
review-guide.md 8/13/2020

1 / 25

1. Preface

1.1. High Level Overview

1.2. Core Concepts

1.2.1. Commit Granules

1.2.2. Metachunks and the Buddy Style Allocator

1.2.2.1. Merging chunks

1.2.2.2. Splitting chunks

1.3 How it all looks in memory

1.4. Outside interface

2. Subsystems

2.1. The Virtual Memory Subsystem

2.1.1. Essential operations

2.1.2. Other operations

2.1.3. Classes

2.1.3.1. class VirtualSpaceList

2.1.3.2. class VirtualSpaceNode

2.1.3.3. class CommitMask

2.1.3.4. class RootChunkArea and class RootChunkAreaLUT

2.1.3.5. class CommitLimiter

2.2. The Central Chunk Manager Subsystem

2.2.1. Basic operations

2.3. Classloader-local Subsystem

2.3.1. Basic operations

2.3.2. Classes

2.3.2.1. class Metachunk

2.3.2.1.1. Metachunk Memory

2.3.2.1.2. Metachunk::allocate()

2.3.2.2. class MetaspaceArena

2.3.2.2.1. MetaspaceArena::allocate()

2.3.2.2.2. Retiring chunks

2.3.2.3. class ClassLoaderMetaspace

2.3.2.3.1. class ArenaGrowthPolicy

2.4. Deallocation subsystem

2.4.1. Classes

2.5. Auxiliary code

2.5.1. class ChunkHeaderPool

2.5.2. Counters

2.5.3. MetachunkList and MetachunkListVector

2.5.4. Allocation guards

3. Locking and concurrency

4. Tests

4.1 Gtests

4.2 jtreg tests

5. Further information

review-guide.md 8/13/2020

2 / 25

1. Preface

(not as complicated as it looks!)

JEP 387 "Elastic Metaspace" is the rewrite of the Metaspace allocator with the following goals:

to reduce memory consumption

to return unused memory back to the OS after class unloading

to have a clean and maintainable implementation

The corresponding proposal is JEP 387.

This document is both a review guide and a short architectural description of this project.

1.1. High Level Overview

Metaspace is used to manage memory for class metadata. Class metadata are allocated when classes are

loaded (mostly). Their lifetime is scoped to that of the loading classloader (mostly). When a loader gets

collected all class metadata it accumulated get released back to the metaspace in one go. This removes the

need to track individual allocations for the purpose of freeing them - we have a bulk delete scenario.

Therefore metaspace is a arena- or region-based allocator. It is optimized for fast, memory efficient

allocation of native memory at the cost of not being able to (easily) delete arbitrary blocks.

Seen from a very high level:

A CLD owns a MetaspaceArena. From that arena it allocates memory for class metadata and other

purposes via pointer bump. As it is used up the arena grows dynamically (in semi-coarse steps, whose size is

one of the tuning challenges).

When the CLD is deleted, the arena gets deleted and its memory returned to the metaspace.

Globally there exist a MetaspaceContext: the metaspace context manages the underlying memory at the

OS level. To arenas it offers a coarse-grained allocation API, where memory is handed out in the form of

chunks. It also keeps a freelist of said chunks which had been released from deceased arenas.

Only one global context exists if compressed class pointers are disabled and we have no compressed class

space:

https://openjdk.java.net/jeps/387
https://en.wikipedia.org/wiki/Region-based_memory_management

review-guide.md 8/13/2020

3 / 25

MetaspaceContext

(ChunkManager atop of VirtualSpaceList
atop of 1-n ReservedSpace)

...

Per
Loader/CLD

Virtual
memory

global

“Reserve, Commit,
Uncommit, Release”

“Allocate chunks”

Metaspace
Arena

CLD

“Allocate individual
blocks”

High Level Overview
 (no compressed class space)

Metaspace
Arena

CLD

“Allocate individual
blocks”

“Allocate chunks”

Metaspace
Arena

CLD

“Allocate individual
blocks”

“Allocate chunks”

...Virtual
memory

Virtual
memory

If compressed class pointers are enabled, we keep class space allocations separate from non-class space

allocations. Hence we have two global metaspace context instances: one holding allocations of Klass

review-guide.md 8/13/2020

4 / 25

structures (the "compressed class space"), one holding everything else (the "non-class" metaspace).

Mirroring that duality, each CLD now owns two arenas as well:

“non-class” MetaspaceContext

(expandable, non-class allocations)

...

Per
Loader/CLD

Virtual
memory

global

“Reserve, Commit,
Uncommit, Release”

“Allocate chunks”

“non-class”
Metaspace

Arena

CLD

“Allocate individual blocks”

High Level Overview
 (with compressed class space)

...Virtual
memory

Virtual
memory

“class” MetaspaceContext

(non-expandable, for Klass allocations)

Virtualmemory
(“Class Space”)

“Reserve, Commit,
Uncommit, Release”

“class”
Metaspace

Arena

“non-class”
Metaspace

Arena

CLD

“Allocate individual blocks”

“class”
Metaspace

Arena

review-guide.md 8/13/2020

5 / 25

1.2. Core Concepts

1.2.1. Commit Granules

One of the key points of Elastic Metaspace is elasticity, the ability to uncommit unneeded memory, and

commit memory only on demand. So in contrast to the old implementation, we do not have a contiguous

committed region but committed and uncommitted areas may interleave.

This is done by introducing "commit granules". These are homogenously sized memory units, power-of-two

sized, and the metaspace address range is split up into these granules. Commit granules are the basic unit

of committing and uncommitting memory in Metaspace.

While commit granules may in theory be as small as a single page, in practice they are larger (defaulting to

64K).

The smaller a commit granule is, the more likely it is to be unoccupied and eligible for uncommitting. But at

the same time, uncommitting very small areas will increase the number of VMA's of the VM process.

Therefore commit granule size is a compromise. The default size is 64K with -

XX:MetaspaceReclaimStrategy=balanced. Switching to -

XX:MetaspaceReclaimStrategy=aggressive switches granule size to 16K (4 pages on most

platforms). The latter gives better results in scenarios with heavy usage of anonymous classes, e.g.

reflection proxies.

1.2.2. Metachunks and the Buddy Style Allocator

Metaspace arenas are growable. Internally they are lists of variable-sized memory chunks, the Metachunks.

These are the unit of allocation from the lower levels. Arenas obtain these chunks from their respective

metaspace context and return all chunks back to the context when they die.

Chunks are variable power-of-two sized. Largest size is 4M ("Root Chunk"). Smallest size is 1K.

Chunks are managed by a buddy allocator. A buddy allocator is a simple old efficient algorithm useful to

keep fragmentation at bay, at the cost of limiting the size of managed areas to power of two units. This

restriction does not matter for Metaspace since the chunks are not the ultimate unit of allocation, just an

intermediate.

In code (see chunklevel.hpp), chunk size is given as "chunk level" (typedef .. chklvl_t). A root

chunk - the largest chunk there is - has chunk level 0. The smallest chunk has chunk level 13. Helper

functions and constants to work with chunk level can be found at chunk_level.hpp.

1.2.2.1. Merging chunks

A chunk is always part of a pair of chunks, unless the chunk is a root chunk. We call a chunk a "leader" if it is

the first chunk (lower address) of the pair.

+-------------------+-------------------+
| Leader | Follower |
+-------------------+-------------------+

https://en.wikipedia.org/wiki/Buddy_memory_allocation

review-guide.md 8/13/2020

6 / 25

A free chunk can be merged with its buddy if that buddy is free and unsplit (which is synonymous if buddy

style rules are followed). That process can be repeated:

+---------+---------+---------+---------+
| A | B | C | D |
+---------+---------+---------+---------+
 |
 v
+-------------------+-------------------+
| A` | B` |
+-------------------+-------------------+
 |
 v
+-------------------+-------------------+
| A`` |
+-------------------+-------------------+

If the buddy is not free, or split (in which case one of the splinters will not be free), we cannot merge. In this

example, B cannot merge with its buddy since it is splintered, and it is splintered since one of its splinters,

d2, is not free yet.

+-------------------+-------------------+
| D1 | d2 | C | B |
+-------------------+-------------------+
 ^
 not free

1.2.2.2. Splitting chunks

To get a small chunk from a larger chunk, a large chunk can be split. Splitting always happens at pow2 sizes.

A split operation yields the desired smaller chunk as well as splinter chunks.

In this example, A is four times as big as the chunk we need, so we split it twice, arriving at the target chunk

d1, and splinter chunks D2, C and B.

+---------------------------------------+
| A |
+---------------------------------------+
 |
 v
+-------------------+-------------------+
| d1 | D2 | C | B |
+-------------------+-------------------+
 ^
 Result chunk

review-guide.md 8/13/2020

7 / 25

1.3 How it all looks in memory

 +------------------+ <--- virtual memory region
 | +-------------+ | <--- chunk
 | | +---------+ | | <--- block
 | | | | | |
 | | +---------+ | |
 | | +---------+ | | <--- block
	+---------+			
	+---------+		<--- block	
	+---------+			
+-------------+	<--- end: chunk			
+-------------+	<--- chunk			
	+---------+			
 ...
 +------------------+ <--- end: virtual memory region

 +------------------+ <--- next virtual memory region
 | +-------------+ |
	+---------+			
	+---------+			
 ...

1.4. Outside interface

The outside interface to the Metaspace (ignoring reporting/monitoring for now) are:

the ClassLoaderMetaspace class

the Metaspace static "namespace"

class ClassLoaderMetaspace is the holder for above mentioned arenas; it belongs to a CLD. When

released (in the wake of a GC collecting the owning loader and its CLD) it will release all Metaspace back to

the system.

2. Subsystems

The implementation for Elastic Metaspace can be divided into separate sub systems, each of which is

isolated from its peers and has a small number of tasks. These subsystems are a good way to direct

reviewing.

review-guide.md 8/13/2020

8 / 25

Per Classloader Subsystem

Deallocation Subsystem

FreeBlocks

BinList

BlockTree MetaspaceArena

ClassLoaderMetaspace

MetaChunk

Central Chunk Manager

ChunkManager

Virtual Memory Subsystem

VirtualSpaceNode

VirtualSpaceList

RootChunkArea CommitMask

CommitLimiter

ClassLoaderData

“Allocate” “Deallocate”
“Release all”

“Get new chunk
of size X”

“Return chunks”

“Get new root
chunk”

2.1. The Virtual Memory Subsystem

review-guide.md 8/13/2020

9 / 25

VirtualSpaceNode
- Manages address range
- knows commit granules and how to commit/uncommit
- allocates root chunks

VirtualSpaceList
- has a list of nodes (memory regions)
- but maybe only one node (class space)

Address range

Root chunk
areas

Commit
Granules

Commit
Mask

1 1 1 0 0 0 1 0 0 1 0 1 1 1 1 1

1:n

RootChunkArea
(one per area)
- knows how chunks
 are split and merged

1:n

CommitMask
- 1 bit per granule

1

CommitLimiter
- knows when it is ok to commit

- usually a singleton

“can I com
m

it?”

“Give me a new root chunk”

“Commit / Uncommit
 this area for me”

MetaChunkChunkManager

Virtual Memory Subsystem

Classes:

review-guide.md 8/13/2020

10 / 25

VirtualSpaceList

VirtualSpaceNode

RootChunkArea and RootChunkAreaLUT

CommitMask

CommitLimiter

The Virtual Memory Layer is the lowest subsystem of all. It forms one half of a metaspace context (the

upper half being the chunk manager).

It is responsible for reserving and committing memory. It knows about commit granules. Its outside

interface to upper layers is the class VirtualSpaceList; some operations are also directly exposed via

VirtualSpaceNode.

2.1.1. Essential operations

"Allocate new root chunk"

VirtualSpaceList::Metachunk* allocate_root_chunk();

This carves out a new root chunk (a chunk of of 4M) from the reserved space and hands it to the

caller (nothing is committed yet, this is purely reserved memory).

"commit this range"

VirtualSpaceNode::ensure_range_is_committed()

Upper layers can request that a given arbitrary address range should be committed. Subsystem

figures out which granules are affected and makes sure those are committed. This may be fully or

partly a NOOP if the range is already committed.

When committing, subsystem honors limits (via commit limiter).

"uncommit this range"

VirtualSpaceNode::uncommit_range()

Similar to committing. Subsystem figures out which commit granules are affected, and uncommits

those.

"purge"

VirtualSpaceList::purge()

This unmaps all completely empty memory regions.

2.1.2. Other operations

The Virtual Memory Subsystem takes care of Buddy Style Allocator operations, on behalf of upper regions:

"split this chunk, maybe repeatedly" VirtualSpaceNode::split()

"merge up chunk with neighbors as much as possible" VirtualSpaceNode::merge()

"enlarge chunk in place" VirtualSpaceNode::attempt_enlarge_chunk()

review-guide.md 8/13/2020

11 / 25

2.1.3. Classes

2.1.3.1. class VirtualSpaceList

VirtualSpaceList is a list of reserved regions (VirtualSpaceNode). VirtualSpaceList manages a single (if

non-expandable) or a series of (if expandable) virtual memory regions.

Internally it holds a list of nodes (VirtualSpaceNode), each one managing a single contiguous memory

region. The first node of this list is the current node and used for allocation of new root chunks.

Beyond access to those nodes, and the ability to grow new nodes (if expandable), it allows for purging:

purging this list means removing and unmapping all memory regions which are unused. Other than that,

this class is unexciting.

Of this object only exist one or two global instances, contained within the one or two MetaspaceContext

values which exist globally.

2.1.3.2. class VirtualSpaceNode

VirtualSpaceNode manages one contiguous reserved region of the Metaspace.

In case of the compressed class space, it contains the whole compressed class space, contained in a list with

a single node which cannot be expanded.

It knows which granules in this region are committed (class CommitMask).

VirtualSpaceNode also knows about root chunks: the memory is divided into a series of root-chunk-sized

areas (class RootChunkArea). This means the memory has to be aligned (both starting address and size)

to root chunk area size of 4M.

| root chunk | root chunk | root chunk |

+---+
| |
| `VirtualSpaceNode` memory |
| |
+---+

|x| |x|x|x| | | | |x|x|x| | | |x|x| | | |x|x|x|x| | | | <-- commit granules

(x = committed)

Note: the concepts of commit granules and of root chunks and the buddy allocator are almost completely

independent from each other.

2.1.3.3. class CommitMask

Very unexciting. Just a bit mask holding commit information (one bit per granule).

review-guide.md 8/13/2020

12 / 25

2.1.3.4. class RootChunkArea and class RootChunkAreaLUT

RootChunkArea contains the buddy allocator code. It is wrapped over the area of a single root chunk. It

knows how to split and merge chunks. It also has a reference to the very first chunk in this area (needed

since Metachunk chunk headers are separate entities from their payload, see below, and it is not easy to

get from the metaspace start address to its Metachunk).

A RootChunkArea object does not exist on its own but as a part of an array within a VirtualSpaceNode,

describing the node's memory.

RootChunkAreaLUT (for "lookup table") just holds the sequence of RootChunkArea classes which cover

the memory region of the VirtualSpaceNode. It offers lookup functionality "give me the

RootChunkAreafor this address".

2.1.3.5. class CommitLimiter

The CommitLimiter contains the limit logic we may want to impose on how much memory can be

committed:

In metaspace, we have two limits to committing memory: the absolute limit, MaxMetaspaceSize; and the

GC threshold. In both cases an allocation should fail if it would require committing memory and hit one of

these limits.

However, the actual Metaspace allocator is a generic one and this GC- and classloading specific logic should

be kept separate. Therefore it is hidden inside this interface.

This allows us to:

more easily write tests for metaspace, by providing a different implementation of the commit limiter,

thus keeping test logic separate from VM state.

(potentially) use the metaspace for things other than class metadata, where different commit rules

would apply.

Under normal circumstances, only one instance of the CommitLimiter ever exists, see

CommitLimiter::globalLimiter(), which encapsulates the GC threshold and MaxMetaspace queries.

2.2. The Central Chunk Manager Subsystem

review-guide.md 8/13/2020

13 / 25

ChunkManager

VirtualSpaceList

“Give me a new root chunk”

Central Chunk Manager

“Give me a new chunk of size X”

MetaspaceArena

“Take these chunks back”

...

Lvl 0 (4M)

Lvl 1 (2M)

Lvl 2 (1M)

Lvl 12 (1K)

Freelists of chunks (1 per chunk level)

“Merge/split this chunk for me”

Classes

review-guide.md 8/13/2020

14 / 25

ChunkManager

This subsystem plays a very central role. It only consists of one class, class ChunkManager.

Arenas request chunks from it and, on death, return chunks back to it. It keeps freelists for chunks, one per

chunk level. To feed the freelists, it allocates root chunks from the associated VirtualSpace below it.

ChunkManager directs splitting chunks, if a chunk request cannot be fulfilled directly. It also takes care of

merging when chunks are returned to it, before they are added to the freelist.

The freelists are double linked double headed; fully committed chunks are added to the front, others to the

back.

ChunkManager freelist vector:
Level
 +--------------------+ +--------------------+
 0 | free root chunk |---| free root chunk |---...
 +--------------------+ +--------------------+
 +----------+ +----------+
 1 | |---| |---...
 +----------+ +----------+
 .
 .
 +-+ +-+
 12 | |---| |---...
 +-+ +-+

2.2.1. Basic operations

"Give me a chunk of, preferably, level X, but at most level Y, with at least n words committed"

ChunkManager::get_chunk(..)

This will provide a chunk to the upper layer of the requested size. If a fitting chunk is found in the

freelists, it will reuse that one, splitting larger chunks if needed. Otherwise it will allocate a new root

chunk from the Virtual Memory Subsystem and use that to satisfy the request. The chunk manager

will prefer already committed chunks to fulfill this request; only if no committed chunk can be found,

it will take or create a new chunk of requested size and commit it sufficiently.

"Return chunk"

ChunkManager::return_chunk()

Callers call this (typically a MetaspaceArena before its death) to hand down chunks to the

ChunkManager for safekeeping. ChunkManager will put them into the freelist. Before doing this, it

will attempt to merge the chunks Buddy-Allocator style with its neighbors to arrive at larger chunks.

If, after merging with neighbors, the resulting free chunk surpasses a certain threshold, its memory is

uncommitted.

2.3. Classloader-local Subsystem

review-guide.md 8/13/2020

15 / 25

ChunkManager

Per ClassLoader

MetaspaceArena

In use
chunks

Current
Chunk Retired

(full)
chunks

FreeBlocks
(manages deallocated blocks)

ClassLoaderMetaspace

Has 1 (if compressed class pointers
disabled) or 2 arenas

ClassLoaderData

MetaChunk
- pointer bump allocation

- commits itself on demand

VirtualSpaceNode

“Commit / Uncommit
 this area for me”

“Give me a new chunk
 of size X”

ArenaGrowthPolicy
“how big is the next chunk”

“Take all chunks back”
(upon destruction)

Classes

review-guide.md 8/13/2020

16 / 25

ClassLoaderMetaspace

MetaspaceArena

Metachunk

ArenaGrowthPolicy

This subsystem builds atop the Central Chunk Manager, and the topmost layer of the metaspace allocator.

It offers fine grainedr allocation to the caller: A caller needing 240 bytes for a constant pool will request

this, ultimately, from the arena attached to its CLD.

2.3.1. Basic operations

"Allocate n words of memory from class space / non class space".

ClassLoaderMetaspace::allocate()

This will allocate n words of Metaspace. Internally the memory will be taken from a chunk via pointer

bump allocation, similar to a thread stack. If no chunk exists or the current chunk belonging to the

class loader is too small, a new chunk is obtained by asking the ChunkManager. If the chunk is not

sufficiently committed to cover the returned area, in the course of this allocation if will commit

further (one granule at a time).

"Release all Metaspace blocks"

ClassLoaderMetaspace::~ClassLoaderMetaspace()

Called upon class loader death. This releases all memory ever allocated for this CLD by returning all

chunks it owns back to the chunk manager.

"Release, prematurely, this block."

ClassLoaderMetaspace::deallocate()

See Deallocation Subsystem for details.

2.3.2. Classes

2.3.2.1. class Metachunk

Metachunk wraps one chunk. It has a used portion and an unused portion.

If the chunk spans multiple commit granules, the unused portion may contain partially uncommitted

memory:

review-guide.md 8/13/2020

17 / 25

Large Metachunk
(spanning multile commit granules)
(can be partly committed, hence committed on demand)

Chunk

granule

granule

granule

granule

Committed

Used

Uncommitted

base

used_words

committed_words

word_size
(level)

... but if the chunk is smaller or equal to a commit granule it is either fully committed or uncommitted:

review-guide.md 8/13/2020

18 / 25

Small Metachunks
(smaller than a single commit granule)
(can only be together committed or uncommitted)

granule

Committed

Used

Committed

Used

Committed

Used

Committed

Used

Base 1

Base 2

Base 3

Base 4

MetaChunk and its payload area are disjunct:

review-guide.md 8/13/2020

19 / 25

 | |
+-------------+ | |
| Metachunk | | |
| | | |
| base() -----------> +------------+
| end() ------- | |
+-------------+ | | |
 | | <payload> |
 | | |
 -----> +------------+
 | |
 | |

In old metaspace, Metachunk was a header, followed by the chunk payload. Elastic Metaspace physically

separates those two, in order to be able to fully uncommit the payload.

Metachunk knows its chunk memory area (base address and size aka level). It also has a reference to the

VirtualSpaceNode containing its payload, in order to commit and uncommit itself on demand.

Metachunk state:

"in-use": A chunk in use is owned by a class loader; its payload area carries live metadata.

"free": A free chunk is not owned by anyone, but awaits re-use in the chunk manager freelist. Its

payload area may or may not be committed at this stage.

"dead": A "dead" chunk is just an unused header, without payload, cached for future reuse.

2.3.2.1.1. Metachunk Memory

From a Metachunk the owning arena allocates via pointer bump allocation:

+------------------------------+-----------+--------------------------+
| used | used(new) | unused |
+------------------------------+-----------+--------------------------+

^ ^ --bump----^ ^
base end.

The memory underlying a Metachunk may consist of any number of commit granules, which can be

committed or uncommitted independently from each other. So the memory below a chunk could be

"checkered".

Of course, the used portion of a Metachunk has to be committed, otherwise we could not store data in

them. Therefore, when allocating new memory from the Chunk, before moving the top-pointer,

Metachunk ensures the newly used memory is committed by asking the underlyingVirtualSpaceNode.

But since this is costly - we do not want to botherVirtualSpaceNodefor every single allocation -

Metachunk also keeps record of the highest committed address in its range. Note that does not mean

there could not be committed granules in higher areas; it just means it does not know better:

review-guide.md 8/13/2020

20 / 25

+------------------------------+-------------------+--------------------+
| used | unused committed | unused uncommitted |
+------------------------------+-------------------+--------------------+

^ ^ ^ ^
base used_words committed_words end.

So, space below committed_words is guaranteed to be committed; beyond that Metachunk has to make

sure by bothering VirtualSpaceNode.

2.3.2.1.2. Metachunk::allocate()

Metachunk::allocate() is the central access to pointer bump allocation from a chunk. It takes care of

on demand committing the underlying memory and moves the top pointer up.

2.3.2.2. class MetaspaceArena

MetaspaceArena manages the in-use chunk list for a class loader.

It has a current chunk, which is used to satisfy ongoing Metadata allocations. It also has a list of "retired"

chunks, which are chunks which are completely or almost completely filled with Metadata. It safekeeps the

chunks until the class loader dies and the MetaspaceArena is destroyed, to return them to the

ChunkManager for reuse.

It also has a FreeBlocks object, which takes care about deallocated blocks - see Deallocation Subsystem

below for details.

2.3.2.2.1. MetaspaceArena::allocate()

MetaspaceArena::allocate() is the central access point to allocate a piece of Metadata for a class

loader.

It will first attempt to take memory from the FreeBlocks structure (see below).

Failing that, it will first attempt to take memory from the current chunk via pointer bump allocation - see

Metachunk::allocate().

Failing that, it will employ various strategies to get more memory: it may try to enlarge the current chunk,

or it may try to get a new chunk from the chunk manager.

2.3.2.2.2. Retiring chunks

When the MetaspaceArena gets an allocation request and is unable to fulfill it from the current chunk,

because the space left in the current chunk is too small, it will acquire a new chunk. However, we do not

want to loose the remainder space in the current chunk.

The remainder space is added to the FreeBlocks structure and managed the same way as space

deallocated from the outside would - getting reused for later allocations as soon as possible.

review-guide.md 8/13/2020

21 / 25

2.3.2.3. class ClassLoaderMetaspace

ClassLoaderMetaspace is just the connection between a CLD and one or two instances of SpaceManger

- normally just one, but if -XX:+UseCompressedClassPointers, we need two MetaspaceArenas, one for

class space allocations (to put Klass* structures), one for the rest.

It also takes care of increasing the GC threshold when necessary.

Beyond that, it does not have a lot of own logic.

2.3.2.3.1. class ArenaGrowthPolicy

ArenaGrowthPolicy encapsulates the logic of "how big a chunk do I give this class loader?".

When a class loader allocates memory, we give it (via MetaspaceArena) a chunk to gnaw on, which should

be fine for this requested allocation as well as a number of future allocations. The open question is how

large that chunk should be. This is basically a guess toward the future loading behavior of this class loader.

If we know the class loader will only load one or very few classes (e.g. Lambdas, Reflection glue code etc), it

makes sense to give the MetaspaceArena a small chunk. If we know the loader may load a lot of classes

(e.g. the Boot Class loader), we may want to give it a larger chunk.

There is also the notion involved that a class loader "has to prove itself": a standard class loader which we

know nothing else about will first be given a few small chunks until we give it larger chunks. How much

sense this makes is questionable but as a strategy this seems to work reasonably well.

This logic existed in old Metaspace too, in a somewhat convoluted fashion, see

MetaspaceArena::get_initial_chunk_size() and MetaspaceArena::calc_chunk_size().

In Elastic Metaspace, this logic lives in ArenaGrowthPolicy. This is basically just a fancy hard-coded array

of chunk sizes marking the handout progression depending on how many chunks the loader already got.

One of these arrays exist per use case.

Note that with Elastic Metaspace, one important difference is that we now commit larger chunks on

demand. This means when handing larger chunks to a loader we do not have to pay the memory cost

upfront, which reduces the penalty for given larger chunks to loaders. So, we can give e.g. a full 4MB root

chunk over to the boot class loader even though it may use less (maybe a lot less with CDS involved) and it

only will commit the parts it needs.

2.4. Deallocation subsystem

review-guide.md 8/13/2020

22 / 25

Deallocation Subsystem

MetaspaceArena

FreeBlocks

“Take this small block of memory”
“Find me a block of
memory at least x
words sized”

...

3

4

32

BinList
one block list per word size for the 32
smallest blocks (sizes 2...34)

BlockTree
BST for larger blocks

Classes:

review-guide.md 8/13/2020

23 / 25

FreeBlocks

BinList

BlockTree

This is a bit of a sideshow but still important.

Sometimes (usually rarely) metaspace blocks are given back to the allocator before the containing arena

dies. So we have to deal with premature deallocation. These are uncommon cases - if they were not we

would not use arenas. The caller returns the memory to the Metaspace via Metaspace::deallocate().

The returned blocks are embedded into Metachunks which are in use by a live arena, so these blocks can

only be reused by that arena. To do that each arena keeps a structure (FreeBlocks) to managed returned

blocks. Normally this structure does not see much action, therefore it is only allocated on demand.

Note that this mechanism is also used to manage remainder space from almost-used-up blocks.

The interface is very simple:

"keep block for future reuse"

FreeBlocks::add_block()

Adds this block to the manager.

"give me a block of size x"

FreeBlock::get_block()

This will attempt to return a block of at least size x. The block may be larger. Internally, the best fit is

searched for, and if the best fit is found but considered too large to waste for size x, it is split and the

remainder is put back into the manager.

2.4.1. Classes

The outside interface is the FreeBlocks structure. It itself contains two structures, BinList and

BlockTree.

BinList is a simple mechanism to manage small to very small memory blocks and store/retrieve them

efficiently. It is somewhat costly in terms of memory (one pointer size per block word size), therefore it

only covers the first 16 small block sizes. But since these block sizes are the vast majority of deallocated

blocks, it makes sense to pay this cost.

BlockTree is a binary search tree used to manage larger blocks. It is unbalanced (though it may be a good

idea in the future to make it a red black tree).

2.5. Auxiliary code

A collection of miscellaneous helper classes.

2.5.1. class ChunkHeaderPool

ChunkHeaderPool manages Metachunk structures.

review-guide.md 8/13/2020

24 / 25

Since Metachunk structures are separated from the chunk payload areas, they need to live somewhere. We

could just allocate them from C-Heap but that would be suboptimal since with buddy style chunk merging

and splitting a lot of temporary headers are used.

Therefore ChunkHeaderPool exists, which is just a growable array of Metachunk structures. It keeps a list

of free structures. The underlying memory is allocated from C Heap.

In this sense it is roughly similar to a kernel slab allocator (but not as complex, really).

This not only makes for more efficient allocation and deallocation of Metachunk, it also provides better

locality - the chance that headers of linked chunks are allocated close to each other in this pool is high -

which makes walking these chunks cheaper.

2.5.2. Counters

In Metaspace, a lot of things are counted. This is a lot of boilerplate coding. Helper classes exist which

provide counting and various check functions (e.g.overflow- and underflow checking).

These classes live in counter.hpp:

class SizeCounter

class IntCounter

class MemoryCounter

2.5.3. MetachunkList and MetachunkListVector

MetachunkList is a linked list of Metachunks.

MetachunkListVector is a list of Metachunk lists. One list per chunk level. The lists only contain chunks

of their level.

2.5.4. Allocation guards

This is an optional feature controlled by -XX:+MetaspaceGuardAllocations. Normally off, if switched

on it will add a fence after every Metaspace allocation, and test these fences in regular intervals (e.g. when

a GC purges the Metaspace). This can be used to capture memory overwriters.

3. Locking and concurrency

Locking in Elastic Metaspace is a simple a two-step mechanism which is unchanged from the old Metaspace.

There is locking at class loader level (ClassLoaderData::_metaspace_lock) which guards access to the

ClassLoaderMetaspace. Ideally the brunt of Metaspace allocations should only need this lock. It guards

the access to the current chunk and the pointer bump allocation done with it.

The moment central data structures are accessed (e.g. when memory needs to be committed, a new chunk

allocated or returned to the freelist), a global lock is taken, the MetaspaceExpand_lock.

(Note: in the future this lock may actually be changed to a lock local to the MetaspaceContext.)

4. Tests

review-guide.md 8/13/2020

25 / 25

A lot of tests have been written anew to test the Metaspace.

4.1 Gtests

In test/hotspot/gtest/metaspace reside a large number of new tests. These are both stress tests and

functional tests. These tests are valuable, and in order to get the most out of them, they are executed with

different settings (all metaspace reclamation policies, with allocation guards etc) as part of the jtreg tests

(see test/hotspot/jtreg/gtest/MetaspaceGtests.java).

4.2 jtreg tests

Apart from the gtests, new jtreg have been written to stress test multithreaded allocation, deallocation

and arena deletion. These tests live inside test/hotspot/jtreg/runtime/Metaspace/elastic. They

use a newly introduced set of Whitebox APIs which allows for creation of metaspace contexts and

metaspace arenas which are independent on the global Metaspace/class space. That allows for isolated

testing without interfering with or getting interfered by global VM metaspace.

5. Further information

Not vital for this review but may give more information.

The JEP explains core concepts in greater detail.

A presentation we gave in March 2020: https://github.com/tstuefe/jep387/blob/master/pres/elastic-

metaspace.pdf

A brief talk we gave at Fosdem 2020: https://www.youtube.com/watch?v=XqaQ-z70sQs

A series of articles with a bit more depth describing the old Metaspace implementation:

https://stuefe.de/posts/metaspace/what-is-metaspace

https://openjdk.java.net/jeps/8221173

