1 /*
   2  * Copyright (c) 2001, 2020, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "gc/shared/allocTracer.hpp"
  28 #include "gc/shared/barrierSet.hpp"
  29 #include "gc/shared/collectedHeap.hpp"
  30 #include "gc/shared/collectedHeap.inline.hpp"
  31 #include "gc/shared/gcLocker.inline.hpp"
  32 #include "gc/shared/gcHeapSummary.hpp"
  33 #include "gc/shared/gcTrace.hpp"
  34 #include "gc/shared/gcTraceTime.inline.hpp"
  35 #include "gc/shared/gcVMOperations.hpp"
  36 #include "gc/shared/gcWhen.hpp"
  37 #include "gc/shared/memAllocator.hpp"
  38 #include "logging/log.hpp"
  39 #include "memory/metaspace.hpp"
  40 #include "memory/resourceArea.hpp"
  41 #include "memory/universe.hpp"
  42 #include "oops/instanceMirrorKlass.hpp"
  43 #include "oops/oop.inline.hpp"
  44 #include "runtime/handles.inline.hpp"
  45 #include "runtime/init.hpp"
  46 #include "runtime/thread.inline.hpp"
  47 #include "runtime/threadSMR.hpp"
  48 #include "runtime/vmThread.hpp"
  49 #include "services/heapDumper.hpp"
  50 #include "utilities/align.hpp"
  51 #include "utilities/copy.hpp"
  52 
  53 class ClassLoaderData;
  54 
  55 size_t CollectedHeap::_filler_array_max_size = 0;
  56 
  57 template <>
  58 void EventLogBase<GCMessage>::print(outputStream* st, GCMessage& m) {
  59   st->print_cr("GC heap %s", m.is_before ? "before" : "after");
  60   st->print_raw(m);
  61 }
  62 
  63 void GCHeapLog::log_heap(CollectedHeap* heap, bool before) {
  64   if (!should_log()) {
  65     return;
  66   }
  67 
  68   double timestamp = fetch_timestamp();
  69   MutexLocker ml(&_mutex, Mutex::_no_safepoint_check_flag);
  70   int index = compute_log_index();
  71   _records[index].thread = NULL; // Its the GC thread so it's not that interesting.
  72   _records[index].timestamp = timestamp;
  73   _records[index].data.is_before = before;
  74   stringStream st(_records[index].data.buffer(), _records[index].data.size());
  75 
  76   st.print_cr("{Heap %s GC invocations=%u (full %u):",
  77                  before ? "before" : "after",
  78                  heap->total_collections(),
  79                  heap->total_full_collections());
  80 
  81   heap->print_on(&st);
  82   st.print_cr("}");
  83 }
  84 
  85 size_t CollectedHeap::unused() const {
  86   MutexLocker ml(Heap_lock);
  87   return capacity() - used();
  88 }
  89 
  90 VirtualSpaceSummary CollectedHeap::create_heap_space_summary() {
  91   size_t capacity_in_words = capacity() / HeapWordSize;
  92 
  93   return VirtualSpaceSummary(
  94     _reserved.start(), _reserved.start() + capacity_in_words, _reserved.end());
  95 }
  96 
  97 GCHeapSummary CollectedHeap::create_heap_summary() {
  98   VirtualSpaceSummary heap_space = create_heap_space_summary();
  99   return GCHeapSummary(heap_space, used());
 100 }
 101 
 102 MetaspaceSummary CollectedHeap::create_metaspace_summary() {
 103   const MetaspaceSizes meta_space(
 104       MetaspaceUtils::committed_bytes(),
 105       MetaspaceUtils::used_bytes(),
 106       MetaspaceUtils::reserved_bytes());
 107   const MetaspaceSizes data_space(
 108       MetaspaceUtils::committed_bytes(Metaspace::NonClassType),
 109       MetaspaceUtils::used_bytes(Metaspace::NonClassType),
 110       MetaspaceUtils::reserved_bytes(Metaspace::NonClassType));
 111   const MetaspaceSizes class_space(
 112       MetaspaceUtils::committed_bytes(Metaspace::ClassType),
 113       MetaspaceUtils::used_bytes(Metaspace::ClassType),
 114       MetaspaceUtils::reserved_bytes(Metaspace::ClassType));
 115 
 116   const MetaspaceChunkFreeListSummary& ms_chunk_free_list_summary =
 117     MetaspaceUtils::chunk_free_list_summary(Metaspace::NonClassType);
 118   const MetaspaceChunkFreeListSummary& class_chunk_free_list_summary =
 119     MetaspaceUtils::chunk_free_list_summary(Metaspace::ClassType);
 120 
 121   return MetaspaceSummary(MetaspaceGC::capacity_until_GC(), meta_space, data_space, class_space,
 122                           ms_chunk_free_list_summary, class_chunk_free_list_summary);
 123 }
 124 
 125 void CollectedHeap::run_task_at_safepoint(AbstractGangTask* task, uint num_workers) {
 126   assert(SafepointSynchronize::is_at_safepoint(), "Should only be called at a safepoint");
 127 
 128   WorkGang* gang = get_safepoint_workers();
 129   if (gang == NULL) {
 130     // GC doesn't support parallel worker threads.
 131     // Execute in this thread with worker id 0.
 132     task->work(0);
 133   } else {
 134     gang->run_task(task, num_workers);
 135   }
 136 }
 137 
 138 void CollectedHeap::print_heap_before_gc() {
 139   Universe::print_heap_before_gc();
 140   if (_gc_heap_log != NULL) {
 141     _gc_heap_log->log_heap_before(this);
 142   }
 143 }
 144 
 145 void CollectedHeap::print_heap_after_gc() {
 146   Universe::print_heap_after_gc();
 147   if (_gc_heap_log != NULL) {
 148     _gc_heap_log->log_heap_after(this);
 149   }
 150 }
 151 
 152 void CollectedHeap::print() const { print_on(tty); }
 153 
 154 void CollectedHeap::print_on_error(outputStream* st) const {
 155   st->print_cr("Heap:");
 156   print_extended_on(st);
 157   st->cr();
 158 
 159   BarrierSet* bs = BarrierSet::barrier_set();
 160   if (bs != NULL) {
 161     bs->print_on(st);
 162   }
 163 }
 164 
 165 void CollectedHeap::trace_heap(GCWhen::Type when, const GCTracer* gc_tracer) {
 166   const GCHeapSummary& heap_summary = create_heap_summary();
 167   gc_tracer->report_gc_heap_summary(when, heap_summary);
 168 
 169   const MetaspaceSummary& metaspace_summary = create_metaspace_summary();
 170   gc_tracer->report_metaspace_summary(when, metaspace_summary);
 171 }
 172 
 173 void CollectedHeap::trace_heap_before_gc(const GCTracer* gc_tracer) {
 174   trace_heap(GCWhen::BeforeGC, gc_tracer);
 175 }
 176 
 177 void CollectedHeap::trace_heap_after_gc(const GCTracer* gc_tracer) {
 178   trace_heap(GCWhen::AfterGC, gc_tracer);
 179 }
 180 
 181 // Default implementation, for collectors that don't support the feature.
 182 bool CollectedHeap::supports_concurrent_gc_breakpoints() const {
 183   return false;
 184 }
 185 
 186 bool CollectedHeap::is_oop(oop object) const {
 187   if (!is_object_aligned(object)) {
 188     return false;
 189   }
 190 
 191   if (!is_in(object)) {
 192     return false;
 193   }
 194 
 195   if (is_in(object->klass_or_null())) {
 196     return false;
 197   }
 198 
 199   return true;
 200 }
 201 
 202 // Memory state functions.
 203 
 204 
 205 CollectedHeap::CollectedHeap() :
 206   _is_gc_active(false),
 207   _last_whole_heap_examined_time_ns(os::javaTimeNanos()),
 208   _total_collections(0),
 209   _total_full_collections(0),
 210   _gc_cause(GCCause::_no_gc),
 211   _gc_lastcause(GCCause::_no_gc)
 212 {
 213   const size_t max_len = size_t(arrayOopDesc::max_array_length(T_INT));
 214   const size_t elements_per_word = HeapWordSize / sizeof(jint);
 215   _filler_array_max_size = align_object_size(filler_array_hdr_size() +
 216                                              max_len / elements_per_word);
 217 
 218   NOT_PRODUCT(_promotion_failure_alot_count = 0;)
 219   NOT_PRODUCT(_promotion_failure_alot_gc_number = 0;)
 220 
 221   if (UsePerfData) {
 222     EXCEPTION_MARK;
 223 
 224     // create the gc cause jvmstat counters
 225     _perf_gc_cause = PerfDataManager::create_string_variable(SUN_GC, "cause",
 226                              80, GCCause::to_string(_gc_cause), CHECK);
 227 
 228     _perf_gc_lastcause =
 229                 PerfDataManager::create_string_variable(SUN_GC, "lastCause",
 230                              80, GCCause::to_string(_gc_lastcause), CHECK);
 231   }
 232 
 233   // Create the ring log
 234   if (LogEvents) {
 235     _gc_heap_log = new GCHeapLog();
 236   } else {
 237     _gc_heap_log = NULL;
 238   }
 239 }
 240 
 241 // This interface assumes that it's being called by the
 242 // vm thread. It collects the heap assuming that the
 243 // heap lock is already held and that we are executing in
 244 // the context of the vm thread.
 245 void CollectedHeap::collect_as_vm_thread(GCCause::Cause cause) {
 246   Thread* thread = Thread::current();
 247   assert(thread->is_VM_thread(), "Precondition#1");
 248   assert(Heap_lock->is_locked(), "Precondition#2");
 249   GCCauseSetter gcs(this, cause);
 250   switch (cause) {
 251     case GCCause::_heap_inspection:
 252     case GCCause::_heap_dump:
 253     case GCCause::_metadata_GC_threshold : {
 254       HandleMark hm(thread);
 255       do_full_collection(false);        // don't clear all soft refs
 256       break;
 257     }
 258     case GCCause::_archive_time_gc:
 259     case GCCause::_metadata_GC_clear_soft_refs: {
 260       HandleMark hm(thread);
 261       do_full_collection(true);         // do clear all soft refs
 262       break;
 263     }
 264     default:
 265       ShouldNotReachHere(); // Unexpected use of this function
 266   }
 267 }
 268 
 269 MetaWord* CollectedHeap::satisfy_failed_metadata_allocation(ClassLoaderData* loader_data,
 270                                                             size_t word_size,
 271                                                             Metaspace::MetadataType mdtype) {
 272   uint loop_count = 0;
 273   uint gc_count = 0;
 274   uint full_gc_count = 0;
 275 
 276   assert(!Heap_lock->owned_by_self(), "Should not be holding the Heap_lock");
 277 
 278   do {
 279     MetaWord* result = loader_data->metaspace_non_null()->allocate(word_size, mdtype);
 280     if (result != NULL) {
 281       return result;
 282     }
 283 
 284     if (GCLocker::is_active_and_needs_gc()) {
 285       // If the GCLocker is active, just expand and allocate.
 286       // If that does not succeed, wait if this thread is not
 287       // in a critical section itself.
 288       result = loader_data->metaspace_non_null()->expand_and_allocate(word_size, mdtype);
 289       if (result != NULL) {
 290         return result;
 291       }
 292       JavaThread* jthr = JavaThread::current();
 293       if (!jthr->in_critical()) {
 294         // Wait for JNI critical section to be exited
 295         GCLocker::stall_until_clear();
 296         // The GC invoked by the last thread leaving the critical
 297         // section will be a young collection and a full collection
 298         // is (currently) needed for unloading classes so continue
 299         // to the next iteration to get a full GC.
 300         continue;
 301       } else {
 302         if (CheckJNICalls) {
 303           fatal("Possible deadlock due to allocating while"
 304                 " in jni critical section");
 305         }
 306         return NULL;
 307       }
 308     }
 309 
 310     {  // Need lock to get self consistent gc_count's
 311       MutexLocker ml(Heap_lock);
 312       gc_count      = Universe::heap()->total_collections();
 313       full_gc_count = Universe::heap()->total_full_collections();
 314     }
 315 
 316     // Generate a VM operation
 317     VM_CollectForMetadataAllocation op(loader_data,
 318                                        word_size,
 319                                        mdtype,
 320                                        gc_count,
 321                                        full_gc_count,
 322                                        GCCause::_metadata_GC_threshold);
 323     VMThread::execute(&op);
 324 
 325     // If GC was locked out, try again. Check before checking success because the
 326     // prologue could have succeeded and the GC still have been locked out.
 327     if (op.gc_locked()) {
 328       continue;
 329     }
 330 
 331     if (op.prologue_succeeded()) {
 332       return op.result();
 333     }
 334     loop_count++;
 335     if ((QueuedAllocationWarningCount > 0) &&
 336         (loop_count % QueuedAllocationWarningCount == 0)) {
 337       log_warning(gc, ergo)("satisfy_failed_metadata_allocation() retries %d times,"
 338                             " size=" SIZE_FORMAT, loop_count, word_size);
 339     }
 340   } while (true);  // Until a GC is done
 341 }
 342 
 343 MemoryUsage CollectedHeap::memory_usage() {
 344   return MemoryUsage(InitialHeapSize, used(), capacity(), max_capacity());
 345 }
 346 
 347 
 348 #ifndef PRODUCT
 349 void CollectedHeap::check_for_non_bad_heap_word_value(HeapWord* addr, size_t size) {
 350   if (CheckMemoryInitialization && ZapUnusedHeapArea) {
 351     // please note mismatch between size (in 32/64 bit words), and ju_addr that always point to a 32 bit word
 352     for (juint* ju_addr = reinterpret_cast<juint*>(addr); ju_addr < reinterpret_cast<juint*>(addr + size); ++ju_addr) {
 353       assert(*ju_addr == badHeapWordVal, "Found non badHeapWordValue in pre-allocation check");
 354     }
 355   }
 356 }
 357 #endif // PRODUCT
 358 
 359 size_t CollectedHeap::max_tlab_size() const {
 360   // TLABs can't be bigger than we can fill with a int[Integer.MAX_VALUE].
 361   // This restriction could be removed by enabling filling with multiple arrays.
 362   // If we compute that the reasonable way as
 363   //    header_size + ((sizeof(jint) * max_jint) / HeapWordSize)
 364   // we'll overflow on the multiply, so we do the divide first.
 365   // We actually lose a little by dividing first,
 366   // but that just makes the TLAB  somewhat smaller than the biggest array,
 367   // which is fine, since we'll be able to fill that.
 368   size_t max_int_size = typeArrayOopDesc::header_size(T_INT) +
 369               sizeof(jint) *
 370               ((juint) max_jint / (size_t) HeapWordSize);
 371   return align_down(max_int_size, MinObjAlignment);
 372 }
 373 
 374 size_t CollectedHeap::filler_array_hdr_size() {
 375   return align_object_offset(arrayOopDesc::header_size(T_INT)); // align to Long
 376 }
 377 
 378 size_t CollectedHeap::filler_array_min_size() {
 379   return align_object_size(filler_array_hdr_size()); // align to MinObjAlignment
 380 }
 381 
 382 #ifdef ASSERT
 383 void CollectedHeap::fill_args_check(HeapWord* start, size_t words)
 384 {
 385   assert(words >= min_fill_size(), "too small to fill");
 386   assert(is_object_aligned(words), "unaligned size");
 387 }
 388 
 389 void CollectedHeap::zap_filler_array(HeapWord* start, size_t words, bool zap)
 390 {
 391   if (ZapFillerObjects && zap) {
 392     Copy::fill_to_words(start + filler_array_hdr_size(),
 393                         words - filler_array_hdr_size(), 0XDEAFBABE);
 394   }
 395 }
 396 #endif // ASSERT
 397 
 398 void
 399 CollectedHeap::fill_with_array(HeapWord* start, size_t words, bool zap)
 400 {
 401   assert(words >= filler_array_min_size(), "too small for an array");
 402   assert(words <= filler_array_max_size(), "too big for a single object");
 403 
 404   const size_t payload_size = words - filler_array_hdr_size();
 405   const size_t len = payload_size * HeapWordSize / sizeof(jint);
 406   assert((int)len >= 0, "size too large " SIZE_FORMAT " becomes %d", words, (int)len);
 407 
 408   ObjArrayAllocator allocator(Universe::intArrayKlassObj(), words, (int)len, /* do_zero */ false);
 409   allocator.initialize(start);
 410   DEBUG_ONLY(zap_filler_array(start, words, zap);)
 411 }
 412 
 413 void
 414 CollectedHeap::fill_with_object_impl(HeapWord* start, size_t words, bool zap)
 415 {
 416   assert(words <= filler_array_max_size(), "too big for a single object");
 417 
 418   if (words >= filler_array_min_size()) {
 419     fill_with_array(start, words, zap);
 420   } else if (words > 0) {
 421     assert(words == min_fill_size(), "unaligned size");
 422     ObjAllocator allocator(SystemDictionary::Object_klass(), words);
 423     allocator.initialize(start);
 424   }
 425 }
 426 
 427 void CollectedHeap::fill_with_object(HeapWord* start, size_t words, bool zap)
 428 {
 429   DEBUG_ONLY(fill_args_check(start, words);)
 430   HandleMark hm(Thread::current());  // Free handles before leaving.
 431   fill_with_object_impl(start, words, zap);
 432 }
 433 
 434 void CollectedHeap::fill_with_objects(HeapWord* start, size_t words, bool zap)
 435 {
 436   DEBUG_ONLY(fill_args_check(start, words);)
 437   HandleMark hm(Thread::current());  // Free handles before leaving.
 438 
 439   // Multiple objects may be required depending on the filler array maximum size. Fill
 440   // the range up to that with objects that are filler_array_max_size sized. The
 441   // remainder is filled with a single object.
 442   const size_t min = min_fill_size();
 443   const size_t max = filler_array_max_size();
 444   while (words > max) {
 445     const size_t cur = (words - max) >= min ? max : max - min;
 446     fill_with_array(start, cur, zap);
 447     start += cur;
 448     words -= cur;
 449   }
 450 
 451   fill_with_object_impl(start, words, zap);
 452 }
 453 
 454 void CollectedHeap::fill_with_dummy_object(HeapWord* start, HeapWord* end, bool zap) {
 455   CollectedHeap::fill_with_object(start, end, zap);
 456 }
 457 
 458 size_t CollectedHeap::min_dummy_object_size() const {
 459   return oopDesc::header_size();
 460 }
 461 
 462 size_t CollectedHeap::tlab_alloc_reserve() const {
 463   size_t min_size = min_dummy_object_size();
 464   return min_size > (size_t)MinObjAlignment ? align_object_size(min_size) : 0;
 465 }
 466 
 467 HeapWord* CollectedHeap::allocate_new_tlab(size_t min_size,
 468                                            size_t requested_size,
 469                                            size_t* actual_size) {
 470   guarantee(false, "thread-local allocation buffers not supported");
 471   return NULL;
 472 }
 473 
 474 void CollectedHeap::ensure_parsability(bool retire_tlabs) {
 475   assert(SafepointSynchronize::is_at_safepoint() || !is_init_completed(),
 476          "Should only be called at a safepoint or at start-up");
 477 
 478   ThreadLocalAllocStats stats;
 479 
 480   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *thread = jtiwh.next();) {
 481     BarrierSet::barrier_set()->make_parsable(thread);
 482     if (UseTLAB) {
 483       if (retire_tlabs) {
 484         thread->tlab().retire(&stats);
 485       } else {
 486         thread->tlab().make_parsable();
 487       }
 488     }
 489   }
 490 
 491   stats.publish();
 492 }
 493 
 494 void CollectedHeap::resize_all_tlabs() {
 495   assert(SafepointSynchronize::is_at_safepoint() || !is_init_completed(),
 496          "Should only resize tlabs at safepoint");
 497 
 498   if (UseTLAB && ResizeTLAB) {
 499     for (JavaThreadIteratorWithHandle jtiwh; JavaThread *thread = jtiwh.next(); ) {
 500       thread->tlab().resize();
 501     }
 502   }
 503 }
 504 
 505 jlong CollectedHeap::millis_since_last_whole_heap_examined() {
 506   return (os::javaTimeNanos() - _last_whole_heap_examined_time_ns) / NANOSECS_PER_MILLISEC;
 507 }
 508 
 509 void CollectedHeap::record_whole_heap_examined_timestamp() {
 510   _last_whole_heap_examined_time_ns = os::javaTimeNanos();
 511 }
 512 
 513 void CollectedHeap::full_gc_dump(GCTimer* timer, bool before) {
 514   assert(timer != NULL, "timer is null");
 515   if ((HeapDumpBeforeFullGC && before) || (HeapDumpAfterFullGC && !before)) {
 516     GCTraceTime(Info, gc) tm(before ? "Heap Dump (before full gc)" : "Heap Dump (after full gc)", timer);
 517     HeapDumper::dump_heap();
 518   }
 519 
 520   LogTarget(Trace, gc, classhisto) lt;
 521   if (lt.is_enabled()) {
 522     GCTraceTime(Trace, gc, classhisto) tm(before ? "Class Histogram (before full gc)" : "Class Histogram (after full gc)", timer);
 523     ResourceMark rm;
 524     LogStream ls(lt);
 525     VM_GC_HeapInspection inspector(&ls, false /* ! full gc */);
 526     inspector.doit();
 527   }
 528 }
 529 
 530 void CollectedHeap::pre_full_gc_dump(GCTimer* timer) {
 531   full_gc_dump(timer, true);
 532 }
 533 
 534 void CollectedHeap::post_full_gc_dump(GCTimer* timer) {
 535   full_gc_dump(timer, false);
 536 }
 537 
 538 void CollectedHeap::initialize_reserved_region(const ReservedHeapSpace& rs) {
 539   // It is important to do this in a way such that concurrent readers can't
 540   // temporarily think something is in the heap.  (Seen this happen in asserts.)
 541   _reserved.set_word_size(0);
 542   _reserved.set_start((HeapWord*)rs.base());
 543   _reserved.set_end((HeapWord*)rs.end());
 544 }
 545 
 546 void CollectedHeap::post_initialize() {
 547   initialize_serviceability();
 548 }
 549 
 550 #ifndef PRODUCT
 551 
 552 bool CollectedHeap::promotion_should_fail(volatile size_t* count) {
 553   // Access to count is not atomic; the value does not have to be exact.
 554   if (PromotionFailureALot) {
 555     const size_t gc_num = total_collections();
 556     const size_t elapsed_gcs = gc_num - _promotion_failure_alot_gc_number;
 557     if (elapsed_gcs >= PromotionFailureALotInterval) {
 558       // Test for unsigned arithmetic wrap-around.
 559       if (++*count >= PromotionFailureALotCount) {
 560         *count = 0;
 561         return true;
 562       }
 563     }
 564   }
 565   return false;
 566 }
 567 
 568 bool CollectedHeap::promotion_should_fail() {
 569   return promotion_should_fail(&_promotion_failure_alot_count);
 570 }
 571 
 572 void CollectedHeap::reset_promotion_should_fail(volatile size_t* count) {
 573   if (PromotionFailureALot) {
 574     _promotion_failure_alot_gc_number = total_collections();
 575     *count = 0;
 576   }
 577 }
 578 
 579 void CollectedHeap::reset_promotion_should_fail() {
 580   reset_promotion_should_fail(&_promotion_failure_alot_count);
 581 }
 582 
 583 #endif  // #ifndef PRODUCT
 584 
 585 bool CollectedHeap::supports_object_pinning() const {
 586   return false;
 587 }
 588 
 589 oop CollectedHeap::pin_object(JavaThread* thread, oop obj) {
 590   ShouldNotReachHere();
 591   return NULL;
 592 }
 593 
 594 void CollectedHeap::unpin_object(JavaThread* thread, oop obj) {
 595   ShouldNotReachHere();
 596 }
 597 
 598 void CollectedHeap::deduplicate_string(oop str) {
 599   // Do nothing, unless overridden in subclass.
 600 }
 601 
 602 uint32_t CollectedHeap::hash_oop(oop obj) const {
 603   const uintptr_t addr = cast_from_oop<uintptr_t>(obj);
 604   return static_cast<uint32_t>(addr >> LogMinObjAlignment);
 605 }