1 /* 2 * Copyright (c) 1999, 2020, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 // no precompiled headers 26 #include "jvm.h" 27 #include "asm/macroAssembler.hpp" 28 #include "classfile/classLoader.hpp" 29 #include "classfile/systemDictionary.hpp" 30 #include "classfile/vmSymbols.hpp" 31 #include "code/codeCache.hpp" 32 #include "code/icBuffer.hpp" 33 #include "code/vtableStubs.hpp" 34 #include "interpreter/interpreter.hpp" 35 #include "logging/log.hpp" 36 #include "memory/allocation.inline.hpp" 37 #include "os_share_linux.hpp" 38 #include "prims/jniFastGetField.hpp" 39 #include "prims/jvm_misc.hpp" 40 #include "runtime/arguments.hpp" 41 #include "runtime/frame.inline.hpp" 42 #include "runtime/interfaceSupport.inline.hpp" 43 #include "runtime/java.hpp" 44 #include "runtime/javaCalls.hpp" 45 #include "runtime/mutexLocker.hpp" 46 #include "runtime/osThread.hpp" 47 #include "runtime/safepointMechanism.hpp" 48 #include "runtime/sharedRuntime.hpp" 49 #include "runtime/stubRoutines.hpp" 50 #include "runtime/thread.inline.hpp" 51 #include "runtime/timer.hpp" 52 #include "services/memTracker.hpp" 53 #include "utilities/align.hpp" 54 #include "utilities/debug.hpp" 55 #include "utilities/events.hpp" 56 #include "utilities/vmError.hpp" 57 58 // put OS-includes here 59 # include <sys/types.h> 60 # include <sys/mman.h> 61 # include <pthread.h> 62 # include <signal.h> 63 # include <errno.h> 64 # include <dlfcn.h> 65 # include <stdlib.h> 66 # include <stdio.h> 67 # include <unistd.h> 68 # include <sys/resource.h> 69 # include <pthread.h> 70 # include <sys/stat.h> 71 # include <sys/time.h> 72 # include <sys/utsname.h> 73 # include <sys/socket.h> 74 # include <sys/wait.h> 75 # include <pwd.h> 76 # include <poll.h> 77 # include <ucontext.h> 78 #ifndef AMD64 79 # include <fpu_control.h> 80 #endif 81 82 #ifdef AMD64 83 #define REG_SP REG_RSP 84 #define REG_PC REG_RIP 85 #define REG_FP REG_RBP 86 #define SPELL_REG_SP "rsp" 87 #define SPELL_REG_FP "rbp" 88 #else 89 #define REG_SP REG_UESP 90 #define REG_PC REG_EIP 91 #define REG_FP REG_EBP 92 #define SPELL_REG_SP "esp" 93 #define SPELL_REG_FP "ebp" 94 #endif // AMD64 95 96 address os::current_stack_pointer() { 97 return (address)__builtin_frame_address(0); 98 } 99 100 char* os::non_memory_address_word() { 101 // Must never look like an address returned by reserve_memory, 102 // even in its subfields (as defined by the CPU immediate fields, 103 // if the CPU splits constants across multiple instructions). 104 105 return (char*) -1; 106 } 107 108 address os::Linux::ucontext_get_pc(const ucontext_t * uc) { 109 return (address)uc->uc_mcontext.gregs[REG_PC]; 110 } 111 112 void os::Linux::ucontext_set_pc(ucontext_t * uc, address pc) { 113 uc->uc_mcontext.gregs[REG_PC] = (intptr_t)pc; 114 } 115 116 intptr_t* os::Linux::ucontext_get_sp(const ucontext_t * uc) { 117 return (intptr_t*)uc->uc_mcontext.gregs[REG_SP]; 118 } 119 120 intptr_t* os::Linux::ucontext_get_fp(const ucontext_t * uc) { 121 return (intptr_t*)uc->uc_mcontext.gregs[REG_FP]; 122 } 123 124 address os::fetch_frame_from_context(const void* ucVoid, 125 intptr_t** ret_sp, intptr_t** ret_fp) { 126 127 address epc; 128 const ucontext_t* uc = (const ucontext_t*)ucVoid; 129 130 if (uc != NULL) { 131 epc = os::Linux::ucontext_get_pc(uc); 132 if (ret_sp) *ret_sp = os::Linux::ucontext_get_sp(uc); 133 if (ret_fp) *ret_fp = os::Linux::ucontext_get_fp(uc); 134 } else { 135 epc = NULL; 136 if (ret_sp) *ret_sp = (intptr_t *)NULL; 137 if (ret_fp) *ret_fp = (intptr_t *)NULL; 138 } 139 140 return epc; 141 } 142 143 frame os::fetch_frame_from_context(const void* ucVoid) { 144 intptr_t* sp; 145 intptr_t* fp; 146 address epc = fetch_frame_from_context(ucVoid, &sp, &fp); 147 return frame(sp, fp, epc); 148 } 149 150 bool os::Linux::get_frame_at_stack_banging_point(JavaThread* thread, ucontext_t* uc, frame* fr) { 151 address pc = (address) os::Linux::ucontext_get_pc(uc); 152 if (Interpreter::contains(pc)) { 153 // interpreter performs stack banging after the fixed frame header has 154 // been generated while the compilers perform it before. To maintain 155 // semantic consistency between interpreted and compiled frames, the 156 // method returns the Java sender of the current frame. 157 *fr = os::fetch_frame_from_context(uc); 158 if (!fr->is_first_java_frame()) { 159 // get_frame_at_stack_banging_point() is only called when we 160 // have well defined stacks so java_sender() calls do not need 161 // to assert safe_for_sender() first. 162 *fr = fr->java_sender(); 163 } 164 } else { 165 // more complex code with compiled code 166 assert(!Interpreter::contains(pc), "Interpreted methods should have been handled above"); 167 CodeBlob* cb = CodeCache::find_blob(pc); 168 if (cb == NULL || !cb->is_nmethod() || cb->is_frame_complete_at(pc)) { 169 // Not sure where the pc points to, fallback to default 170 // stack overflow handling 171 return false; 172 } else { 173 // in compiled code, the stack banging is performed just after the return pc 174 // has been pushed on the stack 175 intptr_t* fp = os::Linux::ucontext_get_fp(uc); 176 intptr_t* sp = os::Linux::ucontext_get_sp(uc); 177 *fr = frame(sp + 1, fp, (address)*sp); 178 if (!fr->is_java_frame()) { 179 assert(!fr->is_first_frame(), "Safety check"); 180 // See java_sender() comment above. 181 *fr = fr->java_sender(); 182 } 183 } 184 } 185 assert(fr->is_java_frame(), "Safety check"); 186 return true; 187 } 188 189 // By default, gcc always save frame pointer (%ebp/%rbp) on stack. It may get 190 // turned off by -fomit-frame-pointer, 191 frame os::get_sender_for_C_frame(frame* fr) { 192 return frame(fr->sender_sp(), fr->link(), fr->sender_pc()); 193 } 194 195 intptr_t* _get_previous_fp() { 196 #if defined(__clang__) 197 intptr_t **ebp; 198 __asm__ __volatile__ ("mov %%" SPELL_REG_FP ", %0":"=r"(ebp):); 199 #else 200 register intptr_t **ebp __asm__ (SPELL_REG_FP); 201 #endif 202 // ebp is for this frame (_get_previous_fp). We want the ebp for the 203 // caller of os::current_frame*(), so go up two frames. However, for 204 // optimized builds, _get_previous_fp() will be inlined, so only go 205 // up 1 frame in that case. 206 #ifdef _NMT_NOINLINE_ 207 return **(intptr_t***)ebp; 208 #else 209 return *ebp; 210 #endif 211 } 212 213 214 frame os::current_frame() { 215 intptr_t* fp = _get_previous_fp(); 216 frame myframe((intptr_t*)os::current_stack_pointer(), 217 (intptr_t*)fp, 218 CAST_FROM_FN_PTR(address, os::current_frame)); 219 if (os::is_first_C_frame(&myframe)) { 220 // stack is not walkable 221 return frame(); 222 } else { 223 return os::get_sender_for_C_frame(&myframe); 224 } 225 } 226 227 // Utility functions 228 229 // From IA32 System Programming Guide 230 enum { 231 trap_page_fault = 0xE 232 }; 233 234 extern "C" JNIEXPORT int 235 JVM_handle_linux_signal(int sig, 236 siginfo_t* info, 237 void* ucVoid, 238 int abort_if_unrecognized) { 239 ucontext_t* uc = (ucontext_t*) ucVoid; 240 241 Thread* t = Thread::current_or_null_safe(); 242 243 // Must do this before SignalHandlerMark, if crash protection installed we will longjmp away 244 // (no destructors can be run) 245 os::ThreadCrashProtection::check_crash_protection(sig, t); 246 247 SignalHandlerMark shm(t); 248 249 // Note: it's not uncommon that JNI code uses signal/sigset to install 250 // then restore certain signal handler (e.g. to temporarily block SIGPIPE, 251 // or have a SIGILL handler when detecting CPU type). When that happens, 252 // JVM_handle_linux_signal() might be invoked with junk info/ucVoid. To 253 // avoid unnecessary crash when libjsig is not preloaded, try handle signals 254 // that do not require siginfo/ucontext first. 255 256 if (sig == SIGPIPE || sig == SIGXFSZ) { 257 // allow chained handler to go first 258 if (os::Linux::chained_handler(sig, info, ucVoid)) { 259 return true; 260 } else { 261 // Ignoring SIGPIPE/SIGXFSZ - see bugs 4229104 or 6499219 262 return true; 263 } 264 } 265 266 #ifdef CAN_SHOW_REGISTERS_ON_ASSERT 267 if ((sig == SIGSEGV || sig == SIGBUS) && info != NULL && info->si_addr == g_assert_poison) { 268 if (handle_assert_poison_fault(ucVoid, info->si_addr)) { 269 return 1; 270 } 271 } 272 #endif 273 274 JavaThread* thread = NULL; 275 VMThread* vmthread = NULL; 276 if (os::Linux::signal_handlers_are_installed) { 277 if (t != NULL ){ 278 if(t->is_Java_thread()) { 279 thread = (JavaThread*)t; 280 } 281 else if(t->is_VM_thread()){ 282 vmthread = (VMThread *)t; 283 } 284 } 285 } 286 /* 287 NOTE: does not seem to work on linux. 288 if (info == NULL || info->si_code <= 0 || info->si_code == SI_NOINFO) { 289 // can't decode this kind of signal 290 info = NULL; 291 } else { 292 assert(sig == info->si_signo, "bad siginfo"); 293 } 294 */ 295 // decide if this trap can be handled by a stub 296 address stub = NULL; 297 298 address pc = NULL; 299 300 //%note os_trap_1 301 if (info != NULL && uc != NULL && thread != NULL) { 302 pc = (address) os::Linux::ucontext_get_pc(uc); 303 304 if (StubRoutines::is_safefetch_fault(pc)) { 305 os::Linux::ucontext_set_pc(uc, StubRoutines::continuation_for_safefetch_fault(pc)); 306 return 1; 307 } 308 309 #ifndef AMD64 310 // Halt if SI_KERNEL before more crashes get misdiagnosed as Java bugs 311 // This can happen in any running code (currently more frequently in 312 // interpreter code but has been seen in compiled code) 313 if (sig == SIGSEGV && info->si_addr == 0 && info->si_code == SI_KERNEL) { 314 fatal("An irrecoverable SI_KERNEL SIGSEGV has occurred due " 315 "to unstable signal handling in this distribution."); 316 } 317 #endif // AMD64 318 319 // Handle ALL stack overflow variations here 320 if (sig == SIGSEGV) { 321 address addr = (address) info->si_addr; 322 323 // check if fault address is within thread stack 324 if (thread->is_in_full_stack(addr)) { 325 // stack overflow 326 if (thread->in_stack_yellow_reserved_zone(addr)) { 327 if (thread->thread_state() == _thread_in_Java) { 328 if (thread->in_stack_reserved_zone(addr)) { 329 frame fr; 330 if (os::Linux::get_frame_at_stack_banging_point(thread, uc, &fr)) { 331 assert(fr.is_java_frame(), "Must be a Java frame"); 332 frame activation = 333 SharedRuntime::look_for_reserved_stack_annotated_method(thread, fr); 334 if (activation.sp() != NULL) { 335 thread->disable_stack_reserved_zone(); 336 if (activation.is_interpreted_frame()) { 337 thread->set_reserved_stack_activation((address)( 338 activation.fp() + frame::interpreter_frame_initial_sp_offset)); 339 } else { 340 thread->set_reserved_stack_activation((address)activation.unextended_sp()); 341 } 342 return 1; 343 } 344 } 345 } 346 // Throw a stack overflow exception. Guard pages will be reenabled 347 // while unwinding the stack. 348 thread->disable_stack_yellow_reserved_zone(); 349 stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW); 350 } else { 351 // Thread was in the vm or native code. Return and try to finish. 352 thread->disable_stack_yellow_reserved_zone(); 353 return 1; 354 } 355 } else if (thread->in_stack_red_zone(addr)) { 356 // Fatal red zone violation. Disable the guard pages and fall through 357 // to handle_unexpected_exception way down below. 358 thread->disable_stack_red_zone(); 359 tty->print_raw_cr("An irrecoverable stack overflow has occurred."); 360 361 // This is a likely cause, but hard to verify. Let's just print 362 // it as a hint. 363 tty->print_raw_cr("Please check if any of your loaded .so files has " 364 "enabled executable stack (see man page execstack(8))"); 365 } else { 366 // Accessing stack address below sp may cause SEGV if current 367 // thread has MAP_GROWSDOWN stack. This should only happen when 368 // current thread was created by user code with MAP_GROWSDOWN flag 369 // and then attached to VM. See notes in os_linux.cpp. 370 if (thread->osthread()->expanding_stack() == 0) { 371 thread->osthread()->set_expanding_stack(); 372 if (os::Linux::manually_expand_stack(thread, addr)) { 373 thread->osthread()->clear_expanding_stack(); 374 return 1; 375 } 376 thread->osthread()->clear_expanding_stack(); 377 } else { 378 fatal("recursive segv. expanding stack."); 379 } 380 } 381 } 382 } 383 384 if ((sig == SIGSEGV) && VM_Version::is_cpuinfo_segv_addr(pc)) { 385 // Verify that OS save/restore AVX registers. 386 stub = VM_Version::cpuinfo_cont_addr(); 387 } 388 389 if (thread->thread_state() == _thread_in_Java) { 390 // Java thread running in Java code => find exception handler if any 391 // a fault inside compiled code, the interpreter, or a stub 392 393 if (sig == SIGSEGV && SafepointMechanism::is_poll_address((address)info->si_addr)) { 394 stub = SharedRuntime::get_poll_stub(pc); 395 } else if (sig == SIGBUS /* && info->si_code == BUS_OBJERR */) { 396 // BugId 4454115: A read from a MappedByteBuffer can fault 397 // here if the underlying file has been truncated. 398 // Do not crash the VM in such a case. 399 CodeBlob* cb = CodeCache::find_blob_unsafe(pc); 400 CompiledMethod* nm = (cb != NULL) ? cb->as_compiled_method_or_null() : NULL; 401 bool is_unsafe_arraycopy = thread->doing_unsafe_access() && UnsafeCopyMemory::contains_pc(pc); 402 if ((nm != NULL && nm->has_unsafe_access()) || is_unsafe_arraycopy) { 403 address next_pc = Assembler::locate_next_instruction(pc); 404 if (is_unsafe_arraycopy) { 405 next_pc = UnsafeCopyMemory::page_error_continue_pc(pc); 406 } 407 stub = SharedRuntime::handle_unsafe_access(thread, next_pc); 408 } 409 } 410 else 411 412 #ifdef AMD64 413 if (sig == SIGFPE && 414 (info->si_code == FPE_INTDIV || info->si_code == FPE_FLTDIV)) { 415 stub = 416 SharedRuntime:: 417 continuation_for_implicit_exception(thread, 418 pc, 419 SharedRuntime:: 420 IMPLICIT_DIVIDE_BY_ZERO); 421 #else 422 if (sig == SIGFPE /* && info->si_code == FPE_INTDIV */) { 423 // HACK: si_code does not work on linux 2.2.12-20!!! 424 int op = pc[0]; 425 if (op == 0xDB) { 426 // FIST 427 // TODO: The encoding of D2I in i486.ad can cause an exception 428 // prior to the fist instruction if there was an invalid operation 429 // pending. We want to dismiss that exception. From the win_32 430 // side it also seems that if it really was the fist causing 431 // the exception that we do the d2i by hand with different 432 // rounding. Seems kind of weird. 433 // NOTE: that we take the exception at the NEXT floating point instruction. 434 assert(pc[0] == 0xDB, "not a FIST opcode"); 435 assert(pc[1] == 0x14, "not a FIST opcode"); 436 assert(pc[2] == 0x24, "not a FIST opcode"); 437 return true; 438 } else if (op == 0xF7) { 439 // IDIV 440 stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO); 441 } else { 442 // TODO: handle more cases if we are using other x86 instructions 443 // that can generate SIGFPE signal on linux. 444 tty->print_cr("unknown opcode 0x%X with SIGFPE.", op); 445 fatal("please update this code."); 446 } 447 #endif // AMD64 448 } else if (sig == SIGSEGV && 449 MacroAssembler::uses_implicit_null_check(info->si_addr)) { 450 // Determination of interpreter/vtable stub/compiled code null exception 451 stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL); 452 } 453 } else if ((thread->thread_state() == _thread_in_vm || 454 thread->thread_state() == _thread_in_native) && 455 (sig == SIGBUS && /* info->si_code == BUS_OBJERR && */ 456 thread->doing_unsafe_access())) { 457 address next_pc = Assembler::locate_next_instruction(pc); 458 if (UnsafeCopyMemory::contains_pc(pc)) { 459 next_pc = UnsafeCopyMemory::page_error_continue_pc(pc); 460 } 461 stub = SharedRuntime::handle_unsafe_access(thread, next_pc); 462 } 463 464 // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in 465 // and the heap gets shrunk before the field access. 466 if ((sig == SIGSEGV) || (sig == SIGBUS)) { 467 address addr = JNI_FastGetField::find_slowcase_pc(pc); 468 if (addr != (address)-1) { 469 stub = addr; 470 } 471 } 472 } 473 474 #ifndef AMD64 475 // Execution protection violation 476 // 477 // This should be kept as the last step in the triage. We don't 478 // have a dedicated trap number for a no-execute fault, so be 479 // conservative and allow other handlers the first shot. 480 // 481 // Note: We don't test that info->si_code == SEGV_ACCERR here. 482 // this si_code is so generic that it is almost meaningless; and 483 // the si_code for this condition may change in the future. 484 // Furthermore, a false-positive should be harmless. 485 if (UnguardOnExecutionViolation > 0 && 486 (sig == SIGSEGV || sig == SIGBUS) && 487 uc->uc_mcontext.gregs[REG_TRAPNO] == trap_page_fault) { 488 int page_size = os::vm_page_size(); 489 address addr = (address) info->si_addr; 490 address pc = os::Linux::ucontext_get_pc(uc); 491 // Make sure the pc and the faulting address are sane. 492 // 493 // If an instruction spans a page boundary, and the page containing 494 // the beginning of the instruction is executable but the following 495 // page is not, the pc and the faulting address might be slightly 496 // different - we still want to unguard the 2nd page in this case. 497 // 498 // 15 bytes seems to be a (very) safe value for max instruction size. 499 bool pc_is_near_addr = 500 (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15); 501 bool instr_spans_page_boundary = 502 (align_down((intptr_t) pc ^ (intptr_t) addr, 503 (intptr_t) page_size) > 0); 504 505 if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) { 506 static volatile address last_addr = 507 (address) os::non_memory_address_word(); 508 509 // In conservative mode, don't unguard unless the address is in the VM 510 if (addr != last_addr && 511 (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) { 512 513 // Set memory to RWX and retry 514 address page_start = align_down(addr, page_size); 515 bool res = os::protect_memory((char*) page_start, page_size, 516 os::MEM_PROT_RWX); 517 518 log_debug(os)("Execution protection violation " 519 "at " INTPTR_FORMAT 520 ", unguarding " INTPTR_FORMAT ": %s, errno=%d", p2i(addr), 521 p2i(page_start), (res ? "success" : "failed"), errno); 522 stub = pc; 523 524 // Set last_addr so if we fault again at the same address, we don't end 525 // up in an endless loop. 526 // 527 // There are two potential complications here. Two threads trapping at 528 // the same address at the same time could cause one of the threads to 529 // think it already unguarded, and abort the VM. Likely very rare. 530 // 531 // The other race involves two threads alternately trapping at 532 // different addresses and failing to unguard the page, resulting in 533 // an endless loop. This condition is probably even more unlikely than 534 // the first. 535 // 536 // Although both cases could be avoided by using locks or thread local 537 // last_addr, these solutions are unnecessary complication: this 538 // handler is a best-effort safety net, not a complete solution. It is 539 // disabled by default and should only be used as a workaround in case 540 // we missed any no-execute-unsafe VM code. 541 542 last_addr = addr; 543 } 544 } 545 } 546 #endif // !AMD64 547 548 if (stub != NULL) { 549 // save all thread context in case we need to restore it 550 if (thread != NULL) thread->set_saved_exception_pc(pc); 551 552 os::Linux::ucontext_set_pc(uc, stub); 553 return true; 554 } 555 556 // signal-chaining 557 if (os::Linux::chained_handler(sig, info, ucVoid)) { 558 return true; 559 } 560 561 if (!abort_if_unrecognized) { 562 // caller wants another chance, so give it to him 563 return false; 564 } 565 566 if (pc == NULL && uc != NULL) { 567 pc = os::Linux::ucontext_get_pc(uc); 568 } 569 570 // unmask current signal 571 sigset_t newset; 572 sigemptyset(&newset); 573 sigaddset(&newset, sig); 574 sigprocmask(SIG_UNBLOCK, &newset, NULL); 575 576 VMError::report_and_die(t, sig, pc, info, ucVoid); 577 578 ShouldNotReachHere(); 579 return true; // Mute compiler 580 } 581 582 void os::Linux::init_thread_fpu_state(void) { 583 #ifndef AMD64 584 // set fpu to 53 bit precision 585 set_fpu_control_word(0x27f); 586 #endif // !AMD64 587 } 588 589 int os::Linux::get_fpu_control_word(void) { 590 #ifdef AMD64 591 return 0; 592 #else 593 int fpu_control; 594 _FPU_GETCW(fpu_control); 595 return fpu_control & 0xffff; 596 #endif // AMD64 597 } 598 599 void os::Linux::set_fpu_control_word(int fpu_control) { 600 #ifndef AMD64 601 _FPU_SETCW(fpu_control); 602 #endif // !AMD64 603 } 604 605 // Check that the linux kernel version is 2.4 or higher since earlier 606 // versions do not support SSE without patches. 607 bool os::supports_sse() { 608 #ifdef AMD64 609 return true; 610 #else 611 struct utsname uts; 612 if( uname(&uts) != 0 ) return false; // uname fails? 613 char *minor_string; 614 int major = strtol(uts.release,&minor_string,10); 615 int minor = strtol(minor_string+1,NULL,10); 616 bool result = (major > 2 || (major==2 && minor >= 4)); 617 log_info(os)("OS version is %d.%d, which %s support SSE/SSE2", 618 major,minor, result ? "DOES" : "does NOT"); 619 return result; 620 #endif // AMD64 621 } 622 623 juint os::cpu_microcode_revision() { 624 juint result = 0; 625 char data[2048] = {0}; // lines should fit in 2K buf 626 size_t len = sizeof(data); 627 FILE *fp = fopen("/proc/cpuinfo", "r"); 628 if (fp) { 629 while (!feof(fp)) { 630 if (fgets(data, len, fp)) { 631 if (strstr(data, "microcode") != NULL) { 632 char* rev = strchr(data, ':'); 633 if (rev != NULL) sscanf(rev + 1, "%x", &result); 634 break; 635 } 636 } 637 } 638 fclose(fp); 639 } 640 return result; 641 } 642 643 bool os::is_allocatable(size_t bytes) { 644 #ifdef AMD64 645 // unused on amd64? 646 return true; 647 #else 648 649 if (bytes < 2 * G) { 650 return true; 651 } 652 653 char* addr = reserve_memory(bytes, NULL); 654 655 if (addr != NULL) { 656 release_memory(addr, bytes); 657 } 658 659 return addr != NULL; 660 #endif // AMD64 661 } 662 663 //////////////////////////////////////////////////////////////////////////////// 664 // thread stack 665 666 // Minimum usable stack sizes required to get to user code. Space for 667 // HotSpot guard pages is added later. 668 size_t os::Posix::_compiler_thread_min_stack_allowed = 48 * K; 669 size_t os::Posix::_java_thread_min_stack_allowed = 40 * K; 670 #ifdef _LP64 671 size_t os::Posix::_vm_internal_thread_min_stack_allowed = 64 * K; 672 #else 673 size_t os::Posix::_vm_internal_thread_min_stack_allowed = (48 DEBUG_ONLY(+ 4)) * K; 674 #endif // _LP64 675 676 // return default stack size for thr_type 677 size_t os::Posix::default_stack_size(os::ThreadType thr_type) { 678 // default stack size (compiler thread needs larger stack) 679 #ifdef AMD64 680 size_t s = (thr_type == os::compiler_thread ? 4 * M : 1 * M); 681 #else 682 size_t s = (thr_type == os::compiler_thread ? 2 * M : 512 * K); 683 #endif // AMD64 684 return s; 685 } 686 687 ///////////////////////////////////////////////////////////////////////////// 688 // helper functions for fatal error handler 689 690 void os::print_context(outputStream *st, const void *context) { 691 if (context == NULL) return; 692 693 const ucontext_t *uc = (const ucontext_t*)context; 694 st->print_cr("Registers:"); 695 #ifdef AMD64 696 st->print( "RAX=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_RAX]); 697 st->print(", RBX=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_RBX]); 698 st->print(", RCX=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_RCX]); 699 st->print(", RDX=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_RDX]); 700 st->cr(); 701 st->print( "RSP=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_RSP]); 702 st->print(", RBP=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_RBP]); 703 st->print(", RSI=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_RSI]); 704 st->print(", RDI=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_RDI]); 705 st->cr(); 706 st->print( "R8 =" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_R8]); 707 st->print(", R9 =" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_R9]); 708 st->print(", R10=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_R10]); 709 st->print(", R11=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_R11]); 710 st->cr(); 711 st->print( "R12=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_R12]); 712 st->print(", R13=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_R13]); 713 st->print(", R14=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_R14]); 714 st->print(", R15=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_R15]); 715 st->cr(); 716 st->print( "RIP=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_RIP]); 717 st->print(", EFLAGS=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_EFL]); 718 st->print(", CSGSFS=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_CSGSFS]); 719 st->print(", ERR=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_ERR]); 720 st->cr(); 721 st->print(" TRAPNO=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_TRAPNO]); 722 #else 723 st->print( "EAX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EAX]); 724 st->print(", EBX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EBX]); 725 st->print(", ECX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_ECX]); 726 st->print(", EDX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EDX]); 727 st->cr(); 728 st->print( "ESP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_UESP]); 729 st->print(", EBP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EBP]); 730 st->print(", ESI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_ESI]); 731 st->print(", EDI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EDI]); 732 st->cr(); 733 st->print( "EIP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EIP]); 734 st->print(", EFLAGS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EFL]); 735 st->print(", CR2=" PTR64_FORMAT, (uint64_t)uc->uc_mcontext.cr2); 736 #endif // AMD64 737 st->cr(); 738 st->cr(); 739 740 intptr_t *sp = (intptr_t *)os::Linux::ucontext_get_sp(uc); 741 st->print_cr("Top of Stack: (sp=" PTR_FORMAT ")", p2i(sp)); 742 print_hex_dump(st, (address)sp, (address)(sp + 8), sizeof(intptr_t)); 743 st->cr(); 744 745 // Note: it may be unsafe to inspect memory near pc. For example, pc may 746 // point to garbage if entry point in an nmethod is corrupted. Leave 747 // this at the end, and hope for the best. 748 address pc = os::Linux::ucontext_get_pc(uc); 749 print_instructions(st, pc, sizeof(char)); 750 st->cr(); 751 } 752 753 void os::print_register_info(outputStream *st, const void *context) { 754 if (context == NULL) return; 755 756 const ucontext_t *uc = (const ucontext_t*)context; 757 758 st->print_cr("Register to memory mapping:"); 759 st->cr(); 760 761 // this is horrendously verbose but the layout of the registers in the 762 // context does not match how we defined our abstract Register set, so 763 // we can't just iterate through the gregs area 764 765 // this is only for the "general purpose" registers 766 767 #ifdef AMD64 768 st->print("RAX="); print_location(st, uc->uc_mcontext.gregs[REG_RAX]); 769 st->print("RBX="); print_location(st, uc->uc_mcontext.gregs[REG_RBX]); 770 st->print("RCX="); print_location(st, uc->uc_mcontext.gregs[REG_RCX]); 771 st->print("RDX="); print_location(st, uc->uc_mcontext.gregs[REG_RDX]); 772 st->print("RSP="); print_location(st, uc->uc_mcontext.gregs[REG_RSP]); 773 st->print("RBP="); print_location(st, uc->uc_mcontext.gregs[REG_RBP]); 774 st->print("RSI="); print_location(st, uc->uc_mcontext.gregs[REG_RSI]); 775 st->print("RDI="); print_location(st, uc->uc_mcontext.gregs[REG_RDI]); 776 st->print("R8 ="); print_location(st, uc->uc_mcontext.gregs[REG_R8]); 777 st->print("R9 ="); print_location(st, uc->uc_mcontext.gregs[REG_R9]); 778 st->print("R10="); print_location(st, uc->uc_mcontext.gregs[REG_R10]); 779 st->print("R11="); print_location(st, uc->uc_mcontext.gregs[REG_R11]); 780 st->print("R12="); print_location(st, uc->uc_mcontext.gregs[REG_R12]); 781 st->print("R13="); print_location(st, uc->uc_mcontext.gregs[REG_R13]); 782 st->print("R14="); print_location(st, uc->uc_mcontext.gregs[REG_R14]); 783 st->print("R15="); print_location(st, uc->uc_mcontext.gregs[REG_R15]); 784 #else 785 st->print("EAX="); print_location(st, uc->uc_mcontext.gregs[REG_EAX]); 786 st->print("EBX="); print_location(st, uc->uc_mcontext.gregs[REG_EBX]); 787 st->print("ECX="); print_location(st, uc->uc_mcontext.gregs[REG_ECX]); 788 st->print("EDX="); print_location(st, uc->uc_mcontext.gregs[REG_EDX]); 789 st->print("ESP="); print_location(st, uc->uc_mcontext.gregs[REG_ESP]); 790 st->print("EBP="); print_location(st, uc->uc_mcontext.gregs[REG_EBP]); 791 st->print("ESI="); print_location(st, uc->uc_mcontext.gregs[REG_ESI]); 792 st->print("EDI="); print_location(st, uc->uc_mcontext.gregs[REG_EDI]); 793 #endif // AMD64 794 795 st->cr(); 796 } 797 798 void os::setup_fpu() { 799 #ifndef AMD64 800 address fpu_cntrl = StubRoutines::addr_fpu_cntrl_wrd_std(); 801 __asm__ volatile ( "fldcw (%0)" : 802 : "r" (fpu_cntrl) : "memory"); 803 #endif // !AMD64 804 } 805 806 #ifndef PRODUCT 807 void os::verify_stack_alignment() { 808 #ifdef AMD64 809 assert(((intptr_t)os::current_stack_pointer() & (StackAlignmentInBytes-1)) == 0, "incorrect stack alignment"); 810 #endif 811 } 812 #endif 813 814 815 /* 816 * IA32 only: execute code at a high address in case buggy NX emulation is present. I.e. avoid CS limit 817 * updates (JDK-8023956). 818 */ 819 void os::workaround_expand_exec_shield_cs_limit() { 820 #if defined(IA32) 821 assert(Linux::initial_thread_stack_bottom() != NULL, "sanity"); 822 size_t page_size = os::vm_page_size(); 823 824 /* 825 * JDK-8197429 826 * 827 * Expand the stack mapping to the end of the initial stack before 828 * attempting to install the codebuf. This is needed because newer 829 * Linux kernels impose a distance of a megabyte between stack 830 * memory and other memory regions. If we try to install the 831 * codebuf before expanding the stack the installation will appear 832 * to succeed but we'll get a segfault later if we expand the stack 833 * in Java code. 834 * 835 */ 836 if (os::is_primordial_thread()) { 837 address limit = Linux::initial_thread_stack_bottom(); 838 if (! DisablePrimordialThreadGuardPages) { 839 limit += JavaThread::stack_red_zone_size() + 840 JavaThread::stack_yellow_zone_size(); 841 } 842 os::Linux::expand_stack_to(limit); 843 } 844 845 /* 846 * Take the highest VA the OS will give us and exec 847 * 848 * Although using -(pagesz) as mmap hint works on newer kernel as you would 849 * think, older variants affected by this work-around don't (search forward only). 850 * 851 * On the affected distributions, we understand the memory layout to be: 852 * 853 * TASK_LIMIT= 3G, main stack base close to TASK_LIMT. 854 * 855 * A few pages south main stack will do it. 856 * 857 * If we are embedded in an app other than launcher (initial != main stack), 858 * we don't have much control or understanding of the address space, just let it slide. 859 */ 860 char* hint = (char*)(Linux::initial_thread_stack_bottom() - 861 (JavaThread::stack_guard_zone_size() + page_size)); 862 char* codebuf = os::attempt_reserve_memory_at(page_size, hint); 863 864 if (codebuf == NULL) { 865 // JDK-8197429: There may be a stack gap of one megabyte between 866 // the limit of the stack and the nearest memory region: this is a 867 // Linux kernel workaround for CVE-2017-1000364. If we failed to 868 // map our codebuf, try again at an address one megabyte lower. 869 hint -= 1 * M; 870 codebuf = os::attempt_reserve_memory_at(page_size, hint); 871 } 872 873 if ((codebuf == NULL) || (!os::commit_memory(codebuf, page_size, true))) { 874 return; // No matter, we tried, best effort. 875 } 876 877 MemTracker::record_virtual_memory_type((address)codebuf, mtInternal); 878 879 log_info(os)("[CS limit NX emulation work-around, exec code at: %p]", codebuf); 880 881 // Some code to exec: the 'ret' instruction 882 codebuf[0] = 0xC3; 883 884 // Call the code in the codebuf 885 __asm__ volatile("call *%0" : : "r"(codebuf)); 886 887 // keep the page mapped so CS limit isn't reduced. 888 #endif 889 } 890 891 int os::extra_bang_size_in_bytes() { 892 // JDK-8050147 requires the full cache line bang for x86. 893 return VM_Version::L1_line_size(); 894 } --- EOF ---