intptr_t)element_size; 843 } 844 845 const Type *field_type; 846 // The next code is taken from Parse::do_get_xxx(). 847 if (basic_elem_type == T_OBJECT || basic_elem_type == T_ARRAY) { 848 if (!elem_type->is_loaded()) { 849 field_type = TypeInstPtr::BOTTOM; 850 } else if (field != NULL && field->is_static_constant()) { 851 // This can happen if the constant oop is non-perm. 852 ciObject* con = field->constant_value().as_object(); 853 // Do not "join" in the previous type; it doesn't add value, 854 // and may yield a vacuous result if the field is of interface type. 855 field_type = TypeOopPtr::make_from_constant(con)->isa_oopptr(); 856 assert(field_type != NULL, "field singleton type must be consistent"); 857 } else { 858 field_type = TypeOopPtr::make_from_klass(elem_type->as_klass()); 859 } 860 if (UseCompressedOops) { 861 field_type = field_type->make_narrowoop(); 862 basic_elem_type = T_NARROWOOP; 863 } 864 } else { 865 field_type = Type::get_const_basic_type(basic_elem_type); 866 } 867 868 Node* field_val = NULL; 869 const TypeOopPtr* field_addr_type = res_type->add_offset(offset)->isa_oopptr(); 870 if (klass->is_value_array_klass()) { 871 ciValueKlass* vk = elem_type->as_value_klass(); 872 assert(vk->flatten_array(), "must be flattened"); 873 field_val = value_type_from_mem(mem, ctl, vk, field_addr_type->isa_aryptr(), 0, alloc); 874 } else { 875 field_val = value_from_mem(mem, ctl, basic_elem_type, field_type, field_addr_type, alloc); 876 } 877 if (field_val == NULL) { 878 // We weren't able to find a value for this field, 879 // give up on eliminating this allocation. 880 881 // Remove any extra entries we added to the safepoint. 882 uint last = sfpt->req() - 1; 883 for (int k = 0; k < j; k++) { 884 sfpt->del_req(last--); 885 } 886 _igvn._worklist.push(sfpt); 887 // rollback processed safepoints 888 while (safepoints_done.length() > 0) { 889 SafePointNode* sfpt_done = safepoints_done.pop(); 890 // remove any extra entries we added to the safepoint 891 last = sfpt_done->req() - 1; 892 for (int k = 0; k < nfields; k++) { 893 sfpt_done->del_req(last--); 894 } 895 JVMState *jvms = sfpt_done->jvms(); 896 jvms->set_endoff(sfpt_done->req()); 897 // Now make a pass over the debug information replacing any references 898 // to SafePointScalarObjectNode with the allocated object. 899 int start = jvms->debug_start(); 900 int end = jvms->debug_end(); 901 for (int i = start; i < end; i++) { 902 if (sfpt_done->in(i)->is_SafePointScalarObject()) { 903 SafePointScalarObjectNode* scobj = sfpt_done->in(i)->as_SafePointScalarObject(); 904 if (scobj->first_index(jvms) == sfpt_done->req() && 905 scobj->n_fields() == (uint)nfields) { 906 assert(scobj->alloc() == alloc, "sanity"); 907 sfpt_done->set_req(i, res); 908 } 909 } 910 } 911 _igvn._worklist.push(sfpt_done); 912 } 913 #ifndef PRODUCT 914 if (PrintEliminateAllocations) { 915 if (field != NULL) { 916 tty->print("=== At SafePoint node %d can't find value of Field: ", 917 sfpt->_idx); 918 field->print(); 919 int field_idx = C->get_alias_index(field_addr_type); 920 tty->print(" (alias_idx=%d)", field_idx); 921 } else { // Array's element 922 tty->print("=== At SafePoint node %d can't find value of array element [%d]", 923 sfpt->_idx, j); 924 } 925 tty->print(", which prevents elimination of: "); 926 if (res == NULL) 927 alloc->dump(); 928 else 929 res->dump(); 930 } 931 #endif 932 return false; 933 } 934 if (UseCompressedOops && field_type->isa_narrowoop()) { 935 // Enable "DecodeN(EncodeP(Allocate)) --> Allocate" transformation 936 // to be able scalar replace the allocation. 937 if (field_val->is_EncodeP()) { 938 field_val = field_val->in(1); 939 } else { 940 field_val = transform_later(new DecodeNNode(field_val, field_val->get_ptr_type())); 941 } 942 } else if (field_val->is_ValueType()) { 943 // Keep track of value types to scalarize them later 944 value_worklist.push(field_val); 945 } 946 sfpt->add_req(field_val); 947 } 948 JVMState *jvms = sfpt->jvms(); 949 jvms->set_endoff(sfpt->req()); 950 // Now make a pass over the debug information replacing any references 951 // to the allocated object with "sobj" 952 int start = jvms->debug_start(); 953 int end = jvms->debug_end(); 954 sfpt->replace_edges_in_range(res, sobj, start, end); 955 _igvn._worklist.push(sfpt); 956 safepoints_done.append_if_missing(sfpt); // keep it for rollback 957 } 958 // Scalarize value types that were added to the safepoint 959 for (uint i = 0; i < value_worklist.size(); ++i) { 960 Node* vt = value_worklist.at(i); 961 vt->as_ValueType()->make_scalar_in_safepoints(C->root(), &_igvn); 962 } 963 return true; 964 } 965 966 static void disconnect_projections(MultiNode* n, PhaseIterGVN& igvn) { 967 Node* ctl_proj = n->proj_out_or_null(TypeFunc::Control); 968 Node* mem_proj = n->proj_out_or_null(TypeFunc::Memory); 969 if (ctl_proj != NULL) { 970 igvn.replace_node(ctl_proj, n->in(0)); 971 } 972 if (mem_proj != NULL) { 973 igvn.replace_node(mem_proj, n->in(TypeFunc::Memory)); 974 } 975 } 976 977 // Process users of eliminated allocation. 978 void PhaseMacroExpand::process_users_of_allocation(CallNode *alloc) { 979 Node* res = alloc->result_cast(); 980 if (res != NULL) { 981 for (DUIterator_Last jmin, j = res->last_outs(jmin); j >= jmin; ) { 982 Node *use = res->last_out(j); 983 uint oc1 = res->outcnt(); 984 985 if (use->is_AddP()) { 986 for (DUIterator_Last kmin, k = use->last_outs(kmin); k >= kmin; ) { 987 Node *n = use->last_out(k); 988 uint oc2 = use->outcnt(); 989 if (n->is_Store()) { 990 #ifdef ASSERT 991 // Verify that there is no dependent MemBarVolatile nodes, 992 // they should be removed during IGVN, see MemBarNode::Ideal(). 993 for (DUIterator_Fast pmax, p = n->fast_outs(pmax); 994 p < pmax; p++) { 995 Node* mb = n->fast_out(p); 996 assert(mb->is_Initialize() || !mb->is_MemBar() || 997 mb->req() <= MemBarNode::Precedent || 998 mb->in(MemBarNode::Precedent) != n, 999 "MemBarVolatile should be eliminated for non-escaping object"); 1000 } 1001 #endif 1002 _igvn.replace_node(n, n->in(MemNode::Memory)); 1003 } else if (n->is_ArrayCopy()) { 1004 // Disconnect ArrayCopy node 1005 ArrayCopyNode* ac = n->as_ArrayCopy(); 1006 assert(ac->is_clonebasic(), "unexpected array copy kind"); 1007 Node* membar_after = ac->proj_out(TypeFunc::Control)->unique_ctrl_out(); 1008 disconnect_projections(ac, _igvn); 1009 assert(alloc->in(0)->is_Proj() && alloc->in(0)->in(0)->Opcode() == Op_MemBarCPUOrder, "mem barrier expected before allocation"); 1010 Node* membar_before = alloc->in(0)->in(0); 1011 disconnect_projections(membar_before->as_MemBar(), _igvn); 1012 if (membar_after->is_MemBar()) { 1013 disconnect_projections(membar_after->as_MemBar(), _igvn); 1014 } 1015 } else { 1016 eliminate_gc_barrier(n); 1017 } 1018 k -= (oc2 - use->outcnt()); 1019 } 1020 } else if (use->is_ArrayCopy()) { 1021 // Disconnect ArrayCopy node 1022 ArrayCopyNode* ac = use->as_ArrayCopy(); 1023 assert(ac->is_arraycopy_validated() || 1024 ac->is_copyof_validated() || 1025 ac->is_copyofrange_validated(), "unsupported"); 1026 CallProjections* callprojs = ac->extract_projections(true); 1027 1028 _igvn.replace_node(callprojs->fallthrough_ioproj, ac->in(TypeFunc::I_O)); 1029 _igvn.replace_node(callprojs->fallthrough_memproj, ac->in(TypeFunc::Memory)); 1030 _igvn.replace_node(callprojs->fallthrough_catchproj, ac->in(TypeFunc::Control)); 1031 1032 // Set control to top. IGVN will remove the remaining projections 1033 ac->set_req(0, top()); 1034 ac->replace_edge(res, top()); 1035 1036 // Disconnect src right away: it can help find new 1037 // opportunities for allocation elimination 1038 Node* src = ac->in(ArrayCopyNode::Src); 1039 ac->replace_edge(src, top()); 1040 // src can be top at this point if src and dest of the 1041 // arraycopy were the same 1042 if (src->outcnt() == 0 && !src->is_top()) { 1043 _igvn.remove_dead_node(src); 1044 } 1045 1046 _igvn._worklist.push(ac); 1047 } else { 1048 eliminate_gc_barrier(use); 1049 } 1050 j -= (oc1 - res->outcnt()); 1051 } 1052 assert(res->outcnt() == 0, "all uses of allocated objects must be deleted"); 1053 _igvn.remove_dead_node(res); 1054 } 1055 1056 // 1057 // Process other users of allocation's projections 1058 // 1059 if (_resproj != NULL && _resproj->outcnt() != 0) { 1060 // First disconnect stores captured by Initialize node. 1061 // If Initialize node is eliminated first in the following code, 1062 // it will kill such stores and DUIterator_Last will assert. 1063 for (DUIterator_Fast jmax, j = _resproj->fast_outs(jmax); j < jmax; j++) { 1064 Node *use = _resproj->fast_out(j); 1065 if (use->is_AddP()) { 1066 // raw memory addresses used only by the initialization 1067 _igvn.replace_node(use, C->top()); 1068 --j; --jmax; 1069 } 1070 } 1071 for (DUIterator_Last jmin, j = _resproj->last_outs(jmin); j >= jmin; ) { 1072 Node *use = _resproj->last_out(j); 1073 uint oc1 = _resproj->outcnt(); 1074 if (use->is_Initialize()) { 1075 // Eliminate Initialize node. 1076 InitializeNode *init = use->as_Initialize(); 1077 assert(init->outcnt() <= 2, "only a control and memory projection expected"); 1078 Node *ctrl_proj = init->proj_out_or_null(TypeFunc::Control); 1079 if (ctrl_proj != NULL) { 1080 assert(init->in(TypeFunc::Control) == _fallthroughcatchproj, "allocation control projection"); 1081 _igvn.replace_node(ctrl_proj, _fallthroughcatchproj); 1082 } 1083 Node *mem_proj = init->proj_out_or_null(TypeFunc::Memory); 1084 if (mem_proj != NULL) { 1085 Node *mem = init->in(TypeFunc::Memory); 1086 #ifdef ASSERT 1087 if (mem->is_MergeMem()) { 1088 assert(mem->in(TypeFunc::Memory) == _memproj_fallthrough, "allocation memory projection"); 1089 } else { 1090 assert(mem == _memproj_fallthrough, "allocation memory projection"); 1091 } 1092 #endif 1093 _igvn.replace_node(mem_proj, mem); 1094 } 1095 } else { 1096 assert(false, "only Initialize or AddP expected"); 1097 } 1098 j -= (oc1 - _resproj->outcnt()); 1099 } 1100 } 1101 if (_fallthroughcatchproj != NULL) { 1102 _igvn.replace_node(_fallthroughcatchproj, alloc->in(TypeFunc::Control)); 1103 } 1104 if (_memproj_fallthrough != NULL) { 1105 _igvn.replace_node(_memproj_fallthrough, alloc->in(TypeFunc::Memory)); 1106 } 1107 if (_memproj_catchall != NULL) { 1108 _igvn.replace_node(_memproj_catchall, C->top()); 1109 } 1110 if (_ioproj_fallthrough != NULL) { 1111 _igvn.replace_node(_ioproj_fallthrough, alloc->in(TypeFunc::I_O)); 1112 } 1113 if (_ioproj_catchall != NULL) { 1114 _igvn.replace_node(_ioproj_catchall, C->top()); 1115 } 1116 if (_catchallcatchproj != NULL) { 1117 _igvn.replace_node(_catchallcatchproj, C->top()); 1118 } 1119 } 1120 1121 bool PhaseMacroExpand::eliminate_allocate_node(AllocateNode *alloc) { 1122 // Don't do scalar replacement if the frame can be popped by JVMTI: 1123 // if reallocation fails during deoptimization we'll pop all 1124 // interpreter frames for this compiled frame and that won't play 1125 // nice with JVMTI popframe. 1126 if (!EliminateAllocations || JvmtiExport::can_pop_frame() || !alloc->_is_non_escaping) { 1127 return false; 1128 } 1129 Node* klass = alloc->in(AllocateNode::KlassNode); 1130 const TypeKlassPtr* tklass = _igvn.type(klass)->is_klassptr(); 1131 Node* res = alloc->result_cast(); 1132 // Eliminate boxing allocations which are not used 1133 // regardless scalar replacable status. 1134 bool boxing_alloc = C->eliminate_boxing() && 1135 tklass->klass()->is_instance_klass() && 1136 tklass->klass()->as_instance_klass()->is_box_klass(); 1137 if (!alloc->_is_scalar_replaceable && (!boxing_alloc || (res != NULL))) { 1138 return false; 1139 } 1140 1141 extract_call_projections(alloc); 1142 1143 GrowableArray <SafePointNode *> safepoints; 1144 if (!can_eliminate_allocation(alloc, safepoints)) { 1145 return false; 1146 } 1147 1148 if (!alloc->_is_scalar_replaceable) { 1149 assert(res == NULL, "sanity"); 1150 // We can only eliminate allocation if all debug info references 1151 // are already replaced with SafePointScalarObject because 1152 // we can't search for a fields value without instance_id. 1153 if (safepoints.length() > 0) { 1154 return false; 1155 } 1156 } 1157 1158 if (!scalar_replacement(alloc, safepoints)) { 1159 return false; 1160 } 1161 1162 CompileLog* log = C->log(); 1163 if (log != NULL) { 1164 log->head("eliminate_allocation type='%d'", 1165 log->identify(tklass->klass())); 1166 JVMState* p = alloc->jvms(); 1167 while (p != NULL) { 1168 log->elem("jvms bci='%d' method='%d'", p->bci(), log->identify(p->method())); 1169 p = p->caller(); 1170 } 1171 log->tail("eliminate_allocation"); 1172 } 1173 1174 process_users_of_allocation(alloc); 1175 1176 #ifndef PRODUCT 1177 if (PrintEliminateAllocations) { 1178 if (alloc->is_AllocateArray()) 1179 tty->print_cr("++++ Eliminated: %d AllocateArray", alloc->_idx); 1180 else 1181 tty->print_cr("++++ Eliminated: %d Allocate", alloc->_idx); 1182 } 1183 #endif 1184 1185 return true; 1186 } 1187 1188 bool PhaseMacroExpand::eliminate_boxing_node(CallStaticJavaNode *boxing) { 1189 // EA should remove all uses of non-escaping boxing node. 1190 if (!C->eliminate_boxing() || boxing->proj_out_or_null(TypeFunc::Parms) != NULL) { 1191 return false; 1192 } 1193 1194 assert(boxing->result_cast() == NULL, "unexpected boxing node result"); 1195 1196 extract_call_projections(boxing); 1197 1198 const TypeTuple* r = boxing->tf()->range_sig(); 1199 assert(r->cnt() > TypeFunc::Parms, "sanity"); 1200 const TypeInstPtr* t = r->field_at(TypeFunc::Parms)->isa_instptr(); 1201 assert(t != NULL, "sanity"); 1202 1203 CompileLog* log = C->log(); 1204 if (log != NULL) { 1205 log->head("eliminate_boxing type='%d'", 1206 log->identify(t->klass())); 1207 JVMState* p = boxing->jvms(); 1208 while (p != NULL) { 1209 log->elem("jvms bci='%d' method='%d'", p->bci(), log->identify(p->method())); 1210 p = p->caller(); 1211 } 1212 log->tail("eliminate_boxing"); 1213 } 1214 1215 process_users_of_allocation(boxing); 1216 1217 #ifndef PRODUCT 1218 if (PrintEliminateAllocations) { 1219 tty->print("++++ Eliminated: %d ", boxing->_idx); 1220 boxing->method()->print_short_name(tty); 1221 tty->cr(); 1222 } 1223 #endif 1224 1225 return true; 1226 } 1227 1228 //---------------------------set_eden_pointers------------------------- 1229 void PhaseMacroExpand::set_eden_pointers(Node* &eden_top_adr, Node* &eden_end_adr) { 1230 if (UseTLAB) { // Private allocation: load from TLS 1231 Node* thread = transform_later(new ThreadLocalNode()); 1232 int tlab_top_offset = in_bytes(JavaThread::tlab_top_offset()); 1233 int tlab_end_offset = in_bytes(JavaThread::tlab_end_offset()); 1234 eden_top_adr = basic_plus_adr(top()/*not oop*/, thread, tlab_top_offset); 1235 eden_end_adr = basic_plus_adr(top()/*not oop*/, thread, tlab_end_offset); 1236 } else { // Shared allocation: load from globals 1237 CollectedHeap* ch = Universe::heap(); 1238 address top_adr = (address)ch->top_addr(); 1239 address end_adr = (address)ch->end_addr(); 1240 eden_top_adr = makecon(TypeRawPtr::make(top_adr)); 1241 eden_end_adr = basic_plus_adr(eden_top_adr, end_adr - top_adr); 1242 } 1243 } 1244 1245 1246 Node* PhaseMacroExpand::make_load(Node* ctl, Node* mem, Node* base, int offset, const Type* value_type, BasicType bt) { 1247 Node* adr = basic_plus_adr(base, offset); 1248 const TypePtr* adr_type = adr->bottom_type()->is_ptr(); 1249 Node* value = LoadNode::make(_igvn, ctl, mem, adr, adr_type, value_type, bt, MemNode::unordered); 1250 transform_later(value); 1251 return value; 1252 } 1253 1254 1255 Node* PhaseMacroExpand::make_store(Node* ctl, Node* mem, Node* base, int offset, Node* value, BasicType bt) { 1256 Node* adr = basic_plus_adr(base, offset); 1257 mem = StoreNode::make(_igvn, ctl, mem, adr, NULL, value, bt, MemNode::unordered); 1258 transform_later(mem); 1259 return mem; 1260 } 1261 1262 //============================================================================= 1263 // 1264 // A L L O C A T I O N 1265 // 1266 // Allocation attempts to be fast in the case of frequent small objects. 1267 // It breaks down like this: 1268 // 1269 // 1) Size in doublewords is computed. This is a constant for objects and 1270 // variable for most arrays. Doubleword units are used to avoid size 1271 // overflow of huge doubleword arrays. We need doublewords in the end for 1272 // rounding. 1273 // 1274 // 2) Size is checked for being 'too large'. Too-large allocations will go 1275 // the slow path into the VM. The slow path can throw any required 1276 // exceptions, and does all the special checks for very large arrays. The 1277 // size test can constant-fold away for objects. For objects with 1278 // finalizers it constant-folds the otherway: you always go slow with 1279 // finalizers. 1280 // 1281 // 3) If NOT using TLABs, this is the contended loop-back point. 1282 // Load-Locked the heap top. If using TLABs normal-load the heap top. 1283 // 1284 // 4) Check that heap top + size*8 < max. If we fail go the slow ` route. 1285 // NOTE: "top+size*8" cannot wrap the 4Gig line! Here's why: for largish 1286 // "size*8" we always enter the VM, where "largish" is a constant picked small 1287 // enough that there's always space between the eden max and 4Gig (old space is 1288 // there so it's quite large) and large enough that the cost of entering the VM 1289 // is dwarfed by the cost to initialize the space. 1290 // 1291 // 5) If NOT using TLABs, Store-Conditional the adjusted heap top back 1292 // down. If contended, repeat at step 3. If using TLABs normal-store 1293 // adjusted heap top back down; there is no contention. 1294 // 1295 // 6) If !ZeroTLAB then Bulk-clear the object/array. Fill in klass & mark 1296 // fields. 1297 // 1298 // 7) Merge with the slow-path; cast the raw memory pointer to the correct 1299 // oop flavor. 1300 // 1301 //============================================================================= 1302 // FastAllocateSizeLimit value is in DOUBLEWORDS. 1303 // Allocations bigger than this always go the slow route. 1304 // This value must be small enough that allocation attempts that need to 1305 // trigger exceptions go the slow route. Also, it must be small enough so 1306 // that heap_top + size_in_bytes does not wrap around the 4Gig limit. 1307 //=============================================================================j// 1308 // %%% Here is an old comment from parseHelper.cpp; is it outdated? 1309 // The allocator will coalesce int->oop copies away. See comment in 1310 // coalesce.cpp about how this works. It depends critically on the exact 1311 // code shape produced here, so if you are changing this code shape 1312 // make sure the GC info for the heap-top is correct in and around the 1313 // slow-path call. 1314 // 1315 1316 void PhaseMacroExpand::expand_allocate_common( 1317 AllocateNode* alloc, // allocation node to be expanded 1318 Node* length, // array length for an array allocation 1319 const TypeFunc* slow_call_type, // Type of slow call 1320 address slow_call_address // Address of slow call 1321 ) 1322 { 1323 1324 Node* ctrl = alloc->in(TypeFunc::Control); 1325 Node* mem = alloc->in(TypeFunc::Memory); 1326 Node* i_o = alloc->in(TypeFunc::I_O); 1327 Node* size_in_bytes = alloc->in(AllocateNode::AllocSize); 1328 Node* klass_node = alloc->in(AllocateNode::KlassNode); 1329 Node* initial_slow_test = alloc->in(AllocateNode::InitialTest); 1330 1331 assert(ctrl != NULL, "must have control"); 1332 // We need a Region and corresponding Phi's to merge the slow-path and fast-path results. 1333 // they will not be used if "always_slow" is set 1334 enum { slow_result_path = 1, fast_result_path = 2 }; 1335 Node *result_region = NULL; 1336 Node *result_phi_rawmem = NULL; 1337 Node *result_phi_rawoop = NULL; 1338 Node *result_phi_i_o = NULL; 1339 1340 // The initial slow comparison is a size check, the comparison 1341 // we want to do is a BoolTest::gt 1342 bool always_slow = false; 1343 int tv = _igvn.find_int_con(initial_slow_test, -1); 1344 if (tv >= 0) { 1345 always_slow = (tv == 1); 1346 initial_slow_test = NULL; 1347 } else { 1348 initial_slow_test = BoolNode::make_predicate(initial_slow_test, &_igvn); 1349 } 1350 1351 if (C->env()->dtrace_alloc_probes() || 1352 (!UseTLAB && !Universe::heap()->supports_inline_contig_alloc())) { 1353 // Force slow-path allocation 1354 always_slow = true; 1355 initial_slow_test = NULL; 1356 } 1357 1358 Node *slow_region = NULL; 1359 Node *toobig_false = ctrl; 1360 1361 assert (initial_slow_test == NULL || !always_slow, "arguments must be consistent"); 1362 // generate the initial test if necessary 1363 if (initial_slow_test != NULL ) { 1364 if (slow_region == NULL) { 1365 slow_region = new RegionNode(1); 1366 } 1367 // Now make the initial failure test. Usually a too-big test but 1368 // might be a TRUE for finalizers or a fancy class check for 1369 // newInstance0. 1370 IfNode* toobig_iff = new IfNode(ctrl, initial_slow_test, PROB_MIN, COUNT_UNKNOWN); 1371 transform_later(toobig_iff); 1372 // Plug the failing-too-big test into the slow-path region 1373 Node* toobig_true = new IfTrueNode(toobig_iff); 1374 transform_later(toobig_true); 1375 slow_region ->add_req(toobig_true); 1376 toobig_false = new IfFalseNode(toobig_iff); 1377 transform_later(toobig_false); 1378 } else { // No initial test, just fall into next case 1379 toobig_false = ctrl; 1380 } 1381 1382 Node *slow_mem = mem; // save the current memory state for slow path 1383 // generate the fast allocation code unless we know that the initial test will always go slow 1384 if (!always_slow) { 1385 // Fast path modifies only raw memory. 1386 if (mem->is_MergeMem()) { 1387 mem = mem->as_MergeMem()->memory_at(Compile::AliasIdxRaw); 1388 } 1389 1390 Node* eden_top_adr; 1391 Node* eden_end_adr; 1392 1393 set_eden_pointers(eden_top_adr, eden_end_adr); 1394 1395 // Load Eden::end. Loop invariant and hoisted. 1396 // 1397 // Note: We set the control input on "eden_end" and "old_eden_top" when using 1398 // a TLAB to work around a bug where these values were being moved across 1399 // a safepoint. These are not oops, so they cannot be include in the oop 1400 // map, but they can be changed by a GC. The proper way to fix this would 1401 // be to set the raw memory state when generating a SafepointNode. However 1402 // this will require extensive changes to the loop optimization in order to 1403 // prevent a degradation of the optimization. 1404 // See comment in memnode.hpp, around line 227 in class LoadPNode. 1405 Node *eden_end = make_load(ctrl, mem, eden_end_adr, 0, TypeRawPtr::BOTTOM, T_ADDRESS); 1406 1407 // allocate the Region and Phi nodes for the result 1408 result_region = new RegionNode(3); 1409 result_phi_rawmem = new PhiNode(result_region, Type::MEMORY, TypeRawPtr::BOTTOM); 1410 result_phi_rawoop = new PhiNode(result_region, TypeRawPtr::BOTTOM); 1411 result_phi_i_o = new PhiNode(result_region, Type::ABIO); // I/O is used for Prefetch 1412 1413 // We need a Region for the loop-back contended case. 1414 enum { fall_in_path = 1, contended_loopback_path = 2 }; 1415 Node *contended_region; 1416 Node *contended_phi_rawmem; 1417 if (UseTLAB) { 1418 contended_region = toobig_false; 1419 contended_phi_rawmem = mem; 1420 } else { 1421 contended_region = new RegionNode(3); 1422 contended_phi_rawmem = new PhiNode(contended_region, Type::MEMORY, TypeRawPtr::BOTTOM); 1423 // Now handle the passing-too-big test. We fall into the contended 1424 // loop-back merge point. 1425 contended_region ->init_req(fall_in_path, toobig_false); 1426 contended_phi_rawmem->init_req(fall_in_path, mem); 1427 transform_later(contended_region); 1428 transform_later(contended_phi_rawmem); 1429 } 1430 1431 // Load(-locked) the heap top. 1432 // See note above concerning the control input when using a TLAB 1433 Node *old_eden_top = UseTLAB 1434 ? new LoadPNode (ctrl, contended_phi_rawmem, eden_top_adr, TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM, MemNode::unordered) 1435 : new LoadPLockedNode(contended_region, contended_phi_rawmem, eden_top_adr, MemNode::acquire); 1436 1437 transform_later(old_eden_top); 1438 // Add to heap top to get a new heap top 1439 Node *new_eden_top = new AddPNode(top(), old_eden_top, size_in_bytes); 1440 transform_later(new_eden_top); 1441 // Check for needing a GC; compare against heap end 1442 Node *needgc_cmp = new CmpPNode(new_eden_top, eden_end); 1443 transform_later(needgc_cmp); 1444 Node *needgc_bol = new BoolNode(needgc_cmp, BoolTest::ge); 1445 transform_later(needgc_bol); 1446 IfNode *needgc_iff = new IfNode(contended_region, needgc_bol, PROB_UNLIKELY_MAG(4), COUNT_UNKNOWN); 1447 transform_later(needgc_iff); 1448 1449 // Plug the failing-heap-space-need-gc test into the slow-path region 1450 Node *needgc_true = new IfTrueNode(needgc_iff); 1451 transform_later(needgc_true); 1452 if (slow_region != NULL) { 1453 slow_region->add_req(needgc_true); 1454 // This completes all paths into the slow merge point 1455 transform_later(slow_region); 1456 } else { 1457 // Just fall from the need-GC path straight into the VM call. 1458 slow_region = needgc_true; 1459 } 1460 // No need for a GC. Setup for the Store-Conditional 1461 Node *needgc_false = new IfFalseNode(needgc_iff); 1462 transform_later(needgc_false); 1463 1464 // Grab regular I/O before optional prefetch may change it. 1465 // Slow-path does no I/O so just set it to the original I/O. 1466 result_phi_i_o->init_req(slow_result_path, i_o); 1467 1468 i_o = prefetch_allocation(i_o, needgc_false, contended_phi_rawmem, 1469 old_eden_top, new_eden_top, length); 1470 1471 // Name successful fast-path variables 1472 Node* fast_oop = old_eden_top; 1473 Node* fast_oop_ctrl; 1474 Node* fast_oop_rawmem; 1475 1476 // Store (-conditional) the modified eden top back down. 1477 // StorePConditional produces flags for a test PLUS a modified raw 1478 // memory state. 1479 if (UseTLAB) { 1480 Node* store_eden_top = 1481 new StorePNode(needgc_false, contended_phi_rawmem, eden_top_adr, 1482 TypeRawPtr::BOTTOM, new_eden_top, MemNode::unordered); 1483 transform_later(store_eden_top); 1484 fast_oop_ctrl = needgc_false; // No contention, so this is the fast path 1485 fast_oop_rawmem = store_eden_top; 1486 } else { 1487 Node* store_eden_top = 1488 new StorePConditionalNode(needgc_false, contended_phi_rawmem, eden_top_adr, 1489 new_eden_top, fast_oop/*old_eden_top*/); 1490 transform_later(store_eden_top); 1491 Node *contention_check = new BoolNode(store_eden_top, BoolTest::ne); 1492 transform_later(contention_check); 1493 store_eden_top = new SCMemProjNode(store_eden_top); 1494 transform_later(store_eden_top); 1495 1496 // If not using TLABs, check to see if there was contention. 1497 IfNode *contention_iff = new IfNode (needgc_false, contention_check, PROB_MIN, COUNT_UNKNOWN); 1498 transform_later(contention_iff); 1499 Node *contention_true = new IfTrueNode(contention_iff); 1500 transform_later(contention_true); 1501 // If contention, loopback and try again. 1502 contended_region->init_req(contended_loopback_path, contention_true); 1503 contended_phi_rawmem->init_req(contended_loopback_path, store_eden_top); 1504 1505 // Fast-path succeeded with no contention! 1506 Node *contention_false = new IfFalseNode(contention_iff); 1507 transform_later(contention_false); 1508 fast_oop_ctrl = contention_false; 1509 1510 // Bump total allocated bytes for this thread 1511 Node* thread = new ThreadLocalNode(); 1512 transform_later(thread); 1513 Node* alloc_bytes_adr = basic_plus_adr(top()/*not oop*/, thread, 1514 in_bytes(JavaThread::allocated_bytes_offset())); 1515 Node* alloc_bytes = make_load(fast_oop_ctrl, store_eden_top, alloc_bytes_adr, 1516 0, TypeLong::LONG, T_LONG); 1517 #ifdef _LP64 1518 Node* alloc_size = size_in_bytes; 1519 #else 1520 Node* alloc_size = new ConvI2LNode(size_in_bytes); 1521 transform_later(alloc_size); 1522 #endif 1523 Node* new_alloc_bytes = new AddLNode(alloc_bytes, alloc_size); 1524 transform_later(new_alloc_bytes); 1525 fast_oop_rawmem = make_store(fast_oop_ctrl, store_eden_top, alloc_bytes_adr, 1526 0, new_alloc_bytes, T_LONG); 1527 } 1528 1529 InitializeNode* init = alloc->initialization(); 1530 fast_oop_rawmem = initialize_object(alloc, 1531 fast_oop_ctrl, fast_oop_rawmem, fast_oop, 1532 klass_node, length, size_in_bytes); 1533 1534 // If initialization is performed by an array copy, any required 1535 // MemBarStoreStore was already added. If the object does not 1536 // escape no need for a MemBarStoreStore. If the object does not 1537 // escape in its initializer and memory barrier (MemBarStoreStore or 1538 // stronger) is already added at exit of initializer, also no need 1539 // for a MemBarStoreStore. Otherwise we need a MemBarStoreStore 1540 // so that stores that initialize this object can't be reordered 1541 // with a subsequent store that makes this object accessible by 1542 // other threads. 1543 // Other threads include java threads and JVM internal threads 1544 // (for example concurrent GC threads). Current concurrent GC 1545 // implementation: CMS and G1 will not scan newly created object, 1546 // so it's safe to skip storestore barrier when allocation does 1547 // not escape. 1548 if (!alloc->does_not_escape_thread() && 1549 !alloc->is_allocation_MemBar_redundant() && 1550 (init == NULL || !init->is_complete_with_arraycopy())) { 1551 if (init == NULL || init->req() < InitializeNode::RawStores) { 1552 // No InitializeNode or no stores captured by zeroing 1553 // elimination. Simply add the MemBarStoreStore after object 1554 // initialization. 1555 MemBarNode* mb = MemBarNode::make(C, Op_MemBarStoreStore, Compile::AliasIdxBot); 1556 transform_later(mb); 1557 1558 mb->init_req(TypeFunc::Memory, fast_oop_rawmem); 1559 mb->init_req(TypeFunc::Control, fast_oop_ctrl); 1560 fast_oop_ctrl = new ProjNode(mb,TypeFunc::Control); 1561 transform_later(fast_oop_ctrl); 1562 fast_oop_rawmem = new ProjNode(mb,TypeFunc::Memory); 1563 transform_later(fast_oop_rawmem); 1564 } else { 1565 // Add the MemBarStoreStore after the InitializeNode so that 1566 // all stores performing the initialization that were moved 1567 // before the InitializeNode happen before the storestore 1568 // barrier. 1569 1570 Node* init_ctrl = init->proj_out_or_null(TypeFunc::Control); 1571 Node* init_mem = init->proj_out_or_null(TypeFunc::Memory); 1572 1573 MemBarNode* mb = MemBarNode::make(C, Op_MemBarStoreStore, Compile::AliasIdxBot); 1574 transform_later(mb); 1575 1576 Node* ctrl = new ProjNode(init,TypeFunc::Control); 1577 transform_later(ctrl); 1578 Node* mem = new ProjNode(init,TypeFunc::Memory); 1579 transform_later(mem); 1580 1581 // The MemBarStoreStore depends on control and memory coming 1582 // from the InitializeNode 1583 mb->init_req(TypeFunc::Memory, mem); 1584 mb->init_req(TypeFunc::Control, ctrl); 1585 1586 ctrl = new ProjNode(mb,TypeFunc::Control); 1587 transform_later(ctrl); 1588 mem = new ProjNode(mb,TypeFunc::Memory); 1589 transform_later(mem); 1590 1591 // All nodes that depended on the InitializeNode for control 1592 // and memory must now depend on the MemBarNode that itself 1593 // depends on the InitializeNode 1594 if (init_ctrl != NULL) { 1595 _igvn.replace_node(init_ctrl, ctrl); 1596 } 1597 if (init_mem != NULL) { 1598 _igvn.replace_node(init_mem, mem); 1599 } 1600 } 1601 } 1602 1603 if (C->env()->dtrace_extended_probes()) { 1604 // Slow-path call 1605 int size = TypeFunc::Parms + 2; 1606 CallLeafNode *call = new CallLeafNode(OptoRuntime::dtrace_object_alloc_Type(), 1607 CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc_base), 1608 "dtrace_object_alloc", 1609 TypeRawPtr::BOTTOM); 1610 1611 // Get base of thread-local storage area 1612 Node* thread = new ThreadLocalNode(); 1613 transform_later(thread); 1614 1615 call->init_req(TypeFunc::Parms+0, thread); 1616 call->init_req(TypeFunc::Parms+1, fast_oop); 1617 call->init_req(TypeFunc::Control, fast_oop_ctrl); 1618 call->init_req(TypeFunc::I_O , top()); // does no i/o 1619 call->init_req(TypeFunc::Memory , fast_oop_rawmem); 1620 call->init_req(TypeFunc::ReturnAdr, alloc->in(TypeFunc::ReturnAdr)); 1621 call->init_req(TypeFunc::FramePtr, alloc->in(TypeFunc::FramePtr)); 1622 transform_later(call); 1623 fast_oop_ctrl = new ProjNode(call,TypeFunc::Control); 1624 transform_later(fast_oop_ctrl); 1625 fast_oop_rawmem = new ProjNode(call,TypeFunc::Memory); 1626 transform_later(fast_oop_rawmem); 1627 } 1628 1629 // Plug in the successful fast-path into the result merge point 1630 result_region ->init_req(fast_result_path, fast_oop_ctrl); 1631 result_phi_rawoop->init_req(fast_result_path, fast_oop); 1632 result_phi_i_o ->init_req(fast_result_path, i_o); 1633 result_phi_rawmem->init_req(fast_result_path, fast_oop_rawmem); 1634 } else { 1635 slow_region = ctrl; 1636 result_phi_i_o = i_o; // Rename it to use in the following code. 1637 } 1638 1639 // Generate slow-path call 1640 CallNode *call = new CallStaticJavaNode(slow_call_type, slow_call_address, 1641 OptoRuntime::stub_name(slow_call_address), 1642 alloc->jvms()->bci(), 1643 TypePtr::BOTTOM); 1644 call->init_req( TypeFunc::Control, slow_region ); 1645 call->init_req( TypeFunc::I_O , top() ) ; // does no i/o 1646 call->init_req( TypeFunc::Memory , slow_mem ); // may gc ptrs 1647 call->init_req( TypeFunc::ReturnAdr, alloc->in(TypeFunc::ReturnAdr) ); 1648 call->init_req( TypeFunc::FramePtr, alloc->in(TypeFunc::FramePtr) ); 1649 1650 call->init_req(TypeFunc::Parms+0, klass_node); 1651 if (length != NULL) { 1652 call->init_req(TypeFunc::Parms+1, length); 1653 } 1654 1655 // Copy debug information and adjust JVMState information, then replace 1656 // allocate node with the call 1657 copy_call_debug_info((CallNode *) alloc, call); 1658 if (!always_slow) { 1659 call->set_cnt(PROB_UNLIKELY_MAG(4)); // Same effect as RC_UNCOMMON. 1660 } else { 1661 // Hook i_o projection to avoid its elimination during allocation 1662 // replacement (when only a slow call is generated). 1663 call->set_req(TypeFunc::I_O, result_phi_i_o); 1664 } 1665 _igvn.replace_node(alloc, call); 1666 transform_later(call); 1667 1668 // Identify the output projections from the allocate node and 1669 // adjust any references to them. 1670 // The control and io projections look like: 1671 // 1672 // v---Proj(ctrl) <-----+ v---CatchProj(ctrl) 1673 // Allocate Catch 1674 // ^---Proj(io) <-------+ ^---CatchProj(io) 1675 // 1676 // We are interested in the CatchProj nodes. 1677 // 1678 extract_call_projections(call); 1679 1680 // An allocate node has separate memory projections for the uses on 1681 // the control and i_o paths. Replace the control memory projection with 1682 // result_phi_rawmem (unless we are only generating a slow call when 1683 // both memory projections are combined) 1684 if (!always_slow && _memproj_fallthrough != NULL) { 1685 for (DUIterator_Fast imax, i = _memproj_fallthrough->fast_outs(imax); i < imax; i++) { 1686 Node *use = _memproj_fallthrough->fast_out(i); 1687 _igvn.rehash_node_delayed(use); 1688 imax -= replace_input(use, _memproj_fallthrough, result_phi_rawmem); 1689 // back up iterator 1690 --i; 1691 } 1692 } 1693 // Now change uses of _memproj_catchall to use _memproj_fallthrough and delete 1694 // _memproj_catchall so we end up with a call that has only 1 memory projection. 1695 if (_memproj_catchall != NULL ) { 1696 if (_memproj_fallthrough == NULL) { 1697 _memproj_fallthrough = new ProjNode(call, TypeFunc::Memory); 1698 transform_later(_memproj_fallthrough); 1699 } 1700 for (DUIterator_Fast imax, i = _memproj_catchall->fast_outs(imax); i < imax; i++) { 1701 Node *use = _memproj_catchall->fast_out(i); 1702 _igvn.rehash_node_delayed(use); 1703 imax -= replace_input(use, _memproj_catchall, _memproj_fallthrough); 1704 // back up iterator 1705 --i; 1706 } 1707 assert(_memproj_catchall->outcnt() == 0, "all uses must be deleted"); 1708 _igvn.remove_dead_node(_memproj_catchall); 1709 } 1710 1711 // An allocate node has separate i_o projections for the uses on the control 1712 // and i_o paths. Always replace the control i_o projection with result i_o 1713 // otherwise incoming i_o become dead when only a slow call is generated 1714 // (it is different from memory projections where both projections are 1715 // combined in such case). 1716 if (_ioproj_fallthrough != NULL) { 1717 for (DUIterator_Fast imax, i = _ioproj_fallthrough->fast_outs(imax); i < imax; i++) { 1718 Node *use = _ioproj_fallthrough->fast_out(i); 1719 _igvn.rehash_node_delayed(use); 1720 imax -= replace_input(use, _ioproj_fallthrough, result_phi_i_o); 1721 // back up iterator 1722 --i; 1723 } 1724 } 1725 // Now change uses of _ioproj_catchall to use _ioproj_fallthrough and delete 1726 // _ioproj_catchall so we end up with a call that has only 1 i_o projection. 1727 if (_ioproj_catchall != NULL ) { 1728 if (_ioproj_fallthrough == NULL) { 1729 _ioproj_fallthrough = new ProjNode(call, TypeFunc::I_O); 1730 transform_later(_ioproj_fallthrough); 1731 } 1732 for (DUIterator_Fast imax, i = _ioproj_catchall->fast_outs(imax); i < imax; i++) { 1733 Node *use = _ioproj_catchall->fast_out(i); 1734 _igvn.rehash_node_delayed(use); 1735 imax -= replace_input(use, _ioproj_catchall, _ioproj_fallthrough); 1736 // back up iterator 1737 --i; 1738 } 1739 assert(_ioproj_catchall->outcnt() == 0, "all uses must be deleted"); 1740 _igvn.remove_dead_node(_ioproj_catchall); 1741 } 1742 1743 // if we generated only a slow call, we are done 1744 if (always_slow) { 1745 // Now we can unhook i_o. 1746 if (result_phi_i_o->outcnt() > 1) { 1747 call->set_req(TypeFunc::I_O, top()); 1748 } else { 1749 assert(result_phi_i_o->unique_ctrl_out() == call, ""); 1750 // Case of new array with negative size known during compilation. 1751 // AllocateArrayNode::Ideal() optimization disconnect unreachable 1752 // following code since call to runtime will throw exception. 1753 // As result there will be no users of i_o after the call. 1754 // Leave i_o attached to this call to avoid problems in preceding graph. 1755 } 1756 return; 1757 } 1758 1759 1760 if (_fallthroughcatchproj != NULL) { 1761 ctrl = _fallthroughcatchproj->clone(); 1762 transform_later(ctrl); 1763 _igvn.replace_node(_fallthroughcatchproj, result_region); 1764 } else { 1765 ctrl = top(); 1766 } 1767 Node *slow_result; 1768 if (_resproj == NULL) { 1769 // no uses of the allocation result 1770 slow_result = top(); 1771 } else { 1772 slow_result = _resproj->clone(); 1773 transform_later(slow_result); 1774 _igvn.replace_node(_resproj, result_phi_rawoop); 1775 } 1776 1777 // Plug slow-path into result merge point 1778 result_region ->init_req( slow_result_path, ctrl ); 1779 result_phi_rawoop->init_req( slow_result_path, slow_result); 1780 result_phi_rawmem->init_req( slow_result_path, _memproj_fallthrough ); 1781 transform_later(result_region); 1782 transform_later(result_phi_rawoop); 1783 transform_later(result_phi_rawmem); 1784 transform_later(result_phi_i_o); 1785 // This completes all paths into the result merge point 1786 } 1787 1788 1789 // Helper for PhaseMacroExpand::expand_allocate_common. 1790 // Initializes the newly-allocated storage. 1791 Node* PhaseMacroExpand::initialize_object(AllocateNode* alloc, 1792 Node* control, Node* rawmem, Node* object, 1793 Node* klass_node, Node* length, 1794 Node* size_in_bytes) { 1795 InitializeNode* init = alloc->initialization(); 1796 // Store the klass & mark bits 1797 Node* mark_node = NULL; 1798 // For now only enable fast locking for non-array types 1799 if ((EnableValhalla || UseBiasedLocking) && length == NULL) { 1800 mark_node = make_load(control, rawmem, klass_node, in_bytes(Klass::prototype_header_offset()), TypeRawPtr::BOTTOM, T_ADDRESS); 1801 } else { 1802 mark_node = makecon(TypeRawPtr::make((address)markOopDesc::prototype())); 1803 } 1804 rawmem = make_store(control, rawmem, object, oopDesc::mark_offset_in_bytes(), mark_node, T_ADDRESS); 1805 1806 rawmem = make_store(control, rawmem, object, oopDesc::klass_offset_in_bytes(), klass_node, T_METADATA); 1807 int header_size = alloc->minimum_header_size(); // conservatively small 1808 1809 // Array length 1810 if (length != NULL) { // Arrays need length field 1811 rawmem = make_store(control, rawmem, object, arrayOopDesc::length_offset_in_bytes(), length, T_INT); 1812 // conservatively small header size: 1813 header_size = arrayOopDesc::base_offset_in_bytes(T_BYTE); 1814 ciKlass* k = _igvn.type(klass_node)->is_klassptr()->klass(); 1815 if (k->is_array_klass()) // we know the exact header size in most cases: 1816 header_size = Klass::layout_helper_header_size(k->layout_helper()); 1817 } 1818 1819 // Clear the object body, if necessary. 1820 if (init == NULL) { 1821 // The init has somehow disappeared; be cautious and clear everything. 1822 // 1823 // This can happen if a node is allocated but an uncommon trap occurs 1824 // immediately. In this case, the Initialize gets associated with the 1825 // trap, and may be placed in a different (outer) loop, if the Allocate 1826 // is in a loop. If (this is rare) the inner loop gets unrolled, then 1827 // there can be two Allocates to one Initialize. The answer in all these 1828 // edge cases is safety first. It is always safe to clear immediately 1829 // within an Allocate, and then (maybe or maybe not) clear some more later. 1830 if (!(UseTLAB && ZeroTLAB)) { 1831 rawmem = ClearArrayNode::clear_memory(control, rawmem, object, 1832 alloc->in(AllocateNode::DefaultValue), 1833 alloc->in(AllocateNode::RawDefaultValue), 1834 header_size, size_in_bytes, 1835 &_igvn); 1836 } 1837 } else { 1838 if (!init->is_complete()) { 1839 // Try to win by zeroing only what the init does not store. 1840 // We can also try to do some peephole optimizations, 1841 // such as combining some adjacent subword stores. 1842 rawmem = init->complete_stores(control, rawmem, object, 1843 header_size, size_in_bytes, &_igvn); 1844 } 1845 // We have no more use for this link, since the AllocateNode goes away: 1846 init->set_req(InitializeNode::RawAddress, top()); 1847 // (If we keep the link, it just confuses the register allocator, 1848 // who thinks he sees a real use of the address by the membar.) 1849 } 1850 1851 return rawmem; 1852 } 1853 1854 // Generate prefetch instructions for next allocations. 1855 Node* PhaseMacroExpand::prefetch_allocation(Node* i_o, Node*& needgc_false, 1856 Node*& contended_phi_rawmem, 1857 Node* old_eden_top, Node* new_eden_top, 1858 Node* length) { 1859 enum { fall_in_path = 1, pf_path = 2 }; 1860 if( UseTLAB && AllocatePrefetchStyle == 2 ) { 1861 // Generate prefetch allocation with watermark check. 1862 // As an allocation hits the watermark, we will prefetch starting 1863 // at a "distance" away from watermark. 1864 1865 Node *pf_region = new RegionNode(3); 1866 Node *pf_phi_rawmem = new PhiNode( pf_region, Type::MEMORY, 1867 TypeRawPtr::BOTTOM ); 1868 // I/O is used for Prefetch 1869 Node *pf_phi_abio = new PhiNode( pf_region, Type::ABIO ); 1870 1871 Node *thread = new ThreadLocalNode(); 1872 transform_later(thread); 1873 1874 Node *eden_pf_adr = new AddPNode( top()/*not oop*/, thread, 1875 _igvn.MakeConX(in_bytes(JavaThread::tlab_pf_top_offset())) ); 1876 transform_later(eden_pf_adr); 1877 1878 Node *old_pf_wm = new LoadPNode(needgc_false, 1879 contended_phi_rawmem, eden_pf_adr, 1880 TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM, 1881 MemNode::unordered); 1882 transform_later(old_pf_wm); 1883 1884 // check against new_eden_top 1885 Node *need_pf_cmp = new CmpPNode( new_eden_top, old_pf_wm ); 1886 transform_later(need_pf_cmp); 1887 Node *need_pf_bol = new BoolNode( need_pf_cmp, BoolTest::ge ); 1888 transform_later(need_pf_bol); 1889 IfNode *need_pf_iff = new IfNode( needgc_false, need_pf_bol, 1890 PROB_UNLIKELY_MAG(4), COUNT_UNKNOWN ); 1891 transform_later(need_pf_iff); 1892 1893 // true node, add prefetchdistance 1894 Node *need_pf_true = new IfTrueNode( need_pf_iff ); 1895 transform_later(need_pf_true); 1896 1897 Node *need_pf_false = new IfFalseNode( need_pf_iff ); 1898 transform_later(need_pf_false); 1899 1900 Node *new_pf_wmt = new AddPNode( top(), old_pf_wm, 1901 _igvn.MakeConX(AllocatePrefetchDistance) ); 1902 transform_later(new_pf_wmt ); 1903 new_pf_wmt->set_req(0, need_pf_true); 1904 1905 Node *store_new_wmt = new StorePNode(need_pf_true, 1906 contended_phi_rawmem, eden_pf_adr, 1907 TypeRawPtr::BOTTOM, new_pf_wmt, 1908 MemNode::unordered); 1909 transform_later(store_new_wmt); 1910 1911 // adding prefetches 1912 pf_phi_abio->init_req( fall_in_path, i_o ); 1913 1914 Node *prefetch_adr; 1915 Node *prefetch; 1916 uint lines = (length != NULL) ? AllocatePrefetchLines : AllocateInstancePrefetchLines; 1917 uint step_size = AllocatePrefetchStepSize; 1918 uint distance = 0; 1919 1920 for ( uint i = 0; i < lines; i++ ) { 1921 prefetch_adr = new AddPNode( old_pf_wm, new_pf_wmt, 1922 _igvn.MakeConX(distance) ); 1923 transform_later(prefetch_adr); 1924 prefetch = new PrefetchAllocationNode( i_o, prefetch_adr ); 1925 transform_later(prefetch); 1926 distance += step_size; 1927 i_o = prefetch; 1928 } 1929 pf_phi_abio->set_req( pf_path, i_o ); 1930 1931 pf_region->init_req( fall_in_path, need_pf_false ); 1932 pf_region->init_req( pf_path, need_pf_true ); 1933 1934 pf_phi_rawmem->init_req( fall_in_path, contended_phi_rawmem ); 1935 pf_phi_rawmem->init_req( pf_path, store_new_wmt ); 1936 1937 transform_later(pf_region); 1938 transform_later(pf_phi_rawmem); 1939 transform_later(pf_phi_abio); 1940 1941 needgc_false = pf_region; 1942 contended_phi_rawmem = pf_phi_rawmem; 1943 i_o = pf_phi_abio; 1944 } else if( UseTLAB && AllocatePrefetchStyle == 3 ) { 1945 // Insert a prefetch instruction for each allocation. 1946 // This code is used to generate 1 prefetch instruction per cache line. 1947 1948 // Generate several prefetch instructions. 1949 uint lines = (length != NULL) ? AllocatePrefetchLines : AllocateInstancePrefetchLines; 1950 uint step_size = AllocatePrefetchStepSize; 1951 uint distance = AllocatePrefetchDistance; 1952 1953 // Next cache address. 1954 Node *cache_adr = new AddPNode(old_eden_top, old_eden_top, 1955 _igvn.MakeConX(step_size + distance)); 1956 transform_later(cache_adr); 1957 cache_adr = new CastP2XNode(needgc_false, cache_adr); 1958 transform_later(cache_adr); 1959 // Address is aligned to execute prefetch to the beginning of cache line size 1960 // (it is important when BIS instruction is used on SPARC as prefetch). 1961 Node* mask = _igvn.MakeConX(~(intptr_t)(step_size-1)); 1962 cache_adr = new AndXNode(cache_adr, mask); 1963 transform_later(cache_adr); 1964 cache_adr = new CastX2PNode(cache_adr); 1965 transform_later(cache_adr); 1966 1967 // Prefetch 1968 Node *prefetch = new PrefetchAllocationNode( contended_phi_rawmem, cache_adr ); 1969 prefetch->set_req(0, needgc_false); 1970 transform_later(prefetch); 1971 contended_phi_rawmem = prefetch; 1972 Node *prefetch_adr; 1973 distance = step_size; 1974 for ( uint i = 1; i < lines; i++ ) { 1975 prefetch_adr = new AddPNode( cache_adr, cache_adr, 1976 _igvn.MakeConX(distance) ); 1977 transform_later(prefetch_adr); 1978 prefetch = new PrefetchAllocationNode( contended_phi_rawmem, prefetch_adr ); 1979 transform_later(prefetch); 1980 distance += step_size; 1981 contended_phi_rawmem = prefetch; 1982 } 1983 } else if( AllocatePrefetchStyle > 0 ) { 1984 // Insert a prefetch for each allocation only on the fast-path 1985 Node *prefetch_adr; 1986 Node *prefetch; 1987 // Generate several prefetch instructions. 1988 uint lines = (length != NULL) ? AllocatePrefetchLines : AllocateInstancePrefetchLines; 1989 uint step_size = AllocatePrefetchStepSize; 1990 uint distance = AllocatePrefetchDistance; 1991 for ( uint i = 0; i < lines; i++ ) { 1992 prefetch_adr = new AddPNode( old_eden_top, new_eden_top, 1993 _igvn.MakeConX(distance) ); 1994 transform_later(prefetch_adr); 1995 prefetch = new PrefetchAllocationNode( i_o, prefetch_adr ); 1996 // Do not let it float too high, since if eden_top == eden_end, 1997 // both might be null. 1998 if( i == 0 ) { // Set control for first prefetch, next follows it 1999 prefetch->init_req(0, needgc_false); 2000 } 2001 transform_later(prefetch); 2002 distance += step_size; 2003 i_o = prefetch; 2004 } 2005 } 2006 return i_o; 2007 } 2008 2009 2010 void PhaseMacroExpand::expand_allocate(AllocateNode *alloc) { 2011 expand_allocate_common(alloc, NULL, 2012 OptoRuntime::new_instance_Type(), 2013 OptoRuntime::new_instance_Java()); 2014 } 2015 2016 void PhaseMacroExpand::expand_allocate_array(AllocateArrayNode *alloc) { 2017 Node* length = alloc->in(AllocateNode::ALength); 2018 InitializeNode* init = alloc->initialization(); 2019 Node* klass_node = alloc->in(AllocateNode::KlassNode); 2020 ciKlass* k = _igvn.type(klass_node)->is_klassptr()->klass(); 2021 address slow_call_address; // Address of slow call 2022 if (init != NULL && init->is_complete_with_arraycopy() && 2023 k->is_type_array_klass()) { 2024 // Don't zero type array during slow allocation in VM since 2025 // it will be initialized later by arraycopy in compiled code. 2026 slow_call_address = OptoRuntime::new_array_nozero_Java(); 2027 } else { 2028 slow_call_address = OptoRuntime::new_array_Java(); 2029 } 2030 expand_allocate_common(alloc, length, 2031 OptoRuntime::new_array_Type(), 2032 slow_call_address); 2033 } 2034 2035 //-------------------mark_eliminated_box---------------------------------- 2036 // 2037 // During EA obj may point to several objects but after few ideal graph 2038 // transformations (CCP) it may point to only one non escaping object 2039 // (but still using phi), corresponding locks and unlocks will be marked 2040 // for elimination. Later obj could be replaced with a new node (new phi) 2041 // and which does not have escape information. And later after some graph 2042 // reshape other locks and unlocks (which were not marked for elimination 2043 // before) are connected to this new obj (phi) but they still will not be 2044 // marked for elimination since new obj has no escape information. 2045 // Mark all associated (same box and obj) lock and unlock nodes for 2046 // elimination if some of them marked already. 2047 void PhaseMacroExpand::mark_eliminated_box(Node* oldbox, Node* obj) { 2048 if (oldbox->as_BoxLock()->is_eliminated()) 2049 return; // This BoxLock node was processed already. 2050 2051 // New implementation (EliminateNestedLocks) has separate BoxLock 2052 // node for each locked region so mark all associated locks/unlocks as 2053 // eliminated even if different objects are referenced in one locked region 2054 // (for example, OSR compilation of nested loop inside locked scope). 2055 if (EliminateNestedLocks || 2056 oldbox->as_BoxLock()->is_simple_lock_region(NULL, obj)) { 2057 // Box is used only in one lock region. Mark this box as eliminated. 2058 _igvn.hash_delete(oldbox); 2059 oldbox->as_BoxLock()->set_eliminated(); // This changes box's hash value 2060 _igvn.hash_insert(oldbox); 2061 2062 for (uint i = 0; i < oldbox->outcnt(); i++) { 2063 Node* u = oldbox->raw_out(i); 2064 if (u->is_AbstractLock() && !u->as_AbstractLock()->is_non_esc_obj()) { 2065 AbstractLockNode* alock = u->as_AbstractLock(); 2066 // Check lock's box since box could be referenced by Lock's debug info. 2067 if (alock->box_node() == oldbox) { 2068 // Mark eliminated all related locks and unlocks. 2069 #ifdef ASSERT 2070 alock->log_lock_optimization(C, "eliminate_lock_set_non_esc4"); 2071 #endif 2072 alock->set_non_esc_obj(); 2073 } 2074 } 2075 } 2076 return; 2077 } 2078 2079 // Create new "eliminated" BoxLock node and use it in monitor debug info 2080 // instead of oldbox for the same object. 2081 BoxLockNode* newbox = oldbox->clone()->as_BoxLock(); 2082 2083 // Note: BoxLock node is marked eliminated only here and it is used 2084 // to indicate that all associated lock and unlock nodes are marked 2085 // for elimination. 2086 newbox->set_eliminated(); 2087 transform_later(newbox); 2088 2089 // Replace old box node with new box for all users of the same object. 2090 for (uint i = 0; i < oldbox->outcnt();) { 2091 bool next_edge = true; 2092 2093 Node* u = oldbox->raw_out(i); 2094 if (u->is_AbstractLock()) { 2095 AbstractLockNode* alock = u->as_AbstractLock(); 2096 if (alock->box_node() == oldbox && alock->obj_node()->eqv_uncast(obj)) { 2097 // Replace Box and mark eliminated all related locks and unlocks. 2098 #ifdef ASSERT 2099 alock->log_lock_optimization(C, "eliminate_lock_set_non_esc5"); 2100 #endif 2101 alock->set_non_esc_obj(); 2102 _igvn.rehash_node_delayed(alock); 2103 alock->set_box_node(newbox); 2104 next_edge = false; 2105 } 2106 } 2107 if (u->is_FastLock() && u->as_FastLock()->obj_node()->eqv_uncast(obj)) { 2108 FastLockNode* flock = u->as_FastLock(); 2109 assert(flock->box_node() == oldbox, "sanity"); 2110 _igvn.rehash_node_delayed(flock); 2111 flock->set_box_node(newbox); 2112 next_edge = false; 2113 } 2114 2115 // Replace old box in monitor debug info. 2116 if (u->is_SafePoint() && u->as_SafePoint()->jvms()) { 2117 SafePointNode* sfn = u->as_SafePoint(); 2118 JVMState* youngest_jvms = sfn->jvms(); 2119 int max_depth = youngest_jvms->depth(); 2120 for (int depth = 1; depth <= max_depth; depth++) { 2121 JVMState* jvms = youngest_jvms->of_depth(depth); 2122 int num_mon = jvms->nof_monitors(); 2123 // Loop over monitors 2124 for (int idx = 0; idx < num_mon; idx++) { 2125 Node* obj_node = sfn->monitor_obj(jvms, idx); 2126 Node* box_node = sfn->monitor_box(jvms, idx); 2127 if (box_node == oldbox && obj_node->eqv_uncast(obj)) { 2128 int j = jvms->monitor_box_offset(idx); 2129 _igvn.replace_input_of(u, j, newbox); 2130 next_edge = false; 2131 } 2132 } 2133 } 2134 } 2135 if (next_edge) i++; 2136 } 2137 } 2138 2139 //-----------------------mark_eliminated_locking_nodes----------------------- 2140 void PhaseMacroExpand::mark_eliminated_locking_nodes(AbstractLockNode *alock) { 2141 if (EliminateNestedLocks) { 2142 if (alock->is_nested()) { 2143 assert(alock->box_node()->as_BoxLock()->is_eliminated(), "sanity"); 2144 return; 2145 } else if (!alock->is_non_esc_obj()) { // Not eliminated or coarsened 2146 // Only Lock node has JVMState needed here. 2147 // Not that preceding claim is documented anywhere else. 2148 if (alock->jvms() != NULL) { 2149 if (alock->as_Lock()->is_nested_lock_region()) { 2150 // Mark eliminated related nested locks and unlocks. 2151 Node* obj = alock->obj_node(); 2152 BoxLockNode* box_node = alock->box_node()->as_BoxLock(); 2153 assert(!box_node->is_eliminated(), "should not be marked yet"); 2154 // Note: BoxLock node is marked eliminated only here 2155 // and it is used to indicate that all associated lock 2156 // and unlock nodes are marked for elimination. 2157 box_node->set_eliminated(); // Box's hash is always NO_HASH here 2158 for (uint i = 0; i < box_node->outcnt(); i++) { 2159 Node* u = box_node->raw_out(i); 2160 if (u->is_AbstractLock()) { 2161 alock = u->as_AbstractLock(); 2162 if (alock->box_node() == box_node) { 2163 // Verify that this Box is referenced only by related locks. 2164 assert(alock->obj_node()->eqv_uncast(obj), ""); 2165 // Mark all related locks and unlocks. 2166 #ifdef ASSERT 2167 alock->log_lock_optimization(C, "eliminate_lock_set_nested"); 2168 #endif 2169 alock->set_nested(); 2170 } 2171 } 2172 } 2173 } else { 2174 #ifdef ASSERT 2175 alock->log_lock_optimization(C, "eliminate_lock_NOT_nested_lock_region"); 2176 if (C->log() != NULL) 2177 alock->as_Lock()->is_nested_lock_region(C); // rerun for debugging output 2178 #endif 2179 } 2180 } 2181 return; 2182 } 2183 // Process locks for non escaping object 2184 assert(alock->is_non_esc_obj(), ""); 2185 } // EliminateNestedLocks 2186 2187 if (alock->is_non_esc_obj()) { // Lock is used for non escaping object 2188 // Look for all locks of this object and mark them and 2189 // corresponding BoxLock nodes as eliminated. 2190 Node* obj = alock->obj_node(); 2191 for (uint j = 0; j < obj->outcnt(); j++) { 2192 Node* o = obj->raw_out(j); 2193 if (o->is_AbstractLock() && 2194 o->as_AbstractLock()->obj_node()->eqv_uncast(obj)) { 2195 alock = o->as_AbstractLock(); 2196 Node* box = alock->box_node(); 2197 // Replace old box node with new eliminated box for all users 2198 // of the same object and mark related locks as eliminated. 2199 mark_eliminated_box(box, obj); 2200 } 2201 } 2202 } 2203 } 2204 2205 // we have determined that this lock/unlock can be eliminated, we simply 2206 // eliminate the node without expanding it. 2207 // 2208 // Note: The membar's associated with the lock/unlock are currently not 2209 // eliminated. This should be investigated as a future enhancement. 2210 // 2211 bool PhaseMacroExpand::eliminate_locking_node(AbstractLockNode *alock) { 2212 2213 if (!alock->is_eliminated()) { 2214 return false; 2215 } 2216 #ifdef ASSERT 2217 if (!alock->is_coarsened()) { 2218 // Check that new "eliminated" BoxLock node is created. 2219 BoxLockNode* oldbox = alock->box_node()->as_BoxLock(); 2220 assert(oldbox->is_eliminated(), "should be done already"); 2221 } 2222 #endif 2223 2224 alock->log_lock_optimization(C, "eliminate_lock"); 2225 2226 #ifndef PRODUCT 2227 if (PrintEliminateLocks) { 2228 if (alock->is_Lock()) { 2229 tty->print_cr("++++ Eliminated: %d Lock", alock->_idx); 2230 } else { 2231 tty->print_cr("++++ Eliminated: %d Unlock", alock->_idx); 2232 } 2233 } 2234 #endif 2235 2236 Node* mem = alock->in(TypeFunc::Memory); 2237 Node* ctrl = alock->in(TypeFunc::Control); 2238 guarantee(ctrl != NULL, "missing control projection, cannot replace_node() with NULL"); 2239 2240 extract_call_projections(alock); 2241 // There are 2 projections from the lock. The lock node will 2242 // be deleted when its last use is subsumed below. 2243 assert(alock->outcnt() == 2 && 2244 _fallthroughproj != NULL && 2245 _memproj_fallthrough != NULL, 2246 "Unexpected projections from Lock/Unlock"); 2247 2248 Node* fallthroughproj = _fallthroughproj; 2249 Node* memproj_fallthrough = _memproj_fallthrough; 2250 2251 // The memory projection from a lock/unlock is RawMem 2252 // The input to a Lock is merged memory, so extract its RawMem input 2253 // (unless the MergeMem has been optimized away.) 2254 if (alock->is_Lock()) { 2255 // Seach for MemBarAcquireLock node and delete it also. 2256 MemBarNode* membar = fallthroughproj->unique_ctrl_out()->as_MemBar(); 2257 assert(membar != NULL && membar->Opcode() == Op_MemBarAcquireLock, ""); 2258 Node* ctrlproj = membar->proj_out(TypeFunc::Control); 2259 Node* memproj = membar->proj_out(TypeFunc::Memory); 2260 _igvn.replace_node(ctrlproj, fallthroughproj); 2261 _igvn.replace_node(memproj, memproj_fallthrough); 2262 2263 // Delete FastLock node also if this Lock node is unique user 2264 // (a loop peeling may clone a Lock node). 2265 Node* flock = alock->as_Lock()->fastlock_node(); 2266 if (flock->outcnt() == 1) { 2267 assert(flock->unique_out() == alock, "sanity"); 2268 _igvn.replace_node(flock, top()); 2269 } 2270 } 2271 2272 // Seach for MemBarReleaseLock node and delete it also. 2273 if (alock->is_Unlock() && ctrl->is_Proj() && ctrl->in(0)->is_MemBar()) { 2274 MemBarNode* membar = ctrl->in(0)->as_MemBar(); 2275 assert(membar->Opcode() == Op_MemBarReleaseLock && 2276 mem->is_Proj() && membar == mem->in(0), ""); 2277 _igvn.replace_node(fallthroughproj, ctrl); 2278 _igvn.replace_node(memproj_fallthrough, mem); 2279 fallthroughproj = ctrl; 2280 memproj_fallthrough = mem; 2281 ctrl = membar->in(TypeFunc::Control); 2282 mem = membar->in(TypeFunc::Memory); 2283 } 2284 2285 _igvn.replace_node(fallthroughproj, ctrl); 2286 _igvn.replace_node(memproj_fallthrough, mem); 2287 return true; 2288 } 2289 2290 2291 //------------------------------expand_lock_node---------------------- 2292 void PhaseMacroExpand::expand_lock_node(LockNode *lock) { 2293 2294 Node* ctrl = lock->in(TypeFunc::Control); 2295 Node* mem = lock->in(TypeFunc::Memory); 2296 Node* obj = lock->obj_node(); 2297 Node* box = lock->box_node(); 2298 Node* flock = lock->fastlock_node(); 2299 2300 assert(!box->as_BoxLock()->is_eliminated(), "sanity"); 2301 2302 // Make the merge point 2303 Node *region; 2304 Node *mem_phi; 2305 Node *slow_path; 2306 2307 if (UseOptoBiasInlining) { 2308 /* 2309 * See the full description in MacroAssembler::biased_locking_enter(). 2310 * 2311 * if( (mark_word & biased_lock_mask) == biased_lock_pattern ) { 2312 * // The object is biased. 2313 * proto_node = klass->prototype_header; 2314 * o_node = thread | proto_node; 2315 * x_node = o_node ^ mark_word; 2316 * if( (x_node & ~age_mask) == 0 ) { // Biased to the current thread ? 2317 * // Done. 2318 * } else { 2319 * if( (x_node & biased_lock_mask) != 0 ) { 2320 * // The klass's prototype header is no longer biased. 2321 * cas(&mark_word, mark_word, proto_node) 2322 * goto cas_lock; 2323 * } else { 2324 * // The klass's prototype header is still biased. 2325 * if( (x_node & epoch_mask) != 0 ) { // Expired epoch? 2326 * old = mark_word; 2327 * new = o_node; 2328 * } else { 2329 * // Different thread or anonymous biased. 2330 * old = mark_word & (epoch_mask | age_mask | biased_lock_mask); 2331 * new = thread | old; 2332 * } 2333 * // Try to rebias. 2334 * if( cas(&mark_word, old, new) == 0 ) { 2335 * // Done. 2336 * } else { 2337 * goto slow_path; // Failed. 2338 * } 2339 * } 2340 * } 2341 * } else { 2342 * // The object is not biased. 2343 * cas_lock: 2344 * if( FastLock(obj) == 0 ) { 2345 * // Done. 2346 * } else { 2347 * slow_path: 2348 * OptoRuntime::complete_monitor_locking_Java(obj); 2349 * } 2350 * } 2351 */ 2352 2353 region = new RegionNode(5); 2354 // create a Phi for the memory state 2355 mem_phi = new PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM); 2356 2357 Node* fast_lock_region = new RegionNode(3); 2358 Node* fast_lock_mem_phi = new PhiNode( fast_lock_region, Type::MEMORY, TypeRawPtr::BOTTOM); 2359 2360 // First, check mark word for the biased lock pattern. 2361 Node* mark_node = make_load(ctrl, mem, obj, oopDesc::mark_offset_in_bytes(), TypeX_X, TypeX_X->basic_type()); 2362 2363 // Get fast path - mark word has the biased lock pattern. 2364 ctrl = opt_bits_test(ctrl, fast_lock_region, 1, mark_node, 2365 markOopDesc::biased_lock_mask_in_place, 2366 markOopDesc::biased_lock_pattern, true); 2367 // fast_lock_region->in(1) is set to slow path. 2368 fast_lock_mem_phi->init_req(1, mem); 2369 2370 // Now check that the lock is biased to the current thread and has 2371 // the same epoch and bias as Klass::_prototype_header. 2372 2373 // Special-case a fresh allocation to avoid building nodes: 2374 Node* klass_node = AllocateNode::Ideal_klass(obj, &_igvn); 2375 if (klass_node == NULL) { 2376 Node* k_adr = basic_plus_adr(obj, oopDesc::klass_offset_in_bytes()); 2377 klass_node = transform_later(LoadKlassNode::make(_igvn, NULL, mem, k_adr, _igvn.type(k_adr)->is_ptr())); 2378 #ifdef _LP64 2379 if (UseCompressedClassPointers && klass_node->is_DecodeNKlass()) { 2380 assert(klass_node->in(1)->Opcode() == Op_LoadNKlass, "sanity"); 2381 klass_node->in(1)->init_req(0, ctrl); 2382 } else 2383 #endif 2384 klass_node->init_req(0, ctrl); 2385 } 2386 Node *proto_node = make_load(ctrl, mem, klass_node, in_bytes(Klass::prototype_header_offset()), TypeX_X, TypeX_X->basic_type()); 2387 2388 Node* thread = transform_later(new ThreadLocalNode()); 2389 Node* cast_thread = transform_later(new CastP2XNode(ctrl, thread)); 2390 Node* o_node = transform_later(new OrXNode(cast_thread, proto_node)); 2391 Node* x_node = transform_later(new XorXNode(o_node, mark_node)); 2392 2393 // Get slow path - mark word does NOT match the value. 2394 Node* not_biased_ctrl = opt_bits_test(ctrl, region, 3, x_node, 2395 (~markOopDesc::age_mask_in_place), 0); 2396 // region->in(3) is set to fast path - the object is biased to the current thread. 2397 mem_phi->init_req(3, mem); 2398 2399 2400 // Mark word does NOT match the value (thread | Klass::_prototype_header). 2401 2402 2403 // First, check biased pattern. 2404 // Get fast path - _prototype_header has the same biased lock pattern. 2405 ctrl = opt_bits_test(not_biased_ctrl, fast_lock_region, 2, x_node, 2406 markOopDesc::biased_lock_mask_in_place, 0, true); 2407 2408 not_biased_ctrl = fast_lock_region->in(2); // Slow path 2409 // fast_lock_region->in(2) - the prototype header is no longer biased 2410 // and we have to revoke the bias on this object. 2411 // We are going to try to reset the mark of this object to the prototype 2412 // value and fall through to the CAS-based locking scheme. 2413 Node* adr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes()); 2414 Node* cas = new StoreXConditionalNode(not_biased_ctrl, mem, adr, 2415 proto_node, mark_node); 2416 transform_later(cas); 2417 Node* proj = transform_later(new SCMemProjNode(cas)); 2418 fast_lock_mem_phi->init_req(2, proj); 2419 2420 2421 // Second, check epoch bits. 2422 Node* rebiased_region = new RegionNode(3); 2423 Node* old_phi = new PhiNode( rebiased_region, TypeX_X); 2424 Node* new_phi = new PhiNode( rebiased_region, TypeX_X); 2425 2426 // Get slow path - mark word does NOT match epoch bits. 2427 Node* epoch_ctrl = opt_bits_test(ctrl, rebiased_region, 1, x_node, 2428 markOopDesc::epoch_mask_in_place, 0); 2429 // The epoch of the current bias is not valid, attempt to rebias the object 2430 // toward the current thread. 2431 rebiased_region->init_req(2, epoch_ctrl); 2432 old_phi->init_req(2, mark_node); 2433 new_phi->init_req(2, o_node); 2434 2435 // rebiased_region->in(1) is set to fast path. 2436 // The epoch of the current bias is still valid but we know 2437 // nothing about the owner; it might be set or it might be clear. 2438 Node* cmask = MakeConX(markOopDesc::biased_lock_mask_in_place | 2439 markOopDesc::age_mask_in_place | 2440 markOopDesc::epoch_mask_in_place); 2441 Node* old = transform_later(new AndXNode(mark_node, cmask)); 2442 cast_thread = transform_later(new CastP2XNode(ctrl, thread)); 2443 Node* new_mark = transform_later(new OrXNode(cast_thread, old)); 2444 old_phi->init_req(1, old); 2445 new_phi->init_req(1, new_mark); 2446 2447 transform_later(rebiased_region); 2448 transform_later(old_phi); 2449 transform_later(new_phi); 2450 2451 // Try to acquire the bias of the object using an atomic operation. 2452 // If this fails we will go in to the runtime to revoke the object's bias. 2453 cas = new StoreXConditionalNode(rebiased_region, mem, adr, new_phi, old_phi); 2454 transform_later(cas); 2455 proj = transform_later(new SCMemProjNode(cas)); 2456 2457 // Get slow path - Failed to CAS. 2458 not_biased_ctrl = opt_bits_test(rebiased_region, region, 4, cas, 0, 0); 2459 mem_phi->init_req(4, proj); 2460 // region->in(4) is set to fast path - the object is rebiased to the current thread. 2461 2462 // Failed to CAS. 2463 slow_path = new RegionNode(3); 2464 Node *slow_mem = new PhiNode( slow_path, Type::MEMORY, TypeRawPtr::BOTTOM); 2465 2466 slow_path->init_req(1, not_biased_ctrl); // Capture slow-control 2467 slow_mem->init_req(1, proj); 2468 2469 // Call CAS-based locking scheme (FastLock node). 2470 2471 transform_later(fast_lock_region); 2472 transform_later(fast_lock_mem_phi); 2473 2474 // Get slow path - FastLock failed to lock the object. 2475 ctrl = opt_bits_test(fast_lock_region, region, 2, flock, 0, 0); 2476 mem_phi->init_req(2, fast_lock_mem_phi); 2477 // region->in(2) is set to fast path - the object is locked to the current thread. 2478 2479 slow_path->init_req(2, ctrl); // Capture slow-control 2480 slow_mem->init_req(2, fast_lock_mem_phi); 2481 2482 transform_later(slow_path); 2483 transform_later(slow_mem); 2484 // Reset lock's memory edge. 2485 lock->set_req(TypeFunc::Memory, slow_mem); 2486 2487 } else { 2488 region = new RegionNode(3); 2489 // create a Phi for the memory state 2490 mem_phi = new PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM); 2491 2492 // Optimize test; set region slot 2 2493 slow_path = opt_bits_test(ctrl, region, 2, flock, 0, 0); 2494 mem_phi->init_req(2, mem); 2495 } 2496 2497 // Make slow path call 2498 CallNode *call = make_slow_call((CallNode *) lock, OptoRuntime::complete_monitor_enter_Type(), 2499 OptoRuntime::complete_monitor_locking_Java(), NULL, slow_path, 2500 obj, box, NULL); 2501 2502 extract_call_projections(call); 2503 2504 // Slow path can only throw asynchronous exceptions, which are always 2505 // de-opted. So the compiler thinks the slow-call can never throw an 2506 // exception. If it DOES throw an exception we would need the debug 2507 // info removed first (since if it throws there is no monitor). 2508 assert ( _ioproj_fallthrough == NULL && _ioproj_catchall == NULL && 2509 _memproj_catchall == NULL && _catchallcatchproj == NULL, "Unexpected projection from Lock"); 2510 2511 // Capture slow path 2512 // disconnect fall-through projection from call and create a new one 2513 // hook up users of fall-through projection to region 2514 Node *slow_ctrl = _fallthroughproj->clone(); 2515 transform_later(slow_ctrl); 2516 _igvn.hash_delete(_fallthroughproj); 2517 _fallthroughproj->disconnect_inputs(NULL, C); 2518 region->init_req(1, slow_ctrl); 2519 // region inputs are now complete 2520 transform_later(region); 2521 _igvn.replace_node(_fallthroughproj, region); 2522 2523 Node *memproj = transform_later(new ProjNode(call, TypeFunc::Memory)); 2524 mem_phi->init_req(1, memproj ); 2525 transform_later(mem_phi); 2526 _igvn.replace_node(_memproj_fallthrough, mem_phi); 2527 } 2528 2529 //------------------------------expand_unlock_node---------------------- 2530 void PhaseMacroExpand::expand_unlock_node(UnlockNode *unlock) { 2531 2532 Node* ctrl = unlock->in(TypeFunc::Control); 2533 Node* mem = unlock->in(TypeFunc::Memory); 2534 Node* obj = unlock->obj_node(); 2535 Node* box = unlock->box_node(); 2536 2537 assert(!box->as_BoxLock()->is_eliminated(), "sanity"); 2538 2539 // No need for a null check on unlock 2540 2541 // Make the merge point 2542 Node *region; 2543 Node *mem_phi; 2544 2545 if (UseOptoBiasInlining) { 2546 // Check for biased locking unlock case, which is a no-op. 2547 // See the full description in MacroAssembler::biased_locking_exit(). 2548 region = new RegionNode(4); 2549 // create a Phi for the memory state 2550 mem_phi = new PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM); 2551 mem_phi->init_req(3, mem); 2552 2553 Node* mark_node = make_load(ctrl, mem, obj, oopDesc::mark_offset_in_bytes(), TypeX_X, TypeX_X->basic_type()); 2554 ctrl = opt_bits_test(ctrl, region, 3, mark_node, 2555 markOopDesc::biased_lock_mask_in_place, 2556 markOopDesc::biased_lock_pattern); 2557 } else { 2558 region = new RegionNode(3); 2559 // create a Phi for the memory state 2560 mem_phi = new PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM); 2561 } 2562 2563 FastUnlockNode *funlock = new FastUnlockNode( ctrl, obj, box ); 2564 funlock = transform_later( funlock )->as_FastUnlock(); 2565 // Optimize test; set region slot 2 2566 Node *slow_path = opt_bits_test(ctrl, region, 2, funlock, 0, 0); 2567 Node *thread = transform_later(new ThreadLocalNode()); 2568 2569 CallNode *call = make_slow_call((CallNode *) unlock, OptoRuntime::complete_monitor_exit_Type(), 2570 CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C), 2571 "complete_monitor_unlocking_C", slow_path, obj, box, thread); 2572 2573 extract_call_projections(call); 2574 2575 assert ( _ioproj_fallthrough == NULL && _ioproj_catchall == NULL && 2576 _memproj_catchall == NULL && _catchallcatchproj == NULL, "Unexpected projection from Lock"); 2577 2578 // No exceptions for unlocking 2579 // Capture slow path 2580 // disconnect fall-through projection from call and create a new one 2581 // hook up users of fall-through projection to region 2582 Node *slow_ctrl = _fallthroughproj->clone(); 2583 transform_later(slow_ctrl); 2584 _igvn.hash_delete(_fallthroughproj); 2585 _fallthroughproj->disconnect_inputs(NULL, C); 2586 region->init_req(1, slow_ctrl); 2587 // region inputs are now complete 2588 transform_later(region); 2589 _igvn.replace_node(_fallthroughproj, region); 2590 2591 Node *memproj = transform_later(new ProjNode(call, TypeFunc::Memory) ); 2592 mem_phi->init_req(1, memproj ); 2593 mem_phi->init_req(2, mem); 2594 transform_later(mem_phi); 2595 _igvn.replace_node(_memproj_fallthrough, mem_phi); 2596 } 2597 2598 // A value type is returned from the call but we don't know its 2599 // type. Either we get a buffered value (and nothing needs to be done) 2600 // or one of the values being returned is the klass of the value type 2601 // and we need to allocate a value type instance of that type and 2602 // initialize it with other values being returned. In that case, we 2603 // first try a fast path allocation and initialize the value with the 2604 // value klass's pack handler or we fall back to a runtime call. 2605 void PhaseMacroExpand::expand_mh_intrinsic_return(CallStaticJavaNode* call) { 2606 Node* ret = call->proj_out(TypeFunc::Parms); 2607 if (ret == NULL) { 2608 return; 2609 } 2610 // TODO fix this with the calling convention changes 2611 //assert(ret->bottom_type()->is_valuetypeptr()->is__Value(), "unexpected return type from MH intrinsic"); 2612 const TypeFunc* tf = call->_tf; 2613 const TypeTuple* domain = OptoRuntime::store_value_type_fields_Type()->domain_cc(); 2614 const TypeFunc* new_tf = TypeFunc::make(tf->domain_sig(), tf->domain_cc(), tf->range_sig(), domain); 2615 call->_tf = new_tf; 2616 // Make sure the change of type is applied before projections are 2617 // processed by igvn 2618 _igvn.set_type(call, call->Value(&_igvn)); 2619 _igvn.set_type(ret, ret->Value(&_igvn)); 2620 2621 // Before any new projection is added: 2622 CallProjections* projs = call->extract_projections(true, true); 2623 2624 Node* ctl = new Node(1); 2625 Node* mem = new Node(1); 2626 Node* io = new Node(1); 2627 Node* ex_ctl = new Node(1); 2628 Node* ex_mem = new Node(1); 2629 Node* ex_io = new Node(1); 2630 Node* res = new Node(1); 2631 2632 Node* cast = transform_later(new CastP2XNode(ctl, res)); 2633 Node* mask = MakeConX(0x1); 2634 Node* masked = transform_later(new AndXNode(cast, mask)); 2635 Node* cmp = transform_later(new CmpXNode(masked, mask)); 2636 Node* bol = transform_later(new BoolNode(cmp, BoolTest::eq)); 2637 IfNode* allocation_iff = new IfNode(ctl, bol, PROB_MAX, COUNT_UNKNOWN); 2638 transform_later(allocation_iff); 2639 Node* allocation_ctl = transform_later(new IfTrueNode(allocation_iff)); 2640 Node* no_allocation_ctl = transform_later(new IfFalseNode(allocation_iff)); 2641 2642 Node* no_allocation_res = transform_later(new CheckCastPPNode(no_allocation_ctl, res, TypeInstPtr::NOTNULL)); 2643 2644 Node* mask2 = MakeConX(-2); 2645 Node* masked2 = transform_later(new AndXNode(cast, mask2)); 2646 Node* rawklassptr = transform_later(new CastX2PNode(masked2)); 2647 Node* klass_node = transform_later(new CheckCastPPNode(allocation_ctl, rawklassptr, TypeKlassPtr::OBJECT_OR_NULL)); 2648 2649 Node* slowpath_bol = NULL; 2650 Node* top_adr = NULL; 2651 Node* old_top = NULL; 2652 Node* new_top = NULL; 2653 if (UseTLAB) { 2654 Node* end_adr = NULL; 2655 set_eden_pointers(top_adr, end_adr); 2656 Node* end = make_load(ctl, mem, end_adr, 0, TypeRawPtr::BOTTOM, T_ADDRESS); 2657 old_top = new LoadPNode(ctl, mem, top_adr, TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM, MemNode::unordered); 2658 transform_later(old_top); 2659 Node* layout_val = make_load(NULL, mem, klass_node, in_bytes(Klass::layout_helper_offset()), TypeInt::INT, T_INT); 2660 Node* size_in_bytes = ConvI2X(layout_val); 2661 new_top = new AddPNode(top(), old_top, size_in_bytes); 2662 transform_later(new_top); 2663 Node* slowpath_cmp = new CmpPNode(new_top, end); 2664 transform_later(slowpath_cmp); 2665 slowpath_bol = new BoolNode(slowpath_cmp, BoolTest::ge); 2666 transform_later(slowpath_bol); 2667 } else { 2668 slowpath_bol = intcon(1); 2669 top_adr = top(); 2670 old_top = top(); 2671 new_top = top(); 2672 } 2673 IfNode* slowpath_iff = new IfNode(allocation_ctl, slowpath_bol, PROB_UNLIKELY_MAG(4), COUNT_UNKNOWN); 2674 transform_later(slowpath_iff); 2675 2676 Node* slowpath_true = new IfTrueNode(slowpath_iff); 2677 transform_later(slowpath_true); 2678 2679 CallStaticJavaNode* slow_call = new CallStaticJavaNode(OptoRuntime::store_value_type_fields_Type(), 2680 StubRoutines::store_value_type_fields_to_buf(), 2681 "store_value_type_fields", 2682 call->jvms()->bci(), 2683 TypePtr::BOTTOM); 2684 slow_call->init_req(TypeFunc::Control, slowpath_true); 2685 slow_call->init_req(TypeFunc::Memory, mem); 2686 slow_call->init_req(TypeFunc::I_O, io); 2687 slow_call->init_req(TypeFunc::FramePtr, call->in(TypeFunc::FramePtr)); 2688 slow_call->init_req(TypeFunc::ReturnAdr, call->in(TypeFunc::ReturnAdr)); 2689 slow_call->init_req(TypeFunc::Parms, res); 2690 2691 Node* slow_ctl = transform_later(new ProjNode(slow_call, TypeFunc::Control)); 2692 Node* slow_mem = transform_later(new ProjNode(slow_call, TypeFunc::Memory)); 2693 Node* slow_io = transform_later(new ProjNode(slow_call, TypeFunc::I_O)); 2694 Node* slow_res = transform_later(new ProjNode(slow_call, TypeFunc::Parms)); 2695 Node* slow_catc = transform_later(new CatchNode(slow_ctl, slow_io, 2)); 2696 Node* slow_norm = transform_later(new CatchProjNode(slow_catc, CatchProjNode::fall_through_index, CatchProjNode::no_handler_bci)); 2697 Node* slow_excp = transform_later(new CatchProjNode(slow_catc, CatchProjNode::catch_all_index, CatchProjNode::no_handler_bci)); 2698 2699 Node* ex_r = new RegionNode(3); 2700 Node* ex_mem_phi = new PhiNode(ex_r, Type::MEMORY, TypePtr::BOTTOM); 2701 Node* ex_io_phi = new PhiNode(ex_r, Type::ABIO); 2702 ex_r->init_req(1, slow_excp); 2703 ex_mem_phi->init_req(1, slow_mem); 2704 ex_io_phi->init_req(1, slow_io); 2705 ex_r->init_req(2, ex_ctl); 2706 ex_mem_phi->init_req(2, ex_mem); 2707 ex_io_phi->init_req(2, ex_io); 2708 2709 transform_later(ex_r); 2710 transform_later(ex_mem_phi); 2711 transform_later(ex_io_phi); 2712 2713 Node* slowpath_false = new IfFalseNode(slowpath_iff); 2714 transform_later(slowpath_false); 2715 Node* rawmem = new StorePNode(slowpath_false, mem, top_adr, TypeRawPtr::BOTTOM, new_top, MemNode::unordered); 2716 transform_later(rawmem); 2717 Node* mark_node = makecon(TypeRawPtr::make((address)markOopDesc::always_locked_prototype())); 2718 rawmem = make_store(slowpath_false, rawmem, old_top, oopDesc::mark_offset_in_bytes(), mark_node, T_ADDRESS); 2719 rawmem = make_store(slowpath_false, rawmem, old_top, oopDesc::klass_offset_in_bytes(), klass_node, T_METADATA); 2720 if (UseCompressedClassPointers) { 2721 rawmem = make_store(slowpath_false, rawmem, old_top, oopDesc::klass_gap_offset_in_bytes(), intcon(0), T_INT); 2722 } 2723 Node* pack_handler = make_load(slowpath_false, rawmem, klass_node, in_bytes(ValueKlass::pack_handler_offset()), TypeRawPtr::BOTTOM, T_ADDRESS); 2724 2725 CallLeafNoFPNode* handler_call = new CallLeafNoFPNode(OptoRuntime::pack_value_type_Type(), 2726 NULL, 2727 "pack handler", 2728 TypeRawPtr::BOTTOM); 2729 handler_call->init_req(TypeFunc::Control, slowpath_false); 2730 handler_call->init_req(TypeFunc::Memory, rawmem); 2731 handler_call->init_req(TypeFunc::I_O, top()); 2732 handler_call->init_req(TypeFunc::FramePtr, call->in(TypeFunc::FramePtr)); 2733 handler_call->init_req(TypeFunc::ReturnAdr, top()); 2734 handler_call->init_req(TypeFunc::Parms, pack_handler); 2735 handler_call->init_req(TypeFunc::Parms+1, old_top); 2736 2737 // We don't know how many values are returned. This assumes the 2738 // worst case, that all available registers are used. 2739 for (uint i = TypeFunc::Parms+1; i < domain->cnt(); i++) { 2740 if (domain->field_at(i) == Type::HALF) { 2741 slow_call->init_req(i, top()); 2742 handler_call->init_req(i+1, top()); 2743 continue; 2744 } 2745 Node* proj = transform_later(new ProjNode(call, i)); 2746 slow_call->init_req(i, proj); 2747 handler_call->init_req(i+1, proj); 2748 } 2749 2750 // We can safepoint at that new call 2751 copy_call_debug_info(call, slow_call); 2752 transform_later(slow_call); 2753 transform_later(handler_call); 2754 2755 Node* handler_ctl = transform_later(new ProjNode(handler_call, TypeFunc::Control)); 2756 rawmem = transform_later(new ProjNode(handler_call, TypeFunc::Memory)); 2757 Node* slowpath_false_res = transform_later(new ProjNode(handler_call, TypeFunc::Parms)); 2758 2759 MergeMemNode* slowpath_false_mem = MergeMemNode::make(mem); 2760 slowpath_false_mem->set_memory_at(Compile::AliasIdxRaw, rawmem); 2761 transform_later(slowpath_false_mem); 2762 2763 Node* r = new RegionNode(4); 2764 Node* mem_phi = new PhiNode(r, Type::MEMORY, TypePtr::BOTTOM); 2765 Node* io_phi = new PhiNode(r, Type::ABIO); 2766 Node* res_phi = new PhiNode(r, ret->bottom_type()); 2767 2768 r->init_req(1, no_allocation_ctl); 2769 mem_phi->init_req(1, mem); 2770 io_phi->init_req(1, io); 2771 res_phi->init_req(1, no_allocation_res); 2772 r->init_req(2, slow_norm); 2773 mem_phi->init_req(2, slow_mem); 2774 io_phi->init_req(2, slow_io); 2775 res_phi->init_req(2, slow_res); 2776 r->init_req(3, handler_ctl); 2777 mem_phi->init_req(3, slowpath_false_mem); 2778 io_phi->init_req(3, io); 2779 res_phi->init_req(3, slowpath_false_res); 2780 2781 transform_later(r); 2782 transform_later(mem_phi); 2783 transform_later(io_phi); 2784 transform_later(res_phi); 2785 2786 assert(projs->nb_resproj == 1, "unexpected number of results"); 2787 _igvn.replace_in_uses(projs->fallthrough_catchproj, r); 2788 _igvn.replace_in_uses(projs->fallthrough_memproj, mem_phi); 2789 _igvn.replace_in_uses(projs->fallthrough_ioproj, io_phi); 2790 _igvn.replace_in_uses(projs->resproj[0], res_phi); 2791 _igvn.replace_in_uses(projs->catchall_catchproj, ex_r); 2792 _igvn.replace_in_uses(projs->catchall_memproj, ex_mem_phi); 2793 _igvn.replace_in_uses(projs->catchall_ioproj, ex_io_phi); 2794 2795 _igvn.replace_node(ctl, projs->fallthrough_catchproj); 2796 _igvn.replace_node(mem, projs->fallthrough_memproj); 2797 _igvn.replace_node(io, projs->fallthrough_ioproj); 2798 _igvn.replace_node(res, projs->resproj[0]); 2799 _igvn.replace_node(ex_ctl, projs->catchall_catchproj); 2800 _igvn.replace_node(ex_mem, projs->catchall_memproj); 2801 _igvn.replace_node(ex_io, projs->catchall_ioproj); 2802 } 2803 2804 //---------------------------eliminate_macro_nodes---------------------- 2805 // Eliminate scalar replaced allocations and associated locks. 2806 void PhaseMacroExpand::eliminate_macro_nodes() { 2807 if (C->macro_count() == 0) 2808 return; 2809 2810 // First, attempt to eliminate locks 2811 int cnt = C->macro_count(); 2812 for (int i=0; i < cnt; i++) { 2813 Node *n = C->macro_node(i); 2814 if (n->is_AbstractLock()) { // Lock and Unlock nodes 2815 // Before elimination mark all associated (same box and obj) 2816 // lock and unlock nodes. 2817 mark_eliminated_locking_nodes(n->as_AbstractLock()); 2818 } 2819 } 2820 bool progress = true; 2821 while (progress) { 2822 progress = false; 2823 for (int i = C->macro_count(); i > 0; i--) { 2824 Node * n = C->macro_node(i-1); 2825 bool success = false; 2826 debug_only(int old_macro_count = C->macro_count();); 2827 if (n->is_AbstractLock()) { 2828 success = eliminate_locking_node(n->as_AbstractLock()); 2829 } 2830 assert(success == (C->macro_count() < old_macro_count), "elimination reduces macro count"); 2831 progress = progress || success; 2832 } 2833 } 2834 // Next, attempt to eliminate allocations 2835 _has_locks = false; 2836 progress = true; 2837 while (progress) { 2838 progress = false; 2839 for (int i = C->macro_count(); i > 0; i--) { 2840 Node * n = C->macro_node(i-1); 2841 bool success = false; 2842 debug_only(int old_macro_count = C->macro_count();); 2843 switch (n->class_id()) { 2844 case Node::Class_Allocate: 2845 case Node::Class_AllocateArray: 2846 success = eliminate_allocate_node(n->as_Allocate()); 2847 break; 2848 case Node::Class_CallStaticJava: { 2849 CallStaticJavaNode* call = n->as_CallStaticJava(); 2850 if (!call->method()->is_method_handle_intrinsic()) { 2851 success = eliminate_boxing_node(n->as_CallStaticJava()); 2852 } 2853 break; 2854 } 2855 case Node::Class_Lock: 2856 case Node::Class_Unlock: 2857 assert(!n->as_AbstractLock()->is_eliminated(), "sanity"); 2858 _has_locks = true; 2859 break; 2860 case Node::Class_ArrayCopy: 2861 break; 2862 case Node::Class_OuterStripMinedLoop: 2863 break; 2864 default: 2865 assert(n->Opcode() == Op_LoopLimit || 2866 n->Opcode() == Op_Opaque1 || 2867 n->Opcode() == Op_Opaque2 || 2868 n->Opcode() == Op_Opaque3 || 2869 BarrierSet::barrier_set()->barrier_set_c2()->is_gc_barrier_node(n), 2870 "unknown node type in macro list"); 2871 } 2872 assert(success == (C->macro_count() < old_macro_count), "elimination reduces macro count"); 2873 progress = progress || success; 2874 } 2875 } 2876 } 2877 2878 //------------------------------expand_macro_nodes---------------------- 2879 // Returns true if a failure occurred. 2880 bool PhaseMacroExpand::expand_macro_nodes() { 2881 // Last attempt to eliminate macro nodes. 2882 eliminate_macro_nodes(); 2883 2884 // Make sure expansion will not cause node limit to be exceeded. 2885 // Worst case is a macro node gets expanded into about 200 nodes. 2886 // Allow 50% more for optimization. 2887 if (C->check_node_count(C->macro_count() * 300, "out of nodes before macro expansion" ) ) 2888 return true; 2889 2890 // Eliminate Opaque and LoopLimit nodes. Do it after all loop optimizations. 2891 bool progress = true; 2892 while (progress) { 2893 progress = false; 2894 for (int i = C->macro_count(); i > 0; i--) { 2895 Node * n = C->macro_node(i-1); 2896 bool success = false; 2897 debug_only(int old_macro_count = C->macro_count();); 2898 if (n->Opcode() == Op_LoopLimit) { 2899 // Remove it from macro list and put on IGVN worklist to optimize. 2900 C->remove_macro_node(n); 2901 _igvn._worklist.push(n); 2902 success = true; 2903 } else if (n->Opcode() == Op_CallStaticJava) { 2904 CallStaticJavaNode* call = n->as_CallStaticJava(); 2905 if (!call->method()->is_method_handle_intrinsic()) { 2906 // Remove it from macro list and put on IGVN worklist to optimize. 2907 C->remove_macro_node(n); 2908 _igvn._worklist.push(n); 2909 success = true; 2910 } 2911 } else if (n->Opcode() == Op_Opaque1 || n->Opcode() == Op_Opaque2) { 2912 _igvn.replace_node(n, n->in(1)); 2913 success = true; 2914 #if INCLUDE_RTM_OPT 2915 } else if ((n->Opcode() == Op_Opaque3) && ((Opaque3Node*)n)->rtm_opt()) { 2916 assert(C->profile_rtm(), "should be used only in rtm deoptimization code"); 2917 assert((n->outcnt() == 1) && n->unique_out()->is_Cmp(), ""); 2918 Node* cmp = n->unique_out(); 2919 #ifdef ASSERT 2920 // Validate graph. 2921 assert((cmp->outcnt() == 1) && cmp->unique_out()->is_Bool(), ""); 2922 BoolNode* bol = cmp->unique_out()->as_Bool(); 2923 assert((bol->outcnt() == 1) && bol->unique_out()->is_If() && 2924 (bol->_test._test == BoolTest::ne), ""); 2925 IfNode* ifn = bol->unique_out()->as_If(); 2926 assert((ifn->outcnt() == 2) && 2927 ifn->proj_out(1)->is_uncommon_trap_proj(Deoptimization::Reason_rtm_state_change) != NULL, ""); 2928 #endif 2929 Node* repl = n->in(1); 2930 if (!_has_locks) { 2931 // Remove RTM state check if there are no locks in the code. 2932 // Replace input to compare the same value. 2933 repl = (cmp->in(1) == n) ? cmp->in(2) : cmp->in(1); 2934 } 2935 _igvn.replace_node(n, repl); 2936 success = true; 2937 #endif 2938 } else if (n->Opcode() == Op_OuterStripMinedLoop) { 2939 n->as_OuterStripMinedLoop()->adjust_strip_mined_loop(&_igvn); 2940 C->remove_macro_node(n); 2941 success = true; 2942 } 2943 assert(success == (C->macro_count() < old_macro_count), "elimination reduces macro count"); 2944 progress = progress || success; 2945 } 2946 } 2947 2948 // expand arraycopy "macro" nodes first 2949 // For ReduceBulkZeroing, we must first process all arraycopy nodes 2950 // before the allocate nodes are expanded. 2951 int macro_idx = C->macro_count() - 1; 2952 while (macro_idx >= 0) { 2953 Node * n = C->macro_node(macro_idx); 2954 assert(n->is_macro(), "only macro nodes expected here"); 2955 if (_igvn.type(n) == Type::TOP || (n->in(0) != NULL && n->in(0)->is_top())) { 2956 // node is unreachable, so don't try to expand it 2957 C->remove_macro_node(n); 2958 } else if (n->is_ArrayCopy()){ 2959 int macro_count = C->macro_count(); 2960 expand_arraycopy_node(n->as_ArrayCopy()); 2961 assert(C->macro_count() < macro_count, "must have deleted a node from macro list"); 2962 } 2963 if (C->failing()) return true; 2964 macro_idx --; 2965 } 2966 2967 // expand "macro" nodes 2968 // nodes are removed from the macro list as they are processed 2969 while (C->macro_count() > 0) { 2970 int macro_count = C->macro_count(); 2971 Node * n = C->macro_node(macro_count-1); 2972 assert(n->is_macro(), "only macro nodes expected here"); 2973 if (_igvn.type(n) == Type::TOP || (n->in(0) != NULL && n->in(0)->is_top())) { 2974 // node is unreachable, so don't try to expand it 2975 C->remove_macro_node(n); 2976 continue; 2977 } 2978 switch (n->class_id()) { 2979 case Node::Class_Allocate: 2980 expand_allocate(n->as_Allocate()); 2981 break; 2982 case Node::Class_AllocateArray: 2983 expand_allocate_array(n->as_AllocateArray()); 2984 break; 2985 case Node::Class_Lock: 2986 expand_lock_node(n->as_Lock()); 2987 break; 2988 case Node::Class_Unlock: 2989 expand_unlock_node(n->as_Unlock()); 2990 break; 2991 case Node::Class_CallStaticJava: 2992 expand_mh_intrinsic_return(n->as_CallStaticJava()); 2993 C->remove_macro_node(n); 2994 break; 2995 default: 2996 assert(false, "unknown node type in macro list"); 2997 } 2998 assert(C->macro_count() < macro_count, "must have deleted a node from macro list"); 2999 if (C->failing()) return true; 3000 } 3001 3002 _igvn.set_delay_transform(false); 3003 _igvn.optimize(); 3004 if (C->failing()) return true; 3005 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 3006 return bs->expand_macro_nodes(this); 3007 }