/* * Copyright (c) 2015, 2020, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ #include "precompiled.hpp" #include "gc/shared/gcHeapSummary.hpp" #include "gc/shared/suspendibleThreadSet.hpp" #include "gc/z/zCollectedHeap.hpp" #include "gc/z/zGlobals.hpp" #include "gc/z/zHeap.inline.hpp" #include "gc/z/zNMethod.hpp" #include "gc/z/zObjArrayAllocator.hpp" #include "gc/z/zOop.inline.hpp" #include "gc/z/zServiceability.hpp" #include "gc/z/zStat.hpp" #include "gc/z/zUtils.inline.hpp" #include "memory/iterator.hpp" #include "memory/universe.hpp" #include "runtime/mutexLocker.hpp" #include "utilities/align.hpp" ZCollectedHeap* ZCollectedHeap::heap() { CollectedHeap* heap = Universe::heap(); assert(heap != NULL, "Uninitialized access to ZCollectedHeap::heap()"); assert(heap->kind() == CollectedHeap::Z, "Invalid name"); return (ZCollectedHeap*)heap; } ZCollectedHeap::ZCollectedHeap() : _soft_ref_policy(), _barrier_set(), _initialize(&_barrier_set), _heap(), _director(new ZDirector()), _driver(new ZDriver()), _uncommitter(new ZUncommitter()), _stat(new ZStat()), _runtime_workers() {} CollectedHeap::Name ZCollectedHeap::kind() const { return CollectedHeap::Z; } const char* ZCollectedHeap::name() const { return ZName; } jint ZCollectedHeap::initialize() { if (!_heap.is_initialized()) { return JNI_ENOMEM; } Universe::calculate_verify_data((HeapWord*)0, (HeapWord*)UINTPTR_MAX); return JNI_OK; } void ZCollectedHeap::initialize_serviceability() { _heap.serviceability_initialize(); } void ZCollectedHeap::stop() { _director->stop(); _driver->stop(); _uncommitter->stop(); _stat->stop(); } SoftRefPolicy* ZCollectedHeap::soft_ref_policy() { return &_soft_ref_policy; } size_t ZCollectedHeap::max_capacity() const { return _heap.max_capacity(); } size_t ZCollectedHeap::capacity() const { return _heap.capacity(); } size_t ZCollectedHeap::used() const { return _heap.used(); } size_t ZCollectedHeap::unused() const { return _heap.unused(); } bool ZCollectedHeap::is_maximal_no_gc() const { // Not supported ShouldNotReachHere(); return false; } bool ZCollectedHeap::is_in(const void* p) const { return _heap.is_in((uintptr_t)p); } uint32_t ZCollectedHeap::hash_oop(oop obj) const { return _heap.hash_oop(ZOop::to_address(obj)); } HeapWord* ZCollectedHeap::allocate_new_tlab(size_t min_size, size_t requested_size, size_t* actual_size) { const size_t size_in_bytes = ZUtils::words_to_bytes(align_object_size(requested_size)); const uintptr_t addr = _heap.alloc_tlab(size_in_bytes); if (addr != 0) { *actual_size = requested_size; } return (HeapWord*)addr; } oop ZCollectedHeap::array_allocate(Klass* klass, int size, int length, bool do_zero, TRAPS) { if (!do_zero) { return CollectedHeap::array_allocate(klass, size, length, false /* do_zero */, THREAD); } ZObjArrayAllocator allocator(klass, size, length, THREAD); return allocator.allocate(); } HeapWord* ZCollectedHeap::mem_allocate(size_t size, bool* gc_overhead_limit_was_exceeded) { const size_t size_in_bytes = ZUtils::words_to_bytes(align_object_size(size)); return (HeapWord*)_heap.alloc_object(size_in_bytes); } MetaWord* ZCollectedHeap::satisfy_failed_metadata_allocation(ClassLoaderData* loader_data, size_t size, Metaspace::MetadataType mdtype) { MetaWord* result; // Start asynchronous GC collect(GCCause::_metadata_GC_threshold); // Expand and retry allocation result = loader_data->metaspace_non_null()->expand_and_allocate(size, mdtype); if (result != NULL) { return result; } // Start synchronous GC collect(GCCause::_metadata_GC_clear_soft_refs); // Retry allocation result = loader_data->metaspace_non_null()->allocate(size, mdtype); if (result != NULL) { return result; } // Expand and retry allocation result = loader_data->metaspace_non_null()->expand_and_allocate(size, mdtype); if (result != NULL) { return result; } // Out of memory return NULL; } void ZCollectedHeap::collect(GCCause::Cause cause) { _driver->collect(cause); } void ZCollectedHeap::collect_as_vm_thread(GCCause::Cause cause) { // These collection requests are ignored since ZGC can't run a synchronous // GC cycle from within the VM thread. This is considered benign, since the // only GC causes coming in here should be heap dumper and heap inspector. // However, neither the heap dumper nor the heap inspector really need a GC // to happen, but the result of their heap iterations might in that case be // less accurate since they might include objects that would otherwise have // been collected by a GC. assert(Thread::current()->is_VM_thread(), "Should be the VM thread"); guarantee(cause == GCCause::_heap_dump || cause == GCCause::_heap_inspection, "Invalid cause"); } void ZCollectedHeap::do_full_collection(bool clear_all_soft_refs) { // Not supported ShouldNotReachHere(); } bool ZCollectedHeap::supports_tlab_allocation() const { return true; } size_t ZCollectedHeap::tlab_capacity(Thread* ignored) const { return _heap.tlab_capacity(); } size_t ZCollectedHeap::tlab_used(Thread* ignored) const { return _heap.tlab_used(); } size_t ZCollectedHeap::max_tlab_size() const { return _heap.max_tlab_size(); } size_t ZCollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const { return _heap.unsafe_max_tlab_alloc(); } bool ZCollectedHeap::can_elide_tlab_store_barriers() const { return false; } bool ZCollectedHeap::can_elide_initializing_store_barrier(oop new_obj) { // Not supported ShouldNotReachHere(); return true; } bool ZCollectedHeap::card_mark_must_follow_store() const { // Not supported ShouldNotReachHere(); return false; } GrowableArray ZCollectedHeap::memory_managers() { return GrowableArray(1, 1, _heap.serviceability_memory_manager()); } GrowableArray ZCollectedHeap::memory_pools() { return GrowableArray(1, 1, _heap.serviceability_memory_pool()); } void ZCollectedHeap::object_iterate(ObjectClosure* cl) { _heap.object_iterate(cl, true /* visit_weaks */); } void ZCollectedHeap::keep_alive(oop obj) { _heap.keep_alive(obj); } void ZCollectedHeap::register_nmethod(nmethod* nm) { ZNMethod::register_nmethod(nm); } void ZCollectedHeap::unregister_nmethod(nmethod* nm) { ZNMethod::unregister_nmethod(nm); } void ZCollectedHeap::flush_nmethod(nmethod* nm) { ZNMethod::flush_nmethod(nm); } void ZCollectedHeap::verify_nmethod(nmethod* nm) { // Does nothing } WorkGang* ZCollectedHeap::get_safepoint_workers() { return _runtime_workers.workers(); } jlong ZCollectedHeap::millis_since_last_gc() { return ZStatCycle::time_since_last() / MILLIUNITS; } void ZCollectedHeap::gc_threads_do(ThreadClosure* tc) const { tc->do_thread(_director); tc->do_thread(_driver); tc->do_thread(_uncommitter); tc->do_thread(_stat); _heap.worker_threads_do(tc); _runtime_workers.threads_do(tc); } VirtualSpaceSummary ZCollectedHeap::create_heap_space_summary() { return VirtualSpaceSummary((HeapWord*)0, (HeapWord*)capacity(), (HeapWord*)max_capacity()); } void ZCollectedHeap::safepoint_synchronize_begin() { SuspendibleThreadSet::synchronize(); } void ZCollectedHeap::safepoint_synchronize_end() { SuspendibleThreadSet::desynchronize(); } void ZCollectedHeap::prepare_for_verify() { // Does nothing } void ZCollectedHeap::print_on(outputStream* st) const { _heap.print_on(st); } static const char* z_global_phase_string() { switch (ZGlobalPhase) { case ZPhaseMark: return "Mark"; case ZPhaseMarkCompleted: return "MarkCompleted"; case ZPhaseRelocate: return "Relocate"; default: assert(false, "Unknown ZGlobalPhase"); return "Unknown"; } } void ZCollectedHeap::print_on_error(outputStream* st) const { st->print_cr( "ZGC Globals:"); st->print_cr( " GlobalPhase: %u (%s)", ZGlobalPhase, z_global_phase_string()); st->print_cr( " GlobalSeqNum: %u", ZGlobalSeqNum); st->print_cr( " Offset Max: " SIZE_FORMAT "%s (" PTR_FORMAT ")", byte_size_in_exact_unit(ZAddressOffsetMax), exact_unit_for_byte_size(ZAddressOffsetMax), ZAddressOffsetMax); st->print_cr( " Page Size Small: " SIZE_FORMAT "M", ZPageSizeSmall / M); st->print_cr( " Page Size Medium: " SIZE_FORMAT "M", ZPageSizeMedium / M); st->cr(); st->print_cr( "ZGC Metadata Bits:"); st->print_cr( " Good: " PTR_FORMAT, ZAddressGoodMask); st->print_cr( " Bad: " PTR_FORMAT, ZAddressBadMask); st->print_cr( " WeakBad: " PTR_FORMAT, ZAddressWeakBadMask); st->print_cr( " Marked: " PTR_FORMAT, ZAddressMetadataMarked); st->print_cr( " Remapped: " PTR_FORMAT, ZAddressMetadataRemapped); st->cr(); CollectedHeap::print_on_error(st); } void ZCollectedHeap::print_extended_on(outputStream* st) const { _heap.print_extended_on(st); } void ZCollectedHeap::print_gc_threads_on(outputStream* st) const { _director->print_on(st); st->cr(); _driver->print_on(st); st->cr(); _uncommitter->print_on(st); st->cr(); _stat->print_on(st); st->cr(); _heap.print_worker_threads_on(st); _runtime_workers.print_threads_on(st); } void ZCollectedHeap::print_tracing_info() const { // Does nothing } bool ZCollectedHeap::print_location(outputStream* st, void* addr) const { return _heap.print_location(st, (uintptr_t)addr); } void ZCollectedHeap::verify(VerifyOption option /* ignored */) { _heap.verify(); } bool ZCollectedHeap::is_oop(oop object) const { return _heap.is_oop(ZOop::to_address(object)); } bool ZCollectedHeap::supports_concurrent_gc_breakpoints() const { return true; }