1 /* 2 * Copyright (c) 1999, 2019, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "asm/macroAssembler.hpp" 27 #include "ci/ciUtilities.inline.hpp" 28 #include "classfile/systemDictionary.hpp" 29 #include "classfile/vmSymbols.hpp" 30 #include "compiler/compileBroker.hpp" 31 #include "compiler/compileLog.hpp" 32 #include "gc/shared/barrierSet.hpp" 33 #include "jfr/support/jfrIntrinsics.hpp" 34 #include "memory/resourceArea.hpp" 35 #include "oops/klass.inline.hpp" 36 #include "oops/objArrayKlass.hpp" 37 #include "opto/addnode.hpp" 38 #include "opto/arraycopynode.hpp" 39 #include "opto/c2compiler.hpp" 40 #include "opto/callGenerator.hpp" 41 #include "opto/castnode.hpp" 42 #include "opto/cfgnode.hpp" 43 #include "opto/convertnode.hpp" 44 #include "opto/countbitsnode.hpp" 45 #include "opto/intrinsicnode.hpp" 46 #include "opto/idealKit.hpp" 47 #include "opto/mathexactnode.hpp" 48 #include "opto/movenode.hpp" 49 #include "opto/mulnode.hpp" 50 #include "opto/narrowptrnode.hpp" 51 #include "opto/opaquenode.hpp" 52 #include "opto/parse.hpp" 53 #include "opto/runtime.hpp" 54 #include "opto/rootnode.hpp" 55 #include "opto/subnode.hpp" 56 #include "prims/nativeLookup.hpp" 57 #include "prims/unsafe.hpp" 58 #include "runtime/objectMonitor.hpp" 59 #include "runtime/sharedRuntime.hpp" 60 #include "utilities/macros.hpp" 61 62 63 class LibraryIntrinsic : public InlineCallGenerator { 64 // Extend the set of intrinsics known to the runtime: 65 public: 66 private: 67 bool _is_virtual; 68 bool _does_virtual_dispatch; 69 int8_t _predicates_count; // Intrinsic is predicated by several conditions 70 int8_t _last_predicate; // Last generated predicate 71 vmIntrinsics::ID _intrinsic_id; 72 73 public: 74 LibraryIntrinsic(ciMethod* m, bool is_virtual, int predicates_count, bool does_virtual_dispatch, vmIntrinsics::ID id) 75 : InlineCallGenerator(m), 76 _is_virtual(is_virtual), 77 _does_virtual_dispatch(does_virtual_dispatch), 78 _predicates_count((int8_t)predicates_count), 79 _last_predicate((int8_t)-1), 80 _intrinsic_id(id) 81 { 82 } 83 virtual bool is_intrinsic() const { return true; } 84 virtual bool is_virtual() const { return _is_virtual; } 85 virtual bool is_predicated() const { return _predicates_count > 0; } 86 virtual int predicates_count() const { return _predicates_count; } 87 virtual bool does_virtual_dispatch() const { return _does_virtual_dispatch; } 88 virtual JVMState* generate(JVMState* jvms); 89 virtual Node* generate_predicate(JVMState* jvms, int predicate); 90 vmIntrinsics::ID intrinsic_id() const { return _intrinsic_id; } 91 }; 92 93 94 // Local helper class for LibraryIntrinsic: 95 class LibraryCallKit : public GraphKit { 96 private: 97 LibraryIntrinsic* _intrinsic; // the library intrinsic being called 98 Node* _result; // the result node, if any 99 int _reexecute_sp; // the stack pointer when bytecode needs to be reexecuted 100 101 const TypeOopPtr* sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type); 102 103 public: 104 LibraryCallKit(JVMState* jvms, LibraryIntrinsic* intrinsic) 105 : GraphKit(jvms), 106 _intrinsic(intrinsic), 107 _result(NULL) 108 { 109 // Check if this is a root compile. In that case we don't have a caller. 110 if (!jvms->has_method()) { 111 _reexecute_sp = sp(); 112 } else { 113 // Find out how many arguments the interpreter needs when deoptimizing 114 // and save the stack pointer value so it can used by uncommon_trap. 115 // We find the argument count by looking at the declared signature. 116 bool ignored_will_link; 117 ciSignature* declared_signature = NULL; 118 ciMethod* ignored_callee = caller()->get_method_at_bci(bci(), ignored_will_link, &declared_signature); 119 const int nargs = declared_signature->arg_size_for_bc(caller()->java_code_at_bci(bci())); 120 _reexecute_sp = sp() + nargs; // "push" arguments back on stack 121 } 122 } 123 124 virtual LibraryCallKit* is_LibraryCallKit() const { return (LibraryCallKit*)this; } 125 126 ciMethod* caller() const { return jvms()->method(); } 127 int bci() const { return jvms()->bci(); } 128 LibraryIntrinsic* intrinsic() const { return _intrinsic; } 129 vmIntrinsics::ID intrinsic_id() const { return _intrinsic->intrinsic_id(); } 130 ciMethod* callee() const { return _intrinsic->method(); } 131 132 bool try_to_inline(int predicate); 133 Node* try_to_predicate(int predicate); 134 135 void push_result() { 136 // Push the result onto the stack. 137 if (!stopped() && result() != NULL) { 138 BasicType bt = result()->bottom_type()->basic_type(); 139 push_node(bt, result()); 140 } 141 } 142 143 private: 144 void fatal_unexpected_iid(vmIntrinsics::ID iid) { 145 fatal("unexpected intrinsic %d: %s", iid, vmIntrinsics::name_at(iid)); 146 } 147 148 void set_result(Node* n) { assert(_result == NULL, "only set once"); _result = n; } 149 void set_result(RegionNode* region, PhiNode* value); 150 Node* result() { return _result; } 151 152 virtual int reexecute_sp() { return _reexecute_sp; } 153 154 // Helper functions to inline natives 155 Node* generate_guard(Node* test, RegionNode* region, float true_prob); 156 Node* generate_slow_guard(Node* test, RegionNode* region); 157 Node* generate_fair_guard(Node* test, RegionNode* region); 158 Node* generate_negative_guard(Node* index, RegionNode* region, 159 // resulting CastII of index: 160 Node* *pos_index = NULL); 161 Node* generate_limit_guard(Node* offset, Node* subseq_length, 162 Node* array_length, 163 RegionNode* region); 164 void generate_string_range_check(Node* array, Node* offset, 165 Node* length, bool char_count); 166 Node* generate_current_thread(Node* &tls_output); 167 Node* load_mirror_from_klass(Node* klass); 168 Node* load_klass_from_mirror_common(Node* mirror, bool never_see_null, 169 RegionNode* region, int null_path, 170 int offset); 171 Node* load_klass_from_mirror(Node* mirror, bool never_see_null, 172 RegionNode* region, int null_path) { 173 int offset = java_lang_Class::klass_offset_in_bytes(); 174 return load_klass_from_mirror_common(mirror, never_see_null, 175 region, null_path, 176 offset); 177 } 178 Node* load_array_klass_from_mirror(Node* mirror, bool never_see_null, 179 RegionNode* region, int null_path) { 180 int offset = java_lang_Class::array_klass_offset_in_bytes(); 181 return load_klass_from_mirror_common(mirror, never_see_null, 182 region, null_path, 183 offset); 184 } 185 Node* generate_access_flags_guard(Node* kls, 186 int modifier_mask, int modifier_bits, 187 RegionNode* region); 188 Node* generate_interface_guard(Node* kls, RegionNode* region); 189 Node* generate_array_guard(Node* kls, RegionNode* region) { 190 return generate_array_guard_common(kls, region, false, false); 191 } 192 Node* generate_non_array_guard(Node* kls, RegionNode* region) { 193 return generate_array_guard_common(kls, region, false, true); 194 } 195 Node* generate_objArray_guard(Node* kls, RegionNode* region) { 196 return generate_array_guard_common(kls, region, true, false); 197 } 198 Node* generate_non_objArray_guard(Node* kls, RegionNode* region) { 199 return generate_array_guard_common(kls, region, true, true); 200 } 201 Node* generate_array_guard_common(Node* kls, RegionNode* region, 202 bool obj_array, bool not_array); 203 Node* generate_virtual_guard(Node* obj_klass, RegionNode* slow_region); 204 CallJavaNode* generate_method_call(vmIntrinsics::ID method_id, 205 bool is_virtual = false, bool is_static = false); 206 CallJavaNode* generate_method_call_static(vmIntrinsics::ID method_id) { 207 return generate_method_call(method_id, false, true); 208 } 209 CallJavaNode* generate_method_call_virtual(vmIntrinsics::ID method_id) { 210 return generate_method_call(method_id, true, false); 211 } 212 Node * load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, bool is_exact, bool is_static, ciInstanceKlass * fromKls); 213 Node * field_address_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, bool is_exact, bool is_static, ciInstanceKlass * fromKls); 214 215 Node* make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2, StrIntrinsicNode::ArgEnc ae); 216 bool inline_string_compareTo(StrIntrinsicNode::ArgEnc ae); 217 bool inline_string_indexOf(StrIntrinsicNode::ArgEnc ae); 218 bool inline_string_indexOfI(StrIntrinsicNode::ArgEnc ae); 219 Node* make_indexOf_node(Node* src_start, Node* src_count, Node* tgt_start, Node* tgt_count, 220 RegionNode* region, Node* phi, StrIntrinsicNode::ArgEnc ae); 221 bool inline_string_indexOfChar(); 222 bool inline_string_equals(StrIntrinsicNode::ArgEnc ae); 223 bool inline_string_toBytesU(); 224 bool inline_string_getCharsU(); 225 bool inline_string_copy(bool compress); 226 bool inline_string_char_access(bool is_store); 227 Node* round_double_node(Node* n); 228 bool runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName); 229 bool inline_math_native(vmIntrinsics::ID id); 230 bool inline_math(vmIntrinsics::ID id); 231 bool inline_double_math(vmIntrinsics::ID id); 232 template <typename OverflowOp> 233 bool inline_math_overflow(Node* arg1, Node* arg2); 234 void inline_math_mathExact(Node* math, Node* test); 235 bool inline_math_addExactI(bool is_increment); 236 bool inline_math_addExactL(bool is_increment); 237 bool inline_math_multiplyExactI(); 238 bool inline_math_multiplyExactL(); 239 bool inline_math_multiplyHigh(); 240 bool inline_math_negateExactI(); 241 bool inline_math_negateExactL(); 242 bool inline_math_subtractExactI(bool is_decrement); 243 bool inline_math_subtractExactL(bool is_decrement); 244 bool inline_min_max(vmIntrinsics::ID id); 245 bool inline_notify(vmIntrinsics::ID id); 246 Node* generate_min_max(vmIntrinsics::ID id, Node* x, Node* y); 247 // This returns Type::AnyPtr, RawPtr, or OopPtr. 248 int classify_unsafe_addr(Node* &base, Node* &offset, BasicType type); 249 Node* make_unsafe_address(Node*& base, Node* offset, DecoratorSet decorators, BasicType type = T_ILLEGAL, bool can_cast = false); 250 251 typedef enum { Relaxed, Opaque, Volatile, Acquire, Release } AccessKind; 252 DecoratorSet mo_decorator_for_access_kind(AccessKind kind); 253 bool inline_unsafe_access(bool is_store, BasicType type, AccessKind kind, bool is_unaligned); 254 static bool klass_needs_init_guard(Node* kls); 255 bool inline_unsafe_allocate(); 256 bool inline_unsafe_newArray(bool uninitialized); 257 bool inline_unsafe_writeback0(); 258 bool inline_unsafe_writebackSync0(bool is_pre); 259 bool inline_unsafe_copyMemory(); 260 bool inline_native_currentThread(); 261 262 bool inline_native_time_funcs(address method, const char* funcName); 263 #ifdef JFR_HAVE_INTRINSICS 264 bool inline_native_classID(); 265 bool inline_native_getEventWriter(); 266 #endif 267 bool inline_native_Class_query(vmIntrinsics::ID id); 268 bool inline_native_subtype_check(); 269 bool inline_native_getLength(); 270 bool inline_array_copyOf(bool is_copyOfRange); 271 bool inline_array_equals(StrIntrinsicNode::ArgEnc ae); 272 bool inline_preconditions_checkIndex(); 273 void copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array); 274 bool inline_native_clone(bool is_virtual); 275 bool inline_native_Reflection_getCallerClass(); 276 // Helper function for inlining native object hash method 277 bool inline_native_hashcode(bool is_virtual, bool is_static); 278 bool inline_native_getClass(); 279 280 // Helper functions for inlining arraycopy 281 bool inline_arraycopy(); 282 AllocateArrayNode* tightly_coupled_allocation(Node* ptr, 283 RegionNode* slow_region); 284 JVMState* arraycopy_restore_alloc_state(AllocateArrayNode* alloc, int& saved_reexecute_sp); 285 void arraycopy_move_allocation_here(AllocateArrayNode* alloc, Node* dest, JVMState* saved_jvms, int saved_reexecute_sp, 286 uint new_idx); 287 288 typedef enum { LS_get_add, LS_get_set, LS_cmp_swap, LS_cmp_swap_weak, LS_cmp_exchange } LoadStoreKind; 289 bool inline_unsafe_load_store(BasicType type, LoadStoreKind kind, AccessKind access_kind); 290 bool inline_unsafe_fence(vmIntrinsics::ID id); 291 bool inline_onspinwait(); 292 bool inline_fp_conversions(vmIntrinsics::ID id); 293 bool inline_number_methods(vmIntrinsics::ID id); 294 bool inline_reference_get(); 295 bool inline_Class_cast(); 296 bool inline_aescrypt_Block(vmIntrinsics::ID id); 297 bool inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id); 298 bool inline_electronicCodeBook_AESCrypt(vmIntrinsics::ID id); 299 bool inline_counterMode_AESCrypt(vmIntrinsics::ID id); 300 Node* inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting); 301 Node* inline_electronicCodeBook_AESCrypt_predicate(bool decrypting); 302 Node* inline_counterMode_AESCrypt_predicate(); 303 Node* get_key_start_from_aescrypt_object(Node* aescrypt_object); 304 Node* get_original_key_start_from_aescrypt_object(Node* aescrypt_object); 305 bool inline_ghash_processBlocks(); 306 bool inline_base64_encodeBlock(); 307 bool inline_sha_implCompress(vmIntrinsics::ID id); 308 bool inline_digestBase_implCompressMB(int predicate); 309 bool inline_sha_implCompressMB(Node* digestBaseObj, ciInstanceKlass* instklass_SHA, 310 bool long_state, address stubAddr, const char *stubName, 311 Node* src_start, Node* ofs, Node* limit); 312 Node* get_state_from_sha_object(Node *sha_object); 313 Node* get_state_from_sha5_object(Node *sha_object); 314 Node* inline_digestBase_implCompressMB_predicate(int predicate); 315 bool inline_encodeISOArray(); 316 bool inline_updateCRC32(); 317 bool inline_updateBytesCRC32(); 318 bool inline_updateByteBufferCRC32(); 319 Node* get_table_from_crc32c_class(ciInstanceKlass *crc32c_class); 320 bool inline_updateBytesCRC32C(); 321 bool inline_updateDirectByteBufferCRC32C(); 322 bool inline_updateBytesAdler32(); 323 bool inline_updateByteBufferAdler32(); 324 bool inline_multiplyToLen(); 325 bool inline_hasNegatives(); 326 bool inline_squareToLen(); 327 bool inline_mulAdd(); 328 bool inline_montgomeryMultiply(); 329 bool inline_montgomerySquare(); 330 bool inline_bigIntegerShift(bool isRightShift); 331 bool inline_vectorizedMismatch(); 332 bool inline_fma(vmIntrinsics::ID id); 333 bool inline_character_compare(vmIntrinsics::ID id); 334 bool inline_fp_min_max(vmIntrinsics::ID id); 335 336 bool inline_profileBoolean(); 337 bool inline_isCompileConstant(); 338 void clear_upper_avx() { 339 #ifdef X86 340 if (UseAVX >= 2) { 341 C->set_clear_upper_avx(true); 342 } 343 #endif 344 } 345 }; 346 347 //---------------------------make_vm_intrinsic---------------------------- 348 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) { 349 vmIntrinsics::ID id = m->intrinsic_id(); 350 assert(id != vmIntrinsics::_none, "must be a VM intrinsic"); 351 352 if (!m->is_loaded()) { 353 // Do not attempt to inline unloaded methods. 354 return NULL; 355 } 356 357 C2Compiler* compiler = (C2Compiler*)CompileBroker::compiler(CompLevel_full_optimization); 358 bool is_available = false; 359 360 { 361 // For calling is_intrinsic_supported and is_intrinsic_disabled_by_flag 362 // the compiler must transition to '_thread_in_vm' state because both 363 // methods access VM-internal data. 364 VM_ENTRY_MARK; 365 methodHandle mh(THREAD, m->get_Method()); 366 is_available = compiler != NULL && compiler->is_intrinsic_supported(mh, is_virtual) && 367 !C->directive()->is_intrinsic_disabled(mh) && 368 !vmIntrinsics::is_disabled_by_flags(mh); 369 370 } 371 372 if (is_available) { 373 assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility"); 374 assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?"); 375 return new LibraryIntrinsic(m, is_virtual, 376 vmIntrinsics::predicates_needed(id), 377 vmIntrinsics::does_virtual_dispatch(id), 378 (vmIntrinsics::ID) id); 379 } else { 380 return NULL; 381 } 382 } 383 384 //----------------------register_library_intrinsics----------------------- 385 // Initialize this file's data structures, for each Compile instance. 386 void Compile::register_library_intrinsics() { 387 // Nothing to do here. 388 } 389 390 JVMState* LibraryIntrinsic::generate(JVMState* jvms) { 391 LibraryCallKit kit(jvms, this); 392 Compile* C = kit.C; 393 int nodes = C->unique(); 394 #ifndef PRODUCT 395 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 396 char buf[1000]; 397 const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf)); 398 tty->print_cr("Intrinsic %s", str); 399 } 400 #endif 401 ciMethod* callee = kit.callee(); 402 const int bci = kit.bci(); 403 404 // Try to inline the intrinsic. 405 if ((CheckIntrinsics ? callee->intrinsic_candidate() : true) && 406 kit.try_to_inline(_last_predicate)) { 407 const char *inline_msg = is_virtual() ? "(intrinsic, virtual)" 408 : "(intrinsic)"; 409 CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, inline_msg); 410 if (C->print_intrinsics() || C->print_inlining()) { 411 C->print_inlining(callee, jvms->depth() - 1, bci, inline_msg); 412 } 413 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked); 414 if (C->log()) { 415 C->log()->elem("intrinsic id='%s'%s nodes='%d'", 416 vmIntrinsics::name_at(intrinsic_id()), 417 (is_virtual() ? " virtual='1'" : ""), 418 C->unique() - nodes); 419 } 420 // Push the result from the inlined method onto the stack. 421 kit.push_result(); 422 C->print_inlining_update(this); 423 return kit.transfer_exceptions_into_jvms(); 424 } 425 426 // The intrinsic bailed out 427 if (jvms->has_method()) { 428 // Not a root compile. 429 const char* msg; 430 if (callee->intrinsic_candidate()) { 431 msg = is_virtual() ? "failed to inline (intrinsic, virtual)" : "failed to inline (intrinsic)"; 432 } else { 433 msg = is_virtual() ? "failed to inline (intrinsic, virtual), method not annotated" 434 : "failed to inline (intrinsic), method not annotated"; 435 } 436 CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, msg); 437 if (C->print_intrinsics() || C->print_inlining()) { 438 C->print_inlining(callee, jvms->depth() - 1, bci, msg); 439 } 440 } else { 441 // Root compile 442 ResourceMark rm; 443 stringStream msg_stream; 444 msg_stream.print("Did not generate intrinsic %s%s at bci:%d in", 445 vmIntrinsics::name_at(intrinsic_id()), 446 is_virtual() ? " (virtual)" : "", bci); 447 const char *msg = msg_stream.as_string(); 448 log_debug(jit, inlining)("%s", msg); 449 if (C->print_intrinsics() || C->print_inlining()) { 450 tty->print("%s", msg); 451 } 452 } 453 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed); 454 C->print_inlining_update(this); 455 return NULL; 456 } 457 458 Node* LibraryIntrinsic::generate_predicate(JVMState* jvms, int predicate) { 459 LibraryCallKit kit(jvms, this); 460 Compile* C = kit.C; 461 int nodes = C->unique(); 462 _last_predicate = predicate; 463 #ifndef PRODUCT 464 assert(is_predicated() && predicate < predicates_count(), "sanity"); 465 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 466 char buf[1000]; 467 const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf)); 468 tty->print_cr("Predicate for intrinsic %s", str); 469 } 470 #endif 471 ciMethod* callee = kit.callee(); 472 const int bci = kit.bci(); 473 474 Node* slow_ctl = kit.try_to_predicate(predicate); 475 if (!kit.failing()) { 476 const char *inline_msg = is_virtual() ? "(intrinsic, virtual, predicate)" 477 : "(intrinsic, predicate)"; 478 CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, inline_msg); 479 if (C->print_intrinsics() || C->print_inlining()) { 480 C->print_inlining(callee, jvms->depth() - 1, bci, inline_msg); 481 } 482 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked); 483 if (C->log()) { 484 C->log()->elem("predicate_intrinsic id='%s'%s nodes='%d'", 485 vmIntrinsics::name_at(intrinsic_id()), 486 (is_virtual() ? " virtual='1'" : ""), 487 C->unique() - nodes); 488 } 489 return slow_ctl; // Could be NULL if the check folds. 490 } 491 492 // The intrinsic bailed out 493 if (jvms->has_method()) { 494 // Not a root compile. 495 const char* msg = "failed to generate predicate for intrinsic"; 496 CompileTask::print_inlining_ul(kit.callee(), jvms->depth() - 1, bci, msg); 497 if (C->print_intrinsics() || C->print_inlining()) { 498 C->print_inlining(kit.callee(), jvms->depth() - 1, bci, msg); 499 } 500 } else { 501 // Root compile 502 ResourceMark rm; 503 stringStream msg_stream; 504 msg_stream.print("Did not generate intrinsic %s%s at bci:%d in", 505 vmIntrinsics::name_at(intrinsic_id()), 506 is_virtual() ? " (virtual)" : "", bci); 507 const char *msg = msg_stream.as_string(); 508 log_debug(jit, inlining)("%s", msg); 509 if (C->print_intrinsics() || C->print_inlining()) { 510 C->print_inlining_stream()->print("%s", msg); 511 } 512 } 513 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed); 514 return NULL; 515 } 516 517 bool LibraryCallKit::try_to_inline(int predicate) { 518 // Handle symbolic names for otherwise undistinguished boolean switches: 519 const bool is_store = true; 520 const bool is_compress = true; 521 const bool is_static = true; 522 const bool is_volatile = true; 523 524 if (!jvms()->has_method()) { 525 // Root JVMState has a null method. 526 assert(map()->memory()->Opcode() == Op_Parm, ""); 527 // Insert the memory aliasing node 528 set_all_memory(reset_memory()); 529 } 530 assert(merged_memory(), ""); 531 532 533 switch (intrinsic_id()) { 534 case vmIntrinsics::_hashCode: return inline_native_hashcode(intrinsic()->is_virtual(), !is_static); 535 case vmIntrinsics::_identityHashCode: return inline_native_hashcode(/*!virtual*/ false, is_static); 536 case vmIntrinsics::_getClass: return inline_native_getClass(); 537 538 case vmIntrinsics::_ceil: 539 case vmIntrinsics::_floor: 540 case vmIntrinsics::_rint: 541 case vmIntrinsics::_dsin: 542 case vmIntrinsics::_dcos: 543 case vmIntrinsics::_dtan: 544 case vmIntrinsics::_dabs: 545 case vmIntrinsics::_fabs: 546 case vmIntrinsics::_iabs: 547 case vmIntrinsics::_labs: 548 case vmIntrinsics::_datan2: 549 case vmIntrinsics::_dsqrt: 550 case vmIntrinsics::_dexp: 551 case vmIntrinsics::_dlog: 552 case vmIntrinsics::_dlog10: 553 case vmIntrinsics::_dpow: return inline_math_native(intrinsic_id()); 554 555 case vmIntrinsics::_min: 556 case vmIntrinsics::_max: return inline_min_max(intrinsic_id()); 557 558 case vmIntrinsics::_notify: 559 case vmIntrinsics::_notifyAll: 560 return inline_notify(intrinsic_id()); 561 562 case vmIntrinsics::_addExactI: return inline_math_addExactI(false /* add */); 563 case vmIntrinsics::_addExactL: return inline_math_addExactL(false /* add */); 564 case vmIntrinsics::_decrementExactI: return inline_math_subtractExactI(true /* decrement */); 565 case vmIntrinsics::_decrementExactL: return inline_math_subtractExactL(true /* decrement */); 566 case vmIntrinsics::_incrementExactI: return inline_math_addExactI(true /* increment */); 567 case vmIntrinsics::_incrementExactL: return inline_math_addExactL(true /* increment */); 568 case vmIntrinsics::_multiplyExactI: return inline_math_multiplyExactI(); 569 case vmIntrinsics::_multiplyExactL: return inline_math_multiplyExactL(); 570 case vmIntrinsics::_multiplyHigh: return inline_math_multiplyHigh(); 571 case vmIntrinsics::_negateExactI: return inline_math_negateExactI(); 572 case vmIntrinsics::_negateExactL: return inline_math_negateExactL(); 573 case vmIntrinsics::_subtractExactI: return inline_math_subtractExactI(false /* subtract */); 574 case vmIntrinsics::_subtractExactL: return inline_math_subtractExactL(false /* subtract */); 575 576 case vmIntrinsics::_arraycopy: return inline_arraycopy(); 577 578 case vmIntrinsics::_compareToL: return inline_string_compareTo(StrIntrinsicNode::LL); 579 case vmIntrinsics::_compareToU: return inline_string_compareTo(StrIntrinsicNode::UU); 580 case vmIntrinsics::_compareToLU: return inline_string_compareTo(StrIntrinsicNode::LU); 581 case vmIntrinsics::_compareToUL: return inline_string_compareTo(StrIntrinsicNode::UL); 582 583 case vmIntrinsics::_indexOfL: return inline_string_indexOf(StrIntrinsicNode::LL); 584 case vmIntrinsics::_indexOfU: return inline_string_indexOf(StrIntrinsicNode::UU); 585 case vmIntrinsics::_indexOfUL: return inline_string_indexOf(StrIntrinsicNode::UL); 586 case vmIntrinsics::_indexOfIL: return inline_string_indexOfI(StrIntrinsicNode::LL); 587 case vmIntrinsics::_indexOfIU: return inline_string_indexOfI(StrIntrinsicNode::UU); 588 case vmIntrinsics::_indexOfIUL: return inline_string_indexOfI(StrIntrinsicNode::UL); 589 case vmIntrinsics::_indexOfU_char: return inline_string_indexOfChar(); 590 591 case vmIntrinsics::_equalsL: return inline_string_equals(StrIntrinsicNode::LL); 592 case vmIntrinsics::_equalsU: return inline_string_equals(StrIntrinsicNode::UU); 593 594 case vmIntrinsics::_toBytesStringU: return inline_string_toBytesU(); 595 case vmIntrinsics::_getCharsStringU: return inline_string_getCharsU(); 596 case vmIntrinsics::_getCharStringU: return inline_string_char_access(!is_store); 597 case vmIntrinsics::_putCharStringU: return inline_string_char_access( is_store); 598 599 case vmIntrinsics::_compressStringC: 600 case vmIntrinsics::_compressStringB: return inline_string_copy( is_compress); 601 case vmIntrinsics::_inflateStringC: 602 case vmIntrinsics::_inflateStringB: return inline_string_copy(!is_compress); 603 604 case vmIntrinsics::_getReference: return inline_unsafe_access(!is_store, T_OBJECT, Relaxed, false); 605 case vmIntrinsics::_getBoolean: return inline_unsafe_access(!is_store, T_BOOLEAN, Relaxed, false); 606 case vmIntrinsics::_getByte: return inline_unsafe_access(!is_store, T_BYTE, Relaxed, false); 607 case vmIntrinsics::_getShort: return inline_unsafe_access(!is_store, T_SHORT, Relaxed, false); 608 case vmIntrinsics::_getChar: return inline_unsafe_access(!is_store, T_CHAR, Relaxed, false); 609 case vmIntrinsics::_getInt: return inline_unsafe_access(!is_store, T_INT, Relaxed, false); 610 case vmIntrinsics::_getLong: return inline_unsafe_access(!is_store, T_LONG, Relaxed, false); 611 case vmIntrinsics::_getFloat: return inline_unsafe_access(!is_store, T_FLOAT, Relaxed, false); 612 case vmIntrinsics::_getDouble: return inline_unsafe_access(!is_store, T_DOUBLE, Relaxed, false); 613 614 case vmIntrinsics::_putReference: return inline_unsafe_access( is_store, T_OBJECT, Relaxed, false); 615 case vmIntrinsics::_putBoolean: return inline_unsafe_access( is_store, T_BOOLEAN, Relaxed, false); 616 case vmIntrinsics::_putByte: return inline_unsafe_access( is_store, T_BYTE, Relaxed, false); 617 case vmIntrinsics::_putShort: return inline_unsafe_access( is_store, T_SHORT, Relaxed, false); 618 case vmIntrinsics::_putChar: return inline_unsafe_access( is_store, T_CHAR, Relaxed, false); 619 case vmIntrinsics::_putInt: return inline_unsafe_access( is_store, T_INT, Relaxed, false); 620 case vmIntrinsics::_putLong: return inline_unsafe_access( is_store, T_LONG, Relaxed, false); 621 case vmIntrinsics::_putFloat: return inline_unsafe_access( is_store, T_FLOAT, Relaxed, false); 622 case vmIntrinsics::_putDouble: return inline_unsafe_access( is_store, T_DOUBLE, Relaxed, false); 623 624 case vmIntrinsics::_getReferenceVolatile: return inline_unsafe_access(!is_store, T_OBJECT, Volatile, false); 625 case vmIntrinsics::_getBooleanVolatile: return inline_unsafe_access(!is_store, T_BOOLEAN, Volatile, false); 626 case vmIntrinsics::_getByteVolatile: return inline_unsafe_access(!is_store, T_BYTE, Volatile, false); 627 case vmIntrinsics::_getShortVolatile: return inline_unsafe_access(!is_store, T_SHORT, Volatile, false); 628 case vmIntrinsics::_getCharVolatile: return inline_unsafe_access(!is_store, T_CHAR, Volatile, false); 629 case vmIntrinsics::_getIntVolatile: return inline_unsafe_access(!is_store, T_INT, Volatile, false); 630 case vmIntrinsics::_getLongVolatile: return inline_unsafe_access(!is_store, T_LONG, Volatile, false); 631 case vmIntrinsics::_getFloatVolatile: return inline_unsafe_access(!is_store, T_FLOAT, Volatile, false); 632 case vmIntrinsics::_getDoubleVolatile: return inline_unsafe_access(!is_store, T_DOUBLE, Volatile, false); 633 634 case vmIntrinsics::_putReferenceVolatile: return inline_unsafe_access( is_store, T_OBJECT, Volatile, false); 635 case vmIntrinsics::_putBooleanVolatile: return inline_unsafe_access( is_store, T_BOOLEAN, Volatile, false); 636 case vmIntrinsics::_putByteVolatile: return inline_unsafe_access( is_store, T_BYTE, Volatile, false); 637 case vmIntrinsics::_putShortVolatile: return inline_unsafe_access( is_store, T_SHORT, Volatile, false); 638 case vmIntrinsics::_putCharVolatile: return inline_unsafe_access( is_store, T_CHAR, Volatile, false); 639 case vmIntrinsics::_putIntVolatile: return inline_unsafe_access( is_store, T_INT, Volatile, false); 640 case vmIntrinsics::_putLongVolatile: return inline_unsafe_access( is_store, T_LONG, Volatile, false); 641 case vmIntrinsics::_putFloatVolatile: return inline_unsafe_access( is_store, T_FLOAT, Volatile, false); 642 case vmIntrinsics::_putDoubleVolatile: return inline_unsafe_access( is_store, T_DOUBLE, Volatile, false); 643 644 case vmIntrinsics::_getShortUnaligned: return inline_unsafe_access(!is_store, T_SHORT, Relaxed, true); 645 case vmIntrinsics::_getCharUnaligned: return inline_unsafe_access(!is_store, T_CHAR, Relaxed, true); 646 case vmIntrinsics::_getIntUnaligned: return inline_unsafe_access(!is_store, T_INT, Relaxed, true); 647 case vmIntrinsics::_getLongUnaligned: return inline_unsafe_access(!is_store, T_LONG, Relaxed, true); 648 649 case vmIntrinsics::_putShortUnaligned: return inline_unsafe_access( is_store, T_SHORT, Relaxed, true); 650 case vmIntrinsics::_putCharUnaligned: return inline_unsafe_access( is_store, T_CHAR, Relaxed, true); 651 case vmIntrinsics::_putIntUnaligned: return inline_unsafe_access( is_store, T_INT, Relaxed, true); 652 case vmIntrinsics::_putLongUnaligned: return inline_unsafe_access( is_store, T_LONG, Relaxed, true); 653 654 case vmIntrinsics::_getReferenceAcquire: return inline_unsafe_access(!is_store, T_OBJECT, Acquire, false); 655 case vmIntrinsics::_getBooleanAcquire: return inline_unsafe_access(!is_store, T_BOOLEAN, Acquire, false); 656 case vmIntrinsics::_getByteAcquire: return inline_unsafe_access(!is_store, T_BYTE, Acquire, false); 657 case vmIntrinsics::_getShortAcquire: return inline_unsafe_access(!is_store, T_SHORT, Acquire, false); 658 case vmIntrinsics::_getCharAcquire: return inline_unsafe_access(!is_store, T_CHAR, Acquire, false); 659 case vmIntrinsics::_getIntAcquire: return inline_unsafe_access(!is_store, T_INT, Acquire, false); 660 case vmIntrinsics::_getLongAcquire: return inline_unsafe_access(!is_store, T_LONG, Acquire, false); 661 case vmIntrinsics::_getFloatAcquire: return inline_unsafe_access(!is_store, T_FLOAT, Acquire, false); 662 case vmIntrinsics::_getDoubleAcquire: return inline_unsafe_access(!is_store, T_DOUBLE, Acquire, false); 663 664 case vmIntrinsics::_putReferenceRelease: return inline_unsafe_access( is_store, T_OBJECT, Release, false); 665 case vmIntrinsics::_putBooleanRelease: return inline_unsafe_access( is_store, T_BOOLEAN, Release, false); 666 case vmIntrinsics::_putByteRelease: return inline_unsafe_access( is_store, T_BYTE, Release, false); 667 case vmIntrinsics::_putShortRelease: return inline_unsafe_access( is_store, T_SHORT, Release, false); 668 case vmIntrinsics::_putCharRelease: return inline_unsafe_access( is_store, T_CHAR, Release, false); 669 case vmIntrinsics::_putIntRelease: return inline_unsafe_access( is_store, T_INT, Release, false); 670 case vmIntrinsics::_putLongRelease: return inline_unsafe_access( is_store, T_LONG, Release, false); 671 case vmIntrinsics::_putFloatRelease: return inline_unsafe_access( is_store, T_FLOAT, Release, false); 672 case vmIntrinsics::_putDoubleRelease: return inline_unsafe_access( is_store, T_DOUBLE, Release, false); 673 674 case vmIntrinsics::_getReferenceOpaque: return inline_unsafe_access(!is_store, T_OBJECT, Opaque, false); 675 case vmIntrinsics::_getBooleanOpaque: return inline_unsafe_access(!is_store, T_BOOLEAN, Opaque, false); 676 case vmIntrinsics::_getByteOpaque: return inline_unsafe_access(!is_store, T_BYTE, Opaque, false); 677 case vmIntrinsics::_getShortOpaque: return inline_unsafe_access(!is_store, T_SHORT, Opaque, false); 678 case vmIntrinsics::_getCharOpaque: return inline_unsafe_access(!is_store, T_CHAR, Opaque, false); 679 case vmIntrinsics::_getIntOpaque: return inline_unsafe_access(!is_store, T_INT, Opaque, false); 680 case vmIntrinsics::_getLongOpaque: return inline_unsafe_access(!is_store, T_LONG, Opaque, false); 681 case vmIntrinsics::_getFloatOpaque: return inline_unsafe_access(!is_store, T_FLOAT, Opaque, false); 682 case vmIntrinsics::_getDoubleOpaque: return inline_unsafe_access(!is_store, T_DOUBLE, Opaque, false); 683 684 case vmIntrinsics::_putReferenceOpaque: return inline_unsafe_access( is_store, T_OBJECT, Opaque, false); 685 case vmIntrinsics::_putBooleanOpaque: return inline_unsafe_access( is_store, T_BOOLEAN, Opaque, false); 686 case vmIntrinsics::_putByteOpaque: return inline_unsafe_access( is_store, T_BYTE, Opaque, false); 687 case vmIntrinsics::_putShortOpaque: return inline_unsafe_access( is_store, T_SHORT, Opaque, false); 688 case vmIntrinsics::_putCharOpaque: return inline_unsafe_access( is_store, T_CHAR, Opaque, false); 689 case vmIntrinsics::_putIntOpaque: return inline_unsafe_access( is_store, T_INT, Opaque, false); 690 case vmIntrinsics::_putLongOpaque: return inline_unsafe_access( is_store, T_LONG, Opaque, false); 691 case vmIntrinsics::_putFloatOpaque: return inline_unsafe_access( is_store, T_FLOAT, Opaque, false); 692 case vmIntrinsics::_putDoubleOpaque: return inline_unsafe_access( is_store, T_DOUBLE, Opaque, false); 693 694 case vmIntrinsics::_compareAndSetReference: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap, Volatile); 695 case vmIntrinsics::_compareAndSetByte: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap, Volatile); 696 case vmIntrinsics::_compareAndSetShort: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap, Volatile); 697 case vmIntrinsics::_compareAndSetInt: return inline_unsafe_load_store(T_INT, LS_cmp_swap, Volatile); 698 case vmIntrinsics::_compareAndSetLong: return inline_unsafe_load_store(T_LONG, LS_cmp_swap, Volatile); 699 700 case vmIntrinsics::_weakCompareAndSetReferencePlain: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Relaxed); 701 case vmIntrinsics::_weakCompareAndSetReferenceAcquire: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Acquire); 702 case vmIntrinsics::_weakCompareAndSetReferenceRelease: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Release); 703 case vmIntrinsics::_weakCompareAndSetReference: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Volatile); 704 case vmIntrinsics::_weakCompareAndSetBytePlain: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap_weak, Relaxed); 705 case vmIntrinsics::_weakCompareAndSetByteAcquire: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap_weak, Acquire); 706 case vmIntrinsics::_weakCompareAndSetByteRelease: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap_weak, Release); 707 case vmIntrinsics::_weakCompareAndSetByte: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap_weak, Volatile); 708 case vmIntrinsics::_weakCompareAndSetShortPlain: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap_weak, Relaxed); 709 case vmIntrinsics::_weakCompareAndSetShortAcquire: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap_weak, Acquire); 710 case vmIntrinsics::_weakCompareAndSetShortRelease: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap_weak, Release); 711 case vmIntrinsics::_weakCompareAndSetShort: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap_weak, Volatile); 712 case vmIntrinsics::_weakCompareAndSetIntPlain: return inline_unsafe_load_store(T_INT, LS_cmp_swap_weak, Relaxed); 713 case vmIntrinsics::_weakCompareAndSetIntAcquire: return inline_unsafe_load_store(T_INT, LS_cmp_swap_weak, Acquire); 714 case vmIntrinsics::_weakCompareAndSetIntRelease: return inline_unsafe_load_store(T_INT, LS_cmp_swap_weak, Release); 715 case vmIntrinsics::_weakCompareAndSetInt: return inline_unsafe_load_store(T_INT, LS_cmp_swap_weak, Volatile); 716 case vmIntrinsics::_weakCompareAndSetLongPlain: return inline_unsafe_load_store(T_LONG, LS_cmp_swap_weak, Relaxed); 717 case vmIntrinsics::_weakCompareAndSetLongAcquire: return inline_unsafe_load_store(T_LONG, LS_cmp_swap_weak, Acquire); 718 case vmIntrinsics::_weakCompareAndSetLongRelease: return inline_unsafe_load_store(T_LONG, LS_cmp_swap_weak, Release); 719 case vmIntrinsics::_weakCompareAndSetLong: return inline_unsafe_load_store(T_LONG, LS_cmp_swap_weak, Volatile); 720 721 case vmIntrinsics::_compareAndExchangeReference: return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange, Volatile); 722 case vmIntrinsics::_compareAndExchangeReferenceAcquire: return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange, Acquire); 723 case vmIntrinsics::_compareAndExchangeReferenceRelease: return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange, Release); 724 case vmIntrinsics::_compareAndExchangeByte: return inline_unsafe_load_store(T_BYTE, LS_cmp_exchange, Volatile); 725 case vmIntrinsics::_compareAndExchangeByteAcquire: return inline_unsafe_load_store(T_BYTE, LS_cmp_exchange, Acquire); 726 case vmIntrinsics::_compareAndExchangeByteRelease: return inline_unsafe_load_store(T_BYTE, LS_cmp_exchange, Release); 727 case vmIntrinsics::_compareAndExchangeShort: return inline_unsafe_load_store(T_SHORT, LS_cmp_exchange, Volatile); 728 case vmIntrinsics::_compareAndExchangeShortAcquire: return inline_unsafe_load_store(T_SHORT, LS_cmp_exchange, Acquire); 729 case vmIntrinsics::_compareAndExchangeShortRelease: return inline_unsafe_load_store(T_SHORT, LS_cmp_exchange, Release); 730 case vmIntrinsics::_compareAndExchangeInt: return inline_unsafe_load_store(T_INT, LS_cmp_exchange, Volatile); 731 case vmIntrinsics::_compareAndExchangeIntAcquire: return inline_unsafe_load_store(T_INT, LS_cmp_exchange, Acquire); 732 case vmIntrinsics::_compareAndExchangeIntRelease: return inline_unsafe_load_store(T_INT, LS_cmp_exchange, Release); 733 case vmIntrinsics::_compareAndExchangeLong: return inline_unsafe_load_store(T_LONG, LS_cmp_exchange, Volatile); 734 case vmIntrinsics::_compareAndExchangeLongAcquire: return inline_unsafe_load_store(T_LONG, LS_cmp_exchange, Acquire); 735 case vmIntrinsics::_compareAndExchangeLongRelease: return inline_unsafe_load_store(T_LONG, LS_cmp_exchange, Release); 736 737 case vmIntrinsics::_getAndAddByte: return inline_unsafe_load_store(T_BYTE, LS_get_add, Volatile); 738 case vmIntrinsics::_getAndAddShort: return inline_unsafe_load_store(T_SHORT, LS_get_add, Volatile); 739 case vmIntrinsics::_getAndAddInt: return inline_unsafe_load_store(T_INT, LS_get_add, Volatile); 740 case vmIntrinsics::_getAndAddLong: return inline_unsafe_load_store(T_LONG, LS_get_add, Volatile); 741 742 case vmIntrinsics::_getAndSetByte: return inline_unsafe_load_store(T_BYTE, LS_get_set, Volatile); 743 case vmIntrinsics::_getAndSetShort: return inline_unsafe_load_store(T_SHORT, LS_get_set, Volatile); 744 case vmIntrinsics::_getAndSetInt: return inline_unsafe_load_store(T_INT, LS_get_set, Volatile); 745 case vmIntrinsics::_getAndSetLong: return inline_unsafe_load_store(T_LONG, LS_get_set, Volatile); 746 case vmIntrinsics::_getAndSetReference: return inline_unsafe_load_store(T_OBJECT, LS_get_set, Volatile); 747 748 case vmIntrinsics::_loadFence: 749 case vmIntrinsics::_storeFence: 750 case vmIntrinsics::_fullFence: return inline_unsafe_fence(intrinsic_id()); 751 752 case vmIntrinsics::_onSpinWait: return inline_onspinwait(); 753 754 case vmIntrinsics::_currentThread: return inline_native_currentThread(); 755 756 #ifdef JFR_HAVE_INTRINSICS 757 case vmIntrinsics::_counterTime: return inline_native_time_funcs(CAST_FROM_FN_PTR(address, JFR_TIME_FUNCTION), "counterTime"); 758 case vmIntrinsics::_getClassId: return inline_native_classID(); 759 case vmIntrinsics::_getEventWriter: return inline_native_getEventWriter(); 760 #endif 761 case vmIntrinsics::_currentTimeMillis: return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis"); 762 case vmIntrinsics::_nanoTime: return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime"); 763 case vmIntrinsics::_writeback0: return inline_unsafe_writeback0(); 764 case vmIntrinsics::_writebackPreSync0: return inline_unsafe_writebackSync0(true); 765 case vmIntrinsics::_writebackPostSync0: return inline_unsafe_writebackSync0(false); 766 case vmIntrinsics::_allocateInstance: return inline_unsafe_allocate(); 767 case vmIntrinsics::_copyMemory: return inline_unsafe_copyMemory(); 768 case vmIntrinsics::_getLength: return inline_native_getLength(); 769 case vmIntrinsics::_copyOf: return inline_array_copyOf(false); 770 case vmIntrinsics::_copyOfRange: return inline_array_copyOf(true); 771 case vmIntrinsics::_equalsB: return inline_array_equals(StrIntrinsicNode::LL); 772 case vmIntrinsics::_equalsC: return inline_array_equals(StrIntrinsicNode::UU); 773 case vmIntrinsics::_Preconditions_checkIndex: return inline_preconditions_checkIndex(); 774 case vmIntrinsics::_clone: return inline_native_clone(intrinsic()->is_virtual()); 775 776 case vmIntrinsics::_allocateUninitializedArray: return inline_unsafe_newArray(true); 777 case vmIntrinsics::_newArray: return inline_unsafe_newArray(false); 778 779 case vmIntrinsics::_isAssignableFrom: return inline_native_subtype_check(); 780 781 case vmIntrinsics::_isInstance: 782 case vmIntrinsics::_getModifiers: 783 case vmIntrinsics::_isInterface: 784 case vmIntrinsics::_isArray: 785 case vmIntrinsics::_isPrimitive: 786 case vmIntrinsics::_getSuperclass: 787 case vmIntrinsics::_getClassAccessFlags: return inline_native_Class_query(intrinsic_id()); 788 789 case vmIntrinsics::_floatToRawIntBits: 790 case vmIntrinsics::_floatToIntBits: 791 case vmIntrinsics::_intBitsToFloat: 792 case vmIntrinsics::_doubleToRawLongBits: 793 case vmIntrinsics::_doubleToLongBits: 794 case vmIntrinsics::_longBitsToDouble: return inline_fp_conversions(intrinsic_id()); 795 796 case vmIntrinsics::_numberOfLeadingZeros_i: 797 case vmIntrinsics::_numberOfLeadingZeros_l: 798 case vmIntrinsics::_numberOfTrailingZeros_i: 799 case vmIntrinsics::_numberOfTrailingZeros_l: 800 case vmIntrinsics::_bitCount_i: 801 case vmIntrinsics::_bitCount_l: 802 case vmIntrinsics::_reverseBytes_i: 803 case vmIntrinsics::_reverseBytes_l: 804 case vmIntrinsics::_reverseBytes_s: 805 case vmIntrinsics::_reverseBytes_c: return inline_number_methods(intrinsic_id()); 806 807 case vmIntrinsics::_getCallerClass: return inline_native_Reflection_getCallerClass(); 808 809 case vmIntrinsics::_Reference_get: return inline_reference_get(); 810 811 case vmIntrinsics::_Class_cast: return inline_Class_cast(); 812 813 case vmIntrinsics::_aescrypt_encryptBlock: 814 case vmIntrinsics::_aescrypt_decryptBlock: return inline_aescrypt_Block(intrinsic_id()); 815 816 case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt: 817 case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt: 818 return inline_cipherBlockChaining_AESCrypt(intrinsic_id()); 819 820 case vmIntrinsics::_electronicCodeBook_encryptAESCrypt: 821 case vmIntrinsics::_electronicCodeBook_decryptAESCrypt: 822 return inline_electronicCodeBook_AESCrypt(intrinsic_id()); 823 824 case vmIntrinsics::_counterMode_AESCrypt: 825 return inline_counterMode_AESCrypt(intrinsic_id()); 826 827 case vmIntrinsics::_sha_implCompress: 828 case vmIntrinsics::_sha2_implCompress: 829 case vmIntrinsics::_sha5_implCompress: 830 return inline_sha_implCompress(intrinsic_id()); 831 832 case vmIntrinsics::_digestBase_implCompressMB: 833 return inline_digestBase_implCompressMB(predicate); 834 835 case vmIntrinsics::_multiplyToLen: 836 return inline_multiplyToLen(); 837 838 case vmIntrinsics::_squareToLen: 839 return inline_squareToLen(); 840 841 case vmIntrinsics::_mulAdd: 842 return inline_mulAdd(); 843 844 case vmIntrinsics::_montgomeryMultiply: 845 return inline_montgomeryMultiply(); 846 case vmIntrinsics::_montgomerySquare: 847 return inline_montgomerySquare(); 848 849 case vmIntrinsics::_bigIntegerRightShiftWorker: 850 return inline_bigIntegerShift(true); 851 case vmIntrinsics::_bigIntegerLeftShiftWorker: 852 return inline_bigIntegerShift(false); 853 854 case vmIntrinsics::_vectorizedMismatch: 855 return inline_vectorizedMismatch(); 856 857 case vmIntrinsics::_ghash_processBlocks: 858 return inline_ghash_processBlocks(); 859 case vmIntrinsics::_base64_encodeBlock: 860 return inline_base64_encodeBlock(); 861 862 case vmIntrinsics::_encodeISOArray: 863 case vmIntrinsics::_encodeByteISOArray: 864 return inline_encodeISOArray(); 865 866 case vmIntrinsics::_updateCRC32: 867 return inline_updateCRC32(); 868 case vmIntrinsics::_updateBytesCRC32: 869 return inline_updateBytesCRC32(); 870 case vmIntrinsics::_updateByteBufferCRC32: 871 return inline_updateByteBufferCRC32(); 872 873 case vmIntrinsics::_updateBytesCRC32C: 874 return inline_updateBytesCRC32C(); 875 case vmIntrinsics::_updateDirectByteBufferCRC32C: 876 return inline_updateDirectByteBufferCRC32C(); 877 878 case vmIntrinsics::_updateBytesAdler32: 879 return inline_updateBytesAdler32(); 880 case vmIntrinsics::_updateByteBufferAdler32: 881 return inline_updateByteBufferAdler32(); 882 883 case vmIntrinsics::_profileBoolean: 884 return inline_profileBoolean(); 885 case vmIntrinsics::_isCompileConstant: 886 return inline_isCompileConstant(); 887 888 case vmIntrinsics::_hasNegatives: 889 return inline_hasNegatives(); 890 891 case vmIntrinsics::_fmaD: 892 case vmIntrinsics::_fmaF: 893 return inline_fma(intrinsic_id()); 894 895 case vmIntrinsics::_isDigit: 896 case vmIntrinsics::_isLowerCase: 897 case vmIntrinsics::_isUpperCase: 898 case vmIntrinsics::_isWhitespace: 899 return inline_character_compare(intrinsic_id()); 900 901 case vmIntrinsics::_maxF: 902 case vmIntrinsics::_minF: 903 case vmIntrinsics::_maxD: 904 case vmIntrinsics::_minD: 905 return inline_fp_min_max(intrinsic_id()); 906 907 default: 908 // If you get here, it may be that someone has added a new intrinsic 909 // to the list in vmSymbols.hpp without implementing it here. 910 #ifndef PRODUCT 911 if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) { 912 tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)", 913 vmIntrinsics::name_at(intrinsic_id()), intrinsic_id()); 914 } 915 #endif 916 return false; 917 } 918 } 919 920 Node* LibraryCallKit::try_to_predicate(int predicate) { 921 if (!jvms()->has_method()) { 922 // Root JVMState has a null method. 923 assert(map()->memory()->Opcode() == Op_Parm, ""); 924 // Insert the memory aliasing node 925 set_all_memory(reset_memory()); 926 } 927 assert(merged_memory(), ""); 928 929 switch (intrinsic_id()) { 930 case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt: 931 return inline_cipherBlockChaining_AESCrypt_predicate(false); 932 case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt: 933 return inline_cipherBlockChaining_AESCrypt_predicate(true); 934 case vmIntrinsics::_electronicCodeBook_encryptAESCrypt: 935 return inline_electronicCodeBook_AESCrypt_predicate(false); 936 case vmIntrinsics::_electronicCodeBook_decryptAESCrypt: 937 return inline_electronicCodeBook_AESCrypt_predicate(true); 938 case vmIntrinsics::_counterMode_AESCrypt: 939 return inline_counterMode_AESCrypt_predicate(); 940 case vmIntrinsics::_digestBase_implCompressMB: 941 return inline_digestBase_implCompressMB_predicate(predicate); 942 943 default: 944 // If you get here, it may be that someone has added a new intrinsic 945 // to the list in vmSymbols.hpp without implementing it here. 946 #ifndef PRODUCT 947 if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) { 948 tty->print_cr("*** Warning: Unimplemented predicate for intrinsic %s(%d)", 949 vmIntrinsics::name_at(intrinsic_id()), intrinsic_id()); 950 } 951 #endif 952 Node* slow_ctl = control(); 953 set_control(top()); // No fast path instrinsic 954 return slow_ctl; 955 } 956 } 957 958 //------------------------------set_result------------------------------- 959 // Helper function for finishing intrinsics. 960 void LibraryCallKit::set_result(RegionNode* region, PhiNode* value) { 961 record_for_igvn(region); 962 set_control(_gvn.transform(region)); 963 set_result( _gvn.transform(value)); 964 assert(value->type()->basic_type() == result()->bottom_type()->basic_type(), "sanity"); 965 } 966 967 //------------------------------generate_guard--------------------------- 968 // Helper function for generating guarded fast-slow graph structures. 969 // The given 'test', if true, guards a slow path. If the test fails 970 // then a fast path can be taken. (We generally hope it fails.) 971 // In all cases, GraphKit::control() is updated to the fast path. 972 // The returned value represents the control for the slow path. 973 // The return value is never 'top'; it is either a valid control 974 // or NULL if it is obvious that the slow path can never be taken. 975 // Also, if region and the slow control are not NULL, the slow edge 976 // is appended to the region. 977 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) { 978 if (stopped()) { 979 // Already short circuited. 980 return NULL; 981 } 982 983 // Build an if node and its projections. 984 // If test is true we take the slow path, which we assume is uncommon. 985 if (_gvn.type(test) == TypeInt::ZERO) { 986 // The slow branch is never taken. No need to build this guard. 987 return NULL; 988 } 989 990 IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN); 991 992 Node* if_slow = _gvn.transform(new IfTrueNode(iff)); 993 if (if_slow == top()) { 994 // The slow branch is never taken. No need to build this guard. 995 return NULL; 996 } 997 998 if (region != NULL) 999 region->add_req(if_slow); 1000 1001 Node* if_fast = _gvn.transform(new IfFalseNode(iff)); 1002 set_control(if_fast); 1003 1004 return if_slow; 1005 } 1006 1007 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) { 1008 return generate_guard(test, region, PROB_UNLIKELY_MAG(3)); 1009 } 1010 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) { 1011 return generate_guard(test, region, PROB_FAIR); 1012 } 1013 1014 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region, 1015 Node* *pos_index) { 1016 if (stopped()) 1017 return NULL; // already stopped 1018 if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint] 1019 return NULL; // index is already adequately typed 1020 Node* cmp_lt = _gvn.transform(new CmpINode(index, intcon(0))); 1021 Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt)); 1022 Node* is_neg = generate_guard(bol_lt, region, PROB_MIN); 1023 if (is_neg != NULL && pos_index != NULL) { 1024 // Emulate effect of Parse::adjust_map_after_if. 1025 Node* ccast = new CastIINode(index, TypeInt::POS); 1026 ccast->set_req(0, control()); 1027 (*pos_index) = _gvn.transform(ccast); 1028 } 1029 return is_neg; 1030 } 1031 1032 // Make sure that 'position' is a valid limit index, in [0..length]. 1033 // There are two equivalent plans for checking this: 1034 // A. (offset + copyLength) unsigned<= arrayLength 1035 // B. offset <= (arrayLength - copyLength) 1036 // We require that all of the values above, except for the sum and 1037 // difference, are already known to be non-negative. 1038 // Plan A is robust in the face of overflow, if offset and copyLength 1039 // are both hugely positive. 1040 // 1041 // Plan B is less direct and intuitive, but it does not overflow at 1042 // all, since the difference of two non-negatives is always 1043 // representable. Whenever Java methods must perform the equivalent 1044 // check they generally use Plan B instead of Plan A. 1045 // For the moment we use Plan A. 1046 inline Node* LibraryCallKit::generate_limit_guard(Node* offset, 1047 Node* subseq_length, 1048 Node* array_length, 1049 RegionNode* region) { 1050 if (stopped()) 1051 return NULL; // already stopped 1052 bool zero_offset = _gvn.type(offset) == TypeInt::ZERO; 1053 if (zero_offset && subseq_length->eqv_uncast(array_length)) 1054 return NULL; // common case of whole-array copy 1055 Node* last = subseq_length; 1056 if (!zero_offset) // last += offset 1057 last = _gvn.transform(new AddINode(last, offset)); 1058 Node* cmp_lt = _gvn.transform(new CmpUNode(array_length, last)); 1059 Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt)); 1060 Node* is_over = generate_guard(bol_lt, region, PROB_MIN); 1061 return is_over; 1062 } 1063 1064 // Emit range checks for the given String.value byte array 1065 void LibraryCallKit::generate_string_range_check(Node* array, Node* offset, Node* count, bool char_count) { 1066 if (stopped()) { 1067 return; // already stopped 1068 } 1069 RegionNode* bailout = new RegionNode(1); 1070 record_for_igvn(bailout); 1071 if (char_count) { 1072 // Convert char count to byte count 1073 count = _gvn.transform(new LShiftINode(count, intcon(1))); 1074 } 1075 1076 // Offset and count must not be negative 1077 generate_negative_guard(offset, bailout); 1078 generate_negative_guard(count, bailout); 1079 // Offset + count must not exceed length of array 1080 generate_limit_guard(offset, count, load_array_length(array), bailout); 1081 1082 if (bailout->req() > 1) { 1083 PreserveJVMState pjvms(this); 1084 set_control(_gvn.transform(bailout)); 1085 uncommon_trap(Deoptimization::Reason_intrinsic, 1086 Deoptimization::Action_maybe_recompile); 1087 } 1088 } 1089 1090 //--------------------------generate_current_thread-------------------- 1091 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) { 1092 ciKlass* thread_klass = env()->Thread_klass(); 1093 const Type* thread_type = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull); 1094 Node* thread = _gvn.transform(new ThreadLocalNode()); 1095 Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::threadObj_offset())); 1096 Node* threadObj = _gvn.transform(LoadNode::make(_gvn, NULL, immutable_memory(), p, p->bottom_type()->is_ptr(), thread_type, T_OBJECT, MemNode::unordered)); 1097 tls_output = thread; 1098 return threadObj; 1099 } 1100 1101 1102 //------------------------------make_string_method_node------------------------ 1103 // Helper method for String intrinsic functions. This version is called with 1104 // str1 and str2 pointing to byte[] nodes containing Latin1 or UTF16 encoded 1105 // characters (depending on 'is_byte'). cnt1 and cnt2 are pointing to Int nodes 1106 // containing the lengths of str1 and str2. 1107 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2, StrIntrinsicNode::ArgEnc ae) { 1108 Node* result = NULL; 1109 switch (opcode) { 1110 case Op_StrIndexOf: 1111 result = new StrIndexOfNode(control(), memory(TypeAryPtr::BYTES), 1112 str1_start, cnt1, str2_start, cnt2, ae); 1113 break; 1114 case Op_StrComp: 1115 result = new StrCompNode(control(), memory(TypeAryPtr::BYTES), 1116 str1_start, cnt1, str2_start, cnt2, ae); 1117 break; 1118 case Op_StrEquals: 1119 // We already know that cnt1 == cnt2 here (checked in 'inline_string_equals'). 1120 // Use the constant length if there is one because optimized match rule may exist. 1121 result = new StrEqualsNode(control(), memory(TypeAryPtr::BYTES), 1122 str1_start, str2_start, cnt2->is_Con() ? cnt2 : cnt1, ae); 1123 break; 1124 default: 1125 ShouldNotReachHere(); 1126 return NULL; 1127 } 1128 1129 // All these intrinsics have checks. 1130 C->set_has_split_ifs(true); // Has chance for split-if optimization 1131 clear_upper_avx(); 1132 1133 return _gvn.transform(result); 1134 } 1135 1136 //------------------------------inline_string_compareTo------------------------ 1137 bool LibraryCallKit::inline_string_compareTo(StrIntrinsicNode::ArgEnc ae) { 1138 Node* arg1 = argument(0); 1139 Node* arg2 = argument(1); 1140 1141 arg1 = must_be_not_null(arg1, true); 1142 arg2 = must_be_not_null(arg2, true); 1143 1144 arg1 = access_resolve(arg1, ACCESS_READ); 1145 arg2 = access_resolve(arg2, ACCESS_READ); 1146 1147 // Get start addr and length of first argument 1148 Node* arg1_start = array_element_address(arg1, intcon(0), T_BYTE); 1149 Node* arg1_cnt = load_array_length(arg1); 1150 1151 // Get start addr and length of second argument 1152 Node* arg2_start = array_element_address(arg2, intcon(0), T_BYTE); 1153 Node* arg2_cnt = load_array_length(arg2); 1154 1155 Node* result = make_string_method_node(Op_StrComp, arg1_start, arg1_cnt, arg2_start, arg2_cnt, ae); 1156 set_result(result); 1157 return true; 1158 } 1159 1160 //------------------------------inline_string_equals------------------------ 1161 bool LibraryCallKit::inline_string_equals(StrIntrinsicNode::ArgEnc ae) { 1162 Node* arg1 = argument(0); 1163 Node* arg2 = argument(1); 1164 1165 // paths (plus control) merge 1166 RegionNode* region = new RegionNode(3); 1167 Node* phi = new PhiNode(region, TypeInt::BOOL); 1168 1169 if (!stopped()) { 1170 1171 arg1 = must_be_not_null(arg1, true); 1172 arg2 = must_be_not_null(arg2, true); 1173 1174 arg1 = access_resolve(arg1, ACCESS_READ); 1175 arg2 = access_resolve(arg2, ACCESS_READ); 1176 1177 // Get start addr and length of first argument 1178 Node* arg1_start = array_element_address(arg1, intcon(0), T_BYTE); 1179 Node* arg1_cnt = load_array_length(arg1); 1180 1181 // Get start addr and length of second argument 1182 Node* arg2_start = array_element_address(arg2, intcon(0), T_BYTE); 1183 Node* arg2_cnt = load_array_length(arg2); 1184 1185 // Check for arg1_cnt != arg2_cnt 1186 Node* cmp = _gvn.transform(new CmpINode(arg1_cnt, arg2_cnt)); 1187 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::ne)); 1188 Node* if_ne = generate_slow_guard(bol, NULL); 1189 if (if_ne != NULL) { 1190 phi->init_req(2, intcon(0)); 1191 region->init_req(2, if_ne); 1192 } 1193 1194 // Check for count == 0 is done by assembler code for StrEquals. 1195 1196 if (!stopped()) { 1197 Node* equals = make_string_method_node(Op_StrEquals, arg1_start, arg1_cnt, arg2_start, arg2_cnt, ae); 1198 phi->init_req(1, equals); 1199 region->init_req(1, control()); 1200 } 1201 } 1202 1203 // post merge 1204 set_control(_gvn.transform(region)); 1205 record_for_igvn(region); 1206 1207 set_result(_gvn.transform(phi)); 1208 return true; 1209 } 1210 1211 //------------------------------inline_array_equals---------------------------- 1212 bool LibraryCallKit::inline_array_equals(StrIntrinsicNode::ArgEnc ae) { 1213 assert(ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::LL, "unsupported array types"); 1214 Node* arg1 = argument(0); 1215 Node* arg2 = argument(1); 1216 1217 arg1 = access_resolve(arg1, ACCESS_READ); 1218 arg2 = access_resolve(arg2, ACCESS_READ); 1219 1220 const TypeAryPtr* mtype = (ae == StrIntrinsicNode::UU) ? TypeAryPtr::CHARS : TypeAryPtr::BYTES; 1221 set_result(_gvn.transform(new AryEqNode(control(), memory(mtype), arg1, arg2, ae))); 1222 clear_upper_avx(); 1223 1224 return true; 1225 } 1226 1227 //------------------------------inline_hasNegatives------------------------------ 1228 bool LibraryCallKit::inline_hasNegatives() { 1229 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1230 return false; 1231 } 1232 1233 assert(callee()->signature()->size() == 3, "hasNegatives has 3 parameters"); 1234 // no receiver since it is static method 1235 Node* ba = argument(0); 1236 Node* offset = argument(1); 1237 Node* len = argument(2); 1238 1239 ba = must_be_not_null(ba, true); 1240 1241 // Range checks 1242 generate_string_range_check(ba, offset, len, false); 1243 if (stopped()) { 1244 return true; 1245 } 1246 ba = access_resolve(ba, ACCESS_READ); 1247 Node* ba_start = array_element_address(ba, offset, T_BYTE); 1248 Node* result = new HasNegativesNode(control(), memory(TypeAryPtr::BYTES), ba_start, len); 1249 set_result(_gvn.transform(result)); 1250 return true; 1251 } 1252 1253 bool LibraryCallKit::inline_preconditions_checkIndex() { 1254 Node* index = argument(0); 1255 Node* length = argument(1); 1256 if (too_many_traps(Deoptimization::Reason_intrinsic) || too_many_traps(Deoptimization::Reason_range_check)) { 1257 return false; 1258 } 1259 1260 Node* len_pos_cmp = _gvn.transform(new CmpINode(length, intcon(0))); 1261 Node* len_pos_bol = _gvn.transform(new BoolNode(len_pos_cmp, BoolTest::ge)); 1262 1263 { 1264 BuildCutout unless(this, len_pos_bol, PROB_MAX); 1265 uncommon_trap(Deoptimization::Reason_intrinsic, 1266 Deoptimization::Action_make_not_entrant); 1267 } 1268 1269 if (stopped()) { 1270 return false; 1271 } 1272 1273 Node* rc_cmp = _gvn.transform(new CmpUNode(index, length)); 1274 BoolTest::mask btest = BoolTest::lt; 1275 Node* rc_bool = _gvn.transform(new BoolNode(rc_cmp, btest)); 1276 RangeCheckNode* rc = new RangeCheckNode(control(), rc_bool, PROB_MAX, COUNT_UNKNOWN); 1277 _gvn.set_type(rc, rc->Value(&_gvn)); 1278 if (!rc_bool->is_Con()) { 1279 record_for_igvn(rc); 1280 } 1281 set_control(_gvn.transform(new IfTrueNode(rc))); 1282 { 1283 PreserveJVMState pjvms(this); 1284 set_control(_gvn.transform(new IfFalseNode(rc))); 1285 uncommon_trap(Deoptimization::Reason_range_check, 1286 Deoptimization::Action_make_not_entrant); 1287 } 1288 1289 if (stopped()) { 1290 return false; 1291 } 1292 1293 Node* result = new CastIINode(index, TypeInt::make(0, _gvn.type(length)->is_int()->_hi, Type::WidenMax)); 1294 result->set_req(0, control()); 1295 result = _gvn.transform(result); 1296 set_result(result); 1297 replace_in_map(index, result); 1298 clear_upper_avx(); 1299 return true; 1300 } 1301 1302 //------------------------------inline_string_indexOf------------------------ 1303 bool LibraryCallKit::inline_string_indexOf(StrIntrinsicNode::ArgEnc ae) { 1304 if (!Matcher::match_rule_supported(Op_StrIndexOf)) { 1305 return false; 1306 } 1307 Node* src = argument(0); 1308 Node* tgt = argument(1); 1309 1310 // Make the merge point 1311 RegionNode* result_rgn = new RegionNode(4); 1312 Node* result_phi = new PhiNode(result_rgn, TypeInt::INT); 1313 1314 src = must_be_not_null(src, true); 1315 tgt = must_be_not_null(tgt, true); 1316 1317 src = access_resolve(src, ACCESS_READ); 1318 tgt = access_resolve(tgt, ACCESS_READ); 1319 1320 // Get start addr and length of source string 1321 Node* src_start = array_element_address(src, intcon(0), T_BYTE); 1322 Node* src_count = load_array_length(src); 1323 1324 // Get start addr and length of substring 1325 Node* tgt_start = array_element_address(tgt, intcon(0), T_BYTE); 1326 Node* tgt_count = load_array_length(tgt); 1327 1328 if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) { 1329 // Divide src size by 2 if String is UTF16 encoded 1330 src_count = _gvn.transform(new RShiftINode(src_count, intcon(1))); 1331 } 1332 if (ae == StrIntrinsicNode::UU) { 1333 // Divide substring size by 2 if String is UTF16 encoded 1334 tgt_count = _gvn.transform(new RShiftINode(tgt_count, intcon(1))); 1335 } 1336 1337 Node* result = make_indexOf_node(src_start, src_count, tgt_start, tgt_count, result_rgn, result_phi, ae); 1338 if (result != NULL) { 1339 result_phi->init_req(3, result); 1340 result_rgn->init_req(3, control()); 1341 } 1342 set_control(_gvn.transform(result_rgn)); 1343 record_for_igvn(result_rgn); 1344 set_result(_gvn.transform(result_phi)); 1345 1346 return true; 1347 } 1348 1349 //-----------------------------inline_string_indexOf----------------------- 1350 bool LibraryCallKit::inline_string_indexOfI(StrIntrinsicNode::ArgEnc ae) { 1351 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1352 return false; 1353 } 1354 if (!Matcher::match_rule_supported(Op_StrIndexOf)) { 1355 return false; 1356 } 1357 assert(callee()->signature()->size() == 5, "String.indexOf() has 5 arguments"); 1358 Node* src = argument(0); // byte[] 1359 Node* src_count = argument(1); // char count 1360 Node* tgt = argument(2); // byte[] 1361 Node* tgt_count = argument(3); // char count 1362 Node* from_index = argument(4); // char index 1363 1364 src = must_be_not_null(src, true); 1365 tgt = must_be_not_null(tgt, true); 1366 1367 src = access_resolve(src, ACCESS_READ); 1368 tgt = access_resolve(tgt, ACCESS_READ); 1369 1370 // Multiply byte array index by 2 if String is UTF16 encoded 1371 Node* src_offset = (ae == StrIntrinsicNode::LL) ? from_index : _gvn.transform(new LShiftINode(from_index, intcon(1))); 1372 src_count = _gvn.transform(new SubINode(src_count, from_index)); 1373 Node* src_start = array_element_address(src, src_offset, T_BYTE); 1374 Node* tgt_start = array_element_address(tgt, intcon(0), T_BYTE); 1375 1376 // Range checks 1377 generate_string_range_check(src, src_offset, src_count, ae != StrIntrinsicNode::LL); 1378 generate_string_range_check(tgt, intcon(0), tgt_count, ae == StrIntrinsicNode::UU); 1379 if (stopped()) { 1380 return true; 1381 } 1382 1383 RegionNode* region = new RegionNode(5); 1384 Node* phi = new PhiNode(region, TypeInt::INT); 1385 1386 Node* result = make_indexOf_node(src_start, src_count, tgt_start, tgt_count, region, phi, ae); 1387 if (result != NULL) { 1388 // The result is index relative to from_index if substring was found, -1 otherwise. 1389 // Generate code which will fold into cmove. 1390 Node* cmp = _gvn.transform(new CmpINode(result, intcon(0))); 1391 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::lt)); 1392 1393 Node* if_lt = generate_slow_guard(bol, NULL); 1394 if (if_lt != NULL) { 1395 // result == -1 1396 phi->init_req(3, result); 1397 region->init_req(3, if_lt); 1398 } 1399 if (!stopped()) { 1400 result = _gvn.transform(new AddINode(result, from_index)); 1401 phi->init_req(4, result); 1402 region->init_req(4, control()); 1403 } 1404 } 1405 1406 set_control(_gvn.transform(region)); 1407 record_for_igvn(region); 1408 set_result(_gvn.transform(phi)); 1409 clear_upper_avx(); 1410 1411 return true; 1412 } 1413 1414 // Create StrIndexOfNode with fast path checks 1415 Node* LibraryCallKit::make_indexOf_node(Node* src_start, Node* src_count, Node* tgt_start, Node* tgt_count, 1416 RegionNode* region, Node* phi, StrIntrinsicNode::ArgEnc ae) { 1417 // Check for substr count > string count 1418 Node* cmp = _gvn.transform(new CmpINode(tgt_count, src_count)); 1419 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::gt)); 1420 Node* if_gt = generate_slow_guard(bol, NULL); 1421 if (if_gt != NULL) { 1422 phi->init_req(1, intcon(-1)); 1423 region->init_req(1, if_gt); 1424 } 1425 if (!stopped()) { 1426 // Check for substr count == 0 1427 cmp = _gvn.transform(new CmpINode(tgt_count, intcon(0))); 1428 bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq)); 1429 Node* if_zero = generate_slow_guard(bol, NULL); 1430 if (if_zero != NULL) { 1431 phi->init_req(2, intcon(0)); 1432 region->init_req(2, if_zero); 1433 } 1434 } 1435 if (!stopped()) { 1436 return make_string_method_node(Op_StrIndexOf, src_start, src_count, tgt_start, tgt_count, ae); 1437 } 1438 return NULL; 1439 } 1440 1441 //-----------------------------inline_string_indexOfChar----------------------- 1442 bool LibraryCallKit::inline_string_indexOfChar() { 1443 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1444 return false; 1445 } 1446 if (!Matcher::match_rule_supported(Op_StrIndexOfChar)) { 1447 return false; 1448 } 1449 assert(callee()->signature()->size() == 4, "String.indexOfChar() has 4 arguments"); 1450 Node* src = argument(0); // byte[] 1451 Node* tgt = argument(1); // tgt is int ch 1452 Node* from_index = argument(2); 1453 Node* max = argument(3); 1454 1455 src = must_be_not_null(src, true); 1456 src = access_resolve(src, ACCESS_READ); 1457 1458 Node* src_offset = _gvn.transform(new LShiftINode(from_index, intcon(1))); 1459 Node* src_start = array_element_address(src, src_offset, T_BYTE); 1460 Node* src_count = _gvn.transform(new SubINode(max, from_index)); 1461 1462 // Range checks 1463 generate_string_range_check(src, src_offset, src_count, true); 1464 if (stopped()) { 1465 return true; 1466 } 1467 1468 RegionNode* region = new RegionNode(3); 1469 Node* phi = new PhiNode(region, TypeInt::INT); 1470 1471 Node* result = new StrIndexOfCharNode(control(), memory(TypeAryPtr::BYTES), src_start, src_count, tgt, StrIntrinsicNode::none); 1472 C->set_has_split_ifs(true); // Has chance for split-if optimization 1473 _gvn.transform(result); 1474 1475 Node* cmp = _gvn.transform(new CmpINode(result, intcon(0))); 1476 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::lt)); 1477 1478 Node* if_lt = generate_slow_guard(bol, NULL); 1479 if (if_lt != NULL) { 1480 // result == -1 1481 phi->init_req(2, result); 1482 region->init_req(2, if_lt); 1483 } 1484 if (!stopped()) { 1485 result = _gvn.transform(new AddINode(result, from_index)); 1486 phi->init_req(1, result); 1487 region->init_req(1, control()); 1488 } 1489 set_control(_gvn.transform(region)); 1490 record_for_igvn(region); 1491 set_result(_gvn.transform(phi)); 1492 1493 return true; 1494 } 1495 //---------------------------inline_string_copy--------------------- 1496 // compressIt == true --> generate a compressed copy operation (compress char[]/byte[] to byte[]) 1497 // int StringUTF16.compress(char[] src, int srcOff, byte[] dst, int dstOff, int len) 1498 // int StringUTF16.compress(byte[] src, int srcOff, byte[] dst, int dstOff, int len) 1499 // compressIt == false --> generate an inflated copy operation (inflate byte[] to char[]/byte[]) 1500 // void StringLatin1.inflate(byte[] src, int srcOff, char[] dst, int dstOff, int len) 1501 // void StringLatin1.inflate(byte[] src, int srcOff, byte[] dst, int dstOff, int len) 1502 bool LibraryCallKit::inline_string_copy(bool compress) { 1503 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1504 return false; 1505 } 1506 int nargs = 5; // 2 oops, 3 ints 1507 assert(callee()->signature()->size() == nargs, "string copy has 5 arguments"); 1508 1509 Node* src = argument(0); 1510 Node* src_offset = argument(1); 1511 Node* dst = argument(2); 1512 Node* dst_offset = argument(3); 1513 Node* length = argument(4); 1514 1515 // Check for allocation before we add nodes that would confuse 1516 // tightly_coupled_allocation() 1517 AllocateArrayNode* alloc = tightly_coupled_allocation(dst, NULL); 1518 1519 // Figure out the size and type of the elements we will be copying. 1520 const Type* src_type = src->Value(&_gvn); 1521 const Type* dst_type = dst->Value(&_gvn); 1522 BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); 1523 BasicType dst_elem = dst_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); 1524 assert((compress && dst_elem == T_BYTE && (src_elem == T_BYTE || src_elem == T_CHAR)) || 1525 (!compress && src_elem == T_BYTE && (dst_elem == T_BYTE || dst_elem == T_CHAR)), 1526 "Unsupported array types for inline_string_copy"); 1527 1528 src = must_be_not_null(src, true); 1529 dst = must_be_not_null(dst, true); 1530 1531 // Convert char[] offsets to byte[] offsets 1532 bool convert_src = (compress && src_elem == T_BYTE); 1533 bool convert_dst = (!compress && dst_elem == T_BYTE); 1534 if (convert_src) { 1535 src_offset = _gvn.transform(new LShiftINode(src_offset, intcon(1))); 1536 } else if (convert_dst) { 1537 dst_offset = _gvn.transform(new LShiftINode(dst_offset, intcon(1))); 1538 } 1539 1540 // Range checks 1541 generate_string_range_check(src, src_offset, length, convert_src); 1542 generate_string_range_check(dst, dst_offset, length, convert_dst); 1543 if (stopped()) { 1544 return true; 1545 } 1546 1547 src = access_resolve(src, ACCESS_READ); 1548 dst = access_resolve(dst, ACCESS_WRITE); 1549 1550 Node* src_start = array_element_address(src, src_offset, src_elem); 1551 Node* dst_start = array_element_address(dst, dst_offset, dst_elem); 1552 // 'src_start' points to src array + scaled offset 1553 // 'dst_start' points to dst array + scaled offset 1554 Node* count = NULL; 1555 if (compress) { 1556 count = compress_string(src_start, TypeAryPtr::get_array_body_type(src_elem), dst_start, length); 1557 } else { 1558 inflate_string(src_start, dst_start, TypeAryPtr::get_array_body_type(dst_elem), length); 1559 } 1560 1561 if (alloc != NULL) { 1562 if (alloc->maybe_set_complete(&_gvn)) { 1563 // "You break it, you buy it." 1564 InitializeNode* init = alloc->initialization(); 1565 assert(init->is_complete(), "we just did this"); 1566 init->set_complete_with_arraycopy(); 1567 assert(dst->is_CheckCastPP(), "sanity"); 1568 assert(dst->in(0)->in(0) == init, "dest pinned"); 1569 } 1570 // Do not let stores that initialize this object be reordered with 1571 // a subsequent store that would make this object accessible by 1572 // other threads. 1573 // Record what AllocateNode this StoreStore protects so that 1574 // escape analysis can go from the MemBarStoreStoreNode to the 1575 // AllocateNode and eliminate the MemBarStoreStoreNode if possible 1576 // based on the escape status of the AllocateNode. 1577 insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress)); 1578 } 1579 if (compress) { 1580 set_result(_gvn.transform(count)); 1581 } 1582 clear_upper_avx(); 1583 1584 return true; 1585 } 1586 1587 #ifdef _LP64 1588 #define XTOP ,top() /*additional argument*/ 1589 #else //_LP64 1590 #define XTOP /*no additional argument*/ 1591 #endif //_LP64 1592 1593 //------------------------inline_string_toBytesU-------------------------- 1594 // public static byte[] StringUTF16.toBytes(char[] value, int off, int len) 1595 bool LibraryCallKit::inline_string_toBytesU() { 1596 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1597 return false; 1598 } 1599 // Get the arguments. 1600 Node* value = argument(0); 1601 Node* offset = argument(1); 1602 Node* length = argument(2); 1603 1604 Node* newcopy = NULL; 1605 1606 // Set the original stack and the reexecute bit for the interpreter to reexecute 1607 // the bytecode that invokes StringUTF16.toBytes() if deoptimization happens. 1608 { PreserveReexecuteState preexecs(this); 1609 jvms()->set_should_reexecute(true); 1610 1611 // Check if a null path was taken unconditionally. 1612 value = null_check(value); 1613 1614 RegionNode* bailout = new RegionNode(1); 1615 record_for_igvn(bailout); 1616 1617 // Range checks 1618 generate_negative_guard(offset, bailout); 1619 generate_negative_guard(length, bailout); 1620 generate_limit_guard(offset, length, load_array_length(value), bailout); 1621 // Make sure that resulting byte[] length does not overflow Integer.MAX_VALUE 1622 generate_limit_guard(length, intcon(0), intcon(max_jint/2), bailout); 1623 1624 if (bailout->req() > 1) { 1625 PreserveJVMState pjvms(this); 1626 set_control(_gvn.transform(bailout)); 1627 uncommon_trap(Deoptimization::Reason_intrinsic, 1628 Deoptimization::Action_maybe_recompile); 1629 } 1630 if (stopped()) { 1631 return true; 1632 } 1633 1634 Node* size = _gvn.transform(new LShiftINode(length, intcon(1))); 1635 Node* klass_node = makecon(TypeKlassPtr::make(ciTypeArrayKlass::make(T_BYTE))); 1636 newcopy = new_array(klass_node, size, 0); // no arguments to push 1637 AllocateArrayNode* alloc = tightly_coupled_allocation(newcopy, NULL); 1638 1639 // Calculate starting addresses. 1640 value = access_resolve(value, ACCESS_READ); 1641 Node* src_start = array_element_address(value, offset, T_CHAR); 1642 Node* dst_start = basic_plus_adr(newcopy, arrayOopDesc::base_offset_in_bytes(T_BYTE)); 1643 1644 // Check if src array address is aligned to HeapWordSize (dst is always aligned) 1645 const TypeInt* toffset = gvn().type(offset)->is_int(); 1646 bool aligned = toffset->is_con() && ((toffset->get_con() * type2aelembytes(T_CHAR)) % HeapWordSize == 0); 1647 1648 // Figure out which arraycopy runtime method to call (disjoint, uninitialized). 1649 const char* copyfunc_name = "arraycopy"; 1650 address copyfunc_addr = StubRoutines::select_arraycopy_function(T_CHAR, aligned, true, copyfunc_name, true); 1651 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 1652 OptoRuntime::fast_arraycopy_Type(), 1653 copyfunc_addr, copyfunc_name, TypeRawPtr::BOTTOM, 1654 src_start, dst_start, ConvI2X(length) XTOP); 1655 // Do not let reads from the cloned object float above the arraycopy. 1656 if (alloc != NULL) { 1657 if (alloc->maybe_set_complete(&_gvn)) { 1658 // "You break it, you buy it." 1659 InitializeNode* init = alloc->initialization(); 1660 assert(init->is_complete(), "we just did this"); 1661 init->set_complete_with_arraycopy(); 1662 assert(newcopy->is_CheckCastPP(), "sanity"); 1663 assert(newcopy->in(0)->in(0) == init, "dest pinned"); 1664 } 1665 // Do not let stores that initialize this object be reordered with 1666 // a subsequent store that would make this object accessible by 1667 // other threads. 1668 // Record what AllocateNode this StoreStore protects so that 1669 // escape analysis can go from the MemBarStoreStoreNode to the 1670 // AllocateNode and eliminate the MemBarStoreStoreNode if possible 1671 // based on the escape status of the AllocateNode. 1672 insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress)); 1673 } else { 1674 insert_mem_bar(Op_MemBarCPUOrder); 1675 } 1676 } // original reexecute is set back here 1677 1678 C->set_has_split_ifs(true); // Has chance for split-if optimization 1679 if (!stopped()) { 1680 set_result(newcopy); 1681 } 1682 clear_upper_avx(); 1683 1684 return true; 1685 } 1686 1687 //------------------------inline_string_getCharsU-------------------------- 1688 // public void StringUTF16.getChars(byte[] src, int srcBegin, int srcEnd, char dst[], int dstBegin) 1689 bool LibraryCallKit::inline_string_getCharsU() { 1690 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1691 return false; 1692 } 1693 1694 // Get the arguments. 1695 Node* src = argument(0); 1696 Node* src_begin = argument(1); 1697 Node* src_end = argument(2); // exclusive offset (i < src_end) 1698 Node* dst = argument(3); 1699 Node* dst_begin = argument(4); 1700 1701 // Check for allocation before we add nodes that would confuse 1702 // tightly_coupled_allocation() 1703 AllocateArrayNode* alloc = tightly_coupled_allocation(dst, NULL); 1704 1705 // Check if a null path was taken unconditionally. 1706 src = null_check(src); 1707 dst = null_check(dst); 1708 if (stopped()) { 1709 return true; 1710 } 1711 1712 // Get length and convert char[] offset to byte[] offset 1713 Node* length = _gvn.transform(new SubINode(src_end, src_begin)); 1714 src_begin = _gvn.transform(new LShiftINode(src_begin, intcon(1))); 1715 1716 // Range checks 1717 generate_string_range_check(src, src_begin, length, true); 1718 generate_string_range_check(dst, dst_begin, length, false); 1719 if (stopped()) { 1720 return true; 1721 } 1722 1723 if (!stopped()) { 1724 src = access_resolve(src, ACCESS_READ); 1725 dst = access_resolve(dst, ACCESS_WRITE); 1726 1727 // Calculate starting addresses. 1728 Node* src_start = array_element_address(src, src_begin, T_BYTE); 1729 Node* dst_start = array_element_address(dst, dst_begin, T_CHAR); 1730 1731 // Check if array addresses are aligned to HeapWordSize 1732 const TypeInt* tsrc = gvn().type(src_begin)->is_int(); 1733 const TypeInt* tdst = gvn().type(dst_begin)->is_int(); 1734 bool aligned = tsrc->is_con() && ((tsrc->get_con() * type2aelembytes(T_BYTE)) % HeapWordSize == 0) && 1735 tdst->is_con() && ((tdst->get_con() * type2aelembytes(T_CHAR)) % HeapWordSize == 0); 1736 1737 // Figure out which arraycopy runtime method to call (disjoint, uninitialized). 1738 const char* copyfunc_name = "arraycopy"; 1739 address copyfunc_addr = StubRoutines::select_arraycopy_function(T_CHAR, aligned, true, copyfunc_name, true); 1740 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 1741 OptoRuntime::fast_arraycopy_Type(), 1742 copyfunc_addr, copyfunc_name, TypeRawPtr::BOTTOM, 1743 src_start, dst_start, ConvI2X(length) XTOP); 1744 // Do not let reads from the cloned object float above the arraycopy. 1745 if (alloc != NULL) { 1746 if (alloc->maybe_set_complete(&_gvn)) { 1747 // "You break it, you buy it." 1748 InitializeNode* init = alloc->initialization(); 1749 assert(init->is_complete(), "we just did this"); 1750 init->set_complete_with_arraycopy(); 1751 assert(dst->is_CheckCastPP(), "sanity"); 1752 assert(dst->in(0)->in(0) == init, "dest pinned"); 1753 } 1754 // Do not let stores that initialize this object be reordered with 1755 // a subsequent store that would make this object accessible by 1756 // other threads. 1757 // Record what AllocateNode this StoreStore protects so that 1758 // escape analysis can go from the MemBarStoreStoreNode to the 1759 // AllocateNode and eliminate the MemBarStoreStoreNode if possible 1760 // based on the escape status of the AllocateNode. 1761 insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress)); 1762 } else { 1763 insert_mem_bar(Op_MemBarCPUOrder); 1764 } 1765 } 1766 1767 C->set_has_split_ifs(true); // Has chance for split-if optimization 1768 return true; 1769 } 1770 1771 //----------------------inline_string_char_access---------------------------- 1772 // Store/Load char to/from byte[] array. 1773 // static void StringUTF16.putChar(byte[] val, int index, int c) 1774 // static char StringUTF16.getChar(byte[] val, int index) 1775 bool LibraryCallKit::inline_string_char_access(bool is_store) { 1776 Node* value = argument(0); 1777 Node* index = argument(1); 1778 Node* ch = is_store ? argument(2) : NULL; 1779 1780 // This intrinsic accesses byte[] array as char[] array. Computing the offsets 1781 // correctly requires matched array shapes. 1782 assert (arrayOopDesc::base_offset_in_bytes(T_CHAR) == arrayOopDesc::base_offset_in_bytes(T_BYTE), 1783 "sanity: byte[] and char[] bases agree"); 1784 assert (type2aelembytes(T_CHAR) == type2aelembytes(T_BYTE)*2, 1785 "sanity: byte[] and char[] scales agree"); 1786 1787 // Bail when getChar over constants is requested: constant folding would 1788 // reject folding mismatched char access over byte[]. A normal inlining for getChar 1789 // Java method would constant fold nicely instead. 1790 if (!is_store && value->is_Con() && index->is_Con()) { 1791 return false; 1792 } 1793 1794 value = must_be_not_null(value, true); 1795 value = access_resolve(value, is_store ? ACCESS_WRITE : ACCESS_READ); 1796 1797 Node* adr = array_element_address(value, index, T_CHAR); 1798 if (adr->is_top()) { 1799 return false; 1800 } 1801 if (is_store) { 1802 access_store_at(value, adr, TypeAryPtr::BYTES, ch, TypeInt::CHAR, T_CHAR, IN_HEAP | MO_UNORDERED | C2_MISMATCHED); 1803 } else { 1804 ch = access_load_at(value, adr, TypeAryPtr::BYTES, TypeInt::CHAR, T_CHAR, IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD); 1805 set_result(ch); 1806 } 1807 return true; 1808 } 1809 1810 //--------------------------round_double_node-------------------------------- 1811 // Round a double node if necessary. 1812 Node* LibraryCallKit::round_double_node(Node* n) { 1813 if (Matcher::strict_fp_requires_explicit_rounding && UseSSE <= 1) 1814 n = _gvn.transform(new RoundDoubleNode(0, n)); 1815 return n; 1816 } 1817 1818 //------------------------------inline_math----------------------------------- 1819 // public static double Math.abs(double) 1820 // public static double Math.sqrt(double) 1821 // public static double Math.log(double) 1822 // public static double Math.log10(double) 1823 bool LibraryCallKit::inline_double_math(vmIntrinsics::ID id) { 1824 Node* arg = round_double_node(argument(0)); 1825 Node* n = NULL; 1826 switch (id) { 1827 case vmIntrinsics::_dabs: n = new AbsDNode( arg); break; 1828 case vmIntrinsics::_dsqrt: n = new SqrtDNode(C, control(), arg); break; 1829 case vmIntrinsics::_ceil: n = RoundDoubleModeNode::make(_gvn, arg, RoundDoubleModeNode::rmode_ceil); break; 1830 case vmIntrinsics::_floor: n = RoundDoubleModeNode::make(_gvn, arg, RoundDoubleModeNode::rmode_floor); break; 1831 case vmIntrinsics::_rint: n = RoundDoubleModeNode::make(_gvn, arg, RoundDoubleModeNode::rmode_rint); break; 1832 default: fatal_unexpected_iid(id); break; 1833 } 1834 set_result(_gvn.transform(n)); 1835 return true; 1836 } 1837 1838 //------------------------------inline_math----------------------------------- 1839 // public static float Math.abs(float) 1840 // public static int Math.abs(int) 1841 // public static long Math.abs(long) 1842 bool LibraryCallKit::inline_math(vmIntrinsics::ID id) { 1843 Node* arg = argument(0); 1844 Node* n = NULL; 1845 switch (id) { 1846 case vmIntrinsics::_fabs: n = new AbsFNode( arg); break; 1847 case vmIntrinsics::_iabs: n = new AbsINode( arg); break; 1848 case vmIntrinsics::_labs: n = new AbsLNode( arg); break; 1849 default: fatal_unexpected_iid(id); break; 1850 } 1851 set_result(_gvn.transform(n)); 1852 return true; 1853 } 1854 1855 //------------------------------runtime_math----------------------------- 1856 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) { 1857 assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(), 1858 "must be (DD)D or (D)D type"); 1859 1860 // Inputs 1861 Node* a = round_double_node(argument(0)); 1862 Node* b = (call_type == OptoRuntime::Math_DD_D_Type()) ? round_double_node(argument(2)) : NULL; 1863 1864 const TypePtr* no_memory_effects = NULL; 1865 Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName, 1866 no_memory_effects, 1867 a, top(), b, b ? top() : NULL); 1868 Node* value = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+0)); 1869 #ifdef ASSERT 1870 Node* value_top = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+1)); 1871 assert(value_top == top(), "second value must be top"); 1872 #endif 1873 1874 set_result(value); 1875 return true; 1876 } 1877 1878 //------------------------------inline_math_native----------------------------- 1879 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) { 1880 #define FN_PTR(f) CAST_FROM_FN_PTR(address, f) 1881 switch (id) { 1882 // These intrinsics are not properly supported on all hardware 1883 case vmIntrinsics::_dsin: 1884 return StubRoutines::dsin() != NULL ? 1885 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dsin(), "dsin") : 1886 runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dsin), "SIN"); 1887 case vmIntrinsics::_dcos: 1888 return StubRoutines::dcos() != NULL ? 1889 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dcos(), "dcos") : 1890 runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dcos), "COS"); 1891 case vmIntrinsics::_dtan: 1892 return StubRoutines::dtan() != NULL ? 1893 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dtan(), "dtan") : 1894 runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dtan), "TAN"); 1895 case vmIntrinsics::_dlog: 1896 return StubRoutines::dlog() != NULL ? 1897 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dlog(), "dlog") : 1898 runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog), "LOG"); 1899 case vmIntrinsics::_dlog10: 1900 return StubRoutines::dlog10() != NULL ? 1901 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dlog10(), "dlog10") : 1902 runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog10), "LOG10"); 1903 1904 // These intrinsics are supported on all hardware 1905 case vmIntrinsics::_ceil: 1906 case vmIntrinsics::_floor: 1907 case vmIntrinsics::_rint: return Matcher::match_rule_supported(Op_RoundDoubleMode) ? inline_double_math(id) : false; 1908 case vmIntrinsics::_dsqrt: return Matcher::match_rule_supported(Op_SqrtD) ? inline_double_math(id) : false; 1909 case vmIntrinsics::_dabs: return Matcher::has_match_rule(Op_AbsD) ? inline_double_math(id) : false; 1910 case vmIntrinsics::_fabs: return Matcher::match_rule_supported(Op_AbsF) ? inline_math(id) : false; 1911 case vmIntrinsics::_iabs: return Matcher::match_rule_supported(Op_AbsI) ? inline_math(id) : false; 1912 case vmIntrinsics::_labs: return Matcher::match_rule_supported(Op_AbsL) ? inline_math(id) : false; 1913 1914 case vmIntrinsics::_dexp: 1915 return StubRoutines::dexp() != NULL ? 1916 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dexp(), "dexp") : 1917 runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dexp), "EXP"); 1918 case vmIntrinsics::_dpow: { 1919 Node* exp = round_double_node(argument(2)); 1920 const TypeD* d = _gvn.type(exp)->isa_double_constant(); 1921 if (d != NULL && d->getd() == 2.0) { 1922 // Special case: pow(x, 2.0) => x * x 1923 Node* base = round_double_node(argument(0)); 1924 set_result(_gvn.transform(new MulDNode(base, base))); 1925 return true; 1926 } 1927 return StubRoutines::dpow() != NULL ? 1928 runtime_math(OptoRuntime::Math_DD_D_Type(), StubRoutines::dpow(), "dpow") : 1929 runtime_math(OptoRuntime::Math_DD_D_Type(), FN_PTR(SharedRuntime::dpow), "POW"); 1930 } 1931 #undef FN_PTR 1932 1933 // These intrinsics are not yet correctly implemented 1934 case vmIntrinsics::_datan2: 1935 return false; 1936 1937 default: 1938 fatal_unexpected_iid(id); 1939 return false; 1940 } 1941 } 1942 1943 static bool is_simple_name(Node* n) { 1944 return (n->req() == 1 // constant 1945 || (n->is_Type() && n->as_Type()->type()->singleton()) 1946 || n->is_Proj() // parameter or return value 1947 || n->is_Phi() // local of some sort 1948 ); 1949 } 1950 1951 //----------------------------inline_notify-----------------------------------* 1952 bool LibraryCallKit::inline_notify(vmIntrinsics::ID id) { 1953 const TypeFunc* ftype = OptoRuntime::monitor_notify_Type(); 1954 address func; 1955 if (id == vmIntrinsics::_notify) { 1956 func = OptoRuntime::monitor_notify_Java(); 1957 } else { 1958 func = OptoRuntime::monitor_notifyAll_Java(); 1959 } 1960 Node* call = make_runtime_call(RC_NO_LEAF, ftype, func, NULL, TypeRawPtr::BOTTOM, argument(0)); 1961 make_slow_call_ex(call, env()->Throwable_klass(), false); 1962 return true; 1963 } 1964 1965 1966 //----------------------------inline_min_max----------------------------------- 1967 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) { 1968 set_result(generate_min_max(id, argument(0), argument(1))); 1969 return true; 1970 } 1971 1972 void LibraryCallKit::inline_math_mathExact(Node* math, Node *test) { 1973 Node* bol = _gvn.transform( new BoolNode(test, BoolTest::overflow) ); 1974 IfNode* check = create_and_map_if(control(), bol, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN); 1975 Node* fast_path = _gvn.transform( new IfFalseNode(check)); 1976 Node* slow_path = _gvn.transform( new IfTrueNode(check) ); 1977 1978 { 1979 PreserveJVMState pjvms(this); 1980 PreserveReexecuteState preexecs(this); 1981 jvms()->set_should_reexecute(true); 1982 1983 set_control(slow_path); 1984 set_i_o(i_o()); 1985 1986 uncommon_trap(Deoptimization::Reason_intrinsic, 1987 Deoptimization::Action_none); 1988 } 1989 1990 set_control(fast_path); 1991 set_result(math); 1992 } 1993 1994 template <typename OverflowOp> 1995 bool LibraryCallKit::inline_math_overflow(Node* arg1, Node* arg2) { 1996 typedef typename OverflowOp::MathOp MathOp; 1997 1998 MathOp* mathOp = new MathOp(arg1, arg2); 1999 Node* operation = _gvn.transform( mathOp ); 2000 Node* ofcheck = _gvn.transform( new OverflowOp(arg1, arg2) ); 2001 inline_math_mathExact(operation, ofcheck); 2002 return true; 2003 } 2004 2005 bool LibraryCallKit::inline_math_addExactI(bool is_increment) { 2006 return inline_math_overflow<OverflowAddINode>(argument(0), is_increment ? intcon(1) : argument(1)); 2007 } 2008 2009 bool LibraryCallKit::inline_math_addExactL(bool is_increment) { 2010 return inline_math_overflow<OverflowAddLNode>(argument(0), is_increment ? longcon(1) : argument(2)); 2011 } 2012 2013 bool LibraryCallKit::inline_math_subtractExactI(bool is_decrement) { 2014 return inline_math_overflow<OverflowSubINode>(argument(0), is_decrement ? intcon(1) : argument(1)); 2015 } 2016 2017 bool LibraryCallKit::inline_math_subtractExactL(bool is_decrement) { 2018 return inline_math_overflow<OverflowSubLNode>(argument(0), is_decrement ? longcon(1) : argument(2)); 2019 } 2020 2021 bool LibraryCallKit::inline_math_negateExactI() { 2022 return inline_math_overflow<OverflowSubINode>(intcon(0), argument(0)); 2023 } 2024 2025 bool LibraryCallKit::inline_math_negateExactL() { 2026 return inline_math_overflow<OverflowSubLNode>(longcon(0), argument(0)); 2027 } 2028 2029 bool LibraryCallKit::inline_math_multiplyExactI() { 2030 return inline_math_overflow<OverflowMulINode>(argument(0), argument(1)); 2031 } 2032 2033 bool LibraryCallKit::inline_math_multiplyExactL() { 2034 return inline_math_overflow<OverflowMulLNode>(argument(0), argument(2)); 2035 } 2036 2037 bool LibraryCallKit::inline_math_multiplyHigh() { 2038 set_result(_gvn.transform(new MulHiLNode(argument(0), argument(2)))); 2039 return true; 2040 } 2041 2042 Node* 2043 LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) { 2044 // These are the candidate return value: 2045 Node* xvalue = x0; 2046 Node* yvalue = y0; 2047 2048 if (xvalue == yvalue) { 2049 return xvalue; 2050 } 2051 2052 bool want_max = (id == vmIntrinsics::_max); 2053 2054 const TypeInt* txvalue = _gvn.type(xvalue)->isa_int(); 2055 const TypeInt* tyvalue = _gvn.type(yvalue)->isa_int(); 2056 if (txvalue == NULL || tyvalue == NULL) return top(); 2057 // This is not really necessary, but it is consistent with a 2058 // hypothetical MaxINode::Value method: 2059 int widen = MAX2(txvalue->_widen, tyvalue->_widen); 2060 2061 // %%% This folding logic should (ideally) be in a different place. 2062 // Some should be inside IfNode, and there to be a more reliable 2063 // transformation of ?: style patterns into cmoves. We also want 2064 // more powerful optimizations around cmove and min/max. 2065 2066 // Try to find a dominating comparison of these guys. 2067 // It can simplify the index computation for Arrays.copyOf 2068 // and similar uses of System.arraycopy. 2069 // First, compute the normalized version of CmpI(x, y). 2070 int cmp_op = Op_CmpI; 2071 Node* xkey = xvalue; 2072 Node* ykey = yvalue; 2073 Node* ideal_cmpxy = _gvn.transform(new CmpINode(xkey, ykey)); 2074 if (ideal_cmpxy->is_Cmp()) { 2075 // E.g., if we have CmpI(length - offset, count), 2076 // it might idealize to CmpI(length, count + offset) 2077 cmp_op = ideal_cmpxy->Opcode(); 2078 xkey = ideal_cmpxy->in(1); 2079 ykey = ideal_cmpxy->in(2); 2080 } 2081 2082 // Start by locating any relevant comparisons. 2083 Node* start_from = (xkey->outcnt() < ykey->outcnt()) ? xkey : ykey; 2084 Node* cmpxy = NULL; 2085 Node* cmpyx = NULL; 2086 for (DUIterator_Fast kmax, k = start_from->fast_outs(kmax); k < kmax; k++) { 2087 Node* cmp = start_from->fast_out(k); 2088 if (cmp->outcnt() > 0 && // must have prior uses 2089 cmp->in(0) == NULL && // must be context-independent 2090 cmp->Opcode() == cmp_op) { // right kind of compare 2091 if (cmp->in(1) == xkey && cmp->in(2) == ykey) cmpxy = cmp; 2092 if (cmp->in(1) == ykey && cmp->in(2) == xkey) cmpyx = cmp; 2093 } 2094 } 2095 2096 const int NCMPS = 2; 2097 Node* cmps[NCMPS] = { cmpxy, cmpyx }; 2098 int cmpn; 2099 for (cmpn = 0; cmpn < NCMPS; cmpn++) { 2100 if (cmps[cmpn] != NULL) break; // find a result 2101 } 2102 if (cmpn < NCMPS) { 2103 // Look for a dominating test that tells us the min and max. 2104 int depth = 0; // Limit search depth for speed 2105 Node* dom = control(); 2106 for (; dom != NULL; dom = IfNode::up_one_dom(dom, true)) { 2107 if (++depth >= 100) break; 2108 Node* ifproj = dom; 2109 if (!ifproj->is_Proj()) continue; 2110 Node* iff = ifproj->in(0); 2111 if (!iff->is_If()) continue; 2112 Node* bol = iff->in(1); 2113 if (!bol->is_Bool()) continue; 2114 Node* cmp = bol->in(1); 2115 if (cmp == NULL) continue; 2116 for (cmpn = 0; cmpn < NCMPS; cmpn++) 2117 if (cmps[cmpn] == cmp) break; 2118 if (cmpn == NCMPS) continue; 2119 BoolTest::mask btest = bol->as_Bool()->_test._test; 2120 if (ifproj->is_IfFalse()) btest = BoolTest(btest).negate(); 2121 if (cmp->in(1) == ykey) btest = BoolTest(btest).commute(); 2122 // At this point, we know that 'x btest y' is true. 2123 switch (btest) { 2124 case BoolTest::eq: 2125 // They are proven equal, so we can collapse the min/max. 2126 // Either value is the answer. Choose the simpler. 2127 if (is_simple_name(yvalue) && !is_simple_name(xvalue)) 2128 return yvalue; 2129 return xvalue; 2130 case BoolTest::lt: // x < y 2131 case BoolTest::le: // x <= y 2132 return (want_max ? yvalue : xvalue); 2133 case BoolTest::gt: // x > y 2134 case BoolTest::ge: // x >= y 2135 return (want_max ? xvalue : yvalue); 2136 default: 2137 break; 2138 } 2139 } 2140 } 2141 2142 // We failed to find a dominating test. 2143 // Let's pick a test that might GVN with prior tests. 2144 Node* best_bol = NULL; 2145 BoolTest::mask best_btest = BoolTest::illegal; 2146 for (cmpn = 0; cmpn < NCMPS; cmpn++) { 2147 Node* cmp = cmps[cmpn]; 2148 if (cmp == NULL) continue; 2149 for (DUIterator_Fast jmax, j = cmp->fast_outs(jmax); j < jmax; j++) { 2150 Node* bol = cmp->fast_out(j); 2151 if (!bol->is_Bool()) continue; 2152 BoolTest::mask btest = bol->as_Bool()->_test._test; 2153 if (btest == BoolTest::eq || btest == BoolTest::ne) continue; 2154 if (cmp->in(1) == ykey) btest = BoolTest(btest).commute(); 2155 if (bol->outcnt() > (best_bol == NULL ? 0 : best_bol->outcnt())) { 2156 best_bol = bol->as_Bool(); 2157 best_btest = btest; 2158 } 2159 } 2160 } 2161 2162 Node* answer_if_true = NULL; 2163 Node* answer_if_false = NULL; 2164 switch (best_btest) { 2165 default: 2166 if (cmpxy == NULL) 2167 cmpxy = ideal_cmpxy; 2168 best_bol = _gvn.transform(new BoolNode(cmpxy, BoolTest::lt)); 2169 // and fall through: 2170 case BoolTest::lt: // x < y 2171 case BoolTest::le: // x <= y 2172 answer_if_true = (want_max ? yvalue : xvalue); 2173 answer_if_false = (want_max ? xvalue : yvalue); 2174 break; 2175 case BoolTest::gt: // x > y 2176 case BoolTest::ge: // x >= y 2177 answer_if_true = (want_max ? xvalue : yvalue); 2178 answer_if_false = (want_max ? yvalue : xvalue); 2179 break; 2180 } 2181 2182 jint hi, lo; 2183 if (want_max) { 2184 // We can sharpen the minimum. 2185 hi = MAX2(txvalue->_hi, tyvalue->_hi); 2186 lo = MAX2(txvalue->_lo, tyvalue->_lo); 2187 } else { 2188 // We can sharpen the maximum. 2189 hi = MIN2(txvalue->_hi, tyvalue->_hi); 2190 lo = MIN2(txvalue->_lo, tyvalue->_lo); 2191 } 2192 2193 // Use a flow-free graph structure, to avoid creating excess control edges 2194 // which could hinder other optimizations. 2195 // Since Math.min/max is often used with arraycopy, we want 2196 // tightly_coupled_allocation to be able to see beyond min/max expressions. 2197 Node* cmov = CMoveNode::make(NULL, best_bol, 2198 answer_if_false, answer_if_true, 2199 TypeInt::make(lo, hi, widen)); 2200 2201 return _gvn.transform(cmov); 2202 2203 /* 2204 // This is not as desirable as it may seem, since Min and Max 2205 // nodes do not have a full set of optimizations. 2206 // And they would interfere, anyway, with 'if' optimizations 2207 // and with CMoveI canonical forms. 2208 switch (id) { 2209 case vmIntrinsics::_min: 2210 result_val = _gvn.transform(new (C, 3) MinINode(x,y)); break; 2211 case vmIntrinsics::_max: 2212 result_val = _gvn.transform(new (C, 3) MaxINode(x,y)); break; 2213 default: 2214 ShouldNotReachHere(); 2215 } 2216 */ 2217 } 2218 2219 inline int 2220 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset, BasicType type) { 2221 const TypePtr* base_type = TypePtr::NULL_PTR; 2222 if (base != NULL) base_type = _gvn.type(base)->isa_ptr(); 2223 if (base_type == NULL) { 2224 // Unknown type. 2225 return Type::AnyPtr; 2226 } else if (base_type == TypePtr::NULL_PTR) { 2227 // Since this is a NULL+long form, we have to switch to a rawptr. 2228 base = _gvn.transform(new CastX2PNode(offset)); 2229 offset = MakeConX(0); 2230 return Type::RawPtr; 2231 } else if (base_type->base() == Type::RawPtr) { 2232 return Type::RawPtr; 2233 } else if (base_type->isa_oopptr()) { 2234 // Base is never null => always a heap address. 2235 if (!TypePtr::NULL_PTR->higher_equal(base_type)) { 2236 return Type::OopPtr; 2237 } 2238 // Offset is small => always a heap address. 2239 const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t(); 2240 if (offset_type != NULL && 2241 base_type->offset() == 0 && // (should always be?) 2242 offset_type->_lo >= 0 && 2243 !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) { 2244 return Type::OopPtr; 2245 } else if (type == T_OBJECT) { 2246 // off heap access to an oop doesn't make any sense. Has to be on 2247 // heap. 2248 return Type::OopPtr; 2249 } 2250 // Otherwise, it might either be oop+off or NULL+addr. 2251 return Type::AnyPtr; 2252 } else { 2253 // No information: 2254 return Type::AnyPtr; 2255 } 2256 } 2257 2258 inline Node* LibraryCallKit::make_unsafe_address(Node*& base, Node* offset, DecoratorSet decorators, BasicType type, bool can_cast) { 2259 Node* uncasted_base = base; 2260 int kind = classify_unsafe_addr(uncasted_base, offset, type); 2261 if (kind == Type::RawPtr) { 2262 return basic_plus_adr(top(), uncasted_base, offset); 2263 } else if (kind == Type::AnyPtr) { 2264 assert(base == uncasted_base, "unexpected base change"); 2265 if (can_cast) { 2266 if (!_gvn.type(base)->speculative_maybe_null() && 2267 !too_many_traps(Deoptimization::Reason_speculate_null_check)) { 2268 // According to profiling, this access is always on 2269 // heap. Casting the base to not null and thus avoiding membars 2270 // around the access should allow better optimizations 2271 Node* null_ctl = top(); 2272 base = null_check_oop(base, &null_ctl, true, true, true); 2273 assert(null_ctl->is_top(), "no null control here"); 2274 return basic_plus_adr(base, offset); 2275 } else if (_gvn.type(base)->speculative_always_null() && 2276 !too_many_traps(Deoptimization::Reason_speculate_null_assert)) { 2277 // According to profiling, this access is always off 2278 // heap. 2279 base = null_assert(base); 2280 Node* raw_base = _gvn.transform(new CastX2PNode(offset)); 2281 offset = MakeConX(0); 2282 return basic_plus_adr(top(), raw_base, offset); 2283 } 2284 } 2285 // We don't know if it's an on heap or off heap access. Fall back 2286 // to raw memory access. 2287 base = access_resolve(base, decorators); 2288 Node* raw = _gvn.transform(new CheckCastPPNode(control(), base, TypeRawPtr::BOTTOM)); 2289 return basic_plus_adr(top(), raw, offset); 2290 } else { 2291 assert(base == uncasted_base, "unexpected base change"); 2292 // We know it's an on heap access so base can't be null 2293 if (TypePtr::NULL_PTR->higher_equal(_gvn.type(base))) { 2294 base = must_be_not_null(base, true); 2295 } 2296 return basic_plus_adr(base, offset); 2297 } 2298 } 2299 2300 //--------------------------inline_number_methods----------------------------- 2301 // inline int Integer.numberOfLeadingZeros(int) 2302 // inline int Long.numberOfLeadingZeros(long) 2303 // 2304 // inline int Integer.numberOfTrailingZeros(int) 2305 // inline int Long.numberOfTrailingZeros(long) 2306 // 2307 // inline int Integer.bitCount(int) 2308 // inline int Long.bitCount(long) 2309 // 2310 // inline char Character.reverseBytes(char) 2311 // inline short Short.reverseBytes(short) 2312 // inline int Integer.reverseBytes(int) 2313 // inline long Long.reverseBytes(long) 2314 bool LibraryCallKit::inline_number_methods(vmIntrinsics::ID id) { 2315 Node* arg = argument(0); 2316 Node* n = NULL; 2317 switch (id) { 2318 case vmIntrinsics::_numberOfLeadingZeros_i: n = new CountLeadingZerosINode( arg); break; 2319 case vmIntrinsics::_numberOfLeadingZeros_l: n = new CountLeadingZerosLNode( arg); break; 2320 case vmIntrinsics::_numberOfTrailingZeros_i: n = new CountTrailingZerosINode(arg); break; 2321 case vmIntrinsics::_numberOfTrailingZeros_l: n = new CountTrailingZerosLNode(arg); break; 2322 case vmIntrinsics::_bitCount_i: n = new PopCountINode( arg); break; 2323 case vmIntrinsics::_bitCount_l: n = new PopCountLNode( arg); break; 2324 case vmIntrinsics::_reverseBytes_c: n = new ReverseBytesUSNode(0, arg); break; 2325 case vmIntrinsics::_reverseBytes_s: n = new ReverseBytesSNode( 0, arg); break; 2326 case vmIntrinsics::_reverseBytes_i: n = new ReverseBytesINode( 0, arg); break; 2327 case vmIntrinsics::_reverseBytes_l: n = new ReverseBytesLNode( 0, arg); break; 2328 default: fatal_unexpected_iid(id); break; 2329 } 2330 set_result(_gvn.transform(n)); 2331 return true; 2332 } 2333 2334 //----------------------------inline_unsafe_access---------------------------- 2335 2336 const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type) { 2337 // Attempt to infer a sharper value type from the offset and base type. 2338 ciKlass* sharpened_klass = NULL; 2339 2340 // See if it is an instance field, with an object type. 2341 if (alias_type->field() != NULL) { 2342 if (alias_type->field()->type()->is_klass()) { 2343 sharpened_klass = alias_type->field()->type()->as_klass(); 2344 } 2345 } 2346 2347 // See if it is a narrow oop array. 2348 if (adr_type->isa_aryptr()) { 2349 if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) { 2350 const TypeOopPtr *elem_type = adr_type->is_aryptr()->elem()->isa_oopptr(); 2351 if (elem_type != NULL) { 2352 sharpened_klass = elem_type->klass(); 2353 } 2354 } 2355 } 2356 2357 // The sharpened class might be unloaded if there is no class loader 2358 // contraint in place. 2359 if (sharpened_klass != NULL && sharpened_klass->is_loaded()) { 2360 const TypeOopPtr* tjp = TypeOopPtr::make_from_klass(sharpened_klass); 2361 2362 #ifndef PRODUCT 2363 if (C->print_intrinsics() || C->print_inlining()) { 2364 tty->print(" from base type: "); adr_type->dump(); tty->cr(); 2365 tty->print(" sharpened value: "); tjp->dump(); tty->cr(); 2366 } 2367 #endif 2368 // Sharpen the value type. 2369 return tjp; 2370 } 2371 return NULL; 2372 } 2373 2374 DecoratorSet LibraryCallKit::mo_decorator_for_access_kind(AccessKind kind) { 2375 switch (kind) { 2376 case Relaxed: 2377 return MO_UNORDERED; 2378 case Opaque: 2379 return MO_RELAXED; 2380 case Acquire: 2381 return MO_ACQUIRE; 2382 case Release: 2383 return MO_RELEASE; 2384 case Volatile: 2385 return MO_SEQ_CST; 2386 default: 2387 ShouldNotReachHere(); 2388 return 0; 2389 } 2390 } 2391 2392 bool LibraryCallKit::inline_unsafe_access(bool is_store, const BasicType type, const AccessKind kind, const bool unaligned) { 2393 if (callee()->is_static()) return false; // caller must have the capability! 2394 DecoratorSet decorators = C2_UNSAFE_ACCESS; 2395 guarantee(!is_store || kind != Acquire, "Acquire accesses can be produced only for loads"); 2396 guarantee( is_store || kind != Release, "Release accesses can be produced only for stores"); 2397 assert(type != T_OBJECT || !unaligned, "unaligned access not supported with object type"); 2398 2399 if (is_reference_type(type)) { 2400 decorators |= ON_UNKNOWN_OOP_REF; 2401 } 2402 2403 if (unaligned) { 2404 decorators |= C2_UNALIGNED; 2405 } 2406 2407 #ifndef PRODUCT 2408 { 2409 ResourceMark rm; 2410 // Check the signatures. 2411 ciSignature* sig = callee()->signature(); 2412 #ifdef ASSERT 2413 if (!is_store) { 2414 // Object getReference(Object base, int/long offset), etc. 2415 BasicType rtype = sig->return_type()->basic_type(); 2416 assert(rtype == type, "getter must return the expected value"); 2417 assert(sig->count() == 2, "oop getter has 2 arguments"); 2418 assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object"); 2419 assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct"); 2420 } else { 2421 // void putReference(Object base, int/long offset, Object x), etc. 2422 assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value"); 2423 assert(sig->count() == 3, "oop putter has 3 arguments"); 2424 assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object"); 2425 assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct"); 2426 BasicType vtype = sig->type_at(sig->count()-1)->basic_type(); 2427 assert(vtype == type, "putter must accept the expected value"); 2428 } 2429 #endif // ASSERT 2430 } 2431 #endif //PRODUCT 2432 2433 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe". 2434 2435 Node* receiver = argument(0); // type: oop 2436 2437 // Build address expression. 2438 Node* adr; 2439 Node* heap_base_oop = top(); 2440 Node* offset = top(); 2441 Node* val; 2442 2443 // The base is either a Java object or a value produced by Unsafe.staticFieldBase 2444 Node* base = argument(1); // type: oop 2445 // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset 2446 offset = argument(2); // type: long 2447 // We currently rely on the cookies produced by Unsafe.xxxFieldOffset 2448 // to be plain byte offsets, which are also the same as those accepted 2449 // by oopDesc::field_addr. 2450 assert(Unsafe_field_offset_to_byte_offset(11) == 11, 2451 "fieldOffset must be byte-scaled"); 2452 // 32-bit machines ignore the high half! 2453 offset = ConvL2X(offset); 2454 adr = make_unsafe_address(base, offset, is_store ? ACCESS_WRITE : ACCESS_READ, type, kind == Relaxed); 2455 2456 if (_gvn.type(base)->isa_ptr() == TypePtr::NULL_PTR) { 2457 if (type != T_OBJECT) { 2458 decorators |= IN_NATIVE; // off-heap primitive access 2459 } else { 2460 return false; // off-heap oop accesses are not supported 2461 } 2462 } else { 2463 heap_base_oop = base; // on-heap or mixed access 2464 } 2465 2466 // Can base be NULL? Otherwise, always on-heap access. 2467 bool can_access_non_heap = TypePtr::NULL_PTR->higher_equal(_gvn.type(base)); 2468 2469 if (!can_access_non_heap) { 2470 decorators |= IN_HEAP; 2471 } 2472 2473 val = is_store ? argument(4) : NULL; 2474 2475 const TypePtr* adr_type = _gvn.type(adr)->isa_ptr(); 2476 if (adr_type == TypePtr::NULL_PTR) { 2477 return false; // off-heap access with zero address 2478 } 2479 2480 // Try to categorize the address. 2481 Compile::AliasType* alias_type = C->alias_type(adr_type); 2482 assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here"); 2483 2484 if (alias_type->adr_type() == TypeInstPtr::KLASS || 2485 alias_type->adr_type() == TypeAryPtr::RANGE) { 2486 return false; // not supported 2487 } 2488 2489 bool mismatched = false; 2490 BasicType bt = alias_type->basic_type(); 2491 if (bt != T_ILLEGAL) { 2492 assert(alias_type->adr_type()->is_oopptr(), "should be on-heap access"); 2493 if (bt == T_BYTE && adr_type->isa_aryptr()) { 2494 // Alias type doesn't differentiate between byte[] and boolean[]). 2495 // Use address type to get the element type. 2496 bt = adr_type->is_aryptr()->elem()->array_element_basic_type(); 2497 } 2498 if (bt == T_ARRAY || bt == T_NARROWOOP) { 2499 // accessing an array field with getReference is not a mismatch 2500 bt = T_OBJECT; 2501 } 2502 if ((bt == T_OBJECT) != (type == T_OBJECT)) { 2503 // Don't intrinsify mismatched object accesses 2504 return false; 2505 } 2506 mismatched = (bt != type); 2507 } else if (alias_type->adr_type()->isa_oopptr()) { 2508 mismatched = true; // conservatively mark all "wide" on-heap accesses as mismatched 2509 } 2510 2511 assert(!mismatched || alias_type->adr_type()->is_oopptr(), "off-heap access can't be mismatched"); 2512 2513 if (mismatched) { 2514 decorators |= C2_MISMATCHED; 2515 } 2516 2517 // First guess at the value type. 2518 const Type *value_type = Type::get_const_basic_type(type); 2519 2520 // Figure out the memory ordering. 2521 decorators |= mo_decorator_for_access_kind(kind); 2522 2523 if (!is_store && type == T_OBJECT) { 2524 const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type); 2525 if (tjp != NULL) { 2526 value_type = tjp; 2527 } 2528 } 2529 2530 receiver = null_check(receiver); 2531 if (stopped()) { 2532 return true; 2533 } 2534 // Heap pointers get a null-check from the interpreter, 2535 // as a courtesy. However, this is not guaranteed by Unsafe, 2536 // and it is not possible to fully distinguish unintended nulls 2537 // from intended ones in this API. 2538 2539 if (!is_store) { 2540 Node* p = NULL; 2541 // Try to constant fold a load from a constant field 2542 ciField* field = alias_type->field(); 2543 if (heap_base_oop != top() && field != NULL && field->is_constant() && !mismatched) { 2544 // final or stable field 2545 p = make_constant_from_field(field, heap_base_oop); 2546 } 2547 2548 if (p == NULL) { // Could not constant fold the load 2549 p = access_load_at(heap_base_oop, adr, adr_type, value_type, type, decorators); 2550 // Normalize the value returned by getBoolean in the following cases 2551 if (type == T_BOOLEAN && 2552 (mismatched || 2553 heap_base_oop == top() || // - heap_base_oop is NULL or 2554 (can_access_non_heap && field == NULL)) // - heap_base_oop is potentially NULL 2555 // and the unsafe access is made to large offset 2556 // (i.e., larger than the maximum offset necessary for any 2557 // field access) 2558 ) { 2559 IdealKit ideal = IdealKit(this); 2560 #define __ ideal. 2561 IdealVariable normalized_result(ideal); 2562 __ declarations_done(); 2563 __ set(normalized_result, p); 2564 __ if_then(p, BoolTest::ne, ideal.ConI(0)); 2565 __ set(normalized_result, ideal.ConI(1)); 2566 ideal.end_if(); 2567 final_sync(ideal); 2568 p = __ value(normalized_result); 2569 #undef __ 2570 } 2571 } 2572 if (type == T_ADDRESS) { 2573 p = gvn().transform(new CastP2XNode(NULL, p)); 2574 p = ConvX2UL(p); 2575 } 2576 // The load node has the control of the preceding MemBarCPUOrder. All 2577 // following nodes will have the control of the MemBarCPUOrder inserted at 2578 // the end of this method. So, pushing the load onto the stack at a later 2579 // point is fine. 2580 set_result(p); 2581 } else { 2582 if (bt == T_ADDRESS) { 2583 // Repackage the long as a pointer. 2584 val = ConvL2X(val); 2585 val = gvn().transform(new CastX2PNode(val)); 2586 } 2587 access_store_at(heap_base_oop, adr, adr_type, val, value_type, type, decorators); 2588 } 2589 2590 return true; 2591 } 2592 2593 //----------------------------inline_unsafe_load_store---------------------------- 2594 // This method serves a couple of different customers (depending on LoadStoreKind): 2595 // 2596 // LS_cmp_swap: 2597 // 2598 // boolean compareAndSetReference(Object o, long offset, Object expected, Object x); 2599 // boolean compareAndSetInt( Object o, long offset, int expected, int x); 2600 // boolean compareAndSetLong( Object o, long offset, long expected, long x); 2601 // 2602 // LS_cmp_swap_weak: 2603 // 2604 // boolean weakCompareAndSetReference( Object o, long offset, Object expected, Object x); 2605 // boolean weakCompareAndSetReferencePlain( Object o, long offset, Object expected, Object x); 2606 // boolean weakCompareAndSetReferenceAcquire(Object o, long offset, Object expected, Object x); 2607 // boolean weakCompareAndSetReferenceRelease(Object o, long offset, Object expected, Object x); 2608 // 2609 // boolean weakCompareAndSetInt( Object o, long offset, int expected, int x); 2610 // boolean weakCompareAndSetIntPlain( Object o, long offset, int expected, int x); 2611 // boolean weakCompareAndSetIntAcquire( Object o, long offset, int expected, int x); 2612 // boolean weakCompareAndSetIntRelease( Object o, long offset, int expected, int x); 2613 // 2614 // boolean weakCompareAndSetLong( Object o, long offset, long expected, long x); 2615 // boolean weakCompareAndSetLongPlain( Object o, long offset, long expected, long x); 2616 // boolean weakCompareAndSetLongAcquire( Object o, long offset, long expected, long x); 2617 // boolean weakCompareAndSetLongRelease( Object o, long offset, long expected, long x); 2618 // 2619 // LS_cmp_exchange: 2620 // 2621 // Object compareAndExchangeReferenceVolatile(Object o, long offset, Object expected, Object x); 2622 // Object compareAndExchangeReferenceAcquire( Object o, long offset, Object expected, Object x); 2623 // Object compareAndExchangeReferenceRelease( Object o, long offset, Object expected, Object x); 2624 // 2625 // Object compareAndExchangeIntVolatile( Object o, long offset, Object expected, Object x); 2626 // Object compareAndExchangeIntAcquire( Object o, long offset, Object expected, Object x); 2627 // Object compareAndExchangeIntRelease( Object o, long offset, Object expected, Object x); 2628 // 2629 // Object compareAndExchangeLongVolatile( Object o, long offset, Object expected, Object x); 2630 // Object compareAndExchangeLongAcquire( Object o, long offset, Object expected, Object x); 2631 // Object compareAndExchangeLongRelease( Object o, long offset, Object expected, Object x); 2632 // 2633 // LS_get_add: 2634 // 2635 // int getAndAddInt( Object o, long offset, int delta) 2636 // long getAndAddLong(Object o, long offset, long delta) 2637 // 2638 // LS_get_set: 2639 // 2640 // int getAndSet(Object o, long offset, int newValue) 2641 // long getAndSet(Object o, long offset, long newValue) 2642 // Object getAndSet(Object o, long offset, Object newValue) 2643 // 2644 bool LibraryCallKit::inline_unsafe_load_store(const BasicType type, const LoadStoreKind kind, const AccessKind access_kind) { 2645 // This basic scheme here is the same as inline_unsafe_access, but 2646 // differs in enough details that combining them would make the code 2647 // overly confusing. (This is a true fact! I originally combined 2648 // them, but even I was confused by it!) As much code/comments as 2649 // possible are retained from inline_unsafe_access though to make 2650 // the correspondences clearer. - dl 2651 2652 if (callee()->is_static()) return false; // caller must have the capability! 2653 2654 DecoratorSet decorators = C2_UNSAFE_ACCESS; 2655 decorators |= mo_decorator_for_access_kind(access_kind); 2656 2657 #ifndef PRODUCT 2658 BasicType rtype; 2659 { 2660 ResourceMark rm; 2661 // Check the signatures. 2662 ciSignature* sig = callee()->signature(); 2663 rtype = sig->return_type()->basic_type(); 2664 switch(kind) { 2665 case LS_get_add: 2666 case LS_get_set: { 2667 // Check the signatures. 2668 #ifdef ASSERT 2669 assert(rtype == type, "get and set must return the expected type"); 2670 assert(sig->count() == 3, "get and set has 3 arguments"); 2671 assert(sig->type_at(0)->basic_type() == T_OBJECT, "get and set base is object"); 2672 assert(sig->type_at(1)->basic_type() == T_LONG, "get and set offset is long"); 2673 assert(sig->type_at(2)->basic_type() == type, "get and set must take expected type as new value/delta"); 2674 assert(access_kind == Volatile, "mo is not passed to intrinsic nodes in current implementation"); 2675 #endif // ASSERT 2676 break; 2677 } 2678 case LS_cmp_swap: 2679 case LS_cmp_swap_weak: { 2680 // Check the signatures. 2681 #ifdef ASSERT 2682 assert(rtype == T_BOOLEAN, "CAS must return boolean"); 2683 assert(sig->count() == 4, "CAS has 4 arguments"); 2684 assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object"); 2685 assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long"); 2686 #endif // ASSERT 2687 break; 2688 } 2689 case LS_cmp_exchange: { 2690 // Check the signatures. 2691 #ifdef ASSERT 2692 assert(rtype == type, "CAS must return the expected type"); 2693 assert(sig->count() == 4, "CAS has 4 arguments"); 2694 assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object"); 2695 assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long"); 2696 #endif // ASSERT 2697 break; 2698 } 2699 default: 2700 ShouldNotReachHere(); 2701 } 2702 } 2703 #endif //PRODUCT 2704 2705 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe". 2706 2707 // Get arguments: 2708 Node* receiver = NULL; 2709 Node* base = NULL; 2710 Node* offset = NULL; 2711 Node* oldval = NULL; 2712 Node* newval = NULL; 2713 switch(kind) { 2714 case LS_cmp_swap: 2715 case LS_cmp_swap_weak: 2716 case LS_cmp_exchange: { 2717 const bool two_slot_type = type2size[type] == 2; 2718 receiver = argument(0); // type: oop 2719 base = argument(1); // type: oop 2720 offset = argument(2); // type: long 2721 oldval = argument(4); // type: oop, int, or long 2722 newval = argument(two_slot_type ? 6 : 5); // type: oop, int, or long 2723 break; 2724 } 2725 case LS_get_add: 2726 case LS_get_set: { 2727 receiver = argument(0); // type: oop 2728 base = argument(1); // type: oop 2729 offset = argument(2); // type: long 2730 oldval = NULL; 2731 newval = argument(4); // type: oop, int, or long 2732 break; 2733 } 2734 default: 2735 ShouldNotReachHere(); 2736 } 2737 2738 // Build field offset expression. 2739 // We currently rely on the cookies produced by Unsafe.xxxFieldOffset 2740 // to be plain byte offsets, which are also the same as those accepted 2741 // by oopDesc::field_addr. 2742 assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled"); 2743 // 32-bit machines ignore the high half of long offsets 2744 offset = ConvL2X(offset); 2745 Node* adr = make_unsafe_address(base, offset, ACCESS_WRITE | ACCESS_READ, type, false); 2746 const TypePtr *adr_type = _gvn.type(adr)->isa_ptr(); 2747 2748 Compile::AliasType* alias_type = C->alias_type(adr_type); 2749 BasicType bt = alias_type->basic_type(); 2750 if (bt != T_ILLEGAL && 2751 (is_reference_type(bt) != (type == T_OBJECT))) { 2752 // Don't intrinsify mismatched object accesses. 2753 return false; 2754 } 2755 2756 // For CAS, unlike inline_unsafe_access, there seems no point in 2757 // trying to refine types. Just use the coarse types here. 2758 assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here"); 2759 const Type *value_type = Type::get_const_basic_type(type); 2760 2761 switch (kind) { 2762 case LS_get_set: 2763 case LS_cmp_exchange: { 2764 if (type == T_OBJECT) { 2765 const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type); 2766 if (tjp != NULL) { 2767 value_type = tjp; 2768 } 2769 } 2770 break; 2771 } 2772 case LS_cmp_swap: 2773 case LS_cmp_swap_weak: 2774 case LS_get_add: 2775 break; 2776 default: 2777 ShouldNotReachHere(); 2778 } 2779 2780 // Null check receiver. 2781 receiver = null_check(receiver); 2782 if (stopped()) { 2783 return true; 2784 } 2785 2786 int alias_idx = C->get_alias_index(adr_type); 2787 2788 if (is_reference_type(type)) { 2789 decorators |= IN_HEAP | ON_UNKNOWN_OOP_REF; 2790 2791 // Transformation of a value which could be NULL pointer (CastPP #NULL) 2792 // could be delayed during Parse (for example, in adjust_map_after_if()). 2793 // Execute transformation here to avoid barrier generation in such case. 2794 if (_gvn.type(newval) == TypePtr::NULL_PTR) 2795 newval = _gvn.makecon(TypePtr::NULL_PTR); 2796 2797 if (oldval != NULL && _gvn.type(oldval) == TypePtr::NULL_PTR) { 2798 // Refine the value to a null constant, when it is known to be null 2799 oldval = _gvn.makecon(TypePtr::NULL_PTR); 2800 } 2801 } 2802 2803 Node* result = NULL; 2804 switch (kind) { 2805 case LS_cmp_exchange: { 2806 result = access_atomic_cmpxchg_val_at(base, adr, adr_type, alias_idx, 2807 oldval, newval, value_type, type, decorators); 2808 break; 2809 } 2810 case LS_cmp_swap_weak: 2811 decorators |= C2_WEAK_CMPXCHG; 2812 case LS_cmp_swap: { 2813 result = access_atomic_cmpxchg_bool_at(base, adr, adr_type, alias_idx, 2814 oldval, newval, value_type, type, decorators); 2815 break; 2816 } 2817 case LS_get_set: { 2818 result = access_atomic_xchg_at(base, adr, adr_type, alias_idx, 2819 newval, value_type, type, decorators); 2820 break; 2821 } 2822 case LS_get_add: { 2823 result = access_atomic_add_at(base, adr, adr_type, alias_idx, 2824 newval, value_type, type, decorators); 2825 break; 2826 } 2827 default: 2828 ShouldNotReachHere(); 2829 } 2830 2831 assert(type2size[result->bottom_type()->basic_type()] == type2size[rtype], "result type should match"); 2832 set_result(result); 2833 return true; 2834 } 2835 2836 bool LibraryCallKit::inline_unsafe_fence(vmIntrinsics::ID id) { 2837 // Regardless of form, don't allow previous ld/st to move down, 2838 // then issue acquire, release, or volatile mem_bar. 2839 insert_mem_bar(Op_MemBarCPUOrder); 2840 switch(id) { 2841 case vmIntrinsics::_loadFence: 2842 insert_mem_bar(Op_LoadFence); 2843 return true; 2844 case vmIntrinsics::_storeFence: 2845 insert_mem_bar(Op_StoreFence); 2846 return true; 2847 case vmIntrinsics::_fullFence: 2848 insert_mem_bar(Op_MemBarVolatile); 2849 return true; 2850 default: 2851 fatal_unexpected_iid(id); 2852 return false; 2853 } 2854 } 2855 2856 bool LibraryCallKit::inline_onspinwait() { 2857 insert_mem_bar(Op_OnSpinWait); 2858 return true; 2859 } 2860 2861 bool LibraryCallKit::klass_needs_init_guard(Node* kls) { 2862 if (!kls->is_Con()) { 2863 return true; 2864 } 2865 const TypeKlassPtr* klsptr = kls->bottom_type()->isa_klassptr(); 2866 if (klsptr == NULL) { 2867 return true; 2868 } 2869 ciInstanceKlass* ik = klsptr->klass()->as_instance_klass(); 2870 // don't need a guard for a klass that is already initialized 2871 return !ik->is_initialized(); 2872 } 2873 2874 //----------------------------inline_unsafe_writeback0------------------------- 2875 // public native void Unsafe.writeback0(long address) 2876 bool LibraryCallKit::inline_unsafe_writeback0() { 2877 if (!Matcher::has_match_rule(Op_CacheWB)) { 2878 return false; 2879 } 2880 #ifndef PRODUCT 2881 assert(Matcher::has_match_rule(Op_CacheWBPreSync), "found match rule for CacheWB but not CacheWBPreSync"); 2882 assert(Matcher::has_match_rule(Op_CacheWBPostSync), "found match rule for CacheWB but not CacheWBPostSync"); 2883 ciSignature* sig = callee()->signature(); 2884 assert(sig->type_at(0)->basic_type() == T_LONG, "Unsafe_writeback0 address is long!"); 2885 #endif 2886 null_check_receiver(); // null-check, then ignore 2887 Node *addr = argument(1); 2888 addr = new CastX2PNode(addr); 2889 addr = _gvn.transform(addr); 2890 Node *flush = new CacheWBNode(control(), memory(TypeRawPtr::BOTTOM), addr); 2891 flush = _gvn.transform(flush); 2892 set_memory(flush, TypeRawPtr::BOTTOM); 2893 return true; 2894 } 2895 2896 //----------------------------inline_unsafe_writeback0------------------------- 2897 // public native void Unsafe.writeback0(long address) 2898 bool LibraryCallKit::inline_unsafe_writebackSync0(bool is_pre) { 2899 if (is_pre && !Matcher::has_match_rule(Op_CacheWBPreSync)) { 2900 return false; 2901 } 2902 if (!is_pre && !Matcher::has_match_rule(Op_CacheWBPostSync)) { 2903 return false; 2904 } 2905 #ifndef PRODUCT 2906 assert(Matcher::has_match_rule(Op_CacheWB), 2907 (is_pre ? "found match rule for CacheWBPreSync but not CacheWB" 2908 : "found match rule for CacheWBPostSync but not CacheWB")); 2909 2910 #endif 2911 null_check_receiver(); // null-check, then ignore 2912 Node *sync; 2913 if (is_pre) { 2914 sync = new CacheWBPreSyncNode(control(), memory(TypeRawPtr::BOTTOM)); 2915 } else { 2916 sync = new CacheWBPostSyncNode(control(), memory(TypeRawPtr::BOTTOM)); 2917 } 2918 sync = _gvn.transform(sync); 2919 set_memory(sync, TypeRawPtr::BOTTOM); 2920 return true; 2921 } 2922 2923 //----------------------------inline_unsafe_allocate--------------------------- 2924 // public native Object Unsafe.allocateInstance(Class<?> cls); 2925 bool LibraryCallKit::inline_unsafe_allocate() { 2926 if (callee()->is_static()) return false; // caller must have the capability! 2927 2928 null_check_receiver(); // null-check, then ignore 2929 Node* cls = null_check(argument(1)); 2930 if (stopped()) return true; 2931 2932 Node* kls = load_klass_from_mirror(cls, false, NULL, 0); 2933 kls = null_check(kls); 2934 if (stopped()) return true; // argument was like int.class 2935 2936 Node* test = NULL; 2937 if (LibraryCallKit::klass_needs_init_guard(kls)) { 2938 // Note: The argument might still be an illegal value like 2939 // Serializable.class or Object[].class. The runtime will handle it. 2940 // But we must make an explicit check for initialization. 2941 Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset())); 2942 // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler 2943 // can generate code to load it as unsigned byte. 2944 Node* inst = make_load(NULL, insp, TypeInt::UBYTE, T_BOOLEAN, MemNode::unordered); 2945 Node* bits = intcon(InstanceKlass::fully_initialized); 2946 test = _gvn.transform(new SubINode(inst, bits)); 2947 // The 'test' is non-zero if we need to take a slow path. 2948 } 2949 2950 Node* obj = new_instance(kls, test); 2951 set_result(obj); 2952 return true; 2953 } 2954 2955 //------------------------inline_native_time_funcs-------------- 2956 // inline code for System.currentTimeMillis() and System.nanoTime() 2957 // these have the same type and signature 2958 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) { 2959 const TypeFunc* tf = OptoRuntime::void_long_Type(); 2960 const TypePtr* no_memory_effects = NULL; 2961 Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects); 2962 Node* value = _gvn.transform(new ProjNode(time, TypeFunc::Parms+0)); 2963 #ifdef ASSERT 2964 Node* value_top = _gvn.transform(new ProjNode(time, TypeFunc::Parms+1)); 2965 assert(value_top == top(), "second value must be top"); 2966 #endif 2967 set_result(value); 2968 return true; 2969 } 2970 2971 #ifdef JFR_HAVE_INTRINSICS 2972 2973 /* 2974 * oop -> myklass 2975 * myklass->trace_id |= USED 2976 * return myklass->trace_id & ~0x3 2977 */ 2978 bool LibraryCallKit::inline_native_classID() { 2979 Node* cls = null_check(argument(0), T_OBJECT); 2980 Node* kls = load_klass_from_mirror(cls, false, NULL, 0); 2981 kls = null_check(kls, T_OBJECT); 2982 2983 ByteSize offset = KLASS_TRACE_ID_OFFSET; 2984 Node* insp = basic_plus_adr(kls, in_bytes(offset)); 2985 Node* tvalue = make_load(NULL, insp, TypeLong::LONG, T_LONG, MemNode::unordered); 2986 2987 Node* clsused = longcon(0x01l); // set the class bit 2988 Node* orl = _gvn.transform(new OrLNode(tvalue, clsused)); 2989 const TypePtr *adr_type = _gvn.type(insp)->isa_ptr(); 2990 store_to_memory(control(), insp, orl, T_LONG, adr_type, MemNode::unordered); 2991 2992 #ifdef TRACE_ID_META_BITS 2993 Node* mbits = longcon(~TRACE_ID_META_BITS); 2994 tvalue = _gvn.transform(new AndLNode(tvalue, mbits)); 2995 #endif 2996 #ifdef TRACE_ID_SHIFT 2997 Node* cbits = intcon(TRACE_ID_SHIFT); 2998 tvalue = _gvn.transform(new URShiftLNode(tvalue, cbits)); 2999 #endif 3000 3001 set_result(tvalue); 3002 return true; 3003 3004 } 3005 3006 bool LibraryCallKit::inline_native_getEventWriter() { 3007 Node* tls_ptr = _gvn.transform(new ThreadLocalNode()); 3008 3009 Node* jobj_ptr = basic_plus_adr(top(), tls_ptr, 3010 in_bytes(THREAD_LOCAL_WRITER_OFFSET_JFR)); 3011 3012 Node* jobj = make_load(control(), jobj_ptr, TypeRawPtr::BOTTOM, T_ADDRESS, MemNode::unordered); 3013 3014 Node* jobj_cmp_null = _gvn.transform( new CmpPNode(jobj, null()) ); 3015 Node* test_jobj_eq_null = _gvn.transform( new BoolNode(jobj_cmp_null, BoolTest::eq) ); 3016 3017 IfNode* iff_jobj_null = 3018 create_and_map_if(control(), test_jobj_eq_null, PROB_MIN, COUNT_UNKNOWN); 3019 3020 enum { _normal_path = 1, 3021 _null_path = 2, 3022 PATH_LIMIT }; 3023 3024 RegionNode* result_rgn = new RegionNode(PATH_LIMIT); 3025 PhiNode* result_val = new PhiNode(result_rgn, TypeInstPtr::BOTTOM); 3026 3027 Node* jobj_is_null = _gvn.transform(new IfTrueNode(iff_jobj_null)); 3028 result_rgn->init_req(_null_path, jobj_is_null); 3029 result_val->init_req(_null_path, null()); 3030 3031 Node* jobj_is_not_null = _gvn.transform(new IfFalseNode(iff_jobj_null)); 3032 set_control(jobj_is_not_null); 3033 Node* res = access_load(jobj, TypeInstPtr::NOTNULL, T_OBJECT, 3034 IN_NATIVE | C2_CONTROL_DEPENDENT_LOAD); 3035 result_rgn->init_req(_normal_path, control()); 3036 result_val->init_req(_normal_path, res); 3037 3038 set_result(result_rgn, result_val); 3039 3040 return true; 3041 } 3042 3043 #endif // JFR_HAVE_INTRINSICS 3044 3045 //------------------------inline_native_currentThread------------------ 3046 bool LibraryCallKit::inline_native_currentThread() { 3047 Node* junk = NULL; 3048 set_result(generate_current_thread(junk)); 3049 return true; 3050 } 3051 3052 //---------------------------load_mirror_from_klass---------------------------- 3053 // Given a klass oop, load its java mirror (a java.lang.Class oop). 3054 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) { 3055 Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset())); 3056 Node* load = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered); 3057 // mirror = ((OopHandle)mirror)->resolve(); 3058 return access_load(load, TypeInstPtr::MIRROR, T_OBJECT, IN_NATIVE); 3059 } 3060 3061 //-----------------------load_klass_from_mirror_common------------------------- 3062 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop. 3063 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE), 3064 // and branch to the given path on the region. 3065 // If never_see_null, take an uncommon trap on null, so we can optimistically 3066 // compile for the non-null case. 3067 // If the region is NULL, force never_see_null = true. 3068 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror, 3069 bool never_see_null, 3070 RegionNode* region, 3071 int null_path, 3072 int offset) { 3073 if (region == NULL) never_see_null = true; 3074 Node* p = basic_plus_adr(mirror, offset); 3075 const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL; 3076 Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type)); 3077 Node* null_ctl = top(); 3078 kls = null_check_oop(kls, &null_ctl, never_see_null); 3079 if (region != NULL) { 3080 // Set region->in(null_path) if the mirror is a primitive (e.g, int.class). 3081 region->init_req(null_path, null_ctl); 3082 } else { 3083 assert(null_ctl == top(), "no loose ends"); 3084 } 3085 return kls; 3086 } 3087 3088 //--------------------(inline_native_Class_query helpers)--------------------- 3089 // Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE_FAST, JVM_ACC_HAS_FINALIZER. 3090 // Fall through if (mods & mask) == bits, take the guard otherwise. 3091 Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) { 3092 // Branch around if the given klass has the given modifier bit set. 3093 // Like generate_guard, adds a new path onto the region. 3094 Node* modp = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset())); 3095 Node* mods = make_load(NULL, modp, TypeInt::INT, T_INT, MemNode::unordered); 3096 Node* mask = intcon(modifier_mask); 3097 Node* bits = intcon(modifier_bits); 3098 Node* mbit = _gvn.transform(new AndINode(mods, mask)); 3099 Node* cmp = _gvn.transform(new CmpINode(mbit, bits)); 3100 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::ne)); 3101 return generate_fair_guard(bol, region); 3102 } 3103 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) { 3104 return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region); 3105 } 3106 3107 //-------------------------inline_native_Class_query------------------- 3108 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) { 3109 const Type* return_type = TypeInt::BOOL; 3110 Node* prim_return_value = top(); // what happens if it's a primitive class? 3111 bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check); 3112 bool expect_prim = false; // most of these guys expect to work on refs 3113 3114 enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT }; 3115 3116 Node* mirror = argument(0); 3117 Node* obj = top(); 3118 3119 switch (id) { 3120 case vmIntrinsics::_isInstance: 3121 // nothing is an instance of a primitive type 3122 prim_return_value = intcon(0); 3123 obj = argument(1); 3124 break; 3125 case vmIntrinsics::_getModifiers: 3126 prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC); 3127 assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line"); 3128 return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin); 3129 break; 3130 case vmIntrinsics::_isInterface: 3131 prim_return_value = intcon(0); 3132 break; 3133 case vmIntrinsics::_isArray: 3134 prim_return_value = intcon(0); 3135 expect_prim = true; // cf. ObjectStreamClass.getClassSignature 3136 break; 3137 case vmIntrinsics::_isPrimitive: 3138 prim_return_value = intcon(1); 3139 expect_prim = true; // obviously 3140 break; 3141 case vmIntrinsics::_getSuperclass: 3142 prim_return_value = null(); 3143 return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR); 3144 break; 3145 case vmIntrinsics::_getClassAccessFlags: 3146 prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC); 3147 return_type = TypeInt::INT; // not bool! 6297094 3148 break; 3149 default: 3150 fatal_unexpected_iid(id); 3151 break; 3152 } 3153 3154 const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr(); 3155 if (mirror_con == NULL) return false; // cannot happen? 3156 3157 #ifndef PRODUCT 3158 if (C->print_intrinsics() || C->print_inlining()) { 3159 ciType* k = mirror_con->java_mirror_type(); 3160 if (k) { 3161 tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id())); 3162 k->print_name(); 3163 tty->cr(); 3164 } 3165 } 3166 #endif 3167 3168 // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive). 3169 RegionNode* region = new RegionNode(PATH_LIMIT); 3170 record_for_igvn(region); 3171 PhiNode* phi = new PhiNode(region, return_type); 3172 3173 // The mirror will never be null of Reflection.getClassAccessFlags, however 3174 // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE 3175 // if it is. See bug 4774291. 3176 3177 // For Reflection.getClassAccessFlags(), the null check occurs in 3178 // the wrong place; see inline_unsafe_access(), above, for a similar 3179 // situation. 3180 mirror = null_check(mirror); 3181 // If mirror or obj is dead, only null-path is taken. 3182 if (stopped()) return true; 3183 3184 if (expect_prim) never_see_null = false; // expect nulls (meaning prims) 3185 3186 // Now load the mirror's klass metaobject, and null-check it. 3187 // Side-effects region with the control path if the klass is null. 3188 Node* kls = load_klass_from_mirror(mirror, never_see_null, region, _prim_path); 3189 // If kls is null, we have a primitive mirror. 3190 phi->init_req(_prim_path, prim_return_value); 3191 if (stopped()) { set_result(region, phi); return true; } 3192 bool safe_for_replace = (region->in(_prim_path) == top()); 3193 3194 Node* p; // handy temp 3195 Node* null_ctl; 3196 3197 // Now that we have the non-null klass, we can perform the real query. 3198 // For constant classes, the query will constant-fold in LoadNode::Value. 3199 Node* query_value = top(); 3200 switch (id) { 3201 case vmIntrinsics::_isInstance: 3202 // nothing is an instance of a primitive type 3203 query_value = gen_instanceof(obj, kls, safe_for_replace); 3204 break; 3205 3206 case vmIntrinsics::_getModifiers: 3207 p = basic_plus_adr(kls, in_bytes(Klass::modifier_flags_offset())); 3208 query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered); 3209 break; 3210 3211 case vmIntrinsics::_isInterface: 3212 // (To verify this code sequence, check the asserts in JVM_IsInterface.) 3213 if (generate_interface_guard(kls, region) != NULL) 3214 // A guard was added. If the guard is taken, it was an interface. 3215 phi->add_req(intcon(1)); 3216 // If we fall through, it's a plain class. 3217 query_value = intcon(0); 3218 break; 3219 3220 case vmIntrinsics::_isArray: 3221 // (To verify this code sequence, check the asserts in JVM_IsArrayClass.) 3222 if (generate_array_guard(kls, region) != NULL) 3223 // A guard was added. If the guard is taken, it was an array. 3224 phi->add_req(intcon(1)); 3225 // If we fall through, it's a plain class. 3226 query_value = intcon(0); 3227 break; 3228 3229 case vmIntrinsics::_isPrimitive: 3230 query_value = intcon(0); // "normal" path produces false 3231 break; 3232 3233 case vmIntrinsics::_getSuperclass: 3234 // The rules here are somewhat unfortunate, but we can still do better 3235 // with random logic than with a JNI call. 3236 // Interfaces store null or Object as _super, but must report null. 3237 // Arrays store an intermediate super as _super, but must report Object. 3238 // Other types can report the actual _super. 3239 // (To verify this code sequence, check the asserts in JVM_IsInterface.) 3240 if (generate_interface_guard(kls, region) != NULL) 3241 // A guard was added. If the guard is taken, it was an interface. 3242 phi->add_req(null()); 3243 if (generate_array_guard(kls, region) != NULL) 3244 // A guard was added. If the guard is taken, it was an array. 3245 phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror()))); 3246 // If we fall through, it's a plain class. Get its _super. 3247 p = basic_plus_adr(kls, in_bytes(Klass::super_offset())); 3248 kls = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeKlassPtr::OBJECT_OR_NULL)); 3249 null_ctl = top(); 3250 kls = null_check_oop(kls, &null_ctl); 3251 if (null_ctl != top()) { 3252 // If the guard is taken, Object.superClass is null (both klass and mirror). 3253 region->add_req(null_ctl); 3254 phi ->add_req(null()); 3255 } 3256 if (!stopped()) { 3257 query_value = load_mirror_from_klass(kls); 3258 } 3259 break; 3260 3261 case vmIntrinsics::_getClassAccessFlags: 3262 p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset())); 3263 query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered); 3264 break; 3265 3266 default: 3267 fatal_unexpected_iid(id); 3268 break; 3269 } 3270 3271 // Fall-through is the normal case of a query to a real class. 3272 phi->init_req(1, query_value); 3273 region->init_req(1, control()); 3274 3275 C->set_has_split_ifs(true); // Has chance for split-if optimization 3276 set_result(region, phi); 3277 return true; 3278 } 3279 3280 //-------------------------inline_Class_cast------------------- 3281 bool LibraryCallKit::inline_Class_cast() { 3282 Node* mirror = argument(0); // Class 3283 Node* obj = argument(1); 3284 const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr(); 3285 if (mirror_con == NULL) { 3286 return false; // dead path (mirror->is_top()). 3287 } 3288 if (obj == NULL || obj->is_top()) { 3289 return false; // dead path 3290 } 3291 const TypeOopPtr* tp = _gvn.type(obj)->isa_oopptr(); 3292 3293 // First, see if Class.cast() can be folded statically. 3294 // java_mirror_type() returns non-null for compile-time Class constants. 3295 ciType* tm = mirror_con->java_mirror_type(); 3296 if (tm != NULL && tm->is_klass() && 3297 tp != NULL && tp->klass() != NULL) { 3298 if (!tp->klass()->is_loaded()) { 3299 // Don't use intrinsic when class is not loaded. 3300 return false; 3301 } else { 3302 int static_res = C->static_subtype_check(tm->as_klass(), tp->klass()); 3303 if (static_res == Compile::SSC_always_true) { 3304 // isInstance() is true - fold the code. 3305 set_result(obj); 3306 return true; 3307 } else if (static_res == Compile::SSC_always_false) { 3308 // Don't use intrinsic, have to throw ClassCastException. 3309 // If the reference is null, the non-intrinsic bytecode will 3310 // be optimized appropriately. 3311 return false; 3312 } 3313 } 3314 } 3315 3316 // Bailout intrinsic and do normal inlining if exception path is frequent. 3317 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 3318 return false; 3319 } 3320 3321 // Generate dynamic checks. 3322 // Class.cast() is java implementation of _checkcast bytecode. 3323 // Do checkcast (Parse::do_checkcast()) optimizations here. 3324 3325 mirror = null_check(mirror); 3326 // If mirror is dead, only null-path is taken. 3327 if (stopped()) { 3328 return true; 3329 } 3330 3331 // Not-subtype or the mirror's klass ptr is NULL (in case it is a primitive). 3332 enum { _bad_type_path = 1, _prim_path = 2, PATH_LIMIT }; 3333 RegionNode* region = new RegionNode(PATH_LIMIT); 3334 record_for_igvn(region); 3335 3336 // Now load the mirror's klass metaobject, and null-check it. 3337 // If kls is null, we have a primitive mirror and 3338 // nothing is an instance of a primitive type. 3339 Node* kls = load_klass_from_mirror(mirror, false, region, _prim_path); 3340 3341 Node* res = top(); 3342 if (!stopped()) { 3343 Node* bad_type_ctrl = top(); 3344 // Do checkcast optimizations. 3345 res = gen_checkcast(obj, kls, &bad_type_ctrl); 3346 region->init_req(_bad_type_path, bad_type_ctrl); 3347 } 3348 if (region->in(_prim_path) != top() || 3349 region->in(_bad_type_path) != top()) { 3350 // Let Interpreter throw ClassCastException. 3351 PreserveJVMState pjvms(this); 3352 set_control(_gvn.transform(region)); 3353 uncommon_trap(Deoptimization::Reason_intrinsic, 3354 Deoptimization::Action_maybe_recompile); 3355 } 3356 if (!stopped()) { 3357 set_result(res); 3358 } 3359 return true; 3360 } 3361 3362 3363 //--------------------------inline_native_subtype_check------------------------ 3364 // This intrinsic takes the JNI calls out of the heart of 3365 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc. 3366 bool LibraryCallKit::inline_native_subtype_check() { 3367 // Pull both arguments off the stack. 3368 Node* args[2]; // two java.lang.Class mirrors: superc, subc 3369 args[0] = argument(0); 3370 args[1] = argument(1); 3371 Node* klasses[2]; // corresponding Klasses: superk, subk 3372 klasses[0] = klasses[1] = top(); 3373 3374 enum { 3375 // A full decision tree on {superc is prim, subc is prim}: 3376 _prim_0_path = 1, // {P,N} => false 3377 // {P,P} & superc!=subc => false 3378 _prim_same_path, // {P,P} & superc==subc => true 3379 _prim_1_path, // {N,P} => false 3380 _ref_subtype_path, // {N,N} & subtype check wins => true 3381 _both_ref_path, // {N,N} & subtype check loses => false 3382 PATH_LIMIT 3383 }; 3384 3385 RegionNode* region = new RegionNode(PATH_LIMIT); 3386 Node* phi = new PhiNode(region, TypeInt::BOOL); 3387 record_for_igvn(region); 3388 3389 const TypePtr* adr_type = TypeRawPtr::BOTTOM; // memory type of loads 3390 const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL; 3391 int class_klass_offset = java_lang_Class::klass_offset_in_bytes(); 3392 3393 // First null-check both mirrors and load each mirror's klass metaobject. 3394 int which_arg; 3395 for (which_arg = 0; which_arg <= 1; which_arg++) { 3396 Node* arg = args[which_arg]; 3397 arg = null_check(arg); 3398 if (stopped()) break; 3399 args[which_arg] = arg; 3400 3401 Node* p = basic_plus_adr(arg, class_klass_offset); 3402 Node* kls = LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, adr_type, kls_type); 3403 klasses[which_arg] = _gvn.transform(kls); 3404 } 3405 3406 // Resolve oops to stable for CmpP below. 3407 args[0] = access_resolve(args[0], 0); 3408 args[1] = access_resolve(args[1], 0); 3409 3410 // Having loaded both klasses, test each for null. 3411 bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check); 3412 for (which_arg = 0; which_arg <= 1; which_arg++) { 3413 Node* kls = klasses[which_arg]; 3414 Node* null_ctl = top(); 3415 kls = null_check_oop(kls, &null_ctl, never_see_null); 3416 int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path); 3417 region->init_req(prim_path, null_ctl); 3418 if (stopped()) break; 3419 klasses[which_arg] = kls; 3420 } 3421 3422 if (!stopped()) { 3423 // now we have two reference types, in klasses[0..1] 3424 Node* subk = klasses[1]; // the argument to isAssignableFrom 3425 Node* superk = klasses[0]; // the receiver 3426 region->set_req(_both_ref_path, gen_subtype_check(subk, superk)); 3427 // now we have a successful reference subtype check 3428 region->set_req(_ref_subtype_path, control()); 3429 } 3430 3431 // If both operands are primitive (both klasses null), then 3432 // we must return true when they are identical primitives. 3433 // It is convenient to test this after the first null klass check. 3434 set_control(region->in(_prim_0_path)); // go back to first null check 3435 if (!stopped()) { 3436 // Since superc is primitive, make a guard for the superc==subc case. 3437 Node* cmp_eq = _gvn.transform(new CmpPNode(args[0], args[1])); 3438 Node* bol_eq = _gvn.transform(new BoolNode(cmp_eq, BoolTest::eq)); 3439 generate_guard(bol_eq, region, PROB_FAIR); 3440 if (region->req() == PATH_LIMIT+1) { 3441 // A guard was added. If the added guard is taken, superc==subc. 3442 region->swap_edges(PATH_LIMIT, _prim_same_path); 3443 region->del_req(PATH_LIMIT); 3444 } 3445 region->set_req(_prim_0_path, control()); // Not equal after all. 3446 } 3447 3448 // these are the only paths that produce 'true': 3449 phi->set_req(_prim_same_path, intcon(1)); 3450 phi->set_req(_ref_subtype_path, intcon(1)); 3451 3452 // pull together the cases: 3453 assert(region->req() == PATH_LIMIT, "sane region"); 3454 for (uint i = 1; i < region->req(); i++) { 3455 Node* ctl = region->in(i); 3456 if (ctl == NULL || ctl == top()) { 3457 region->set_req(i, top()); 3458 phi ->set_req(i, top()); 3459 } else if (phi->in(i) == NULL) { 3460 phi->set_req(i, intcon(0)); // all other paths produce 'false' 3461 } 3462 } 3463 3464 set_control(_gvn.transform(region)); 3465 set_result(_gvn.transform(phi)); 3466 return true; 3467 } 3468 3469 //---------------------generate_array_guard_common------------------------ 3470 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region, 3471 bool obj_array, bool not_array) { 3472 3473 if (stopped()) { 3474 return NULL; 3475 } 3476 3477 // If obj_array/non_array==false/false: 3478 // Branch around if the given klass is in fact an array (either obj or prim). 3479 // If obj_array/non_array==false/true: 3480 // Branch around if the given klass is not an array klass of any kind. 3481 // If obj_array/non_array==true/true: 3482 // Branch around if the kls is not an oop array (kls is int[], String, etc.) 3483 // If obj_array/non_array==true/false: 3484 // Branch around if the kls is an oop array (Object[] or subtype) 3485 // 3486 // Like generate_guard, adds a new path onto the region. 3487 jint layout_con = 0; 3488 Node* layout_val = get_layout_helper(kls, layout_con); 3489 if (layout_val == NULL) { 3490 bool query = (obj_array 3491 ? Klass::layout_helper_is_objArray(layout_con) 3492 : Klass::layout_helper_is_array(layout_con)); 3493 if (query == not_array) { 3494 return NULL; // never a branch 3495 } else { // always a branch 3496 Node* always_branch = control(); 3497 if (region != NULL) 3498 region->add_req(always_branch); 3499 set_control(top()); 3500 return always_branch; 3501 } 3502 } 3503 // Now test the correct condition. 3504 jint nval = (obj_array 3505 ? (jint)(Klass::_lh_array_tag_type_value 3506 << Klass::_lh_array_tag_shift) 3507 : Klass::_lh_neutral_value); 3508 Node* cmp = _gvn.transform(new CmpINode(layout_val, intcon(nval))); 3509 BoolTest::mask btest = BoolTest::lt; // correct for testing is_[obj]array 3510 // invert the test if we are looking for a non-array 3511 if (not_array) btest = BoolTest(btest).negate(); 3512 Node* bol = _gvn.transform(new BoolNode(cmp, btest)); 3513 return generate_fair_guard(bol, region); 3514 } 3515 3516 3517 //-----------------------inline_native_newArray-------------------------- 3518 // private static native Object java.lang.reflect.newArray(Class<?> componentType, int length); 3519 // private native Object Unsafe.allocateUninitializedArray0(Class<?> cls, int size); 3520 bool LibraryCallKit::inline_unsafe_newArray(bool uninitialized) { 3521 Node* mirror; 3522 Node* count_val; 3523 if (uninitialized) { 3524 mirror = argument(1); 3525 count_val = argument(2); 3526 } else { 3527 mirror = argument(0); 3528 count_val = argument(1); 3529 } 3530 3531 mirror = null_check(mirror); 3532 // If mirror or obj is dead, only null-path is taken. 3533 if (stopped()) return true; 3534 3535 enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT }; 3536 RegionNode* result_reg = new RegionNode(PATH_LIMIT); 3537 PhiNode* result_val = new PhiNode(result_reg, TypeInstPtr::NOTNULL); 3538 PhiNode* result_io = new PhiNode(result_reg, Type::ABIO); 3539 PhiNode* result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM); 3540 3541 bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check); 3542 Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null, 3543 result_reg, _slow_path); 3544 Node* normal_ctl = control(); 3545 Node* no_array_ctl = result_reg->in(_slow_path); 3546 3547 // Generate code for the slow case. We make a call to newArray(). 3548 set_control(no_array_ctl); 3549 if (!stopped()) { 3550 // Either the input type is void.class, or else the 3551 // array klass has not yet been cached. Either the 3552 // ensuing call will throw an exception, or else it 3553 // will cache the array klass for next time. 3554 PreserveJVMState pjvms(this); 3555 CallJavaNode* slow_call = generate_method_call_static(vmIntrinsics::_newArray); 3556 Node* slow_result = set_results_for_java_call(slow_call); 3557 // this->control() comes from set_results_for_java_call 3558 result_reg->set_req(_slow_path, control()); 3559 result_val->set_req(_slow_path, slow_result); 3560 result_io ->set_req(_slow_path, i_o()); 3561 result_mem->set_req(_slow_path, reset_memory()); 3562 } 3563 3564 set_control(normal_ctl); 3565 if (!stopped()) { 3566 // Normal case: The array type has been cached in the java.lang.Class. 3567 // The following call works fine even if the array type is polymorphic. 3568 // It could be a dynamic mix of int[], boolean[], Object[], etc. 3569 Node* obj = new_array(klass_node, count_val, 0); // no arguments to push 3570 result_reg->init_req(_normal_path, control()); 3571 result_val->init_req(_normal_path, obj); 3572 result_io ->init_req(_normal_path, i_o()); 3573 result_mem->init_req(_normal_path, reset_memory()); 3574 3575 if (uninitialized) { 3576 // Mark the allocation so that zeroing is skipped 3577 AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(obj, &_gvn); 3578 alloc->maybe_set_complete(&_gvn); 3579 } 3580 } 3581 3582 // Return the combined state. 3583 set_i_o( _gvn.transform(result_io) ); 3584 set_all_memory( _gvn.transform(result_mem)); 3585 3586 C->set_has_split_ifs(true); // Has chance for split-if optimization 3587 set_result(result_reg, result_val); 3588 return true; 3589 } 3590 3591 //----------------------inline_native_getLength-------------------------- 3592 // public static native int java.lang.reflect.Array.getLength(Object array); 3593 bool LibraryCallKit::inline_native_getLength() { 3594 if (too_many_traps(Deoptimization::Reason_intrinsic)) return false; 3595 3596 Node* array = null_check(argument(0)); 3597 // If array is dead, only null-path is taken. 3598 if (stopped()) return true; 3599 3600 // Deoptimize if it is a non-array. 3601 Node* non_array = generate_non_array_guard(load_object_klass(array), NULL); 3602 3603 if (non_array != NULL) { 3604 PreserveJVMState pjvms(this); 3605 set_control(non_array); 3606 uncommon_trap(Deoptimization::Reason_intrinsic, 3607 Deoptimization::Action_maybe_recompile); 3608 } 3609 3610 // If control is dead, only non-array-path is taken. 3611 if (stopped()) return true; 3612 3613 // The works fine even if the array type is polymorphic. 3614 // It could be a dynamic mix of int[], boolean[], Object[], etc. 3615 Node* result = load_array_length(array); 3616 3617 C->set_has_split_ifs(true); // Has chance for split-if optimization 3618 set_result(result); 3619 return true; 3620 } 3621 3622 //------------------------inline_array_copyOf---------------------------- 3623 // public static <T,U> T[] java.util.Arrays.copyOf( U[] original, int newLength, Class<? extends T[]> newType); 3624 // public static <T,U> T[] java.util.Arrays.copyOfRange(U[] original, int from, int to, Class<? extends T[]> newType); 3625 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) { 3626 if (too_many_traps(Deoptimization::Reason_intrinsic)) return false; 3627 3628 // Get the arguments. 3629 Node* original = argument(0); 3630 Node* start = is_copyOfRange? argument(1): intcon(0); 3631 Node* end = is_copyOfRange? argument(2): argument(1); 3632 Node* array_type_mirror = is_copyOfRange? argument(3): argument(2); 3633 3634 Node* newcopy = NULL; 3635 3636 // Set the original stack and the reexecute bit for the interpreter to reexecute 3637 // the bytecode that invokes Arrays.copyOf if deoptimization happens. 3638 { PreserveReexecuteState preexecs(this); 3639 jvms()->set_should_reexecute(true); 3640 3641 array_type_mirror = null_check(array_type_mirror); 3642 original = null_check(original); 3643 3644 // Check if a null path was taken unconditionally. 3645 if (stopped()) return true; 3646 3647 Node* orig_length = load_array_length(original); 3648 3649 Node* klass_node = load_klass_from_mirror(array_type_mirror, false, NULL, 0); 3650 klass_node = null_check(klass_node); 3651 3652 RegionNode* bailout = new RegionNode(1); 3653 record_for_igvn(bailout); 3654 3655 // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc. 3656 // Bail out if that is so. 3657 Node* not_objArray = generate_non_objArray_guard(klass_node, bailout); 3658 if (not_objArray != NULL) { 3659 // Improve the klass node's type from the new optimistic assumption: 3660 ciKlass* ak = ciArrayKlass::make(env()->Object_klass()); 3661 const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/); 3662 Node* cast = new CastPPNode(klass_node, akls); 3663 cast->init_req(0, control()); 3664 klass_node = _gvn.transform(cast); 3665 } 3666 3667 // Bail out if either start or end is negative. 3668 generate_negative_guard(start, bailout, &start); 3669 generate_negative_guard(end, bailout, &end); 3670 3671 Node* length = end; 3672 if (_gvn.type(start) != TypeInt::ZERO) { 3673 length = _gvn.transform(new SubINode(end, start)); 3674 } 3675 3676 // Bail out if length is negative. 3677 // Without this the new_array would throw 3678 // NegativeArraySizeException but IllegalArgumentException is what 3679 // should be thrown 3680 generate_negative_guard(length, bailout, &length); 3681 3682 if (bailout->req() > 1) { 3683 PreserveJVMState pjvms(this); 3684 set_control(_gvn.transform(bailout)); 3685 uncommon_trap(Deoptimization::Reason_intrinsic, 3686 Deoptimization::Action_maybe_recompile); 3687 } 3688 3689 if (!stopped()) { 3690 // How many elements will we copy from the original? 3691 // The answer is MinI(orig_length - start, length). 3692 Node* orig_tail = _gvn.transform(new SubINode(orig_length, start)); 3693 Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length); 3694 3695 original = access_resolve(original, ACCESS_READ); 3696 3697 // Generate a direct call to the right arraycopy function(s). 3698 // We know the copy is disjoint but we might not know if the 3699 // oop stores need checking. 3700 // Extreme case: Arrays.copyOf((Integer[])x, 10, String[].class). 3701 // This will fail a store-check if x contains any non-nulls. 3702 3703 // ArrayCopyNode:Ideal may transform the ArrayCopyNode to 3704 // loads/stores but it is legal only if we're sure the 3705 // Arrays.copyOf would succeed. So we need all input arguments 3706 // to the copyOf to be validated, including that the copy to the 3707 // new array won't trigger an ArrayStoreException. That subtype 3708 // check can be optimized if we know something on the type of 3709 // the input array from type speculation. 3710 if (_gvn.type(klass_node)->singleton()) { 3711 ciKlass* subk = _gvn.type(load_object_klass(original))->is_klassptr()->klass(); 3712 ciKlass* superk = _gvn.type(klass_node)->is_klassptr()->klass(); 3713 3714 int test = C->static_subtype_check(superk, subk); 3715 if (test != Compile::SSC_always_true && test != Compile::SSC_always_false) { 3716 const TypeOopPtr* t_original = _gvn.type(original)->is_oopptr(); 3717 if (t_original->speculative_type() != NULL) { 3718 original = maybe_cast_profiled_obj(original, t_original->speculative_type(), true); 3719 } 3720 } 3721 } 3722 3723 bool validated = false; 3724 // Reason_class_check rather than Reason_intrinsic because we 3725 // want to intrinsify even if this traps. 3726 if (!too_many_traps(Deoptimization::Reason_class_check)) { 3727 Node* not_subtype_ctrl = gen_subtype_check(load_object_klass(original), 3728 klass_node); 3729 3730 if (not_subtype_ctrl != top()) { 3731 PreserveJVMState pjvms(this); 3732 set_control(not_subtype_ctrl); 3733 uncommon_trap(Deoptimization::Reason_class_check, 3734 Deoptimization::Action_make_not_entrant); 3735 assert(stopped(), "Should be stopped"); 3736 } 3737 validated = true; 3738 } 3739 3740 if (!stopped()) { 3741 newcopy = new_array(klass_node, length, 0); // no arguments to push 3742 3743 ArrayCopyNode* ac = ArrayCopyNode::make(this, true, original, start, newcopy, intcon(0), moved, true, false, 3744 load_object_klass(original), klass_node); 3745 if (!is_copyOfRange) { 3746 ac->set_copyof(validated); 3747 } else { 3748 ac->set_copyofrange(validated); 3749 } 3750 Node* n = _gvn.transform(ac); 3751 if (n == ac) { 3752 ac->connect_outputs(this); 3753 } else { 3754 assert(validated, "shouldn't transform if all arguments not validated"); 3755 set_all_memory(n); 3756 } 3757 } 3758 } 3759 } // original reexecute is set back here 3760 3761 C->set_has_split_ifs(true); // Has chance for split-if optimization 3762 if (!stopped()) { 3763 set_result(newcopy); 3764 } 3765 return true; 3766 } 3767 3768 3769 //----------------------generate_virtual_guard--------------------------- 3770 // Helper for hashCode and clone. Peeks inside the vtable to avoid a call. 3771 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass, 3772 RegionNode* slow_region) { 3773 ciMethod* method = callee(); 3774 int vtable_index = method->vtable_index(); 3775 assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index, 3776 "bad index %d", vtable_index); 3777 // Get the Method* out of the appropriate vtable entry. 3778 int entry_offset = in_bytes(Klass::vtable_start_offset()) + 3779 vtable_index*vtableEntry::size_in_bytes() + 3780 vtableEntry::method_offset_in_bytes(); 3781 Node* entry_addr = basic_plus_adr(obj_klass, entry_offset); 3782 Node* target_call = make_load(NULL, entry_addr, TypePtr::NOTNULL, T_ADDRESS, MemNode::unordered); 3783 3784 // Compare the target method with the expected method (e.g., Object.hashCode). 3785 const TypePtr* native_call_addr = TypeMetadataPtr::make(method); 3786 3787 Node* native_call = makecon(native_call_addr); 3788 Node* chk_native = _gvn.transform(new CmpPNode(target_call, native_call)); 3789 Node* test_native = _gvn.transform(new BoolNode(chk_native, BoolTest::ne)); 3790 3791 return generate_slow_guard(test_native, slow_region); 3792 } 3793 3794 //-----------------------generate_method_call---------------------------- 3795 // Use generate_method_call to make a slow-call to the real 3796 // method if the fast path fails. An alternative would be to 3797 // use a stub like OptoRuntime::slow_arraycopy_Java. 3798 // This only works for expanding the current library call, 3799 // not another intrinsic. (E.g., don't use this for making an 3800 // arraycopy call inside of the copyOf intrinsic.) 3801 CallJavaNode* 3802 LibraryCallKit::generate_method_call(vmIntrinsics::ID method_id, bool is_virtual, bool is_static) { 3803 // When compiling the intrinsic method itself, do not use this technique. 3804 guarantee(callee() != C->method(), "cannot make slow-call to self"); 3805 3806 ciMethod* method = callee(); 3807 // ensure the JVMS we have will be correct for this call 3808 guarantee(method_id == method->intrinsic_id(), "must match"); 3809 3810 const TypeFunc* tf = TypeFunc::make(method); 3811 CallJavaNode* slow_call; 3812 if (is_static) { 3813 assert(!is_virtual, ""); 3814 slow_call = new CallStaticJavaNode(C, tf, 3815 SharedRuntime::get_resolve_static_call_stub(), 3816 method, bci()); 3817 } else if (is_virtual) { 3818 null_check_receiver(); 3819 int vtable_index = Method::invalid_vtable_index; 3820 if (UseInlineCaches) { 3821 // Suppress the vtable call 3822 } else { 3823 // hashCode and clone are not a miranda methods, 3824 // so the vtable index is fixed. 3825 // No need to use the linkResolver to get it. 3826 vtable_index = method->vtable_index(); 3827 assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index, 3828 "bad index %d", vtable_index); 3829 } 3830 slow_call = new CallDynamicJavaNode(tf, 3831 SharedRuntime::get_resolve_virtual_call_stub(), 3832 method, vtable_index, bci()); 3833 } else { // neither virtual nor static: opt_virtual 3834 null_check_receiver(); 3835 slow_call = new CallStaticJavaNode(C, tf, 3836 SharedRuntime::get_resolve_opt_virtual_call_stub(), 3837 method, bci()); 3838 slow_call->set_optimized_virtual(true); 3839 } 3840 if (CallGenerator::is_inlined_method_handle_intrinsic(this->method(), bci(), callee())) { 3841 // To be able to issue a direct call (optimized virtual or virtual) 3842 // and skip a call to MH.linkTo*/invokeBasic adapter, additional information 3843 // about the method being invoked should be attached to the call site to 3844 // make resolution logic work (see SharedRuntime::resolve_{virtual,opt_virtual}_call_C). 3845 slow_call->set_override_symbolic_info(true); 3846 } 3847 set_arguments_for_java_call(slow_call); 3848 set_edges_for_java_call(slow_call); 3849 return slow_call; 3850 } 3851 3852 3853 /** 3854 * Build special case code for calls to hashCode on an object. This call may 3855 * be virtual (invokevirtual) or bound (invokespecial). For each case we generate 3856 * slightly different code. 3857 */ 3858 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) { 3859 assert(is_static == callee()->is_static(), "correct intrinsic selection"); 3860 assert(!(is_virtual && is_static), "either virtual, special, or static"); 3861 3862 enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT }; 3863 3864 RegionNode* result_reg = new RegionNode(PATH_LIMIT); 3865 PhiNode* result_val = new PhiNode(result_reg, TypeInt::INT); 3866 PhiNode* result_io = new PhiNode(result_reg, Type::ABIO); 3867 PhiNode* result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM); 3868 Node* obj = NULL; 3869 if (!is_static) { 3870 // Check for hashing null object 3871 obj = null_check_receiver(); 3872 if (stopped()) return true; // unconditionally null 3873 result_reg->init_req(_null_path, top()); 3874 result_val->init_req(_null_path, top()); 3875 } else { 3876 // Do a null check, and return zero if null. 3877 // System.identityHashCode(null) == 0 3878 obj = argument(0); 3879 Node* null_ctl = top(); 3880 obj = null_check_oop(obj, &null_ctl); 3881 result_reg->init_req(_null_path, null_ctl); 3882 result_val->init_req(_null_path, _gvn.intcon(0)); 3883 } 3884 3885 // Unconditionally null? Then return right away. 3886 if (stopped()) { 3887 set_control( result_reg->in(_null_path)); 3888 if (!stopped()) 3889 set_result(result_val->in(_null_path)); 3890 return true; 3891 } 3892 3893 // We only go to the fast case code if we pass a number of guards. The 3894 // paths which do not pass are accumulated in the slow_region. 3895 RegionNode* slow_region = new RegionNode(1); 3896 record_for_igvn(slow_region); 3897 3898 // If this is a virtual call, we generate a funny guard. We pull out 3899 // the vtable entry corresponding to hashCode() from the target object. 3900 // If the target method which we are calling happens to be the native 3901 // Object hashCode() method, we pass the guard. We do not need this 3902 // guard for non-virtual calls -- the caller is known to be the native 3903 // Object hashCode(). 3904 if (is_virtual) { 3905 // After null check, get the object's klass. 3906 Node* obj_klass = load_object_klass(obj); 3907 generate_virtual_guard(obj_klass, slow_region); 3908 } 3909 3910 // Get the header out of the object, use LoadMarkNode when available 3911 Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes()); 3912 // The control of the load must be NULL. Otherwise, the load can move before 3913 // the null check after castPP removal. 3914 Node* no_ctrl = NULL; 3915 Node* header = make_load(no_ctrl, header_addr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered); 3916 3917 // Test the header to see if it is unlocked. 3918 Node *lock_mask = _gvn.MakeConX(markWord::biased_lock_mask_in_place); 3919 Node *lmasked_header = _gvn.transform(new AndXNode(header, lock_mask)); 3920 Node *unlocked_val = _gvn.MakeConX(markWord::unlocked_value); 3921 Node *chk_unlocked = _gvn.transform(new CmpXNode( lmasked_header, unlocked_val)); 3922 Node *test_unlocked = _gvn.transform(new BoolNode( chk_unlocked, BoolTest::ne)); 3923 3924 generate_slow_guard(test_unlocked, slow_region); 3925 3926 // Get the hash value and check to see that it has been properly assigned. 3927 // We depend on hash_mask being at most 32 bits and avoid the use of 3928 // hash_mask_in_place because it could be larger than 32 bits in a 64-bit 3929 // vm: see markWord.hpp. 3930 Node *hash_mask = _gvn.intcon(markWord::hash_mask); 3931 Node *hash_shift = _gvn.intcon(markWord::hash_shift); 3932 Node *hshifted_header= _gvn.transform(new URShiftXNode(header, hash_shift)); 3933 // This hack lets the hash bits live anywhere in the mark object now, as long 3934 // as the shift drops the relevant bits into the low 32 bits. Note that 3935 // Java spec says that HashCode is an int so there's no point in capturing 3936 // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build). 3937 hshifted_header = ConvX2I(hshifted_header); 3938 Node *hash_val = _gvn.transform(new AndINode(hshifted_header, hash_mask)); 3939 3940 Node *no_hash_val = _gvn.intcon(markWord::no_hash); 3941 Node *chk_assigned = _gvn.transform(new CmpINode( hash_val, no_hash_val)); 3942 Node *test_assigned = _gvn.transform(new BoolNode( chk_assigned, BoolTest::eq)); 3943 3944 generate_slow_guard(test_assigned, slow_region); 3945 3946 Node* init_mem = reset_memory(); 3947 // fill in the rest of the null path: 3948 result_io ->init_req(_null_path, i_o()); 3949 result_mem->init_req(_null_path, init_mem); 3950 3951 result_val->init_req(_fast_path, hash_val); 3952 result_reg->init_req(_fast_path, control()); 3953 result_io ->init_req(_fast_path, i_o()); 3954 result_mem->init_req(_fast_path, init_mem); 3955 3956 // Generate code for the slow case. We make a call to hashCode(). 3957 set_control(_gvn.transform(slow_region)); 3958 if (!stopped()) { 3959 // No need for PreserveJVMState, because we're using up the present state. 3960 set_all_memory(init_mem); 3961 vmIntrinsics::ID hashCode_id = is_static ? vmIntrinsics::_identityHashCode : vmIntrinsics::_hashCode; 3962 CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static); 3963 Node* slow_result = set_results_for_java_call(slow_call); 3964 // this->control() comes from set_results_for_java_call 3965 result_reg->init_req(_slow_path, control()); 3966 result_val->init_req(_slow_path, slow_result); 3967 result_io ->set_req(_slow_path, i_o()); 3968 result_mem ->set_req(_slow_path, reset_memory()); 3969 } 3970 3971 // Return the combined state. 3972 set_i_o( _gvn.transform(result_io) ); 3973 set_all_memory( _gvn.transform(result_mem)); 3974 3975 set_result(result_reg, result_val); 3976 return true; 3977 } 3978 3979 //---------------------------inline_native_getClass---------------------------- 3980 // public final native Class<?> java.lang.Object.getClass(); 3981 // 3982 // Build special case code for calls to getClass on an object. 3983 bool LibraryCallKit::inline_native_getClass() { 3984 Node* obj = null_check_receiver(); 3985 if (stopped()) return true; 3986 set_result(load_mirror_from_klass(load_object_klass(obj))); 3987 return true; 3988 } 3989 3990 //-----------------inline_native_Reflection_getCallerClass--------------------- 3991 // public static native Class<?> sun.reflect.Reflection.getCallerClass(); 3992 // 3993 // In the presence of deep enough inlining, getCallerClass() becomes a no-op. 3994 // 3995 // NOTE: This code must perform the same logic as JVM_GetCallerClass 3996 // in that it must skip particular security frames and checks for 3997 // caller sensitive methods. 3998 bool LibraryCallKit::inline_native_Reflection_getCallerClass() { 3999 #ifndef PRODUCT 4000 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 4001 tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass"); 4002 } 4003 #endif 4004 4005 if (!jvms()->has_method()) { 4006 #ifndef PRODUCT 4007 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 4008 tty->print_cr(" Bailing out because intrinsic was inlined at top level"); 4009 } 4010 #endif 4011 return false; 4012 } 4013 4014 // Walk back up the JVM state to find the caller at the required 4015 // depth. 4016 JVMState* caller_jvms = jvms(); 4017 4018 // Cf. JVM_GetCallerClass 4019 // NOTE: Start the loop at depth 1 because the current JVM state does 4020 // not include the Reflection.getCallerClass() frame. 4021 for (int n = 1; caller_jvms != NULL; caller_jvms = caller_jvms->caller(), n++) { 4022 ciMethod* m = caller_jvms->method(); 4023 switch (n) { 4024 case 0: 4025 fatal("current JVM state does not include the Reflection.getCallerClass frame"); 4026 break; 4027 case 1: 4028 // Frame 0 and 1 must be caller sensitive (see JVM_GetCallerClass). 4029 if (!m->caller_sensitive()) { 4030 #ifndef PRODUCT 4031 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 4032 tty->print_cr(" Bailing out: CallerSensitive annotation expected at frame %d", n); 4033 } 4034 #endif 4035 return false; // bail-out; let JVM_GetCallerClass do the work 4036 } 4037 break; 4038 default: 4039 if (!m->is_ignored_by_security_stack_walk()) { 4040 // We have reached the desired frame; return the holder class. 4041 // Acquire method holder as java.lang.Class and push as constant. 4042 ciInstanceKlass* caller_klass = caller_jvms->method()->holder(); 4043 ciInstance* caller_mirror = caller_klass->java_mirror(); 4044 set_result(makecon(TypeInstPtr::make(caller_mirror))); 4045 4046 #ifndef PRODUCT 4047 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 4048 tty->print_cr(" Succeeded: caller = %d) %s.%s, JVMS depth = %d", n, caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), jvms()->depth()); 4049 tty->print_cr(" JVM state at this point:"); 4050 for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) { 4051 ciMethod* m = jvms()->of_depth(i)->method(); 4052 tty->print_cr(" %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8()); 4053 } 4054 } 4055 #endif 4056 return true; 4057 } 4058 break; 4059 } 4060 } 4061 4062 #ifndef PRODUCT 4063 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 4064 tty->print_cr(" Bailing out because caller depth exceeded inlining depth = %d", jvms()->depth()); 4065 tty->print_cr(" JVM state at this point:"); 4066 for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) { 4067 ciMethod* m = jvms()->of_depth(i)->method(); 4068 tty->print_cr(" %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8()); 4069 } 4070 } 4071 #endif 4072 4073 return false; // bail-out; let JVM_GetCallerClass do the work 4074 } 4075 4076 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) { 4077 Node* arg = argument(0); 4078 Node* result = NULL; 4079 4080 switch (id) { 4081 case vmIntrinsics::_floatToRawIntBits: result = new MoveF2INode(arg); break; 4082 case vmIntrinsics::_intBitsToFloat: result = new MoveI2FNode(arg); break; 4083 case vmIntrinsics::_doubleToRawLongBits: result = new MoveD2LNode(arg); break; 4084 case vmIntrinsics::_longBitsToDouble: result = new MoveL2DNode(arg); break; 4085 4086 case vmIntrinsics::_doubleToLongBits: { 4087 // two paths (plus control) merge in a wood 4088 RegionNode *r = new RegionNode(3); 4089 Node *phi = new PhiNode(r, TypeLong::LONG); 4090 4091 Node *cmpisnan = _gvn.transform(new CmpDNode(arg, arg)); 4092 // Build the boolean node 4093 Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne)); 4094 4095 // Branch either way. 4096 // NaN case is less traveled, which makes all the difference. 4097 IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN); 4098 Node *opt_isnan = _gvn.transform(ifisnan); 4099 assert( opt_isnan->is_If(), "Expect an IfNode"); 4100 IfNode *opt_ifisnan = (IfNode*)opt_isnan; 4101 Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan)); 4102 4103 set_control(iftrue); 4104 4105 static const jlong nan_bits = CONST64(0x7ff8000000000000); 4106 Node *slow_result = longcon(nan_bits); // return NaN 4107 phi->init_req(1, _gvn.transform( slow_result )); 4108 r->init_req(1, iftrue); 4109 4110 // Else fall through 4111 Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan)); 4112 set_control(iffalse); 4113 4114 phi->init_req(2, _gvn.transform(new MoveD2LNode(arg))); 4115 r->init_req(2, iffalse); 4116 4117 // Post merge 4118 set_control(_gvn.transform(r)); 4119 record_for_igvn(r); 4120 4121 C->set_has_split_ifs(true); // Has chance for split-if optimization 4122 result = phi; 4123 assert(result->bottom_type()->isa_long(), "must be"); 4124 break; 4125 } 4126 4127 case vmIntrinsics::_floatToIntBits: { 4128 // two paths (plus control) merge in a wood 4129 RegionNode *r = new RegionNode(3); 4130 Node *phi = new PhiNode(r, TypeInt::INT); 4131 4132 Node *cmpisnan = _gvn.transform(new CmpFNode(arg, arg)); 4133 // Build the boolean node 4134 Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne)); 4135 4136 // Branch either way. 4137 // NaN case is less traveled, which makes all the difference. 4138 IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN); 4139 Node *opt_isnan = _gvn.transform(ifisnan); 4140 assert( opt_isnan->is_If(), "Expect an IfNode"); 4141 IfNode *opt_ifisnan = (IfNode*)opt_isnan; 4142 Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan)); 4143 4144 set_control(iftrue); 4145 4146 static const jint nan_bits = 0x7fc00000; 4147 Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN 4148 phi->init_req(1, _gvn.transform( slow_result )); 4149 r->init_req(1, iftrue); 4150 4151 // Else fall through 4152 Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan)); 4153 set_control(iffalse); 4154 4155 phi->init_req(2, _gvn.transform(new MoveF2INode(arg))); 4156 r->init_req(2, iffalse); 4157 4158 // Post merge 4159 set_control(_gvn.transform(r)); 4160 record_for_igvn(r); 4161 4162 C->set_has_split_ifs(true); // Has chance for split-if optimization 4163 result = phi; 4164 assert(result->bottom_type()->isa_int(), "must be"); 4165 break; 4166 } 4167 4168 default: 4169 fatal_unexpected_iid(id); 4170 break; 4171 } 4172 set_result(_gvn.transform(result)); 4173 return true; 4174 } 4175 4176 //----------------------inline_unsafe_copyMemory------------------------- 4177 // public native void Unsafe.copyMemory0(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes); 4178 bool LibraryCallKit::inline_unsafe_copyMemory() { 4179 if (callee()->is_static()) return false; // caller must have the capability! 4180 null_check_receiver(); // null-check receiver 4181 if (stopped()) return true; 4182 4183 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe". 4184 4185 Node* src_ptr = argument(1); // type: oop 4186 Node* src_off = ConvL2X(argument(2)); // type: long 4187 Node* dst_ptr = argument(4); // type: oop 4188 Node* dst_off = ConvL2X(argument(5)); // type: long 4189 Node* size = ConvL2X(argument(7)); // type: long 4190 4191 assert(Unsafe_field_offset_to_byte_offset(11) == 11, 4192 "fieldOffset must be byte-scaled"); 4193 4194 src_ptr = access_resolve(src_ptr, ACCESS_READ); 4195 dst_ptr = access_resolve(dst_ptr, ACCESS_WRITE); 4196 Node* src = make_unsafe_address(src_ptr, src_off, ACCESS_READ); 4197 Node* dst = make_unsafe_address(dst_ptr, dst_off, ACCESS_WRITE); 4198 4199 // Conservatively insert a memory barrier on all memory slices. 4200 // Do not let writes of the copy source or destination float below the copy. 4201 insert_mem_bar(Op_MemBarCPUOrder); 4202 4203 Node* thread = _gvn.transform(new ThreadLocalNode()); 4204 Node* doing_unsafe_access_addr = basic_plus_adr(top(), thread, in_bytes(JavaThread::doing_unsafe_access_offset())); 4205 BasicType doing_unsafe_access_bt = T_BYTE; 4206 assert((sizeof(bool) * CHAR_BIT) == 8, "not implemented"); 4207 4208 // update volatile field 4209 store_to_memory(control(), doing_unsafe_access_addr, intcon(1), doing_unsafe_access_bt, Compile::AliasIdxRaw, MemNode::unordered); 4210 4211 // Call it. Note that the length argument is not scaled. 4212 make_runtime_call(RC_LEAF|RC_NO_FP, 4213 OptoRuntime::fast_arraycopy_Type(), 4214 StubRoutines::unsafe_arraycopy(), 4215 "unsafe_arraycopy", 4216 TypeRawPtr::BOTTOM, 4217 src, dst, size XTOP); 4218 4219 store_to_memory(control(), doing_unsafe_access_addr, intcon(0), doing_unsafe_access_bt, Compile::AliasIdxRaw, MemNode::unordered); 4220 4221 // Do not let reads of the copy destination float above the copy. 4222 insert_mem_bar(Op_MemBarCPUOrder); 4223 4224 return true; 4225 } 4226 4227 //------------------------clone_coping----------------------------------- 4228 // Helper function for inline_native_clone. 4229 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array) { 4230 assert(obj_size != NULL, ""); 4231 Node* raw_obj = alloc_obj->in(1); 4232 assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), ""); 4233 4234 AllocateNode* alloc = NULL; 4235 if (ReduceBulkZeroing) { 4236 // We will be completely responsible for initializing this object - 4237 // mark Initialize node as complete. 4238 alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn); 4239 // The object was just allocated - there should be no any stores! 4240 guarantee(alloc != NULL && alloc->maybe_set_complete(&_gvn), ""); 4241 // Mark as complete_with_arraycopy so that on AllocateNode 4242 // expansion, we know this AllocateNode is initialized by an array 4243 // copy and a StoreStore barrier exists after the array copy. 4244 alloc->initialization()->set_complete_with_arraycopy(); 4245 } 4246 4247 Node* size = _gvn.transform(obj_size); 4248 access_clone(obj, alloc_obj, size, is_array); 4249 4250 // Do not let reads from the cloned object float above the arraycopy. 4251 if (alloc != NULL) { 4252 // Do not let stores that initialize this object be reordered with 4253 // a subsequent store that would make this object accessible by 4254 // other threads. 4255 // Record what AllocateNode this StoreStore protects so that 4256 // escape analysis can go from the MemBarStoreStoreNode to the 4257 // AllocateNode and eliminate the MemBarStoreStoreNode if possible 4258 // based on the escape status of the AllocateNode. 4259 insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress)); 4260 } else { 4261 insert_mem_bar(Op_MemBarCPUOrder); 4262 } 4263 } 4264 4265 //------------------------inline_native_clone---------------------------- 4266 // protected native Object java.lang.Object.clone(); 4267 // 4268 // Here are the simple edge cases: 4269 // null receiver => normal trap 4270 // virtual and clone was overridden => slow path to out-of-line clone 4271 // not cloneable or finalizer => slow path to out-of-line Object.clone 4272 // 4273 // The general case has two steps, allocation and copying. 4274 // Allocation has two cases, and uses GraphKit::new_instance or new_array. 4275 // 4276 // Copying also has two cases, oop arrays and everything else. 4277 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy). 4278 // Everything else uses the tight inline loop supplied by CopyArrayNode. 4279 // 4280 // These steps fold up nicely if and when the cloned object's klass 4281 // can be sharply typed as an object array, a type array, or an instance. 4282 // 4283 bool LibraryCallKit::inline_native_clone(bool is_virtual) { 4284 PhiNode* result_val; 4285 4286 // Set the reexecute bit for the interpreter to reexecute 4287 // the bytecode that invokes Object.clone if deoptimization happens. 4288 { PreserveReexecuteState preexecs(this); 4289 jvms()->set_should_reexecute(true); 4290 4291 Node* obj = null_check_receiver(); 4292 if (stopped()) return true; 4293 4294 const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr(); 4295 4296 // If we are going to clone an instance, we need its exact type to 4297 // know the number and types of fields to convert the clone to 4298 // loads/stores. Maybe a speculative type can help us. 4299 if (!obj_type->klass_is_exact() && 4300 obj_type->speculative_type() != NULL && 4301 obj_type->speculative_type()->is_instance_klass()) { 4302 ciInstanceKlass* spec_ik = obj_type->speculative_type()->as_instance_klass(); 4303 if (spec_ik->nof_nonstatic_fields() <= ArrayCopyLoadStoreMaxElem && 4304 !spec_ik->has_injected_fields()) { 4305 ciKlass* k = obj_type->klass(); 4306 if (!k->is_instance_klass() || 4307 k->as_instance_klass()->is_interface() || 4308 k->as_instance_klass()->has_subklass()) { 4309 obj = maybe_cast_profiled_obj(obj, obj_type->speculative_type(), false); 4310 } 4311 } 4312 } 4313 4314 // Conservatively insert a memory barrier on all memory slices. 4315 // Do not let writes into the original float below the clone. 4316 insert_mem_bar(Op_MemBarCPUOrder); 4317 4318 // paths into result_reg: 4319 enum { 4320 _slow_path = 1, // out-of-line call to clone method (virtual or not) 4321 _objArray_path, // plain array allocation, plus arrayof_oop_arraycopy 4322 _array_path, // plain array allocation, plus arrayof_long_arraycopy 4323 _instance_path, // plain instance allocation, plus arrayof_long_arraycopy 4324 PATH_LIMIT 4325 }; 4326 RegionNode* result_reg = new RegionNode(PATH_LIMIT); 4327 result_val = new PhiNode(result_reg, TypeInstPtr::NOTNULL); 4328 PhiNode* result_i_o = new PhiNode(result_reg, Type::ABIO); 4329 PhiNode* result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM); 4330 record_for_igvn(result_reg); 4331 4332 Node* obj_klass = load_object_klass(obj); 4333 Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)NULL); 4334 if (array_ctl != NULL) { 4335 // It's an array. 4336 PreserveJVMState pjvms(this); 4337 set_control(array_ctl); 4338 Node* obj_length = load_array_length(obj); 4339 Node* obj_size = NULL; 4340 Node* alloc_obj = new_array(obj_klass, obj_length, 0, &obj_size); // no arguments to push 4341 4342 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 4343 if (bs->array_copy_requires_gc_barriers(true, T_OBJECT, true, BarrierSetC2::Parsing)) { 4344 // If it is an oop array, it requires very special treatment, 4345 // because gc barriers are required when accessing the array. 4346 Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)NULL); 4347 if (is_obja != NULL) { 4348 PreserveJVMState pjvms2(this); 4349 set_control(is_obja); 4350 obj = access_resolve(obj, ACCESS_READ); 4351 // Generate a direct call to the right arraycopy function(s). 4352 Node* alloc = tightly_coupled_allocation(alloc_obj, NULL); 4353 ArrayCopyNode* ac = ArrayCopyNode::make(this, true, obj, intcon(0), alloc_obj, intcon(0), obj_length, alloc != NULL, false); 4354 ac->set_clone_oop_array(); 4355 Node* n = _gvn.transform(ac); 4356 assert(n == ac, "cannot disappear"); 4357 ac->connect_outputs(this); 4358 4359 result_reg->init_req(_objArray_path, control()); 4360 result_val->init_req(_objArray_path, alloc_obj); 4361 result_i_o ->set_req(_objArray_path, i_o()); 4362 result_mem ->set_req(_objArray_path, reset_memory()); 4363 } 4364 } 4365 // Otherwise, there are no barriers to worry about. 4366 // (We can dispense with card marks if we know the allocation 4367 // comes out of eden (TLAB)... In fact, ReduceInitialCardMarks 4368 // causes the non-eden paths to take compensating steps to 4369 // simulate a fresh allocation, so that no further 4370 // card marks are required in compiled code to initialize 4371 // the object.) 4372 4373 if (!stopped()) { 4374 copy_to_clone(obj, alloc_obj, obj_size, true); 4375 4376 // Present the results of the copy. 4377 result_reg->init_req(_array_path, control()); 4378 result_val->init_req(_array_path, alloc_obj); 4379 result_i_o ->set_req(_array_path, i_o()); 4380 result_mem ->set_req(_array_path, reset_memory()); 4381 } 4382 } 4383 4384 // We only go to the instance fast case code if we pass a number of guards. 4385 // The paths which do not pass are accumulated in the slow_region. 4386 RegionNode* slow_region = new RegionNode(1); 4387 record_for_igvn(slow_region); 4388 if (!stopped()) { 4389 // It's an instance (we did array above). Make the slow-path tests. 4390 // If this is a virtual call, we generate a funny guard. We grab 4391 // the vtable entry corresponding to clone() from the target object. 4392 // If the target method which we are calling happens to be the 4393 // Object clone() method, we pass the guard. We do not need this 4394 // guard for non-virtual calls; the caller is known to be the native 4395 // Object clone(). 4396 if (is_virtual) { 4397 generate_virtual_guard(obj_klass, slow_region); 4398 } 4399 4400 // The object must be easily cloneable and must not have a finalizer. 4401 // Both of these conditions may be checked in a single test. 4402 // We could optimize the test further, but we don't care. 4403 generate_access_flags_guard(obj_klass, 4404 // Test both conditions: 4405 JVM_ACC_IS_CLONEABLE_FAST | JVM_ACC_HAS_FINALIZER, 4406 // Must be cloneable but not finalizer: 4407 JVM_ACC_IS_CLONEABLE_FAST, 4408 slow_region); 4409 } 4410 4411 if (!stopped()) { 4412 // It's an instance, and it passed the slow-path tests. 4413 PreserveJVMState pjvms(this); 4414 Node* obj_size = NULL; 4415 // Need to deoptimize on exception from allocation since Object.clone intrinsic 4416 // is reexecuted if deoptimization occurs and there could be problems when merging 4417 // exception state between multiple Object.clone versions (reexecute=true vs reexecute=false). 4418 Node* alloc_obj = new_instance(obj_klass, NULL, &obj_size, /*deoptimize_on_exception=*/true); 4419 4420 copy_to_clone(obj, alloc_obj, obj_size, false); 4421 4422 // Present the results of the slow call. 4423 result_reg->init_req(_instance_path, control()); 4424 result_val->init_req(_instance_path, alloc_obj); 4425 result_i_o ->set_req(_instance_path, i_o()); 4426 result_mem ->set_req(_instance_path, reset_memory()); 4427 } 4428 4429 // Generate code for the slow case. We make a call to clone(). 4430 set_control(_gvn.transform(slow_region)); 4431 if (!stopped()) { 4432 PreserveJVMState pjvms(this); 4433 CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual); 4434 // We need to deoptimize on exception (see comment above) 4435 Node* slow_result = set_results_for_java_call(slow_call, false, /* deoptimize */ true); 4436 // this->control() comes from set_results_for_java_call 4437 result_reg->init_req(_slow_path, control()); 4438 result_val->init_req(_slow_path, slow_result); 4439 result_i_o ->set_req(_slow_path, i_o()); 4440 result_mem ->set_req(_slow_path, reset_memory()); 4441 } 4442 4443 // Return the combined state. 4444 set_control( _gvn.transform(result_reg)); 4445 set_i_o( _gvn.transform(result_i_o)); 4446 set_all_memory( _gvn.transform(result_mem)); 4447 } // original reexecute is set back here 4448 4449 set_result(_gvn.transform(result_val)); 4450 return true; 4451 } 4452 4453 // If we have a tightly coupled allocation, the arraycopy may take care 4454 // of the array initialization. If one of the guards we insert between 4455 // the allocation and the arraycopy causes a deoptimization, an 4456 // unitialized array will escape the compiled method. To prevent that 4457 // we set the JVM state for uncommon traps between the allocation and 4458 // the arraycopy to the state before the allocation so, in case of 4459 // deoptimization, we'll reexecute the allocation and the 4460 // initialization. 4461 JVMState* LibraryCallKit::arraycopy_restore_alloc_state(AllocateArrayNode* alloc, int& saved_reexecute_sp) { 4462 if (alloc != NULL) { 4463 ciMethod* trap_method = alloc->jvms()->method(); 4464 int trap_bci = alloc->jvms()->bci(); 4465 4466 if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) && 4467 !C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_null_check)) { 4468 // Make sure there's no store between the allocation and the 4469 // arraycopy otherwise visible side effects could be rexecuted 4470 // in case of deoptimization and cause incorrect execution. 4471 bool no_interfering_store = true; 4472 Node* mem = alloc->in(TypeFunc::Memory); 4473 if (mem->is_MergeMem()) { 4474 for (MergeMemStream mms(merged_memory(), mem->as_MergeMem()); mms.next_non_empty2(); ) { 4475 Node* n = mms.memory(); 4476 if (n != mms.memory2() && !(n->is_Proj() && n->in(0) == alloc->initialization())) { 4477 assert(n->is_Store(), "what else?"); 4478 no_interfering_store = false; 4479 break; 4480 } 4481 } 4482 } else { 4483 for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) { 4484 Node* n = mms.memory(); 4485 if (n != mem && !(n->is_Proj() && n->in(0) == alloc->initialization())) { 4486 assert(n->is_Store(), "what else?"); 4487 no_interfering_store = false; 4488 break; 4489 } 4490 } 4491 } 4492 4493 if (no_interfering_store) { 4494 JVMState* old_jvms = alloc->jvms()->clone_shallow(C); 4495 uint size = alloc->req(); 4496 SafePointNode* sfpt = new SafePointNode(size, old_jvms); 4497 old_jvms->set_map(sfpt); 4498 for (uint i = 0; i < size; i++) { 4499 sfpt->init_req(i, alloc->in(i)); 4500 } 4501 // re-push array length for deoptimization 4502 sfpt->ins_req(old_jvms->stkoff() + old_jvms->sp(), alloc->in(AllocateNode::ALength)); 4503 old_jvms->set_sp(old_jvms->sp()+1); 4504 old_jvms->set_monoff(old_jvms->monoff()+1); 4505 old_jvms->set_scloff(old_jvms->scloff()+1); 4506 old_jvms->set_endoff(old_jvms->endoff()+1); 4507 old_jvms->set_should_reexecute(true); 4508 4509 sfpt->set_i_o(map()->i_o()); 4510 sfpt->set_memory(map()->memory()); 4511 sfpt->set_control(map()->control()); 4512 4513 JVMState* saved_jvms = jvms(); 4514 saved_reexecute_sp = _reexecute_sp; 4515 4516 set_jvms(sfpt->jvms()); 4517 _reexecute_sp = jvms()->sp(); 4518 4519 return saved_jvms; 4520 } 4521 } 4522 } 4523 return NULL; 4524 } 4525 4526 // In case of a deoptimization, we restart execution at the 4527 // allocation, allocating a new array. We would leave an uninitialized 4528 // array in the heap that GCs wouldn't expect. Move the allocation 4529 // after the traps so we don't allocate the array if we 4530 // deoptimize. This is possible because tightly_coupled_allocation() 4531 // guarantees there's no observer of the allocated array at this point 4532 // and the control flow is simple enough. 4533 void LibraryCallKit::arraycopy_move_allocation_here(AllocateArrayNode* alloc, Node* dest, JVMState* saved_jvms, 4534 int saved_reexecute_sp, uint new_idx) { 4535 if (saved_jvms != NULL && !stopped()) { 4536 assert(alloc != NULL, "only with a tightly coupled allocation"); 4537 // restore JVM state to the state at the arraycopy 4538 saved_jvms->map()->set_control(map()->control()); 4539 assert(saved_jvms->map()->memory() == map()->memory(), "memory state changed?"); 4540 assert(saved_jvms->map()->i_o() == map()->i_o(), "IO state changed?"); 4541 // If we've improved the types of some nodes (null check) while 4542 // emitting the guards, propagate them to the current state 4543 map()->replaced_nodes().apply(saved_jvms->map(), new_idx); 4544 set_jvms(saved_jvms); 4545 _reexecute_sp = saved_reexecute_sp; 4546 4547 // Remove the allocation from above the guards 4548 CallProjections callprojs; 4549 alloc->extract_projections(&callprojs, true); 4550 InitializeNode* init = alloc->initialization(); 4551 Node* alloc_mem = alloc->in(TypeFunc::Memory); 4552 C->gvn_replace_by(callprojs.fallthrough_ioproj, alloc->in(TypeFunc::I_O)); 4553 C->gvn_replace_by(init->proj_out(TypeFunc::Memory), alloc_mem); 4554 C->gvn_replace_by(init->proj_out(TypeFunc::Control), alloc->in(0)); 4555 4556 // move the allocation here (after the guards) 4557 _gvn.hash_delete(alloc); 4558 alloc->set_req(TypeFunc::Control, control()); 4559 alloc->set_req(TypeFunc::I_O, i_o()); 4560 Node *mem = reset_memory(); 4561 set_all_memory(mem); 4562 alloc->set_req(TypeFunc::Memory, mem); 4563 set_control(init->proj_out_or_null(TypeFunc::Control)); 4564 set_i_o(callprojs.fallthrough_ioproj); 4565 4566 // Update memory as done in GraphKit::set_output_for_allocation() 4567 const TypeInt* length_type = _gvn.find_int_type(alloc->in(AllocateNode::ALength)); 4568 const TypeOopPtr* ary_type = _gvn.type(alloc->in(AllocateNode::KlassNode))->is_klassptr()->as_instance_type(); 4569 if (ary_type->isa_aryptr() && length_type != NULL) { 4570 ary_type = ary_type->is_aryptr()->cast_to_size(length_type); 4571 } 4572 const TypePtr* telemref = ary_type->add_offset(Type::OffsetBot); 4573 int elemidx = C->get_alias_index(telemref); 4574 set_memory(init->proj_out_or_null(TypeFunc::Memory), Compile::AliasIdxRaw); 4575 set_memory(init->proj_out_or_null(TypeFunc::Memory), elemidx); 4576 4577 Node* allocx = _gvn.transform(alloc); 4578 assert(allocx == alloc, "where has the allocation gone?"); 4579 assert(dest->is_CheckCastPP(), "not an allocation result?"); 4580 4581 _gvn.hash_delete(dest); 4582 dest->set_req(0, control()); 4583 Node* destx = _gvn.transform(dest); 4584 assert(destx == dest, "where has the allocation result gone?"); 4585 } 4586 } 4587 4588 4589 //------------------------------inline_arraycopy----------------------- 4590 // public static native void java.lang.System.arraycopy(Object src, int srcPos, 4591 // Object dest, int destPos, 4592 // int length); 4593 bool LibraryCallKit::inline_arraycopy() { 4594 // Get the arguments. 4595 Node* src = argument(0); // type: oop 4596 Node* src_offset = argument(1); // type: int 4597 Node* dest = argument(2); // type: oop 4598 Node* dest_offset = argument(3); // type: int 4599 Node* length = argument(4); // type: int 4600 4601 uint new_idx = C->unique(); 4602 4603 // Check for allocation before we add nodes that would confuse 4604 // tightly_coupled_allocation() 4605 AllocateArrayNode* alloc = tightly_coupled_allocation(dest, NULL); 4606 4607 int saved_reexecute_sp = -1; 4608 JVMState* saved_jvms = arraycopy_restore_alloc_state(alloc, saved_reexecute_sp); 4609 // See arraycopy_restore_alloc_state() comment 4610 // if alloc == NULL we don't have to worry about a tightly coupled allocation so we can emit all needed guards 4611 // if saved_jvms != NULL (then alloc != NULL) then we can handle guards and a tightly coupled allocation 4612 // if saved_jvms == NULL and alloc != NULL, we can't emit any guards 4613 bool can_emit_guards = (alloc == NULL || saved_jvms != NULL); 4614 4615 // The following tests must be performed 4616 // (1) src and dest are arrays. 4617 // (2) src and dest arrays must have elements of the same BasicType 4618 // (3) src and dest must not be null. 4619 // (4) src_offset must not be negative. 4620 // (5) dest_offset must not be negative. 4621 // (6) length must not be negative. 4622 // (7) src_offset + length must not exceed length of src. 4623 // (8) dest_offset + length must not exceed length of dest. 4624 // (9) each element of an oop array must be assignable 4625 4626 // (3) src and dest must not be null. 4627 // always do this here because we need the JVM state for uncommon traps 4628 Node* null_ctl = top(); 4629 src = saved_jvms != NULL ? null_check_oop(src, &null_ctl, true, true) : null_check(src, T_ARRAY); 4630 assert(null_ctl->is_top(), "no null control here"); 4631 dest = null_check(dest, T_ARRAY); 4632 4633 if (!can_emit_guards) { 4634 // if saved_jvms == NULL and alloc != NULL, we don't emit any 4635 // guards but the arraycopy node could still take advantage of a 4636 // tightly allocated allocation. tightly_coupled_allocation() is 4637 // called again to make sure it takes the null check above into 4638 // account: the null check is mandatory and if it caused an 4639 // uncommon trap to be emitted then the allocation can't be 4640 // considered tightly coupled in this context. 4641 alloc = tightly_coupled_allocation(dest, NULL); 4642 } 4643 4644 bool validated = false; 4645 4646 const Type* src_type = _gvn.type(src); 4647 const Type* dest_type = _gvn.type(dest); 4648 const TypeAryPtr* top_src = src_type->isa_aryptr(); 4649 const TypeAryPtr* top_dest = dest_type->isa_aryptr(); 4650 4651 // Do we have the type of src? 4652 bool has_src = (top_src != NULL && top_src->klass() != NULL); 4653 // Do we have the type of dest? 4654 bool has_dest = (top_dest != NULL && top_dest->klass() != NULL); 4655 // Is the type for src from speculation? 4656 bool src_spec = false; 4657 // Is the type for dest from speculation? 4658 bool dest_spec = false; 4659 4660 if ((!has_src || !has_dest) && can_emit_guards) { 4661 // We don't have sufficient type information, let's see if 4662 // speculative types can help. We need to have types for both src 4663 // and dest so that it pays off. 4664 4665 // Do we already have or could we have type information for src 4666 bool could_have_src = has_src; 4667 // Do we already have or could we have type information for dest 4668 bool could_have_dest = has_dest; 4669 4670 ciKlass* src_k = NULL; 4671 if (!has_src) { 4672 src_k = src_type->speculative_type_not_null(); 4673 if (src_k != NULL && src_k->is_array_klass()) { 4674 could_have_src = true; 4675 } 4676 } 4677 4678 ciKlass* dest_k = NULL; 4679 if (!has_dest) { 4680 dest_k = dest_type->speculative_type_not_null(); 4681 if (dest_k != NULL && dest_k->is_array_klass()) { 4682 could_have_dest = true; 4683 } 4684 } 4685 4686 if (could_have_src && could_have_dest) { 4687 // This is going to pay off so emit the required guards 4688 if (!has_src) { 4689 src = maybe_cast_profiled_obj(src, src_k, true); 4690 src_type = _gvn.type(src); 4691 top_src = src_type->isa_aryptr(); 4692 has_src = (top_src != NULL && top_src->klass() != NULL); 4693 src_spec = true; 4694 } 4695 if (!has_dest) { 4696 dest = maybe_cast_profiled_obj(dest, dest_k, true); 4697 dest_type = _gvn.type(dest); 4698 top_dest = dest_type->isa_aryptr(); 4699 has_dest = (top_dest != NULL && top_dest->klass() != NULL); 4700 dest_spec = true; 4701 } 4702 } 4703 } 4704 4705 if (has_src && has_dest && can_emit_guards) { 4706 BasicType src_elem = top_src->klass()->as_array_klass()->element_type()->basic_type(); 4707 BasicType dest_elem = top_dest->klass()->as_array_klass()->element_type()->basic_type(); 4708 if (is_reference_type(src_elem)) src_elem = T_OBJECT; 4709 if (is_reference_type(dest_elem)) dest_elem = T_OBJECT; 4710 4711 if (src_elem == dest_elem && src_elem == T_OBJECT) { 4712 // If both arrays are object arrays then having the exact types 4713 // for both will remove the need for a subtype check at runtime 4714 // before the call and may make it possible to pick a faster copy 4715 // routine (without a subtype check on every element) 4716 // Do we have the exact type of src? 4717 bool could_have_src = src_spec; 4718 // Do we have the exact type of dest? 4719 bool could_have_dest = dest_spec; 4720 ciKlass* src_k = top_src->klass(); 4721 ciKlass* dest_k = top_dest->klass(); 4722 if (!src_spec) { 4723 src_k = src_type->speculative_type_not_null(); 4724 if (src_k != NULL && src_k->is_array_klass()) { 4725 could_have_src = true; 4726 } 4727 } 4728 if (!dest_spec) { 4729 dest_k = dest_type->speculative_type_not_null(); 4730 if (dest_k != NULL && dest_k->is_array_klass()) { 4731 could_have_dest = true; 4732 } 4733 } 4734 if (could_have_src && could_have_dest) { 4735 // If we can have both exact types, emit the missing guards 4736 if (could_have_src && !src_spec) { 4737 src = maybe_cast_profiled_obj(src, src_k, true); 4738 } 4739 if (could_have_dest && !dest_spec) { 4740 dest = maybe_cast_profiled_obj(dest, dest_k, true); 4741 } 4742 } 4743 } 4744 } 4745 4746 ciMethod* trap_method = method(); 4747 int trap_bci = bci(); 4748 if (saved_jvms != NULL) { 4749 trap_method = alloc->jvms()->method(); 4750 trap_bci = alloc->jvms()->bci(); 4751 } 4752 4753 bool negative_length_guard_generated = false; 4754 4755 if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) && 4756 can_emit_guards && 4757 !src->is_top() && !dest->is_top()) { 4758 // validate arguments: enables transformation the ArrayCopyNode 4759 validated = true; 4760 4761 RegionNode* slow_region = new RegionNode(1); 4762 record_for_igvn(slow_region); 4763 4764 // (1) src and dest are arrays. 4765 generate_non_array_guard(load_object_klass(src), slow_region); 4766 generate_non_array_guard(load_object_klass(dest), slow_region); 4767 4768 // (2) src and dest arrays must have elements of the same BasicType 4769 // done at macro expansion or at Ideal transformation time 4770 4771 // (4) src_offset must not be negative. 4772 generate_negative_guard(src_offset, slow_region); 4773 4774 // (5) dest_offset must not be negative. 4775 generate_negative_guard(dest_offset, slow_region); 4776 4777 // (7) src_offset + length must not exceed length of src. 4778 generate_limit_guard(src_offset, length, 4779 load_array_length(src), 4780 slow_region); 4781 4782 // (8) dest_offset + length must not exceed length of dest. 4783 generate_limit_guard(dest_offset, length, 4784 load_array_length(dest), 4785 slow_region); 4786 4787 // (6) length must not be negative. 4788 // This is also checked in generate_arraycopy() during macro expansion, but 4789 // we also have to check it here for the case where the ArrayCopyNode will 4790 // be eliminated by Escape Analysis. 4791 if (EliminateAllocations) { 4792 generate_negative_guard(length, slow_region); 4793 negative_length_guard_generated = true; 4794 } 4795 4796 // (9) each element of an oop array must be assignable 4797 Node* src_klass = load_object_klass(src); 4798 Node* dest_klass = load_object_klass(dest); 4799 Node* not_subtype_ctrl = gen_subtype_check(src_klass, dest_klass); 4800 4801 if (not_subtype_ctrl != top()) { 4802 PreserveJVMState pjvms(this); 4803 set_control(not_subtype_ctrl); 4804 uncommon_trap(Deoptimization::Reason_intrinsic, 4805 Deoptimization::Action_make_not_entrant); 4806 assert(stopped(), "Should be stopped"); 4807 } 4808 { 4809 PreserveJVMState pjvms(this); 4810 set_control(_gvn.transform(slow_region)); 4811 uncommon_trap(Deoptimization::Reason_intrinsic, 4812 Deoptimization::Action_make_not_entrant); 4813 assert(stopped(), "Should be stopped"); 4814 } 4815 4816 const TypeKlassPtr* dest_klass_t = _gvn.type(dest_klass)->is_klassptr(); 4817 const Type *toop = TypeOopPtr::make_from_klass(dest_klass_t->klass()); 4818 src = _gvn.transform(new CheckCastPPNode(control(), src, toop)); 4819 } 4820 4821 arraycopy_move_allocation_here(alloc, dest, saved_jvms, saved_reexecute_sp, new_idx); 4822 4823 if (stopped()) { 4824 return true; 4825 } 4826 4827 Node* new_src = access_resolve(src, ACCESS_READ); 4828 Node* new_dest = access_resolve(dest, ACCESS_WRITE); 4829 4830 ArrayCopyNode* ac = ArrayCopyNode::make(this, true, new_src, src_offset, new_dest, dest_offset, length, alloc != NULL, negative_length_guard_generated, 4831 // Create LoadRange and LoadKlass nodes for use during macro expansion here 4832 // so the compiler has a chance to eliminate them: during macro expansion, 4833 // we have to set their control (CastPP nodes are eliminated). 4834 load_object_klass(src), load_object_klass(dest), 4835 load_array_length(src), load_array_length(dest)); 4836 4837 ac->set_arraycopy(validated); 4838 4839 Node* n = _gvn.transform(ac); 4840 if (n == ac) { 4841 ac->connect_outputs(this); 4842 } else { 4843 assert(validated, "shouldn't transform if all arguments not validated"); 4844 set_all_memory(n); 4845 } 4846 clear_upper_avx(); 4847 4848 4849 return true; 4850 } 4851 4852 4853 // Helper function which determines if an arraycopy immediately follows 4854 // an allocation, with no intervening tests or other escapes for the object. 4855 AllocateArrayNode* 4856 LibraryCallKit::tightly_coupled_allocation(Node* ptr, 4857 RegionNode* slow_region) { 4858 if (stopped()) return NULL; // no fast path 4859 if (C->AliasLevel() == 0) return NULL; // no MergeMems around 4860 4861 AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr, &_gvn); 4862 if (alloc == NULL) return NULL; 4863 4864 Node* rawmem = memory(Compile::AliasIdxRaw); 4865 // Is the allocation's memory state untouched? 4866 if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) { 4867 // Bail out if there have been raw-memory effects since the allocation. 4868 // (Example: There might have been a call or safepoint.) 4869 return NULL; 4870 } 4871 rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw); 4872 if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) { 4873 return NULL; 4874 } 4875 4876 // There must be no unexpected observers of this allocation. 4877 for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) { 4878 Node* obs = ptr->fast_out(i); 4879 if (obs != this->map()) { 4880 return NULL; 4881 } 4882 } 4883 4884 // This arraycopy must unconditionally follow the allocation of the ptr. 4885 Node* alloc_ctl = ptr->in(0); 4886 assert(just_allocated_object(alloc_ctl) == ptr, "most recent allo"); 4887 4888 Node* ctl = control(); 4889 while (ctl != alloc_ctl) { 4890 // There may be guards which feed into the slow_region. 4891 // Any other control flow means that we might not get a chance 4892 // to finish initializing the allocated object. 4893 if ((ctl->is_IfFalse() || ctl->is_IfTrue()) && ctl->in(0)->is_If()) { 4894 IfNode* iff = ctl->in(0)->as_If(); 4895 Node* not_ctl = iff->proj_out_or_null(1 - ctl->as_Proj()->_con); 4896 assert(not_ctl != NULL && not_ctl != ctl, "found alternate"); 4897 if (slow_region != NULL && slow_region->find_edge(not_ctl) >= 1) { 4898 ctl = iff->in(0); // This test feeds the known slow_region. 4899 continue; 4900 } 4901 // One more try: Various low-level checks bottom out in 4902 // uncommon traps. If the debug-info of the trap omits 4903 // any reference to the allocation, as we've already 4904 // observed, then there can be no objection to the trap. 4905 bool found_trap = false; 4906 for (DUIterator_Fast jmax, j = not_ctl->fast_outs(jmax); j < jmax; j++) { 4907 Node* obs = not_ctl->fast_out(j); 4908 if (obs->in(0) == not_ctl && obs->is_Call() && 4909 (obs->as_Call()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point())) { 4910 found_trap = true; break; 4911 } 4912 } 4913 if (found_trap) { 4914 ctl = iff->in(0); // This test feeds a harmless uncommon trap. 4915 continue; 4916 } 4917 } 4918 return NULL; 4919 } 4920 4921 // If we get this far, we have an allocation which immediately 4922 // precedes the arraycopy, and we can take over zeroing the new object. 4923 // The arraycopy will finish the initialization, and provide 4924 // a new control state to which we will anchor the destination pointer. 4925 4926 return alloc; 4927 } 4928 4929 //-------------inline_encodeISOArray----------------------------------- 4930 // encode char[] to byte[] in ISO_8859_1 4931 bool LibraryCallKit::inline_encodeISOArray() { 4932 assert(callee()->signature()->size() == 5, "encodeISOArray has 5 parameters"); 4933 // no receiver since it is static method 4934 Node *src = argument(0); 4935 Node *src_offset = argument(1); 4936 Node *dst = argument(2); 4937 Node *dst_offset = argument(3); 4938 Node *length = argument(4); 4939 4940 src = must_be_not_null(src, true); 4941 dst = must_be_not_null(dst, true); 4942 4943 src = access_resolve(src, ACCESS_READ); 4944 dst = access_resolve(dst, ACCESS_WRITE); 4945 4946 const Type* src_type = src->Value(&_gvn); 4947 const Type* dst_type = dst->Value(&_gvn); 4948 const TypeAryPtr* top_src = src_type->isa_aryptr(); 4949 const TypeAryPtr* top_dest = dst_type->isa_aryptr(); 4950 if (top_src == NULL || top_src->klass() == NULL || 4951 top_dest == NULL || top_dest->klass() == NULL) { 4952 // failed array check 4953 return false; 4954 } 4955 4956 // Figure out the size and type of the elements we will be copying. 4957 BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); 4958 BasicType dst_elem = dst_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); 4959 if (!((src_elem == T_CHAR) || (src_elem== T_BYTE)) || dst_elem != T_BYTE) { 4960 return false; 4961 } 4962 4963 Node* src_start = array_element_address(src, src_offset, T_CHAR); 4964 Node* dst_start = array_element_address(dst, dst_offset, dst_elem); 4965 // 'src_start' points to src array + scaled offset 4966 // 'dst_start' points to dst array + scaled offset 4967 4968 const TypeAryPtr* mtype = TypeAryPtr::BYTES; 4969 Node* enc = new EncodeISOArrayNode(control(), memory(mtype), src_start, dst_start, length); 4970 enc = _gvn.transform(enc); 4971 Node* res_mem = _gvn.transform(new SCMemProjNode(enc)); 4972 set_memory(res_mem, mtype); 4973 set_result(enc); 4974 clear_upper_avx(); 4975 4976 return true; 4977 } 4978 4979 //-------------inline_multiplyToLen----------------------------------- 4980 bool LibraryCallKit::inline_multiplyToLen() { 4981 assert(UseMultiplyToLenIntrinsic, "not implemented on this platform"); 4982 4983 address stubAddr = StubRoutines::multiplyToLen(); 4984 if (stubAddr == NULL) { 4985 return false; // Intrinsic's stub is not implemented on this platform 4986 } 4987 const char* stubName = "multiplyToLen"; 4988 4989 assert(callee()->signature()->size() == 5, "multiplyToLen has 5 parameters"); 4990 4991 // no receiver because it is a static method 4992 Node* x = argument(0); 4993 Node* xlen = argument(1); 4994 Node* y = argument(2); 4995 Node* ylen = argument(3); 4996 Node* z = argument(4); 4997 4998 x = must_be_not_null(x, true); 4999 y = must_be_not_null(y, true); 5000 5001 x = access_resolve(x, ACCESS_READ); 5002 y = access_resolve(y, ACCESS_READ); 5003 z = access_resolve(z, ACCESS_WRITE); 5004 5005 const Type* x_type = x->Value(&_gvn); 5006 const Type* y_type = y->Value(&_gvn); 5007 const TypeAryPtr* top_x = x_type->isa_aryptr(); 5008 const TypeAryPtr* top_y = y_type->isa_aryptr(); 5009 if (top_x == NULL || top_x->klass() == NULL || 5010 top_y == NULL || top_y->klass() == NULL) { 5011 // failed array check 5012 return false; 5013 } 5014 5015 BasicType x_elem = x_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); 5016 BasicType y_elem = y_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); 5017 if (x_elem != T_INT || y_elem != T_INT) { 5018 return false; 5019 } 5020 5021 // Set the original stack and the reexecute bit for the interpreter to reexecute 5022 // the bytecode that invokes BigInteger.multiplyToLen() if deoptimization happens 5023 // on the return from z array allocation in runtime. 5024 { PreserveReexecuteState preexecs(this); 5025 jvms()->set_should_reexecute(true); 5026 5027 Node* x_start = array_element_address(x, intcon(0), x_elem); 5028 Node* y_start = array_element_address(y, intcon(0), y_elem); 5029 // 'x_start' points to x array + scaled xlen 5030 // 'y_start' points to y array + scaled ylen 5031 5032 // Allocate the result array 5033 Node* zlen = _gvn.transform(new AddINode(xlen, ylen)); 5034 ciKlass* klass = ciTypeArrayKlass::make(T_INT); 5035 Node* klass_node = makecon(TypeKlassPtr::make(klass)); 5036 5037 IdealKit ideal(this); 5038 5039 #define __ ideal. 5040 Node* one = __ ConI(1); 5041 Node* zero = __ ConI(0); 5042 IdealVariable need_alloc(ideal), z_alloc(ideal); __ declarations_done(); 5043 __ set(need_alloc, zero); 5044 __ set(z_alloc, z); 5045 __ if_then(z, BoolTest::eq, null()); { 5046 __ increment (need_alloc, one); 5047 } __ else_(); { 5048 // Update graphKit memory and control from IdealKit. 5049 sync_kit(ideal); 5050 Node *cast = new CastPPNode(z, TypePtr::NOTNULL); 5051 cast->init_req(0, control()); 5052 _gvn.set_type(cast, cast->bottom_type()); 5053 C->record_for_igvn(cast); 5054 5055 Node* zlen_arg = load_array_length(cast); 5056 // Update IdealKit memory and control from graphKit. 5057 __ sync_kit(this); 5058 __ if_then(zlen_arg, BoolTest::lt, zlen); { 5059 __ increment (need_alloc, one); 5060 } __ end_if(); 5061 } __ end_if(); 5062 5063 __ if_then(__ value(need_alloc), BoolTest::ne, zero); { 5064 // Update graphKit memory and control from IdealKit. 5065 sync_kit(ideal); 5066 Node * narr = new_array(klass_node, zlen, 1); 5067 // Update IdealKit memory and control from graphKit. 5068 __ sync_kit(this); 5069 __ set(z_alloc, narr); 5070 } __ end_if(); 5071 5072 sync_kit(ideal); 5073 z = __ value(z_alloc); 5074 // Can't use TypeAryPtr::INTS which uses Bottom offset. 5075 _gvn.set_type(z, TypeOopPtr::make_from_klass(klass)); 5076 // Final sync IdealKit and GraphKit. 5077 final_sync(ideal); 5078 #undef __ 5079 5080 Node* z_start = array_element_address(z, intcon(0), T_INT); 5081 5082 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 5083 OptoRuntime::multiplyToLen_Type(), 5084 stubAddr, stubName, TypePtr::BOTTOM, 5085 x_start, xlen, y_start, ylen, z_start, zlen); 5086 } // original reexecute is set back here 5087 5088 C->set_has_split_ifs(true); // Has chance for split-if optimization 5089 set_result(z); 5090 return true; 5091 } 5092 5093 //-------------inline_squareToLen------------------------------------ 5094 bool LibraryCallKit::inline_squareToLen() { 5095 assert(UseSquareToLenIntrinsic, "not implemented on this platform"); 5096 5097 address stubAddr = StubRoutines::squareToLen(); 5098 if (stubAddr == NULL) { 5099 return false; // Intrinsic's stub is not implemented on this platform 5100 } 5101 const char* stubName = "squareToLen"; 5102 5103 assert(callee()->signature()->size() == 4, "implSquareToLen has 4 parameters"); 5104 5105 Node* x = argument(0); 5106 Node* len = argument(1); 5107 Node* z = argument(2); 5108 Node* zlen = argument(3); 5109 5110 x = must_be_not_null(x, true); 5111 z = must_be_not_null(z, true); 5112 5113 x = access_resolve(x, ACCESS_READ); 5114 z = access_resolve(z, ACCESS_WRITE); 5115 5116 const Type* x_type = x->Value(&_gvn); 5117 const Type* z_type = z->Value(&_gvn); 5118 const TypeAryPtr* top_x = x_type->isa_aryptr(); 5119 const TypeAryPtr* top_z = z_type->isa_aryptr(); 5120 if (top_x == NULL || top_x->klass() == NULL || 5121 top_z == NULL || top_z->klass() == NULL) { 5122 // failed array check 5123 return false; 5124 } 5125 5126 BasicType x_elem = x_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); 5127 BasicType z_elem = z_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); 5128 if (x_elem != T_INT || z_elem != T_INT) { 5129 return false; 5130 } 5131 5132 5133 Node* x_start = array_element_address(x, intcon(0), x_elem); 5134 Node* z_start = array_element_address(z, intcon(0), z_elem); 5135 5136 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 5137 OptoRuntime::squareToLen_Type(), 5138 stubAddr, stubName, TypePtr::BOTTOM, 5139 x_start, len, z_start, zlen); 5140 5141 set_result(z); 5142 return true; 5143 } 5144 5145 //-------------inline_mulAdd------------------------------------------ 5146 bool LibraryCallKit::inline_mulAdd() { 5147 assert(UseMulAddIntrinsic, "not implemented on this platform"); 5148 5149 address stubAddr = StubRoutines::mulAdd(); 5150 if (stubAddr == NULL) { 5151 return false; // Intrinsic's stub is not implemented on this platform 5152 } 5153 const char* stubName = "mulAdd"; 5154 5155 assert(callee()->signature()->size() == 5, "mulAdd has 5 parameters"); 5156 5157 Node* out = argument(0); 5158 Node* in = argument(1); 5159 Node* offset = argument(2); 5160 Node* len = argument(3); 5161 Node* k = argument(4); 5162 5163 out = must_be_not_null(out, true); 5164 5165 in = access_resolve(in, ACCESS_READ); 5166 out = access_resolve(out, ACCESS_WRITE); 5167 5168 const Type* out_type = out->Value(&_gvn); 5169 const Type* in_type = in->Value(&_gvn); 5170 const TypeAryPtr* top_out = out_type->isa_aryptr(); 5171 const TypeAryPtr* top_in = in_type->isa_aryptr(); 5172 if (top_out == NULL || top_out->klass() == NULL || 5173 top_in == NULL || top_in->klass() == NULL) { 5174 // failed array check 5175 return false; 5176 } 5177 5178 BasicType out_elem = out_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); 5179 BasicType in_elem = in_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); 5180 if (out_elem != T_INT || in_elem != T_INT) { 5181 return false; 5182 } 5183 5184 Node* outlen = load_array_length(out); 5185 Node* new_offset = _gvn.transform(new SubINode(outlen, offset)); 5186 Node* out_start = array_element_address(out, intcon(0), out_elem); 5187 Node* in_start = array_element_address(in, intcon(0), in_elem); 5188 5189 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 5190 OptoRuntime::mulAdd_Type(), 5191 stubAddr, stubName, TypePtr::BOTTOM, 5192 out_start,in_start, new_offset, len, k); 5193 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 5194 set_result(result); 5195 return true; 5196 } 5197 5198 //-------------inline_montgomeryMultiply----------------------------------- 5199 bool LibraryCallKit::inline_montgomeryMultiply() { 5200 address stubAddr = StubRoutines::montgomeryMultiply(); 5201 if (stubAddr == NULL) { 5202 return false; // Intrinsic's stub is not implemented on this platform 5203 } 5204 5205 assert(UseMontgomeryMultiplyIntrinsic, "not implemented on this platform"); 5206 const char* stubName = "montgomery_multiply"; 5207 5208 assert(callee()->signature()->size() == 7, "montgomeryMultiply has 7 parameters"); 5209 5210 Node* a = argument(0); 5211 Node* b = argument(1); 5212 Node* n = argument(2); 5213 Node* len = argument(3); 5214 Node* inv = argument(4); 5215 Node* m = argument(6); 5216 5217 a = access_resolve(a, ACCESS_READ); 5218 b = access_resolve(b, ACCESS_READ); 5219 n = access_resolve(n, ACCESS_READ); 5220 m = access_resolve(m, ACCESS_WRITE); 5221 5222 const Type* a_type = a->Value(&_gvn); 5223 const TypeAryPtr* top_a = a_type->isa_aryptr(); 5224 const Type* b_type = b->Value(&_gvn); 5225 const TypeAryPtr* top_b = b_type->isa_aryptr(); 5226 const Type* n_type = a->Value(&_gvn); 5227 const TypeAryPtr* top_n = n_type->isa_aryptr(); 5228 const Type* m_type = a->Value(&_gvn); 5229 const TypeAryPtr* top_m = m_type->isa_aryptr(); 5230 if (top_a == NULL || top_a->klass() == NULL || 5231 top_b == NULL || top_b->klass() == NULL || 5232 top_n == NULL || top_n->klass() == NULL || 5233 top_m == NULL || top_m->klass() == NULL) { 5234 // failed array check 5235 return false; 5236 } 5237 5238 BasicType a_elem = a_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); 5239 BasicType b_elem = b_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); 5240 BasicType n_elem = n_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); 5241 BasicType m_elem = m_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); 5242 if (a_elem != T_INT || b_elem != T_INT || n_elem != T_INT || m_elem != T_INT) { 5243 return false; 5244 } 5245 5246 // Make the call 5247 { 5248 Node* a_start = array_element_address(a, intcon(0), a_elem); 5249 Node* b_start = array_element_address(b, intcon(0), b_elem); 5250 Node* n_start = array_element_address(n, intcon(0), n_elem); 5251 Node* m_start = array_element_address(m, intcon(0), m_elem); 5252 5253 Node* call = make_runtime_call(RC_LEAF, 5254 OptoRuntime::montgomeryMultiply_Type(), 5255 stubAddr, stubName, TypePtr::BOTTOM, 5256 a_start, b_start, n_start, len, inv, top(), 5257 m_start); 5258 set_result(m); 5259 } 5260 5261 return true; 5262 } 5263 5264 bool LibraryCallKit::inline_montgomerySquare() { 5265 address stubAddr = StubRoutines::montgomerySquare(); 5266 if (stubAddr == NULL) { 5267 return false; // Intrinsic's stub is not implemented on this platform 5268 } 5269 5270 assert(UseMontgomerySquareIntrinsic, "not implemented on this platform"); 5271 const char* stubName = "montgomery_square"; 5272 5273 assert(callee()->signature()->size() == 6, "montgomerySquare has 6 parameters"); 5274 5275 Node* a = argument(0); 5276 Node* n = argument(1); 5277 Node* len = argument(2); 5278 Node* inv = argument(3); 5279 Node* m = argument(5); 5280 5281 a = access_resolve(a, ACCESS_READ); 5282 n = access_resolve(n, ACCESS_READ); 5283 m = access_resolve(m, ACCESS_WRITE); 5284 5285 const Type* a_type = a->Value(&_gvn); 5286 const TypeAryPtr* top_a = a_type->isa_aryptr(); 5287 const Type* n_type = a->Value(&_gvn); 5288 const TypeAryPtr* top_n = n_type->isa_aryptr(); 5289 const Type* m_type = a->Value(&_gvn); 5290 const TypeAryPtr* top_m = m_type->isa_aryptr(); 5291 if (top_a == NULL || top_a->klass() == NULL || 5292 top_n == NULL || top_n->klass() == NULL || 5293 top_m == NULL || top_m->klass() == NULL) { 5294 // failed array check 5295 return false; 5296 } 5297 5298 BasicType a_elem = a_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); 5299 BasicType n_elem = n_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); 5300 BasicType m_elem = m_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); 5301 if (a_elem != T_INT || n_elem != T_INT || m_elem != T_INT) { 5302 return false; 5303 } 5304 5305 // Make the call 5306 { 5307 Node* a_start = array_element_address(a, intcon(0), a_elem); 5308 Node* n_start = array_element_address(n, intcon(0), n_elem); 5309 Node* m_start = array_element_address(m, intcon(0), m_elem); 5310 5311 Node* call = make_runtime_call(RC_LEAF, 5312 OptoRuntime::montgomerySquare_Type(), 5313 stubAddr, stubName, TypePtr::BOTTOM, 5314 a_start, n_start, len, inv, top(), 5315 m_start); 5316 set_result(m); 5317 } 5318 5319 return true; 5320 } 5321 5322 bool LibraryCallKit::inline_bigIntegerShift(bool isRightShift) { 5323 address stubAddr = NULL; 5324 const char* stubName = NULL; 5325 5326 stubAddr = isRightShift? StubRoutines::bigIntegerRightShift(): StubRoutines::bigIntegerLeftShift(); 5327 if (stubAddr == NULL) { 5328 return false; // Intrinsic's stub is not implemented on this platform 5329 } 5330 5331 stubName = isRightShift? "bigIntegerRightShiftWorker" : "bigIntegerLeftShiftWorker"; 5332 5333 assert(callee()->signature()->size() == 5, "expected 5 arguments"); 5334 5335 Node* newArr = argument(0); 5336 Node* oldArr = argument(1); 5337 Node* newIdx = argument(2); 5338 Node* shiftCount = argument(3); 5339 Node* numIter = argument(4); 5340 5341 const Type* newArr_type = newArr->Value(&_gvn); 5342 const TypeAryPtr* top_newArr = newArr_type->isa_aryptr(); 5343 const Type* oldArr_type = oldArr->Value(&_gvn); 5344 const TypeAryPtr* top_oldArr = oldArr_type->isa_aryptr(); 5345 if (top_newArr == NULL || top_newArr->klass() == NULL || top_oldArr == NULL 5346 || top_oldArr->klass() == NULL) { 5347 return false; 5348 } 5349 5350 BasicType newArr_elem = newArr_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); 5351 BasicType oldArr_elem = oldArr_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); 5352 if (newArr_elem != T_INT || oldArr_elem != T_INT) { 5353 return false; 5354 } 5355 5356 // Make the call 5357 { 5358 Node* newArr_start = array_element_address(newArr, intcon(0), newArr_elem); 5359 Node* oldArr_start = array_element_address(oldArr, intcon(0), oldArr_elem); 5360 5361 Node* call = make_runtime_call(RC_LEAF, 5362 OptoRuntime::bigIntegerShift_Type(), 5363 stubAddr, 5364 stubName, 5365 TypePtr::BOTTOM, 5366 newArr_start, 5367 oldArr_start, 5368 newIdx, 5369 shiftCount, 5370 numIter); 5371 } 5372 5373 return true; 5374 } 5375 5376 //-------------inline_vectorizedMismatch------------------------------ 5377 bool LibraryCallKit::inline_vectorizedMismatch() { 5378 assert(UseVectorizedMismatchIntrinsic, "not implementated on this platform"); 5379 5380 address stubAddr = StubRoutines::vectorizedMismatch(); 5381 if (stubAddr == NULL) { 5382 return false; // Intrinsic's stub is not implemented on this platform 5383 } 5384 const char* stubName = "vectorizedMismatch"; 5385 int size_l = callee()->signature()->size(); 5386 assert(callee()->signature()->size() == 8, "vectorizedMismatch has 6 parameters"); 5387 5388 Node* obja = argument(0); 5389 Node* aoffset = argument(1); 5390 Node* objb = argument(3); 5391 Node* boffset = argument(4); 5392 Node* length = argument(6); 5393 Node* scale = argument(7); 5394 5395 const Type* a_type = obja->Value(&_gvn); 5396 const Type* b_type = objb->Value(&_gvn); 5397 const TypeAryPtr* top_a = a_type->isa_aryptr(); 5398 const TypeAryPtr* top_b = b_type->isa_aryptr(); 5399 if (top_a == NULL || top_a->klass() == NULL || 5400 top_b == NULL || top_b->klass() == NULL) { 5401 // failed array check 5402 return false; 5403 } 5404 5405 Node* call; 5406 jvms()->set_should_reexecute(true); 5407 5408 obja = access_resolve(obja, ACCESS_READ); 5409 objb = access_resolve(objb, ACCESS_READ); 5410 Node* obja_adr = make_unsafe_address(obja, aoffset, ACCESS_READ); 5411 Node* objb_adr = make_unsafe_address(objb, boffset, ACCESS_READ); 5412 5413 call = make_runtime_call(RC_LEAF, 5414 OptoRuntime::vectorizedMismatch_Type(), 5415 stubAddr, stubName, TypePtr::BOTTOM, 5416 obja_adr, objb_adr, length, scale); 5417 5418 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 5419 set_result(result); 5420 return true; 5421 } 5422 5423 /** 5424 * Calculate CRC32 for byte. 5425 * int java.util.zip.CRC32.update(int crc, int b) 5426 */ 5427 bool LibraryCallKit::inline_updateCRC32() { 5428 assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support"); 5429 assert(callee()->signature()->size() == 2, "update has 2 parameters"); 5430 // no receiver since it is static method 5431 Node* crc = argument(0); // type: int 5432 Node* b = argument(1); // type: int 5433 5434 /* 5435 * int c = ~ crc; 5436 * b = timesXtoThe32[(b ^ c) & 0xFF]; 5437 * b = b ^ (c >>> 8); 5438 * crc = ~b; 5439 */ 5440 5441 Node* M1 = intcon(-1); 5442 crc = _gvn.transform(new XorINode(crc, M1)); 5443 Node* result = _gvn.transform(new XorINode(crc, b)); 5444 result = _gvn.transform(new AndINode(result, intcon(0xFF))); 5445 5446 Node* base = makecon(TypeRawPtr::make(StubRoutines::crc_table_addr())); 5447 Node* offset = _gvn.transform(new LShiftINode(result, intcon(0x2))); 5448 Node* adr = basic_plus_adr(top(), base, ConvI2X(offset)); 5449 result = make_load(control(), adr, TypeInt::INT, T_INT, MemNode::unordered); 5450 5451 crc = _gvn.transform(new URShiftINode(crc, intcon(8))); 5452 result = _gvn.transform(new XorINode(crc, result)); 5453 result = _gvn.transform(new XorINode(result, M1)); 5454 set_result(result); 5455 return true; 5456 } 5457 5458 /** 5459 * Calculate CRC32 for byte[] array. 5460 * int java.util.zip.CRC32.updateBytes(int crc, byte[] buf, int off, int len) 5461 */ 5462 bool LibraryCallKit::inline_updateBytesCRC32() { 5463 assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support"); 5464 assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters"); 5465 // no receiver since it is static method 5466 Node* crc = argument(0); // type: int 5467 Node* src = argument(1); // type: oop 5468 Node* offset = argument(2); // type: int 5469 Node* length = argument(3); // type: int 5470 5471 const Type* src_type = src->Value(&_gvn); 5472 const TypeAryPtr* top_src = src_type->isa_aryptr(); 5473 if (top_src == NULL || top_src->klass() == NULL) { 5474 // failed array check 5475 return false; 5476 } 5477 5478 // Figure out the size and type of the elements we will be copying. 5479 BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); 5480 if (src_elem != T_BYTE) { 5481 return false; 5482 } 5483 5484 // 'src_start' points to src array + scaled offset 5485 src = must_be_not_null(src, true); 5486 src = access_resolve(src, ACCESS_READ); 5487 Node* src_start = array_element_address(src, offset, src_elem); 5488 5489 // We assume that range check is done by caller. 5490 // TODO: generate range check (offset+length < src.length) in debug VM. 5491 5492 // Call the stub. 5493 address stubAddr = StubRoutines::updateBytesCRC32(); 5494 const char *stubName = "updateBytesCRC32"; 5495 5496 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(), 5497 stubAddr, stubName, TypePtr::BOTTOM, 5498 crc, src_start, length); 5499 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 5500 set_result(result); 5501 return true; 5502 } 5503 5504 /** 5505 * Calculate CRC32 for ByteBuffer. 5506 * int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len) 5507 */ 5508 bool LibraryCallKit::inline_updateByteBufferCRC32() { 5509 assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support"); 5510 assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long"); 5511 // no receiver since it is static method 5512 Node* crc = argument(0); // type: int 5513 Node* src = argument(1); // type: long 5514 Node* offset = argument(3); // type: int 5515 Node* length = argument(4); // type: int 5516 5517 src = ConvL2X(src); // adjust Java long to machine word 5518 Node* base = _gvn.transform(new CastX2PNode(src)); 5519 offset = ConvI2X(offset); 5520 5521 // 'src_start' points to src array + scaled offset 5522 Node* src_start = basic_plus_adr(top(), base, offset); 5523 5524 // Call the stub. 5525 address stubAddr = StubRoutines::updateBytesCRC32(); 5526 const char *stubName = "updateBytesCRC32"; 5527 5528 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(), 5529 stubAddr, stubName, TypePtr::BOTTOM, 5530 crc, src_start, length); 5531 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 5532 set_result(result); 5533 return true; 5534 } 5535 5536 //------------------------------get_table_from_crc32c_class----------------------- 5537 Node * LibraryCallKit::get_table_from_crc32c_class(ciInstanceKlass *crc32c_class) { 5538 Node* table = load_field_from_object(NULL, "byteTable", "[I", /*is_exact*/ false, /*is_static*/ true, crc32c_class); 5539 assert (table != NULL, "wrong version of java.util.zip.CRC32C"); 5540 5541 return table; 5542 } 5543 5544 //------------------------------inline_updateBytesCRC32C----------------------- 5545 // 5546 // Calculate CRC32C for byte[] array. 5547 // int java.util.zip.CRC32C.updateBytes(int crc, byte[] buf, int off, int end) 5548 // 5549 bool LibraryCallKit::inline_updateBytesCRC32C() { 5550 assert(UseCRC32CIntrinsics, "need CRC32C instruction support"); 5551 assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters"); 5552 assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded"); 5553 // no receiver since it is a static method 5554 Node* crc = argument(0); // type: int 5555 Node* src = argument(1); // type: oop 5556 Node* offset = argument(2); // type: int 5557 Node* end = argument(3); // type: int 5558 5559 Node* length = _gvn.transform(new SubINode(end, offset)); 5560 5561 const Type* src_type = src->Value(&_gvn); 5562 const TypeAryPtr* top_src = src_type->isa_aryptr(); 5563 if (top_src == NULL || top_src->klass() == NULL) { 5564 // failed array check 5565 return false; 5566 } 5567 5568 // Figure out the size and type of the elements we will be copying. 5569 BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); 5570 if (src_elem != T_BYTE) { 5571 return false; 5572 } 5573 5574 // 'src_start' points to src array + scaled offset 5575 src = must_be_not_null(src, true); 5576 src = access_resolve(src, ACCESS_READ); 5577 Node* src_start = array_element_address(src, offset, src_elem); 5578 5579 // static final int[] byteTable in class CRC32C 5580 Node* table = get_table_from_crc32c_class(callee()->holder()); 5581 table = must_be_not_null(table, true); 5582 table = access_resolve(table, ACCESS_READ); 5583 Node* table_start = array_element_address(table, intcon(0), T_INT); 5584 5585 // We assume that range check is done by caller. 5586 // TODO: generate range check (offset+length < src.length) in debug VM. 5587 5588 // Call the stub. 5589 address stubAddr = StubRoutines::updateBytesCRC32C(); 5590 const char *stubName = "updateBytesCRC32C"; 5591 5592 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(), 5593 stubAddr, stubName, TypePtr::BOTTOM, 5594 crc, src_start, length, table_start); 5595 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 5596 set_result(result); 5597 return true; 5598 } 5599 5600 //------------------------------inline_updateDirectByteBufferCRC32C----------------------- 5601 // 5602 // Calculate CRC32C for DirectByteBuffer. 5603 // int java.util.zip.CRC32C.updateDirectByteBuffer(int crc, long buf, int off, int end) 5604 // 5605 bool LibraryCallKit::inline_updateDirectByteBufferCRC32C() { 5606 assert(UseCRC32CIntrinsics, "need CRC32C instruction support"); 5607 assert(callee()->signature()->size() == 5, "updateDirectByteBuffer has 4 parameters and one is long"); 5608 assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded"); 5609 // no receiver since it is a static method 5610 Node* crc = argument(0); // type: int 5611 Node* src = argument(1); // type: long 5612 Node* offset = argument(3); // type: int 5613 Node* end = argument(4); // type: int 5614 5615 Node* length = _gvn.transform(new SubINode(end, offset)); 5616 5617 src = ConvL2X(src); // adjust Java long to machine word 5618 Node* base = _gvn.transform(new CastX2PNode(src)); 5619 offset = ConvI2X(offset); 5620 5621 // 'src_start' points to src array + scaled offset 5622 Node* src_start = basic_plus_adr(top(), base, offset); 5623 5624 // static final int[] byteTable in class CRC32C 5625 Node* table = get_table_from_crc32c_class(callee()->holder()); 5626 table = must_be_not_null(table, true); 5627 table = access_resolve(table, ACCESS_READ); 5628 Node* table_start = array_element_address(table, intcon(0), T_INT); 5629 5630 // Call the stub. 5631 address stubAddr = StubRoutines::updateBytesCRC32C(); 5632 const char *stubName = "updateBytesCRC32C"; 5633 5634 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(), 5635 stubAddr, stubName, TypePtr::BOTTOM, 5636 crc, src_start, length, table_start); 5637 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 5638 set_result(result); 5639 return true; 5640 } 5641 5642 //------------------------------inline_updateBytesAdler32---------------------- 5643 // 5644 // Calculate Adler32 checksum for byte[] array. 5645 // int java.util.zip.Adler32.updateBytes(int crc, byte[] buf, int off, int len) 5646 // 5647 bool LibraryCallKit::inline_updateBytesAdler32() { 5648 assert(UseAdler32Intrinsics, "Adler32 Instrinsic support need"); // check if we actually need to check this flag or check a different one 5649 assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters"); 5650 assert(callee()->holder()->is_loaded(), "Adler32 class must be loaded"); 5651 // no receiver since it is static method 5652 Node* crc = argument(0); // type: int 5653 Node* src = argument(1); // type: oop 5654 Node* offset = argument(2); // type: int 5655 Node* length = argument(3); // type: int 5656 5657 const Type* src_type = src->Value(&_gvn); 5658 const TypeAryPtr* top_src = src_type->isa_aryptr(); 5659 if (top_src == NULL || top_src->klass() == NULL) { 5660 // failed array check 5661 return false; 5662 } 5663 5664 // Figure out the size and type of the elements we will be copying. 5665 BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); 5666 if (src_elem != T_BYTE) { 5667 return false; 5668 } 5669 5670 // 'src_start' points to src array + scaled offset 5671 src = access_resolve(src, ACCESS_READ); 5672 Node* src_start = array_element_address(src, offset, src_elem); 5673 5674 // We assume that range check is done by caller. 5675 // TODO: generate range check (offset+length < src.length) in debug VM. 5676 5677 // Call the stub. 5678 address stubAddr = StubRoutines::updateBytesAdler32(); 5679 const char *stubName = "updateBytesAdler32"; 5680 5681 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesAdler32_Type(), 5682 stubAddr, stubName, TypePtr::BOTTOM, 5683 crc, src_start, length); 5684 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 5685 set_result(result); 5686 return true; 5687 } 5688 5689 //------------------------------inline_updateByteBufferAdler32--------------- 5690 // 5691 // Calculate Adler32 checksum for DirectByteBuffer. 5692 // int java.util.zip.Adler32.updateByteBuffer(int crc, long buf, int off, int len) 5693 // 5694 bool LibraryCallKit::inline_updateByteBufferAdler32() { 5695 assert(UseAdler32Intrinsics, "Adler32 Instrinsic support need"); // check if we actually need to check this flag or check a different one 5696 assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long"); 5697 assert(callee()->holder()->is_loaded(), "Adler32 class must be loaded"); 5698 // no receiver since it is static method 5699 Node* crc = argument(0); // type: int 5700 Node* src = argument(1); // type: long 5701 Node* offset = argument(3); // type: int 5702 Node* length = argument(4); // type: int 5703 5704 src = ConvL2X(src); // adjust Java long to machine word 5705 Node* base = _gvn.transform(new CastX2PNode(src)); 5706 offset = ConvI2X(offset); 5707 5708 // 'src_start' points to src array + scaled offset 5709 Node* src_start = basic_plus_adr(top(), base, offset); 5710 5711 // Call the stub. 5712 address stubAddr = StubRoutines::updateBytesAdler32(); 5713 const char *stubName = "updateBytesAdler32"; 5714 5715 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesAdler32_Type(), 5716 stubAddr, stubName, TypePtr::BOTTOM, 5717 crc, src_start, length); 5718 5719 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 5720 set_result(result); 5721 return true; 5722 } 5723 5724 //----------------------------inline_reference_get---------------------------- 5725 // public T java.lang.ref.Reference.get(); 5726 bool LibraryCallKit::inline_reference_get() { 5727 const int referent_offset = java_lang_ref_Reference::referent_offset; 5728 guarantee(referent_offset > 0, "should have already been set"); 5729 5730 // Get the argument: 5731 Node* reference_obj = null_check_receiver(); 5732 if (stopped()) return true; 5733 5734 const TypeInstPtr* tinst = _gvn.type(reference_obj)->isa_instptr(); 5735 assert(tinst != NULL, "obj is null"); 5736 assert(tinst->klass()->is_loaded(), "obj is not loaded"); 5737 ciInstanceKlass* referenceKlass = tinst->klass()->as_instance_klass(); 5738 ciField* field = referenceKlass->get_field_by_name(ciSymbol::make("referent"), 5739 ciSymbol::make("Ljava/lang/Object;"), 5740 false); 5741 assert (field != NULL, "undefined field"); 5742 5743 Node* adr = basic_plus_adr(reference_obj, reference_obj, referent_offset); 5744 const TypePtr* adr_type = C->alias_type(field)->adr_type(); 5745 5746 ciInstanceKlass* klass = env()->Object_klass(); 5747 const TypeOopPtr* object_type = TypeOopPtr::make_from_klass(klass); 5748 5749 DecoratorSet decorators = IN_HEAP | ON_WEAK_OOP_REF; 5750 Node* result = access_load_at(reference_obj, adr, adr_type, object_type, T_OBJECT, decorators); 5751 // Add memory barrier to prevent commoning reads from this field 5752 // across safepoint since GC can change its value. 5753 insert_mem_bar(Op_MemBarCPUOrder); 5754 5755 set_result(result); 5756 return true; 5757 } 5758 5759 5760 Node * LibraryCallKit::load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, 5761 bool is_exact=true, bool is_static=false, 5762 ciInstanceKlass * fromKls=NULL) { 5763 if (fromKls == NULL) { 5764 const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr(); 5765 assert(tinst != NULL, "obj is null"); 5766 assert(tinst->klass()->is_loaded(), "obj is not loaded"); 5767 assert(!is_exact || tinst->klass_is_exact(), "klass not exact"); 5768 fromKls = tinst->klass()->as_instance_klass(); 5769 } else { 5770 assert(is_static, "only for static field access"); 5771 } 5772 ciField* field = fromKls->get_field_by_name(ciSymbol::make(fieldName), 5773 ciSymbol::make(fieldTypeString), 5774 is_static); 5775 5776 assert (field != NULL, "undefined field"); 5777 if (field == NULL) return (Node *) NULL; 5778 5779 if (is_static) { 5780 const TypeInstPtr* tip = TypeInstPtr::make(fromKls->java_mirror()); 5781 fromObj = makecon(tip); 5782 } 5783 5784 // Next code copied from Parse::do_get_xxx(): 5785 5786 // Compute address and memory type. 5787 int offset = field->offset_in_bytes(); 5788 bool is_vol = field->is_volatile(); 5789 ciType* field_klass = field->type(); 5790 assert(field_klass->is_loaded(), "should be loaded"); 5791 const TypePtr* adr_type = C->alias_type(field)->adr_type(); 5792 Node *adr = basic_plus_adr(fromObj, fromObj, offset); 5793 BasicType bt = field->layout_type(); 5794 5795 // Build the resultant type of the load 5796 const Type *type; 5797 if (bt == T_OBJECT) { 5798 type = TypeOopPtr::make_from_klass(field_klass->as_klass()); 5799 } else { 5800 type = Type::get_const_basic_type(bt); 5801 } 5802 5803 DecoratorSet decorators = IN_HEAP; 5804 5805 if (is_vol) { 5806 decorators |= MO_SEQ_CST; 5807 } 5808 5809 return access_load_at(fromObj, adr, adr_type, type, bt, decorators); 5810 } 5811 5812 Node * LibraryCallKit::field_address_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, 5813 bool is_exact = true, bool is_static = false, 5814 ciInstanceKlass * fromKls = NULL) { 5815 if (fromKls == NULL) { 5816 const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr(); 5817 assert(tinst != NULL, "obj is null"); 5818 assert(tinst->klass()->is_loaded(), "obj is not loaded"); 5819 assert(!is_exact || tinst->klass_is_exact(), "klass not exact"); 5820 fromKls = tinst->klass()->as_instance_klass(); 5821 } 5822 else { 5823 assert(is_static, "only for static field access"); 5824 } 5825 ciField* field = fromKls->get_field_by_name(ciSymbol::make(fieldName), 5826 ciSymbol::make(fieldTypeString), 5827 is_static); 5828 5829 assert(field != NULL, "undefined field"); 5830 assert(!field->is_volatile(), "not defined for volatile fields"); 5831 5832 if (is_static) { 5833 const TypeInstPtr* tip = TypeInstPtr::make(fromKls->java_mirror()); 5834 fromObj = makecon(tip); 5835 } 5836 5837 // Next code copied from Parse::do_get_xxx(): 5838 5839 // Compute address and memory type. 5840 int offset = field->offset_in_bytes(); 5841 Node *adr = basic_plus_adr(fromObj, fromObj, offset); 5842 5843 return adr; 5844 } 5845 5846 //------------------------------inline_aescrypt_Block----------------------- 5847 bool LibraryCallKit::inline_aescrypt_Block(vmIntrinsics::ID id) { 5848 address stubAddr = NULL; 5849 const char *stubName; 5850 assert(UseAES, "need AES instruction support"); 5851 5852 switch(id) { 5853 case vmIntrinsics::_aescrypt_encryptBlock: 5854 stubAddr = StubRoutines::aescrypt_encryptBlock(); 5855 stubName = "aescrypt_encryptBlock"; 5856 break; 5857 case vmIntrinsics::_aescrypt_decryptBlock: 5858 stubAddr = StubRoutines::aescrypt_decryptBlock(); 5859 stubName = "aescrypt_decryptBlock"; 5860 break; 5861 default: 5862 break; 5863 } 5864 if (stubAddr == NULL) return false; 5865 5866 Node* aescrypt_object = argument(0); 5867 Node* src = argument(1); 5868 Node* src_offset = argument(2); 5869 Node* dest = argument(3); 5870 Node* dest_offset = argument(4); 5871 5872 src = must_be_not_null(src, true); 5873 dest = must_be_not_null(dest, true); 5874 5875 src = access_resolve(src, ACCESS_READ); 5876 dest = access_resolve(dest, ACCESS_WRITE); 5877 5878 // (1) src and dest are arrays. 5879 const Type* src_type = src->Value(&_gvn); 5880 const Type* dest_type = dest->Value(&_gvn); 5881 const TypeAryPtr* top_src = src_type->isa_aryptr(); 5882 const TypeAryPtr* top_dest = dest_type->isa_aryptr(); 5883 assert (top_src != NULL && top_src->klass() != NULL && top_dest != NULL && top_dest->klass() != NULL, "args are strange"); 5884 5885 // for the quick and dirty code we will skip all the checks. 5886 // we are just trying to get the call to be generated. 5887 Node* src_start = src; 5888 Node* dest_start = dest; 5889 if (src_offset != NULL || dest_offset != NULL) { 5890 assert(src_offset != NULL && dest_offset != NULL, ""); 5891 src_start = array_element_address(src, src_offset, T_BYTE); 5892 dest_start = array_element_address(dest, dest_offset, T_BYTE); 5893 } 5894 5895 // now need to get the start of its expanded key array 5896 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java 5897 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); 5898 if (k_start == NULL) return false; 5899 5900 if (Matcher::pass_original_key_for_aes()) { 5901 // on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to 5902 // compatibility issues between Java key expansion and SPARC crypto instructions 5903 Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object); 5904 if (original_k_start == NULL) return false; 5905 5906 // Call the stub. 5907 make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(), 5908 stubAddr, stubName, TypePtr::BOTTOM, 5909 src_start, dest_start, k_start, original_k_start); 5910 } else { 5911 // Call the stub. 5912 make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(), 5913 stubAddr, stubName, TypePtr::BOTTOM, 5914 src_start, dest_start, k_start); 5915 } 5916 5917 return true; 5918 } 5919 5920 //------------------------------inline_cipherBlockChaining_AESCrypt----------------------- 5921 bool LibraryCallKit::inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id) { 5922 address stubAddr = NULL; 5923 const char *stubName = NULL; 5924 5925 assert(UseAES, "need AES instruction support"); 5926 5927 switch(id) { 5928 case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt: 5929 stubAddr = StubRoutines::cipherBlockChaining_encryptAESCrypt(); 5930 stubName = "cipherBlockChaining_encryptAESCrypt"; 5931 break; 5932 case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt: 5933 stubAddr = StubRoutines::cipherBlockChaining_decryptAESCrypt(); 5934 stubName = "cipherBlockChaining_decryptAESCrypt"; 5935 break; 5936 default: 5937 break; 5938 } 5939 if (stubAddr == NULL) return false; 5940 5941 Node* cipherBlockChaining_object = argument(0); 5942 Node* src = argument(1); 5943 Node* src_offset = argument(2); 5944 Node* len = argument(3); 5945 Node* dest = argument(4); 5946 Node* dest_offset = argument(5); 5947 5948 src = must_be_not_null(src, false); 5949 dest = must_be_not_null(dest, false); 5950 5951 src = access_resolve(src, ACCESS_READ); 5952 dest = access_resolve(dest, ACCESS_WRITE); 5953 5954 // (1) src and dest are arrays. 5955 const Type* src_type = src->Value(&_gvn); 5956 const Type* dest_type = dest->Value(&_gvn); 5957 const TypeAryPtr* top_src = src_type->isa_aryptr(); 5958 const TypeAryPtr* top_dest = dest_type->isa_aryptr(); 5959 assert (top_src != NULL && top_src->klass() != NULL 5960 && top_dest != NULL && top_dest->klass() != NULL, "args are strange"); 5961 5962 // checks are the responsibility of the caller 5963 Node* src_start = src; 5964 Node* dest_start = dest; 5965 if (src_offset != NULL || dest_offset != NULL) { 5966 assert(src_offset != NULL && dest_offset != NULL, ""); 5967 src_start = array_element_address(src, src_offset, T_BYTE); 5968 dest_start = array_element_address(dest, dest_offset, T_BYTE); 5969 } 5970 5971 // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object 5972 // (because of the predicated logic executed earlier). 5973 // so we cast it here safely. 5974 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java 5975 5976 Node* embeddedCipherObj = load_field_from_object(cipherBlockChaining_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false); 5977 if (embeddedCipherObj == NULL) return false; 5978 5979 // cast it to what we know it will be at runtime 5980 const TypeInstPtr* tinst = _gvn.type(cipherBlockChaining_object)->isa_instptr(); 5981 assert(tinst != NULL, "CBC obj is null"); 5982 assert(tinst->klass()->is_loaded(), "CBC obj is not loaded"); 5983 ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 5984 assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded"); 5985 5986 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 5987 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt); 5988 const TypeOopPtr* xtype = aklass->as_instance_type(); 5989 Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype); 5990 aescrypt_object = _gvn.transform(aescrypt_object); 5991 5992 // we need to get the start of the aescrypt_object's expanded key array 5993 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); 5994 if (k_start == NULL) return false; 5995 5996 // similarly, get the start address of the r vector 5997 Node* objRvec = load_field_from_object(cipherBlockChaining_object, "r", "[B", /*is_exact*/ false); 5998 if (objRvec == NULL) return false; 5999 objRvec = access_resolve(objRvec, ACCESS_WRITE); 6000 Node* r_start = array_element_address(objRvec, intcon(0), T_BYTE); 6001 6002 Node* cbcCrypt; 6003 if (Matcher::pass_original_key_for_aes()) { 6004 // on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to 6005 // compatibility issues between Java key expansion and SPARC crypto instructions 6006 Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object); 6007 if (original_k_start == NULL) return false; 6008 6009 // Call the stub, passing src_start, dest_start, k_start, r_start, src_len and original_k_start 6010 cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP, 6011 OptoRuntime::cipherBlockChaining_aescrypt_Type(), 6012 stubAddr, stubName, TypePtr::BOTTOM, 6013 src_start, dest_start, k_start, r_start, len, original_k_start); 6014 } else { 6015 // Call the stub, passing src_start, dest_start, k_start, r_start and src_len 6016 cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP, 6017 OptoRuntime::cipherBlockChaining_aescrypt_Type(), 6018 stubAddr, stubName, TypePtr::BOTTOM, 6019 src_start, dest_start, k_start, r_start, len); 6020 } 6021 6022 // return cipher length (int) 6023 Node* retvalue = _gvn.transform(new ProjNode(cbcCrypt, TypeFunc::Parms)); 6024 set_result(retvalue); 6025 return true; 6026 } 6027 6028 //------------------------------inline_electronicCodeBook_AESCrypt----------------------- 6029 bool LibraryCallKit::inline_electronicCodeBook_AESCrypt(vmIntrinsics::ID id) { 6030 address stubAddr = NULL; 6031 const char *stubName = NULL; 6032 6033 assert(UseAES, "need AES instruction support"); 6034 6035 switch (id) { 6036 case vmIntrinsics::_electronicCodeBook_encryptAESCrypt: 6037 stubAddr = StubRoutines::electronicCodeBook_encryptAESCrypt(); 6038 stubName = "electronicCodeBook_encryptAESCrypt"; 6039 break; 6040 case vmIntrinsics::_electronicCodeBook_decryptAESCrypt: 6041 stubAddr = StubRoutines::electronicCodeBook_decryptAESCrypt(); 6042 stubName = "electronicCodeBook_decryptAESCrypt"; 6043 break; 6044 default: 6045 break; 6046 } 6047 6048 if (stubAddr == NULL) return false; 6049 6050 Node* electronicCodeBook_object = argument(0); 6051 Node* src = argument(1); 6052 Node* src_offset = argument(2); 6053 Node* len = argument(3); 6054 Node* dest = argument(4); 6055 Node* dest_offset = argument(5); 6056 6057 // (1) src and dest are arrays. 6058 const Type* src_type = src->Value(&_gvn); 6059 const Type* dest_type = dest->Value(&_gvn); 6060 const TypeAryPtr* top_src = src_type->isa_aryptr(); 6061 const TypeAryPtr* top_dest = dest_type->isa_aryptr(); 6062 assert(top_src != NULL && top_src->klass() != NULL 6063 && top_dest != NULL && top_dest->klass() != NULL, "args are strange"); 6064 6065 // checks are the responsibility of the caller 6066 Node* src_start = src; 6067 Node* dest_start = dest; 6068 if (src_offset != NULL || dest_offset != NULL) { 6069 assert(src_offset != NULL && dest_offset != NULL, ""); 6070 src_start = array_element_address(src, src_offset, T_BYTE); 6071 dest_start = array_element_address(dest, dest_offset, T_BYTE); 6072 } 6073 6074 // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object 6075 // (because of the predicated logic executed earlier). 6076 // so we cast it here safely. 6077 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java 6078 6079 Node* embeddedCipherObj = load_field_from_object(electronicCodeBook_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false); 6080 if (embeddedCipherObj == NULL) return false; 6081 6082 // cast it to what we know it will be at runtime 6083 const TypeInstPtr* tinst = _gvn.type(electronicCodeBook_object)->isa_instptr(); 6084 assert(tinst != NULL, "ECB obj is null"); 6085 assert(tinst->klass()->is_loaded(), "ECB obj is not loaded"); 6086 ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 6087 assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded"); 6088 6089 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 6090 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt); 6091 const TypeOopPtr* xtype = aklass->as_instance_type(); 6092 Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype); 6093 aescrypt_object = _gvn.transform(aescrypt_object); 6094 6095 // we need to get the start of the aescrypt_object's expanded key array 6096 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); 6097 if (k_start == NULL) return false; 6098 6099 Node* ecbCrypt; 6100 if (Matcher::pass_original_key_for_aes()) { 6101 // no SPARC version for AES/ECB intrinsics now. 6102 return false; 6103 } 6104 // Call the stub, passing src_start, dest_start, k_start, r_start and src_len 6105 ecbCrypt = make_runtime_call(RC_LEAF | RC_NO_FP, 6106 OptoRuntime::electronicCodeBook_aescrypt_Type(), 6107 stubAddr, stubName, TypePtr::BOTTOM, 6108 src_start, dest_start, k_start, len); 6109 6110 // return cipher length (int) 6111 Node* retvalue = _gvn.transform(new ProjNode(ecbCrypt, TypeFunc::Parms)); 6112 set_result(retvalue); 6113 return true; 6114 } 6115 6116 //------------------------------inline_counterMode_AESCrypt----------------------- 6117 bool LibraryCallKit::inline_counterMode_AESCrypt(vmIntrinsics::ID id) { 6118 assert(UseAES, "need AES instruction support"); 6119 if (!UseAESCTRIntrinsics) return false; 6120 6121 address stubAddr = NULL; 6122 const char *stubName = NULL; 6123 if (id == vmIntrinsics::_counterMode_AESCrypt) { 6124 stubAddr = StubRoutines::counterMode_AESCrypt(); 6125 stubName = "counterMode_AESCrypt"; 6126 } 6127 if (stubAddr == NULL) return false; 6128 6129 Node* counterMode_object = argument(0); 6130 Node* src = argument(1); 6131 Node* src_offset = argument(2); 6132 Node* len = argument(3); 6133 Node* dest = argument(4); 6134 Node* dest_offset = argument(5); 6135 6136 src = access_resolve(src, ACCESS_READ); 6137 dest = access_resolve(dest, ACCESS_WRITE); 6138 counterMode_object = access_resolve(counterMode_object, ACCESS_WRITE); 6139 6140 // (1) src and dest are arrays. 6141 const Type* src_type = src->Value(&_gvn); 6142 const Type* dest_type = dest->Value(&_gvn); 6143 const TypeAryPtr* top_src = src_type->isa_aryptr(); 6144 const TypeAryPtr* top_dest = dest_type->isa_aryptr(); 6145 assert(top_src != NULL && top_src->klass() != NULL && 6146 top_dest != NULL && top_dest->klass() != NULL, "args are strange"); 6147 6148 // checks are the responsibility of the caller 6149 Node* src_start = src; 6150 Node* dest_start = dest; 6151 if (src_offset != NULL || dest_offset != NULL) { 6152 assert(src_offset != NULL && dest_offset != NULL, ""); 6153 src_start = array_element_address(src, src_offset, T_BYTE); 6154 dest_start = array_element_address(dest, dest_offset, T_BYTE); 6155 } 6156 6157 // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object 6158 // (because of the predicated logic executed earlier). 6159 // so we cast it here safely. 6160 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java 6161 Node* embeddedCipherObj = load_field_from_object(counterMode_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false); 6162 if (embeddedCipherObj == NULL) return false; 6163 // cast it to what we know it will be at runtime 6164 const TypeInstPtr* tinst = _gvn.type(counterMode_object)->isa_instptr(); 6165 assert(tinst != NULL, "CTR obj is null"); 6166 assert(tinst->klass()->is_loaded(), "CTR obj is not loaded"); 6167 ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 6168 assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded"); 6169 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 6170 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt); 6171 const TypeOopPtr* xtype = aklass->as_instance_type(); 6172 Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype); 6173 aescrypt_object = _gvn.transform(aescrypt_object); 6174 // we need to get the start of the aescrypt_object's expanded key array 6175 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); 6176 if (k_start == NULL) return false; 6177 // similarly, get the start address of the r vector 6178 Node* obj_counter = load_field_from_object(counterMode_object, "counter", "[B", /*is_exact*/ false); 6179 if (obj_counter == NULL) return false; 6180 obj_counter = access_resolve(obj_counter, ACCESS_WRITE); 6181 Node* cnt_start = array_element_address(obj_counter, intcon(0), T_BYTE); 6182 6183 Node* saved_encCounter = load_field_from_object(counterMode_object, "encryptedCounter", "[B", /*is_exact*/ false); 6184 if (saved_encCounter == NULL) return false; 6185 saved_encCounter = access_resolve(saved_encCounter, ACCESS_WRITE); 6186 Node* saved_encCounter_start = array_element_address(saved_encCounter, intcon(0), T_BYTE); 6187 Node* used = field_address_from_object(counterMode_object, "used", "I", /*is_exact*/ false); 6188 6189 Node* ctrCrypt; 6190 if (Matcher::pass_original_key_for_aes()) { 6191 // no SPARC version for AES/CTR intrinsics now. 6192 return false; 6193 } 6194 // Call the stub, passing src_start, dest_start, k_start, r_start and src_len 6195 ctrCrypt = make_runtime_call(RC_LEAF|RC_NO_FP, 6196 OptoRuntime::counterMode_aescrypt_Type(), 6197 stubAddr, stubName, TypePtr::BOTTOM, 6198 src_start, dest_start, k_start, cnt_start, len, saved_encCounter_start, used); 6199 6200 // return cipher length (int) 6201 Node* retvalue = _gvn.transform(new ProjNode(ctrCrypt, TypeFunc::Parms)); 6202 set_result(retvalue); 6203 return true; 6204 } 6205 6206 //------------------------------get_key_start_from_aescrypt_object----------------------- 6207 Node * LibraryCallKit::get_key_start_from_aescrypt_object(Node *aescrypt_object) { 6208 #if defined(PPC64) || defined(S390) 6209 // MixColumns for decryption can be reduced by preprocessing MixColumns with round keys. 6210 // Intel's extention is based on this optimization and AESCrypt generates round keys by preprocessing MixColumns. 6211 // However, ppc64 vncipher processes MixColumns and requires the same round keys with encryption. 6212 // The ppc64 stubs of encryption and decryption use the same round keys (sessionK[0]). 6213 Node* objSessionK = load_field_from_object(aescrypt_object, "sessionK", "[[I", /*is_exact*/ false); 6214 assert (objSessionK != NULL, "wrong version of com.sun.crypto.provider.AESCrypt"); 6215 if (objSessionK == NULL) { 6216 return (Node *) NULL; 6217 } 6218 Node* objAESCryptKey = load_array_element(control(), objSessionK, intcon(0), TypeAryPtr::OOPS); 6219 #else 6220 Node* objAESCryptKey = load_field_from_object(aescrypt_object, "K", "[I", /*is_exact*/ false); 6221 #endif // PPC64 6222 assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt"); 6223 if (objAESCryptKey == NULL) return (Node *) NULL; 6224 6225 // now have the array, need to get the start address of the K array 6226 objAESCryptKey = access_resolve(objAESCryptKey, ACCESS_READ); 6227 Node* k_start = array_element_address(objAESCryptKey, intcon(0), T_INT); 6228 return k_start; 6229 } 6230 6231 //------------------------------get_original_key_start_from_aescrypt_object----------------------- 6232 Node * LibraryCallKit::get_original_key_start_from_aescrypt_object(Node *aescrypt_object) { 6233 Node* objAESCryptKey = load_field_from_object(aescrypt_object, "lastKey", "[B", /*is_exact*/ false); 6234 assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt"); 6235 if (objAESCryptKey == NULL) return (Node *) NULL; 6236 6237 // now have the array, need to get the start address of the lastKey array 6238 objAESCryptKey = access_resolve(objAESCryptKey, ACCESS_READ); 6239 Node* original_k_start = array_element_address(objAESCryptKey, intcon(0), T_BYTE); 6240 return original_k_start; 6241 } 6242 6243 //----------------------------inline_cipherBlockChaining_AESCrypt_predicate---------------------------- 6244 // Return node representing slow path of predicate check. 6245 // the pseudo code we want to emulate with this predicate is: 6246 // for encryption: 6247 // if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath 6248 // for decryption: 6249 // if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath 6250 // note cipher==plain is more conservative than the original java code but that's OK 6251 // 6252 Node* LibraryCallKit::inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting) { 6253 // The receiver was checked for NULL already. 6254 Node* objCBC = argument(0); 6255 6256 Node* src = argument(1); 6257 Node* dest = argument(4); 6258 6259 // Load embeddedCipher field of CipherBlockChaining object. 6260 Node* embeddedCipherObj = load_field_from_object(objCBC, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false); 6261 6262 // get AESCrypt klass for instanceOf check 6263 // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point 6264 // will have same classloader as CipherBlockChaining object 6265 const TypeInstPtr* tinst = _gvn.type(objCBC)->isa_instptr(); 6266 assert(tinst != NULL, "CBCobj is null"); 6267 assert(tinst->klass()->is_loaded(), "CBCobj is not loaded"); 6268 6269 // we want to do an instanceof comparison against the AESCrypt class 6270 ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 6271 if (!klass_AESCrypt->is_loaded()) { 6272 // if AESCrypt is not even loaded, we never take the intrinsic fast path 6273 Node* ctrl = control(); 6274 set_control(top()); // no regular fast path 6275 return ctrl; 6276 } 6277 6278 src = must_be_not_null(src, true); 6279 dest = must_be_not_null(dest, true); 6280 6281 // Resolve oops to stable for CmpP below. 6282 src = access_resolve(src, 0); 6283 dest = access_resolve(dest, 0); 6284 6285 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 6286 6287 Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt))); 6288 Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); 6289 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); 6290 6291 Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN); 6292 6293 // for encryption, we are done 6294 if (!decrypting) 6295 return instof_false; // even if it is NULL 6296 6297 // for decryption, we need to add a further check to avoid 6298 // taking the intrinsic path when cipher and plain are the same 6299 // see the original java code for why. 6300 RegionNode* region = new RegionNode(3); 6301 region->init_req(1, instof_false); 6302 6303 Node* cmp_src_dest = _gvn.transform(new CmpPNode(src, dest)); 6304 Node* bool_src_dest = _gvn.transform(new BoolNode(cmp_src_dest, BoolTest::eq)); 6305 Node* src_dest_conjoint = generate_guard(bool_src_dest, NULL, PROB_MIN); 6306 region->init_req(2, src_dest_conjoint); 6307 6308 record_for_igvn(region); 6309 return _gvn.transform(region); 6310 } 6311 6312 //----------------------------inline_electronicCodeBook_AESCrypt_predicate---------------------------- 6313 // Return node representing slow path of predicate check. 6314 // the pseudo code we want to emulate with this predicate is: 6315 // for encryption: 6316 // if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath 6317 // for decryption: 6318 // if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath 6319 // note cipher==plain is more conservative than the original java code but that's OK 6320 // 6321 Node* LibraryCallKit::inline_electronicCodeBook_AESCrypt_predicate(bool decrypting) { 6322 // The receiver was checked for NULL already. 6323 Node* objECB = argument(0); 6324 6325 // Load embeddedCipher field of ElectronicCodeBook object. 6326 Node* embeddedCipherObj = load_field_from_object(objECB, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false); 6327 6328 // get AESCrypt klass for instanceOf check 6329 // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point 6330 // will have same classloader as ElectronicCodeBook object 6331 const TypeInstPtr* tinst = _gvn.type(objECB)->isa_instptr(); 6332 assert(tinst != NULL, "ECBobj is null"); 6333 assert(tinst->klass()->is_loaded(), "ECBobj is not loaded"); 6334 6335 // we want to do an instanceof comparison against the AESCrypt class 6336 ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 6337 if (!klass_AESCrypt->is_loaded()) { 6338 // if AESCrypt is not even loaded, we never take the intrinsic fast path 6339 Node* ctrl = control(); 6340 set_control(top()); // no regular fast path 6341 return ctrl; 6342 } 6343 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 6344 6345 Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt))); 6346 Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); 6347 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); 6348 6349 Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN); 6350 6351 // for encryption, we are done 6352 if (!decrypting) 6353 return instof_false; // even if it is NULL 6354 6355 // for decryption, we need to add a further check to avoid 6356 // taking the intrinsic path when cipher and plain are the same 6357 // see the original java code for why. 6358 RegionNode* region = new RegionNode(3); 6359 region->init_req(1, instof_false); 6360 Node* src = argument(1); 6361 Node* dest = argument(4); 6362 Node* cmp_src_dest = _gvn.transform(new CmpPNode(src, dest)); 6363 Node* bool_src_dest = _gvn.transform(new BoolNode(cmp_src_dest, BoolTest::eq)); 6364 Node* src_dest_conjoint = generate_guard(bool_src_dest, NULL, PROB_MIN); 6365 region->init_req(2, src_dest_conjoint); 6366 6367 record_for_igvn(region); 6368 return _gvn.transform(region); 6369 } 6370 6371 //----------------------------inline_counterMode_AESCrypt_predicate---------------------------- 6372 // Return node representing slow path of predicate check. 6373 // the pseudo code we want to emulate with this predicate is: 6374 // for encryption: 6375 // if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath 6376 // for decryption: 6377 // if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath 6378 // note cipher==plain is more conservative than the original java code but that's OK 6379 // 6380 6381 Node* LibraryCallKit::inline_counterMode_AESCrypt_predicate() { 6382 // The receiver was checked for NULL already. 6383 Node* objCTR = argument(0); 6384 6385 // Load embeddedCipher field of CipherBlockChaining object. 6386 Node* embeddedCipherObj = load_field_from_object(objCTR, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false); 6387 6388 // get AESCrypt klass for instanceOf check 6389 // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point 6390 // will have same classloader as CipherBlockChaining object 6391 const TypeInstPtr* tinst = _gvn.type(objCTR)->isa_instptr(); 6392 assert(tinst != NULL, "CTRobj is null"); 6393 assert(tinst->klass()->is_loaded(), "CTRobj is not loaded"); 6394 6395 // we want to do an instanceof comparison against the AESCrypt class 6396 ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 6397 if (!klass_AESCrypt->is_loaded()) { 6398 // if AESCrypt is not even loaded, we never take the intrinsic fast path 6399 Node* ctrl = control(); 6400 set_control(top()); // no regular fast path 6401 return ctrl; 6402 } 6403 6404 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 6405 Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt))); 6406 Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); 6407 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); 6408 Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN); 6409 6410 return instof_false; // even if it is NULL 6411 } 6412 6413 //------------------------------inline_ghash_processBlocks 6414 bool LibraryCallKit::inline_ghash_processBlocks() { 6415 address stubAddr; 6416 const char *stubName; 6417 assert(UseGHASHIntrinsics, "need GHASH intrinsics support"); 6418 6419 stubAddr = StubRoutines::ghash_processBlocks(); 6420 stubName = "ghash_processBlocks"; 6421 6422 Node* data = argument(0); 6423 Node* offset = argument(1); 6424 Node* len = argument(2); 6425 Node* state = argument(3); 6426 Node* subkeyH = argument(4); 6427 6428 state = must_be_not_null(state, true); 6429 subkeyH = must_be_not_null(subkeyH, true); 6430 data = must_be_not_null(data, true); 6431 6432 state = access_resolve(state, ACCESS_WRITE); 6433 subkeyH = access_resolve(subkeyH, ACCESS_READ); 6434 data = access_resolve(data, ACCESS_READ); 6435 6436 Node* state_start = array_element_address(state, intcon(0), T_LONG); 6437 assert(state_start, "state is NULL"); 6438 Node* subkeyH_start = array_element_address(subkeyH, intcon(0), T_LONG); 6439 assert(subkeyH_start, "subkeyH is NULL"); 6440 Node* data_start = array_element_address(data, offset, T_BYTE); 6441 assert(data_start, "data is NULL"); 6442 6443 Node* ghash = make_runtime_call(RC_LEAF|RC_NO_FP, 6444 OptoRuntime::ghash_processBlocks_Type(), 6445 stubAddr, stubName, TypePtr::BOTTOM, 6446 state_start, subkeyH_start, data_start, len); 6447 return true; 6448 } 6449 6450 bool LibraryCallKit::inline_base64_encodeBlock() { 6451 address stubAddr; 6452 const char *stubName; 6453 assert(UseBASE64Intrinsics, "need Base64 intrinsics support"); 6454 assert(callee()->signature()->size() == 6, "base64_encodeBlock has 6 parameters"); 6455 stubAddr = StubRoutines::base64_encodeBlock(); 6456 stubName = "encodeBlock"; 6457 6458 if (!stubAddr) return false; 6459 Node* base64obj = argument(0); 6460 Node* src = argument(1); 6461 Node* offset = argument(2); 6462 Node* len = argument(3); 6463 Node* dest = argument(4); 6464 Node* dp = argument(5); 6465 Node* isURL = argument(6); 6466 6467 src = must_be_not_null(src, true); 6468 src = access_resolve(src, ACCESS_READ); 6469 dest = must_be_not_null(dest, true); 6470 dest = access_resolve(dest, ACCESS_WRITE); 6471 6472 Node* src_start = array_element_address(src, intcon(0), T_BYTE); 6473 assert(src_start, "source array is NULL"); 6474 Node* dest_start = array_element_address(dest, intcon(0), T_BYTE); 6475 assert(dest_start, "destination array is NULL"); 6476 6477 Node* base64 = make_runtime_call(RC_LEAF, 6478 OptoRuntime::base64_encodeBlock_Type(), 6479 stubAddr, stubName, TypePtr::BOTTOM, 6480 src_start, offset, len, dest_start, dp, isURL); 6481 return true; 6482 } 6483 6484 //------------------------------inline_sha_implCompress----------------------- 6485 // 6486 // Calculate SHA (i.e., SHA-1) for single-block byte[] array. 6487 // void com.sun.security.provider.SHA.implCompress(byte[] buf, int ofs) 6488 // 6489 // Calculate SHA2 (i.e., SHA-244 or SHA-256) for single-block byte[] array. 6490 // void com.sun.security.provider.SHA2.implCompress(byte[] buf, int ofs) 6491 // 6492 // Calculate SHA5 (i.e., SHA-384 or SHA-512) for single-block byte[] array. 6493 // void com.sun.security.provider.SHA5.implCompress(byte[] buf, int ofs) 6494 // 6495 bool LibraryCallKit::inline_sha_implCompress(vmIntrinsics::ID id) { 6496 assert(callee()->signature()->size() == 2, "sha_implCompress has 2 parameters"); 6497 6498 Node* sha_obj = argument(0); 6499 Node* src = argument(1); // type oop 6500 Node* ofs = argument(2); // type int 6501 6502 const Type* src_type = src->Value(&_gvn); 6503 const TypeAryPtr* top_src = src_type->isa_aryptr(); 6504 if (top_src == NULL || top_src->klass() == NULL) { 6505 // failed array check 6506 return false; 6507 } 6508 // Figure out the size and type of the elements we will be copying. 6509 BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); 6510 if (src_elem != T_BYTE) { 6511 return false; 6512 } 6513 // 'src_start' points to src array + offset 6514 src = must_be_not_null(src, true); 6515 src = access_resolve(src, ACCESS_READ); 6516 Node* src_start = array_element_address(src, ofs, src_elem); 6517 Node* state = NULL; 6518 address stubAddr; 6519 const char *stubName; 6520 6521 switch(id) { 6522 case vmIntrinsics::_sha_implCompress: 6523 assert(UseSHA1Intrinsics, "need SHA1 instruction support"); 6524 state = get_state_from_sha_object(sha_obj); 6525 stubAddr = StubRoutines::sha1_implCompress(); 6526 stubName = "sha1_implCompress"; 6527 break; 6528 case vmIntrinsics::_sha2_implCompress: 6529 assert(UseSHA256Intrinsics, "need SHA256 instruction support"); 6530 state = get_state_from_sha_object(sha_obj); 6531 stubAddr = StubRoutines::sha256_implCompress(); 6532 stubName = "sha256_implCompress"; 6533 break; 6534 case vmIntrinsics::_sha5_implCompress: 6535 assert(UseSHA512Intrinsics, "need SHA512 instruction support"); 6536 state = get_state_from_sha5_object(sha_obj); 6537 stubAddr = StubRoutines::sha512_implCompress(); 6538 stubName = "sha512_implCompress"; 6539 break; 6540 default: 6541 fatal_unexpected_iid(id); 6542 return false; 6543 } 6544 if (state == NULL) return false; 6545 6546 assert(stubAddr != NULL, "Stub is generated"); 6547 if (stubAddr == NULL) return false; 6548 6549 // Call the stub. 6550 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::sha_implCompress_Type(), 6551 stubAddr, stubName, TypePtr::BOTTOM, 6552 src_start, state); 6553 6554 return true; 6555 } 6556 6557 //------------------------------inline_digestBase_implCompressMB----------------------- 6558 // 6559 // Calculate SHA/SHA2/SHA5 for multi-block byte[] array. 6560 // int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit) 6561 // 6562 bool LibraryCallKit::inline_digestBase_implCompressMB(int predicate) { 6563 assert(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics, 6564 "need SHA1/SHA256/SHA512 instruction support"); 6565 assert((uint)predicate < 3, "sanity"); 6566 assert(callee()->signature()->size() == 3, "digestBase_implCompressMB has 3 parameters"); 6567 6568 Node* digestBase_obj = argument(0); // The receiver was checked for NULL already. 6569 Node* src = argument(1); // byte[] array 6570 Node* ofs = argument(2); // type int 6571 Node* limit = argument(3); // type int 6572 6573 const Type* src_type = src->Value(&_gvn); 6574 const TypeAryPtr* top_src = src_type->isa_aryptr(); 6575 if (top_src == NULL || top_src->klass() == NULL) { 6576 // failed array check 6577 return false; 6578 } 6579 // Figure out the size and type of the elements we will be copying. 6580 BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); 6581 if (src_elem != T_BYTE) { 6582 return false; 6583 } 6584 // 'src_start' points to src array + offset 6585 src = must_be_not_null(src, false); 6586 src = access_resolve(src, ACCESS_READ); 6587 Node* src_start = array_element_address(src, ofs, src_elem); 6588 6589 const char* klass_SHA_name = NULL; 6590 const char* stub_name = NULL; 6591 address stub_addr = NULL; 6592 bool long_state = false; 6593 6594 switch (predicate) { 6595 case 0: 6596 if (UseSHA1Intrinsics) { 6597 klass_SHA_name = "sun/security/provider/SHA"; 6598 stub_name = "sha1_implCompressMB"; 6599 stub_addr = StubRoutines::sha1_implCompressMB(); 6600 } 6601 break; 6602 case 1: 6603 if (UseSHA256Intrinsics) { 6604 klass_SHA_name = "sun/security/provider/SHA2"; 6605 stub_name = "sha256_implCompressMB"; 6606 stub_addr = StubRoutines::sha256_implCompressMB(); 6607 } 6608 break; 6609 case 2: 6610 if (UseSHA512Intrinsics) { 6611 klass_SHA_name = "sun/security/provider/SHA5"; 6612 stub_name = "sha512_implCompressMB"; 6613 stub_addr = StubRoutines::sha512_implCompressMB(); 6614 long_state = true; 6615 } 6616 break; 6617 default: 6618 fatal("unknown SHA intrinsic predicate: %d", predicate); 6619 } 6620 if (klass_SHA_name != NULL) { 6621 assert(stub_addr != NULL, "Stub is generated"); 6622 if (stub_addr == NULL) return false; 6623 6624 // get DigestBase klass to lookup for SHA klass 6625 const TypeInstPtr* tinst = _gvn.type(digestBase_obj)->isa_instptr(); 6626 assert(tinst != NULL, "digestBase_obj is not instance???"); 6627 assert(tinst->klass()->is_loaded(), "DigestBase is not loaded"); 6628 6629 ciKlass* klass_SHA = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make(klass_SHA_name)); 6630 assert(klass_SHA->is_loaded(), "predicate checks that this class is loaded"); 6631 ciInstanceKlass* instklass_SHA = klass_SHA->as_instance_klass(); 6632 return inline_sha_implCompressMB(digestBase_obj, instklass_SHA, long_state, stub_addr, stub_name, src_start, ofs, limit); 6633 } 6634 return false; 6635 } 6636 //------------------------------inline_sha_implCompressMB----------------------- 6637 bool LibraryCallKit::inline_sha_implCompressMB(Node* digestBase_obj, ciInstanceKlass* instklass_SHA, 6638 bool long_state, address stubAddr, const char *stubName, 6639 Node* src_start, Node* ofs, Node* limit) { 6640 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_SHA); 6641 const TypeOopPtr* xtype = aklass->as_instance_type(); 6642 Node* sha_obj = new CheckCastPPNode(control(), digestBase_obj, xtype); 6643 sha_obj = _gvn.transform(sha_obj); 6644 6645 Node* state; 6646 if (long_state) { 6647 state = get_state_from_sha5_object(sha_obj); 6648 } else { 6649 state = get_state_from_sha_object(sha_obj); 6650 } 6651 if (state == NULL) return false; 6652 6653 // Call the stub. 6654 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 6655 OptoRuntime::digestBase_implCompressMB_Type(), 6656 stubAddr, stubName, TypePtr::BOTTOM, 6657 src_start, state, ofs, limit); 6658 // return ofs (int) 6659 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 6660 set_result(result); 6661 6662 return true; 6663 } 6664 6665 //------------------------------get_state_from_sha_object----------------------- 6666 Node * LibraryCallKit::get_state_from_sha_object(Node *sha_object) { 6667 Node* sha_state = load_field_from_object(sha_object, "state", "[I", /*is_exact*/ false); 6668 assert (sha_state != NULL, "wrong version of sun.security.provider.SHA/SHA2"); 6669 if (sha_state == NULL) return (Node *) NULL; 6670 6671 // now have the array, need to get the start address of the state array 6672 sha_state = access_resolve(sha_state, ACCESS_WRITE); 6673 Node* state = array_element_address(sha_state, intcon(0), T_INT); 6674 return state; 6675 } 6676 6677 //------------------------------get_state_from_sha5_object----------------------- 6678 Node * LibraryCallKit::get_state_from_sha5_object(Node *sha_object) { 6679 Node* sha_state = load_field_from_object(sha_object, "state", "[J", /*is_exact*/ false); 6680 assert (sha_state != NULL, "wrong version of sun.security.provider.SHA5"); 6681 if (sha_state == NULL) return (Node *) NULL; 6682 6683 // now have the array, need to get the start address of the state array 6684 sha_state = access_resolve(sha_state, ACCESS_WRITE); 6685 Node* state = array_element_address(sha_state, intcon(0), T_LONG); 6686 return state; 6687 } 6688 6689 //----------------------------inline_digestBase_implCompressMB_predicate---------------------------- 6690 // Return node representing slow path of predicate check. 6691 // the pseudo code we want to emulate with this predicate is: 6692 // if (digestBaseObj instanceof SHA/SHA2/SHA5) do_intrinsic, else do_javapath 6693 // 6694 Node* LibraryCallKit::inline_digestBase_implCompressMB_predicate(int predicate) { 6695 assert(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics, 6696 "need SHA1/SHA256/SHA512 instruction support"); 6697 assert((uint)predicate < 3, "sanity"); 6698 6699 // The receiver was checked for NULL already. 6700 Node* digestBaseObj = argument(0); 6701 6702 // get DigestBase klass for instanceOf check 6703 const TypeInstPtr* tinst = _gvn.type(digestBaseObj)->isa_instptr(); 6704 assert(tinst != NULL, "digestBaseObj is null"); 6705 assert(tinst->klass()->is_loaded(), "DigestBase is not loaded"); 6706 6707 const char* klass_SHA_name = NULL; 6708 switch (predicate) { 6709 case 0: 6710 if (UseSHA1Intrinsics) { 6711 // we want to do an instanceof comparison against the SHA class 6712 klass_SHA_name = "sun/security/provider/SHA"; 6713 } 6714 break; 6715 case 1: 6716 if (UseSHA256Intrinsics) { 6717 // we want to do an instanceof comparison against the SHA2 class 6718 klass_SHA_name = "sun/security/provider/SHA2"; 6719 } 6720 break; 6721 case 2: 6722 if (UseSHA512Intrinsics) { 6723 // we want to do an instanceof comparison against the SHA5 class 6724 klass_SHA_name = "sun/security/provider/SHA5"; 6725 } 6726 break; 6727 default: 6728 fatal("unknown SHA intrinsic predicate: %d", predicate); 6729 } 6730 6731 ciKlass* klass_SHA = NULL; 6732 if (klass_SHA_name != NULL) { 6733 klass_SHA = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make(klass_SHA_name)); 6734 } 6735 if ((klass_SHA == NULL) || !klass_SHA->is_loaded()) { 6736 // if none of SHA/SHA2/SHA5 is loaded, we never take the intrinsic fast path 6737 Node* ctrl = control(); 6738 set_control(top()); // no intrinsic path 6739 return ctrl; 6740 } 6741 ciInstanceKlass* instklass_SHA = klass_SHA->as_instance_klass(); 6742 6743 Node* instofSHA = gen_instanceof(digestBaseObj, makecon(TypeKlassPtr::make(instklass_SHA))); 6744 Node* cmp_instof = _gvn.transform(new CmpINode(instofSHA, intcon(1))); 6745 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); 6746 Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN); 6747 6748 return instof_false; // even if it is NULL 6749 } 6750 6751 //-------------inline_fma----------------------------------- 6752 bool LibraryCallKit::inline_fma(vmIntrinsics::ID id) { 6753 Node *a = NULL; 6754 Node *b = NULL; 6755 Node *c = NULL; 6756 Node* result = NULL; 6757 switch (id) { 6758 case vmIntrinsics::_fmaD: 6759 assert(callee()->signature()->size() == 6, "fma has 3 parameters of size 2 each."); 6760 // no receiver since it is static method 6761 a = round_double_node(argument(0)); 6762 b = round_double_node(argument(2)); 6763 c = round_double_node(argument(4)); 6764 result = _gvn.transform(new FmaDNode(control(), a, b, c)); 6765 break; 6766 case vmIntrinsics::_fmaF: 6767 assert(callee()->signature()->size() == 3, "fma has 3 parameters of size 1 each."); 6768 a = argument(0); 6769 b = argument(1); 6770 c = argument(2); 6771 result = _gvn.transform(new FmaFNode(control(), a, b, c)); 6772 break; 6773 default: 6774 fatal_unexpected_iid(id); break; 6775 } 6776 set_result(result); 6777 return true; 6778 } 6779 6780 bool LibraryCallKit::inline_character_compare(vmIntrinsics::ID id) { 6781 // argument(0) is receiver 6782 Node* codePoint = argument(1); 6783 Node* n = NULL; 6784 6785 switch (id) { 6786 case vmIntrinsics::_isDigit : 6787 n = new DigitNode(control(), codePoint); 6788 break; 6789 case vmIntrinsics::_isLowerCase : 6790 n = new LowerCaseNode(control(), codePoint); 6791 break; 6792 case vmIntrinsics::_isUpperCase : 6793 n = new UpperCaseNode(control(), codePoint); 6794 break; 6795 case vmIntrinsics::_isWhitespace : 6796 n = new WhitespaceNode(control(), codePoint); 6797 break; 6798 default: 6799 fatal_unexpected_iid(id); 6800 } 6801 6802 set_result(_gvn.transform(n)); 6803 return true; 6804 } 6805 6806 //------------------------------inline_fp_min_max------------------------------ 6807 bool LibraryCallKit::inline_fp_min_max(vmIntrinsics::ID id) { 6808 /* DISABLED BECAUSE METHOD DATA ISN'T COLLECTED PER CALL-SITE, SEE JDK-8015416. 6809 6810 // The intrinsic should be used only when the API branches aren't predictable, 6811 // the last one performing the most important comparison. The following heuristic 6812 // uses the branch statistics to eventually bail out if necessary. 6813 6814 ciMethodData *md = callee()->method_data(); 6815 6816 if ( md != NULL && md->is_mature() && md->invocation_count() > 0 ) { 6817 ciCallProfile cp = caller()->call_profile_at_bci(bci()); 6818 6819 if ( ((double)cp.count()) / ((double)md->invocation_count()) < 0.8 ) { 6820 // Bail out if the call-site didn't contribute enough to the statistics. 6821 return false; 6822 } 6823 6824 uint taken = 0, not_taken = 0; 6825 6826 for (ciProfileData *p = md->first_data(); md->is_valid(p); p = md->next_data(p)) { 6827 if (p->is_BranchData()) { 6828 taken = ((ciBranchData*)p)->taken(); 6829 not_taken = ((ciBranchData*)p)->not_taken(); 6830 } 6831 } 6832 6833 double balance = (((double)taken) - ((double)not_taken)) / ((double)md->invocation_count()); 6834 balance = balance < 0 ? -balance : balance; 6835 if ( balance > 0.2 ) { 6836 // Bail out if the most important branch is predictable enough. 6837 return false; 6838 } 6839 } 6840 */ 6841 6842 Node *a = NULL; 6843 Node *b = NULL; 6844 Node *n = NULL; 6845 switch (id) { 6846 case vmIntrinsics::_maxF: 6847 case vmIntrinsics::_minF: 6848 assert(callee()->signature()->size() == 2, "minF/maxF has 2 parameters of size 1 each."); 6849 a = argument(0); 6850 b = argument(1); 6851 break; 6852 case vmIntrinsics::_maxD: 6853 case vmIntrinsics::_minD: 6854 assert(callee()->signature()->size() == 4, "minD/maxD has 2 parameters of size 2 each."); 6855 a = round_double_node(argument(0)); 6856 b = round_double_node(argument(2)); 6857 break; 6858 default: 6859 fatal_unexpected_iid(id); 6860 break; 6861 } 6862 switch (id) { 6863 case vmIntrinsics::_maxF: n = new MaxFNode(a, b); break; 6864 case vmIntrinsics::_minF: n = new MinFNode(a, b); break; 6865 case vmIntrinsics::_maxD: n = new MaxDNode(a, b); break; 6866 case vmIntrinsics::_minD: n = new MinDNode(a, b); break; 6867 default: fatal_unexpected_iid(id); break; 6868 } 6869 set_result(_gvn.transform(n)); 6870 return true; 6871 } 6872 6873 bool LibraryCallKit::inline_profileBoolean() { 6874 Node* counts = argument(1); 6875 const TypeAryPtr* ary = NULL; 6876 ciArray* aobj = NULL; 6877 if (counts->is_Con() 6878 && (ary = counts->bottom_type()->isa_aryptr()) != NULL 6879 && (aobj = ary->const_oop()->as_array()) != NULL 6880 && (aobj->length() == 2)) { 6881 // Profile is int[2] where [0] and [1] correspond to false and true value occurrences respectively. 6882 jint false_cnt = aobj->element_value(0).as_int(); 6883 jint true_cnt = aobj->element_value(1).as_int(); 6884 6885 if (C->log() != NULL) { 6886 C->log()->elem("observe source='profileBoolean' false='%d' true='%d'", 6887 false_cnt, true_cnt); 6888 } 6889 6890 if (false_cnt + true_cnt == 0) { 6891 // According to profile, never executed. 6892 uncommon_trap_exact(Deoptimization::Reason_intrinsic, 6893 Deoptimization::Action_reinterpret); 6894 return true; 6895 } 6896 6897 // result is a boolean (0 or 1) and its profile (false_cnt & true_cnt) 6898 // is a number of each value occurrences. 6899 Node* result = argument(0); 6900 if (false_cnt == 0 || true_cnt == 0) { 6901 // According to profile, one value has been never seen. 6902 int expected_val = (false_cnt == 0) ? 1 : 0; 6903 6904 Node* cmp = _gvn.transform(new CmpINode(result, intcon(expected_val))); 6905 Node* test = _gvn.transform(new BoolNode(cmp, BoolTest::eq)); 6906 6907 IfNode* check = create_and_map_if(control(), test, PROB_ALWAYS, COUNT_UNKNOWN); 6908 Node* fast_path = _gvn.transform(new IfTrueNode(check)); 6909 Node* slow_path = _gvn.transform(new IfFalseNode(check)); 6910 6911 { // Slow path: uncommon trap for never seen value and then reexecute 6912 // MethodHandleImpl::profileBoolean() to bump the count, so JIT knows 6913 // the value has been seen at least once. 6914 PreserveJVMState pjvms(this); 6915 PreserveReexecuteState preexecs(this); 6916 jvms()->set_should_reexecute(true); 6917 6918 set_control(slow_path); 6919 set_i_o(i_o()); 6920 6921 uncommon_trap_exact(Deoptimization::Reason_intrinsic, 6922 Deoptimization::Action_reinterpret); 6923 } 6924 // The guard for never seen value enables sharpening of the result and 6925 // returning a constant. It allows to eliminate branches on the same value 6926 // later on. 6927 set_control(fast_path); 6928 result = intcon(expected_val); 6929 } 6930 // Stop profiling. 6931 // MethodHandleImpl::profileBoolean() has profiling logic in its bytecode. 6932 // By replacing method body with profile data (represented as ProfileBooleanNode 6933 // on IR level) we effectively disable profiling. 6934 // It enables full speed execution once optimized code is generated. 6935 Node* profile = _gvn.transform(new ProfileBooleanNode(result, false_cnt, true_cnt)); 6936 C->record_for_igvn(profile); 6937 set_result(profile); 6938 return true; 6939 } else { 6940 // Continue profiling. 6941 // Profile data isn't available at the moment. So, execute method's bytecode version. 6942 // Usually, when GWT LambdaForms are profiled it means that a stand-alone nmethod 6943 // is compiled and counters aren't available since corresponding MethodHandle 6944 // isn't a compile-time constant. 6945 return false; 6946 } 6947 } 6948 6949 bool LibraryCallKit::inline_isCompileConstant() { 6950 Node* n = argument(0); 6951 set_result(n->is_Con() ? intcon(1) : intcon(0)); 6952 return true; 6953 }