1 /* 2 * Copyright (c) 2001, 2018, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "classfile/classLoaderData.hpp" 27 #include "classfile/stringTable.hpp" 28 #include "classfile/symbolTable.hpp" 29 #include "classfile/systemDictionary.hpp" 30 #include "code/codeCache.hpp" 31 #include "gc/cms/cmsCollectorPolicy.hpp" 32 #include "gc/cms/cmsGCStats.hpp" 33 #include "gc/cms/cmsHeap.hpp" 34 #include "gc/cms/cmsOopClosures.inline.hpp" 35 #include "gc/cms/compactibleFreeListSpace.hpp" 36 #include "gc/cms/concurrentMarkSweepGeneration.inline.hpp" 37 #include "gc/cms/concurrentMarkSweepThread.hpp" 38 #include "gc/cms/parNewGeneration.hpp" 39 #include "gc/cms/vmCMSOperations.hpp" 40 #include "gc/serial/genMarkSweep.hpp" 41 #include "gc/serial/tenuredGeneration.hpp" 42 #include "gc/shared/adaptiveSizePolicy.hpp" 43 #include "gc/shared/cardGeneration.inline.hpp" 44 #include "gc/shared/cardTableRS.hpp" 45 #include "gc/shared/collectedHeap.inline.hpp" 46 #include "gc/shared/collectorCounters.hpp" 47 #include "gc/shared/collectorPolicy.hpp" 48 #include "gc/shared/gcLocker.hpp" 49 #include "gc/shared/gcPolicyCounters.hpp" 50 #include "gc/shared/gcTimer.hpp" 51 #include "gc/shared/gcTrace.hpp" 52 #include "gc/shared/gcTraceTime.inline.hpp" 53 #include "gc/shared/genCollectedHeap.hpp" 54 #include "gc/shared/genOopClosures.inline.hpp" 55 #include "gc/shared/isGCActiveMark.hpp" 56 #include "gc/shared/referencePolicy.hpp" 57 #include "gc/shared/strongRootsScope.hpp" 58 #include "gc/shared/taskqueue.inline.hpp" 59 #include "gc/shared/weakProcessor.hpp" 60 #include "logging/log.hpp" 61 #include "logging/logStream.hpp" 62 #include "memory/allocation.hpp" 63 #include "memory/binaryTreeDictionary.inline.hpp" 64 #include "memory/iterator.inline.hpp" 65 #include "memory/padded.hpp" 66 #include "memory/resourceArea.hpp" 67 #include "oops/access.inline.hpp" 68 #include "oops/oop.inline.hpp" 69 #include "prims/jvmtiExport.hpp" 70 #include "runtime/atomic.hpp" 71 #include "runtime/globals_extension.hpp" 72 #include "runtime/handles.inline.hpp" 73 #include "runtime/java.hpp" 74 #include "runtime/orderAccess.inline.hpp" 75 #include "runtime/timer.hpp" 76 #include "runtime/vmThread.hpp" 77 #include "services/memoryService.hpp" 78 #include "services/runtimeService.hpp" 79 #include "utilities/align.hpp" 80 #include "utilities/stack.inline.hpp" 81 82 // statics 83 CMSCollector* ConcurrentMarkSweepGeneration::_collector = NULL; 84 bool CMSCollector::_full_gc_requested = false; 85 GCCause::Cause CMSCollector::_full_gc_cause = GCCause::_no_gc; 86 87 ////////////////////////////////////////////////////////////////// 88 // In support of CMS/VM thread synchronization 89 ////////////////////////////////////////////////////////////////// 90 // We split use of the CGC_lock into 2 "levels". 91 // The low-level locking is of the usual CGC_lock monitor. We introduce 92 // a higher level "token" (hereafter "CMS token") built on top of the 93 // low level monitor (hereafter "CGC lock"). 94 // The token-passing protocol gives priority to the VM thread. The 95 // CMS-lock doesn't provide any fairness guarantees, but clients 96 // should ensure that it is only held for very short, bounded 97 // durations. 98 // 99 // When either of the CMS thread or the VM thread is involved in 100 // collection operations during which it does not want the other 101 // thread to interfere, it obtains the CMS token. 102 // 103 // If either thread tries to get the token while the other has 104 // it, that thread waits. However, if the VM thread and CMS thread 105 // both want the token, then the VM thread gets priority while the 106 // CMS thread waits. This ensures, for instance, that the "concurrent" 107 // phases of the CMS thread's work do not block out the VM thread 108 // for long periods of time as the CMS thread continues to hog 109 // the token. (See bug 4616232). 110 // 111 // The baton-passing functions are, however, controlled by the 112 // flags _foregroundGCShouldWait and _foregroundGCIsActive, 113 // and here the low-level CMS lock, not the high level token, 114 // ensures mutual exclusion. 115 // 116 // Two important conditions that we have to satisfy: 117 // 1. if a thread does a low-level wait on the CMS lock, then it 118 // relinquishes the CMS token if it were holding that token 119 // when it acquired the low-level CMS lock. 120 // 2. any low-level notifications on the low-level lock 121 // should only be sent when a thread has relinquished the token. 122 // 123 // In the absence of either property, we'd have potential deadlock. 124 // 125 // We protect each of the CMS (concurrent and sequential) phases 126 // with the CMS _token_, not the CMS _lock_. 127 // 128 // The only code protected by CMS lock is the token acquisition code 129 // itself, see ConcurrentMarkSweepThread::[de]synchronize(), and the 130 // baton-passing code. 131 // 132 // Unfortunately, i couldn't come up with a good abstraction to factor and 133 // hide the naked CGC_lock manipulation in the baton-passing code 134 // further below. That's something we should try to do. Also, the proof 135 // of correctness of this 2-level locking scheme is far from obvious, 136 // and potentially quite slippery. We have an uneasy suspicion, for instance, 137 // that there may be a theoretical possibility of delay/starvation in the 138 // low-level lock/wait/notify scheme used for the baton-passing because of 139 // potential interference with the priority scheme embodied in the 140 // CMS-token-passing protocol. See related comments at a CGC_lock->wait() 141 // invocation further below and marked with "XXX 20011219YSR". 142 // Indeed, as we note elsewhere, this may become yet more slippery 143 // in the presence of multiple CMS and/or multiple VM threads. XXX 144 145 class CMSTokenSync: public StackObj { 146 private: 147 bool _is_cms_thread; 148 public: 149 CMSTokenSync(bool is_cms_thread): 150 _is_cms_thread(is_cms_thread) { 151 assert(is_cms_thread == Thread::current()->is_ConcurrentGC_thread(), 152 "Incorrect argument to constructor"); 153 ConcurrentMarkSweepThread::synchronize(_is_cms_thread); 154 } 155 156 ~CMSTokenSync() { 157 assert(_is_cms_thread ? 158 ConcurrentMarkSweepThread::cms_thread_has_cms_token() : 159 ConcurrentMarkSweepThread::vm_thread_has_cms_token(), 160 "Incorrect state"); 161 ConcurrentMarkSweepThread::desynchronize(_is_cms_thread); 162 } 163 }; 164 165 // Convenience class that does a CMSTokenSync, and then acquires 166 // upto three locks. 167 class CMSTokenSyncWithLocks: public CMSTokenSync { 168 private: 169 // Note: locks are acquired in textual declaration order 170 // and released in the opposite order 171 MutexLockerEx _locker1, _locker2, _locker3; 172 public: 173 CMSTokenSyncWithLocks(bool is_cms_thread, Mutex* mutex1, 174 Mutex* mutex2 = NULL, Mutex* mutex3 = NULL): 175 CMSTokenSync(is_cms_thread), 176 _locker1(mutex1, Mutex::_no_safepoint_check_flag), 177 _locker2(mutex2, Mutex::_no_safepoint_check_flag), 178 _locker3(mutex3, Mutex::_no_safepoint_check_flag) 179 { } 180 }; 181 182 183 ////////////////////////////////////////////////////////////////// 184 // Concurrent Mark-Sweep Generation ///////////////////////////// 185 ////////////////////////////////////////////////////////////////// 186 187 NOT_PRODUCT(CompactibleFreeListSpace* debug_cms_space;) 188 189 // This struct contains per-thread things necessary to support parallel 190 // young-gen collection. 191 class CMSParGCThreadState: public CHeapObj<mtGC> { 192 public: 193 CompactibleFreeListSpaceLAB lab; 194 PromotionInfo promo; 195 196 // Constructor. 197 CMSParGCThreadState(CompactibleFreeListSpace* cfls) : lab(cfls) { 198 promo.setSpace(cfls); 199 } 200 }; 201 202 ConcurrentMarkSweepGeneration::ConcurrentMarkSweepGeneration( 203 ReservedSpace rs, size_t initial_byte_size, CardTableRS* ct) : 204 CardGeneration(rs, initial_byte_size, ct), 205 _dilatation_factor(((double)MinChunkSize)/((double)(CollectedHeap::min_fill_size()))), 206 _did_compact(false) 207 { 208 HeapWord* bottom = (HeapWord*) _virtual_space.low(); 209 HeapWord* end = (HeapWord*) _virtual_space.high(); 210 211 _direct_allocated_words = 0; 212 NOT_PRODUCT( 213 _numObjectsPromoted = 0; 214 _numWordsPromoted = 0; 215 _numObjectsAllocated = 0; 216 _numWordsAllocated = 0; 217 ) 218 219 _cmsSpace = new CompactibleFreeListSpace(_bts, MemRegion(bottom, end)); 220 NOT_PRODUCT(debug_cms_space = _cmsSpace;) 221 _cmsSpace->_old_gen = this; 222 223 _gc_stats = new CMSGCStats(); 224 225 // Verify the assumption that FreeChunk::_prev and OopDesc::_klass 226 // offsets match. The ability to tell free chunks from objects 227 // depends on this property. 228 debug_only( 229 FreeChunk* junk = NULL; 230 assert(UseCompressedClassPointers || 231 junk->prev_addr() == (void*)(oop(junk)->klass_addr()), 232 "Offset of FreeChunk::_prev within FreeChunk must match" 233 " that of OopDesc::_klass within OopDesc"); 234 ) 235 236 _par_gc_thread_states = NEW_C_HEAP_ARRAY(CMSParGCThreadState*, ParallelGCThreads, mtGC); 237 for (uint i = 0; i < ParallelGCThreads; i++) { 238 _par_gc_thread_states[i] = new CMSParGCThreadState(cmsSpace()); 239 } 240 241 _incremental_collection_failed = false; 242 // The "dilatation_factor" is the expansion that can occur on 243 // account of the fact that the minimum object size in the CMS 244 // generation may be larger than that in, say, a contiguous young 245 // generation. 246 // Ideally, in the calculation below, we'd compute the dilatation 247 // factor as: MinChunkSize/(promoting_gen's min object size) 248 // Since we do not have such a general query interface for the 249 // promoting generation, we'll instead just use the minimum 250 // object size (which today is a header's worth of space); 251 // note that all arithmetic is in units of HeapWords. 252 assert(MinChunkSize >= CollectedHeap::min_fill_size(), "just checking"); 253 assert(_dilatation_factor >= 1.0, "from previous assert"); 254 } 255 256 257 // The field "_initiating_occupancy" represents the occupancy percentage 258 // at which we trigger a new collection cycle. Unless explicitly specified 259 // via CMSInitiatingOccupancyFraction (argument "io" below), it 260 // is calculated by: 261 // 262 // Let "f" be MinHeapFreeRatio in 263 // 264 // _initiating_occupancy = 100-f + 265 // f * (CMSTriggerRatio/100) 266 // where CMSTriggerRatio is the argument "tr" below. 267 // 268 // That is, if we assume the heap is at its desired maximum occupancy at the 269 // end of a collection, we let CMSTriggerRatio of the (purported) free 270 // space be allocated before initiating a new collection cycle. 271 // 272 void ConcurrentMarkSweepGeneration::init_initiating_occupancy(intx io, uintx tr) { 273 assert(io <= 100 && tr <= 100, "Check the arguments"); 274 if (io >= 0) { 275 _initiating_occupancy = (double)io / 100.0; 276 } else { 277 _initiating_occupancy = ((100 - MinHeapFreeRatio) + 278 (double)(tr * MinHeapFreeRatio) / 100.0) 279 / 100.0; 280 } 281 } 282 283 void ConcurrentMarkSweepGeneration::ref_processor_init() { 284 assert(collector() != NULL, "no collector"); 285 collector()->ref_processor_init(); 286 } 287 288 void CMSCollector::ref_processor_init() { 289 if (_ref_processor == NULL) { 290 // Allocate and initialize a reference processor 291 _ref_processor = 292 new ReferenceProcessor(_span, // span 293 (ParallelGCThreads > 1) && ParallelRefProcEnabled, // mt processing 294 ParallelGCThreads, // mt processing degree 295 _cmsGen->refs_discovery_is_mt(), // mt discovery 296 MAX2(ConcGCThreads, ParallelGCThreads), // mt discovery degree 297 _cmsGen->refs_discovery_is_atomic(), // discovery is not atomic 298 &_is_alive_closure); // closure for liveness info 299 // Initialize the _ref_processor field of CMSGen 300 _cmsGen->set_ref_processor(_ref_processor); 301 302 } 303 } 304 305 AdaptiveSizePolicy* CMSCollector::size_policy() { 306 return CMSHeap::heap()->size_policy(); 307 } 308 309 void ConcurrentMarkSweepGeneration::initialize_performance_counters() { 310 311 const char* gen_name = "old"; 312 GenCollectorPolicy* gcp = CMSHeap::heap()->gen_policy(); 313 // Generation Counters - generation 1, 1 subspace 314 _gen_counters = new GenerationCounters(gen_name, 1, 1, 315 gcp->min_old_size(), gcp->max_old_size(), &_virtual_space); 316 317 _space_counters = new GSpaceCounters(gen_name, 0, 318 _virtual_space.reserved_size(), 319 this, _gen_counters); 320 } 321 322 CMSStats::CMSStats(ConcurrentMarkSweepGeneration* cms_gen, unsigned int alpha): 323 _cms_gen(cms_gen) 324 { 325 assert(alpha <= 100, "bad value"); 326 _saved_alpha = alpha; 327 328 // Initialize the alphas to the bootstrap value of 100. 329 _gc0_alpha = _cms_alpha = 100; 330 331 _cms_begin_time.update(); 332 _cms_end_time.update(); 333 334 _gc0_duration = 0.0; 335 _gc0_period = 0.0; 336 _gc0_promoted = 0; 337 338 _cms_duration = 0.0; 339 _cms_period = 0.0; 340 _cms_allocated = 0; 341 342 _cms_used_at_gc0_begin = 0; 343 _cms_used_at_gc0_end = 0; 344 _allow_duty_cycle_reduction = false; 345 _valid_bits = 0; 346 } 347 348 double CMSStats::cms_free_adjustment_factor(size_t free) const { 349 // TBD: CR 6909490 350 return 1.0; 351 } 352 353 void CMSStats::adjust_cms_free_adjustment_factor(bool fail, size_t free) { 354 } 355 356 // If promotion failure handling is on use 357 // the padded average size of the promotion for each 358 // young generation collection. 359 double CMSStats::time_until_cms_gen_full() const { 360 size_t cms_free = _cms_gen->cmsSpace()->free(); 361 CMSHeap* heap = CMSHeap::heap(); 362 size_t expected_promotion = MIN2(heap->young_gen()->capacity(), 363 (size_t) _cms_gen->gc_stats()->avg_promoted()->padded_average()); 364 if (cms_free > expected_promotion) { 365 // Start a cms collection if there isn't enough space to promote 366 // for the next young collection. Use the padded average as 367 // a safety factor. 368 cms_free -= expected_promotion; 369 370 // Adjust by the safety factor. 371 double cms_free_dbl = (double)cms_free; 372 double cms_adjustment = (100.0 - CMSIncrementalSafetyFactor) / 100.0; 373 // Apply a further correction factor which tries to adjust 374 // for recent occurance of concurrent mode failures. 375 cms_adjustment = cms_adjustment * cms_free_adjustment_factor(cms_free); 376 cms_free_dbl = cms_free_dbl * cms_adjustment; 377 378 log_trace(gc)("CMSStats::time_until_cms_gen_full: cms_free " SIZE_FORMAT " expected_promotion " SIZE_FORMAT, 379 cms_free, expected_promotion); 380 log_trace(gc)(" cms_free_dbl %f cms_consumption_rate %f", cms_free_dbl, cms_consumption_rate() + 1.0); 381 // Add 1 in case the consumption rate goes to zero. 382 return cms_free_dbl / (cms_consumption_rate() + 1.0); 383 } 384 return 0.0; 385 } 386 387 // Compare the duration of the cms collection to the 388 // time remaining before the cms generation is empty. 389 // Note that the time from the start of the cms collection 390 // to the start of the cms sweep (less than the total 391 // duration of the cms collection) can be used. This 392 // has been tried and some applications experienced 393 // promotion failures early in execution. This was 394 // possibly because the averages were not accurate 395 // enough at the beginning. 396 double CMSStats::time_until_cms_start() const { 397 // We add "gc0_period" to the "work" calculation 398 // below because this query is done (mostly) at the 399 // end of a scavenge, so we need to conservatively 400 // account for that much possible delay 401 // in the query so as to avoid concurrent mode failures 402 // due to starting the collection just a wee bit too 403 // late. 404 double work = cms_duration() + gc0_period(); 405 double deadline = time_until_cms_gen_full(); 406 // If a concurrent mode failure occurred recently, we want to be 407 // more conservative and halve our expected time_until_cms_gen_full() 408 if (work > deadline) { 409 log_develop_trace(gc)("CMSCollector: collect because of anticipated promotion before full %3.7f + %3.7f > %3.7f ", 410 cms_duration(), gc0_period(), time_until_cms_gen_full()); 411 return 0.0; 412 } 413 return work - deadline; 414 } 415 416 #ifndef PRODUCT 417 void CMSStats::print_on(outputStream *st) const { 418 st->print(" gc0_alpha=%d,cms_alpha=%d", _gc0_alpha, _cms_alpha); 419 st->print(",gc0_dur=%g,gc0_per=%g,gc0_promo=" SIZE_FORMAT, 420 gc0_duration(), gc0_period(), gc0_promoted()); 421 st->print(",cms_dur=%g,cms_per=%g,cms_alloc=" SIZE_FORMAT, 422 cms_duration(), cms_period(), cms_allocated()); 423 st->print(",cms_since_beg=%g,cms_since_end=%g", 424 cms_time_since_begin(), cms_time_since_end()); 425 st->print(",cms_used_beg=" SIZE_FORMAT ",cms_used_end=" SIZE_FORMAT, 426 _cms_used_at_gc0_begin, _cms_used_at_gc0_end); 427 428 if (valid()) { 429 st->print(",promo_rate=%g,cms_alloc_rate=%g", 430 promotion_rate(), cms_allocation_rate()); 431 st->print(",cms_consumption_rate=%g,time_until_full=%g", 432 cms_consumption_rate(), time_until_cms_gen_full()); 433 } 434 st->cr(); 435 } 436 #endif // #ifndef PRODUCT 437 438 CMSCollector::CollectorState CMSCollector::_collectorState = 439 CMSCollector::Idling; 440 bool CMSCollector::_foregroundGCIsActive = false; 441 bool CMSCollector::_foregroundGCShouldWait = false; 442 443 CMSCollector::CMSCollector(ConcurrentMarkSweepGeneration* cmsGen, 444 CardTableRS* ct, 445 ConcurrentMarkSweepPolicy* cp): 446 _cmsGen(cmsGen), 447 _ct(ct), 448 _ref_processor(NULL), // will be set later 449 _conc_workers(NULL), // may be set later 450 _abort_preclean(false), 451 _start_sampling(false), 452 _between_prologue_and_epilogue(false), 453 _markBitMap(0, Mutex::leaf + 1, "CMS_markBitMap_lock"), 454 _modUnionTable((CardTable::card_shift - LogHeapWordSize), 455 -1 /* lock-free */, "No_lock" /* dummy */), 456 _modUnionClosurePar(&_modUnionTable), 457 // Adjust my span to cover old (cms) gen 458 _span(cmsGen->reserved()), 459 // Construct the is_alive_closure with _span & markBitMap 460 _is_alive_closure(_span, &_markBitMap), 461 _restart_addr(NULL), 462 _overflow_list(NULL), 463 _stats(cmsGen), 464 _eden_chunk_lock(new Mutex(Mutex::leaf + 1, "CMS_eden_chunk_lock", true, 465 //verify that this lock should be acquired with safepoint check. 466 Monitor::_safepoint_check_sometimes)), 467 _eden_chunk_array(NULL), // may be set in ctor body 468 _eden_chunk_capacity(0), // -- ditto -- 469 _eden_chunk_index(0), // -- ditto -- 470 _survivor_plab_array(NULL), // -- ditto -- 471 _survivor_chunk_array(NULL), // -- ditto -- 472 _survivor_chunk_capacity(0), // -- ditto -- 473 _survivor_chunk_index(0), // -- ditto -- 474 _ser_pmc_preclean_ovflw(0), 475 _ser_kac_preclean_ovflw(0), 476 _ser_pmc_remark_ovflw(0), 477 _par_pmc_remark_ovflw(0), 478 _ser_kac_ovflw(0), 479 _par_kac_ovflw(0), 480 #ifndef PRODUCT 481 _num_par_pushes(0), 482 #endif 483 _collection_count_start(0), 484 _verifying(false), 485 _verification_mark_bm(0, Mutex::leaf + 1, "CMS_verification_mark_bm_lock"), 486 _completed_initialization(false), 487 _collector_policy(cp), 488 _should_unload_classes(CMSClassUnloadingEnabled), 489 _concurrent_cycles_since_last_unload(0), 490 _roots_scanning_options(GenCollectedHeap::SO_None), 491 _inter_sweep_estimate(CMS_SweepWeight, CMS_SweepPadding), 492 _intra_sweep_estimate(CMS_SweepWeight, CMS_SweepPadding), 493 _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) CMSTracer()), 494 _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()), 495 _cms_start_registered(false) 496 { 497 // Now expand the span and allocate the collection support structures 498 // (MUT, marking bit map etc.) to cover both generations subject to 499 // collection. 500 501 // For use by dirty card to oop closures. 502 _cmsGen->cmsSpace()->set_collector(this); 503 504 // Allocate MUT and marking bit map 505 { 506 MutexLockerEx x(_markBitMap.lock(), Mutex::_no_safepoint_check_flag); 507 if (!_markBitMap.allocate(_span)) { 508 log_warning(gc)("Failed to allocate CMS Bit Map"); 509 return; 510 } 511 assert(_markBitMap.covers(_span), "_markBitMap inconsistency?"); 512 } 513 { 514 _modUnionTable.allocate(_span); 515 assert(_modUnionTable.covers(_span), "_modUnionTable inconsistency?"); 516 } 517 518 if (!_markStack.allocate(MarkStackSize)) { 519 log_warning(gc)("Failed to allocate CMS Marking Stack"); 520 return; 521 } 522 523 // Support for multi-threaded concurrent phases 524 if (CMSConcurrentMTEnabled) { 525 if (FLAG_IS_DEFAULT(ConcGCThreads)) { 526 // just for now 527 FLAG_SET_DEFAULT(ConcGCThreads, (ParallelGCThreads + 3) / 4); 528 } 529 if (ConcGCThreads > 1) { 530 _conc_workers = new YieldingFlexibleWorkGang("CMS Thread", 531 ConcGCThreads, true); 532 if (_conc_workers == NULL) { 533 log_warning(gc)("GC/CMS: _conc_workers allocation failure: forcing -CMSConcurrentMTEnabled"); 534 CMSConcurrentMTEnabled = false; 535 } else { 536 _conc_workers->initialize_workers(); 537 } 538 } else { 539 CMSConcurrentMTEnabled = false; 540 } 541 } 542 if (!CMSConcurrentMTEnabled) { 543 ConcGCThreads = 0; 544 } else { 545 // Turn off CMSCleanOnEnter optimization temporarily for 546 // the MT case where it's not fixed yet; see 6178663. 547 CMSCleanOnEnter = false; 548 } 549 assert((_conc_workers != NULL) == (ConcGCThreads > 1), 550 "Inconsistency"); 551 log_debug(gc)("ConcGCThreads: %u", ConcGCThreads); 552 log_debug(gc)("ParallelGCThreads: %u", ParallelGCThreads); 553 554 // Parallel task queues; these are shared for the 555 // concurrent and stop-world phases of CMS, but 556 // are not shared with parallel scavenge (ParNew). 557 { 558 uint i; 559 uint num_queues = MAX2(ParallelGCThreads, ConcGCThreads); 560 561 if ((CMSParallelRemarkEnabled || CMSConcurrentMTEnabled 562 || ParallelRefProcEnabled) 563 && num_queues > 0) { 564 _task_queues = new OopTaskQueueSet(num_queues); 565 if (_task_queues == NULL) { 566 log_warning(gc)("task_queues allocation failure."); 567 return; 568 } 569 _hash_seed = NEW_C_HEAP_ARRAY(int, num_queues, mtGC); 570 typedef Padded<OopTaskQueue> PaddedOopTaskQueue; 571 for (i = 0; i < num_queues; i++) { 572 PaddedOopTaskQueue *q = new PaddedOopTaskQueue(); 573 if (q == NULL) { 574 log_warning(gc)("work_queue allocation failure."); 575 return; 576 } 577 _task_queues->register_queue(i, q); 578 } 579 for (i = 0; i < num_queues; i++) { 580 _task_queues->queue(i)->initialize(); 581 _hash_seed[i] = 17; // copied from ParNew 582 } 583 } 584 } 585 586 _cmsGen ->init_initiating_occupancy(CMSInitiatingOccupancyFraction, CMSTriggerRatio); 587 588 // Clip CMSBootstrapOccupancy between 0 and 100. 589 _bootstrap_occupancy = CMSBootstrapOccupancy / 100.0; 590 591 // Now tell CMS generations the identity of their collector 592 ConcurrentMarkSweepGeneration::set_collector(this); 593 594 // Create & start a CMS thread for this CMS collector 595 _cmsThread = ConcurrentMarkSweepThread::start(this); 596 assert(cmsThread() != NULL, "CMS Thread should have been created"); 597 assert(cmsThread()->collector() == this, 598 "CMS Thread should refer to this gen"); 599 assert(CGC_lock != NULL, "Where's the CGC_lock?"); 600 601 // Support for parallelizing young gen rescan 602 CMSHeap* heap = CMSHeap::heap(); 603 assert(heap->young_gen()->kind() == Generation::ParNew, "CMS can only be used with ParNew"); 604 _young_gen = (ParNewGeneration*)heap->young_gen(); 605 if (heap->supports_inline_contig_alloc()) { 606 _top_addr = heap->top_addr(); 607 _end_addr = heap->end_addr(); 608 assert(_young_gen != NULL, "no _young_gen"); 609 _eden_chunk_index = 0; 610 _eden_chunk_capacity = (_young_gen->max_capacity() + CMSSamplingGrain) / CMSSamplingGrain; 611 _eden_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, _eden_chunk_capacity, mtGC); 612 } 613 614 // Support for parallelizing survivor space rescan 615 if ((CMSParallelRemarkEnabled && CMSParallelSurvivorRemarkEnabled) || CMSParallelInitialMarkEnabled) { 616 const size_t max_plab_samples = 617 _young_gen->max_survivor_size() / (PLAB::min_size() * HeapWordSize); 618 619 _survivor_plab_array = NEW_C_HEAP_ARRAY(ChunkArray, ParallelGCThreads, mtGC); 620 _survivor_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, max_plab_samples, mtGC); 621 _cursor = NEW_C_HEAP_ARRAY(size_t, ParallelGCThreads, mtGC); 622 _survivor_chunk_capacity = max_plab_samples; 623 for (uint i = 0; i < ParallelGCThreads; i++) { 624 HeapWord** vec = NEW_C_HEAP_ARRAY(HeapWord*, max_plab_samples, mtGC); 625 ChunkArray* cur = ::new (&_survivor_plab_array[i]) ChunkArray(vec, max_plab_samples); 626 assert(cur->end() == 0, "Should be 0"); 627 assert(cur->array() == vec, "Should be vec"); 628 assert(cur->capacity() == max_plab_samples, "Error"); 629 } 630 } 631 632 NOT_PRODUCT(_overflow_counter = CMSMarkStackOverflowInterval;) 633 _gc_counters = new CollectorCounters("CMS", 1); 634 _cgc_counters = new CollectorCounters("CMS stop-the-world phases", 2); 635 _completed_initialization = true; 636 _inter_sweep_timer.start(); // start of time 637 } 638 639 const char* ConcurrentMarkSweepGeneration::name() const { 640 return "concurrent mark-sweep generation"; 641 } 642 void ConcurrentMarkSweepGeneration::update_counters() { 643 if (UsePerfData) { 644 _space_counters->update_all(); 645 _gen_counters->update_all(); 646 } 647 } 648 649 // this is an optimized version of update_counters(). it takes the 650 // used value as a parameter rather than computing it. 651 // 652 void ConcurrentMarkSweepGeneration::update_counters(size_t used) { 653 if (UsePerfData) { 654 _space_counters->update_used(used); 655 _space_counters->update_capacity(); 656 _gen_counters->update_all(); 657 } 658 } 659 660 void ConcurrentMarkSweepGeneration::print() const { 661 Generation::print(); 662 cmsSpace()->print(); 663 } 664 665 #ifndef PRODUCT 666 void ConcurrentMarkSweepGeneration::print_statistics() { 667 cmsSpace()->printFLCensus(0); 668 } 669 #endif 670 671 size_t 672 ConcurrentMarkSweepGeneration::contiguous_available() const { 673 // dld proposes an improvement in precision here. If the committed 674 // part of the space ends in a free block we should add that to 675 // uncommitted size in the calculation below. Will make this 676 // change later, staying with the approximation below for the 677 // time being. -- ysr. 678 return MAX2(_virtual_space.uncommitted_size(), unsafe_max_alloc_nogc()); 679 } 680 681 size_t 682 ConcurrentMarkSweepGeneration::unsafe_max_alloc_nogc() const { 683 return _cmsSpace->max_alloc_in_words() * HeapWordSize; 684 } 685 686 size_t ConcurrentMarkSweepGeneration::max_available() const { 687 return free() + _virtual_space.uncommitted_size(); 688 } 689 690 bool ConcurrentMarkSweepGeneration::promotion_attempt_is_safe(size_t max_promotion_in_bytes) const { 691 size_t available = max_available(); 692 size_t av_promo = (size_t)gc_stats()->avg_promoted()->padded_average(); 693 bool res = (available >= av_promo) || (available >= max_promotion_in_bytes); 694 log_trace(gc, promotion)("CMS: promo attempt is%s safe: available(" SIZE_FORMAT ") %s av_promo(" SIZE_FORMAT "), max_promo(" SIZE_FORMAT ")", 695 res? "":" not", available, res? ">=":"<", av_promo, max_promotion_in_bytes); 696 return res; 697 } 698 699 // At a promotion failure dump information on block layout in heap 700 // (cms old generation). 701 void ConcurrentMarkSweepGeneration::promotion_failure_occurred() { 702 Log(gc, promotion) log; 703 if (log.is_trace()) { 704 LogStream ls(log.trace()); 705 cmsSpace()->dump_at_safepoint_with_locks(collector(), &ls); 706 } 707 } 708 709 void ConcurrentMarkSweepGeneration::reset_after_compaction() { 710 // Clear the promotion information. These pointers can be adjusted 711 // along with all the other pointers into the heap but 712 // compaction is expected to be a rare event with 713 // a heap using cms so don't do it without seeing the need. 714 for (uint i = 0; i < ParallelGCThreads; i++) { 715 _par_gc_thread_states[i]->promo.reset(); 716 } 717 } 718 719 void ConcurrentMarkSweepGeneration::compute_new_size() { 720 assert_locked_or_safepoint(Heap_lock); 721 722 // If incremental collection failed, we just want to expand 723 // to the limit. 724 if (incremental_collection_failed()) { 725 clear_incremental_collection_failed(); 726 grow_to_reserved(); 727 return; 728 } 729 730 // The heap has been compacted but not reset yet. 731 // Any metric such as free() or used() will be incorrect. 732 733 CardGeneration::compute_new_size(); 734 735 // Reset again after a possible resizing 736 if (did_compact()) { 737 cmsSpace()->reset_after_compaction(); 738 } 739 } 740 741 void ConcurrentMarkSweepGeneration::compute_new_size_free_list() { 742 assert_locked_or_safepoint(Heap_lock); 743 744 // If incremental collection failed, we just want to expand 745 // to the limit. 746 if (incremental_collection_failed()) { 747 clear_incremental_collection_failed(); 748 grow_to_reserved(); 749 return; 750 } 751 752 double free_percentage = ((double) free()) / capacity(); 753 double desired_free_percentage = (double) MinHeapFreeRatio / 100; 754 double maximum_free_percentage = (double) MaxHeapFreeRatio / 100; 755 756 // compute expansion delta needed for reaching desired free percentage 757 if (free_percentage < desired_free_percentage) { 758 size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage)); 759 assert(desired_capacity >= capacity(), "invalid expansion size"); 760 size_t expand_bytes = MAX2(desired_capacity - capacity(), MinHeapDeltaBytes); 761 Log(gc) log; 762 if (log.is_trace()) { 763 size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage)); 764 log.trace("From compute_new_size: "); 765 log.trace(" Free fraction %f", free_percentage); 766 log.trace(" Desired free fraction %f", desired_free_percentage); 767 log.trace(" Maximum free fraction %f", maximum_free_percentage); 768 log.trace(" Capacity " SIZE_FORMAT, capacity() / 1000); 769 log.trace(" Desired capacity " SIZE_FORMAT, desired_capacity / 1000); 770 CMSHeap* heap = CMSHeap::heap(); 771 assert(heap->is_old_gen(this), "The CMS generation should always be the old generation"); 772 size_t young_size = heap->young_gen()->capacity(); 773 log.trace(" Young gen size " SIZE_FORMAT, young_size / 1000); 774 log.trace(" unsafe_max_alloc_nogc " SIZE_FORMAT, unsafe_max_alloc_nogc() / 1000); 775 log.trace(" contiguous available " SIZE_FORMAT, contiguous_available() / 1000); 776 log.trace(" Expand by " SIZE_FORMAT " (bytes)", expand_bytes); 777 } 778 // safe if expansion fails 779 expand_for_gc_cause(expand_bytes, 0, CMSExpansionCause::_satisfy_free_ratio); 780 log.trace(" Expanded free fraction %f", ((double) free()) / capacity()); 781 } else { 782 size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage)); 783 assert(desired_capacity <= capacity(), "invalid expansion size"); 784 size_t shrink_bytes = capacity() - desired_capacity; 785 // Don't shrink unless the delta is greater than the minimum shrink we want 786 if (shrink_bytes >= MinHeapDeltaBytes) { 787 shrink_free_list_by(shrink_bytes); 788 } 789 } 790 } 791 792 Mutex* ConcurrentMarkSweepGeneration::freelistLock() const { 793 return cmsSpace()->freelistLock(); 794 } 795 796 HeapWord* ConcurrentMarkSweepGeneration::allocate(size_t size, bool tlab) { 797 CMSSynchronousYieldRequest yr; 798 MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag); 799 return have_lock_and_allocate(size, tlab); 800 } 801 802 HeapWord* ConcurrentMarkSweepGeneration::have_lock_and_allocate(size_t size, 803 bool tlab /* ignored */) { 804 assert_lock_strong(freelistLock()); 805 size_t adjustedSize = CompactibleFreeListSpace::adjustObjectSize(size); 806 HeapWord* res = cmsSpace()->allocate(adjustedSize); 807 // Allocate the object live (grey) if the background collector has 808 // started marking. This is necessary because the marker may 809 // have passed this address and consequently this object will 810 // not otherwise be greyed and would be incorrectly swept up. 811 // Note that if this object contains references, the writing 812 // of those references will dirty the card containing this object 813 // allowing the object to be blackened (and its references scanned) 814 // either during a preclean phase or at the final checkpoint. 815 if (res != NULL) { 816 // We may block here with an uninitialized object with 817 // its mark-bit or P-bits not yet set. Such objects need 818 // to be safely navigable by block_start(). 819 assert(oop(res)->klass_or_null() == NULL, "Object should be uninitialized here."); 820 assert(!((FreeChunk*)res)->is_free(), "Error, block will look free but show wrong size"); 821 collector()->direct_allocated(res, adjustedSize); 822 _direct_allocated_words += adjustedSize; 823 // allocation counters 824 NOT_PRODUCT( 825 _numObjectsAllocated++; 826 _numWordsAllocated += (int)adjustedSize; 827 ) 828 } 829 return res; 830 } 831 832 // In the case of direct allocation by mutators in a generation that 833 // is being concurrently collected, the object must be allocated 834 // live (grey) if the background collector has started marking. 835 // This is necessary because the marker may 836 // have passed this address and consequently this object will 837 // not otherwise be greyed and would be incorrectly swept up. 838 // Note that if this object contains references, the writing 839 // of those references will dirty the card containing this object 840 // allowing the object to be blackened (and its references scanned) 841 // either during a preclean phase or at the final checkpoint. 842 void CMSCollector::direct_allocated(HeapWord* start, size_t size) { 843 assert(_markBitMap.covers(start, size), "Out of bounds"); 844 if (_collectorState >= Marking) { 845 MutexLockerEx y(_markBitMap.lock(), 846 Mutex::_no_safepoint_check_flag); 847 // [see comments preceding SweepClosure::do_blk() below for details] 848 // 849 // Can the P-bits be deleted now? JJJ 850 // 851 // 1. need to mark the object as live so it isn't collected 852 // 2. need to mark the 2nd bit to indicate the object may be uninitialized 853 // 3. need to mark the end of the object so marking, precleaning or sweeping 854 // can skip over uninitialized or unparsable objects. An allocated 855 // object is considered uninitialized for our purposes as long as 856 // its klass word is NULL. All old gen objects are parsable 857 // as soon as they are initialized.) 858 _markBitMap.mark(start); // object is live 859 _markBitMap.mark(start + 1); // object is potentially uninitialized? 860 _markBitMap.mark(start + size - 1); 861 // mark end of object 862 } 863 // check that oop looks uninitialized 864 assert(oop(start)->klass_or_null() == NULL, "_klass should be NULL"); 865 } 866 867 void CMSCollector::promoted(bool par, HeapWord* start, 868 bool is_obj_array, size_t obj_size) { 869 assert(_markBitMap.covers(start), "Out of bounds"); 870 // See comment in direct_allocated() about when objects should 871 // be allocated live. 872 if (_collectorState >= Marking) { 873 // we already hold the marking bit map lock, taken in 874 // the prologue 875 if (par) { 876 _markBitMap.par_mark(start); 877 } else { 878 _markBitMap.mark(start); 879 } 880 // We don't need to mark the object as uninitialized (as 881 // in direct_allocated above) because this is being done with the 882 // world stopped and the object will be initialized by the 883 // time the marking, precleaning or sweeping get to look at it. 884 // But see the code for copying objects into the CMS generation, 885 // where we need to ensure that concurrent readers of the 886 // block offset table are able to safely navigate a block that 887 // is in flux from being free to being allocated (and in 888 // transition while being copied into) and subsequently 889 // becoming a bona-fide object when the copy/promotion is complete. 890 assert(SafepointSynchronize::is_at_safepoint(), 891 "expect promotion only at safepoints"); 892 893 if (_collectorState < Sweeping) { 894 // Mark the appropriate cards in the modUnionTable, so that 895 // this object gets scanned before the sweep. If this is 896 // not done, CMS generation references in the object might 897 // not get marked. 898 // For the case of arrays, which are otherwise precisely 899 // marked, we need to dirty the entire array, not just its head. 900 if (is_obj_array) { 901 // The [par_]mark_range() method expects mr.end() below to 902 // be aligned to the granularity of a bit's representation 903 // in the heap. In the case of the MUT below, that's a 904 // card size. 905 MemRegion mr(start, 906 align_up(start + obj_size, 907 CardTable::card_size /* bytes */)); 908 if (par) { 909 _modUnionTable.par_mark_range(mr); 910 } else { 911 _modUnionTable.mark_range(mr); 912 } 913 } else { // not an obj array; we can just mark the head 914 if (par) { 915 _modUnionTable.par_mark(start); 916 } else { 917 _modUnionTable.mark(start); 918 } 919 } 920 } 921 } 922 } 923 924 oop ConcurrentMarkSweepGeneration::promote(oop obj, size_t obj_size) { 925 assert(obj_size == (size_t)obj->size(), "bad obj_size passed in"); 926 // allocate, copy and if necessary update promoinfo -- 927 // delegate to underlying space. 928 assert_lock_strong(freelistLock()); 929 930 #ifndef PRODUCT 931 if (CMSHeap::heap()->promotion_should_fail()) { 932 return NULL; 933 } 934 #endif // #ifndef PRODUCT 935 936 oop res = _cmsSpace->promote(obj, obj_size); 937 if (res == NULL) { 938 // expand and retry 939 size_t s = _cmsSpace->expansionSpaceRequired(obj_size); // HeapWords 940 expand_for_gc_cause(s*HeapWordSize, MinHeapDeltaBytes, CMSExpansionCause::_satisfy_promotion); 941 // Since this is the old generation, we don't try to promote 942 // into a more senior generation. 943 res = _cmsSpace->promote(obj, obj_size); 944 } 945 if (res != NULL) { 946 // See comment in allocate() about when objects should 947 // be allocated live. 948 assert(oopDesc::is_oop(obj), "Will dereference klass pointer below"); 949 collector()->promoted(false, // Not parallel 950 (HeapWord*)res, obj->is_objArray(), obj_size); 951 // promotion counters 952 NOT_PRODUCT( 953 _numObjectsPromoted++; 954 _numWordsPromoted += 955 (int)(CompactibleFreeListSpace::adjustObjectSize(obj->size())); 956 ) 957 } 958 return res; 959 } 960 961 962 // IMPORTANT: Notes on object size recognition in CMS. 963 // --------------------------------------------------- 964 // A block of storage in the CMS generation is always in 965 // one of three states. A free block (FREE), an allocated 966 // object (OBJECT) whose size() method reports the correct size, 967 // and an intermediate state (TRANSIENT) in which its size cannot 968 // be accurately determined. 969 // STATE IDENTIFICATION: (32 bit and 64 bit w/o COOPS) 970 // ----------------------------------------------------- 971 // FREE: klass_word & 1 == 1; mark_word holds block size 972 // 973 // OBJECT: klass_word installed; klass_word != 0 && klass_word & 1 == 0; 974 // obj->size() computes correct size 975 // 976 // TRANSIENT: klass_word == 0; size is indeterminate until we become an OBJECT 977 // 978 // STATE IDENTIFICATION: (64 bit+COOPS) 979 // ------------------------------------ 980 // FREE: mark_word & CMS_FREE_BIT == 1; mark_word & ~CMS_FREE_BIT gives block_size 981 // 982 // OBJECT: klass_word installed; klass_word != 0; 983 // obj->size() computes correct size 984 // 985 // TRANSIENT: klass_word == 0; size is indeterminate until we become an OBJECT 986 // 987 // 988 // STATE TRANSITION DIAGRAM 989 // 990 // mut / parnew mut / parnew 991 // FREE --------------------> TRANSIENT ---------------------> OBJECT --| 992 // ^ | 993 // |------------------------ DEAD <------------------------------------| 994 // sweep mut 995 // 996 // While a block is in TRANSIENT state its size cannot be determined 997 // so readers will either need to come back later or stall until 998 // the size can be determined. Note that for the case of direct 999 // allocation, P-bits, when available, may be used to determine the 1000 // size of an object that may not yet have been initialized. 1001 1002 // Things to support parallel young-gen collection. 1003 oop 1004 ConcurrentMarkSweepGeneration::par_promote(int thread_num, 1005 oop old, markOop m, 1006 size_t word_sz) { 1007 #ifndef PRODUCT 1008 if (CMSHeap::heap()->promotion_should_fail()) { 1009 return NULL; 1010 } 1011 #endif // #ifndef PRODUCT 1012 1013 CMSParGCThreadState* ps = _par_gc_thread_states[thread_num]; 1014 PromotionInfo* promoInfo = &ps->promo; 1015 // if we are tracking promotions, then first ensure space for 1016 // promotion (including spooling space for saving header if necessary). 1017 // then allocate and copy, then track promoted info if needed. 1018 // When tracking (see PromotionInfo::track()), the mark word may 1019 // be displaced and in this case restoration of the mark word 1020 // occurs in the (oop_since_save_marks_)iterate phase. 1021 if (promoInfo->tracking() && !promoInfo->ensure_spooling_space()) { 1022 // Out of space for allocating spooling buffers; 1023 // try expanding and allocating spooling buffers. 1024 if (!expand_and_ensure_spooling_space(promoInfo)) { 1025 return NULL; 1026 } 1027 } 1028 assert(!promoInfo->tracking() || promoInfo->has_spooling_space(), "Control point invariant"); 1029 const size_t alloc_sz = CompactibleFreeListSpace::adjustObjectSize(word_sz); 1030 HeapWord* obj_ptr = ps->lab.alloc(alloc_sz); 1031 if (obj_ptr == NULL) { 1032 obj_ptr = expand_and_par_lab_allocate(ps, alloc_sz); 1033 if (obj_ptr == NULL) { 1034 return NULL; 1035 } 1036 } 1037 oop obj = oop(obj_ptr); 1038 OrderAccess::storestore(); 1039 assert(obj->klass_or_null() == NULL, "Object should be uninitialized here."); 1040 assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size"); 1041 // IMPORTANT: See note on object initialization for CMS above. 1042 // Otherwise, copy the object. Here we must be careful to insert the 1043 // klass pointer last, since this marks the block as an allocated object. 1044 // Except with compressed oops it's the mark word. 1045 HeapWord* old_ptr = (HeapWord*)old; 1046 // Restore the mark word copied above. 1047 obj->set_mark(m); 1048 assert(obj->klass_or_null() == NULL, "Object should be uninitialized here."); 1049 assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size"); 1050 OrderAccess::storestore(); 1051 1052 if (UseCompressedClassPointers) { 1053 // Copy gap missed by (aligned) header size calculation below 1054 obj->set_klass_gap(old->klass_gap()); 1055 } 1056 if (word_sz > (size_t)oopDesc::header_size()) { 1057 Copy::aligned_disjoint_words(old_ptr + oopDesc::header_size(), 1058 obj_ptr + oopDesc::header_size(), 1059 word_sz - oopDesc::header_size()); 1060 } 1061 1062 // Now we can track the promoted object, if necessary. We take care 1063 // to delay the transition from uninitialized to full object 1064 // (i.e., insertion of klass pointer) until after, so that it 1065 // atomically becomes a promoted object. 1066 if (promoInfo->tracking()) { 1067 promoInfo->track((PromotedObject*)obj, old->klass()); 1068 } 1069 assert(obj->klass_or_null() == NULL, "Object should be uninitialized here."); 1070 assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size"); 1071 assert(oopDesc::is_oop(old), "Will use and dereference old klass ptr below"); 1072 1073 // Finally, install the klass pointer (this should be volatile). 1074 OrderAccess::storestore(); 1075 obj->set_klass(old->klass()); 1076 // We should now be able to calculate the right size for this object 1077 assert(oopDesc::is_oop(obj) && obj->size() == (int)word_sz, "Error, incorrect size computed for promoted object"); 1078 1079 collector()->promoted(true, // parallel 1080 obj_ptr, old->is_objArray(), word_sz); 1081 1082 NOT_PRODUCT( 1083 Atomic::inc(&_numObjectsPromoted); 1084 Atomic::add(alloc_sz, &_numWordsPromoted); 1085 ) 1086 1087 return obj; 1088 } 1089 1090 void 1091 ConcurrentMarkSweepGeneration:: 1092 par_promote_alloc_done(int thread_num) { 1093 CMSParGCThreadState* ps = _par_gc_thread_states[thread_num]; 1094 ps->lab.retire(thread_num); 1095 } 1096 1097 void 1098 ConcurrentMarkSweepGeneration:: 1099 par_oop_since_save_marks_iterate_done(int thread_num) { 1100 CMSParGCThreadState* ps = _par_gc_thread_states[thread_num]; 1101 ParScanWithoutBarrierClosure* dummy_cl = NULL; 1102 ps->promo.promoted_oops_iterate_nv(dummy_cl); 1103 1104 // Because card-scanning has been completed, subsequent phases 1105 // (e.g., reference processing) will not need to recognize which 1106 // objects have been promoted during this GC. So, we can now disable 1107 // promotion tracking. 1108 ps->promo.stopTrackingPromotions(); 1109 } 1110 1111 bool ConcurrentMarkSweepGeneration::should_collect(bool full, 1112 size_t size, 1113 bool tlab) 1114 { 1115 // We allow a STW collection only if a full 1116 // collection was requested. 1117 return full || should_allocate(size, tlab); // FIX ME !!! 1118 // This and promotion failure handling are connected at the 1119 // hip and should be fixed by untying them. 1120 } 1121 1122 bool CMSCollector::shouldConcurrentCollect() { 1123 LogTarget(Trace, gc) log; 1124 1125 if (_full_gc_requested) { 1126 log.print("CMSCollector: collect because of explicit gc request (or GCLocker)"); 1127 return true; 1128 } 1129 1130 FreelistLocker x(this); 1131 // ------------------------------------------------------------------ 1132 // Print out lots of information which affects the initiation of 1133 // a collection. 1134 if (log.is_enabled() && stats().valid()) { 1135 log.print("CMSCollector shouldConcurrentCollect: "); 1136 1137 LogStream out(log); 1138 stats().print_on(&out); 1139 1140 log.print("time_until_cms_gen_full %3.7f", stats().time_until_cms_gen_full()); 1141 log.print("free=" SIZE_FORMAT, _cmsGen->free()); 1142 log.print("contiguous_available=" SIZE_FORMAT, _cmsGen->contiguous_available()); 1143 log.print("promotion_rate=%g", stats().promotion_rate()); 1144 log.print("cms_allocation_rate=%g", stats().cms_allocation_rate()); 1145 log.print("occupancy=%3.7f", _cmsGen->occupancy()); 1146 log.print("initiatingOccupancy=%3.7f", _cmsGen->initiating_occupancy()); 1147 log.print("cms_time_since_begin=%3.7f", stats().cms_time_since_begin()); 1148 log.print("cms_time_since_end=%3.7f", stats().cms_time_since_end()); 1149 log.print("metadata initialized %d", MetaspaceGC::should_concurrent_collect()); 1150 } 1151 // ------------------------------------------------------------------ 1152 1153 // If the estimated time to complete a cms collection (cms_duration()) 1154 // is less than the estimated time remaining until the cms generation 1155 // is full, start a collection. 1156 if (!UseCMSInitiatingOccupancyOnly) { 1157 if (stats().valid()) { 1158 if (stats().time_until_cms_start() == 0.0) { 1159 return true; 1160 } 1161 } else { 1162 // We want to conservatively collect somewhat early in order 1163 // to try and "bootstrap" our CMS/promotion statistics; 1164 // this branch will not fire after the first successful CMS 1165 // collection because the stats should then be valid. 1166 if (_cmsGen->occupancy() >= _bootstrap_occupancy) { 1167 log.print(" CMSCollector: collect for bootstrapping statistics: occupancy = %f, boot occupancy = %f", 1168 _cmsGen->occupancy(), _bootstrap_occupancy); 1169 return true; 1170 } 1171 } 1172 } 1173 1174 // Otherwise, we start a collection cycle if 1175 // old gen want a collection cycle started. Each may use 1176 // an appropriate criterion for making this decision. 1177 // XXX We need to make sure that the gen expansion 1178 // criterion dovetails well with this. XXX NEED TO FIX THIS 1179 if (_cmsGen->should_concurrent_collect()) { 1180 log.print("CMS old gen initiated"); 1181 return true; 1182 } 1183 1184 // We start a collection if we believe an incremental collection may fail; 1185 // this is not likely to be productive in practice because it's probably too 1186 // late anyway. 1187 CMSHeap* heap = CMSHeap::heap(); 1188 if (heap->incremental_collection_will_fail(true /* consult_young */)) { 1189 log.print("CMSCollector: collect because incremental collection will fail "); 1190 return true; 1191 } 1192 1193 if (MetaspaceGC::should_concurrent_collect()) { 1194 log.print("CMSCollector: collect for metadata allocation "); 1195 return true; 1196 } 1197 1198 // CMSTriggerInterval starts a CMS cycle if enough time has passed. 1199 if (CMSTriggerInterval >= 0) { 1200 if (CMSTriggerInterval == 0) { 1201 // Trigger always 1202 return true; 1203 } 1204 1205 // Check the CMS time since begin (we do not check the stats validity 1206 // as we want to be able to trigger the first CMS cycle as well) 1207 if (stats().cms_time_since_begin() >= (CMSTriggerInterval / ((double) MILLIUNITS))) { 1208 if (stats().valid()) { 1209 log.print("CMSCollector: collect because of trigger interval (time since last begin %3.7f secs)", 1210 stats().cms_time_since_begin()); 1211 } else { 1212 log.print("CMSCollector: collect because of trigger interval (first collection)"); 1213 } 1214 return true; 1215 } 1216 } 1217 1218 return false; 1219 } 1220 1221 void CMSCollector::set_did_compact(bool v) { _cmsGen->set_did_compact(v); } 1222 1223 // Clear _expansion_cause fields of constituent generations 1224 void CMSCollector::clear_expansion_cause() { 1225 _cmsGen->clear_expansion_cause(); 1226 } 1227 1228 // We should be conservative in starting a collection cycle. To 1229 // start too eagerly runs the risk of collecting too often in the 1230 // extreme. To collect too rarely falls back on full collections, 1231 // which works, even if not optimum in terms of concurrent work. 1232 // As a work around for too eagerly collecting, use the flag 1233 // UseCMSInitiatingOccupancyOnly. This also has the advantage of 1234 // giving the user an easily understandable way of controlling the 1235 // collections. 1236 // We want to start a new collection cycle if any of the following 1237 // conditions hold: 1238 // . our current occupancy exceeds the configured initiating occupancy 1239 // for this generation, or 1240 // . we recently needed to expand this space and have not, since that 1241 // expansion, done a collection of this generation, or 1242 // . the underlying space believes that it may be a good idea to initiate 1243 // a concurrent collection (this may be based on criteria such as the 1244 // following: the space uses linear allocation and linear allocation is 1245 // going to fail, or there is believed to be excessive fragmentation in 1246 // the generation, etc... or ... 1247 // [.(currently done by CMSCollector::shouldConcurrentCollect() only for 1248 // the case of the old generation; see CR 6543076): 1249 // we may be approaching a point at which allocation requests may fail because 1250 // we will be out of sufficient free space given allocation rate estimates.] 1251 bool ConcurrentMarkSweepGeneration::should_concurrent_collect() const { 1252 1253 assert_lock_strong(freelistLock()); 1254 if (occupancy() > initiating_occupancy()) { 1255 log_trace(gc)(" %s: collect because of occupancy %f / %f ", 1256 short_name(), occupancy(), initiating_occupancy()); 1257 return true; 1258 } 1259 if (UseCMSInitiatingOccupancyOnly) { 1260 return false; 1261 } 1262 if (expansion_cause() == CMSExpansionCause::_satisfy_allocation) { 1263 log_trace(gc)(" %s: collect because expanded for allocation ", short_name()); 1264 return true; 1265 } 1266 return false; 1267 } 1268 1269 void ConcurrentMarkSweepGeneration::collect(bool full, 1270 bool clear_all_soft_refs, 1271 size_t size, 1272 bool tlab) 1273 { 1274 collector()->collect(full, clear_all_soft_refs, size, tlab); 1275 } 1276 1277 void CMSCollector::collect(bool full, 1278 bool clear_all_soft_refs, 1279 size_t size, 1280 bool tlab) 1281 { 1282 // The following "if" branch is present for defensive reasons. 1283 // In the current uses of this interface, it can be replaced with: 1284 // assert(!GCLocker.is_active(), "Can't be called otherwise"); 1285 // But I am not placing that assert here to allow future 1286 // generality in invoking this interface. 1287 if (GCLocker::is_active()) { 1288 // A consistency test for GCLocker 1289 assert(GCLocker::needs_gc(), "Should have been set already"); 1290 // Skip this foreground collection, instead 1291 // expanding the heap if necessary. 1292 // Need the free list locks for the call to free() in compute_new_size() 1293 compute_new_size(); 1294 return; 1295 } 1296 acquire_control_and_collect(full, clear_all_soft_refs); 1297 } 1298 1299 void CMSCollector::request_full_gc(unsigned int full_gc_count, GCCause::Cause cause) { 1300 CMSHeap* heap = CMSHeap::heap(); 1301 unsigned int gc_count = heap->total_full_collections(); 1302 if (gc_count == full_gc_count) { 1303 MutexLockerEx y(CGC_lock, Mutex::_no_safepoint_check_flag); 1304 _full_gc_requested = true; 1305 _full_gc_cause = cause; 1306 CGC_lock->notify(); // nudge CMS thread 1307 } else { 1308 assert(gc_count > full_gc_count, "Error: causal loop"); 1309 } 1310 } 1311 1312 bool CMSCollector::is_external_interruption() { 1313 GCCause::Cause cause = CMSHeap::heap()->gc_cause(); 1314 return GCCause::is_user_requested_gc(cause) || 1315 GCCause::is_serviceability_requested_gc(cause); 1316 } 1317 1318 void CMSCollector::report_concurrent_mode_interruption() { 1319 if (is_external_interruption()) { 1320 log_debug(gc)("Concurrent mode interrupted"); 1321 } else { 1322 log_debug(gc)("Concurrent mode failure"); 1323 _gc_tracer_cm->report_concurrent_mode_failure(); 1324 } 1325 } 1326 1327 1328 // The foreground and background collectors need to coordinate in order 1329 // to make sure that they do not mutually interfere with CMS collections. 1330 // When a background collection is active, 1331 // the foreground collector may need to take over (preempt) and 1332 // synchronously complete an ongoing collection. Depending on the 1333 // frequency of the background collections and the heap usage 1334 // of the application, this preemption can be seldom or frequent. 1335 // There are only certain 1336 // points in the background collection that the "collection-baton" 1337 // can be passed to the foreground collector. 1338 // 1339 // The foreground collector will wait for the baton before 1340 // starting any part of the collection. The foreground collector 1341 // will only wait at one location. 1342 // 1343 // The background collector will yield the baton before starting a new 1344 // phase of the collection (e.g., before initial marking, marking from roots, 1345 // precleaning, final re-mark, sweep etc.) This is normally done at the head 1346 // of the loop which switches the phases. The background collector does some 1347 // of the phases (initial mark, final re-mark) with the world stopped. 1348 // Because of locking involved in stopping the world, 1349 // the foreground collector should not block waiting for the background 1350 // collector when it is doing a stop-the-world phase. The background 1351 // collector will yield the baton at an additional point just before 1352 // it enters a stop-the-world phase. Once the world is stopped, the 1353 // background collector checks the phase of the collection. If the 1354 // phase has not changed, it proceeds with the collection. If the 1355 // phase has changed, it skips that phase of the collection. See 1356 // the comments on the use of the Heap_lock in collect_in_background(). 1357 // 1358 // Variable used in baton passing. 1359 // _foregroundGCIsActive - Set to true by the foreground collector when 1360 // it wants the baton. The foreground clears it when it has finished 1361 // the collection. 1362 // _foregroundGCShouldWait - Set to true by the background collector 1363 // when it is running. The foreground collector waits while 1364 // _foregroundGCShouldWait is true. 1365 // CGC_lock - monitor used to protect access to the above variables 1366 // and to notify the foreground and background collectors. 1367 // _collectorState - current state of the CMS collection. 1368 // 1369 // The foreground collector 1370 // acquires the CGC_lock 1371 // sets _foregroundGCIsActive 1372 // waits on the CGC_lock for _foregroundGCShouldWait to be false 1373 // various locks acquired in preparation for the collection 1374 // are released so as not to block the background collector 1375 // that is in the midst of a collection 1376 // proceeds with the collection 1377 // clears _foregroundGCIsActive 1378 // returns 1379 // 1380 // The background collector in a loop iterating on the phases of the 1381 // collection 1382 // acquires the CGC_lock 1383 // sets _foregroundGCShouldWait 1384 // if _foregroundGCIsActive is set 1385 // clears _foregroundGCShouldWait, notifies _CGC_lock 1386 // waits on _CGC_lock for _foregroundGCIsActive to become false 1387 // and exits the loop. 1388 // otherwise 1389 // proceed with that phase of the collection 1390 // if the phase is a stop-the-world phase, 1391 // yield the baton once more just before enqueueing 1392 // the stop-world CMS operation (executed by the VM thread). 1393 // returns after all phases of the collection are done 1394 // 1395 1396 void CMSCollector::acquire_control_and_collect(bool full, 1397 bool clear_all_soft_refs) { 1398 assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint"); 1399 assert(!Thread::current()->is_ConcurrentGC_thread(), 1400 "shouldn't try to acquire control from self!"); 1401 1402 // Start the protocol for acquiring control of the 1403 // collection from the background collector (aka CMS thread). 1404 assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(), 1405 "VM thread should have CMS token"); 1406 // Remember the possibly interrupted state of an ongoing 1407 // concurrent collection 1408 CollectorState first_state = _collectorState; 1409 1410 // Signal to a possibly ongoing concurrent collection that 1411 // we want to do a foreground collection. 1412 _foregroundGCIsActive = true; 1413 1414 // release locks and wait for a notify from the background collector 1415 // releasing the locks in only necessary for phases which 1416 // do yields to improve the granularity of the collection. 1417 assert_lock_strong(bitMapLock()); 1418 // We need to lock the Free list lock for the space that we are 1419 // currently collecting. 1420 assert(haveFreelistLocks(), "Must be holding free list locks"); 1421 bitMapLock()->unlock(); 1422 releaseFreelistLocks(); 1423 { 1424 MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag); 1425 if (_foregroundGCShouldWait) { 1426 // We are going to be waiting for action for the CMS thread; 1427 // it had better not be gone (for instance at shutdown)! 1428 assert(ConcurrentMarkSweepThread::cmst() != NULL && !ConcurrentMarkSweepThread::cmst()->has_terminated(), 1429 "CMS thread must be running"); 1430 // Wait here until the background collector gives us the go-ahead 1431 ConcurrentMarkSweepThread::clear_CMS_flag( 1432 ConcurrentMarkSweepThread::CMS_vm_has_token); // release token 1433 // Get a possibly blocked CMS thread going: 1434 // Note that we set _foregroundGCIsActive true above, 1435 // without protection of the CGC_lock. 1436 CGC_lock->notify(); 1437 assert(!ConcurrentMarkSweepThread::vm_thread_wants_cms_token(), 1438 "Possible deadlock"); 1439 while (_foregroundGCShouldWait) { 1440 // wait for notification 1441 CGC_lock->wait(Mutex::_no_safepoint_check_flag); 1442 // Possibility of delay/starvation here, since CMS token does 1443 // not know to give priority to VM thread? Actually, i think 1444 // there wouldn't be any delay/starvation, but the proof of 1445 // that "fact" (?) appears non-trivial. XXX 20011219YSR 1446 } 1447 ConcurrentMarkSweepThread::set_CMS_flag( 1448 ConcurrentMarkSweepThread::CMS_vm_has_token); 1449 } 1450 } 1451 // The CMS_token is already held. Get back the other locks. 1452 assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(), 1453 "VM thread should have CMS token"); 1454 getFreelistLocks(); 1455 bitMapLock()->lock_without_safepoint_check(); 1456 log_debug(gc, state)("CMS foreground collector has asked for control " INTPTR_FORMAT " with first state %d", 1457 p2i(Thread::current()), first_state); 1458 log_debug(gc, state)(" gets control with state %d", _collectorState); 1459 1460 // Inform cms gen if this was due to partial collection failing. 1461 // The CMS gen may use this fact to determine its expansion policy. 1462 CMSHeap* heap = CMSHeap::heap(); 1463 if (heap->incremental_collection_will_fail(false /* don't consult_young */)) { 1464 assert(!_cmsGen->incremental_collection_failed(), 1465 "Should have been noticed, reacted to and cleared"); 1466 _cmsGen->set_incremental_collection_failed(); 1467 } 1468 1469 if (first_state > Idling) { 1470 report_concurrent_mode_interruption(); 1471 } 1472 1473 set_did_compact(true); 1474 1475 // If the collection is being acquired from the background 1476 // collector, there may be references on the discovered 1477 // references lists. Abandon those references, since some 1478 // of them may have become unreachable after concurrent 1479 // discovery; the STW compacting collector will redo discovery 1480 // more precisely, without being subject to floating garbage. 1481 // Leaving otherwise unreachable references in the discovered 1482 // lists would require special handling. 1483 ref_processor()->disable_discovery(); 1484 ref_processor()->abandon_partial_discovery(); 1485 ref_processor()->verify_no_references_recorded(); 1486 1487 if (first_state > Idling) { 1488 save_heap_summary(); 1489 } 1490 1491 do_compaction_work(clear_all_soft_refs); 1492 1493 // Has the GC time limit been exceeded? 1494 size_t max_eden_size = _young_gen->max_eden_size(); 1495 GCCause::Cause gc_cause = heap->gc_cause(); 1496 size_policy()->check_gc_overhead_limit(_young_gen->used(), 1497 _young_gen->eden()->used(), 1498 _cmsGen->max_capacity(), 1499 max_eden_size, 1500 full, 1501 gc_cause, 1502 heap->soft_ref_policy()); 1503 1504 // Reset the expansion cause, now that we just completed 1505 // a collection cycle. 1506 clear_expansion_cause(); 1507 _foregroundGCIsActive = false; 1508 return; 1509 } 1510 1511 // Resize the tenured generation 1512 // after obtaining the free list locks for the 1513 // two generations. 1514 void CMSCollector::compute_new_size() { 1515 assert_locked_or_safepoint(Heap_lock); 1516 FreelistLocker z(this); 1517 MetaspaceGC::compute_new_size(); 1518 _cmsGen->compute_new_size_free_list(); 1519 } 1520 1521 // A work method used by the foreground collector to do 1522 // a mark-sweep-compact. 1523 void CMSCollector::do_compaction_work(bool clear_all_soft_refs) { 1524 CMSHeap* heap = CMSHeap::heap(); 1525 1526 STWGCTimer* gc_timer = GenMarkSweep::gc_timer(); 1527 gc_timer->register_gc_start(); 1528 1529 SerialOldTracer* gc_tracer = GenMarkSweep::gc_tracer(); 1530 gc_tracer->report_gc_start(heap->gc_cause(), gc_timer->gc_start()); 1531 1532 heap->pre_full_gc_dump(gc_timer); 1533 1534 GCTraceTime(Trace, gc, phases) t("CMS:MSC"); 1535 1536 // Temporarily widen the span of the weak reference processing to 1537 // the entire heap. 1538 MemRegion new_span(CMSHeap::heap()->reserved_region()); 1539 ReferenceProcessorSpanMutator rp_mut_span(ref_processor(), new_span); 1540 // Temporarily, clear the "is_alive_non_header" field of the 1541 // reference processor. 1542 ReferenceProcessorIsAliveMutator rp_mut_closure(ref_processor(), NULL); 1543 // Temporarily make reference _processing_ single threaded (non-MT). 1544 ReferenceProcessorMTProcMutator rp_mut_mt_processing(ref_processor(), false); 1545 // Temporarily make refs discovery atomic 1546 ReferenceProcessorAtomicMutator rp_mut_atomic(ref_processor(), true); 1547 // Temporarily make reference _discovery_ single threaded (non-MT) 1548 ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(ref_processor(), false); 1549 1550 ref_processor()->set_enqueuing_is_done(false); 1551 ref_processor()->enable_discovery(); 1552 ref_processor()->setup_policy(clear_all_soft_refs); 1553 // If an asynchronous collection finishes, the _modUnionTable is 1554 // all clear. If we are assuming the collection from an asynchronous 1555 // collection, clear the _modUnionTable. 1556 assert(_collectorState != Idling || _modUnionTable.isAllClear(), 1557 "_modUnionTable should be clear if the baton was not passed"); 1558 _modUnionTable.clear_all(); 1559 assert(_collectorState != Idling || _ct->cld_rem_set()->mod_union_is_clear(), 1560 "mod union for klasses should be clear if the baton was passed"); 1561 _ct->cld_rem_set()->clear_mod_union(); 1562 1563 1564 // We must adjust the allocation statistics being maintained 1565 // in the free list space. We do so by reading and clearing 1566 // the sweep timer and updating the block flux rate estimates below. 1567 assert(!_intra_sweep_timer.is_active(), "_intra_sweep_timer should be inactive"); 1568 if (_inter_sweep_timer.is_active()) { 1569 _inter_sweep_timer.stop(); 1570 // Note that we do not use this sample to update the _inter_sweep_estimate. 1571 _cmsGen->cmsSpace()->beginSweepFLCensus((float)(_inter_sweep_timer.seconds()), 1572 _inter_sweep_estimate.padded_average(), 1573 _intra_sweep_estimate.padded_average()); 1574 } 1575 1576 GenMarkSweep::invoke_at_safepoint(ref_processor(), clear_all_soft_refs); 1577 #ifdef ASSERT 1578 CompactibleFreeListSpace* cms_space = _cmsGen->cmsSpace(); 1579 size_t free_size = cms_space->free(); 1580 assert(free_size == 1581 pointer_delta(cms_space->end(), cms_space->compaction_top()) 1582 * HeapWordSize, 1583 "All the free space should be compacted into one chunk at top"); 1584 assert(cms_space->dictionary()->total_chunk_size( 1585 debug_only(cms_space->freelistLock())) == 0 || 1586 cms_space->totalSizeInIndexedFreeLists() == 0, 1587 "All the free space should be in a single chunk"); 1588 size_t num = cms_space->totalCount(); 1589 assert((free_size == 0 && num == 0) || 1590 (free_size > 0 && (num == 1 || num == 2)), 1591 "There should be at most 2 free chunks after compaction"); 1592 #endif // ASSERT 1593 _collectorState = Resetting; 1594 assert(_restart_addr == NULL, 1595 "Should have been NULL'd before baton was passed"); 1596 reset_stw(); 1597 _cmsGen->reset_after_compaction(); 1598 _concurrent_cycles_since_last_unload = 0; 1599 1600 // Clear any data recorded in the PLAB chunk arrays. 1601 if (_survivor_plab_array != NULL) { 1602 reset_survivor_plab_arrays(); 1603 } 1604 1605 // Adjust the per-size allocation stats for the next epoch. 1606 _cmsGen->cmsSpace()->endSweepFLCensus(sweep_count() /* fake */); 1607 // Restart the "inter sweep timer" for the next epoch. 1608 _inter_sweep_timer.reset(); 1609 _inter_sweep_timer.start(); 1610 1611 // No longer a need to do a concurrent collection for Metaspace. 1612 MetaspaceGC::set_should_concurrent_collect(false); 1613 1614 heap->post_full_gc_dump(gc_timer); 1615 1616 gc_timer->register_gc_end(); 1617 1618 gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions()); 1619 1620 // For a mark-sweep-compact, compute_new_size() will be called 1621 // in the heap's do_collection() method. 1622 } 1623 1624 void CMSCollector::print_eden_and_survivor_chunk_arrays() { 1625 Log(gc, heap) log; 1626 if (!log.is_trace()) { 1627 return; 1628 } 1629 1630 ContiguousSpace* eden_space = _young_gen->eden(); 1631 ContiguousSpace* from_space = _young_gen->from(); 1632 ContiguousSpace* to_space = _young_gen->to(); 1633 // Eden 1634 if (_eden_chunk_array != NULL) { 1635 log.trace("eden " PTR_FORMAT "-" PTR_FORMAT "-" PTR_FORMAT "(" SIZE_FORMAT ")", 1636 p2i(eden_space->bottom()), p2i(eden_space->top()), 1637 p2i(eden_space->end()), eden_space->capacity()); 1638 log.trace("_eden_chunk_index=" SIZE_FORMAT ", _eden_chunk_capacity=" SIZE_FORMAT, 1639 _eden_chunk_index, _eden_chunk_capacity); 1640 for (size_t i = 0; i < _eden_chunk_index; i++) { 1641 log.trace("_eden_chunk_array[" SIZE_FORMAT "]=" PTR_FORMAT, i, p2i(_eden_chunk_array[i])); 1642 } 1643 } 1644 // Survivor 1645 if (_survivor_chunk_array != NULL) { 1646 log.trace("survivor " PTR_FORMAT "-" PTR_FORMAT "-" PTR_FORMAT "(" SIZE_FORMAT ")", 1647 p2i(from_space->bottom()), p2i(from_space->top()), 1648 p2i(from_space->end()), from_space->capacity()); 1649 log.trace("_survivor_chunk_index=" SIZE_FORMAT ", _survivor_chunk_capacity=" SIZE_FORMAT, 1650 _survivor_chunk_index, _survivor_chunk_capacity); 1651 for (size_t i = 0; i < _survivor_chunk_index; i++) { 1652 log.trace("_survivor_chunk_array[" SIZE_FORMAT "]=" PTR_FORMAT, i, p2i(_survivor_chunk_array[i])); 1653 } 1654 } 1655 } 1656 1657 void CMSCollector::getFreelistLocks() const { 1658 // Get locks for all free lists in all generations that this 1659 // collector is responsible for 1660 _cmsGen->freelistLock()->lock_without_safepoint_check(); 1661 } 1662 1663 void CMSCollector::releaseFreelistLocks() const { 1664 // Release locks for all free lists in all generations that this 1665 // collector is responsible for 1666 _cmsGen->freelistLock()->unlock(); 1667 } 1668 1669 bool CMSCollector::haveFreelistLocks() const { 1670 // Check locks for all free lists in all generations that this 1671 // collector is responsible for 1672 assert_lock_strong(_cmsGen->freelistLock()); 1673 PRODUCT_ONLY(ShouldNotReachHere()); 1674 return true; 1675 } 1676 1677 // A utility class that is used by the CMS collector to 1678 // temporarily "release" the foreground collector from its 1679 // usual obligation to wait for the background collector to 1680 // complete an ongoing phase before proceeding. 1681 class ReleaseForegroundGC: public StackObj { 1682 private: 1683 CMSCollector* _c; 1684 public: 1685 ReleaseForegroundGC(CMSCollector* c) : _c(c) { 1686 assert(_c->_foregroundGCShouldWait, "Else should not need to call"); 1687 MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag); 1688 // allow a potentially blocked foreground collector to proceed 1689 _c->_foregroundGCShouldWait = false; 1690 if (_c->_foregroundGCIsActive) { 1691 CGC_lock->notify(); 1692 } 1693 assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(), 1694 "Possible deadlock"); 1695 } 1696 1697 ~ReleaseForegroundGC() { 1698 assert(!_c->_foregroundGCShouldWait, "Usage protocol violation?"); 1699 MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag); 1700 _c->_foregroundGCShouldWait = true; 1701 } 1702 }; 1703 1704 void CMSCollector::collect_in_background(GCCause::Cause cause) { 1705 assert(Thread::current()->is_ConcurrentGC_thread(), 1706 "A CMS asynchronous collection is only allowed on a CMS thread."); 1707 1708 CMSHeap* heap = CMSHeap::heap(); 1709 { 1710 bool safepoint_check = Mutex::_no_safepoint_check_flag; 1711 MutexLockerEx hl(Heap_lock, safepoint_check); 1712 FreelistLocker fll(this); 1713 MutexLockerEx x(CGC_lock, safepoint_check); 1714 if (_foregroundGCIsActive) { 1715 // The foreground collector is. Skip this 1716 // background collection. 1717 assert(!_foregroundGCShouldWait, "Should be clear"); 1718 return; 1719 } else { 1720 assert(_collectorState == Idling, "Should be idling before start."); 1721 _collectorState = InitialMarking; 1722 register_gc_start(cause); 1723 // Reset the expansion cause, now that we are about to begin 1724 // a new cycle. 1725 clear_expansion_cause(); 1726 1727 // Clear the MetaspaceGC flag since a concurrent collection 1728 // is starting but also clear it after the collection. 1729 MetaspaceGC::set_should_concurrent_collect(false); 1730 } 1731 // Decide if we want to enable class unloading as part of the 1732 // ensuing concurrent GC cycle. 1733 update_should_unload_classes(); 1734 _full_gc_requested = false; // acks all outstanding full gc requests 1735 _full_gc_cause = GCCause::_no_gc; 1736 // Signal that we are about to start a collection 1737 heap->increment_total_full_collections(); // ... starting a collection cycle 1738 _collection_count_start = heap->total_full_collections(); 1739 } 1740 1741 size_t prev_used = _cmsGen->used(); 1742 1743 // The change of the collection state is normally done at this level; 1744 // the exceptions are phases that are executed while the world is 1745 // stopped. For those phases the change of state is done while the 1746 // world is stopped. For baton passing purposes this allows the 1747 // background collector to finish the phase and change state atomically. 1748 // The foreground collector cannot wait on a phase that is done 1749 // while the world is stopped because the foreground collector already 1750 // has the world stopped and would deadlock. 1751 while (_collectorState != Idling) { 1752 log_debug(gc, state)("Thread " INTPTR_FORMAT " in CMS state %d", 1753 p2i(Thread::current()), _collectorState); 1754 // The foreground collector 1755 // holds the Heap_lock throughout its collection. 1756 // holds the CMS token (but not the lock) 1757 // except while it is waiting for the background collector to yield. 1758 // 1759 // The foreground collector should be blocked (not for long) 1760 // if the background collector is about to start a phase 1761 // executed with world stopped. If the background 1762 // collector has already started such a phase, the 1763 // foreground collector is blocked waiting for the 1764 // Heap_lock. The stop-world phases (InitialMarking and FinalMarking) 1765 // are executed in the VM thread. 1766 // 1767 // The locking order is 1768 // PendingListLock (PLL) -- if applicable (FinalMarking) 1769 // Heap_lock (both this & PLL locked in VM_CMS_Operation::prologue()) 1770 // CMS token (claimed in 1771 // stop_world_and_do() --> 1772 // safepoint_synchronize() --> 1773 // CMSThread::synchronize()) 1774 1775 { 1776 // Check if the FG collector wants us to yield. 1777 CMSTokenSync x(true); // is cms thread 1778 if (waitForForegroundGC()) { 1779 // We yielded to a foreground GC, nothing more to be 1780 // done this round. 1781 assert(_foregroundGCShouldWait == false, "We set it to false in " 1782 "waitForForegroundGC()"); 1783 log_debug(gc, state)("CMS Thread " INTPTR_FORMAT " exiting collection CMS state %d", 1784 p2i(Thread::current()), _collectorState); 1785 return; 1786 } else { 1787 // The background collector can run but check to see if the 1788 // foreground collector has done a collection while the 1789 // background collector was waiting to get the CGC_lock 1790 // above. If yes, break so that _foregroundGCShouldWait 1791 // is cleared before returning. 1792 if (_collectorState == Idling) { 1793 break; 1794 } 1795 } 1796 } 1797 1798 assert(_foregroundGCShouldWait, "Foreground collector, if active, " 1799 "should be waiting"); 1800 1801 switch (_collectorState) { 1802 case InitialMarking: 1803 { 1804 ReleaseForegroundGC x(this); 1805 stats().record_cms_begin(); 1806 VM_CMS_Initial_Mark initial_mark_op(this); 1807 VMThread::execute(&initial_mark_op); 1808 } 1809 // The collector state may be any legal state at this point 1810 // since the background collector may have yielded to the 1811 // foreground collector. 1812 break; 1813 case Marking: 1814 // initial marking in checkpointRootsInitialWork has been completed 1815 if (markFromRoots()) { // we were successful 1816 assert(_collectorState == Precleaning, "Collector state should " 1817 "have changed"); 1818 } else { 1819 assert(_foregroundGCIsActive, "Internal state inconsistency"); 1820 } 1821 break; 1822 case Precleaning: 1823 // marking from roots in markFromRoots has been completed 1824 preclean(); 1825 assert(_collectorState == AbortablePreclean || 1826 _collectorState == FinalMarking, 1827 "Collector state should have changed"); 1828 break; 1829 case AbortablePreclean: 1830 abortable_preclean(); 1831 assert(_collectorState == FinalMarking, "Collector state should " 1832 "have changed"); 1833 break; 1834 case FinalMarking: 1835 { 1836 ReleaseForegroundGC x(this); 1837 1838 VM_CMS_Final_Remark final_remark_op(this); 1839 VMThread::execute(&final_remark_op); 1840 } 1841 assert(_foregroundGCShouldWait, "block post-condition"); 1842 break; 1843 case Sweeping: 1844 // final marking in checkpointRootsFinal has been completed 1845 sweep(); 1846 assert(_collectorState == Resizing, "Collector state change " 1847 "to Resizing must be done under the free_list_lock"); 1848 1849 case Resizing: { 1850 // Sweeping has been completed... 1851 // At this point the background collection has completed. 1852 // Don't move the call to compute_new_size() down 1853 // into code that might be executed if the background 1854 // collection was preempted. 1855 { 1856 ReleaseForegroundGC x(this); // unblock FG collection 1857 MutexLockerEx y(Heap_lock, Mutex::_no_safepoint_check_flag); 1858 CMSTokenSync z(true); // not strictly needed. 1859 if (_collectorState == Resizing) { 1860 compute_new_size(); 1861 save_heap_summary(); 1862 _collectorState = Resetting; 1863 } else { 1864 assert(_collectorState == Idling, "The state should only change" 1865 " because the foreground collector has finished the collection"); 1866 } 1867 } 1868 break; 1869 } 1870 case Resetting: 1871 // CMS heap resizing has been completed 1872 reset_concurrent(); 1873 assert(_collectorState == Idling, "Collector state should " 1874 "have changed"); 1875 1876 MetaspaceGC::set_should_concurrent_collect(false); 1877 1878 stats().record_cms_end(); 1879 // Don't move the concurrent_phases_end() and compute_new_size() 1880 // calls to here because a preempted background collection 1881 // has it's state set to "Resetting". 1882 break; 1883 case Idling: 1884 default: 1885 ShouldNotReachHere(); 1886 break; 1887 } 1888 log_debug(gc, state)(" Thread " INTPTR_FORMAT " done - next CMS state %d", 1889 p2i(Thread::current()), _collectorState); 1890 assert(_foregroundGCShouldWait, "block post-condition"); 1891 } 1892 1893 // Should this be in gc_epilogue? 1894 heap->counters()->update_counters(); 1895 1896 { 1897 // Clear _foregroundGCShouldWait and, in the event that the 1898 // foreground collector is waiting, notify it, before 1899 // returning. 1900 MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag); 1901 _foregroundGCShouldWait = false; 1902 if (_foregroundGCIsActive) { 1903 CGC_lock->notify(); 1904 } 1905 assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(), 1906 "Possible deadlock"); 1907 } 1908 log_debug(gc, state)("CMS Thread " INTPTR_FORMAT " exiting collection CMS state %d", 1909 p2i(Thread::current()), _collectorState); 1910 log_info(gc, heap)("Old: " SIZE_FORMAT "K->" SIZE_FORMAT "K(" SIZE_FORMAT "K)", 1911 prev_used / K, _cmsGen->used()/K, _cmsGen->capacity() /K); 1912 } 1913 1914 void CMSCollector::register_gc_start(GCCause::Cause cause) { 1915 _cms_start_registered = true; 1916 _gc_timer_cm->register_gc_start(); 1917 _gc_tracer_cm->report_gc_start(cause, _gc_timer_cm->gc_start()); 1918 } 1919 1920 void CMSCollector::register_gc_end() { 1921 if (_cms_start_registered) { 1922 report_heap_summary(GCWhen::AfterGC); 1923 1924 _gc_timer_cm->register_gc_end(); 1925 _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions()); 1926 _cms_start_registered = false; 1927 } 1928 } 1929 1930 void CMSCollector::save_heap_summary() { 1931 CMSHeap* heap = CMSHeap::heap(); 1932 _last_heap_summary = heap->create_heap_summary(); 1933 _last_metaspace_summary = heap->create_metaspace_summary(); 1934 } 1935 1936 void CMSCollector::report_heap_summary(GCWhen::Type when) { 1937 _gc_tracer_cm->report_gc_heap_summary(when, _last_heap_summary); 1938 _gc_tracer_cm->report_metaspace_summary(when, _last_metaspace_summary); 1939 } 1940 1941 bool CMSCollector::waitForForegroundGC() { 1942 bool res = false; 1943 assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(), 1944 "CMS thread should have CMS token"); 1945 // Block the foreground collector until the 1946 // background collectors decides whether to 1947 // yield. 1948 MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag); 1949 _foregroundGCShouldWait = true; 1950 if (_foregroundGCIsActive) { 1951 // The background collector yields to the 1952 // foreground collector and returns a value 1953 // indicating that it has yielded. The foreground 1954 // collector can proceed. 1955 res = true; 1956 _foregroundGCShouldWait = false; 1957 ConcurrentMarkSweepThread::clear_CMS_flag( 1958 ConcurrentMarkSweepThread::CMS_cms_has_token); 1959 ConcurrentMarkSweepThread::set_CMS_flag( 1960 ConcurrentMarkSweepThread::CMS_cms_wants_token); 1961 // Get a possibly blocked foreground thread going 1962 CGC_lock->notify(); 1963 log_debug(gc, state)("CMS Thread " INTPTR_FORMAT " waiting at CMS state %d", 1964 p2i(Thread::current()), _collectorState); 1965 while (_foregroundGCIsActive) { 1966 CGC_lock->wait(Mutex::_no_safepoint_check_flag); 1967 } 1968 ConcurrentMarkSweepThread::set_CMS_flag( 1969 ConcurrentMarkSweepThread::CMS_cms_has_token); 1970 ConcurrentMarkSweepThread::clear_CMS_flag( 1971 ConcurrentMarkSweepThread::CMS_cms_wants_token); 1972 } 1973 log_debug(gc, state)("CMS Thread " INTPTR_FORMAT " continuing at CMS state %d", 1974 p2i(Thread::current()), _collectorState); 1975 return res; 1976 } 1977 1978 // Because of the need to lock the free lists and other structures in 1979 // the collector, common to all the generations that the collector is 1980 // collecting, we need the gc_prologues of individual CMS generations 1981 // delegate to their collector. It may have been simpler had the 1982 // current infrastructure allowed one to call a prologue on a 1983 // collector. In the absence of that we have the generation's 1984 // prologue delegate to the collector, which delegates back 1985 // some "local" work to a worker method in the individual generations 1986 // that it's responsible for collecting, while itself doing any 1987 // work common to all generations it's responsible for. A similar 1988 // comment applies to the gc_epilogue()'s. 1989 // The role of the variable _between_prologue_and_epilogue is to 1990 // enforce the invocation protocol. 1991 void CMSCollector::gc_prologue(bool full) { 1992 // Call gc_prologue_work() for the CMSGen 1993 // we are responsible for. 1994 1995 // The following locking discipline assumes that we are only called 1996 // when the world is stopped. 1997 assert(SafepointSynchronize::is_at_safepoint(), "world is stopped assumption"); 1998 1999 // The CMSCollector prologue must call the gc_prologues for the 2000 // "generations" that it's responsible 2001 // for. 2002 2003 assert( Thread::current()->is_VM_thread() 2004 || ( CMSScavengeBeforeRemark 2005 && Thread::current()->is_ConcurrentGC_thread()), 2006 "Incorrect thread type for prologue execution"); 2007 2008 if (_between_prologue_and_epilogue) { 2009 // We have already been invoked; this is a gc_prologue delegation 2010 // from yet another CMS generation that we are responsible for, just 2011 // ignore it since all relevant work has already been done. 2012 return; 2013 } 2014 2015 // set a bit saying prologue has been called; cleared in epilogue 2016 _between_prologue_and_epilogue = true; 2017 // Claim locks for common data structures, then call gc_prologue_work() 2018 // for each CMSGen. 2019 2020 getFreelistLocks(); // gets free list locks on constituent spaces 2021 bitMapLock()->lock_without_safepoint_check(); 2022 2023 // Should call gc_prologue_work() for all cms gens we are responsible for 2024 bool duringMarking = _collectorState >= Marking 2025 && _collectorState < Sweeping; 2026 2027 // The young collections clear the modified oops state, which tells if 2028 // there are any modified oops in the class. The remark phase also needs 2029 // that information. Tell the young collection to save the union of all 2030 // modified klasses. 2031 if (duringMarking) { 2032 _ct->cld_rem_set()->set_accumulate_modified_oops(true); 2033 } 2034 2035 bool registerClosure = duringMarking; 2036 2037 _cmsGen->gc_prologue_work(full, registerClosure, &_modUnionClosurePar); 2038 2039 if (!full) { 2040 stats().record_gc0_begin(); 2041 } 2042 } 2043 2044 void ConcurrentMarkSweepGeneration::gc_prologue(bool full) { 2045 2046 _capacity_at_prologue = capacity(); 2047 _used_at_prologue = used(); 2048 2049 // We enable promotion tracking so that card-scanning can recognize 2050 // which objects have been promoted during this GC and skip them. 2051 for (uint i = 0; i < ParallelGCThreads; i++) { 2052 _par_gc_thread_states[i]->promo.startTrackingPromotions(); 2053 } 2054 2055 // Delegate to CMScollector which knows how to coordinate between 2056 // this and any other CMS generations that it is responsible for 2057 // collecting. 2058 collector()->gc_prologue(full); 2059 } 2060 2061 // This is a "private" interface for use by this generation's CMSCollector. 2062 // Not to be called directly by any other entity (for instance, 2063 // GenCollectedHeap, which calls the "public" gc_prologue method above). 2064 void ConcurrentMarkSweepGeneration::gc_prologue_work(bool full, 2065 bool registerClosure, ModUnionClosure* modUnionClosure) { 2066 assert(!incremental_collection_failed(), "Shouldn't be set yet"); 2067 assert(cmsSpace()->preconsumptionDirtyCardClosure() == NULL, 2068 "Should be NULL"); 2069 if (registerClosure) { 2070 cmsSpace()->setPreconsumptionDirtyCardClosure(modUnionClosure); 2071 } 2072 cmsSpace()->gc_prologue(); 2073 // Clear stat counters 2074 NOT_PRODUCT( 2075 assert(_numObjectsPromoted == 0, "check"); 2076 assert(_numWordsPromoted == 0, "check"); 2077 log_develop_trace(gc, alloc)("Allocated " SIZE_FORMAT " objects, " SIZE_FORMAT " bytes concurrently", 2078 _numObjectsAllocated, _numWordsAllocated*sizeof(HeapWord)); 2079 _numObjectsAllocated = 0; 2080 _numWordsAllocated = 0; 2081 ) 2082 } 2083 2084 void CMSCollector::gc_epilogue(bool full) { 2085 // The following locking discipline assumes that we are only called 2086 // when the world is stopped. 2087 assert(SafepointSynchronize::is_at_safepoint(), 2088 "world is stopped assumption"); 2089 2090 // Currently the CMS epilogue (see CompactibleFreeListSpace) merely checks 2091 // if linear allocation blocks need to be appropriately marked to allow the 2092 // the blocks to be parsable. We also check here whether we need to nudge the 2093 // CMS collector thread to start a new cycle (if it's not already active). 2094 assert( Thread::current()->is_VM_thread() 2095 || ( CMSScavengeBeforeRemark 2096 && Thread::current()->is_ConcurrentGC_thread()), 2097 "Incorrect thread type for epilogue execution"); 2098 2099 if (!_between_prologue_and_epilogue) { 2100 // We have already been invoked; this is a gc_epilogue delegation 2101 // from yet another CMS generation that we are responsible for, just 2102 // ignore it since all relevant work has already been done. 2103 return; 2104 } 2105 assert(haveFreelistLocks(), "must have freelist locks"); 2106 assert_lock_strong(bitMapLock()); 2107 2108 _ct->cld_rem_set()->set_accumulate_modified_oops(false); 2109 2110 _cmsGen->gc_epilogue_work(full); 2111 2112 if (_collectorState == AbortablePreclean || _collectorState == Precleaning) { 2113 // in case sampling was not already enabled, enable it 2114 _start_sampling = true; 2115 } 2116 // reset _eden_chunk_array so sampling starts afresh 2117 _eden_chunk_index = 0; 2118 2119 size_t cms_used = _cmsGen->cmsSpace()->used(); 2120 2121 // update performance counters - this uses a special version of 2122 // update_counters() that allows the utilization to be passed as a 2123 // parameter, avoiding multiple calls to used(). 2124 // 2125 _cmsGen->update_counters(cms_used); 2126 2127 bitMapLock()->unlock(); 2128 releaseFreelistLocks(); 2129 2130 if (!CleanChunkPoolAsync) { 2131 Chunk::clean_chunk_pool(); 2132 } 2133 2134 set_did_compact(false); 2135 _between_prologue_and_epilogue = false; // ready for next cycle 2136 } 2137 2138 void ConcurrentMarkSweepGeneration::gc_epilogue(bool full) { 2139 collector()->gc_epilogue(full); 2140 2141 // When using ParNew, promotion tracking should have already been 2142 // disabled. However, the prologue (which enables promotion 2143 // tracking) and epilogue are called irrespective of the type of 2144 // GC. So they will also be called before and after Full GCs, during 2145 // which promotion tracking will not be explicitly disabled. So, 2146 // it's safer to also disable it here too (to be symmetric with 2147 // enabling it in the prologue). 2148 for (uint i = 0; i < ParallelGCThreads; i++) { 2149 _par_gc_thread_states[i]->promo.stopTrackingPromotions(); 2150 } 2151 } 2152 2153 void ConcurrentMarkSweepGeneration::gc_epilogue_work(bool full) { 2154 assert(!incremental_collection_failed(), "Should have been cleared"); 2155 cmsSpace()->setPreconsumptionDirtyCardClosure(NULL); 2156 cmsSpace()->gc_epilogue(); 2157 // Print stat counters 2158 NOT_PRODUCT( 2159 assert(_numObjectsAllocated == 0, "check"); 2160 assert(_numWordsAllocated == 0, "check"); 2161 log_develop_trace(gc, promotion)("Promoted " SIZE_FORMAT " objects, " SIZE_FORMAT " bytes", 2162 _numObjectsPromoted, _numWordsPromoted*sizeof(HeapWord)); 2163 _numObjectsPromoted = 0; 2164 _numWordsPromoted = 0; 2165 ) 2166 2167 // Call down the chain in contiguous_available needs the freelistLock 2168 // so print this out before releasing the freeListLock. 2169 log_develop_trace(gc)(" Contiguous available " SIZE_FORMAT " bytes ", contiguous_available()); 2170 } 2171 2172 #ifndef PRODUCT 2173 bool CMSCollector::have_cms_token() { 2174 Thread* thr = Thread::current(); 2175 if (thr->is_VM_thread()) { 2176 return ConcurrentMarkSweepThread::vm_thread_has_cms_token(); 2177 } else if (thr->is_ConcurrentGC_thread()) { 2178 return ConcurrentMarkSweepThread::cms_thread_has_cms_token(); 2179 } else if (thr->is_GC_task_thread()) { 2180 return ConcurrentMarkSweepThread::vm_thread_has_cms_token() && 2181 ParGCRareEvent_lock->owned_by_self(); 2182 } 2183 return false; 2184 } 2185 2186 // Check reachability of the given heap address in CMS generation, 2187 // treating all other generations as roots. 2188 bool CMSCollector::is_cms_reachable(HeapWord* addr) { 2189 // We could "guarantee" below, rather than assert, but I'll 2190 // leave these as "asserts" so that an adventurous debugger 2191 // could try this in the product build provided some subset of 2192 // the conditions were met, provided they were interested in the 2193 // results and knew that the computation below wouldn't interfere 2194 // with other concurrent computations mutating the structures 2195 // being read or written. 2196 assert(SafepointSynchronize::is_at_safepoint(), 2197 "Else mutations in object graph will make answer suspect"); 2198 assert(have_cms_token(), "Should hold cms token"); 2199 assert(haveFreelistLocks(), "must hold free list locks"); 2200 assert_lock_strong(bitMapLock()); 2201 2202 // Clear the marking bit map array before starting, but, just 2203 // for kicks, first report if the given address is already marked 2204 tty->print_cr("Start: Address " PTR_FORMAT " is%s marked", p2i(addr), 2205 _markBitMap.isMarked(addr) ? "" : " not"); 2206 2207 if (verify_after_remark()) { 2208 MutexLockerEx x(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag); 2209 bool result = verification_mark_bm()->isMarked(addr); 2210 tty->print_cr("TransitiveMark: Address " PTR_FORMAT " %s marked", p2i(addr), 2211 result ? "IS" : "is NOT"); 2212 return result; 2213 } else { 2214 tty->print_cr("Could not compute result"); 2215 return false; 2216 } 2217 } 2218 #endif 2219 2220 void 2221 CMSCollector::print_on_error(outputStream* st) { 2222 CMSCollector* collector = ConcurrentMarkSweepGeneration::_collector; 2223 if (collector != NULL) { 2224 CMSBitMap* bitmap = &collector->_markBitMap; 2225 st->print_cr("Marking Bits: (CMSBitMap*) " PTR_FORMAT, p2i(bitmap)); 2226 bitmap->print_on_error(st, " Bits: "); 2227 2228 st->cr(); 2229 2230 CMSBitMap* mut_bitmap = &collector->_modUnionTable; 2231 st->print_cr("Mod Union Table: (CMSBitMap*) " PTR_FORMAT, p2i(mut_bitmap)); 2232 mut_bitmap->print_on_error(st, " Bits: "); 2233 } 2234 } 2235 2236 //////////////////////////////////////////////////////// 2237 // CMS Verification Support 2238 //////////////////////////////////////////////////////// 2239 // Following the remark phase, the following invariant 2240 // should hold -- each object in the CMS heap which is 2241 // marked in markBitMap() should be marked in the verification_mark_bm(). 2242 2243 class VerifyMarkedClosure: public BitMapClosure { 2244 CMSBitMap* _marks; 2245 bool _failed; 2246 2247 public: 2248 VerifyMarkedClosure(CMSBitMap* bm): _marks(bm), _failed(false) {} 2249 2250 bool do_bit(size_t offset) { 2251 HeapWord* addr = _marks->offsetToHeapWord(offset); 2252 if (!_marks->isMarked(addr)) { 2253 Log(gc, verify) log; 2254 ResourceMark rm; 2255 LogStream ls(log.error()); 2256 oop(addr)->print_on(&ls); 2257 log.error(" (" INTPTR_FORMAT " should have been marked)", p2i(addr)); 2258 _failed = true; 2259 } 2260 return true; 2261 } 2262 2263 bool failed() { return _failed; } 2264 }; 2265 2266 bool CMSCollector::verify_after_remark() { 2267 GCTraceTime(Info, gc, phases, verify) tm("Verifying CMS Marking."); 2268 MutexLockerEx ml(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag); 2269 static bool init = false; 2270 2271 assert(SafepointSynchronize::is_at_safepoint(), 2272 "Else mutations in object graph will make answer suspect"); 2273 assert(have_cms_token(), 2274 "Else there may be mutual interference in use of " 2275 " verification data structures"); 2276 assert(_collectorState > Marking && _collectorState <= Sweeping, 2277 "Else marking info checked here may be obsolete"); 2278 assert(haveFreelistLocks(), "must hold free list locks"); 2279 assert_lock_strong(bitMapLock()); 2280 2281 2282 // Allocate marking bit map if not already allocated 2283 if (!init) { // first time 2284 if (!verification_mark_bm()->allocate(_span)) { 2285 return false; 2286 } 2287 init = true; 2288 } 2289 2290 assert(verification_mark_stack()->isEmpty(), "Should be empty"); 2291 2292 // Turn off refs discovery -- so we will be tracing through refs. 2293 // This is as intended, because by this time 2294 // GC must already have cleared any refs that need to be cleared, 2295 // and traced those that need to be marked; moreover, 2296 // the marking done here is not going to interfere in any 2297 // way with the marking information used by GC. 2298 NoRefDiscovery no_discovery(ref_processor()); 2299 2300 #if COMPILER2_OR_JVMCI 2301 DerivedPointerTableDeactivate dpt_deact; 2302 #endif 2303 2304 // Clear any marks from a previous round 2305 verification_mark_bm()->clear_all(); 2306 assert(verification_mark_stack()->isEmpty(), "markStack should be empty"); 2307 verify_work_stacks_empty(); 2308 2309 CMSHeap* heap = CMSHeap::heap(); 2310 heap->ensure_parsability(false); // fill TLABs, but no need to retire them 2311 // Update the saved marks which may affect the root scans. 2312 heap->save_marks(); 2313 2314 if (CMSRemarkVerifyVariant == 1) { 2315 // In this first variant of verification, we complete 2316 // all marking, then check if the new marks-vector is 2317 // a subset of the CMS marks-vector. 2318 verify_after_remark_work_1(); 2319 } else { 2320 guarantee(CMSRemarkVerifyVariant == 2, "Range checking for CMSRemarkVerifyVariant should guarantee 1 or 2"); 2321 // In this second variant of verification, we flag an error 2322 // (i.e. an object reachable in the new marks-vector not reachable 2323 // in the CMS marks-vector) immediately, also indicating the 2324 // identify of an object (A) that references the unmarked object (B) -- 2325 // presumably, a mutation to A failed to be picked up by preclean/remark? 2326 verify_after_remark_work_2(); 2327 } 2328 2329 return true; 2330 } 2331 2332 void CMSCollector::verify_after_remark_work_1() { 2333 ResourceMark rm; 2334 HandleMark hm; 2335 CMSHeap* heap = CMSHeap::heap(); 2336 2337 // Get a clear set of claim bits for the roots processing to work with. 2338 ClassLoaderDataGraph::clear_claimed_marks(); 2339 2340 // Mark from roots one level into CMS 2341 MarkRefsIntoClosure notOlder(_span, verification_mark_bm()); 2342 heap->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel. 2343 2344 { 2345 StrongRootsScope srs(1); 2346 2347 heap->cms_process_roots(&srs, 2348 true, // young gen as roots 2349 GenCollectedHeap::ScanningOption(roots_scanning_options()), 2350 should_unload_classes(), 2351 ¬Older, 2352 NULL); 2353 } 2354 2355 // Now mark from the roots 2356 MarkFromRootsClosure markFromRootsClosure(this, _span, 2357 verification_mark_bm(), verification_mark_stack(), 2358 false /* don't yield */, true /* verifying */); 2359 assert(_restart_addr == NULL, "Expected pre-condition"); 2360 verification_mark_bm()->iterate(&markFromRootsClosure); 2361 while (_restart_addr != NULL) { 2362 // Deal with stack overflow: by restarting at the indicated 2363 // address. 2364 HeapWord* ra = _restart_addr; 2365 markFromRootsClosure.reset(ra); 2366 _restart_addr = NULL; 2367 verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end()); 2368 } 2369 assert(verification_mark_stack()->isEmpty(), "Should have been drained"); 2370 verify_work_stacks_empty(); 2371 2372 // Marking completed -- now verify that each bit marked in 2373 // verification_mark_bm() is also marked in markBitMap(); flag all 2374 // errors by printing corresponding objects. 2375 VerifyMarkedClosure vcl(markBitMap()); 2376 verification_mark_bm()->iterate(&vcl); 2377 if (vcl.failed()) { 2378 Log(gc, verify) log; 2379 log.error("Failed marking verification after remark"); 2380 ResourceMark rm; 2381 LogStream ls(log.error()); 2382 heap->print_on(&ls); 2383 fatal("CMS: failed marking verification after remark"); 2384 } 2385 } 2386 2387 class VerifyCLDOopsCLDClosure : public CLDClosure { 2388 class VerifyCLDOopsClosure : public OopClosure { 2389 CMSBitMap* _bitmap; 2390 public: 2391 VerifyCLDOopsClosure(CMSBitMap* bitmap) : _bitmap(bitmap) { } 2392 void do_oop(oop* p) { guarantee(*p == NULL || _bitmap->isMarked((HeapWord*) *p), "Should be marked"); } 2393 void do_oop(narrowOop* p) { ShouldNotReachHere(); } 2394 } _oop_closure; 2395 public: 2396 VerifyCLDOopsCLDClosure(CMSBitMap* bitmap) : _oop_closure(bitmap) {} 2397 void do_cld(ClassLoaderData* cld) { 2398 cld->oops_do(&_oop_closure, false, false); 2399 } 2400 }; 2401 2402 void CMSCollector::verify_after_remark_work_2() { 2403 ResourceMark rm; 2404 HandleMark hm; 2405 CMSHeap* heap = CMSHeap::heap(); 2406 2407 // Get a clear set of claim bits for the roots processing to work with. 2408 ClassLoaderDataGraph::clear_claimed_marks(); 2409 2410 // Mark from roots one level into CMS 2411 MarkRefsIntoVerifyClosure notOlder(_span, verification_mark_bm(), 2412 markBitMap()); 2413 CLDToOopClosure cld_closure(¬Older, true); 2414 2415 heap->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel. 2416 2417 { 2418 StrongRootsScope srs(1); 2419 2420 heap->cms_process_roots(&srs, 2421 true, // young gen as roots 2422 GenCollectedHeap::ScanningOption(roots_scanning_options()), 2423 should_unload_classes(), 2424 ¬Older, 2425 &cld_closure); 2426 } 2427 2428 // Now mark from the roots 2429 MarkFromRootsVerifyClosure markFromRootsClosure(this, _span, 2430 verification_mark_bm(), markBitMap(), verification_mark_stack()); 2431 assert(_restart_addr == NULL, "Expected pre-condition"); 2432 verification_mark_bm()->iterate(&markFromRootsClosure); 2433 while (_restart_addr != NULL) { 2434 // Deal with stack overflow: by restarting at the indicated 2435 // address. 2436 HeapWord* ra = _restart_addr; 2437 markFromRootsClosure.reset(ra); 2438 _restart_addr = NULL; 2439 verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end()); 2440 } 2441 assert(verification_mark_stack()->isEmpty(), "Should have been drained"); 2442 verify_work_stacks_empty(); 2443 2444 VerifyCLDOopsCLDClosure verify_cld_oops(verification_mark_bm()); 2445 ClassLoaderDataGraph::cld_do(&verify_cld_oops); 2446 2447 // Marking completed -- now verify that each bit marked in 2448 // verification_mark_bm() is also marked in markBitMap(); flag all 2449 // errors by printing corresponding objects. 2450 VerifyMarkedClosure vcl(markBitMap()); 2451 verification_mark_bm()->iterate(&vcl); 2452 assert(!vcl.failed(), "Else verification above should not have succeeded"); 2453 } 2454 2455 void ConcurrentMarkSweepGeneration::save_marks() { 2456 // delegate to CMS space 2457 cmsSpace()->save_marks(); 2458 } 2459 2460 bool ConcurrentMarkSweepGeneration::no_allocs_since_save_marks() { 2461 return cmsSpace()->no_allocs_since_save_marks(); 2462 } 2463 2464 #define CMS_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix) \ 2465 \ 2466 void ConcurrentMarkSweepGeneration:: \ 2467 oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl) { \ 2468 cl->set_generation(this); \ 2469 cmsSpace()->oop_since_save_marks_iterate##nv_suffix(cl); \ 2470 cl->reset_generation(); \ 2471 save_marks(); \ 2472 } 2473 2474 ALL_SINCE_SAVE_MARKS_CLOSURES(CMS_SINCE_SAVE_MARKS_DEFN) 2475 2476 void 2477 ConcurrentMarkSweepGeneration::oop_iterate(ExtendedOopClosure* cl) { 2478 if (freelistLock()->owned_by_self()) { 2479 Generation::oop_iterate(cl); 2480 } else { 2481 MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag); 2482 Generation::oop_iterate(cl); 2483 } 2484 } 2485 2486 void 2487 ConcurrentMarkSweepGeneration::object_iterate(ObjectClosure* cl) { 2488 if (freelistLock()->owned_by_self()) { 2489 Generation::object_iterate(cl); 2490 } else { 2491 MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag); 2492 Generation::object_iterate(cl); 2493 } 2494 } 2495 2496 void 2497 ConcurrentMarkSweepGeneration::safe_object_iterate(ObjectClosure* cl) { 2498 if (freelistLock()->owned_by_self()) { 2499 Generation::safe_object_iterate(cl); 2500 } else { 2501 MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag); 2502 Generation::safe_object_iterate(cl); 2503 } 2504 } 2505 2506 void 2507 ConcurrentMarkSweepGeneration::post_compact() { 2508 } 2509 2510 void 2511 ConcurrentMarkSweepGeneration::prepare_for_verify() { 2512 // Fix the linear allocation blocks to look like free blocks. 2513 2514 // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those 2515 // are not called when the heap is verified during universe initialization and 2516 // at vm shutdown. 2517 if (freelistLock()->owned_by_self()) { 2518 cmsSpace()->prepare_for_verify(); 2519 } else { 2520 MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag); 2521 cmsSpace()->prepare_for_verify(); 2522 } 2523 } 2524 2525 void 2526 ConcurrentMarkSweepGeneration::verify() { 2527 // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those 2528 // are not called when the heap is verified during universe initialization and 2529 // at vm shutdown. 2530 if (freelistLock()->owned_by_self()) { 2531 cmsSpace()->verify(); 2532 } else { 2533 MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag); 2534 cmsSpace()->verify(); 2535 } 2536 } 2537 2538 void CMSCollector::verify() { 2539 _cmsGen->verify(); 2540 } 2541 2542 #ifndef PRODUCT 2543 bool CMSCollector::overflow_list_is_empty() const { 2544 assert(_num_par_pushes >= 0, "Inconsistency"); 2545 if (_overflow_list == NULL) { 2546 assert(_num_par_pushes == 0, "Inconsistency"); 2547 } 2548 return _overflow_list == NULL; 2549 } 2550 2551 // The methods verify_work_stacks_empty() and verify_overflow_empty() 2552 // merely consolidate assertion checks that appear to occur together frequently. 2553 void CMSCollector::verify_work_stacks_empty() const { 2554 assert(_markStack.isEmpty(), "Marking stack should be empty"); 2555 assert(overflow_list_is_empty(), "Overflow list should be empty"); 2556 } 2557 2558 void CMSCollector::verify_overflow_empty() const { 2559 assert(overflow_list_is_empty(), "Overflow list should be empty"); 2560 assert(no_preserved_marks(), "No preserved marks"); 2561 } 2562 #endif // PRODUCT 2563 2564 // Decide if we want to enable class unloading as part of the 2565 // ensuing concurrent GC cycle. We will collect and 2566 // unload classes if it's the case that: 2567 // (a) class unloading is enabled at the command line, and 2568 // (b) old gen is getting really full 2569 // NOTE: Provided there is no change in the state of the heap between 2570 // calls to this method, it should have idempotent results. Moreover, 2571 // its results should be monotonically increasing (i.e. going from 0 to 1, 2572 // but not 1 to 0) between successive calls between which the heap was 2573 // not collected. For the implementation below, it must thus rely on 2574 // the property that concurrent_cycles_since_last_unload() 2575 // will not decrease unless a collection cycle happened and that 2576 // _cmsGen->is_too_full() are 2577 // themselves also monotonic in that sense. See check_monotonicity() 2578 // below. 2579 void CMSCollector::update_should_unload_classes() { 2580 _should_unload_classes = false; 2581 if (CMSClassUnloadingEnabled) { 2582 _should_unload_classes = (concurrent_cycles_since_last_unload() >= 2583 CMSClassUnloadingMaxInterval) 2584 || _cmsGen->is_too_full(); 2585 } 2586 } 2587 2588 bool ConcurrentMarkSweepGeneration::is_too_full() const { 2589 bool res = should_concurrent_collect(); 2590 res = res && (occupancy() > (double)CMSIsTooFullPercentage/100.0); 2591 return res; 2592 } 2593 2594 void CMSCollector::setup_cms_unloading_and_verification_state() { 2595 const bool should_verify = VerifyBeforeGC || VerifyAfterGC || VerifyDuringGC 2596 || VerifyBeforeExit; 2597 const int rso = GenCollectedHeap::SO_AllCodeCache; 2598 2599 // We set the proper root for this CMS cycle here. 2600 if (should_unload_classes()) { // Should unload classes this cycle 2601 remove_root_scanning_option(rso); // Shrink the root set appropriately 2602 set_verifying(should_verify); // Set verification state for this cycle 2603 return; // Nothing else needs to be done at this time 2604 } 2605 2606 // Not unloading classes this cycle 2607 assert(!should_unload_classes(), "Inconsistency!"); 2608 2609 // If we are not unloading classes then add SO_AllCodeCache to root 2610 // scanning options. 2611 add_root_scanning_option(rso); 2612 2613 if ((!verifying() || unloaded_classes_last_cycle()) && should_verify) { 2614 set_verifying(true); 2615 } else if (verifying() && !should_verify) { 2616 // We were verifying, but some verification flags got disabled. 2617 set_verifying(false); 2618 // Exclude symbols, strings and code cache elements from root scanning to 2619 // reduce IM and RM pauses. 2620 remove_root_scanning_option(rso); 2621 } 2622 } 2623 2624 2625 #ifndef PRODUCT 2626 HeapWord* CMSCollector::block_start(const void* p) const { 2627 const HeapWord* addr = (HeapWord*)p; 2628 if (_span.contains(p)) { 2629 if (_cmsGen->cmsSpace()->is_in_reserved(addr)) { 2630 return _cmsGen->cmsSpace()->block_start(p); 2631 } 2632 } 2633 return NULL; 2634 } 2635 #endif 2636 2637 HeapWord* 2638 ConcurrentMarkSweepGeneration::expand_and_allocate(size_t word_size, 2639 bool tlab, 2640 bool parallel) { 2641 CMSSynchronousYieldRequest yr; 2642 assert(!tlab, "Can't deal with TLAB allocation"); 2643 MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag); 2644 expand_for_gc_cause(word_size*HeapWordSize, MinHeapDeltaBytes, CMSExpansionCause::_satisfy_allocation); 2645 if (GCExpandToAllocateDelayMillis > 0) { 2646 os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false); 2647 } 2648 return have_lock_and_allocate(word_size, tlab); 2649 } 2650 2651 void ConcurrentMarkSweepGeneration::expand_for_gc_cause( 2652 size_t bytes, 2653 size_t expand_bytes, 2654 CMSExpansionCause::Cause cause) 2655 { 2656 2657 bool success = expand(bytes, expand_bytes); 2658 2659 // remember why we expanded; this information is used 2660 // by shouldConcurrentCollect() when making decisions on whether to start 2661 // a new CMS cycle. 2662 if (success) { 2663 set_expansion_cause(cause); 2664 log_trace(gc)("Expanded CMS gen for %s", CMSExpansionCause::to_string(cause)); 2665 } 2666 } 2667 2668 HeapWord* ConcurrentMarkSweepGeneration::expand_and_par_lab_allocate(CMSParGCThreadState* ps, size_t word_sz) { 2669 HeapWord* res = NULL; 2670 MutexLocker x(ParGCRareEvent_lock); 2671 while (true) { 2672 // Expansion by some other thread might make alloc OK now: 2673 res = ps->lab.alloc(word_sz); 2674 if (res != NULL) return res; 2675 // If there's not enough expansion space available, give up. 2676 if (_virtual_space.uncommitted_size() < (word_sz * HeapWordSize)) { 2677 return NULL; 2678 } 2679 // Otherwise, we try expansion. 2680 expand_for_gc_cause(word_sz*HeapWordSize, MinHeapDeltaBytes, CMSExpansionCause::_allocate_par_lab); 2681 // Now go around the loop and try alloc again; 2682 // A competing par_promote might beat us to the expansion space, 2683 // so we may go around the loop again if promotion fails again. 2684 if (GCExpandToAllocateDelayMillis > 0) { 2685 os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false); 2686 } 2687 } 2688 } 2689 2690 2691 bool ConcurrentMarkSweepGeneration::expand_and_ensure_spooling_space( 2692 PromotionInfo* promo) { 2693 MutexLocker x(ParGCRareEvent_lock); 2694 size_t refill_size_bytes = promo->refillSize() * HeapWordSize; 2695 while (true) { 2696 // Expansion by some other thread might make alloc OK now: 2697 if (promo->ensure_spooling_space()) { 2698 assert(promo->has_spooling_space(), 2699 "Post-condition of successful ensure_spooling_space()"); 2700 return true; 2701 } 2702 // If there's not enough expansion space available, give up. 2703 if (_virtual_space.uncommitted_size() < refill_size_bytes) { 2704 return false; 2705 } 2706 // Otherwise, we try expansion. 2707 expand_for_gc_cause(refill_size_bytes, MinHeapDeltaBytes, CMSExpansionCause::_allocate_par_spooling_space); 2708 // Now go around the loop and try alloc again; 2709 // A competing allocation might beat us to the expansion space, 2710 // so we may go around the loop again if allocation fails again. 2711 if (GCExpandToAllocateDelayMillis > 0) { 2712 os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false); 2713 } 2714 } 2715 } 2716 2717 void ConcurrentMarkSweepGeneration::shrink(size_t bytes) { 2718 // Only shrink if a compaction was done so that all the free space 2719 // in the generation is in a contiguous block at the end. 2720 if (did_compact()) { 2721 CardGeneration::shrink(bytes); 2722 } 2723 } 2724 2725 void ConcurrentMarkSweepGeneration::assert_correct_size_change_locking() { 2726 assert_locked_or_safepoint(Heap_lock); 2727 } 2728 2729 void ConcurrentMarkSweepGeneration::shrink_free_list_by(size_t bytes) { 2730 assert_locked_or_safepoint(Heap_lock); 2731 assert_lock_strong(freelistLock()); 2732 log_trace(gc)("Shrinking of CMS not yet implemented"); 2733 return; 2734 } 2735 2736 2737 // Simple ctor/dtor wrapper for accounting & timer chores around concurrent 2738 // phases. 2739 class CMSPhaseAccounting: public StackObj { 2740 public: 2741 CMSPhaseAccounting(CMSCollector *collector, 2742 const char *title); 2743 ~CMSPhaseAccounting(); 2744 2745 private: 2746 CMSCollector *_collector; 2747 const char *_title; 2748 GCTraceConcTime(Info, gc) _trace_time; 2749 2750 public: 2751 // Not MT-safe; so do not pass around these StackObj's 2752 // where they may be accessed by other threads. 2753 double wallclock_millis() { 2754 return TimeHelper::counter_to_millis(os::elapsed_counter() - _trace_time.start_time()); 2755 } 2756 }; 2757 2758 CMSPhaseAccounting::CMSPhaseAccounting(CMSCollector *collector, 2759 const char *title) : 2760 _collector(collector), _title(title), _trace_time(title) { 2761 2762 _collector->resetYields(); 2763 _collector->resetTimer(); 2764 _collector->startTimer(); 2765 _collector->gc_timer_cm()->register_gc_concurrent_start(title); 2766 } 2767 2768 CMSPhaseAccounting::~CMSPhaseAccounting() { 2769 _collector->gc_timer_cm()->register_gc_concurrent_end(); 2770 _collector->stopTimer(); 2771 log_debug(gc)("Concurrent active time: %.3fms", TimeHelper::counter_to_seconds(_collector->timerTicks())); 2772 log_trace(gc)(" (CMS %s yielded %d times)", _title, _collector->yields()); 2773 } 2774 2775 // CMS work 2776 2777 // The common parts of CMSParInitialMarkTask and CMSParRemarkTask. 2778 class CMSParMarkTask : public AbstractGangTask { 2779 protected: 2780 CMSCollector* _collector; 2781 uint _n_workers; 2782 CMSParMarkTask(const char* name, CMSCollector* collector, uint n_workers) : 2783 AbstractGangTask(name), 2784 _collector(collector), 2785 _n_workers(n_workers) {} 2786 // Work method in support of parallel rescan ... of young gen spaces 2787 void do_young_space_rescan(OopsInGenClosure* cl, 2788 ContiguousSpace* space, 2789 HeapWord** chunk_array, size_t chunk_top); 2790 void work_on_young_gen_roots(OopsInGenClosure* cl); 2791 }; 2792 2793 // Parallel initial mark task 2794 class CMSParInitialMarkTask: public CMSParMarkTask { 2795 StrongRootsScope* _strong_roots_scope; 2796 public: 2797 CMSParInitialMarkTask(CMSCollector* collector, StrongRootsScope* strong_roots_scope, uint n_workers) : 2798 CMSParMarkTask("Scan roots and young gen for initial mark in parallel", collector, n_workers), 2799 _strong_roots_scope(strong_roots_scope) {} 2800 void work(uint worker_id); 2801 }; 2802 2803 // Checkpoint the roots into this generation from outside 2804 // this generation. [Note this initial checkpoint need only 2805 // be approximate -- we'll do a catch up phase subsequently.] 2806 void CMSCollector::checkpointRootsInitial() { 2807 assert(_collectorState == InitialMarking, "Wrong collector state"); 2808 check_correct_thread_executing(); 2809 TraceCMSMemoryManagerStats tms(_collectorState, CMSHeap::heap()->gc_cause()); 2810 2811 save_heap_summary(); 2812 report_heap_summary(GCWhen::BeforeGC); 2813 2814 ReferenceProcessor* rp = ref_processor(); 2815 assert(_restart_addr == NULL, "Control point invariant"); 2816 { 2817 // acquire locks for subsequent manipulations 2818 MutexLockerEx x(bitMapLock(), 2819 Mutex::_no_safepoint_check_flag); 2820 checkpointRootsInitialWork(); 2821 // enable ("weak") refs discovery 2822 rp->enable_discovery(); 2823 _collectorState = Marking; 2824 } 2825 } 2826 2827 void CMSCollector::checkpointRootsInitialWork() { 2828 assert(SafepointSynchronize::is_at_safepoint(), "world should be stopped"); 2829 assert(_collectorState == InitialMarking, "just checking"); 2830 2831 // Already have locks. 2832 assert_lock_strong(bitMapLock()); 2833 assert(_markBitMap.isAllClear(), "was reset at end of previous cycle"); 2834 2835 // Setup the verification and class unloading state for this 2836 // CMS collection cycle. 2837 setup_cms_unloading_and_verification_state(); 2838 2839 GCTraceTime(Trace, gc, phases) ts("checkpointRootsInitialWork", _gc_timer_cm); 2840 2841 // Reset all the PLAB chunk arrays if necessary. 2842 if (_survivor_plab_array != NULL && !CMSPLABRecordAlways) { 2843 reset_survivor_plab_arrays(); 2844 } 2845 2846 ResourceMark rm; 2847 HandleMark hm; 2848 2849 MarkRefsIntoClosure notOlder(_span, &_markBitMap); 2850 CMSHeap* heap = CMSHeap::heap(); 2851 2852 verify_work_stacks_empty(); 2853 verify_overflow_empty(); 2854 2855 heap->ensure_parsability(false); // fill TLABs, but no need to retire them 2856 // Update the saved marks which may affect the root scans. 2857 heap->save_marks(); 2858 2859 // weak reference processing has not started yet. 2860 ref_processor()->set_enqueuing_is_done(false); 2861 2862 // Need to remember all newly created CLDs, 2863 // so that we can guarantee that the remark finds them. 2864 ClassLoaderDataGraph::remember_new_clds(true); 2865 2866 // Whenever a CLD is found, it will be claimed before proceeding to mark 2867 // the klasses. The claimed marks need to be cleared before marking starts. 2868 ClassLoaderDataGraph::clear_claimed_marks(); 2869 2870 print_eden_and_survivor_chunk_arrays(); 2871 2872 { 2873 #if COMPILER2_OR_JVMCI 2874 DerivedPointerTableDeactivate dpt_deact; 2875 #endif 2876 if (CMSParallelInitialMarkEnabled) { 2877 // The parallel version. 2878 WorkGang* workers = heap->workers(); 2879 assert(workers != NULL, "Need parallel worker threads."); 2880 uint n_workers = workers->active_workers(); 2881 2882 StrongRootsScope srs(n_workers); 2883 2884 CMSParInitialMarkTask tsk(this, &srs, n_workers); 2885 initialize_sequential_subtasks_for_young_gen_rescan(n_workers); 2886 // If the total workers is greater than 1, then multiple workers 2887 // may be used at some time and the initialization has been set 2888 // such that the single threaded path cannot be used. 2889 if (workers->total_workers() > 1) { 2890 workers->run_task(&tsk); 2891 } else { 2892 tsk.work(0); 2893 } 2894 } else { 2895 // The serial version. 2896 CLDToOopClosure cld_closure(¬Older, true); 2897 heap->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel. 2898 2899 StrongRootsScope srs(1); 2900 2901 heap->cms_process_roots(&srs, 2902 true, // young gen as roots 2903 GenCollectedHeap::ScanningOption(roots_scanning_options()), 2904 should_unload_classes(), 2905 ¬Older, 2906 &cld_closure); 2907 } 2908 } 2909 2910 // Clear mod-union table; it will be dirtied in the prologue of 2911 // CMS generation per each young generation collection. 2912 2913 assert(_modUnionTable.isAllClear(), 2914 "Was cleared in most recent final checkpoint phase" 2915 " or no bits are set in the gc_prologue before the start of the next " 2916 "subsequent marking phase."); 2917 2918 assert(_ct->cld_rem_set()->mod_union_is_clear(), "Must be"); 2919 2920 // Save the end of the used_region of the constituent generations 2921 // to be used to limit the extent of sweep in each generation. 2922 save_sweep_limits(); 2923 verify_overflow_empty(); 2924 } 2925 2926 bool CMSCollector::markFromRoots() { 2927 // we might be tempted to assert that: 2928 // assert(!SafepointSynchronize::is_at_safepoint(), 2929 // "inconsistent argument?"); 2930 // However that wouldn't be right, because it's possible that 2931 // a safepoint is indeed in progress as a young generation 2932 // stop-the-world GC happens even as we mark in this generation. 2933 assert(_collectorState == Marking, "inconsistent state?"); 2934 check_correct_thread_executing(); 2935 verify_overflow_empty(); 2936 2937 // Weak ref discovery note: We may be discovering weak 2938 // refs in this generation concurrent (but interleaved) with 2939 // weak ref discovery by the young generation collector. 2940 2941 CMSTokenSyncWithLocks ts(true, bitMapLock()); 2942 GCTraceCPUTime tcpu; 2943 CMSPhaseAccounting pa(this, "Concurrent Mark"); 2944 bool res = markFromRootsWork(); 2945 if (res) { 2946 _collectorState = Precleaning; 2947 } else { // We failed and a foreground collection wants to take over 2948 assert(_foregroundGCIsActive, "internal state inconsistency"); 2949 assert(_restart_addr == NULL, "foreground will restart from scratch"); 2950 log_debug(gc)("bailing out to foreground collection"); 2951 } 2952 verify_overflow_empty(); 2953 return res; 2954 } 2955 2956 bool CMSCollector::markFromRootsWork() { 2957 // iterate over marked bits in bit map, doing a full scan and mark 2958 // from these roots using the following algorithm: 2959 // . if oop is to the right of the current scan pointer, 2960 // mark corresponding bit (we'll process it later) 2961 // . else (oop is to left of current scan pointer) 2962 // push oop on marking stack 2963 // . drain the marking stack 2964 2965 // Note that when we do a marking step we need to hold the 2966 // bit map lock -- recall that direct allocation (by mutators) 2967 // and promotion (by the young generation collector) is also 2968 // marking the bit map. [the so-called allocate live policy.] 2969 // Because the implementation of bit map marking is not 2970 // robust wrt simultaneous marking of bits in the same word, 2971 // we need to make sure that there is no such interference 2972 // between concurrent such updates. 2973 2974 // already have locks 2975 assert_lock_strong(bitMapLock()); 2976 2977 verify_work_stacks_empty(); 2978 verify_overflow_empty(); 2979 bool result = false; 2980 if (CMSConcurrentMTEnabled && ConcGCThreads > 0) { 2981 result = do_marking_mt(); 2982 } else { 2983 result = do_marking_st(); 2984 } 2985 return result; 2986 } 2987 2988 // Forward decl 2989 class CMSConcMarkingTask; 2990 2991 class CMSConcMarkingTerminator: public ParallelTaskTerminator { 2992 CMSCollector* _collector; 2993 CMSConcMarkingTask* _task; 2994 public: 2995 virtual void yield(); 2996 2997 // "n_threads" is the number of threads to be terminated. 2998 // "queue_set" is a set of work queues of other threads. 2999 // "collector" is the CMS collector associated with this task terminator. 3000 // "yield" indicates whether we need the gang as a whole to yield. 3001 CMSConcMarkingTerminator(int n_threads, TaskQueueSetSuper* queue_set, CMSCollector* collector) : 3002 ParallelTaskTerminator(n_threads, queue_set), 3003 _collector(collector) { } 3004 3005 void set_task(CMSConcMarkingTask* task) { 3006 _task = task; 3007 } 3008 }; 3009 3010 class CMSConcMarkingTerminatorTerminator: public TerminatorTerminator { 3011 CMSConcMarkingTask* _task; 3012 public: 3013 bool should_exit_termination(); 3014 void set_task(CMSConcMarkingTask* task) { 3015 _task = task; 3016 } 3017 }; 3018 3019 // MT Concurrent Marking Task 3020 class CMSConcMarkingTask: public YieldingFlexibleGangTask { 3021 CMSCollector* _collector; 3022 uint _n_workers; // requested/desired # workers 3023 bool _result; 3024 CompactibleFreeListSpace* _cms_space; 3025 char _pad_front[64]; // padding to ... 3026 HeapWord* volatile _global_finger; // ... avoid sharing cache line 3027 char _pad_back[64]; 3028 HeapWord* _restart_addr; 3029 3030 // Exposed here for yielding support 3031 Mutex* const _bit_map_lock; 3032 3033 // The per thread work queues, available here for stealing 3034 OopTaskQueueSet* _task_queues; 3035 3036 // Termination (and yielding) support 3037 CMSConcMarkingTerminator _term; 3038 CMSConcMarkingTerminatorTerminator _term_term; 3039 3040 public: 3041 CMSConcMarkingTask(CMSCollector* collector, 3042 CompactibleFreeListSpace* cms_space, 3043 YieldingFlexibleWorkGang* workers, 3044 OopTaskQueueSet* task_queues): 3045 YieldingFlexibleGangTask("Concurrent marking done multi-threaded"), 3046 _collector(collector), 3047 _cms_space(cms_space), 3048 _n_workers(0), _result(true), 3049 _task_queues(task_queues), 3050 _term(_n_workers, task_queues, _collector), 3051 _bit_map_lock(collector->bitMapLock()) 3052 { 3053 _requested_size = _n_workers; 3054 _term.set_task(this); 3055 _term_term.set_task(this); 3056 _restart_addr = _global_finger = _cms_space->bottom(); 3057 } 3058 3059 3060 OopTaskQueueSet* task_queues() { return _task_queues; } 3061 3062 OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); } 3063 3064 HeapWord* volatile* global_finger_addr() { return &_global_finger; } 3065 3066 CMSConcMarkingTerminator* terminator() { return &_term; } 3067 3068 virtual void set_for_termination(uint active_workers) { 3069 terminator()->reset_for_reuse(active_workers); 3070 } 3071 3072 void work(uint worker_id); 3073 bool should_yield() { 3074 return ConcurrentMarkSweepThread::should_yield() 3075 && !_collector->foregroundGCIsActive(); 3076 } 3077 3078 virtual void coordinator_yield(); // stuff done by coordinator 3079 bool result() { return _result; } 3080 3081 void reset(HeapWord* ra) { 3082 assert(_global_finger >= _cms_space->end(), "Postcondition of ::work(i)"); 3083 _restart_addr = _global_finger = ra; 3084 _term.reset_for_reuse(); 3085 } 3086 3087 static bool get_work_from_overflow_stack(CMSMarkStack* ovflw_stk, 3088 OopTaskQueue* work_q); 3089 3090 private: 3091 void do_scan_and_mark(int i, CompactibleFreeListSpace* sp); 3092 void do_work_steal(int i); 3093 void bump_global_finger(HeapWord* f); 3094 }; 3095 3096 bool CMSConcMarkingTerminatorTerminator::should_exit_termination() { 3097 assert(_task != NULL, "Error"); 3098 return _task->yielding(); 3099 // Note that we do not need the disjunct || _task->should_yield() above 3100 // because we want terminating threads to yield only if the task 3101 // is already in the midst of yielding, which happens only after at least one 3102 // thread has yielded. 3103 } 3104 3105 void CMSConcMarkingTerminator::yield() { 3106 if (_task->should_yield()) { 3107 _task->yield(); 3108 } else { 3109 ParallelTaskTerminator::yield(); 3110 } 3111 } 3112 3113 //////////////////////////////////////////////////////////////// 3114 // Concurrent Marking Algorithm Sketch 3115 //////////////////////////////////////////////////////////////// 3116 // Until all tasks exhausted (both spaces): 3117 // -- claim next available chunk 3118 // -- bump global finger via CAS 3119 // -- find first object that starts in this chunk 3120 // and start scanning bitmap from that position 3121 // -- scan marked objects for oops 3122 // -- CAS-mark target, and if successful: 3123 // . if target oop is above global finger (volatile read) 3124 // nothing to do 3125 // . if target oop is in chunk and above local finger 3126 // then nothing to do 3127 // . else push on work-queue 3128 // -- Deal with possible overflow issues: 3129 // . local work-queue overflow causes stuff to be pushed on 3130 // global (common) overflow queue 3131 // . always first empty local work queue 3132 // . then get a batch of oops from global work queue if any 3133 // . then do work stealing 3134 // -- When all tasks claimed (both spaces) 3135 // and local work queue empty, 3136 // then in a loop do: 3137 // . check global overflow stack; steal a batch of oops and trace 3138 // . try to steal from other threads oif GOS is empty 3139 // . if neither is available, offer termination 3140 // -- Terminate and return result 3141 // 3142 void CMSConcMarkingTask::work(uint worker_id) { 3143 elapsedTimer _timer; 3144 ResourceMark rm; 3145 HandleMark hm; 3146 3147 DEBUG_ONLY(_collector->verify_overflow_empty();) 3148 3149 // Before we begin work, our work queue should be empty 3150 assert(work_queue(worker_id)->size() == 0, "Expected to be empty"); 3151 // Scan the bitmap covering _cms_space, tracing through grey objects. 3152 _timer.start(); 3153 do_scan_and_mark(worker_id, _cms_space); 3154 _timer.stop(); 3155 log_trace(gc, task)("Finished cms space scanning in %dth thread: %3.3f sec", worker_id, _timer.seconds()); 3156 3157 // ... do work stealing 3158 _timer.reset(); 3159 _timer.start(); 3160 do_work_steal(worker_id); 3161 _timer.stop(); 3162 log_trace(gc, task)("Finished work stealing in %dth thread: %3.3f sec", worker_id, _timer.seconds()); 3163 assert(_collector->_markStack.isEmpty(), "Should have been emptied"); 3164 assert(work_queue(worker_id)->size() == 0, "Should have been emptied"); 3165 // Note that under the current task protocol, the 3166 // following assertion is true even of the spaces 3167 // expanded since the completion of the concurrent 3168 // marking. XXX This will likely change under a strict 3169 // ABORT semantics. 3170 // After perm removal the comparison was changed to 3171 // greater than or equal to from strictly greater than. 3172 // Before perm removal the highest address sweep would 3173 // have been at the end of perm gen but now is at the 3174 // end of the tenured gen. 3175 assert(_global_finger >= _cms_space->end(), 3176 "All tasks have been completed"); 3177 DEBUG_ONLY(_collector->verify_overflow_empty();) 3178 } 3179 3180 void CMSConcMarkingTask::bump_global_finger(HeapWord* f) { 3181 HeapWord* read = _global_finger; 3182 HeapWord* cur = read; 3183 while (f > read) { 3184 cur = read; 3185 read = Atomic::cmpxchg(f, &_global_finger, cur); 3186 if (cur == read) { 3187 // our cas succeeded 3188 assert(_global_finger >= f, "protocol consistency"); 3189 break; 3190 } 3191 } 3192 } 3193 3194 // This is really inefficient, and should be redone by 3195 // using (not yet available) block-read and -write interfaces to the 3196 // stack and the work_queue. XXX FIX ME !!! 3197 bool CMSConcMarkingTask::get_work_from_overflow_stack(CMSMarkStack* ovflw_stk, 3198 OopTaskQueue* work_q) { 3199 // Fast lock-free check 3200 if (ovflw_stk->length() == 0) { 3201 return false; 3202 } 3203 assert(work_q->size() == 0, "Shouldn't steal"); 3204 MutexLockerEx ml(ovflw_stk->par_lock(), 3205 Mutex::_no_safepoint_check_flag); 3206 // Grab up to 1/4 the size of the work queue 3207 size_t num = MIN2((size_t)(work_q->max_elems() - work_q->size())/4, 3208 (size_t)ParGCDesiredObjsFromOverflowList); 3209 num = MIN2(num, ovflw_stk->length()); 3210 for (int i = (int) num; i > 0; i--) { 3211 oop cur = ovflw_stk->pop(); 3212 assert(cur != NULL, "Counted wrong?"); 3213 work_q->push(cur); 3214 } 3215 return num > 0; 3216 } 3217 3218 void CMSConcMarkingTask::do_scan_and_mark(int i, CompactibleFreeListSpace* sp) { 3219 SequentialSubTasksDone* pst = sp->conc_par_seq_tasks(); 3220 int n_tasks = pst->n_tasks(); 3221 // We allow that there may be no tasks to do here because 3222 // we are restarting after a stack overflow. 3223 assert(pst->valid() || n_tasks == 0, "Uninitialized use?"); 3224 uint nth_task = 0; 3225 3226 HeapWord* aligned_start = sp->bottom(); 3227 if (sp->used_region().contains(_restart_addr)) { 3228 // Align down to a card boundary for the start of 0th task 3229 // for this space. 3230 aligned_start = align_down(_restart_addr, CardTable::card_size); 3231 } 3232 3233 size_t chunk_size = sp->marking_task_size(); 3234 while (!pst->is_task_claimed(/* reference */ nth_task)) { 3235 // Having claimed the nth task in this space, 3236 // compute the chunk that it corresponds to: 3237 MemRegion span = MemRegion(aligned_start + nth_task*chunk_size, 3238 aligned_start + (nth_task+1)*chunk_size); 3239 // Try and bump the global finger via a CAS; 3240 // note that we need to do the global finger bump 3241 // _before_ taking the intersection below, because 3242 // the task corresponding to that region will be 3243 // deemed done even if the used_region() expands 3244 // because of allocation -- as it almost certainly will 3245 // during start-up while the threads yield in the 3246 // closure below. 3247 HeapWord* finger = span.end(); 3248 bump_global_finger(finger); // atomically 3249 // There are null tasks here corresponding to chunks 3250 // beyond the "top" address of the space. 3251 span = span.intersection(sp->used_region()); 3252 if (!span.is_empty()) { // Non-null task 3253 HeapWord* prev_obj; 3254 assert(!span.contains(_restart_addr) || nth_task == 0, 3255 "Inconsistency"); 3256 if (nth_task == 0) { 3257 // For the 0th task, we'll not need to compute a block_start. 3258 if (span.contains(_restart_addr)) { 3259 // In the case of a restart because of stack overflow, 3260 // we might additionally skip a chunk prefix. 3261 prev_obj = _restart_addr; 3262 } else { 3263 prev_obj = span.start(); 3264 } 3265 } else { 3266 // We want to skip the first object because 3267 // the protocol is to scan any object in its entirety 3268 // that _starts_ in this span; a fortiori, any 3269 // object starting in an earlier span is scanned 3270 // as part of an earlier claimed task. 3271 // Below we use the "careful" version of block_start 3272 // so we do not try to navigate uninitialized objects. 3273 prev_obj = sp->block_start_careful(span.start()); 3274 // Below we use a variant of block_size that uses the 3275 // Printezis bits to avoid waiting for allocated 3276 // objects to become initialized/parsable. 3277 while (prev_obj < span.start()) { 3278 size_t sz = sp->block_size_no_stall(prev_obj, _collector); 3279 if (sz > 0) { 3280 prev_obj += sz; 3281 } else { 3282 // In this case we may end up doing a bit of redundant 3283 // scanning, but that appears unavoidable, short of 3284 // locking the free list locks; see bug 6324141. 3285 break; 3286 } 3287 } 3288 } 3289 if (prev_obj < span.end()) { 3290 MemRegion my_span = MemRegion(prev_obj, span.end()); 3291 // Do the marking work within a non-empty span -- 3292 // the last argument to the constructor indicates whether the 3293 // iteration should be incremental with periodic yields. 3294 ParMarkFromRootsClosure cl(this, _collector, my_span, 3295 &_collector->_markBitMap, 3296 work_queue(i), 3297 &_collector->_markStack); 3298 _collector->_markBitMap.iterate(&cl, my_span.start(), my_span.end()); 3299 } // else nothing to do for this task 3300 } // else nothing to do for this task 3301 } 3302 // We'd be tempted to assert here that since there are no 3303 // more tasks left to claim in this space, the global_finger 3304 // must exceed space->top() and a fortiori space->end(). However, 3305 // that would not quite be correct because the bumping of 3306 // global_finger occurs strictly after the claiming of a task, 3307 // so by the time we reach here the global finger may not yet 3308 // have been bumped up by the thread that claimed the last 3309 // task. 3310 pst->all_tasks_completed(); 3311 } 3312 3313 class ParConcMarkingClosure: public MetadataAwareOopClosure { 3314 private: 3315 CMSCollector* _collector; 3316 CMSConcMarkingTask* _task; 3317 MemRegion _span; 3318 CMSBitMap* _bit_map; 3319 CMSMarkStack* _overflow_stack; 3320 OopTaskQueue* _work_queue; 3321 protected: 3322 DO_OOP_WORK_DEFN 3323 public: 3324 ParConcMarkingClosure(CMSCollector* collector, CMSConcMarkingTask* task, OopTaskQueue* work_queue, 3325 CMSBitMap* bit_map, CMSMarkStack* overflow_stack): 3326 MetadataAwareOopClosure(collector->ref_processor()), 3327 _collector(collector), 3328 _task(task), 3329 _span(collector->_span), 3330 _work_queue(work_queue), 3331 _bit_map(bit_map), 3332 _overflow_stack(overflow_stack) 3333 { } 3334 virtual void do_oop(oop* p); 3335 virtual void do_oop(narrowOop* p); 3336 3337 void trim_queue(size_t max); 3338 void handle_stack_overflow(HeapWord* lost); 3339 void do_yield_check() { 3340 if (_task->should_yield()) { 3341 _task->yield(); 3342 } 3343 } 3344 }; 3345 3346 DO_OOP_WORK_IMPL(ParConcMarkingClosure) 3347 3348 // Grey object scanning during work stealing phase -- 3349 // the salient assumption here is that any references 3350 // that are in these stolen objects being scanned must 3351 // already have been initialized (else they would not have 3352 // been published), so we do not need to check for 3353 // uninitialized objects before pushing here. 3354 void ParConcMarkingClosure::do_oop(oop obj) { 3355 assert(oopDesc::is_oop_or_null(obj, true), "Expected an oop or NULL at " PTR_FORMAT, p2i(obj)); 3356 HeapWord* addr = (HeapWord*)obj; 3357 // Check if oop points into the CMS generation 3358 // and is not marked 3359 if (_span.contains(addr) && !_bit_map->isMarked(addr)) { 3360 // a white object ... 3361 // If we manage to "claim" the object, by being the 3362 // first thread to mark it, then we push it on our 3363 // marking stack 3364 if (_bit_map->par_mark(addr)) { // ... now grey 3365 // push on work queue (grey set) 3366 bool simulate_overflow = false; 3367 NOT_PRODUCT( 3368 if (CMSMarkStackOverflowALot && 3369 _collector->simulate_overflow()) { 3370 // simulate a stack overflow 3371 simulate_overflow = true; 3372 } 3373 ) 3374 if (simulate_overflow || 3375 !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) { 3376 // stack overflow 3377 log_trace(gc)("CMS marking stack overflow (benign) at " SIZE_FORMAT, _overflow_stack->capacity()); 3378 // We cannot assert that the overflow stack is full because 3379 // it may have been emptied since. 3380 assert(simulate_overflow || 3381 _work_queue->size() == _work_queue->max_elems(), 3382 "Else push should have succeeded"); 3383 handle_stack_overflow(addr); 3384 } 3385 } // Else, some other thread got there first 3386 do_yield_check(); 3387 } 3388 } 3389 3390 void ParConcMarkingClosure::do_oop(oop* p) { ParConcMarkingClosure::do_oop_work(p); } 3391 void ParConcMarkingClosure::do_oop(narrowOop* p) { ParConcMarkingClosure::do_oop_work(p); } 3392 3393 void ParConcMarkingClosure::trim_queue(size_t max) { 3394 while (_work_queue->size() > max) { 3395 oop new_oop; 3396 if (_work_queue->pop_local(new_oop)) { 3397 assert(oopDesc::is_oop(new_oop), "Should be an oop"); 3398 assert(_bit_map->isMarked((HeapWord*)new_oop), "Grey object"); 3399 assert(_span.contains((HeapWord*)new_oop), "Not in span"); 3400 new_oop->oop_iterate(this); // do_oop() above 3401 do_yield_check(); 3402 } 3403 } 3404 } 3405 3406 // Upon stack overflow, we discard (part of) the stack, 3407 // remembering the least address amongst those discarded 3408 // in CMSCollector's _restart_address. 3409 void ParConcMarkingClosure::handle_stack_overflow(HeapWord* lost) { 3410 // We need to do this under a mutex to prevent other 3411 // workers from interfering with the work done below. 3412 MutexLockerEx ml(_overflow_stack->par_lock(), 3413 Mutex::_no_safepoint_check_flag); 3414 // Remember the least grey address discarded 3415 HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost); 3416 _collector->lower_restart_addr(ra); 3417 _overflow_stack->reset(); // discard stack contents 3418 _overflow_stack->expand(); // expand the stack if possible 3419 } 3420 3421 3422 void CMSConcMarkingTask::do_work_steal(int i) { 3423 OopTaskQueue* work_q = work_queue(i); 3424 oop obj_to_scan; 3425 CMSBitMap* bm = &(_collector->_markBitMap); 3426 CMSMarkStack* ovflw = &(_collector->_markStack); 3427 int* seed = _collector->hash_seed(i); 3428 ParConcMarkingClosure cl(_collector, this, work_q, bm, ovflw); 3429 while (true) { 3430 cl.trim_queue(0); 3431 assert(work_q->size() == 0, "Should have been emptied above"); 3432 if (get_work_from_overflow_stack(ovflw, work_q)) { 3433 // Can't assert below because the work obtained from the 3434 // overflow stack may already have been stolen from us. 3435 // assert(work_q->size() > 0, "Work from overflow stack"); 3436 continue; 3437 } else if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) { 3438 assert(oopDesc::is_oop(obj_to_scan), "Should be an oop"); 3439 assert(bm->isMarked((HeapWord*)obj_to_scan), "Grey object"); 3440 obj_to_scan->oop_iterate(&cl); 3441 } else if (terminator()->offer_termination(&_term_term)) { 3442 assert(work_q->size() == 0, "Impossible!"); 3443 break; 3444 } else if (yielding() || should_yield()) { 3445 yield(); 3446 } 3447 } 3448 } 3449 3450 // This is run by the CMS (coordinator) thread. 3451 void CMSConcMarkingTask::coordinator_yield() { 3452 assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(), 3453 "CMS thread should hold CMS token"); 3454 // First give up the locks, then yield, then re-lock 3455 // We should probably use a constructor/destructor idiom to 3456 // do this unlock/lock or modify the MutexUnlocker class to 3457 // serve our purpose. XXX 3458 assert_lock_strong(_bit_map_lock); 3459 _bit_map_lock->unlock(); 3460 ConcurrentMarkSweepThread::desynchronize(true); 3461 _collector->stopTimer(); 3462 _collector->incrementYields(); 3463 3464 // It is possible for whichever thread initiated the yield request 3465 // not to get a chance to wake up and take the bitmap lock between 3466 // this thread releasing it and reacquiring it. So, while the 3467 // should_yield() flag is on, let's sleep for a bit to give the 3468 // other thread a chance to wake up. The limit imposed on the number 3469 // of iterations is defensive, to avoid any unforseen circumstances 3470 // putting us into an infinite loop. Since it's always been this 3471 // (coordinator_yield()) method that was observed to cause the 3472 // problem, we are using a parameter (CMSCoordinatorYieldSleepCount) 3473 // which is by default non-zero. For the other seven methods that 3474 // also perform the yield operation, as are using a different 3475 // parameter (CMSYieldSleepCount) which is by default zero. This way we 3476 // can enable the sleeping for those methods too, if necessary. 3477 // See 6442774. 3478 // 3479 // We really need to reconsider the synchronization between the GC 3480 // thread and the yield-requesting threads in the future and we 3481 // should really use wait/notify, which is the recommended 3482 // way of doing this type of interaction. Additionally, we should 3483 // consolidate the eight methods that do the yield operation and they 3484 // are almost identical into one for better maintainability and 3485 // readability. See 6445193. 3486 // 3487 // Tony 2006.06.29 3488 for (unsigned i = 0; i < CMSCoordinatorYieldSleepCount && 3489 ConcurrentMarkSweepThread::should_yield() && 3490 !CMSCollector::foregroundGCIsActive(); ++i) { 3491 os::sleep(Thread::current(), 1, false); 3492 } 3493 3494 ConcurrentMarkSweepThread::synchronize(true); 3495 _bit_map_lock->lock_without_safepoint_check(); 3496 _collector->startTimer(); 3497 } 3498 3499 bool CMSCollector::do_marking_mt() { 3500 assert(ConcGCThreads > 0 && conc_workers() != NULL, "precondition"); 3501 uint num_workers = AdaptiveSizePolicy::calc_active_conc_workers(conc_workers()->total_workers(), 3502 conc_workers()->active_workers(), 3503 Threads::number_of_non_daemon_threads()); 3504 num_workers = conc_workers()->update_active_workers(num_workers); 3505 log_info(gc,task)("Using %u workers of %u for marking", num_workers, conc_workers()->total_workers()); 3506 3507 CompactibleFreeListSpace* cms_space = _cmsGen->cmsSpace(); 3508 3509 CMSConcMarkingTask tsk(this, 3510 cms_space, 3511 conc_workers(), 3512 task_queues()); 3513 3514 // Since the actual number of workers we get may be different 3515 // from the number we requested above, do we need to do anything different 3516 // below? In particular, may be we need to subclass the SequantialSubTasksDone 3517 // class?? XXX 3518 cms_space ->initialize_sequential_subtasks_for_marking(num_workers); 3519 3520 // Refs discovery is already non-atomic. 3521 assert(!ref_processor()->discovery_is_atomic(), "Should be non-atomic"); 3522 assert(ref_processor()->discovery_is_mt(), "Discovery should be MT"); 3523 conc_workers()->start_task(&tsk); 3524 while (tsk.yielded()) { 3525 tsk.coordinator_yield(); 3526 conc_workers()->continue_task(&tsk); 3527 } 3528 // If the task was aborted, _restart_addr will be non-NULL 3529 assert(tsk.completed() || _restart_addr != NULL, "Inconsistency"); 3530 while (_restart_addr != NULL) { 3531 // XXX For now we do not make use of ABORTED state and have not 3532 // yet implemented the right abort semantics (even in the original 3533 // single-threaded CMS case). That needs some more investigation 3534 // and is deferred for now; see CR# TBF. 07252005YSR. XXX 3535 assert(!CMSAbortSemantics || tsk.aborted(), "Inconsistency"); 3536 // If _restart_addr is non-NULL, a marking stack overflow 3537 // occurred; we need to do a fresh marking iteration from the 3538 // indicated restart address. 3539 if (_foregroundGCIsActive) { 3540 // We may be running into repeated stack overflows, having 3541 // reached the limit of the stack size, while making very 3542 // slow forward progress. It may be best to bail out and 3543 // let the foreground collector do its job. 3544 // Clear _restart_addr, so that foreground GC 3545 // works from scratch. This avoids the headache of 3546 // a "rescan" which would otherwise be needed because 3547 // of the dirty mod union table & card table. 3548 _restart_addr = NULL; 3549 return false; 3550 } 3551 // Adjust the task to restart from _restart_addr 3552 tsk.reset(_restart_addr); 3553 cms_space ->initialize_sequential_subtasks_for_marking(num_workers, 3554 _restart_addr); 3555 _restart_addr = NULL; 3556 // Get the workers going again 3557 conc_workers()->start_task(&tsk); 3558 while (tsk.yielded()) { 3559 tsk.coordinator_yield(); 3560 conc_workers()->continue_task(&tsk); 3561 } 3562 } 3563 assert(tsk.completed(), "Inconsistency"); 3564 assert(tsk.result() == true, "Inconsistency"); 3565 return true; 3566 } 3567 3568 bool CMSCollector::do_marking_st() { 3569 ResourceMark rm; 3570 HandleMark hm; 3571 3572 // Temporarily make refs discovery single threaded (non-MT) 3573 ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(ref_processor(), false); 3574 MarkFromRootsClosure markFromRootsClosure(this, _span, &_markBitMap, 3575 &_markStack, CMSYield); 3576 // the last argument to iterate indicates whether the iteration 3577 // should be incremental with periodic yields. 3578 _markBitMap.iterate(&markFromRootsClosure); 3579 // If _restart_addr is non-NULL, a marking stack overflow 3580 // occurred; we need to do a fresh iteration from the 3581 // indicated restart address. 3582 while (_restart_addr != NULL) { 3583 if (_foregroundGCIsActive) { 3584 // We may be running into repeated stack overflows, having 3585 // reached the limit of the stack size, while making very 3586 // slow forward progress. It may be best to bail out and 3587 // let the foreground collector do its job. 3588 // Clear _restart_addr, so that foreground GC 3589 // works from scratch. This avoids the headache of 3590 // a "rescan" which would otherwise be needed because 3591 // of the dirty mod union table & card table. 3592 _restart_addr = NULL; 3593 return false; // indicating failure to complete marking 3594 } 3595 // Deal with stack overflow: 3596 // we restart marking from _restart_addr 3597 HeapWord* ra = _restart_addr; 3598 markFromRootsClosure.reset(ra); 3599 _restart_addr = NULL; 3600 _markBitMap.iterate(&markFromRootsClosure, ra, _span.end()); 3601 } 3602 return true; 3603 } 3604 3605 void CMSCollector::preclean() { 3606 check_correct_thread_executing(); 3607 assert(Thread::current()->is_ConcurrentGC_thread(), "Wrong thread"); 3608 verify_work_stacks_empty(); 3609 verify_overflow_empty(); 3610 _abort_preclean = false; 3611 if (CMSPrecleaningEnabled) { 3612 if (!CMSEdenChunksRecordAlways) { 3613 _eden_chunk_index = 0; 3614 } 3615 size_t used = get_eden_used(); 3616 size_t capacity = get_eden_capacity(); 3617 // Don't start sampling unless we will get sufficiently 3618 // many samples. 3619 if (used < (((capacity / CMSScheduleRemarkSamplingRatio) / 100) 3620 * CMSScheduleRemarkEdenPenetration)) { 3621 _start_sampling = true; 3622 } else { 3623 _start_sampling = false; 3624 } 3625 GCTraceCPUTime tcpu; 3626 CMSPhaseAccounting pa(this, "Concurrent Preclean"); 3627 preclean_work(CMSPrecleanRefLists1, CMSPrecleanSurvivors1); 3628 } 3629 CMSTokenSync x(true); // is cms thread 3630 if (CMSPrecleaningEnabled) { 3631 sample_eden(); 3632 _collectorState = AbortablePreclean; 3633 } else { 3634 _collectorState = FinalMarking; 3635 } 3636 verify_work_stacks_empty(); 3637 verify_overflow_empty(); 3638 } 3639 3640 // Try and schedule the remark such that young gen 3641 // occupancy is CMSScheduleRemarkEdenPenetration %. 3642 void CMSCollector::abortable_preclean() { 3643 check_correct_thread_executing(); 3644 assert(CMSPrecleaningEnabled, "Inconsistent control state"); 3645 assert(_collectorState == AbortablePreclean, "Inconsistent control state"); 3646 3647 // If Eden's current occupancy is below this threshold, 3648 // immediately schedule the remark; else preclean 3649 // past the next scavenge in an effort to 3650 // schedule the pause as described above. By choosing 3651 // CMSScheduleRemarkEdenSizeThreshold >= max eden size 3652 // we will never do an actual abortable preclean cycle. 3653 if (get_eden_used() > CMSScheduleRemarkEdenSizeThreshold) { 3654 GCTraceCPUTime tcpu; 3655 CMSPhaseAccounting pa(this, "Concurrent Abortable Preclean"); 3656 // We need more smarts in the abortable preclean 3657 // loop below to deal with cases where allocation 3658 // in young gen is very very slow, and our precleaning 3659 // is running a losing race against a horde of 3660 // mutators intent on flooding us with CMS updates 3661 // (dirty cards). 3662 // One, admittedly dumb, strategy is to give up 3663 // after a certain number of abortable precleaning loops 3664 // or after a certain maximum time. We want to make 3665 // this smarter in the next iteration. 3666 // XXX FIX ME!!! YSR 3667 size_t loops = 0, workdone = 0, cumworkdone = 0, waited = 0; 3668 while (!(should_abort_preclean() || 3669 ConcurrentMarkSweepThread::cmst()->should_terminate())) { 3670 workdone = preclean_work(CMSPrecleanRefLists2, CMSPrecleanSurvivors2); 3671 cumworkdone += workdone; 3672 loops++; 3673 // Voluntarily terminate abortable preclean phase if we have 3674 // been at it for too long. 3675 if ((CMSMaxAbortablePrecleanLoops != 0) && 3676 loops >= CMSMaxAbortablePrecleanLoops) { 3677 log_debug(gc)(" CMS: abort preclean due to loops "); 3678 break; 3679 } 3680 if (pa.wallclock_millis() > CMSMaxAbortablePrecleanTime) { 3681 log_debug(gc)(" CMS: abort preclean due to time "); 3682 break; 3683 } 3684 // If we are doing little work each iteration, we should 3685 // take a short break. 3686 if (workdone < CMSAbortablePrecleanMinWorkPerIteration) { 3687 // Sleep for some time, waiting for work to accumulate 3688 stopTimer(); 3689 cmsThread()->wait_on_cms_lock(CMSAbortablePrecleanWaitMillis); 3690 startTimer(); 3691 waited++; 3692 } 3693 } 3694 log_trace(gc)(" [" SIZE_FORMAT " iterations, " SIZE_FORMAT " waits, " SIZE_FORMAT " cards)] ", 3695 loops, waited, cumworkdone); 3696 } 3697 CMSTokenSync x(true); // is cms thread 3698 if (_collectorState != Idling) { 3699 assert(_collectorState == AbortablePreclean, 3700 "Spontaneous state transition?"); 3701 _collectorState = FinalMarking; 3702 } // Else, a foreground collection completed this CMS cycle. 3703 return; 3704 } 3705 3706 // Respond to an Eden sampling opportunity 3707 void CMSCollector::sample_eden() { 3708 // Make sure a young gc cannot sneak in between our 3709 // reading and recording of a sample. 3710 assert(Thread::current()->is_ConcurrentGC_thread(), 3711 "Only the cms thread may collect Eden samples"); 3712 assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(), 3713 "Should collect samples while holding CMS token"); 3714 if (!_start_sampling) { 3715 return; 3716 } 3717 // When CMSEdenChunksRecordAlways is true, the eden chunk array 3718 // is populated by the young generation. 3719 if (_eden_chunk_array != NULL && !CMSEdenChunksRecordAlways) { 3720 if (_eden_chunk_index < _eden_chunk_capacity) { 3721 _eden_chunk_array[_eden_chunk_index] = *_top_addr; // take sample 3722 assert(_eden_chunk_array[_eden_chunk_index] <= *_end_addr, 3723 "Unexpected state of Eden"); 3724 // We'd like to check that what we just sampled is an oop-start address; 3725 // however, we cannot do that here since the object may not yet have been 3726 // initialized. So we'll instead do the check when we _use_ this sample 3727 // later. 3728 if (_eden_chunk_index == 0 || 3729 (pointer_delta(_eden_chunk_array[_eden_chunk_index], 3730 _eden_chunk_array[_eden_chunk_index-1]) 3731 >= CMSSamplingGrain)) { 3732 _eden_chunk_index++; // commit sample 3733 } 3734 } 3735 } 3736 if ((_collectorState == AbortablePreclean) && !_abort_preclean) { 3737 size_t used = get_eden_used(); 3738 size_t capacity = get_eden_capacity(); 3739 assert(used <= capacity, "Unexpected state of Eden"); 3740 if (used > (capacity/100 * CMSScheduleRemarkEdenPenetration)) { 3741 _abort_preclean = true; 3742 } 3743 } 3744 } 3745 3746 3747 size_t CMSCollector::preclean_work(bool clean_refs, bool clean_survivor) { 3748 assert(_collectorState == Precleaning || 3749 _collectorState == AbortablePreclean, "incorrect state"); 3750 ResourceMark rm; 3751 HandleMark hm; 3752 3753 // Precleaning is currently not MT but the reference processor 3754 // may be set for MT. Disable it temporarily here. 3755 ReferenceProcessor* rp = ref_processor(); 3756 ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(rp, false); 3757 3758 // Do one pass of scrubbing the discovered reference lists 3759 // to remove any reference objects with strongly-reachable 3760 // referents. 3761 if (clean_refs) { 3762 CMSPrecleanRefsYieldClosure yield_cl(this); 3763 assert(rp->span().equals(_span), "Spans should be equal"); 3764 CMSKeepAliveClosure keep_alive(this, _span, &_markBitMap, 3765 &_markStack, true /* preclean */); 3766 CMSDrainMarkingStackClosure complete_trace(this, 3767 _span, &_markBitMap, &_markStack, 3768 &keep_alive, true /* preclean */); 3769 3770 // We don't want this step to interfere with a young 3771 // collection because we don't want to take CPU 3772 // or memory bandwidth away from the young GC threads 3773 // (which may be as many as there are CPUs). 3774 // Note that we don't need to protect ourselves from 3775 // interference with mutators because they can't 3776 // manipulate the discovered reference lists nor affect 3777 // the computed reachability of the referents, the 3778 // only properties manipulated by the precleaning 3779 // of these reference lists. 3780 stopTimer(); 3781 CMSTokenSyncWithLocks x(true /* is cms thread */, 3782 bitMapLock()); 3783 startTimer(); 3784 sample_eden(); 3785 3786 // The following will yield to allow foreground 3787 // collection to proceed promptly. XXX YSR: 3788 // The code in this method may need further 3789 // tweaking for better performance and some restructuring 3790 // for cleaner interfaces. 3791 GCTimer *gc_timer = NULL; // Currently not tracing concurrent phases 3792 rp->preclean_discovered_references( 3793 rp->is_alive_non_header(), &keep_alive, &complete_trace, &yield_cl, 3794 gc_timer); 3795 } 3796 3797 if (clean_survivor) { // preclean the active survivor space(s) 3798 PushAndMarkClosure pam_cl(this, _span, ref_processor(), 3799 &_markBitMap, &_modUnionTable, 3800 &_markStack, true /* precleaning phase */); 3801 stopTimer(); 3802 CMSTokenSyncWithLocks ts(true /* is cms thread */, 3803 bitMapLock()); 3804 startTimer(); 3805 unsigned int before_count = 3806 CMSHeap::heap()->total_collections(); 3807 SurvivorSpacePrecleanClosure 3808 sss_cl(this, _span, &_markBitMap, &_markStack, 3809 &pam_cl, before_count, CMSYield); 3810 _young_gen->from()->object_iterate_careful(&sss_cl); 3811 _young_gen->to()->object_iterate_careful(&sss_cl); 3812 } 3813 MarkRefsIntoAndScanClosure 3814 mrias_cl(_span, ref_processor(), &_markBitMap, &_modUnionTable, 3815 &_markStack, this, CMSYield, 3816 true /* precleaning phase */); 3817 // CAUTION: The following closure has persistent state that may need to 3818 // be reset upon a decrease in the sequence of addresses it 3819 // processes. 3820 ScanMarkedObjectsAgainCarefullyClosure 3821 smoac_cl(this, _span, 3822 &_markBitMap, &_markStack, &mrias_cl, CMSYield); 3823 3824 // Preclean dirty cards in ModUnionTable and CardTable using 3825 // appropriate convergence criterion; 3826 // repeat CMSPrecleanIter times unless we find that 3827 // we are losing. 3828 assert(CMSPrecleanIter < 10, "CMSPrecleanIter is too large"); 3829 assert(CMSPrecleanNumerator < CMSPrecleanDenominator, 3830 "Bad convergence multiplier"); 3831 assert(CMSPrecleanThreshold >= 100, 3832 "Unreasonably low CMSPrecleanThreshold"); 3833 3834 size_t numIter, cumNumCards, lastNumCards, curNumCards; 3835 for (numIter = 0, cumNumCards = lastNumCards = curNumCards = 0; 3836 numIter < CMSPrecleanIter; 3837 numIter++, lastNumCards = curNumCards, cumNumCards += curNumCards) { 3838 curNumCards = preclean_mod_union_table(_cmsGen, &smoac_cl); 3839 log_trace(gc)(" (modUnionTable: " SIZE_FORMAT " cards)", curNumCards); 3840 // Either there are very few dirty cards, so re-mark 3841 // pause will be small anyway, or our pre-cleaning isn't 3842 // that much faster than the rate at which cards are being 3843 // dirtied, so we might as well stop and re-mark since 3844 // precleaning won't improve our re-mark time by much. 3845 if (curNumCards <= CMSPrecleanThreshold || 3846 (numIter > 0 && 3847 (curNumCards * CMSPrecleanDenominator > 3848 lastNumCards * CMSPrecleanNumerator))) { 3849 numIter++; 3850 cumNumCards += curNumCards; 3851 break; 3852 } 3853 } 3854 3855 preclean_cld(&mrias_cl, _cmsGen->freelistLock()); 3856 3857 curNumCards = preclean_card_table(_cmsGen, &smoac_cl); 3858 cumNumCards += curNumCards; 3859 log_trace(gc)(" (cardTable: " SIZE_FORMAT " cards, re-scanned " SIZE_FORMAT " cards, " SIZE_FORMAT " iterations)", 3860 curNumCards, cumNumCards, numIter); 3861 return cumNumCards; // as a measure of useful work done 3862 } 3863 3864 // PRECLEANING NOTES: 3865 // Precleaning involves: 3866 // . reading the bits of the modUnionTable and clearing the set bits. 3867 // . For the cards corresponding to the set bits, we scan the 3868 // objects on those cards. This means we need the free_list_lock 3869 // so that we can safely iterate over the CMS space when scanning 3870 // for oops. 3871 // . When we scan the objects, we'll be both reading and setting 3872 // marks in the marking bit map, so we'll need the marking bit map. 3873 // . For protecting _collector_state transitions, we take the CGC_lock. 3874 // Note that any races in the reading of of card table entries by the 3875 // CMS thread on the one hand and the clearing of those entries by the 3876 // VM thread or the setting of those entries by the mutator threads on the 3877 // other are quite benign. However, for efficiency it makes sense to keep 3878 // the VM thread from racing with the CMS thread while the latter is 3879 // dirty card info to the modUnionTable. We therefore also use the 3880 // CGC_lock to protect the reading of the card table and the mod union 3881 // table by the CM thread. 3882 // . We run concurrently with mutator updates, so scanning 3883 // needs to be done carefully -- we should not try to scan 3884 // potentially uninitialized objects. 3885 // 3886 // Locking strategy: While holding the CGC_lock, we scan over and 3887 // reset a maximal dirty range of the mod union / card tables, then lock 3888 // the free_list_lock and bitmap lock to do a full marking, then 3889 // release these locks; and repeat the cycle. This allows for a 3890 // certain amount of fairness in the sharing of these locks between 3891 // the CMS collector on the one hand, and the VM thread and the 3892 // mutators on the other. 3893 3894 // NOTE: preclean_mod_union_table() and preclean_card_table() 3895 // further below are largely identical; if you need to modify 3896 // one of these methods, please check the other method too. 3897 3898 size_t CMSCollector::preclean_mod_union_table( 3899 ConcurrentMarkSweepGeneration* old_gen, 3900 ScanMarkedObjectsAgainCarefullyClosure* cl) { 3901 verify_work_stacks_empty(); 3902 verify_overflow_empty(); 3903 3904 // strategy: starting with the first card, accumulate contiguous 3905 // ranges of dirty cards; clear these cards, then scan the region 3906 // covered by these cards. 3907 3908 // Since all of the MUT is committed ahead, we can just use 3909 // that, in case the generations expand while we are precleaning. 3910 // It might also be fine to just use the committed part of the 3911 // generation, but we might potentially miss cards when the 3912 // generation is rapidly expanding while we are in the midst 3913 // of precleaning. 3914 HeapWord* startAddr = old_gen->reserved().start(); 3915 HeapWord* endAddr = old_gen->reserved().end(); 3916 3917 cl->setFreelistLock(old_gen->freelistLock()); // needed for yielding 3918 3919 size_t numDirtyCards, cumNumDirtyCards; 3920 HeapWord *nextAddr, *lastAddr; 3921 for (cumNumDirtyCards = numDirtyCards = 0, 3922 nextAddr = lastAddr = startAddr; 3923 nextAddr < endAddr; 3924 nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) { 3925 3926 ResourceMark rm; 3927 HandleMark hm; 3928 3929 MemRegion dirtyRegion; 3930 { 3931 stopTimer(); 3932 // Potential yield point 3933 CMSTokenSync ts(true); 3934 startTimer(); 3935 sample_eden(); 3936 // Get dirty region starting at nextOffset (inclusive), 3937 // simultaneously clearing it. 3938 dirtyRegion = 3939 _modUnionTable.getAndClearMarkedRegion(nextAddr, endAddr); 3940 assert(dirtyRegion.start() >= nextAddr, 3941 "returned region inconsistent?"); 3942 } 3943 // Remember where the next search should begin. 3944 // The returned region (if non-empty) is a right open interval, 3945 // so lastOffset is obtained from the right end of that 3946 // interval. 3947 lastAddr = dirtyRegion.end(); 3948 // Should do something more transparent and less hacky XXX 3949 numDirtyCards = 3950 _modUnionTable.heapWordDiffToOffsetDiff(dirtyRegion.word_size()); 3951 3952 // We'll scan the cards in the dirty region (with periodic 3953 // yields for foreground GC as needed). 3954 if (!dirtyRegion.is_empty()) { 3955 assert(numDirtyCards > 0, "consistency check"); 3956 HeapWord* stop_point = NULL; 3957 stopTimer(); 3958 // Potential yield point 3959 CMSTokenSyncWithLocks ts(true, old_gen->freelistLock(), 3960 bitMapLock()); 3961 startTimer(); 3962 { 3963 verify_work_stacks_empty(); 3964 verify_overflow_empty(); 3965 sample_eden(); 3966 stop_point = 3967 old_gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl); 3968 } 3969 if (stop_point != NULL) { 3970 // The careful iteration stopped early either because it found an 3971 // uninitialized object, or because we were in the midst of an 3972 // "abortable preclean", which should now be aborted. Redirty 3973 // the bits corresponding to the partially-scanned or unscanned 3974 // cards. We'll either restart at the next block boundary or 3975 // abort the preclean. 3976 assert((_collectorState == AbortablePreclean && should_abort_preclean()), 3977 "Should only be AbortablePreclean."); 3978 _modUnionTable.mark_range(MemRegion(stop_point, dirtyRegion.end())); 3979 if (should_abort_preclean()) { 3980 break; // out of preclean loop 3981 } else { 3982 // Compute the next address at which preclean should pick up; 3983 // might need bitMapLock in order to read P-bits. 3984 lastAddr = next_card_start_after_block(stop_point); 3985 } 3986 } 3987 } else { 3988 assert(lastAddr == endAddr, "consistency check"); 3989 assert(numDirtyCards == 0, "consistency check"); 3990 break; 3991 } 3992 } 3993 verify_work_stacks_empty(); 3994 verify_overflow_empty(); 3995 return cumNumDirtyCards; 3996 } 3997 3998 // NOTE: preclean_mod_union_table() above and preclean_card_table() 3999 // below are largely identical; if you need to modify 4000 // one of these methods, please check the other method too. 4001 4002 size_t CMSCollector::preclean_card_table(ConcurrentMarkSweepGeneration* old_gen, 4003 ScanMarkedObjectsAgainCarefullyClosure* cl) { 4004 // strategy: it's similar to precleamModUnionTable above, in that 4005 // we accumulate contiguous ranges of dirty cards, mark these cards 4006 // precleaned, then scan the region covered by these cards. 4007 HeapWord* endAddr = (HeapWord*)(old_gen->_virtual_space.high()); 4008 HeapWord* startAddr = (HeapWord*)(old_gen->_virtual_space.low()); 4009 4010 cl->setFreelistLock(old_gen->freelistLock()); // needed for yielding 4011 4012 size_t numDirtyCards, cumNumDirtyCards; 4013 HeapWord *lastAddr, *nextAddr; 4014 4015 for (cumNumDirtyCards = numDirtyCards = 0, 4016 nextAddr = lastAddr = startAddr; 4017 nextAddr < endAddr; 4018 nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) { 4019 4020 ResourceMark rm; 4021 HandleMark hm; 4022 4023 MemRegion dirtyRegion; 4024 { 4025 // See comments in "Precleaning notes" above on why we 4026 // do this locking. XXX Could the locking overheads be 4027 // too high when dirty cards are sparse? [I don't think so.] 4028 stopTimer(); 4029 CMSTokenSync x(true); // is cms thread 4030 startTimer(); 4031 sample_eden(); 4032 // Get and clear dirty region from card table 4033 dirtyRegion = _ct->dirty_card_range_after_reset(MemRegion(nextAddr, endAddr), 4034 true, 4035 CardTable::precleaned_card_val()); 4036 4037 assert(dirtyRegion.start() >= nextAddr, 4038 "returned region inconsistent?"); 4039 } 4040 lastAddr = dirtyRegion.end(); 4041 numDirtyCards = 4042 dirtyRegion.word_size()/CardTable::card_size_in_words; 4043 4044 if (!dirtyRegion.is_empty()) { 4045 stopTimer(); 4046 CMSTokenSyncWithLocks ts(true, old_gen->freelistLock(), bitMapLock()); 4047 startTimer(); 4048 sample_eden(); 4049 verify_work_stacks_empty(); 4050 verify_overflow_empty(); 4051 HeapWord* stop_point = 4052 old_gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl); 4053 if (stop_point != NULL) { 4054 assert((_collectorState == AbortablePreclean && should_abort_preclean()), 4055 "Should only be AbortablePreclean."); 4056 _ct->invalidate(MemRegion(stop_point, dirtyRegion.end())); 4057 if (should_abort_preclean()) { 4058 break; // out of preclean loop 4059 } else { 4060 // Compute the next address at which preclean should pick up. 4061 lastAddr = next_card_start_after_block(stop_point); 4062 } 4063 } 4064 } else { 4065 break; 4066 } 4067 } 4068 verify_work_stacks_empty(); 4069 verify_overflow_empty(); 4070 return cumNumDirtyCards; 4071 } 4072 4073 class PrecleanCLDClosure : public CLDClosure { 4074 MetadataAwareOopsInGenClosure* _cm_closure; 4075 public: 4076 PrecleanCLDClosure(MetadataAwareOopsInGenClosure* oop_closure) : _cm_closure(oop_closure) {} 4077 void do_cld(ClassLoaderData* cld) { 4078 if (cld->has_accumulated_modified_oops()) { 4079 cld->clear_accumulated_modified_oops(); 4080 4081 _cm_closure->do_cld(cld); 4082 } 4083 } 4084 }; 4085 4086 // The freelist lock is needed to prevent asserts, is it really needed? 4087 void CMSCollector::preclean_cld(MarkRefsIntoAndScanClosure* cl, Mutex* freelistLock) { 4088 4089 cl->set_freelistLock(freelistLock); 4090 4091 CMSTokenSyncWithLocks ts(true, freelistLock, bitMapLock()); 4092 4093 // SSS: Add equivalent to ScanMarkedObjectsAgainCarefullyClosure::do_yield_check and should_abort_preclean? 4094 // SSS: We should probably check if precleaning should be aborted, at suitable intervals? 4095 PrecleanCLDClosure preclean_closure(cl); 4096 ClassLoaderDataGraph::cld_do(&preclean_closure); 4097 4098 verify_work_stacks_empty(); 4099 verify_overflow_empty(); 4100 } 4101 4102 void CMSCollector::checkpointRootsFinal() { 4103 assert(_collectorState == FinalMarking, "incorrect state transition?"); 4104 check_correct_thread_executing(); 4105 // world is stopped at this checkpoint 4106 assert(SafepointSynchronize::is_at_safepoint(), 4107 "world should be stopped"); 4108 TraceCMSMemoryManagerStats tms(_collectorState, CMSHeap::heap()->gc_cause()); 4109 4110 verify_work_stacks_empty(); 4111 verify_overflow_empty(); 4112 4113 log_debug(gc)("YG occupancy: " SIZE_FORMAT " K (" SIZE_FORMAT " K)", 4114 _young_gen->used() / K, _young_gen->capacity() / K); 4115 { 4116 if (CMSScavengeBeforeRemark) { 4117 CMSHeap* heap = CMSHeap::heap(); 4118 // Temporarily set flag to false, GCH->do_collection will 4119 // expect it to be false and set to true 4120 FlagSetting fl(heap->_is_gc_active, false); 4121 4122 heap->do_collection(true, // full (i.e. force, see below) 4123 false, // !clear_all_soft_refs 4124 0, // size 4125 false, // is_tlab 4126 GenCollectedHeap::YoungGen // type 4127 ); 4128 } 4129 FreelistLocker x(this); 4130 MutexLockerEx y(bitMapLock(), 4131 Mutex::_no_safepoint_check_flag); 4132 checkpointRootsFinalWork(); 4133 } 4134 verify_work_stacks_empty(); 4135 verify_overflow_empty(); 4136 } 4137 4138 void CMSCollector::checkpointRootsFinalWork() { 4139 GCTraceTime(Trace, gc, phases) tm("checkpointRootsFinalWork", _gc_timer_cm); 4140 4141 assert(haveFreelistLocks(), "must have free list locks"); 4142 assert_lock_strong(bitMapLock()); 4143 4144 ResourceMark rm; 4145 HandleMark hm; 4146 4147 CMSHeap* heap = CMSHeap::heap(); 4148 4149 if (should_unload_classes()) { 4150 CodeCache::gc_prologue(); 4151 } 4152 assert(haveFreelistLocks(), "must have free list locks"); 4153 assert_lock_strong(bitMapLock()); 4154 4155 // We might assume that we need not fill TLAB's when 4156 // CMSScavengeBeforeRemark is set, because we may have just done 4157 // a scavenge which would have filled all TLAB's -- and besides 4158 // Eden would be empty. This however may not always be the case -- 4159 // for instance although we asked for a scavenge, it may not have 4160 // happened because of a JNI critical section. We probably need 4161 // a policy for deciding whether we can in that case wait until 4162 // the critical section releases and then do the remark following 4163 // the scavenge, and skip it here. In the absence of that policy, 4164 // or of an indication of whether the scavenge did indeed occur, 4165 // we cannot rely on TLAB's having been filled and must do 4166 // so here just in case a scavenge did not happen. 4167 heap->ensure_parsability(false); // fill TLAB's, but no need to retire them 4168 // Update the saved marks which may affect the root scans. 4169 heap->save_marks(); 4170 4171 print_eden_and_survivor_chunk_arrays(); 4172 4173 { 4174 #if COMPILER2_OR_JVMCI 4175 DerivedPointerTableDeactivate dpt_deact; 4176 #endif 4177 4178 // Note on the role of the mod union table: 4179 // Since the marker in "markFromRoots" marks concurrently with 4180 // mutators, it is possible for some reachable objects not to have been 4181 // scanned. For instance, an only reference to an object A was 4182 // placed in object B after the marker scanned B. Unless B is rescanned, 4183 // A would be collected. Such updates to references in marked objects 4184 // are detected via the mod union table which is the set of all cards 4185 // dirtied since the first checkpoint in this GC cycle and prior to 4186 // the most recent young generation GC, minus those cleaned up by the 4187 // concurrent precleaning. 4188 if (CMSParallelRemarkEnabled) { 4189 GCTraceTime(Debug, gc, phases) t("Rescan (parallel)", _gc_timer_cm); 4190 do_remark_parallel(); 4191 } else { 4192 GCTraceTime(Debug, gc, phases) t("Rescan (non-parallel)", _gc_timer_cm); 4193 do_remark_non_parallel(); 4194 } 4195 } 4196 verify_work_stacks_empty(); 4197 verify_overflow_empty(); 4198 4199 { 4200 GCTraceTime(Trace, gc, phases) ts("refProcessingWork", _gc_timer_cm); 4201 refProcessingWork(); 4202 } 4203 verify_work_stacks_empty(); 4204 verify_overflow_empty(); 4205 4206 if (should_unload_classes()) { 4207 CodeCache::gc_epilogue(); 4208 } 4209 JvmtiExport::gc_epilogue(); 4210 4211 // If we encountered any (marking stack / work queue) overflow 4212 // events during the current CMS cycle, take appropriate 4213 // remedial measures, where possible, so as to try and avoid 4214 // recurrence of that condition. 4215 assert(_markStack.isEmpty(), "No grey objects"); 4216 size_t ser_ovflw = _ser_pmc_remark_ovflw + _ser_pmc_preclean_ovflw + 4217 _ser_kac_ovflw + _ser_kac_preclean_ovflw; 4218 if (ser_ovflw > 0) { 4219 log_trace(gc)("Marking stack overflow (benign) (pmc_pc=" SIZE_FORMAT ", pmc_rm=" SIZE_FORMAT ", kac=" SIZE_FORMAT ", kac_preclean=" SIZE_FORMAT ")", 4220 _ser_pmc_preclean_ovflw, _ser_pmc_remark_ovflw, _ser_kac_ovflw, _ser_kac_preclean_ovflw); 4221 _markStack.expand(); 4222 _ser_pmc_remark_ovflw = 0; 4223 _ser_pmc_preclean_ovflw = 0; 4224 _ser_kac_preclean_ovflw = 0; 4225 _ser_kac_ovflw = 0; 4226 } 4227 if (_par_pmc_remark_ovflw > 0 || _par_kac_ovflw > 0) { 4228 log_trace(gc)("Work queue overflow (benign) (pmc_rm=" SIZE_FORMAT ", kac=" SIZE_FORMAT ")", 4229 _par_pmc_remark_ovflw, _par_kac_ovflw); 4230 _par_pmc_remark_ovflw = 0; 4231 _par_kac_ovflw = 0; 4232 } 4233 if (_markStack._hit_limit > 0) { 4234 log_trace(gc)(" (benign) Hit max stack size limit (" SIZE_FORMAT ")", 4235 _markStack._hit_limit); 4236 } 4237 if (_markStack._failed_double > 0) { 4238 log_trace(gc)(" (benign) Failed stack doubling (" SIZE_FORMAT "), current capacity " SIZE_FORMAT, 4239 _markStack._failed_double, _markStack.capacity()); 4240 } 4241 _markStack._hit_limit = 0; 4242 _markStack._failed_double = 0; 4243 4244 if ((VerifyAfterGC || VerifyDuringGC) && 4245 CMSHeap::heap()->total_collections() >= VerifyGCStartAt) { 4246 verify_after_remark(); 4247 } 4248 4249 _gc_tracer_cm->report_object_count_after_gc(&_is_alive_closure); 4250 4251 // Change under the freelistLocks. 4252 _collectorState = Sweeping; 4253 // Call isAllClear() under bitMapLock 4254 assert(_modUnionTable.isAllClear(), 4255 "Should be clear by end of the final marking"); 4256 assert(_ct->cld_rem_set()->mod_union_is_clear(), 4257 "Should be clear by end of the final marking"); 4258 } 4259 4260 void CMSParInitialMarkTask::work(uint worker_id) { 4261 elapsedTimer _timer; 4262 ResourceMark rm; 4263 HandleMark hm; 4264 4265 // ---------- scan from roots -------------- 4266 _timer.start(); 4267 CMSHeap* heap = CMSHeap::heap(); 4268 ParMarkRefsIntoClosure par_mri_cl(_collector->_span, &(_collector->_markBitMap)); 4269 4270 // ---------- young gen roots -------------- 4271 { 4272 work_on_young_gen_roots(&par_mri_cl); 4273 _timer.stop(); 4274 log_trace(gc, task)("Finished young gen initial mark scan work in %dth thread: %3.3f sec", worker_id, _timer.seconds()); 4275 } 4276 4277 // ---------- remaining roots -------------- 4278 _timer.reset(); 4279 _timer.start(); 4280 4281 CLDToOopClosure cld_closure(&par_mri_cl, true); 4282 4283 heap->cms_process_roots(_strong_roots_scope, 4284 false, // yg was scanned above 4285 GenCollectedHeap::ScanningOption(_collector->CMSCollector::roots_scanning_options()), 4286 _collector->should_unload_classes(), 4287 &par_mri_cl, 4288 &cld_closure); 4289 assert(_collector->should_unload_classes() 4290 || (_collector->CMSCollector::roots_scanning_options() & GenCollectedHeap::SO_AllCodeCache), 4291 "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops"); 4292 _timer.stop(); 4293 log_trace(gc, task)("Finished remaining root initial mark scan work in %dth thread: %3.3f sec", worker_id, _timer.seconds()); 4294 } 4295 4296 // Parallel remark task 4297 class CMSParRemarkTask: public CMSParMarkTask { 4298 CompactibleFreeListSpace* _cms_space; 4299 4300 // The per-thread work queues, available here for stealing. 4301 OopTaskQueueSet* _task_queues; 4302 ParallelTaskTerminator _term; 4303 StrongRootsScope* _strong_roots_scope; 4304 4305 public: 4306 // A value of 0 passed to n_workers will cause the number of 4307 // workers to be taken from the active workers in the work gang. 4308 CMSParRemarkTask(CMSCollector* collector, 4309 CompactibleFreeListSpace* cms_space, 4310 uint n_workers, WorkGang* workers, 4311 OopTaskQueueSet* task_queues, 4312 StrongRootsScope* strong_roots_scope): 4313 CMSParMarkTask("Rescan roots and grey objects in parallel", 4314 collector, n_workers), 4315 _cms_space(cms_space), 4316 _task_queues(task_queues), 4317 _term(n_workers, task_queues), 4318 _strong_roots_scope(strong_roots_scope) { } 4319 4320 OopTaskQueueSet* task_queues() { return _task_queues; } 4321 4322 OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); } 4323 4324 ParallelTaskTerminator* terminator() { return &_term; } 4325 uint n_workers() { return _n_workers; } 4326 4327 void work(uint worker_id); 4328 4329 private: 4330 // ... of dirty cards in old space 4331 void do_dirty_card_rescan_tasks(CompactibleFreeListSpace* sp, int i, 4332 ParMarkRefsIntoAndScanClosure* cl); 4333 4334 // ... work stealing for the above 4335 void do_work_steal(int i, ParMarkRefsIntoAndScanClosure* cl, int* seed); 4336 }; 4337 4338 class RemarkCLDClosure : public CLDClosure { 4339 CLDToOopClosure _cm_closure; 4340 public: 4341 RemarkCLDClosure(OopClosure* oop_closure) : _cm_closure(oop_closure) {} 4342 void do_cld(ClassLoaderData* cld) { 4343 // Check if we have modified any oops in the CLD during the concurrent marking. 4344 if (cld->has_accumulated_modified_oops()) { 4345 cld->clear_accumulated_modified_oops(); 4346 4347 // We could have transfered the current modified marks to the accumulated marks, 4348 // like we do with the Card Table to Mod Union Table. But it's not really necessary. 4349 } else if (cld->has_modified_oops()) { 4350 // Don't clear anything, this info is needed by the next young collection. 4351 } else { 4352 // No modified oops in the ClassLoaderData. 4353 return; 4354 } 4355 4356 // The klass has modified fields, need to scan the klass. 4357 _cm_closure.do_cld(cld); 4358 } 4359 }; 4360 4361 void CMSParMarkTask::work_on_young_gen_roots(OopsInGenClosure* cl) { 4362 ParNewGeneration* young_gen = _collector->_young_gen; 4363 ContiguousSpace* eden_space = young_gen->eden(); 4364 ContiguousSpace* from_space = young_gen->from(); 4365 ContiguousSpace* to_space = young_gen->to(); 4366 4367 HeapWord** eca = _collector->_eden_chunk_array; 4368 size_t ect = _collector->_eden_chunk_index; 4369 HeapWord** sca = _collector->_survivor_chunk_array; 4370 size_t sct = _collector->_survivor_chunk_index; 4371 4372 assert(ect <= _collector->_eden_chunk_capacity, "out of bounds"); 4373 assert(sct <= _collector->_survivor_chunk_capacity, "out of bounds"); 4374 4375 do_young_space_rescan(cl, to_space, NULL, 0); 4376 do_young_space_rescan(cl, from_space, sca, sct); 4377 do_young_space_rescan(cl, eden_space, eca, ect); 4378 } 4379 4380 // work_queue(i) is passed to the closure 4381 // ParMarkRefsIntoAndScanClosure. The "i" parameter 4382 // also is passed to do_dirty_card_rescan_tasks() and to 4383 // do_work_steal() to select the i-th task_queue. 4384 4385 void CMSParRemarkTask::work(uint worker_id) { 4386 elapsedTimer _timer; 4387 ResourceMark rm; 4388 HandleMark hm; 4389 4390 // ---------- rescan from roots -------------- 4391 _timer.start(); 4392 CMSHeap* heap = CMSHeap::heap(); 4393 ParMarkRefsIntoAndScanClosure par_mrias_cl(_collector, 4394 _collector->_span, _collector->ref_processor(), 4395 &(_collector->_markBitMap), 4396 work_queue(worker_id)); 4397 4398 // Rescan young gen roots first since these are likely 4399 // coarsely partitioned and may, on that account, constitute 4400 // the critical path; thus, it's best to start off that 4401 // work first. 4402 // ---------- young gen roots -------------- 4403 { 4404 work_on_young_gen_roots(&par_mrias_cl); 4405 _timer.stop(); 4406 log_trace(gc, task)("Finished young gen rescan work in %dth thread: %3.3f sec", worker_id, _timer.seconds()); 4407 } 4408 4409 // ---------- remaining roots -------------- 4410 _timer.reset(); 4411 _timer.start(); 4412 heap->cms_process_roots(_strong_roots_scope, 4413 false, // yg was scanned above 4414 GenCollectedHeap::ScanningOption(_collector->CMSCollector::roots_scanning_options()), 4415 _collector->should_unload_classes(), 4416 &par_mrias_cl, 4417 NULL); // The dirty klasses will be handled below 4418 4419 assert(_collector->should_unload_classes() 4420 || (_collector->CMSCollector::roots_scanning_options() & GenCollectedHeap::SO_AllCodeCache), 4421 "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops"); 4422 _timer.stop(); 4423 log_trace(gc, task)("Finished remaining root rescan work in %dth thread: %3.3f sec", worker_id, _timer.seconds()); 4424 4425 // ---------- unhandled CLD scanning ---------- 4426 if (worker_id == 0) { // Single threaded at the moment. 4427 _timer.reset(); 4428 _timer.start(); 4429 4430 // Scan all new class loader data objects and new dependencies that were 4431 // introduced during concurrent marking. 4432 ResourceMark rm; 4433 GrowableArray<ClassLoaderData*>* array = ClassLoaderDataGraph::new_clds(); 4434 for (int i = 0; i < array->length(); i++) { 4435 par_mrias_cl.do_cld_nv(array->at(i)); 4436 } 4437 4438 // We don't need to keep track of new CLDs anymore. 4439 ClassLoaderDataGraph::remember_new_clds(false); 4440 4441 _timer.stop(); 4442 log_trace(gc, task)("Finished unhandled CLD scanning work in %dth thread: %3.3f sec", worker_id, _timer.seconds()); 4443 } 4444 4445 // We might have added oops to ClassLoaderData::_handles during the 4446 // concurrent marking phase. These oops do not always point to newly allocated objects 4447 // that are guaranteed to be kept alive. Hence, 4448 // we do have to revisit the _handles block during the remark phase. 4449 4450 // ---------- dirty CLD scanning ---------- 4451 if (worker_id == 0) { // Single threaded at the moment. 4452 _timer.reset(); 4453 _timer.start(); 4454 4455 // Scan all classes that was dirtied during the concurrent marking phase. 4456 RemarkCLDClosure remark_closure(&par_mrias_cl); 4457 ClassLoaderDataGraph::cld_do(&remark_closure); 4458 4459 _timer.stop(); 4460 log_trace(gc, task)("Finished dirty CLD scanning work in %dth thread: %3.3f sec", worker_id, _timer.seconds()); 4461 } 4462 4463 4464 // ---------- rescan dirty cards ------------ 4465 _timer.reset(); 4466 _timer.start(); 4467 4468 // Do the rescan tasks for each of the two spaces 4469 // (cms_space) in turn. 4470 // "worker_id" is passed to select the task_queue for "worker_id" 4471 do_dirty_card_rescan_tasks(_cms_space, worker_id, &par_mrias_cl); 4472 _timer.stop(); 4473 log_trace(gc, task)("Finished dirty card rescan work in %dth thread: %3.3f sec", worker_id, _timer.seconds()); 4474 4475 // ---------- steal work from other threads ... 4476 // ---------- ... and drain overflow list. 4477 _timer.reset(); 4478 _timer.start(); 4479 do_work_steal(worker_id, &par_mrias_cl, _collector->hash_seed(worker_id)); 4480 _timer.stop(); 4481 log_trace(gc, task)("Finished work stealing in %dth thread: %3.3f sec", worker_id, _timer.seconds()); 4482 } 4483 4484 void 4485 CMSParMarkTask::do_young_space_rescan( 4486 OopsInGenClosure* cl, ContiguousSpace* space, 4487 HeapWord** chunk_array, size_t chunk_top) { 4488 // Until all tasks completed: 4489 // . claim an unclaimed task 4490 // . compute region boundaries corresponding to task claimed 4491 // using chunk_array 4492 // . par_oop_iterate(cl) over that region 4493 4494 ResourceMark rm; 4495 HandleMark hm; 4496 4497 SequentialSubTasksDone* pst = space->par_seq_tasks(); 4498 4499 uint nth_task = 0; 4500 uint n_tasks = pst->n_tasks(); 4501 4502 if (n_tasks > 0) { 4503 assert(pst->valid(), "Uninitialized use?"); 4504 HeapWord *start, *end; 4505 while (!pst->is_task_claimed(/* reference */ nth_task)) { 4506 // We claimed task # nth_task; compute its boundaries. 4507 if (chunk_top == 0) { // no samples were taken 4508 assert(nth_task == 0 && n_tasks == 1, "Can have only 1 eden task"); 4509 start = space->bottom(); 4510 end = space->top(); 4511 } else if (nth_task == 0) { 4512 start = space->bottom(); 4513 end = chunk_array[nth_task]; 4514 } else if (nth_task < (uint)chunk_top) { 4515 assert(nth_task >= 1, "Control point invariant"); 4516 start = chunk_array[nth_task - 1]; 4517 end = chunk_array[nth_task]; 4518 } else { 4519 assert(nth_task == (uint)chunk_top, "Control point invariant"); 4520 start = chunk_array[chunk_top - 1]; 4521 end = space->top(); 4522 } 4523 MemRegion mr(start, end); 4524 // Verify that mr is in space 4525 assert(mr.is_empty() || space->used_region().contains(mr), 4526 "Should be in space"); 4527 // Verify that "start" is an object boundary 4528 assert(mr.is_empty() || oopDesc::is_oop(oop(mr.start())), 4529 "Should be an oop"); 4530 space->par_oop_iterate(mr, cl); 4531 } 4532 pst->all_tasks_completed(); 4533 } 4534 } 4535 4536 void 4537 CMSParRemarkTask::do_dirty_card_rescan_tasks( 4538 CompactibleFreeListSpace* sp, int i, 4539 ParMarkRefsIntoAndScanClosure* cl) { 4540 // Until all tasks completed: 4541 // . claim an unclaimed task 4542 // . compute region boundaries corresponding to task claimed 4543 // . transfer dirty bits ct->mut for that region 4544 // . apply rescanclosure to dirty mut bits for that region 4545 4546 ResourceMark rm; 4547 HandleMark hm; 4548 4549 OopTaskQueue* work_q = work_queue(i); 4550 ModUnionClosure modUnionClosure(&(_collector->_modUnionTable)); 4551 // CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! 4552 // CAUTION: This closure has state that persists across calls to 4553 // the work method dirty_range_iterate_clear() in that it has 4554 // embedded in it a (subtype of) UpwardsObjectClosure. The 4555 // use of that state in the embedded UpwardsObjectClosure instance 4556 // assumes that the cards are always iterated (even if in parallel 4557 // by several threads) in monotonically increasing order per each 4558 // thread. This is true of the implementation below which picks 4559 // card ranges (chunks) in monotonically increasing order globally 4560 // and, a-fortiori, in monotonically increasing order per thread 4561 // (the latter order being a subsequence of the former). 4562 // If the work code below is ever reorganized into a more chaotic 4563 // work-partitioning form than the current "sequential tasks" 4564 // paradigm, the use of that persistent state will have to be 4565 // revisited and modified appropriately. See also related 4566 // bug 4756801 work on which should examine this code to make 4567 // sure that the changes there do not run counter to the 4568 // assumptions made here and necessary for correctness and 4569 // efficiency. Note also that this code might yield inefficient 4570 // behavior in the case of very large objects that span one or 4571 // more work chunks. Such objects would potentially be scanned 4572 // several times redundantly. Work on 4756801 should try and 4573 // address that performance anomaly if at all possible. XXX 4574 MemRegion full_span = _collector->_span; 4575 CMSBitMap* bm = &(_collector->_markBitMap); // shared 4576 MarkFromDirtyCardsClosure 4577 greyRescanClosure(_collector, full_span, // entire span of interest 4578 sp, bm, work_q, cl); 4579 4580 SequentialSubTasksDone* pst = sp->conc_par_seq_tasks(); 4581 assert(pst->valid(), "Uninitialized use?"); 4582 uint nth_task = 0; 4583 const int alignment = CardTable::card_size * BitsPerWord; 4584 MemRegion span = sp->used_region(); 4585 HeapWord* start_addr = span.start(); 4586 HeapWord* end_addr = align_up(span.end(), alignment); 4587 const size_t chunk_size = sp->rescan_task_size(); // in HeapWord units 4588 assert(is_aligned(start_addr, alignment), "Check alignment"); 4589 assert(is_aligned(chunk_size, alignment), "Check alignment"); 4590 4591 while (!pst->is_task_claimed(/* reference */ nth_task)) { 4592 // Having claimed the nth_task, compute corresponding mem-region, 4593 // which is a-fortiori aligned correctly (i.e. at a MUT boundary). 4594 // The alignment restriction ensures that we do not need any 4595 // synchronization with other gang-workers while setting or 4596 // clearing bits in thus chunk of the MUT. 4597 MemRegion this_span = MemRegion(start_addr + nth_task*chunk_size, 4598 start_addr + (nth_task+1)*chunk_size); 4599 // The last chunk's end might be way beyond end of the 4600 // used region. In that case pull back appropriately. 4601 if (this_span.end() > end_addr) { 4602 this_span.set_end(end_addr); 4603 assert(!this_span.is_empty(), "Program logic (calculation of n_tasks)"); 4604 } 4605 // Iterate over the dirty cards covering this chunk, marking them 4606 // precleaned, and setting the corresponding bits in the mod union 4607 // table. Since we have been careful to partition at Card and MUT-word 4608 // boundaries no synchronization is needed between parallel threads. 4609 _collector->_ct->dirty_card_iterate(this_span, 4610 &modUnionClosure); 4611 4612 // Having transferred these marks into the modUnionTable, 4613 // rescan the marked objects on the dirty cards in the modUnionTable. 4614 // Even if this is at a synchronous collection, the initial marking 4615 // may have been done during an asynchronous collection so there 4616 // may be dirty bits in the mod-union table. 4617 _collector->_modUnionTable.dirty_range_iterate_clear( 4618 this_span, &greyRescanClosure); 4619 _collector->_modUnionTable.verifyNoOneBitsInRange( 4620 this_span.start(), 4621 this_span.end()); 4622 } 4623 pst->all_tasks_completed(); // declare that i am done 4624 } 4625 4626 // . see if we can share work_queues with ParNew? XXX 4627 void 4628 CMSParRemarkTask::do_work_steal(int i, ParMarkRefsIntoAndScanClosure* cl, 4629 int* seed) { 4630 OopTaskQueue* work_q = work_queue(i); 4631 NOT_PRODUCT(int num_steals = 0;) 4632 oop obj_to_scan; 4633 CMSBitMap* bm = &(_collector->_markBitMap); 4634 4635 while (true) { 4636 // Completely finish any left over work from (an) earlier round(s) 4637 cl->trim_queue(0); 4638 size_t num_from_overflow_list = MIN2((size_t)(work_q->max_elems() - work_q->size())/4, 4639 (size_t)ParGCDesiredObjsFromOverflowList); 4640 // Now check if there's any work in the overflow list 4641 // Passing ParallelGCThreads as the third parameter, no_of_gc_threads, 4642 // only affects the number of attempts made to get work from the 4643 // overflow list and does not affect the number of workers. Just 4644 // pass ParallelGCThreads so this behavior is unchanged. 4645 if (_collector->par_take_from_overflow_list(num_from_overflow_list, 4646 work_q, 4647 ParallelGCThreads)) { 4648 // found something in global overflow list; 4649 // not yet ready to go stealing work from others. 4650 // We'd like to assert(work_q->size() != 0, ...) 4651 // because we just took work from the overflow list, 4652 // but of course we can't since all of that could have 4653 // been already stolen from us. 4654 // "He giveth and He taketh away." 4655 continue; 4656 } 4657 // Verify that we have no work before we resort to stealing 4658 assert(work_q->size() == 0, "Have work, shouldn't steal"); 4659 // Try to steal from other queues that have work 4660 if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) { 4661 NOT_PRODUCT(num_steals++;) 4662 assert(oopDesc::is_oop(obj_to_scan), "Oops, not an oop!"); 4663 assert(bm->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?"); 4664 // Do scanning work 4665 obj_to_scan->oop_iterate(cl); 4666 // Loop around, finish this work, and try to steal some more 4667 } else if (terminator()->offer_termination()) { 4668 break; // nirvana from the infinite cycle 4669 } 4670 } 4671 log_develop_trace(gc, task)("\t(%d: stole %d oops)", i, num_steals); 4672 assert(work_q->size() == 0 && _collector->overflow_list_is_empty(), 4673 "Else our work is not yet done"); 4674 } 4675 4676 // Record object boundaries in _eden_chunk_array by sampling the eden 4677 // top in the slow-path eden object allocation code path and record 4678 // the boundaries, if CMSEdenChunksRecordAlways is true. If 4679 // CMSEdenChunksRecordAlways is false, we use the other asynchronous 4680 // sampling in sample_eden() that activates during the part of the 4681 // preclean phase. 4682 void CMSCollector::sample_eden_chunk() { 4683 if (CMSEdenChunksRecordAlways && _eden_chunk_array != NULL) { 4684 if (_eden_chunk_lock->try_lock()) { 4685 // Record a sample. This is the critical section. The contents 4686 // of the _eden_chunk_array have to be non-decreasing in the 4687 // address order. 4688 _eden_chunk_array[_eden_chunk_index] = *_top_addr; 4689 assert(_eden_chunk_array[_eden_chunk_index] <= *_end_addr, 4690 "Unexpected state of Eden"); 4691 if (_eden_chunk_index == 0 || 4692 ((_eden_chunk_array[_eden_chunk_index] > _eden_chunk_array[_eden_chunk_index-1]) && 4693 (pointer_delta(_eden_chunk_array[_eden_chunk_index], 4694 _eden_chunk_array[_eden_chunk_index-1]) >= CMSSamplingGrain))) { 4695 _eden_chunk_index++; // commit sample 4696 } 4697 _eden_chunk_lock->unlock(); 4698 } 4699 } 4700 } 4701 4702 // Return a thread-local PLAB recording array, as appropriate. 4703 void* CMSCollector::get_data_recorder(int thr_num) { 4704 if (_survivor_plab_array != NULL && 4705 (CMSPLABRecordAlways || 4706 (_collectorState > Marking && _collectorState < FinalMarking))) { 4707 assert(thr_num < (int)ParallelGCThreads, "thr_num is out of bounds"); 4708 ChunkArray* ca = &_survivor_plab_array[thr_num]; 4709 ca->reset(); // clear it so that fresh data is recorded 4710 return (void*) ca; 4711 } else { 4712 return NULL; 4713 } 4714 } 4715 4716 // Reset all the thread-local PLAB recording arrays 4717 void CMSCollector::reset_survivor_plab_arrays() { 4718 for (uint i = 0; i < ParallelGCThreads; i++) { 4719 _survivor_plab_array[i].reset(); 4720 } 4721 } 4722 4723 // Merge the per-thread plab arrays into the global survivor chunk 4724 // array which will provide the partitioning of the survivor space 4725 // for CMS initial scan and rescan. 4726 void CMSCollector::merge_survivor_plab_arrays(ContiguousSpace* surv, 4727 int no_of_gc_threads) { 4728 assert(_survivor_plab_array != NULL, "Error"); 4729 assert(_survivor_chunk_array != NULL, "Error"); 4730 assert(_collectorState == FinalMarking || 4731 (CMSParallelInitialMarkEnabled && _collectorState == InitialMarking), "Error"); 4732 for (int j = 0; j < no_of_gc_threads; j++) { 4733 _cursor[j] = 0; 4734 } 4735 HeapWord* top = surv->top(); 4736 size_t i; 4737 for (i = 0; i < _survivor_chunk_capacity; i++) { // all sca entries 4738 HeapWord* min_val = top; // Higher than any PLAB address 4739 uint min_tid = 0; // position of min_val this round 4740 for (int j = 0; j < no_of_gc_threads; j++) { 4741 ChunkArray* cur_sca = &_survivor_plab_array[j]; 4742 if (_cursor[j] == cur_sca->end()) { 4743 continue; 4744 } 4745 assert(_cursor[j] < cur_sca->end(), "ctl pt invariant"); 4746 HeapWord* cur_val = cur_sca->nth(_cursor[j]); 4747 assert(surv->used_region().contains(cur_val), "Out of bounds value"); 4748 if (cur_val < min_val) { 4749 min_tid = j; 4750 min_val = cur_val; 4751 } else { 4752 assert(cur_val < top, "All recorded addresses should be less"); 4753 } 4754 } 4755 // At this point min_val and min_tid are respectively 4756 // the least address in _survivor_plab_array[j]->nth(_cursor[j]) 4757 // and the thread (j) that witnesses that address. 4758 // We record this address in the _survivor_chunk_array[i] 4759 // and increment _cursor[min_tid] prior to the next round i. 4760 if (min_val == top) { 4761 break; 4762 } 4763 _survivor_chunk_array[i] = min_val; 4764 _cursor[min_tid]++; 4765 } 4766 // We are all done; record the size of the _survivor_chunk_array 4767 _survivor_chunk_index = i; // exclusive: [0, i) 4768 log_trace(gc, survivor)(" (Survivor:" SIZE_FORMAT "chunks) ", i); 4769 // Verify that we used up all the recorded entries 4770 #ifdef ASSERT 4771 size_t total = 0; 4772 for (int j = 0; j < no_of_gc_threads; j++) { 4773 assert(_cursor[j] == _survivor_plab_array[j].end(), "Ctl pt invariant"); 4774 total += _cursor[j]; 4775 } 4776 assert(total == _survivor_chunk_index, "Ctl Pt Invariant"); 4777 // Check that the merged array is in sorted order 4778 if (total > 0) { 4779 for (size_t i = 0; i < total - 1; i++) { 4780 log_develop_trace(gc, survivor)(" (chunk" SIZE_FORMAT ":" INTPTR_FORMAT ") ", 4781 i, p2i(_survivor_chunk_array[i])); 4782 assert(_survivor_chunk_array[i] < _survivor_chunk_array[i+1], 4783 "Not sorted"); 4784 } 4785 } 4786 #endif // ASSERT 4787 } 4788 4789 // Set up the space's par_seq_tasks structure for work claiming 4790 // for parallel initial scan and rescan of young gen. 4791 // See ParRescanTask where this is currently used. 4792 void 4793 CMSCollector:: 4794 initialize_sequential_subtasks_for_young_gen_rescan(int n_threads) { 4795 assert(n_threads > 0, "Unexpected n_threads argument"); 4796 4797 // Eden space 4798 if (!_young_gen->eden()->is_empty()) { 4799 SequentialSubTasksDone* pst = _young_gen->eden()->par_seq_tasks(); 4800 assert(!pst->valid(), "Clobbering existing data?"); 4801 // Each valid entry in [0, _eden_chunk_index) represents a task. 4802 size_t n_tasks = _eden_chunk_index + 1; 4803 assert(n_tasks == 1 || _eden_chunk_array != NULL, "Error"); 4804 // Sets the condition for completion of the subtask (how many threads 4805 // need to finish in order to be done). 4806 pst->set_n_threads(n_threads); 4807 pst->set_n_tasks((int)n_tasks); 4808 } 4809 4810 // Merge the survivor plab arrays into _survivor_chunk_array 4811 if (_survivor_plab_array != NULL) { 4812 merge_survivor_plab_arrays(_young_gen->from(), n_threads); 4813 } else { 4814 assert(_survivor_chunk_index == 0, "Error"); 4815 } 4816 4817 // To space 4818 { 4819 SequentialSubTasksDone* pst = _young_gen->to()->par_seq_tasks(); 4820 assert(!pst->valid(), "Clobbering existing data?"); 4821 // Sets the condition for completion of the subtask (how many threads 4822 // need to finish in order to be done). 4823 pst->set_n_threads(n_threads); 4824 pst->set_n_tasks(1); 4825 assert(pst->valid(), "Error"); 4826 } 4827 4828 // From space 4829 { 4830 SequentialSubTasksDone* pst = _young_gen->from()->par_seq_tasks(); 4831 assert(!pst->valid(), "Clobbering existing data?"); 4832 size_t n_tasks = _survivor_chunk_index + 1; 4833 assert(n_tasks == 1 || _survivor_chunk_array != NULL, "Error"); 4834 // Sets the condition for completion of the subtask (how many threads 4835 // need to finish in order to be done). 4836 pst->set_n_threads(n_threads); 4837 pst->set_n_tasks((int)n_tasks); 4838 assert(pst->valid(), "Error"); 4839 } 4840 } 4841 4842 // Parallel version of remark 4843 void CMSCollector::do_remark_parallel() { 4844 CMSHeap* heap = CMSHeap::heap(); 4845 WorkGang* workers = heap->workers(); 4846 assert(workers != NULL, "Need parallel worker threads."); 4847 // Choose to use the number of GC workers most recently set 4848 // into "active_workers". 4849 uint n_workers = workers->active_workers(); 4850 4851 CompactibleFreeListSpace* cms_space = _cmsGen->cmsSpace(); 4852 4853 StrongRootsScope srs(n_workers); 4854 4855 CMSParRemarkTask tsk(this, cms_space, n_workers, workers, task_queues(), &srs); 4856 4857 // We won't be iterating over the cards in the card table updating 4858 // the younger_gen cards, so we shouldn't call the following else 4859 // the verification code as well as subsequent younger_refs_iterate 4860 // code would get confused. XXX 4861 // heap->rem_set()->prepare_for_younger_refs_iterate(true); // parallel 4862 4863 // The young gen rescan work will not be done as part of 4864 // process_roots (which currently doesn't know how to 4865 // parallelize such a scan), but rather will be broken up into 4866 // a set of parallel tasks (via the sampling that the [abortable] 4867 // preclean phase did of eden, plus the [two] tasks of 4868 // scanning the [two] survivor spaces. Further fine-grain 4869 // parallelization of the scanning of the survivor spaces 4870 // themselves, and of precleaning of the young gen itself 4871 // is deferred to the future. 4872 initialize_sequential_subtasks_for_young_gen_rescan(n_workers); 4873 4874 // The dirty card rescan work is broken up into a "sequence" 4875 // of parallel tasks (per constituent space) that are dynamically 4876 // claimed by the parallel threads. 4877 cms_space->initialize_sequential_subtasks_for_rescan(n_workers); 4878 4879 // It turns out that even when we're using 1 thread, doing the work in a 4880 // separate thread causes wide variance in run times. We can't help this 4881 // in the multi-threaded case, but we special-case n=1 here to get 4882 // repeatable measurements of the 1-thread overhead of the parallel code. 4883 if (n_workers > 1) { 4884 // Make refs discovery MT-safe, if it isn't already: it may not 4885 // necessarily be so, since it's possible that we are doing 4886 // ST marking. 4887 ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), true); 4888 workers->run_task(&tsk); 4889 } else { 4890 ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), false); 4891 tsk.work(0); 4892 } 4893 4894 // restore, single-threaded for now, any preserved marks 4895 // as a result of work_q overflow 4896 restore_preserved_marks_if_any(); 4897 } 4898 4899 // Non-parallel version of remark 4900 void CMSCollector::do_remark_non_parallel() { 4901 ResourceMark rm; 4902 HandleMark hm; 4903 CMSHeap* heap = CMSHeap::heap(); 4904 ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), false); 4905 4906 MarkRefsIntoAndScanClosure 4907 mrias_cl(_span, ref_processor(), &_markBitMap, NULL /* not precleaning */, 4908 &_markStack, this, 4909 false /* should_yield */, false /* not precleaning */); 4910 MarkFromDirtyCardsClosure 4911 markFromDirtyCardsClosure(this, _span, 4912 NULL, // space is set further below 4913 &_markBitMap, &_markStack, &mrias_cl); 4914 { 4915 GCTraceTime(Trace, gc, phases) t("Grey Object Rescan", _gc_timer_cm); 4916 // Iterate over the dirty cards, setting the corresponding bits in the 4917 // mod union table. 4918 { 4919 ModUnionClosure modUnionClosure(&_modUnionTable); 4920 _ct->dirty_card_iterate(_cmsGen->used_region(), 4921 &modUnionClosure); 4922 } 4923 // Having transferred these marks into the modUnionTable, we just need 4924 // to rescan the marked objects on the dirty cards in the modUnionTable. 4925 // The initial marking may have been done during an asynchronous 4926 // collection so there may be dirty bits in the mod-union table. 4927 const int alignment = CardTable::card_size * BitsPerWord; 4928 { 4929 // ... First handle dirty cards in CMS gen 4930 markFromDirtyCardsClosure.set_space(_cmsGen->cmsSpace()); 4931 MemRegion ur = _cmsGen->used_region(); 4932 HeapWord* lb = ur.start(); 4933 HeapWord* ub = align_up(ur.end(), alignment); 4934 MemRegion cms_span(lb, ub); 4935 _modUnionTable.dirty_range_iterate_clear(cms_span, 4936 &markFromDirtyCardsClosure); 4937 verify_work_stacks_empty(); 4938 log_trace(gc)(" (re-scanned " SIZE_FORMAT " dirty cards in cms gen) ", markFromDirtyCardsClosure.num_dirty_cards()); 4939 } 4940 } 4941 if (VerifyDuringGC && 4942 CMSHeap::heap()->total_collections() >= VerifyGCStartAt) { 4943 HandleMark hm; // Discard invalid handles created during verification 4944 Universe::verify(); 4945 } 4946 { 4947 GCTraceTime(Trace, gc, phases) t("Root Rescan", _gc_timer_cm); 4948 4949 verify_work_stacks_empty(); 4950 4951 heap->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel. 4952 StrongRootsScope srs(1); 4953 4954 heap->cms_process_roots(&srs, 4955 true, // young gen as roots 4956 GenCollectedHeap::ScanningOption(roots_scanning_options()), 4957 should_unload_classes(), 4958 &mrias_cl, 4959 NULL); // The dirty klasses will be handled below 4960 4961 assert(should_unload_classes() 4962 || (roots_scanning_options() & GenCollectedHeap::SO_AllCodeCache), 4963 "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops"); 4964 } 4965 4966 { 4967 GCTraceTime(Trace, gc, phases) t("Visit Unhandled CLDs", _gc_timer_cm); 4968 4969 verify_work_stacks_empty(); 4970 4971 // Scan all class loader data objects that might have been introduced 4972 // during concurrent marking. 4973 ResourceMark rm; 4974 GrowableArray<ClassLoaderData*>* array = ClassLoaderDataGraph::new_clds(); 4975 for (int i = 0; i < array->length(); i++) { 4976 mrias_cl.do_cld_nv(array->at(i)); 4977 } 4978 4979 // We don't need to keep track of new CLDs anymore. 4980 ClassLoaderDataGraph::remember_new_clds(false); 4981 4982 verify_work_stacks_empty(); 4983 } 4984 4985 // We might have added oops to ClassLoaderData::_handles during the 4986 // concurrent marking phase. These oops do not point to newly allocated objects 4987 // that are guaranteed to be kept alive. Hence, 4988 // we do have to revisit the _handles block during the remark phase. 4989 { 4990 GCTraceTime(Trace, gc, phases) t("Dirty CLD Scan", _gc_timer_cm); 4991 4992 verify_work_stacks_empty(); 4993 4994 RemarkCLDClosure remark_closure(&mrias_cl); 4995 ClassLoaderDataGraph::cld_do(&remark_closure); 4996 4997 verify_work_stacks_empty(); 4998 } 4999 5000 verify_work_stacks_empty(); 5001 // Restore evacuated mark words, if any, used for overflow list links 5002 restore_preserved_marks_if_any(); 5003 5004 verify_overflow_empty(); 5005 } 5006 5007 //////////////////////////////////////////////////////// 5008 // Parallel Reference Processing Task Proxy Class 5009 //////////////////////////////////////////////////////// 5010 class AbstractGangTaskWOopQueues : public AbstractGangTask { 5011 OopTaskQueueSet* _queues; 5012 ParallelTaskTerminator _terminator; 5013 public: 5014 AbstractGangTaskWOopQueues(const char* name, OopTaskQueueSet* queues, uint n_threads) : 5015 AbstractGangTask(name), _queues(queues), _terminator(n_threads, _queues) {} 5016 ParallelTaskTerminator* terminator() { return &_terminator; } 5017 OopTaskQueueSet* queues() { return _queues; } 5018 }; 5019 5020 class CMSRefProcTaskProxy: public AbstractGangTaskWOopQueues { 5021 typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask; 5022 CMSCollector* _collector; 5023 CMSBitMap* _mark_bit_map; 5024 const MemRegion _span; 5025 ProcessTask& _task; 5026 5027 public: 5028 CMSRefProcTaskProxy(ProcessTask& task, 5029 CMSCollector* collector, 5030 const MemRegion& span, 5031 CMSBitMap* mark_bit_map, 5032 AbstractWorkGang* workers, 5033 OopTaskQueueSet* task_queues): 5034 AbstractGangTaskWOopQueues("Process referents by policy in parallel", 5035 task_queues, 5036 workers->active_workers()), 5037 _task(task), 5038 _collector(collector), _span(span), _mark_bit_map(mark_bit_map) 5039 { 5040 assert(_collector->_span.equals(_span) && !_span.is_empty(), 5041 "Inconsistency in _span"); 5042 } 5043 5044 OopTaskQueueSet* task_queues() { return queues(); } 5045 5046 OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); } 5047 5048 void do_work_steal(int i, 5049 CMSParDrainMarkingStackClosure* drain, 5050 CMSParKeepAliveClosure* keep_alive, 5051 int* seed); 5052 5053 virtual void work(uint worker_id); 5054 }; 5055 5056 void CMSRefProcTaskProxy::work(uint worker_id) { 5057 ResourceMark rm; 5058 HandleMark hm; 5059 assert(_collector->_span.equals(_span), "Inconsistency in _span"); 5060 CMSParKeepAliveClosure par_keep_alive(_collector, _span, 5061 _mark_bit_map, 5062 work_queue(worker_id)); 5063 CMSParDrainMarkingStackClosure par_drain_stack(_collector, _span, 5064 _mark_bit_map, 5065 work_queue(worker_id)); 5066 CMSIsAliveClosure is_alive_closure(_span, _mark_bit_map); 5067 _task.work(worker_id, is_alive_closure, par_keep_alive, par_drain_stack); 5068 if (_task.marks_oops_alive()) { 5069 do_work_steal(worker_id, &par_drain_stack, &par_keep_alive, 5070 _collector->hash_seed(worker_id)); 5071 } 5072 assert(work_queue(worker_id)->size() == 0, "work_queue should be empty"); 5073 assert(_collector->_overflow_list == NULL, "non-empty _overflow_list"); 5074 } 5075 5076 class CMSRefEnqueueTaskProxy: public AbstractGangTask { 5077 typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask; 5078 EnqueueTask& _task; 5079 5080 public: 5081 CMSRefEnqueueTaskProxy(EnqueueTask& task) 5082 : AbstractGangTask("Enqueue reference objects in parallel"), 5083 _task(task) 5084 { } 5085 5086 virtual void work(uint worker_id) 5087 { 5088 _task.work(worker_id); 5089 } 5090 }; 5091 5092 CMSParKeepAliveClosure::CMSParKeepAliveClosure(CMSCollector* collector, 5093 MemRegion span, CMSBitMap* bit_map, OopTaskQueue* work_queue): 5094 _span(span), 5095 _bit_map(bit_map), 5096 _work_queue(work_queue), 5097 _mark_and_push(collector, span, bit_map, work_queue), 5098 _low_water_mark(MIN2((work_queue->max_elems()/4), 5099 ((uint)CMSWorkQueueDrainThreshold * ParallelGCThreads))) 5100 { } 5101 5102 // . see if we can share work_queues with ParNew? XXX 5103 void CMSRefProcTaskProxy::do_work_steal(int i, 5104 CMSParDrainMarkingStackClosure* drain, 5105 CMSParKeepAliveClosure* keep_alive, 5106 int* seed) { 5107 OopTaskQueue* work_q = work_queue(i); 5108 NOT_PRODUCT(int num_steals = 0;) 5109 oop obj_to_scan; 5110 5111 while (true) { 5112 // Completely finish any left over work from (an) earlier round(s) 5113 drain->trim_queue(0); 5114 size_t num_from_overflow_list = MIN2((size_t)(work_q->max_elems() - work_q->size())/4, 5115 (size_t)ParGCDesiredObjsFromOverflowList); 5116 // Now check if there's any work in the overflow list 5117 // Passing ParallelGCThreads as the third parameter, no_of_gc_threads, 5118 // only affects the number of attempts made to get work from the 5119 // overflow list and does not affect the number of workers. Just 5120 // pass ParallelGCThreads so this behavior is unchanged. 5121 if (_collector->par_take_from_overflow_list(num_from_overflow_list, 5122 work_q, 5123 ParallelGCThreads)) { 5124 // Found something in global overflow list; 5125 // not yet ready to go stealing work from others. 5126 // We'd like to assert(work_q->size() != 0, ...) 5127 // because we just took work from the overflow list, 5128 // but of course we can't, since all of that might have 5129 // been already stolen from us. 5130 continue; 5131 } 5132 // Verify that we have no work before we resort to stealing 5133 assert(work_q->size() == 0, "Have work, shouldn't steal"); 5134 // Try to steal from other queues that have work 5135 if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) { 5136 NOT_PRODUCT(num_steals++;) 5137 assert(oopDesc::is_oop(obj_to_scan), "Oops, not an oop!"); 5138 assert(_mark_bit_map->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?"); 5139 // Do scanning work 5140 obj_to_scan->oop_iterate(keep_alive); 5141 // Loop around, finish this work, and try to steal some more 5142 } else if (terminator()->offer_termination()) { 5143 break; // nirvana from the infinite cycle 5144 } 5145 } 5146 log_develop_trace(gc, task)("\t(%d: stole %d oops)", i, num_steals); 5147 } 5148 5149 void CMSRefProcTaskExecutor::execute(ProcessTask& task) 5150 { 5151 CMSHeap* heap = CMSHeap::heap(); 5152 WorkGang* workers = heap->workers(); 5153 assert(workers != NULL, "Need parallel worker threads."); 5154 CMSRefProcTaskProxy rp_task(task, &_collector, 5155 _collector.ref_processor()->span(), 5156 _collector.markBitMap(), 5157 workers, _collector.task_queues()); 5158 workers->run_task(&rp_task); 5159 } 5160 5161 void CMSRefProcTaskExecutor::execute(EnqueueTask& task) 5162 { 5163 5164 CMSHeap* heap = CMSHeap::heap(); 5165 WorkGang* workers = heap->workers(); 5166 assert(workers != NULL, "Need parallel worker threads."); 5167 CMSRefEnqueueTaskProxy enq_task(task); 5168 workers->run_task(&enq_task); 5169 } 5170 5171 void CMSCollector::refProcessingWork() { 5172 ResourceMark rm; 5173 HandleMark hm; 5174 5175 ReferenceProcessor* rp = ref_processor(); 5176 assert(rp->span().equals(_span), "Spans should be equal"); 5177 assert(!rp->enqueuing_is_done(), "Enqueuing should not be complete"); 5178 // Process weak references. 5179 rp->setup_policy(false); 5180 verify_work_stacks_empty(); 5181 5182 ReferenceProcessorPhaseTimes pt(_gc_timer_cm, rp->num_q()); 5183 { 5184 GCTraceTime(Debug, gc, phases) t("Reference Processing", _gc_timer_cm); 5185 5186 // Setup keep_alive and complete closures. 5187 CMSKeepAliveClosure cmsKeepAliveClosure(this, _span, &_markBitMap, 5188 &_markStack, false /* !preclean */); 5189 CMSDrainMarkingStackClosure cmsDrainMarkingStackClosure(this, 5190 _span, &_markBitMap, &_markStack, 5191 &cmsKeepAliveClosure, false /* !preclean */); 5192 5193 ReferenceProcessorStats stats; 5194 if (rp->processing_is_mt()) { 5195 // Set the degree of MT here. If the discovery is done MT, there 5196 // may have been a different number of threads doing the discovery 5197 // and a different number of discovered lists may have Ref objects. 5198 // That is OK as long as the Reference lists are balanced (see 5199 // balance_all_queues() and balance_queues()). 5200 CMSHeap* heap = CMSHeap::heap(); 5201 uint active_workers = ParallelGCThreads; 5202 WorkGang* workers = heap->workers(); 5203 if (workers != NULL) { 5204 active_workers = workers->active_workers(); 5205 // The expectation is that active_workers will have already 5206 // been set to a reasonable value. If it has not been set, 5207 // investigate. 5208 assert(active_workers > 0, "Should have been set during scavenge"); 5209 } 5210 rp->set_active_mt_degree(active_workers); 5211 CMSRefProcTaskExecutor task_executor(*this); 5212 stats = rp->process_discovered_references(&_is_alive_closure, 5213 &cmsKeepAliveClosure, 5214 &cmsDrainMarkingStackClosure, 5215 &task_executor, 5216 &pt); 5217 } else { 5218 stats = rp->process_discovered_references(&_is_alive_closure, 5219 &cmsKeepAliveClosure, 5220 &cmsDrainMarkingStackClosure, 5221 NULL, 5222 &pt); 5223 } 5224 _gc_tracer_cm->report_gc_reference_stats(stats); 5225 pt.print_all_references(); 5226 } 5227 5228 // This is the point where the entire marking should have completed. 5229 verify_work_stacks_empty(); 5230 5231 { 5232 GCTraceTime(Debug, gc, phases) t("Weak Processing", _gc_timer_cm); 5233 WeakProcessor::weak_oops_do(&_is_alive_closure, &do_nothing_cl); 5234 } 5235 5236 if (should_unload_classes()) { 5237 { 5238 GCTraceTime(Debug, gc, phases) t("Class Unloading", _gc_timer_cm); 5239 5240 // Unload classes and purge the SystemDictionary. 5241 bool purged_class = SystemDictionary::do_unloading(&_is_alive_closure, _gc_timer_cm); 5242 5243 // Unload nmethods. 5244 CodeCache::do_unloading(&_is_alive_closure, purged_class); 5245 5246 // Prune dead klasses from subklass/sibling/implementor lists. 5247 Klass::clean_weak_klass_links(&_is_alive_closure); 5248 } 5249 5250 { 5251 GCTraceTime(Debug, gc, phases) t("Scrub Symbol Table", _gc_timer_cm); 5252 // Clean up unreferenced symbols in symbol table. 5253 SymbolTable::unlink(); 5254 } 5255 5256 { 5257 GCTraceTime(Debug, gc, phases) t("Scrub String Table", _gc_timer_cm); 5258 // Delete entries for dead interned strings. 5259 StringTable::unlink(&_is_alive_closure); 5260 } 5261 } 5262 5263 // Restore any preserved marks as a result of mark stack or 5264 // work queue overflow 5265 restore_preserved_marks_if_any(); // done single-threaded for now 5266 5267 rp->set_enqueuing_is_done(true); 5268 if (rp->processing_is_mt()) { 5269 rp->balance_all_queues(); 5270 CMSRefProcTaskExecutor task_executor(*this); 5271 rp->enqueue_discovered_references(&task_executor, &pt); 5272 } else { 5273 rp->enqueue_discovered_references(NULL, &pt); 5274 } 5275 rp->verify_no_references_recorded(); 5276 pt.print_enqueue_phase(); 5277 assert(!rp->discovery_enabled(), "should have been disabled"); 5278 } 5279 5280 #ifndef PRODUCT 5281 void CMSCollector::check_correct_thread_executing() { 5282 Thread* t = Thread::current(); 5283 // Only the VM thread or the CMS thread should be here. 5284 assert(t->is_ConcurrentGC_thread() || t->is_VM_thread(), 5285 "Unexpected thread type"); 5286 // If this is the vm thread, the foreground process 5287 // should not be waiting. Note that _foregroundGCIsActive is 5288 // true while the foreground collector is waiting. 5289 if (_foregroundGCShouldWait) { 5290 // We cannot be the VM thread 5291 assert(t->is_ConcurrentGC_thread(), 5292 "Should be CMS thread"); 5293 } else { 5294 // We can be the CMS thread only if we are in a stop-world 5295 // phase of CMS collection. 5296 if (t->is_ConcurrentGC_thread()) { 5297 assert(_collectorState == InitialMarking || 5298 _collectorState == FinalMarking, 5299 "Should be a stop-world phase"); 5300 // The CMS thread should be holding the CMS_token. 5301 assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(), 5302 "Potential interference with concurrently " 5303 "executing VM thread"); 5304 } 5305 } 5306 } 5307 #endif 5308 5309 void CMSCollector::sweep() { 5310 assert(_collectorState == Sweeping, "just checking"); 5311 check_correct_thread_executing(); 5312 verify_work_stacks_empty(); 5313 verify_overflow_empty(); 5314 increment_sweep_count(); 5315 TraceCMSMemoryManagerStats tms(_collectorState, CMSHeap::heap()->gc_cause()); 5316 5317 _inter_sweep_timer.stop(); 5318 _inter_sweep_estimate.sample(_inter_sweep_timer.seconds()); 5319 5320 assert(!_intra_sweep_timer.is_active(), "Should not be active"); 5321 _intra_sweep_timer.reset(); 5322 _intra_sweep_timer.start(); 5323 { 5324 GCTraceCPUTime tcpu; 5325 CMSPhaseAccounting pa(this, "Concurrent Sweep"); 5326 // First sweep the old gen 5327 { 5328 CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock(), 5329 bitMapLock()); 5330 sweepWork(_cmsGen); 5331 } 5332 5333 // Update Universe::_heap_*_at_gc figures. 5334 // We need all the free list locks to make the abstract state 5335 // transition from Sweeping to Resetting. See detailed note 5336 // further below. 5337 { 5338 CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock()); 5339 // Update heap occupancy information which is used as 5340 // input to soft ref clearing policy at the next gc. 5341 Universe::update_heap_info_at_gc(); 5342 _collectorState = Resizing; 5343 } 5344 } 5345 verify_work_stacks_empty(); 5346 verify_overflow_empty(); 5347 5348 if (should_unload_classes()) { 5349 // Delay purge to the beginning of the next safepoint. Metaspace::contains 5350 // requires that the virtual spaces are stable and not deleted. 5351 ClassLoaderDataGraph::set_should_purge(true); 5352 } 5353 5354 _intra_sweep_timer.stop(); 5355 _intra_sweep_estimate.sample(_intra_sweep_timer.seconds()); 5356 5357 _inter_sweep_timer.reset(); 5358 _inter_sweep_timer.start(); 5359 5360 // We need to use a monotonically non-decreasing time in ms 5361 // or we will see time-warp warnings and os::javaTimeMillis() 5362 // does not guarantee monotonicity. 5363 jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC; 5364 update_time_of_last_gc(now); 5365 5366 // NOTE on abstract state transitions: 5367 // Mutators allocate-live and/or mark the mod-union table dirty 5368 // based on the state of the collection. The former is done in 5369 // the interval [Marking, Sweeping] and the latter in the interval 5370 // [Marking, Sweeping). Thus the transitions into the Marking state 5371 // and out of the Sweeping state must be synchronously visible 5372 // globally to the mutators. 5373 // The transition into the Marking state happens with the world 5374 // stopped so the mutators will globally see it. Sweeping is 5375 // done asynchronously by the background collector so the transition 5376 // from the Sweeping state to the Resizing state must be done 5377 // under the freelistLock (as is the check for whether to 5378 // allocate-live and whether to dirty the mod-union table). 5379 assert(_collectorState == Resizing, "Change of collector state to" 5380 " Resizing must be done under the freelistLocks (plural)"); 5381 5382 // Now that sweeping has been completed, we clear 5383 // the incremental_collection_failed flag, 5384 // thus inviting a younger gen collection to promote into 5385 // this generation. If such a promotion may still fail, 5386 // the flag will be set again when a young collection is 5387 // attempted. 5388 CMSHeap* heap = CMSHeap::heap(); 5389 heap->clear_incremental_collection_failed(); // Worth retrying as fresh space may have been freed up 5390 heap->update_full_collections_completed(_collection_count_start); 5391 } 5392 5393 // FIX ME!!! Looks like this belongs in CFLSpace, with 5394 // CMSGen merely delegating to it. 5395 void ConcurrentMarkSweepGeneration::setNearLargestChunk() { 5396 double nearLargestPercent = FLSLargestBlockCoalesceProximity; 5397 HeapWord* minAddr = _cmsSpace->bottom(); 5398 HeapWord* largestAddr = 5399 (HeapWord*) _cmsSpace->dictionary()->find_largest_dict(); 5400 if (largestAddr == NULL) { 5401 // The dictionary appears to be empty. In this case 5402 // try to coalesce at the end of the heap. 5403 largestAddr = _cmsSpace->end(); 5404 } 5405 size_t largestOffset = pointer_delta(largestAddr, minAddr); 5406 size_t nearLargestOffset = 5407 (size_t)((double)largestOffset * nearLargestPercent) - MinChunkSize; 5408 log_debug(gc, freelist)("CMS: Large Block: " PTR_FORMAT "; Proximity: " PTR_FORMAT " -> " PTR_FORMAT, 5409 p2i(largestAddr), p2i(_cmsSpace->nearLargestChunk()), p2i(minAddr + nearLargestOffset)); 5410 _cmsSpace->set_nearLargestChunk(minAddr + nearLargestOffset); 5411 } 5412 5413 bool ConcurrentMarkSweepGeneration::isNearLargestChunk(HeapWord* addr) { 5414 return addr >= _cmsSpace->nearLargestChunk(); 5415 } 5416 5417 FreeChunk* ConcurrentMarkSweepGeneration::find_chunk_at_end() { 5418 return _cmsSpace->find_chunk_at_end(); 5419 } 5420 5421 void ConcurrentMarkSweepGeneration::update_gc_stats(Generation* current_generation, 5422 bool full) { 5423 // If the young generation has been collected, gather any statistics 5424 // that are of interest at this point. 5425 bool current_is_young = CMSHeap::heap()->is_young_gen(current_generation); 5426 if (!full && current_is_young) { 5427 // Gather statistics on the young generation collection. 5428 collector()->stats().record_gc0_end(used()); 5429 } 5430 } 5431 5432 void CMSCollector::sweepWork(ConcurrentMarkSweepGeneration* old_gen) { 5433 // We iterate over the space(s) underlying this generation, 5434 // checking the mark bit map to see if the bits corresponding 5435 // to specific blocks are marked or not. Blocks that are 5436 // marked are live and are not swept up. All remaining blocks 5437 // are swept up, with coalescing on-the-fly as we sweep up 5438 // contiguous free and/or garbage blocks: 5439 // We need to ensure that the sweeper synchronizes with allocators 5440 // and stop-the-world collectors. In particular, the following 5441 // locks are used: 5442 // . CMS token: if this is held, a stop the world collection cannot occur 5443 // . freelistLock: if this is held no allocation can occur from this 5444 // generation by another thread 5445 // . bitMapLock: if this is held, no other thread can access or update 5446 // 5447 5448 // Note that we need to hold the freelistLock if we use 5449 // block iterate below; else the iterator might go awry if 5450 // a mutator (or promotion) causes block contents to change 5451 // (for instance if the allocator divvies up a block). 5452 // If we hold the free list lock, for all practical purposes 5453 // young generation GC's can't occur (they'll usually need to 5454 // promote), so we might as well prevent all young generation 5455 // GC's while we do a sweeping step. For the same reason, we might 5456 // as well take the bit map lock for the entire duration 5457 5458 // check that we hold the requisite locks 5459 assert(have_cms_token(), "Should hold cms token"); 5460 assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(), "Should possess CMS token to sweep"); 5461 assert_lock_strong(old_gen->freelistLock()); 5462 assert_lock_strong(bitMapLock()); 5463 5464 assert(!_inter_sweep_timer.is_active(), "Was switched off in an outer context"); 5465 assert(_intra_sweep_timer.is_active(), "Was switched on in an outer context"); 5466 old_gen->cmsSpace()->beginSweepFLCensus((float)(_inter_sweep_timer.seconds()), 5467 _inter_sweep_estimate.padded_average(), 5468 _intra_sweep_estimate.padded_average()); 5469 old_gen->setNearLargestChunk(); 5470 5471 { 5472 SweepClosure sweepClosure(this, old_gen, &_markBitMap, CMSYield); 5473 old_gen->cmsSpace()->blk_iterate_careful(&sweepClosure); 5474 // We need to free-up/coalesce garbage/blocks from a 5475 // co-terminal free run. This is done in the SweepClosure 5476 // destructor; so, do not remove this scope, else the 5477 // end-of-sweep-census below will be off by a little bit. 5478 } 5479 old_gen->cmsSpace()->sweep_completed(); 5480 old_gen->cmsSpace()->endSweepFLCensus(sweep_count()); 5481 if (should_unload_classes()) { // unloaded classes this cycle, 5482 _concurrent_cycles_since_last_unload = 0; // ... reset count 5483 } else { // did not unload classes, 5484 _concurrent_cycles_since_last_unload++; // ... increment count 5485 } 5486 } 5487 5488 // Reset CMS data structures (for now just the marking bit map) 5489 // preparatory for the next cycle. 5490 void CMSCollector::reset_concurrent() { 5491 CMSTokenSyncWithLocks ts(true, bitMapLock()); 5492 5493 // If the state is not "Resetting", the foreground thread 5494 // has done a collection and the resetting. 5495 if (_collectorState != Resetting) { 5496 assert(_collectorState == Idling, "The state should only change" 5497 " because the foreground collector has finished the collection"); 5498 return; 5499 } 5500 5501 { 5502 // Clear the mark bitmap (no grey objects to start with) 5503 // for the next cycle. 5504 GCTraceCPUTime tcpu; 5505 CMSPhaseAccounting cmspa(this, "Concurrent Reset"); 5506 5507 HeapWord* curAddr = _markBitMap.startWord(); 5508 while (curAddr < _markBitMap.endWord()) { 5509 size_t remaining = pointer_delta(_markBitMap.endWord(), curAddr); 5510 MemRegion chunk(curAddr, MIN2(CMSBitMapYieldQuantum, remaining)); 5511 _markBitMap.clear_large_range(chunk); 5512 if (ConcurrentMarkSweepThread::should_yield() && 5513 !foregroundGCIsActive() && 5514 CMSYield) { 5515 assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(), 5516 "CMS thread should hold CMS token"); 5517 assert_lock_strong(bitMapLock()); 5518 bitMapLock()->unlock(); 5519 ConcurrentMarkSweepThread::desynchronize(true); 5520 stopTimer(); 5521 incrementYields(); 5522 5523 // See the comment in coordinator_yield() 5524 for (unsigned i = 0; i < CMSYieldSleepCount && 5525 ConcurrentMarkSweepThread::should_yield() && 5526 !CMSCollector::foregroundGCIsActive(); ++i) { 5527 os::sleep(Thread::current(), 1, false); 5528 } 5529 5530 ConcurrentMarkSweepThread::synchronize(true); 5531 bitMapLock()->lock_without_safepoint_check(); 5532 startTimer(); 5533 } 5534 curAddr = chunk.end(); 5535 } 5536 // A successful mostly concurrent collection has been done. 5537 // Because only the full (i.e., concurrent mode failure) collections 5538 // are being measured for gc overhead limits, clean the "near" flag 5539 // and count. 5540 size_policy()->reset_gc_overhead_limit_count(); 5541 _collectorState = Idling; 5542 } 5543 5544 register_gc_end(); 5545 } 5546 5547 // Same as above but for STW paths 5548 void CMSCollector::reset_stw() { 5549 // already have the lock 5550 assert(_collectorState == Resetting, "just checking"); 5551 assert_lock_strong(bitMapLock()); 5552 GCIdMark gc_id_mark(_cmsThread->gc_id()); 5553 _markBitMap.clear_all(); 5554 _collectorState = Idling; 5555 register_gc_end(); 5556 } 5557 5558 void CMSCollector::do_CMS_operation(CMS_op_type op, GCCause::Cause gc_cause) { 5559 GCTraceCPUTime tcpu; 5560 TraceCollectorStats tcs_cgc(cgc_counters()); 5561 5562 switch (op) { 5563 case CMS_op_checkpointRootsInitial: { 5564 GCTraceTime(Info, gc) t("Pause Initial Mark", NULL, GCCause::_no_gc, true); 5565 SvcGCMarker sgcm(SvcGCMarker::CONCURRENT); 5566 checkpointRootsInitial(); 5567 break; 5568 } 5569 case CMS_op_checkpointRootsFinal: { 5570 GCTraceTime(Info, gc) t("Pause Remark", NULL, GCCause::_no_gc, true); 5571 SvcGCMarker sgcm(SvcGCMarker::CONCURRENT); 5572 checkpointRootsFinal(); 5573 break; 5574 } 5575 default: 5576 fatal("No such CMS_op"); 5577 } 5578 } 5579 5580 #ifndef PRODUCT 5581 size_t const CMSCollector::skip_header_HeapWords() { 5582 return FreeChunk::header_size(); 5583 } 5584 5585 // Try and collect here conditions that should hold when 5586 // CMS thread is exiting. The idea is that the foreground GC 5587 // thread should not be blocked if it wants to terminate 5588 // the CMS thread and yet continue to run the VM for a while 5589 // after that. 5590 void CMSCollector::verify_ok_to_terminate() const { 5591 assert(Thread::current()->is_ConcurrentGC_thread(), 5592 "should be called by CMS thread"); 5593 assert(!_foregroundGCShouldWait, "should be false"); 5594 // We could check here that all the various low-level locks 5595 // are not held by the CMS thread, but that is overkill; see 5596 // also CMSThread::verify_ok_to_terminate() where the CGC_lock 5597 // is checked. 5598 } 5599 #endif 5600 5601 size_t CMSCollector::block_size_using_printezis_bits(HeapWord* addr) const { 5602 assert(_markBitMap.isMarked(addr) && _markBitMap.isMarked(addr + 1), 5603 "missing Printezis mark?"); 5604 HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2); 5605 size_t size = pointer_delta(nextOneAddr + 1, addr); 5606 assert(size == CompactibleFreeListSpace::adjustObjectSize(size), 5607 "alignment problem"); 5608 assert(size >= 3, "Necessary for Printezis marks to work"); 5609 return size; 5610 } 5611 5612 // A variant of the above (block_size_using_printezis_bits()) except 5613 // that we return 0 if the P-bits are not yet set. 5614 size_t CMSCollector::block_size_if_printezis_bits(HeapWord* addr) const { 5615 if (_markBitMap.isMarked(addr + 1)) { 5616 assert(_markBitMap.isMarked(addr), "P-bit can be set only for marked objects"); 5617 HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2); 5618 size_t size = pointer_delta(nextOneAddr + 1, addr); 5619 assert(size == CompactibleFreeListSpace::adjustObjectSize(size), 5620 "alignment problem"); 5621 assert(size >= 3, "Necessary for Printezis marks to work"); 5622 return size; 5623 } 5624 return 0; 5625 } 5626 5627 HeapWord* CMSCollector::next_card_start_after_block(HeapWord* addr) const { 5628 size_t sz = 0; 5629 oop p = (oop)addr; 5630 if (p->klass_or_null_acquire() != NULL) { 5631 sz = CompactibleFreeListSpace::adjustObjectSize(p->size()); 5632 } else { 5633 sz = block_size_using_printezis_bits(addr); 5634 } 5635 assert(sz > 0, "size must be nonzero"); 5636 HeapWord* next_block = addr + sz; 5637 HeapWord* next_card = align_up(next_block, CardTable::card_size); 5638 assert(align_down((uintptr_t)addr, CardTable::card_size) < 5639 align_down((uintptr_t)next_card, CardTable::card_size), 5640 "must be different cards"); 5641 return next_card; 5642 } 5643 5644 5645 // CMS Bit Map Wrapper ///////////////////////////////////////// 5646 5647 // Construct a CMS bit map infrastructure, but don't create the 5648 // bit vector itself. That is done by a separate call CMSBitMap::allocate() 5649 // further below. 5650 CMSBitMap::CMSBitMap(int shifter, int mutex_rank, const char* mutex_name): 5651 _bm(), 5652 _shifter(shifter), 5653 _lock(mutex_rank >= 0 ? new Mutex(mutex_rank, mutex_name, true, 5654 Monitor::_safepoint_check_sometimes) : NULL) 5655 { 5656 _bmStartWord = 0; 5657 _bmWordSize = 0; 5658 } 5659 5660 bool CMSBitMap::allocate(MemRegion mr) { 5661 _bmStartWord = mr.start(); 5662 _bmWordSize = mr.word_size(); 5663 ReservedSpace brs(ReservedSpace::allocation_align_size_up( 5664 (_bmWordSize >> (_shifter + LogBitsPerByte)) + 1)); 5665 if (!brs.is_reserved()) { 5666 log_warning(gc)("CMS bit map allocation failure"); 5667 return false; 5668 } 5669 // For now we'll just commit all of the bit map up front. 5670 // Later on we'll try to be more parsimonious with swap. 5671 if (!_virtual_space.initialize(brs, brs.size())) { 5672 log_warning(gc)("CMS bit map backing store failure"); 5673 return false; 5674 } 5675 assert(_virtual_space.committed_size() == brs.size(), 5676 "didn't reserve backing store for all of CMS bit map?"); 5677 assert(_virtual_space.committed_size() << (_shifter + LogBitsPerByte) >= 5678 _bmWordSize, "inconsistency in bit map sizing"); 5679 _bm = BitMapView((BitMap::bm_word_t*)_virtual_space.low(), _bmWordSize >> _shifter); 5680 5681 // bm.clear(); // can we rely on getting zero'd memory? verify below 5682 assert(isAllClear(), 5683 "Expected zero'd memory from ReservedSpace constructor"); 5684 assert(_bm.size() == heapWordDiffToOffsetDiff(sizeInWords()), 5685 "consistency check"); 5686 return true; 5687 } 5688 5689 void CMSBitMap::dirty_range_iterate_clear(MemRegion mr, MemRegionClosure* cl) { 5690 HeapWord *next_addr, *end_addr, *last_addr; 5691 assert_locked(); 5692 assert(covers(mr), "out-of-range error"); 5693 // XXX assert that start and end are appropriately aligned 5694 for (next_addr = mr.start(), end_addr = mr.end(); 5695 next_addr < end_addr; next_addr = last_addr) { 5696 MemRegion dirty_region = getAndClearMarkedRegion(next_addr, end_addr); 5697 last_addr = dirty_region.end(); 5698 if (!dirty_region.is_empty()) { 5699 cl->do_MemRegion(dirty_region); 5700 } else { 5701 assert(last_addr == end_addr, "program logic"); 5702 return; 5703 } 5704 } 5705 } 5706 5707 void CMSBitMap::print_on_error(outputStream* st, const char* prefix) const { 5708 _bm.print_on_error(st, prefix); 5709 } 5710 5711 #ifndef PRODUCT 5712 void CMSBitMap::assert_locked() const { 5713 CMSLockVerifier::assert_locked(lock()); 5714 } 5715 5716 bool CMSBitMap::covers(MemRegion mr) const { 5717 // assert(_bm.map() == _virtual_space.low(), "map inconsistency"); 5718 assert((size_t)_bm.size() == (_bmWordSize >> _shifter), 5719 "size inconsistency"); 5720 return (mr.start() >= _bmStartWord) && 5721 (mr.end() <= endWord()); 5722 } 5723 5724 bool CMSBitMap::covers(HeapWord* start, size_t size) const { 5725 return (start >= _bmStartWord && (start + size) <= endWord()); 5726 } 5727 5728 void CMSBitMap::verifyNoOneBitsInRange(HeapWord* left, HeapWord* right) { 5729 // verify that there are no 1 bits in the interval [left, right) 5730 FalseBitMapClosure falseBitMapClosure; 5731 iterate(&falseBitMapClosure, left, right); 5732 } 5733 5734 void CMSBitMap::region_invariant(MemRegion mr) 5735 { 5736 assert_locked(); 5737 // mr = mr.intersection(MemRegion(_bmStartWord, _bmWordSize)); 5738 assert(!mr.is_empty(), "unexpected empty region"); 5739 assert(covers(mr), "mr should be covered by bit map"); 5740 // convert address range into offset range 5741 size_t start_ofs = heapWordToOffset(mr.start()); 5742 // Make sure that end() is appropriately aligned 5743 assert(mr.end() == align_up(mr.end(), (1 << (_shifter+LogHeapWordSize))), 5744 "Misaligned mr.end()"); 5745 size_t end_ofs = heapWordToOffset(mr.end()); 5746 assert(end_ofs > start_ofs, "Should mark at least one bit"); 5747 } 5748 5749 #endif 5750 5751 bool CMSMarkStack::allocate(size_t size) { 5752 // allocate a stack of the requisite depth 5753 ReservedSpace rs(ReservedSpace::allocation_align_size_up( 5754 size * sizeof(oop))); 5755 if (!rs.is_reserved()) { 5756 log_warning(gc)("CMSMarkStack allocation failure"); 5757 return false; 5758 } 5759 if (!_virtual_space.initialize(rs, rs.size())) { 5760 log_warning(gc)("CMSMarkStack backing store failure"); 5761 return false; 5762 } 5763 assert(_virtual_space.committed_size() == rs.size(), 5764 "didn't reserve backing store for all of CMS stack?"); 5765 _base = (oop*)(_virtual_space.low()); 5766 _index = 0; 5767 _capacity = size; 5768 NOT_PRODUCT(_max_depth = 0); 5769 return true; 5770 } 5771 5772 // XXX FIX ME !!! In the MT case we come in here holding a 5773 // leaf lock. For printing we need to take a further lock 5774 // which has lower rank. We need to recalibrate the two 5775 // lock-ranks involved in order to be able to print the 5776 // messages below. (Or defer the printing to the caller. 5777 // For now we take the expedient path of just disabling the 5778 // messages for the problematic case.) 5779 void CMSMarkStack::expand() { 5780 assert(_capacity <= MarkStackSizeMax, "stack bigger than permitted"); 5781 if (_capacity == MarkStackSizeMax) { 5782 if (_hit_limit++ == 0 && !CMSConcurrentMTEnabled) { 5783 // We print a warning message only once per CMS cycle. 5784 log_debug(gc)(" (benign) Hit CMSMarkStack max size limit"); 5785 } 5786 return; 5787 } 5788 // Double capacity if possible 5789 size_t new_capacity = MIN2(_capacity*2, MarkStackSizeMax); 5790 // Do not give up existing stack until we have managed to 5791 // get the double capacity that we desired. 5792 ReservedSpace rs(ReservedSpace::allocation_align_size_up( 5793 new_capacity * sizeof(oop))); 5794 if (rs.is_reserved()) { 5795 // Release the backing store associated with old stack 5796 _virtual_space.release(); 5797 // Reinitialize virtual space for new stack 5798 if (!_virtual_space.initialize(rs, rs.size())) { 5799 fatal("Not enough swap for expanded marking stack"); 5800 } 5801 _base = (oop*)(_virtual_space.low()); 5802 _index = 0; 5803 _capacity = new_capacity; 5804 } else if (_failed_double++ == 0 && !CMSConcurrentMTEnabled) { 5805 // Failed to double capacity, continue; 5806 // we print a detail message only once per CMS cycle. 5807 log_debug(gc)(" (benign) Failed to expand marking stack from " SIZE_FORMAT "K to " SIZE_FORMAT "K", 5808 _capacity / K, new_capacity / K); 5809 } 5810 } 5811 5812 5813 // Closures 5814 // XXX: there seems to be a lot of code duplication here; 5815 // should refactor and consolidate common code. 5816 5817 // This closure is used to mark refs into the CMS generation in 5818 // the CMS bit map. Called at the first checkpoint. This closure 5819 // assumes that we do not need to re-mark dirty cards; if the CMS 5820 // generation on which this is used is not an oldest 5821 // generation then this will lose younger_gen cards! 5822 5823 MarkRefsIntoClosure::MarkRefsIntoClosure( 5824 MemRegion span, CMSBitMap* bitMap): 5825 _span(span), 5826 _bitMap(bitMap) 5827 { 5828 assert(ref_processor() == NULL, "deliberately left NULL"); 5829 assert(_bitMap->covers(_span), "_bitMap/_span mismatch"); 5830 } 5831 5832 void MarkRefsIntoClosure::do_oop(oop obj) { 5833 // if p points into _span, then mark corresponding bit in _markBitMap 5834 assert(oopDesc::is_oop(obj), "expected an oop"); 5835 HeapWord* addr = (HeapWord*)obj; 5836 if (_span.contains(addr)) { 5837 // this should be made more efficient 5838 _bitMap->mark(addr); 5839 } 5840 } 5841 5842 void MarkRefsIntoClosure::do_oop(oop* p) { MarkRefsIntoClosure::do_oop_work(p); } 5843 void MarkRefsIntoClosure::do_oop(narrowOop* p) { MarkRefsIntoClosure::do_oop_work(p); } 5844 5845 ParMarkRefsIntoClosure::ParMarkRefsIntoClosure( 5846 MemRegion span, CMSBitMap* bitMap): 5847 _span(span), 5848 _bitMap(bitMap) 5849 { 5850 assert(ref_processor() == NULL, "deliberately left NULL"); 5851 assert(_bitMap->covers(_span), "_bitMap/_span mismatch"); 5852 } 5853 5854 void ParMarkRefsIntoClosure::do_oop(oop obj) { 5855 // if p points into _span, then mark corresponding bit in _markBitMap 5856 assert(oopDesc::is_oop(obj), "expected an oop"); 5857 HeapWord* addr = (HeapWord*)obj; 5858 if (_span.contains(addr)) { 5859 // this should be made more efficient 5860 _bitMap->par_mark(addr); 5861 } 5862 } 5863 5864 void ParMarkRefsIntoClosure::do_oop(oop* p) { ParMarkRefsIntoClosure::do_oop_work(p); } 5865 void ParMarkRefsIntoClosure::do_oop(narrowOop* p) { ParMarkRefsIntoClosure::do_oop_work(p); } 5866 5867 // A variant of the above, used for CMS marking verification. 5868 MarkRefsIntoVerifyClosure::MarkRefsIntoVerifyClosure( 5869 MemRegion span, CMSBitMap* verification_bm, CMSBitMap* cms_bm): 5870 _span(span), 5871 _verification_bm(verification_bm), 5872 _cms_bm(cms_bm) 5873 { 5874 assert(ref_processor() == NULL, "deliberately left NULL"); 5875 assert(_verification_bm->covers(_span), "_verification_bm/_span mismatch"); 5876 } 5877 5878 void MarkRefsIntoVerifyClosure::do_oop(oop obj) { 5879 // if p points into _span, then mark corresponding bit in _markBitMap 5880 assert(oopDesc::is_oop(obj), "expected an oop"); 5881 HeapWord* addr = (HeapWord*)obj; 5882 if (_span.contains(addr)) { 5883 _verification_bm->mark(addr); 5884 if (!_cms_bm->isMarked(addr)) { 5885 Log(gc, verify) log; 5886 ResourceMark rm; 5887 LogStream ls(log.error()); 5888 oop(addr)->print_on(&ls); 5889 log.error(" (" INTPTR_FORMAT " should have been marked)", p2i(addr)); 5890 fatal("... aborting"); 5891 } 5892 } 5893 } 5894 5895 void MarkRefsIntoVerifyClosure::do_oop(oop* p) { MarkRefsIntoVerifyClosure::do_oop_work(p); } 5896 void MarkRefsIntoVerifyClosure::do_oop(narrowOop* p) { MarkRefsIntoVerifyClosure::do_oop_work(p); } 5897 5898 ////////////////////////////////////////////////// 5899 // MarkRefsIntoAndScanClosure 5900 ////////////////////////////////////////////////// 5901 5902 MarkRefsIntoAndScanClosure::MarkRefsIntoAndScanClosure(MemRegion span, 5903 ReferenceProcessor* rp, 5904 CMSBitMap* bit_map, 5905 CMSBitMap* mod_union_table, 5906 CMSMarkStack* mark_stack, 5907 CMSCollector* collector, 5908 bool should_yield, 5909 bool concurrent_precleaning): 5910 _collector(collector), 5911 _span(span), 5912 _bit_map(bit_map), 5913 _mark_stack(mark_stack), 5914 _pushAndMarkClosure(collector, span, rp, bit_map, mod_union_table, 5915 mark_stack, concurrent_precleaning), 5916 _yield(should_yield), 5917 _concurrent_precleaning(concurrent_precleaning), 5918 _freelistLock(NULL) 5919 { 5920 // FIXME: Should initialize in base class constructor. 5921 assert(rp != NULL, "ref_processor shouldn't be NULL"); 5922 set_ref_processor_internal(rp); 5923 } 5924 5925 // This closure is used to mark refs into the CMS generation at the 5926 // second (final) checkpoint, and to scan and transitively follow 5927 // the unmarked oops. It is also used during the concurrent precleaning 5928 // phase while scanning objects on dirty cards in the CMS generation. 5929 // The marks are made in the marking bit map and the marking stack is 5930 // used for keeping the (newly) grey objects during the scan. 5931 // The parallel version (Par_...) appears further below. 5932 void MarkRefsIntoAndScanClosure::do_oop(oop obj) { 5933 if (obj != NULL) { 5934 assert(oopDesc::is_oop(obj), "expected an oop"); 5935 HeapWord* addr = (HeapWord*)obj; 5936 assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)"); 5937 assert(_collector->overflow_list_is_empty(), 5938 "overflow list should be empty"); 5939 if (_span.contains(addr) && 5940 !_bit_map->isMarked(addr)) { 5941 // mark bit map (object is now grey) 5942 _bit_map->mark(addr); 5943 // push on marking stack (stack should be empty), and drain the 5944 // stack by applying this closure to the oops in the oops popped 5945 // from the stack (i.e. blacken the grey objects) 5946 bool res = _mark_stack->push(obj); 5947 assert(res, "Should have space to push on empty stack"); 5948 do { 5949 oop new_oop = _mark_stack->pop(); 5950 assert(new_oop != NULL && oopDesc::is_oop(new_oop), "Expected an oop"); 5951 assert(_bit_map->isMarked((HeapWord*)new_oop), 5952 "only grey objects on this stack"); 5953 // iterate over the oops in this oop, marking and pushing 5954 // the ones in CMS heap (i.e. in _span). 5955 new_oop->oop_iterate(&_pushAndMarkClosure); 5956 // check if it's time to yield 5957 do_yield_check(); 5958 } while (!_mark_stack->isEmpty() || 5959 (!_concurrent_precleaning && take_from_overflow_list())); 5960 // if marking stack is empty, and we are not doing this 5961 // during precleaning, then check the overflow list 5962 } 5963 assert(_mark_stack->isEmpty(), "post-condition (eager drainage)"); 5964 assert(_collector->overflow_list_is_empty(), 5965 "overflow list was drained above"); 5966 5967 assert(_collector->no_preserved_marks(), 5968 "All preserved marks should have been restored above"); 5969 } 5970 } 5971 5972 void MarkRefsIntoAndScanClosure::do_oop(oop* p) { MarkRefsIntoAndScanClosure::do_oop_work(p); } 5973 void MarkRefsIntoAndScanClosure::do_oop(narrowOop* p) { MarkRefsIntoAndScanClosure::do_oop_work(p); } 5974 5975 void MarkRefsIntoAndScanClosure::do_yield_work() { 5976 assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(), 5977 "CMS thread should hold CMS token"); 5978 assert_lock_strong(_freelistLock); 5979 assert_lock_strong(_bit_map->lock()); 5980 // relinquish the free_list_lock and bitMaplock() 5981 _bit_map->lock()->unlock(); 5982 _freelistLock->unlock(); 5983 ConcurrentMarkSweepThread::desynchronize(true); 5984 _collector->stopTimer(); 5985 _collector->incrementYields(); 5986 5987 // See the comment in coordinator_yield() 5988 for (unsigned i = 0; 5989 i < CMSYieldSleepCount && 5990 ConcurrentMarkSweepThread::should_yield() && 5991 !CMSCollector::foregroundGCIsActive(); 5992 ++i) { 5993 os::sleep(Thread::current(), 1, false); 5994 } 5995 5996 ConcurrentMarkSweepThread::synchronize(true); 5997 _freelistLock->lock_without_safepoint_check(); 5998 _bit_map->lock()->lock_without_safepoint_check(); 5999 _collector->startTimer(); 6000 } 6001 6002 /////////////////////////////////////////////////////////// 6003 // ParMarkRefsIntoAndScanClosure: a parallel version of 6004 // MarkRefsIntoAndScanClosure 6005 /////////////////////////////////////////////////////////// 6006 ParMarkRefsIntoAndScanClosure::ParMarkRefsIntoAndScanClosure( 6007 CMSCollector* collector, MemRegion span, ReferenceProcessor* rp, 6008 CMSBitMap* bit_map, OopTaskQueue* work_queue): 6009 _span(span), 6010 _bit_map(bit_map), 6011 _work_queue(work_queue), 6012 _low_water_mark(MIN2((work_queue->max_elems()/4), 6013 ((uint)CMSWorkQueueDrainThreshold * ParallelGCThreads))), 6014 _parPushAndMarkClosure(collector, span, rp, bit_map, work_queue) 6015 { 6016 // FIXME: Should initialize in base class constructor. 6017 assert(rp != NULL, "ref_processor shouldn't be NULL"); 6018 set_ref_processor_internal(rp); 6019 } 6020 6021 // This closure is used to mark refs into the CMS generation at the 6022 // second (final) checkpoint, and to scan and transitively follow 6023 // the unmarked oops. The marks are made in the marking bit map and 6024 // the work_queue is used for keeping the (newly) grey objects during 6025 // the scan phase whence they are also available for stealing by parallel 6026 // threads. Since the marking bit map is shared, updates are 6027 // synchronized (via CAS). 6028 void ParMarkRefsIntoAndScanClosure::do_oop(oop obj) { 6029 if (obj != NULL) { 6030 // Ignore mark word because this could be an already marked oop 6031 // that may be chained at the end of the overflow list. 6032 assert(oopDesc::is_oop(obj, true), "expected an oop"); 6033 HeapWord* addr = (HeapWord*)obj; 6034 if (_span.contains(addr) && 6035 !_bit_map->isMarked(addr)) { 6036 // mark bit map (object will become grey): 6037 // It is possible for several threads to be 6038 // trying to "claim" this object concurrently; 6039 // the unique thread that succeeds in marking the 6040 // object first will do the subsequent push on 6041 // to the work queue (or overflow list). 6042 if (_bit_map->par_mark(addr)) { 6043 // push on work_queue (which may not be empty), and trim the 6044 // queue to an appropriate length by applying this closure to 6045 // the oops in the oops popped from the stack (i.e. blacken the 6046 // grey objects) 6047 bool res = _work_queue->push(obj); 6048 assert(res, "Low water mark should be less than capacity?"); 6049 trim_queue(_low_water_mark); 6050 } // Else, another thread claimed the object 6051 } 6052 } 6053 } 6054 6055 void ParMarkRefsIntoAndScanClosure::do_oop(oop* p) { ParMarkRefsIntoAndScanClosure::do_oop_work(p); } 6056 void ParMarkRefsIntoAndScanClosure::do_oop(narrowOop* p) { ParMarkRefsIntoAndScanClosure::do_oop_work(p); } 6057 6058 // This closure is used to rescan the marked objects on the dirty cards 6059 // in the mod union table and the card table proper. 6060 size_t ScanMarkedObjectsAgainCarefullyClosure::do_object_careful_m( 6061 oop p, MemRegion mr) { 6062 6063 size_t size = 0; 6064 HeapWord* addr = (HeapWord*)p; 6065 DEBUG_ONLY(_collector->verify_work_stacks_empty();) 6066 assert(_span.contains(addr), "we are scanning the CMS generation"); 6067 // check if it's time to yield 6068 if (do_yield_check()) { 6069 // We yielded for some foreground stop-world work, 6070 // and we have been asked to abort this ongoing preclean cycle. 6071 return 0; 6072 } 6073 if (_bitMap->isMarked(addr)) { 6074 // it's marked; is it potentially uninitialized? 6075 if (p->klass_or_null_acquire() != NULL) { 6076 // an initialized object; ignore mark word in verification below 6077 // since we are running concurrent with mutators 6078 assert(oopDesc::is_oop(p, true), "should be an oop"); 6079 if (p->is_objArray()) { 6080 // objArrays are precisely marked; restrict scanning 6081 // to dirty cards only. 6082 size = CompactibleFreeListSpace::adjustObjectSize( 6083 p->oop_iterate_size(_scanningClosure, mr)); 6084 } else { 6085 // A non-array may have been imprecisely marked; we need 6086 // to scan object in its entirety. 6087 size = CompactibleFreeListSpace::adjustObjectSize( 6088 p->oop_iterate_size(_scanningClosure)); 6089 } 6090 #ifdef ASSERT 6091 size_t direct_size = 6092 CompactibleFreeListSpace::adjustObjectSize(p->size()); 6093 assert(size == direct_size, "Inconsistency in size"); 6094 assert(size >= 3, "Necessary for Printezis marks to work"); 6095 HeapWord* start_pbit = addr + 1; 6096 HeapWord* end_pbit = addr + size - 1; 6097 assert(_bitMap->isMarked(start_pbit) == _bitMap->isMarked(end_pbit), 6098 "inconsistent Printezis mark"); 6099 // Verify inner mark bits (between Printezis bits) are clear, 6100 // but don't repeat if there are multiple dirty regions for 6101 // the same object, to avoid potential O(N^2) performance. 6102 if (addr != _last_scanned_object) { 6103 _bitMap->verifyNoOneBitsInRange(start_pbit + 1, end_pbit); 6104 _last_scanned_object = addr; 6105 } 6106 #endif // ASSERT 6107 } else { 6108 // An uninitialized object. 6109 assert(_bitMap->isMarked(addr+1), "missing Printezis mark?"); 6110 HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2); 6111 size = pointer_delta(nextOneAddr + 1, addr); 6112 assert(size == CompactibleFreeListSpace::adjustObjectSize(size), 6113 "alignment problem"); 6114 // Note that pre-cleaning needn't redirty the card. OopDesc::set_klass() 6115 // will dirty the card when the klass pointer is installed in the 6116 // object (signaling the completion of initialization). 6117 } 6118 } else { 6119 // Either a not yet marked object or an uninitialized object 6120 if (p->klass_or_null_acquire() == NULL) { 6121 // An uninitialized object, skip to the next card, since 6122 // we may not be able to read its P-bits yet. 6123 assert(size == 0, "Initial value"); 6124 } else { 6125 // An object not (yet) reached by marking: we merely need to 6126 // compute its size so as to go look at the next block. 6127 assert(oopDesc::is_oop(p, true), "should be an oop"); 6128 size = CompactibleFreeListSpace::adjustObjectSize(p->size()); 6129 } 6130 } 6131 DEBUG_ONLY(_collector->verify_work_stacks_empty();) 6132 return size; 6133 } 6134 6135 void ScanMarkedObjectsAgainCarefullyClosure::do_yield_work() { 6136 assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(), 6137 "CMS thread should hold CMS token"); 6138 assert_lock_strong(_freelistLock); 6139 assert_lock_strong(_bitMap->lock()); 6140 // relinquish the free_list_lock and bitMaplock() 6141 _bitMap->lock()->unlock(); 6142 _freelistLock->unlock(); 6143 ConcurrentMarkSweepThread::desynchronize(true); 6144 _collector->stopTimer(); 6145 _collector->incrementYields(); 6146 6147 // See the comment in coordinator_yield() 6148 for (unsigned i = 0; i < CMSYieldSleepCount && 6149 ConcurrentMarkSweepThread::should_yield() && 6150 !CMSCollector::foregroundGCIsActive(); ++i) { 6151 os::sleep(Thread::current(), 1, false); 6152 } 6153 6154 ConcurrentMarkSweepThread::synchronize(true); 6155 _freelistLock->lock_without_safepoint_check(); 6156 _bitMap->lock()->lock_without_safepoint_check(); 6157 _collector->startTimer(); 6158 } 6159 6160 6161 ////////////////////////////////////////////////////////////////// 6162 // SurvivorSpacePrecleanClosure 6163 ////////////////////////////////////////////////////////////////// 6164 // This (single-threaded) closure is used to preclean the oops in 6165 // the survivor spaces. 6166 size_t SurvivorSpacePrecleanClosure::do_object_careful(oop p) { 6167 6168 HeapWord* addr = (HeapWord*)p; 6169 DEBUG_ONLY(_collector->verify_work_stacks_empty();) 6170 assert(!_span.contains(addr), "we are scanning the survivor spaces"); 6171 assert(p->klass_or_null() != NULL, "object should be initialized"); 6172 // an initialized object; ignore mark word in verification below 6173 // since we are running concurrent with mutators 6174 assert(oopDesc::is_oop(p, true), "should be an oop"); 6175 // Note that we do not yield while we iterate over 6176 // the interior oops of p, pushing the relevant ones 6177 // on our marking stack. 6178 size_t size = p->oop_iterate_size(_scanning_closure); 6179 do_yield_check(); 6180 // Observe that below, we do not abandon the preclean 6181 // phase as soon as we should; rather we empty the 6182 // marking stack before returning. This is to satisfy 6183 // some existing assertions. In general, it may be a 6184 // good idea to abort immediately and complete the marking 6185 // from the grey objects at a later time. 6186 while (!_mark_stack->isEmpty()) { 6187 oop new_oop = _mark_stack->pop(); 6188 assert(new_oop != NULL && oopDesc::is_oop(new_oop), "Expected an oop"); 6189 assert(_bit_map->isMarked((HeapWord*)new_oop), 6190 "only grey objects on this stack"); 6191 // iterate over the oops in this oop, marking and pushing 6192 // the ones in CMS heap (i.e. in _span). 6193 new_oop->oop_iterate(_scanning_closure); 6194 // check if it's time to yield 6195 do_yield_check(); 6196 } 6197 unsigned int after_count = 6198 CMSHeap::heap()->total_collections(); 6199 bool abort = (_before_count != after_count) || 6200 _collector->should_abort_preclean(); 6201 return abort ? 0 : size; 6202 } 6203 6204 void SurvivorSpacePrecleanClosure::do_yield_work() { 6205 assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(), 6206 "CMS thread should hold CMS token"); 6207 assert_lock_strong(_bit_map->lock()); 6208 // Relinquish the bit map lock 6209 _bit_map->lock()->unlock(); 6210 ConcurrentMarkSweepThread::desynchronize(true); 6211 _collector->stopTimer(); 6212 _collector->incrementYields(); 6213 6214 // See the comment in coordinator_yield() 6215 for (unsigned i = 0; i < CMSYieldSleepCount && 6216 ConcurrentMarkSweepThread::should_yield() && 6217 !CMSCollector::foregroundGCIsActive(); ++i) { 6218 os::sleep(Thread::current(), 1, false); 6219 } 6220 6221 ConcurrentMarkSweepThread::synchronize(true); 6222 _bit_map->lock()->lock_without_safepoint_check(); 6223 _collector->startTimer(); 6224 } 6225 6226 // This closure is used to rescan the marked objects on the dirty cards 6227 // in the mod union table and the card table proper. In the parallel 6228 // case, although the bitMap is shared, we do a single read so the 6229 // isMarked() query is "safe". 6230 bool ScanMarkedObjectsAgainClosure::do_object_bm(oop p, MemRegion mr) { 6231 // Ignore mark word because we are running concurrent with mutators 6232 assert(oopDesc::is_oop_or_null(p, true), "Expected an oop or NULL at " PTR_FORMAT, p2i(p)); 6233 HeapWord* addr = (HeapWord*)p; 6234 assert(_span.contains(addr), "we are scanning the CMS generation"); 6235 bool is_obj_array = false; 6236 #ifdef ASSERT 6237 if (!_parallel) { 6238 assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)"); 6239 assert(_collector->overflow_list_is_empty(), 6240 "overflow list should be empty"); 6241 6242 } 6243 #endif // ASSERT 6244 if (_bit_map->isMarked(addr)) { 6245 // Obj arrays are precisely marked, non-arrays are not; 6246 // so we scan objArrays precisely and non-arrays in their 6247 // entirety. 6248 if (p->is_objArray()) { 6249 is_obj_array = true; 6250 if (_parallel) { 6251 p->oop_iterate(_par_scan_closure, mr); 6252 } else { 6253 p->oop_iterate(_scan_closure, mr); 6254 } 6255 } else { 6256 if (_parallel) { 6257 p->oop_iterate(_par_scan_closure); 6258 } else { 6259 p->oop_iterate(_scan_closure); 6260 } 6261 } 6262 } 6263 #ifdef ASSERT 6264 if (!_parallel) { 6265 assert(_mark_stack->isEmpty(), "post-condition (eager drainage)"); 6266 assert(_collector->overflow_list_is_empty(), 6267 "overflow list should be empty"); 6268 6269 } 6270 #endif // ASSERT 6271 return is_obj_array; 6272 } 6273 6274 MarkFromRootsClosure::MarkFromRootsClosure(CMSCollector* collector, 6275 MemRegion span, 6276 CMSBitMap* bitMap, CMSMarkStack* markStack, 6277 bool should_yield, bool verifying): 6278 _collector(collector), 6279 _span(span), 6280 _bitMap(bitMap), 6281 _mut(&collector->_modUnionTable), 6282 _markStack(markStack), 6283 _yield(should_yield), 6284 _skipBits(0) 6285 { 6286 assert(_markStack->isEmpty(), "stack should be empty"); 6287 _finger = _bitMap->startWord(); 6288 _threshold = _finger; 6289 assert(_collector->_restart_addr == NULL, "Sanity check"); 6290 assert(_span.contains(_finger), "Out of bounds _finger?"); 6291 DEBUG_ONLY(_verifying = verifying;) 6292 } 6293 6294 void MarkFromRootsClosure::reset(HeapWord* addr) { 6295 assert(_markStack->isEmpty(), "would cause duplicates on stack"); 6296 assert(_span.contains(addr), "Out of bounds _finger?"); 6297 _finger = addr; 6298 _threshold = align_up(_finger, CardTable::card_size); 6299 } 6300 6301 // Should revisit to see if this should be restructured for 6302 // greater efficiency. 6303 bool MarkFromRootsClosure::do_bit(size_t offset) { 6304 if (_skipBits > 0) { 6305 _skipBits--; 6306 return true; 6307 } 6308 // convert offset into a HeapWord* 6309 HeapWord* addr = _bitMap->startWord() + offset; 6310 assert(_bitMap->endWord() && addr < _bitMap->endWord(), 6311 "address out of range"); 6312 assert(_bitMap->isMarked(addr), "tautology"); 6313 if (_bitMap->isMarked(addr+1)) { 6314 // this is an allocated but not yet initialized object 6315 assert(_skipBits == 0, "tautology"); 6316 _skipBits = 2; // skip next two marked bits ("Printezis-marks") 6317 oop p = oop(addr); 6318 if (p->klass_or_null_acquire() == NULL) { 6319 DEBUG_ONLY(if (!_verifying) {) 6320 // We re-dirty the cards on which this object lies and increase 6321 // the _threshold so that we'll come back to scan this object 6322 // during the preclean or remark phase. (CMSCleanOnEnter) 6323 if (CMSCleanOnEnter) { 6324 size_t sz = _collector->block_size_using_printezis_bits(addr); 6325 HeapWord* end_card_addr = align_up(addr + sz, CardTable::card_size); 6326 MemRegion redirty_range = MemRegion(addr, end_card_addr); 6327 assert(!redirty_range.is_empty(), "Arithmetical tautology"); 6328 // Bump _threshold to end_card_addr; note that 6329 // _threshold cannot possibly exceed end_card_addr, anyhow. 6330 // This prevents future clearing of the card as the scan proceeds 6331 // to the right. 6332 assert(_threshold <= end_card_addr, 6333 "Because we are just scanning into this object"); 6334 if (_threshold < end_card_addr) { 6335 _threshold = end_card_addr; 6336 } 6337 if (p->klass_or_null_acquire() != NULL) { 6338 // Redirty the range of cards... 6339 _mut->mark_range(redirty_range); 6340 } // ...else the setting of klass will dirty the card anyway. 6341 } 6342 DEBUG_ONLY(}) 6343 return true; 6344 } 6345 } 6346 scanOopsInOop(addr); 6347 return true; 6348 } 6349 6350 // We take a break if we've been at this for a while, 6351 // so as to avoid monopolizing the locks involved. 6352 void MarkFromRootsClosure::do_yield_work() { 6353 // First give up the locks, then yield, then re-lock 6354 // We should probably use a constructor/destructor idiom to 6355 // do this unlock/lock or modify the MutexUnlocker class to 6356 // serve our purpose. XXX 6357 assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(), 6358 "CMS thread should hold CMS token"); 6359 assert_lock_strong(_bitMap->lock()); 6360 _bitMap->lock()->unlock(); 6361 ConcurrentMarkSweepThread::desynchronize(true); 6362 _collector->stopTimer(); 6363 _collector->incrementYields(); 6364 6365 // See the comment in coordinator_yield() 6366 for (unsigned i = 0; i < CMSYieldSleepCount && 6367 ConcurrentMarkSweepThread::should_yield() && 6368 !CMSCollector::foregroundGCIsActive(); ++i) { 6369 os::sleep(Thread::current(), 1, false); 6370 } 6371 6372 ConcurrentMarkSweepThread::synchronize(true); 6373 _bitMap->lock()->lock_without_safepoint_check(); 6374 _collector->startTimer(); 6375 } 6376 6377 void MarkFromRootsClosure::scanOopsInOop(HeapWord* ptr) { 6378 assert(_bitMap->isMarked(ptr), "expected bit to be set"); 6379 assert(_markStack->isEmpty(), 6380 "should drain stack to limit stack usage"); 6381 // convert ptr to an oop preparatory to scanning 6382 oop obj = oop(ptr); 6383 // Ignore mark word in verification below, since we 6384 // may be running concurrent with mutators. 6385 assert(oopDesc::is_oop(obj, true), "should be an oop"); 6386 assert(_finger <= ptr, "_finger runneth ahead"); 6387 // advance the finger to right end of this object 6388 _finger = ptr + obj->size(); 6389 assert(_finger > ptr, "we just incremented it above"); 6390 // On large heaps, it may take us some time to get through 6391 // the marking phase. During 6392 // this time it's possible that a lot of mutations have 6393 // accumulated in the card table and the mod union table -- 6394 // these mutation records are redundant until we have 6395 // actually traced into the corresponding card. 6396 // Here, we check whether advancing the finger would make 6397 // us cross into a new card, and if so clear corresponding 6398 // cards in the MUT (preclean them in the card-table in the 6399 // future). 6400 6401 DEBUG_ONLY(if (!_verifying) {) 6402 // The clean-on-enter optimization is disabled by default, 6403 // until we fix 6178663. 6404 if (CMSCleanOnEnter && (_finger > _threshold)) { 6405 // [_threshold, _finger) represents the interval 6406 // of cards to be cleared in MUT (or precleaned in card table). 6407 // The set of cards to be cleared is all those that overlap 6408 // with the interval [_threshold, _finger); note that 6409 // _threshold is always kept card-aligned but _finger isn't 6410 // always card-aligned. 6411 HeapWord* old_threshold = _threshold; 6412 assert(is_aligned(old_threshold, CardTable::card_size), 6413 "_threshold should always be card-aligned"); 6414 _threshold = align_up(_finger, CardTable::card_size); 6415 MemRegion mr(old_threshold, _threshold); 6416 assert(!mr.is_empty(), "Control point invariant"); 6417 assert(_span.contains(mr), "Should clear within span"); 6418 _mut->clear_range(mr); 6419 } 6420 DEBUG_ONLY(}) 6421 // Note: the finger doesn't advance while we drain 6422 // the stack below. 6423 PushOrMarkClosure pushOrMarkClosure(_collector, 6424 _span, _bitMap, _markStack, 6425 _finger, this); 6426 bool res = _markStack->push(obj); 6427 assert(res, "Empty non-zero size stack should have space for single push"); 6428 while (!_markStack->isEmpty()) { 6429 oop new_oop = _markStack->pop(); 6430 // Skip verifying header mark word below because we are 6431 // running concurrent with mutators. 6432 assert(oopDesc::is_oop(new_oop, true), "Oops! expected to pop an oop"); 6433 // now scan this oop's oops 6434 new_oop->oop_iterate(&pushOrMarkClosure); 6435 do_yield_check(); 6436 } 6437 assert(_markStack->isEmpty(), "tautology, emphasizing post-condition"); 6438 } 6439 6440 ParMarkFromRootsClosure::ParMarkFromRootsClosure(CMSConcMarkingTask* task, 6441 CMSCollector* collector, MemRegion span, 6442 CMSBitMap* bit_map, 6443 OopTaskQueue* work_queue, 6444 CMSMarkStack* overflow_stack): 6445 _collector(collector), 6446 _whole_span(collector->_span), 6447 _span(span), 6448 _bit_map(bit_map), 6449 _mut(&collector->_modUnionTable), 6450 _work_queue(work_queue), 6451 _overflow_stack(overflow_stack), 6452 _skip_bits(0), 6453 _task(task) 6454 { 6455 assert(_work_queue->size() == 0, "work_queue should be empty"); 6456 _finger = span.start(); 6457 _threshold = _finger; // XXX Defer clear-on-enter optimization for now 6458 assert(_span.contains(_finger), "Out of bounds _finger?"); 6459 } 6460 6461 // Should revisit to see if this should be restructured for 6462 // greater efficiency. 6463 bool ParMarkFromRootsClosure::do_bit(size_t offset) { 6464 if (_skip_bits > 0) { 6465 _skip_bits--; 6466 return true; 6467 } 6468 // convert offset into a HeapWord* 6469 HeapWord* addr = _bit_map->startWord() + offset; 6470 assert(_bit_map->endWord() && addr < _bit_map->endWord(), 6471 "address out of range"); 6472 assert(_bit_map->isMarked(addr), "tautology"); 6473 if (_bit_map->isMarked(addr+1)) { 6474 // this is an allocated object that might not yet be initialized 6475 assert(_skip_bits == 0, "tautology"); 6476 _skip_bits = 2; // skip next two marked bits ("Printezis-marks") 6477 oop p = oop(addr); 6478 if (p->klass_or_null_acquire() == NULL) { 6479 // in the case of Clean-on-Enter optimization, redirty card 6480 // and avoid clearing card by increasing the threshold. 6481 return true; 6482 } 6483 } 6484 scan_oops_in_oop(addr); 6485 return true; 6486 } 6487 6488 void ParMarkFromRootsClosure::scan_oops_in_oop(HeapWord* ptr) { 6489 assert(_bit_map->isMarked(ptr), "expected bit to be set"); 6490 // Should we assert that our work queue is empty or 6491 // below some drain limit? 6492 assert(_work_queue->size() == 0, 6493 "should drain stack to limit stack usage"); 6494 // convert ptr to an oop preparatory to scanning 6495 oop obj = oop(ptr); 6496 // Ignore mark word in verification below, since we 6497 // may be running concurrent with mutators. 6498 assert(oopDesc::is_oop(obj, true), "should be an oop"); 6499 assert(_finger <= ptr, "_finger runneth ahead"); 6500 // advance the finger to right end of this object 6501 _finger = ptr + obj->size(); 6502 assert(_finger > ptr, "we just incremented it above"); 6503 // On large heaps, it may take us some time to get through 6504 // the marking phase. During 6505 // this time it's possible that a lot of mutations have 6506 // accumulated in the card table and the mod union table -- 6507 // these mutation records are redundant until we have 6508 // actually traced into the corresponding card. 6509 // Here, we check whether advancing the finger would make 6510 // us cross into a new card, and if so clear corresponding 6511 // cards in the MUT (preclean them in the card-table in the 6512 // future). 6513 6514 // The clean-on-enter optimization is disabled by default, 6515 // until we fix 6178663. 6516 if (CMSCleanOnEnter && (_finger > _threshold)) { 6517 // [_threshold, _finger) represents the interval 6518 // of cards to be cleared in MUT (or precleaned in card table). 6519 // The set of cards to be cleared is all those that overlap 6520 // with the interval [_threshold, _finger); note that 6521 // _threshold is always kept card-aligned but _finger isn't 6522 // always card-aligned. 6523 HeapWord* old_threshold = _threshold; 6524 assert(is_aligned(old_threshold, CardTable::card_size), 6525 "_threshold should always be card-aligned"); 6526 _threshold = align_up(_finger, CardTable::card_size); 6527 MemRegion mr(old_threshold, _threshold); 6528 assert(!mr.is_empty(), "Control point invariant"); 6529 assert(_span.contains(mr), "Should clear within span"); // _whole_span ?? 6530 _mut->clear_range(mr); 6531 } 6532 6533 // Note: the local finger doesn't advance while we drain 6534 // the stack below, but the global finger sure can and will. 6535 HeapWord* volatile* gfa = _task->global_finger_addr(); 6536 ParPushOrMarkClosure pushOrMarkClosure(_collector, 6537 _span, _bit_map, 6538 _work_queue, 6539 _overflow_stack, 6540 _finger, 6541 gfa, this); 6542 bool res = _work_queue->push(obj); // overflow could occur here 6543 assert(res, "Will hold once we use workqueues"); 6544 while (true) { 6545 oop new_oop; 6546 if (!_work_queue->pop_local(new_oop)) { 6547 // We emptied our work_queue; check if there's stuff that can 6548 // be gotten from the overflow stack. 6549 if (CMSConcMarkingTask::get_work_from_overflow_stack( 6550 _overflow_stack, _work_queue)) { 6551 do_yield_check(); 6552 continue; 6553 } else { // done 6554 break; 6555 } 6556 } 6557 // Skip verifying header mark word below because we are 6558 // running concurrent with mutators. 6559 assert(oopDesc::is_oop(new_oop, true), "Oops! expected to pop an oop"); 6560 // now scan this oop's oops 6561 new_oop->oop_iterate(&pushOrMarkClosure); 6562 do_yield_check(); 6563 } 6564 assert(_work_queue->size() == 0, "tautology, emphasizing post-condition"); 6565 } 6566 6567 // Yield in response to a request from VM Thread or 6568 // from mutators. 6569 void ParMarkFromRootsClosure::do_yield_work() { 6570 assert(_task != NULL, "sanity"); 6571 _task->yield(); 6572 } 6573 6574 // A variant of the above used for verifying CMS marking work. 6575 MarkFromRootsVerifyClosure::MarkFromRootsVerifyClosure(CMSCollector* collector, 6576 MemRegion span, 6577 CMSBitMap* verification_bm, CMSBitMap* cms_bm, 6578 CMSMarkStack* mark_stack): 6579 _collector(collector), 6580 _span(span), 6581 _verification_bm(verification_bm), 6582 _cms_bm(cms_bm), 6583 _mark_stack(mark_stack), 6584 _pam_verify_closure(collector, span, verification_bm, cms_bm, 6585 mark_stack) 6586 { 6587 assert(_mark_stack->isEmpty(), "stack should be empty"); 6588 _finger = _verification_bm->startWord(); 6589 assert(_collector->_restart_addr == NULL, "Sanity check"); 6590 assert(_span.contains(_finger), "Out of bounds _finger?"); 6591 } 6592 6593 void MarkFromRootsVerifyClosure::reset(HeapWord* addr) { 6594 assert(_mark_stack->isEmpty(), "would cause duplicates on stack"); 6595 assert(_span.contains(addr), "Out of bounds _finger?"); 6596 _finger = addr; 6597 } 6598 6599 // Should revisit to see if this should be restructured for 6600 // greater efficiency. 6601 bool MarkFromRootsVerifyClosure::do_bit(size_t offset) { 6602 // convert offset into a HeapWord* 6603 HeapWord* addr = _verification_bm->startWord() + offset; 6604 assert(_verification_bm->endWord() && addr < _verification_bm->endWord(), 6605 "address out of range"); 6606 assert(_verification_bm->isMarked(addr), "tautology"); 6607 assert(_cms_bm->isMarked(addr), "tautology"); 6608 6609 assert(_mark_stack->isEmpty(), 6610 "should drain stack to limit stack usage"); 6611 // convert addr to an oop preparatory to scanning 6612 oop obj = oop(addr); 6613 assert(oopDesc::is_oop(obj), "should be an oop"); 6614 assert(_finger <= addr, "_finger runneth ahead"); 6615 // advance the finger to right end of this object 6616 _finger = addr + obj->size(); 6617 assert(_finger > addr, "we just incremented it above"); 6618 // Note: the finger doesn't advance while we drain 6619 // the stack below. 6620 bool res = _mark_stack->push(obj); 6621 assert(res, "Empty non-zero size stack should have space for single push"); 6622 while (!_mark_stack->isEmpty()) { 6623 oop new_oop = _mark_stack->pop(); 6624 assert(oopDesc::is_oop(new_oop), "Oops! expected to pop an oop"); 6625 // now scan this oop's oops 6626 new_oop->oop_iterate(&_pam_verify_closure); 6627 } 6628 assert(_mark_stack->isEmpty(), "tautology, emphasizing post-condition"); 6629 return true; 6630 } 6631 6632 PushAndMarkVerifyClosure::PushAndMarkVerifyClosure( 6633 CMSCollector* collector, MemRegion span, 6634 CMSBitMap* verification_bm, CMSBitMap* cms_bm, 6635 CMSMarkStack* mark_stack): 6636 MetadataAwareOopClosure(collector->ref_processor()), 6637 _collector(collector), 6638 _span(span), 6639 _verification_bm(verification_bm), 6640 _cms_bm(cms_bm), 6641 _mark_stack(mark_stack) 6642 { } 6643 6644 template <class T> void PushAndMarkVerifyClosure::do_oop_work(T *p) { 6645 oop obj = RawAccess<>::oop_load(p); 6646 do_oop(obj); 6647 } 6648 6649 void PushAndMarkVerifyClosure::do_oop(oop* p) { PushAndMarkVerifyClosure::do_oop_work(p); } 6650 void PushAndMarkVerifyClosure::do_oop(narrowOop* p) { PushAndMarkVerifyClosure::do_oop_work(p); } 6651 6652 // Upon stack overflow, we discard (part of) the stack, 6653 // remembering the least address amongst those discarded 6654 // in CMSCollector's _restart_address. 6655 void PushAndMarkVerifyClosure::handle_stack_overflow(HeapWord* lost) { 6656 // Remember the least grey address discarded 6657 HeapWord* ra = (HeapWord*)_mark_stack->least_value(lost); 6658 _collector->lower_restart_addr(ra); 6659 _mark_stack->reset(); // discard stack contents 6660 _mark_stack->expand(); // expand the stack if possible 6661 } 6662 6663 void PushAndMarkVerifyClosure::do_oop(oop obj) { 6664 assert(oopDesc::is_oop_or_null(obj), "Expected an oop or NULL at " PTR_FORMAT, p2i(obj)); 6665 HeapWord* addr = (HeapWord*)obj; 6666 if (_span.contains(addr) && !_verification_bm->isMarked(addr)) { 6667 // Oop lies in _span and isn't yet grey or black 6668 _verification_bm->mark(addr); // now grey 6669 if (!_cms_bm->isMarked(addr)) { 6670 Log(gc, verify) log; 6671 ResourceMark rm; 6672 LogStream ls(log.error()); 6673 oop(addr)->print_on(&ls); 6674 log.error(" (" INTPTR_FORMAT " should have been marked)", p2i(addr)); 6675 fatal("... aborting"); 6676 } 6677 6678 if (!_mark_stack->push(obj)) { // stack overflow 6679 log_trace(gc)("CMS marking stack overflow (benign) at " SIZE_FORMAT, _mark_stack->capacity()); 6680 assert(_mark_stack->isFull(), "Else push should have succeeded"); 6681 handle_stack_overflow(addr); 6682 } 6683 // anything including and to the right of _finger 6684 // will be scanned as we iterate over the remainder of the 6685 // bit map 6686 } 6687 } 6688 6689 PushOrMarkClosure::PushOrMarkClosure(CMSCollector* collector, 6690 MemRegion span, 6691 CMSBitMap* bitMap, CMSMarkStack* markStack, 6692 HeapWord* finger, MarkFromRootsClosure* parent) : 6693 MetadataAwareOopClosure(collector->ref_processor()), 6694 _collector(collector), 6695 _span(span), 6696 _bitMap(bitMap), 6697 _markStack(markStack), 6698 _finger(finger), 6699 _parent(parent) 6700 { } 6701 6702 ParPushOrMarkClosure::ParPushOrMarkClosure(CMSCollector* collector, 6703 MemRegion span, 6704 CMSBitMap* bit_map, 6705 OopTaskQueue* work_queue, 6706 CMSMarkStack* overflow_stack, 6707 HeapWord* finger, 6708 HeapWord* volatile* global_finger_addr, 6709 ParMarkFromRootsClosure* parent) : 6710 MetadataAwareOopClosure(collector->ref_processor()), 6711 _collector(collector), 6712 _whole_span(collector->_span), 6713 _span(span), 6714 _bit_map(bit_map), 6715 _work_queue(work_queue), 6716 _overflow_stack(overflow_stack), 6717 _finger(finger), 6718 _global_finger_addr(global_finger_addr), 6719 _parent(parent) 6720 { } 6721 6722 // Assumes thread-safe access by callers, who are 6723 // responsible for mutual exclusion. 6724 void CMSCollector::lower_restart_addr(HeapWord* low) { 6725 assert(_span.contains(low), "Out of bounds addr"); 6726 if (_restart_addr == NULL) { 6727 _restart_addr = low; 6728 } else { 6729 _restart_addr = MIN2(_restart_addr, low); 6730 } 6731 } 6732 6733 // Upon stack overflow, we discard (part of) the stack, 6734 // remembering the least address amongst those discarded 6735 // in CMSCollector's _restart_address. 6736 void PushOrMarkClosure::handle_stack_overflow(HeapWord* lost) { 6737 // Remember the least grey address discarded 6738 HeapWord* ra = (HeapWord*)_markStack->least_value(lost); 6739 _collector->lower_restart_addr(ra); 6740 _markStack->reset(); // discard stack contents 6741 _markStack->expand(); // expand the stack if possible 6742 } 6743 6744 // Upon stack overflow, we discard (part of) the stack, 6745 // remembering the least address amongst those discarded 6746 // in CMSCollector's _restart_address. 6747 void ParPushOrMarkClosure::handle_stack_overflow(HeapWord* lost) { 6748 // We need to do this under a mutex to prevent other 6749 // workers from interfering with the work done below. 6750 MutexLockerEx ml(_overflow_stack->par_lock(), 6751 Mutex::_no_safepoint_check_flag); 6752 // Remember the least grey address discarded 6753 HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost); 6754 _collector->lower_restart_addr(ra); 6755 _overflow_stack->reset(); // discard stack contents 6756 _overflow_stack->expand(); // expand the stack if possible 6757 } 6758 6759 void PushOrMarkClosure::do_oop(oop obj) { 6760 // Ignore mark word because we are running concurrent with mutators. 6761 assert(oopDesc::is_oop_or_null(obj, true), "Expected an oop or NULL at " PTR_FORMAT, p2i(obj)); 6762 HeapWord* addr = (HeapWord*)obj; 6763 if (_span.contains(addr) && !_bitMap->isMarked(addr)) { 6764 // Oop lies in _span and isn't yet grey or black 6765 _bitMap->mark(addr); // now grey 6766 if (addr < _finger) { 6767 // the bit map iteration has already either passed, or 6768 // sampled, this bit in the bit map; we'll need to 6769 // use the marking stack to scan this oop's oops. 6770 bool simulate_overflow = false; 6771 NOT_PRODUCT( 6772 if (CMSMarkStackOverflowALot && 6773 _collector->simulate_overflow()) { 6774 // simulate a stack overflow 6775 simulate_overflow = true; 6776 } 6777 ) 6778 if (simulate_overflow || !_markStack->push(obj)) { // stack overflow 6779 log_trace(gc)("CMS marking stack overflow (benign) at " SIZE_FORMAT, _markStack->capacity()); 6780 assert(simulate_overflow || _markStack->isFull(), "Else push should have succeeded"); 6781 handle_stack_overflow(addr); 6782 } 6783 } 6784 // anything including and to the right of _finger 6785 // will be scanned as we iterate over the remainder of the 6786 // bit map 6787 do_yield_check(); 6788 } 6789 } 6790 6791 void PushOrMarkClosure::do_oop(oop* p) { PushOrMarkClosure::do_oop_work(p); } 6792 void PushOrMarkClosure::do_oop(narrowOop* p) { PushOrMarkClosure::do_oop_work(p); } 6793 6794 void ParPushOrMarkClosure::do_oop(oop obj) { 6795 // Ignore mark word because we are running concurrent with mutators. 6796 assert(oopDesc::is_oop_or_null(obj, true), "Expected an oop or NULL at " PTR_FORMAT, p2i(obj)); 6797 HeapWord* addr = (HeapWord*)obj; 6798 if (_whole_span.contains(addr) && !_bit_map->isMarked(addr)) { 6799 // Oop lies in _span and isn't yet grey or black 6800 // We read the global_finger (volatile read) strictly after marking oop 6801 bool res = _bit_map->par_mark(addr); // now grey 6802 volatile HeapWord** gfa = (volatile HeapWord**)_global_finger_addr; 6803 // Should we push this marked oop on our stack? 6804 // -- if someone else marked it, nothing to do 6805 // -- if target oop is above global finger nothing to do 6806 // -- if target oop is in chunk and above local finger 6807 // then nothing to do 6808 // -- else push on work queue 6809 if ( !res // someone else marked it, they will deal with it 6810 || (addr >= *gfa) // will be scanned in a later task 6811 || (_span.contains(addr) && addr >= _finger)) { // later in this chunk 6812 return; 6813 } 6814 // the bit map iteration has already either passed, or 6815 // sampled, this bit in the bit map; we'll need to 6816 // use the marking stack to scan this oop's oops. 6817 bool simulate_overflow = false; 6818 NOT_PRODUCT( 6819 if (CMSMarkStackOverflowALot && 6820 _collector->simulate_overflow()) { 6821 // simulate a stack overflow 6822 simulate_overflow = true; 6823 } 6824 ) 6825 if (simulate_overflow || 6826 !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) { 6827 // stack overflow 6828 log_trace(gc)("CMS marking stack overflow (benign) at " SIZE_FORMAT, _overflow_stack->capacity()); 6829 // We cannot assert that the overflow stack is full because 6830 // it may have been emptied since. 6831 assert(simulate_overflow || 6832 _work_queue->size() == _work_queue->max_elems(), 6833 "Else push should have succeeded"); 6834 handle_stack_overflow(addr); 6835 } 6836 do_yield_check(); 6837 } 6838 } 6839 6840 void ParPushOrMarkClosure::do_oop(oop* p) { ParPushOrMarkClosure::do_oop_work(p); } 6841 void ParPushOrMarkClosure::do_oop(narrowOop* p) { ParPushOrMarkClosure::do_oop_work(p); } 6842 6843 PushAndMarkClosure::PushAndMarkClosure(CMSCollector* collector, 6844 MemRegion span, 6845 ReferenceProcessor* rp, 6846 CMSBitMap* bit_map, 6847 CMSBitMap* mod_union_table, 6848 CMSMarkStack* mark_stack, 6849 bool concurrent_precleaning): 6850 MetadataAwareOopClosure(rp), 6851 _collector(collector), 6852 _span(span), 6853 _bit_map(bit_map), 6854 _mod_union_table(mod_union_table), 6855 _mark_stack(mark_stack), 6856 _concurrent_precleaning(concurrent_precleaning) 6857 { 6858 assert(ref_processor() != NULL, "ref_processor shouldn't be NULL"); 6859 } 6860 6861 // Grey object rescan during pre-cleaning and second checkpoint phases -- 6862 // the non-parallel version (the parallel version appears further below.) 6863 void PushAndMarkClosure::do_oop(oop obj) { 6864 // Ignore mark word verification. If during concurrent precleaning, 6865 // the object monitor may be locked. If during the checkpoint 6866 // phases, the object may already have been reached by a different 6867 // path and may be at the end of the global overflow list (so 6868 // the mark word may be NULL). 6869 assert(oopDesc::is_oop_or_null(obj, true /* ignore mark word */), 6870 "Expected an oop or NULL at " PTR_FORMAT, p2i(obj)); 6871 HeapWord* addr = (HeapWord*)obj; 6872 // Check if oop points into the CMS generation 6873 // and is not marked 6874 if (_span.contains(addr) && !_bit_map->isMarked(addr)) { 6875 // a white object ... 6876 _bit_map->mark(addr); // ... now grey 6877 // push on the marking stack (grey set) 6878 bool simulate_overflow = false; 6879 NOT_PRODUCT( 6880 if (CMSMarkStackOverflowALot && 6881 _collector->simulate_overflow()) { 6882 // simulate a stack overflow 6883 simulate_overflow = true; 6884 } 6885 ) 6886 if (simulate_overflow || !_mark_stack->push(obj)) { 6887 if (_concurrent_precleaning) { 6888 // During precleaning we can just dirty the appropriate card(s) 6889 // in the mod union table, thus ensuring that the object remains 6890 // in the grey set and continue. In the case of object arrays 6891 // we need to dirty all of the cards that the object spans, 6892 // since the rescan of object arrays will be limited to the 6893 // dirty cards. 6894 // Note that no one can be interfering with us in this action 6895 // of dirtying the mod union table, so no locking or atomics 6896 // are required. 6897 if (obj->is_objArray()) { 6898 size_t sz = obj->size(); 6899 HeapWord* end_card_addr = align_up(addr + sz, CardTable::card_size); 6900 MemRegion redirty_range = MemRegion(addr, end_card_addr); 6901 assert(!redirty_range.is_empty(), "Arithmetical tautology"); 6902 _mod_union_table->mark_range(redirty_range); 6903 } else { 6904 _mod_union_table->mark(addr); 6905 } 6906 _collector->_ser_pmc_preclean_ovflw++; 6907 } else { 6908 // During the remark phase, we need to remember this oop 6909 // in the overflow list. 6910 _collector->push_on_overflow_list(obj); 6911 _collector->_ser_pmc_remark_ovflw++; 6912 } 6913 } 6914 } 6915 } 6916 6917 ParPushAndMarkClosure::ParPushAndMarkClosure(CMSCollector* collector, 6918 MemRegion span, 6919 ReferenceProcessor* rp, 6920 CMSBitMap* bit_map, 6921 OopTaskQueue* work_queue): 6922 MetadataAwareOopClosure(rp), 6923 _collector(collector), 6924 _span(span), 6925 _bit_map(bit_map), 6926 _work_queue(work_queue) 6927 { 6928 assert(ref_processor() != NULL, "ref_processor shouldn't be NULL"); 6929 } 6930 6931 void PushAndMarkClosure::do_oop(oop* p) { PushAndMarkClosure::do_oop_work(p); } 6932 void PushAndMarkClosure::do_oop(narrowOop* p) { PushAndMarkClosure::do_oop_work(p); } 6933 6934 // Grey object rescan during second checkpoint phase -- 6935 // the parallel version. 6936 void ParPushAndMarkClosure::do_oop(oop obj) { 6937 // In the assert below, we ignore the mark word because 6938 // this oop may point to an already visited object that is 6939 // on the overflow stack (in which case the mark word has 6940 // been hijacked for chaining into the overflow stack -- 6941 // if this is the last object in the overflow stack then 6942 // its mark word will be NULL). Because this object may 6943 // have been subsequently popped off the global overflow 6944 // stack, and the mark word possibly restored to the prototypical 6945 // value, by the time we get to examined this failing assert in 6946 // the debugger, is_oop_or_null(false) may subsequently start 6947 // to hold. 6948 assert(oopDesc::is_oop_or_null(obj, true), 6949 "Expected an oop or NULL at " PTR_FORMAT, p2i(obj)); 6950 HeapWord* addr = (HeapWord*)obj; 6951 // Check if oop points into the CMS generation 6952 // and is not marked 6953 if (_span.contains(addr) && !_bit_map->isMarked(addr)) { 6954 // a white object ... 6955 // If we manage to "claim" the object, by being the 6956 // first thread to mark it, then we push it on our 6957 // marking stack 6958 if (_bit_map->par_mark(addr)) { // ... now grey 6959 // push on work queue (grey set) 6960 bool simulate_overflow = false; 6961 NOT_PRODUCT( 6962 if (CMSMarkStackOverflowALot && 6963 _collector->par_simulate_overflow()) { 6964 // simulate a stack overflow 6965 simulate_overflow = true; 6966 } 6967 ) 6968 if (simulate_overflow || !_work_queue->push(obj)) { 6969 _collector->par_push_on_overflow_list(obj); 6970 _collector->_par_pmc_remark_ovflw++; // imprecise OK: no need to CAS 6971 } 6972 } // Else, some other thread got there first 6973 } 6974 } 6975 6976 void ParPushAndMarkClosure::do_oop(oop* p) { ParPushAndMarkClosure::do_oop_work(p); } 6977 void ParPushAndMarkClosure::do_oop(narrowOop* p) { ParPushAndMarkClosure::do_oop_work(p); } 6978 6979 void CMSPrecleanRefsYieldClosure::do_yield_work() { 6980 Mutex* bml = _collector->bitMapLock(); 6981 assert_lock_strong(bml); 6982 assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(), 6983 "CMS thread should hold CMS token"); 6984 6985 bml->unlock(); 6986 ConcurrentMarkSweepThread::desynchronize(true); 6987 6988 _collector->stopTimer(); 6989 _collector->incrementYields(); 6990 6991 // See the comment in coordinator_yield() 6992 for (unsigned i = 0; i < CMSYieldSleepCount && 6993 ConcurrentMarkSweepThread::should_yield() && 6994 !CMSCollector::foregroundGCIsActive(); ++i) { 6995 os::sleep(Thread::current(), 1, false); 6996 } 6997 6998 ConcurrentMarkSweepThread::synchronize(true); 6999 bml->lock(); 7000 7001 _collector->startTimer(); 7002 } 7003 7004 bool CMSPrecleanRefsYieldClosure::should_return() { 7005 if (ConcurrentMarkSweepThread::should_yield()) { 7006 do_yield_work(); 7007 } 7008 return _collector->foregroundGCIsActive(); 7009 } 7010 7011 void MarkFromDirtyCardsClosure::do_MemRegion(MemRegion mr) { 7012 assert(((size_t)mr.start())%CardTable::card_size_in_words == 0, 7013 "mr should be aligned to start at a card boundary"); 7014 // We'd like to assert: 7015 // assert(mr.word_size()%CardTable::card_size_in_words == 0, 7016 // "mr should be a range of cards"); 7017 // However, that would be too strong in one case -- the last 7018 // partition ends at _unallocated_block which, in general, can be 7019 // an arbitrary boundary, not necessarily card aligned. 7020 _num_dirty_cards += mr.word_size()/CardTable::card_size_in_words; 7021 _space->object_iterate_mem(mr, &_scan_cl); 7022 } 7023 7024 SweepClosure::SweepClosure(CMSCollector* collector, 7025 ConcurrentMarkSweepGeneration* g, 7026 CMSBitMap* bitMap, bool should_yield) : 7027 _collector(collector), 7028 _g(g), 7029 _sp(g->cmsSpace()), 7030 _limit(_sp->sweep_limit()), 7031 _freelistLock(_sp->freelistLock()), 7032 _bitMap(bitMap), 7033 _yield(should_yield), 7034 _inFreeRange(false), // No free range at beginning of sweep 7035 _freeRangeInFreeLists(false), // No free range at beginning of sweep 7036 _lastFreeRangeCoalesced(false), 7037 _freeFinger(g->used_region().start()) 7038 { 7039 NOT_PRODUCT( 7040 _numObjectsFreed = 0; 7041 _numWordsFreed = 0; 7042 _numObjectsLive = 0; 7043 _numWordsLive = 0; 7044 _numObjectsAlreadyFree = 0; 7045 _numWordsAlreadyFree = 0; 7046 _last_fc = NULL; 7047 7048 _sp->initializeIndexedFreeListArrayReturnedBytes(); 7049 _sp->dictionary()->initialize_dict_returned_bytes(); 7050 ) 7051 assert(_limit >= _sp->bottom() && _limit <= _sp->end(), 7052 "sweep _limit out of bounds"); 7053 log_develop_trace(gc, sweep)("===================="); 7054 log_develop_trace(gc, sweep)("Starting new sweep with limit " PTR_FORMAT, p2i(_limit)); 7055 } 7056 7057 void SweepClosure::print_on(outputStream* st) const { 7058 st->print_cr("_sp = [" PTR_FORMAT "," PTR_FORMAT ")", 7059 p2i(_sp->bottom()), p2i(_sp->end())); 7060 st->print_cr("_limit = " PTR_FORMAT, p2i(_limit)); 7061 st->print_cr("_freeFinger = " PTR_FORMAT, p2i(_freeFinger)); 7062 NOT_PRODUCT(st->print_cr("_last_fc = " PTR_FORMAT, p2i(_last_fc));) 7063 st->print_cr("_inFreeRange = %d, _freeRangeInFreeLists = %d, _lastFreeRangeCoalesced = %d", 7064 _inFreeRange, _freeRangeInFreeLists, _lastFreeRangeCoalesced); 7065 } 7066 7067 #ifndef PRODUCT 7068 // Assertion checking only: no useful work in product mode -- 7069 // however, if any of the flags below become product flags, 7070 // you may need to review this code to see if it needs to be 7071 // enabled in product mode. 7072 SweepClosure::~SweepClosure() { 7073 assert_lock_strong(_freelistLock); 7074 assert(_limit >= _sp->bottom() && _limit <= _sp->end(), 7075 "sweep _limit out of bounds"); 7076 if (inFreeRange()) { 7077 Log(gc, sweep) log; 7078 log.error("inFreeRange() should have been reset; dumping state of SweepClosure"); 7079 ResourceMark rm; 7080 LogStream ls(log.error()); 7081 print_on(&ls); 7082 ShouldNotReachHere(); 7083 } 7084 7085 if (log_is_enabled(Debug, gc, sweep)) { 7086 log_debug(gc, sweep)("Collected " SIZE_FORMAT " objects, " SIZE_FORMAT " bytes", 7087 _numObjectsFreed, _numWordsFreed*sizeof(HeapWord)); 7088 log_debug(gc, sweep)("Live " SIZE_FORMAT " objects, " SIZE_FORMAT " bytes Already free " SIZE_FORMAT " objects, " SIZE_FORMAT " bytes", 7089 _numObjectsLive, _numWordsLive*sizeof(HeapWord), _numObjectsAlreadyFree, _numWordsAlreadyFree*sizeof(HeapWord)); 7090 size_t totalBytes = (_numWordsFreed + _numWordsLive + _numWordsAlreadyFree) * sizeof(HeapWord); 7091 log_debug(gc, sweep)("Total sweep: " SIZE_FORMAT " bytes", totalBytes); 7092 } 7093 7094 if (log_is_enabled(Trace, gc, sweep) && CMSVerifyReturnedBytes) { 7095 size_t indexListReturnedBytes = _sp->sumIndexedFreeListArrayReturnedBytes(); 7096 size_t dict_returned_bytes = _sp->dictionary()->sum_dict_returned_bytes(); 7097 size_t returned_bytes = indexListReturnedBytes + dict_returned_bytes; 7098 log_trace(gc, sweep)("Returned " SIZE_FORMAT " bytes Indexed List Returned " SIZE_FORMAT " bytes Dictionary Returned " SIZE_FORMAT " bytes", 7099 returned_bytes, indexListReturnedBytes, dict_returned_bytes); 7100 } 7101 log_develop_trace(gc, sweep)("end of sweep with _limit = " PTR_FORMAT, p2i(_limit)); 7102 log_develop_trace(gc, sweep)("================"); 7103 } 7104 #endif // PRODUCT 7105 7106 void SweepClosure::initialize_free_range(HeapWord* freeFinger, 7107 bool freeRangeInFreeLists) { 7108 log_develop_trace(gc, sweep)("---- Start free range at " PTR_FORMAT " with free block (%d)", 7109 p2i(freeFinger), freeRangeInFreeLists); 7110 assert(!inFreeRange(), "Trampling existing free range"); 7111 set_inFreeRange(true); 7112 set_lastFreeRangeCoalesced(false); 7113 7114 set_freeFinger(freeFinger); 7115 set_freeRangeInFreeLists(freeRangeInFreeLists); 7116 if (CMSTestInFreeList) { 7117 if (freeRangeInFreeLists) { 7118 FreeChunk* fc = (FreeChunk*) freeFinger; 7119 assert(fc->is_free(), "A chunk on the free list should be free."); 7120 assert(fc->size() > 0, "Free range should have a size"); 7121 assert(_sp->verify_chunk_in_free_list(fc), "Chunk is not in free lists"); 7122 } 7123 } 7124 } 7125 7126 // Note that the sweeper runs concurrently with mutators. Thus, 7127 // it is possible for direct allocation in this generation to happen 7128 // in the middle of the sweep. Note that the sweeper also coalesces 7129 // contiguous free blocks. Thus, unless the sweeper and the allocator 7130 // synchronize appropriately freshly allocated blocks may get swept up. 7131 // This is accomplished by the sweeper locking the free lists while 7132 // it is sweeping. Thus blocks that are determined to be free are 7133 // indeed free. There is however one additional complication: 7134 // blocks that have been allocated since the final checkpoint and 7135 // mark, will not have been marked and so would be treated as 7136 // unreachable and swept up. To prevent this, the allocator marks 7137 // the bit map when allocating during the sweep phase. This leads, 7138 // however, to a further complication -- objects may have been allocated 7139 // but not yet initialized -- in the sense that the header isn't yet 7140 // installed. The sweeper can not then determine the size of the block 7141 // in order to skip over it. To deal with this case, we use a technique 7142 // (due to Printezis) to encode such uninitialized block sizes in the 7143 // bit map. Since the bit map uses a bit per every HeapWord, but the 7144 // CMS generation has a minimum object size of 3 HeapWords, it follows 7145 // that "normal marks" won't be adjacent in the bit map (there will 7146 // always be at least two 0 bits between successive 1 bits). We make use 7147 // of these "unused" bits to represent uninitialized blocks -- the bit 7148 // corresponding to the start of the uninitialized object and the next 7149 // bit are both set. Finally, a 1 bit marks the end of the object that 7150 // started with the two consecutive 1 bits to indicate its potentially 7151 // uninitialized state. 7152 7153 size_t SweepClosure::do_blk_careful(HeapWord* addr) { 7154 FreeChunk* fc = (FreeChunk*)addr; 7155 size_t res; 7156 7157 // Check if we are done sweeping. Below we check "addr >= _limit" rather 7158 // than "addr == _limit" because although _limit was a block boundary when 7159 // we started the sweep, it may no longer be one because heap expansion 7160 // may have caused us to coalesce the block ending at the address _limit 7161 // with a newly expanded chunk (this happens when _limit was set to the 7162 // previous _end of the space), so we may have stepped past _limit: 7163 // see the following Zeno-like trail of CRs 6977970, 7008136, 7042740. 7164 if (addr >= _limit) { // we have swept up to or past the limit: finish up 7165 assert(_limit >= _sp->bottom() && _limit <= _sp->end(), 7166 "sweep _limit out of bounds"); 7167 assert(addr < _sp->end(), "addr out of bounds"); 7168 // Flush any free range we might be holding as a single 7169 // coalesced chunk to the appropriate free list. 7170 if (inFreeRange()) { 7171 assert(freeFinger() >= _sp->bottom() && freeFinger() < _limit, 7172 "freeFinger() " PTR_FORMAT " is out-of-bounds", p2i(freeFinger())); 7173 flush_cur_free_chunk(freeFinger(), 7174 pointer_delta(addr, freeFinger())); 7175 log_develop_trace(gc, sweep)("Sweep: last chunk: put_free_blk " PTR_FORMAT " (" SIZE_FORMAT ") [coalesced:%d]", 7176 p2i(freeFinger()), pointer_delta(addr, freeFinger()), 7177 lastFreeRangeCoalesced() ? 1 : 0); 7178 } 7179 7180 // help the iterator loop finish 7181 return pointer_delta(_sp->end(), addr); 7182 } 7183 7184 assert(addr < _limit, "sweep invariant"); 7185 // check if we should yield 7186 do_yield_check(addr); 7187 if (fc->is_free()) { 7188 // Chunk that is already free 7189 res = fc->size(); 7190 do_already_free_chunk(fc); 7191 debug_only(_sp->verifyFreeLists()); 7192 // If we flush the chunk at hand in lookahead_and_flush() 7193 // and it's coalesced with a preceding chunk, then the 7194 // process of "mangling" the payload of the coalesced block 7195 // will cause erasure of the size information from the 7196 // (erstwhile) header of all the coalesced blocks but the 7197 // first, so the first disjunct in the assert will not hold 7198 // in that specific case (in which case the second disjunct 7199 // will hold). 7200 assert(res == fc->size() || ((HeapWord*)fc) + res >= _limit, 7201 "Otherwise the size info doesn't change at this step"); 7202 NOT_PRODUCT( 7203 _numObjectsAlreadyFree++; 7204 _numWordsAlreadyFree += res; 7205 ) 7206 NOT_PRODUCT(_last_fc = fc;) 7207 } else if (!_bitMap->isMarked(addr)) { 7208 // Chunk is fresh garbage 7209 res = do_garbage_chunk(fc); 7210 debug_only(_sp->verifyFreeLists()); 7211 NOT_PRODUCT( 7212 _numObjectsFreed++; 7213 _numWordsFreed += res; 7214 ) 7215 } else { 7216 // Chunk that is alive. 7217 res = do_live_chunk(fc); 7218 debug_only(_sp->verifyFreeLists()); 7219 NOT_PRODUCT( 7220 _numObjectsLive++; 7221 _numWordsLive += res; 7222 ) 7223 } 7224 return res; 7225 } 7226 7227 // For the smart allocation, record following 7228 // split deaths - a free chunk is removed from its free list because 7229 // it is being split into two or more chunks. 7230 // split birth - a free chunk is being added to its free list because 7231 // a larger free chunk has been split and resulted in this free chunk. 7232 // coal death - a free chunk is being removed from its free list because 7233 // it is being coalesced into a large free chunk. 7234 // coal birth - a free chunk is being added to its free list because 7235 // it was created when two or more free chunks where coalesced into 7236 // this free chunk. 7237 // 7238 // These statistics are used to determine the desired number of free 7239 // chunks of a given size. The desired number is chosen to be relative 7240 // to the end of a CMS sweep. The desired number at the end of a sweep 7241 // is the 7242 // count-at-end-of-previous-sweep (an amount that was enough) 7243 // - count-at-beginning-of-current-sweep (the excess) 7244 // + split-births (gains in this size during interval) 7245 // - split-deaths (demands on this size during interval) 7246 // where the interval is from the end of one sweep to the end of the 7247 // next. 7248 // 7249 // When sweeping the sweeper maintains an accumulated chunk which is 7250 // the chunk that is made up of chunks that have been coalesced. That 7251 // will be termed the left-hand chunk. A new chunk of garbage that 7252 // is being considered for coalescing will be referred to as the 7253 // right-hand chunk. 7254 // 7255 // When making a decision on whether to coalesce a right-hand chunk with 7256 // the current left-hand chunk, the current count vs. the desired count 7257 // of the left-hand chunk is considered. Also if the right-hand chunk 7258 // is near the large chunk at the end of the heap (see 7259 // ConcurrentMarkSweepGeneration::isNearLargestChunk()), then the 7260 // left-hand chunk is coalesced. 7261 // 7262 // When making a decision about whether to split a chunk, the desired count 7263 // vs. the current count of the candidate to be split is also considered. 7264 // If the candidate is underpopulated (currently fewer chunks than desired) 7265 // a chunk of an overpopulated (currently more chunks than desired) size may 7266 // be chosen. The "hint" associated with a free list, if non-null, points 7267 // to a free list which may be overpopulated. 7268 // 7269 7270 void SweepClosure::do_already_free_chunk(FreeChunk* fc) { 7271 const size_t size = fc->size(); 7272 // Chunks that cannot be coalesced are not in the 7273 // free lists. 7274 if (CMSTestInFreeList && !fc->cantCoalesce()) { 7275 assert(_sp->verify_chunk_in_free_list(fc), 7276 "free chunk should be in free lists"); 7277 } 7278 // a chunk that is already free, should not have been 7279 // marked in the bit map 7280 HeapWord* const addr = (HeapWord*) fc; 7281 assert(!_bitMap->isMarked(addr), "free chunk should be unmarked"); 7282 // Verify that the bit map has no bits marked between 7283 // addr and purported end of this block. 7284 _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size); 7285 7286 // Some chunks cannot be coalesced under any circumstances. 7287 // See the definition of cantCoalesce(). 7288 if (!fc->cantCoalesce()) { 7289 // This chunk can potentially be coalesced. 7290 // All the work is done in 7291 do_post_free_or_garbage_chunk(fc, size); 7292 // Note that if the chunk is not coalescable (the else arm 7293 // below), we unconditionally flush, without needing to do 7294 // a "lookahead," as we do below. 7295 if (inFreeRange()) lookahead_and_flush(fc, size); 7296 } else { 7297 // Code path common to both original and adaptive free lists. 7298 7299 // cant coalesce with previous block; this should be treated 7300 // as the end of a free run if any 7301 if (inFreeRange()) { 7302 // we kicked some butt; time to pick up the garbage 7303 assert(freeFinger() < addr, "freeFinger points too high"); 7304 flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger())); 7305 } 7306 // else, nothing to do, just continue 7307 } 7308 } 7309 7310 size_t SweepClosure::do_garbage_chunk(FreeChunk* fc) { 7311 // This is a chunk of garbage. It is not in any free list. 7312 // Add it to a free list or let it possibly be coalesced into 7313 // a larger chunk. 7314 HeapWord* const addr = (HeapWord*) fc; 7315 const size_t size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size()); 7316 7317 // Verify that the bit map has no bits marked between 7318 // addr and purported end of just dead object. 7319 _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size); 7320 do_post_free_or_garbage_chunk(fc, size); 7321 7322 assert(_limit >= addr + size, 7323 "A freshly garbage chunk can't possibly straddle over _limit"); 7324 if (inFreeRange()) lookahead_and_flush(fc, size); 7325 return size; 7326 } 7327 7328 size_t SweepClosure::do_live_chunk(FreeChunk* fc) { 7329 HeapWord* addr = (HeapWord*) fc; 7330 // The sweeper has just found a live object. Return any accumulated 7331 // left hand chunk to the free lists. 7332 if (inFreeRange()) { 7333 assert(freeFinger() < addr, "freeFinger points too high"); 7334 flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger())); 7335 } 7336 7337 // This object is live: we'd normally expect this to be 7338 // an oop, and like to assert the following: 7339 // assert(oopDesc::is_oop(oop(addr)), "live block should be an oop"); 7340 // However, as we commented above, this may be an object whose 7341 // header hasn't yet been initialized. 7342 size_t size; 7343 assert(_bitMap->isMarked(addr), "Tautology for this control point"); 7344 if (_bitMap->isMarked(addr + 1)) { 7345 // Determine the size from the bit map, rather than trying to 7346 // compute it from the object header. 7347 HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2); 7348 size = pointer_delta(nextOneAddr + 1, addr); 7349 assert(size == CompactibleFreeListSpace::adjustObjectSize(size), 7350 "alignment problem"); 7351 7352 #ifdef ASSERT 7353 if (oop(addr)->klass_or_null_acquire() != NULL) { 7354 // Ignore mark word because we are running concurrent with mutators 7355 assert(oopDesc::is_oop(oop(addr), true), "live block should be an oop"); 7356 assert(size == 7357 CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size()), 7358 "P-mark and computed size do not agree"); 7359 } 7360 #endif 7361 7362 } else { 7363 // This should be an initialized object that's alive. 7364 assert(oop(addr)->klass_or_null_acquire() != NULL, 7365 "Should be an initialized object"); 7366 // Ignore mark word because we are running concurrent with mutators 7367 assert(oopDesc::is_oop(oop(addr), true), "live block should be an oop"); 7368 // Verify that the bit map has no bits marked between 7369 // addr and purported end of this block. 7370 size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size()); 7371 assert(size >= 3, "Necessary for Printezis marks to work"); 7372 assert(!_bitMap->isMarked(addr+1), "Tautology for this control point"); 7373 DEBUG_ONLY(_bitMap->verifyNoOneBitsInRange(addr+2, addr+size);) 7374 } 7375 return size; 7376 } 7377 7378 void SweepClosure::do_post_free_or_garbage_chunk(FreeChunk* fc, 7379 size_t chunkSize) { 7380 // do_post_free_or_garbage_chunk() should only be called in the case 7381 // of the adaptive free list allocator. 7382 const bool fcInFreeLists = fc->is_free(); 7383 assert((HeapWord*)fc <= _limit, "sweep invariant"); 7384 if (CMSTestInFreeList && fcInFreeLists) { 7385 assert(_sp->verify_chunk_in_free_list(fc), "free chunk is not in free lists"); 7386 } 7387 7388 log_develop_trace(gc, sweep)(" -- pick up another chunk at " PTR_FORMAT " (" SIZE_FORMAT ")", p2i(fc), chunkSize); 7389 7390 HeapWord* const fc_addr = (HeapWord*) fc; 7391 7392 bool coalesce = false; 7393 const size_t left = pointer_delta(fc_addr, freeFinger()); 7394 const size_t right = chunkSize; 7395 switch (FLSCoalescePolicy) { 7396 // numeric value forms a coalition aggressiveness metric 7397 case 0: { // never coalesce 7398 coalesce = false; 7399 break; 7400 } 7401 case 1: { // coalesce if left & right chunks on overpopulated lists 7402 coalesce = _sp->coalOverPopulated(left) && 7403 _sp->coalOverPopulated(right); 7404 break; 7405 } 7406 case 2: { // coalesce if left chunk on overpopulated list (default) 7407 coalesce = _sp->coalOverPopulated(left); 7408 break; 7409 } 7410 case 3: { // coalesce if left OR right chunk on overpopulated list 7411 coalesce = _sp->coalOverPopulated(left) || 7412 _sp->coalOverPopulated(right); 7413 break; 7414 } 7415 case 4: { // always coalesce 7416 coalesce = true; 7417 break; 7418 } 7419 default: 7420 ShouldNotReachHere(); 7421 } 7422 7423 // Should the current free range be coalesced? 7424 // If the chunk is in a free range and either we decided to coalesce above 7425 // or the chunk is near the large block at the end of the heap 7426 // (isNearLargestChunk() returns true), then coalesce this chunk. 7427 const bool doCoalesce = inFreeRange() 7428 && (coalesce || _g->isNearLargestChunk(fc_addr)); 7429 if (doCoalesce) { 7430 // Coalesce the current free range on the left with the new 7431 // chunk on the right. If either is on a free list, 7432 // it must be removed from the list and stashed in the closure. 7433 if (freeRangeInFreeLists()) { 7434 FreeChunk* const ffc = (FreeChunk*)freeFinger(); 7435 assert(ffc->size() == pointer_delta(fc_addr, freeFinger()), 7436 "Size of free range is inconsistent with chunk size."); 7437 if (CMSTestInFreeList) { 7438 assert(_sp->verify_chunk_in_free_list(ffc), 7439 "Chunk is not in free lists"); 7440 } 7441 _sp->coalDeath(ffc->size()); 7442 _sp->removeFreeChunkFromFreeLists(ffc); 7443 set_freeRangeInFreeLists(false); 7444 } 7445 if (fcInFreeLists) { 7446 _sp->coalDeath(chunkSize); 7447 assert(fc->size() == chunkSize, 7448 "The chunk has the wrong size or is not in the free lists"); 7449 _sp->removeFreeChunkFromFreeLists(fc); 7450 } 7451 set_lastFreeRangeCoalesced(true); 7452 print_free_block_coalesced(fc); 7453 } else { // not in a free range and/or should not coalesce 7454 // Return the current free range and start a new one. 7455 if (inFreeRange()) { 7456 // In a free range but cannot coalesce with the right hand chunk. 7457 // Put the current free range into the free lists. 7458 flush_cur_free_chunk(freeFinger(), 7459 pointer_delta(fc_addr, freeFinger())); 7460 } 7461 // Set up for new free range. Pass along whether the right hand 7462 // chunk is in the free lists. 7463 initialize_free_range((HeapWord*)fc, fcInFreeLists); 7464 } 7465 } 7466 7467 // Lookahead flush: 7468 // If we are tracking a free range, and this is the last chunk that 7469 // we'll look at because its end crosses past _limit, we'll preemptively 7470 // flush it along with any free range we may be holding on to. Note that 7471 // this can be the case only for an already free or freshly garbage 7472 // chunk. If this block is an object, it can never straddle 7473 // over _limit. The "straddling" occurs when _limit is set at 7474 // the previous end of the space when this cycle started, and 7475 // a subsequent heap expansion caused the previously co-terminal 7476 // free block to be coalesced with the newly expanded portion, 7477 // thus rendering _limit a non-block-boundary making it dangerous 7478 // for the sweeper to step over and examine. 7479 void SweepClosure::lookahead_and_flush(FreeChunk* fc, size_t chunk_size) { 7480 assert(inFreeRange(), "Should only be called if currently in a free range."); 7481 HeapWord* const eob = ((HeapWord*)fc) + chunk_size; 7482 assert(_sp->used_region().contains(eob - 1), 7483 "eob = " PTR_FORMAT " eob-1 = " PTR_FORMAT " _limit = " PTR_FORMAT 7484 " out of bounds wrt _sp = [" PTR_FORMAT "," PTR_FORMAT ")" 7485 " when examining fc = " PTR_FORMAT "(" SIZE_FORMAT ")", 7486 p2i(eob), p2i(eob-1), p2i(_limit), p2i(_sp->bottom()), p2i(_sp->end()), p2i(fc), chunk_size); 7487 if (eob >= _limit) { 7488 assert(eob == _limit || fc->is_free(), "Only a free chunk should allow us to cross over the limit"); 7489 log_develop_trace(gc, sweep)("_limit " PTR_FORMAT " reached or crossed by block " 7490 "[" PTR_FORMAT "," PTR_FORMAT ") in space " 7491 "[" PTR_FORMAT "," PTR_FORMAT ")", 7492 p2i(_limit), p2i(fc), p2i(eob), p2i(_sp->bottom()), p2i(_sp->end())); 7493 // Return the storage we are tracking back into the free lists. 7494 log_develop_trace(gc, sweep)("Flushing ... "); 7495 assert(freeFinger() < eob, "Error"); 7496 flush_cur_free_chunk( freeFinger(), pointer_delta(eob, freeFinger())); 7497 } 7498 } 7499 7500 void SweepClosure::flush_cur_free_chunk(HeapWord* chunk, size_t size) { 7501 assert(inFreeRange(), "Should only be called if currently in a free range."); 7502 assert(size > 0, 7503 "A zero sized chunk cannot be added to the free lists."); 7504 if (!freeRangeInFreeLists()) { 7505 if (CMSTestInFreeList) { 7506 FreeChunk* fc = (FreeChunk*) chunk; 7507 fc->set_size(size); 7508 assert(!_sp->verify_chunk_in_free_list(fc), 7509 "chunk should not be in free lists yet"); 7510 } 7511 log_develop_trace(gc, sweep)(" -- add free block " PTR_FORMAT " (" SIZE_FORMAT ") to free lists", p2i(chunk), size); 7512 // A new free range is going to be starting. The current 7513 // free range has not been added to the free lists yet or 7514 // was removed so add it back. 7515 // If the current free range was coalesced, then the death 7516 // of the free range was recorded. Record a birth now. 7517 if (lastFreeRangeCoalesced()) { 7518 _sp->coalBirth(size); 7519 } 7520 _sp->addChunkAndRepairOffsetTable(chunk, size, 7521 lastFreeRangeCoalesced()); 7522 } else { 7523 log_develop_trace(gc, sweep)("Already in free list: nothing to flush"); 7524 } 7525 set_inFreeRange(false); 7526 set_freeRangeInFreeLists(false); 7527 } 7528 7529 // We take a break if we've been at this for a while, 7530 // so as to avoid monopolizing the locks involved. 7531 void SweepClosure::do_yield_work(HeapWord* addr) { 7532 // Return current free chunk being used for coalescing (if any) 7533 // to the appropriate freelist. After yielding, the next 7534 // free block encountered will start a coalescing range of 7535 // free blocks. If the next free block is adjacent to the 7536 // chunk just flushed, they will need to wait for the next 7537 // sweep to be coalesced. 7538 if (inFreeRange()) { 7539 flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger())); 7540 } 7541 7542 // First give up the locks, then yield, then re-lock. 7543 // We should probably use a constructor/destructor idiom to 7544 // do this unlock/lock or modify the MutexUnlocker class to 7545 // serve our purpose. XXX 7546 assert_lock_strong(_bitMap->lock()); 7547 assert_lock_strong(_freelistLock); 7548 assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(), 7549 "CMS thread should hold CMS token"); 7550 _bitMap->lock()->unlock(); 7551 _freelistLock->unlock(); 7552 ConcurrentMarkSweepThread::desynchronize(true); 7553 _collector->stopTimer(); 7554 _collector->incrementYields(); 7555 7556 // See the comment in coordinator_yield() 7557 for (unsigned i = 0; i < CMSYieldSleepCount && 7558 ConcurrentMarkSweepThread::should_yield() && 7559 !CMSCollector::foregroundGCIsActive(); ++i) { 7560 os::sleep(Thread::current(), 1, false); 7561 } 7562 7563 ConcurrentMarkSweepThread::synchronize(true); 7564 _freelistLock->lock(); 7565 _bitMap->lock()->lock_without_safepoint_check(); 7566 _collector->startTimer(); 7567 } 7568 7569 #ifndef PRODUCT 7570 // This is actually very useful in a product build if it can 7571 // be called from the debugger. Compile it into the product 7572 // as needed. 7573 bool debug_verify_chunk_in_free_list(FreeChunk* fc) { 7574 return debug_cms_space->verify_chunk_in_free_list(fc); 7575 } 7576 #endif 7577 7578 void SweepClosure::print_free_block_coalesced(FreeChunk* fc) const { 7579 log_develop_trace(gc, sweep)("Sweep:coal_free_blk " PTR_FORMAT " (" SIZE_FORMAT ")", 7580 p2i(fc), fc->size()); 7581 } 7582 7583 // CMSIsAliveClosure 7584 bool CMSIsAliveClosure::do_object_b(oop obj) { 7585 HeapWord* addr = (HeapWord*)obj; 7586 return addr != NULL && 7587 (!_span.contains(addr) || _bit_map->isMarked(addr)); 7588 } 7589 7590 7591 CMSKeepAliveClosure::CMSKeepAliveClosure( CMSCollector* collector, 7592 MemRegion span, 7593 CMSBitMap* bit_map, CMSMarkStack* mark_stack, 7594 bool cpc): 7595 _collector(collector), 7596 _span(span), 7597 _bit_map(bit_map), 7598 _mark_stack(mark_stack), 7599 _concurrent_precleaning(cpc) { 7600 assert(!_span.is_empty(), "Empty span could spell trouble"); 7601 } 7602 7603 7604 // CMSKeepAliveClosure: the serial version 7605 void CMSKeepAliveClosure::do_oop(oop obj) { 7606 HeapWord* addr = (HeapWord*)obj; 7607 if (_span.contains(addr) && 7608 !_bit_map->isMarked(addr)) { 7609 _bit_map->mark(addr); 7610 bool simulate_overflow = false; 7611 NOT_PRODUCT( 7612 if (CMSMarkStackOverflowALot && 7613 _collector->simulate_overflow()) { 7614 // simulate a stack overflow 7615 simulate_overflow = true; 7616 } 7617 ) 7618 if (simulate_overflow || !_mark_stack->push(obj)) { 7619 if (_concurrent_precleaning) { 7620 // We dirty the overflown object and let the remark 7621 // phase deal with it. 7622 assert(_collector->overflow_list_is_empty(), "Error"); 7623 // In the case of object arrays, we need to dirty all of 7624 // the cards that the object spans. No locking or atomics 7625 // are needed since no one else can be mutating the mod union 7626 // table. 7627 if (obj->is_objArray()) { 7628 size_t sz = obj->size(); 7629 HeapWord* end_card_addr = align_up(addr + sz, CardTable::card_size); 7630 MemRegion redirty_range = MemRegion(addr, end_card_addr); 7631 assert(!redirty_range.is_empty(), "Arithmetical tautology"); 7632 _collector->_modUnionTable.mark_range(redirty_range); 7633 } else { 7634 _collector->_modUnionTable.mark(addr); 7635 } 7636 _collector->_ser_kac_preclean_ovflw++; 7637 } else { 7638 _collector->push_on_overflow_list(obj); 7639 _collector->_ser_kac_ovflw++; 7640 } 7641 } 7642 } 7643 } 7644 7645 void CMSKeepAliveClosure::do_oop(oop* p) { CMSKeepAliveClosure::do_oop_work(p); } 7646 void CMSKeepAliveClosure::do_oop(narrowOop* p) { CMSKeepAliveClosure::do_oop_work(p); } 7647 7648 // CMSParKeepAliveClosure: a parallel version of the above. 7649 // The work queues are private to each closure (thread), 7650 // but (may be) available for stealing by other threads. 7651 void CMSParKeepAliveClosure::do_oop(oop obj) { 7652 HeapWord* addr = (HeapWord*)obj; 7653 if (_span.contains(addr) && 7654 !_bit_map->isMarked(addr)) { 7655 // In general, during recursive tracing, several threads 7656 // may be concurrently getting here; the first one to 7657 // "tag" it, claims it. 7658 if (_bit_map->par_mark(addr)) { 7659 bool res = _work_queue->push(obj); 7660 assert(res, "Low water mark should be much less than capacity"); 7661 // Do a recursive trim in the hope that this will keep 7662 // stack usage lower, but leave some oops for potential stealers 7663 trim_queue(_low_water_mark); 7664 } // Else, another thread got there first 7665 } 7666 } 7667 7668 void CMSParKeepAliveClosure::do_oop(oop* p) { CMSParKeepAliveClosure::do_oop_work(p); } 7669 void CMSParKeepAliveClosure::do_oop(narrowOop* p) { CMSParKeepAliveClosure::do_oop_work(p); } 7670 7671 void CMSParKeepAliveClosure::trim_queue(uint max) { 7672 while (_work_queue->size() > max) { 7673 oop new_oop; 7674 if (_work_queue->pop_local(new_oop)) { 7675 assert(new_oop != NULL && oopDesc::is_oop(new_oop), "Expected an oop"); 7676 assert(_bit_map->isMarked((HeapWord*)new_oop), 7677 "no white objects on this stack!"); 7678 assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop"); 7679 // iterate over the oops in this oop, marking and pushing 7680 // the ones in CMS heap (i.e. in _span). 7681 new_oop->oop_iterate(&_mark_and_push); 7682 } 7683 } 7684 } 7685 7686 CMSInnerParMarkAndPushClosure::CMSInnerParMarkAndPushClosure( 7687 CMSCollector* collector, 7688 MemRegion span, CMSBitMap* bit_map, 7689 OopTaskQueue* work_queue): 7690 _collector(collector), 7691 _span(span), 7692 _bit_map(bit_map), 7693 _work_queue(work_queue) { } 7694 7695 void CMSInnerParMarkAndPushClosure::do_oop(oop obj) { 7696 HeapWord* addr = (HeapWord*)obj; 7697 if (_span.contains(addr) && 7698 !_bit_map->isMarked(addr)) { 7699 if (_bit_map->par_mark(addr)) { 7700 bool simulate_overflow = false; 7701 NOT_PRODUCT( 7702 if (CMSMarkStackOverflowALot && 7703 _collector->par_simulate_overflow()) { 7704 // simulate a stack overflow 7705 simulate_overflow = true; 7706 } 7707 ) 7708 if (simulate_overflow || !_work_queue->push(obj)) { 7709 _collector->par_push_on_overflow_list(obj); 7710 _collector->_par_kac_ovflw++; 7711 } 7712 } // Else another thread got there already 7713 } 7714 } 7715 7716 void CMSInnerParMarkAndPushClosure::do_oop(oop* p) { CMSInnerParMarkAndPushClosure::do_oop_work(p); } 7717 void CMSInnerParMarkAndPushClosure::do_oop(narrowOop* p) { CMSInnerParMarkAndPushClosure::do_oop_work(p); } 7718 7719 ////////////////////////////////////////////////////////////////// 7720 // CMSExpansionCause ///////////////////////////// 7721 ////////////////////////////////////////////////////////////////// 7722 const char* CMSExpansionCause::to_string(CMSExpansionCause::Cause cause) { 7723 switch (cause) { 7724 case _no_expansion: 7725 return "No expansion"; 7726 case _satisfy_free_ratio: 7727 return "Free ratio"; 7728 case _satisfy_promotion: 7729 return "Satisfy promotion"; 7730 case _satisfy_allocation: 7731 return "allocation"; 7732 case _allocate_par_lab: 7733 return "Par LAB"; 7734 case _allocate_par_spooling_space: 7735 return "Par Spooling Space"; 7736 case _adaptive_size_policy: 7737 return "Ergonomics"; 7738 default: 7739 return "unknown"; 7740 } 7741 } 7742 7743 void CMSDrainMarkingStackClosure::do_void() { 7744 // the max number to take from overflow list at a time 7745 const size_t num = _mark_stack->capacity()/4; 7746 assert(!_concurrent_precleaning || _collector->overflow_list_is_empty(), 7747 "Overflow list should be NULL during concurrent phases"); 7748 while (!_mark_stack->isEmpty() || 7749 // if stack is empty, check the overflow list 7750 _collector->take_from_overflow_list(num, _mark_stack)) { 7751 oop obj = _mark_stack->pop(); 7752 HeapWord* addr = (HeapWord*)obj; 7753 assert(_span.contains(addr), "Should be within span"); 7754 assert(_bit_map->isMarked(addr), "Should be marked"); 7755 assert(oopDesc::is_oop(obj), "Should be an oop"); 7756 obj->oop_iterate(_keep_alive); 7757 } 7758 } 7759 7760 void CMSParDrainMarkingStackClosure::do_void() { 7761 // drain queue 7762 trim_queue(0); 7763 } 7764 7765 // Trim our work_queue so its length is below max at return 7766 void CMSParDrainMarkingStackClosure::trim_queue(uint max) { 7767 while (_work_queue->size() > max) { 7768 oop new_oop; 7769 if (_work_queue->pop_local(new_oop)) { 7770 assert(oopDesc::is_oop(new_oop), "Expected an oop"); 7771 assert(_bit_map->isMarked((HeapWord*)new_oop), 7772 "no white objects on this stack!"); 7773 assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop"); 7774 // iterate over the oops in this oop, marking and pushing 7775 // the ones in CMS heap (i.e. in _span). 7776 new_oop->oop_iterate(&_mark_and_push); 7777 } 7778 } 7779 } 7780 7781 //////////////////////////////////////////////////////////////////// 7782 // Support for Marking Stack Overflow list handling and related code 7783 //////////////////////////////////////////////////////////////////// 7784 // Much of the following code is similar in shape and spirit to the 7785 // code used in ParNewGC. We should try and share that code 7786 // as much as possible in the future. 7787 7788 #ifndef PRODUCT 7789 // Debugging support for CMSStackOverflowALot 7790 7791 // It's OK to call this multi-threaded; the worst thing 7792 // that can happen is that we'll get a bunch of closely 7793 // spaced simulated overflows, but that's OK, in fact 7794 // probably good as it would exercise the overflow code 7795 // under contention. 7796 bool CMSCollector::simulate_overflow() { 7797 if (_overflow_counter-- <= 0) { // just being defensive 7798 _overflow_counter = CMSMarkStackOverflowInterval; 7799 return true; 7800 } else { 7801 return false; 7802 } 7803 } 7804 7805 bool CMSCollector::par_simulate_overflow() { 7806 return simulate_overflow(); 7807 } 7808 #endif 7809 7810 // Single-threaded 7811 bool CMSCollector::take_from_overflow_list(size_t num, CMSMarkStack* stack) { 7812 assert(stack->isEmpty(), "Expected precondition"); 7813 assert(stack->capacity() > num, "Shouldn't bite more than can chew"); 7814 size_t i = num; 7815 oop cur = _overflow_list; 7816 const markOop proto = markOopDesc::prototype(); 7817 NOT_PRODUCT(ssize_t n = 0;) 7818 for (oop next; i > 0 && cur != NULL; cur = next, i--) { 7819 next = oop(cur->mark()); 7820 cur->set_mark(proto); // until proven otherwise 7821 assert(oopDesc::is_oop(cur), "Should be an oop"); 7822 bool res = stack->push(cur); 7823 assert(res, "Bit off more than can chew?"); 7824 NOT_PRODUCT(n++;) 7825 } 7826 _overflow_list = cur; 7827 #ifndef PRODUCT 7828 assert(_num_par_pushes >= n, "Too many pops?"); 7829 _num_par_pushes -=n; 7830 #endif 7831 return !stack->isEmpty(); 7832 } 7833 7834 #define BUSY (cast_to_oop<intptr_t>(0x1aff1aff)) 7835 // (MT-safe) Get a prefix of at most "num" from the list. 7836 // The overflow list is chained through the mark word of 7837 // each object in the list. We fetch the entire list, 7838 // break off a prefix of the right size and return the 7839 // remainder. If other threads try to take objects from 7840 // the overflow list at that time, they will wait for 7841 // some time to see if data becomes available. If (and 7842 // only if) another thread places one or more object(s) 7843 // on the global list before we have returned the suffix 7844 // to the global list, we will walk down our local list 7845 // to find its end and append the global list to 7846 // our suffix before returning it. This suffix walk can 7847 // prove to be expensive (quadratic in the amount of traffic) 7848 // when there are many objects in the overflow list and 7849 // there is much producer-consumer contention on the list. 7850 // *NOTE*: The overflow list manipulation code here and 7851 // in ParNewGeneration:: are very similar in shape, 7852 // except that in the ParNew case we use the old (from/eden) 7853 // copy of the object to thread the list via its klass word. 7854 // Because of the common code, if you make any changes in 7855 // the code below, please check the ParNew version to see if 7856 // similar changes might be needed. 7857 // CR 6797058 has been filed to consolidate the common code. 7858 bool CMSCollector::par_take_from_overflow_list(size_t num, 7859 OopTaskQueue* work_q, 7860 int no_of_gc_threads) { 7861 assert(work_q->size() == 0, "First empty local work queue"); 7862 assert(num < work_q->max_elems(), "Can't bite more than we can chew"); 7863 if (_overflow_list == NULL) { 7864 return false; 7865 } 7866 // Grab the entire list; we'll put back a suffix 7867 oop prefix = cast_to_oop(Atomic::xchg((oopDesc*)BUSY, &_overflow_list)); 7868 Thread* tid = Thread::current(); 7869 // Before "no_of_gc_threads" was introduced CMSOverflowSpinCount was 7870 // set to ParallelGCThreads. 7871 size_t CMSOverflowSpinCount = (size_t) no_of_gc_threads; // was ParallelGCThreads; 7872 size_t sleep_time_millis = MAX2((size_t)1, num/100); 7873 // If the list is busy, we spin for a short while, 7874 // sleeping between attempts to get the list. 7875 for (size_t spin = 0; prefix == BUSY && spin < CMSOverflowSpinCount; spin++) { 7876 os::sleep(tid, sleep_time_millis, false); 7877 if (_overflow_list == NULL) { 7878 // Nothing left to take 7879 return false; 7880 } else if (_overflow_list != BUSY) { 7881 // Try and grab the prefix 7882 prefix = cast_to_oop(Atomic::xchg((oopDesc*)BUSY, &_overflow_list)); 7883 } 7884 } 7885 // If the list was found to be empty, or we spun long 7886 // enough, we give up and return empty-handed. If we leave 7887 // the list in the BUSY state below, it must be the case that 7888 // some other thread holds the overflow list and will set it 7889 // to a non-BUSY state in the future. 7890 if (prefix == NULL || prefix == BUSY) { 7891 // Nothing to take or waited long enough 7892 if (prefix == NULL) { 7893 // Write back the NULL in case we overwrote it with BUSY above 7894 // and it is still the same value. 7895 Atomic::cmpxchg((oopDesc*)NULL, &_overflow_list, (oopDesc*)BUSY); 7896 } 7897 return false; 7898 } 7899 assert(prefix != NULL && prefix != BUSY, "Error"); 7900 size_t i = num; 7901 oop cur = prefix; 7902 // Walk down the first "num" objects, unless we reach the end. 7903 for (; i > 1 && cur->mark() != NULL; cur = oop(cur->mark()), i--); 7904 if (cur->mark() == NULL) { 7905 // We have "num" or fewer elements in the list, so there 7906 // is nothing to return to the global list. 7907 // Write back the NULL in lieu of the BUSY we wrote 7908 // above, if it is still the same value. 7909 if (_overflow_list == BUSY) { 7910 Atomic::cmpxchg((oopDesc*)NULL, &_overflow_list, (oopDesc*)BUSY); 7911 } 7912 } else { 7913 // Chop off the suffix and return it to the global list. 7914 assert(cur->mark() != BUSY, "Error"); 7915 oop suffix_head = cur->mark(); // suffix will be put back on global list 7916 cur->set_mark(NULL); // break off suffix 7917 // It's possible that the list is still in the empty(busy) state 7918 // we left it in a short while ago; in that case we may be 7919 // able to place back the suffix without incurring the cost 7920 // of a walk down the list. 7921 oop observed_overflow_list = _overflow_list; 7922 oop cur_overflow_list = observed_overflow_list; 7923 bool attached = false; 7924 while (observed_overflow_list == BUSY || observed_overflow_list == NULL) { 7925 observed_overflow_list = 7926 Atomic::cmpxchg((oopDesc*)suffix_head, &_overflow_list, (oopDesc*)cur_overflow_list); 7927 if (cur_overflow_list == observed_overflow_list) { 7928 attached = true; 7929 break; 7930 } else cur_overflow_list = observed_overflow_list; 7931 } 7932 if (!attached) { 7933 // Too bad, someone else sneaked in (at least) an element; we'll need 7934 // to do a splice. Find tail of suffix so we can prepend suffix to global 7935 // list. 7936 for (cur = suffix_head; cur->mark() != NULL; cur = (oop)(cur->mark())); 7937 oop suffix_tail = cur; 7938 assert(suffix_tail != NULL && suffix_tail->mark() == NULL, 7939 "Tautology"); 7940 observed_overflow_list = _overflow_list; 7941 do { 7942 cur_overflow_list = observed_overflow_list; 7943 if (cur_overflow_list != BUSY) { 7944 // Do the splice ... 7945 suffix_tail->set_mark(markOop(cur_overflow_list)); 7946 } else { // cur_overflow_list == BUSY 7947 suffix_tail->set_mark(NULL); 7948 } 7949 // ... and try to place spliced list back on overflow_list ... 7950 observed_overflow_list = 7951 Atomic::cmpxchg((oopDesc*)suffix_head, &_overflow_list, (oopDesc*)cur_overflow_list); 7952 } while (cur_overflow_list != observed_overflow_list); 7953 // ... until we have succeeded in doing so. 7954 } 7955 } 7956 7957 // Push the prefix elements on work_q 7958 assert(prefix != NULL, "control point invariant"); 7959 const markOop proto = markOopDesc::prototype(); 7960 oop next; 7961 NOT_PRODUCT(ssize_t n = 0;) 7962 for (cur = prefix; cur != NULL; cur = next) { 7963 next = oop(cur->mark()); 7964 cur->set_mark(proto); // until proven otherwise 7965 assert(oopDesc::is_oop(cur), "Should be an oop"); 7966 bool res = work_q->push(cur); 7967 assert(res, "Bit off more than we can chew?"); 7968 NOT_PRODUCT(n++;) 7969 } 7970 #ifndef PRODUCT 7971 assert(_num_par_pushes >= n, "Too many pops?"); 7972 Atomic::sub(n, &_num_par_pushes); 7973 #endif 7974 return true; 7975 } 7976 7977 // Single-threaded 7978 void CMSCollector::push_on_overflow_list(oop p) { 7979 NOT_PRODUCT(_num_par_pushes++;) 7980 assert(oopDesc::is_oop(p), "Not an oop"); 7981 preserve_mark_if_necessary(p); 7982 p->set_mark((markOop)_overflow_list); 7983 _overflow_list = p; 7984 } 7985 7986 // Multi-threaded; use CAS to prepend to overflow list 7987 void CMSCollector::par_push_on_overflow_list(oop p) { 7988 NOT_PRODUCT(Atomic::inc(&_num_par_pushes);) 7989 assert(oopDesc::is_oop(p), "Not an oop"); 7990 par_preserve_mark_if_necessary(p); 7991 oop observed_overflow_list = _overflow_list; 7992 oop cur_overflow_list; 7993 do { 7994 cur_overflow_list = observed_overflow_list; 7995 if (cur_overflow_list != BUSY) { 7996 p->set_mark(markOop(cur_overflow_list)); 7997 } else { 7998 p->set_mark(NULL); 7999 } 8000 observed_overflow_list = 8001 Atomic::cmpxchg((oopDesc*)p, &_overflow_list, (oopDesc*)cur_overflow_list); 8002 } while (cur_overflow_list != observed_overflow_list); 8003 } 8004 #undef BUSY 8005 8006 // Single threaded 8007 // General Note on GrowableArray: pushes may silently fail 8008 // because we are (temporarily) out of C-heap for expanding 8009 // the stack. The problem is quite ubiquitous and affects 8010 // a lot of code in the JVM. The prudent thing for GrowableArray 8011 // to do (for now) is to exit with an error. However, that may 8012 // be too draconian in some cases because the caller may be 8013 // able to recover without much harm. For such cases, we 8014 // should probably introduce a "soft_push" method which returns 8015 // an indication of success or failure with the assumption that 8016 // the caller may be able to recover from a failure; code in 8017 // the VM can then be changed, incrementally, to deal with such 8018 // failures where possible, thus, incrementally hardening the VM 8019 // in such low resource situations. 8020 void CMSCollector::preserve_mark_work(oop p, markOop m) { 8021 _preserved_oop_stack.push(p); 8022 _preserved_mark_stack.push(m); 8023 assert(m == p->mark(), "Mark word changed"); 8024 assert(_preserved_oop_stack.size() == _preserved_mark_stack.size(), 8025 "bijection"); 8026 } 8027 8028 // Single threaded 8029 void CMSCollector::preserve_mark_if_necessary(oop p) { 8030 markOop m = p->mark(); 8031 if (m->must_be_preserved(p)) { 8032 preserve_mark_work(p, m); 8033 } 8034 } 8035 8036 void CMSCollector::par_preserve_mark_if_necessary(oop p) { 8037 markOop m = p->mark(); 8038 if (m->must_be_preserved(p)) { 8039 MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag); 8040 // Even though we read the mark word without holding 8041 // the lock, we are assured that it will not change 8042 // because we "own" this oop, so no other thread can 8043 // be trying to push it on the overflow list; see 8044 // the assertion in preserve_mark_work() that checks 8045 // that m == p->mark(). 8046 preserve_mark_work(p, m); 8047 } 8048 } 8049 8050 // We should be able to do this multi-threaded, 8051 // a chunk of stack being a task (this is 8052 // correct because each oop only ever appears 8053 // once in the overflow list. However, it's 8054 // not very easy to completely overlap this with 8055 // other operations, so will generally not be done 8056 // until all work's been completed. Because we 8057 // expect the preserved oop stack (set) to be small, 8058 // it's probably fine to do this single-threaded. 8059 // We can explore cleverer concurrent/overlapped/parallel 8060 // processing of preserved marks if we feel the 8061 // need for this in the future. Stack overflow should 8062 // be so rare in practice and, when it happens, its 8063 // effect on performance so great that this will 8064 // likely just be in the noise anyway. 8065 void CMSCollector::restore_preserved_marks_if_any() { 8066 assert(SafepointSynchronize::is_at_safepoint(), 8067 "world should be stopped"); 8068 assert(Thread::current()->is_ConcurrentGC_thread() || 8069 Thread::current()->is_VM_thread(), 8070 "should be single-threaded"); 8071 assert(_preserved_oop_stack.size() == _preserved_mark_stack.size(), 8072 "bijection"); 8073 8074 while (!_preserved_oop_stack.is_empty()) { 8075 oop p = _preserved_oop_stack.pop(); 8076 assert(oopDesc::is_oop(p), "Should be an oop"); 8077 assert(_span.contains(p), "oop should be in _span"); 8078 assert(p->mark() == markOopDesc::prototype(), 8079 "Set when taken from overflow list"); 8080 markOop m = _preserved_mark_stack.pop(); 8081 p->set_mark(m); 8082 } 8083 assert(_preserved_mark_stack.is_empty() && _preserved_oop_stack.is_empty(), 8084 "stacks were cleared above"); 8085 } 8086 8087 #ifndef PRODUCT 8088 bool CMSCollector::no_preserved_marks() const { 8089 return _preserved_mark_stack.is_empty() && _preserved_oop_stack.is_empty(); 8090 } 8091 #endif 8092 8093 // Transfer some number of overflown objects to usual marking 8094 // stack. Return true if some objects were transferred. 8095 bool MarkRefsIntoAndScanClosure::take_from_overflow_list() { 8096 size_t num = MIN2((size_t)(_mark_stack->capacity() - _mark_stack->length())/4, 8097 (size_t)ParGCDesiredObjsFromOverflowList); 8098 8099 bool res = _collector->take_from_overflow_list(num, _mark_stack); 8100 assert(_collector->overflow_list_is_empty() || res, 8101 "If list is not empty, we should have taken something"); 8102 assert(!res || !_mark_stack->isEmpty(), 8103 "If we took something, it should now be on our stack"); 8104 return res; 8105 } 8106 8107 size_t MarkDeadObjectsClosure::do_blk(HeapWord* addr) { 8108 size_t res = _sp->block_size_no_stall(addr, _collector); 8109 if (_sp->block_is_obj(addr)) { 8110 if (_live_bit_map->isMarked(addr)) { 8111 // It can't have been dead in a previous cycle 8112 guarantee(!_dead_bit_map->isMarked(addr), "No resurrection!"); 8113 } else { 8114 _dead_bit_map->mark(addr); // mark the dead object 8115 } 8116 } 8117 // Could be 0, if the block size could not be computed without stalling. 8118 return res; 8119 } 8120 8121 TraceCMSMemoryManagerStats::TraceCMSMemoryManagerStats(CMSCollector::CollectorState phase, GCCause::Cause cause): TraceMemoryManagerStats() { 8122 GCMemoryManager* manager = CMSHeap::heap()->old_manager(); 8123 switch (phase) { 8124 case CMSCollector::InitialMarking: 8125 initialize(manager /* GC manager */ , 8126 cause /* cause of the GC */, 8127 true /* recordGCBeginTime */, 8128 true /* recordPreGCUsage */, 8129 false /* recordPeakUsage */, 8130 false /* recordPostGCusage */, 8131 true /* recordAccumulatedGCTime */, 8132 false /* recordGCEndTime */, 8133 false /* countCollection */ ); 8134 break; 8135 8136 case CMSCollector::FinalMarking: 8137 initialize(manager /* GC manager */ , 8138 cause /* cause of the GC */, 8139 false /* recordGCBeginTime */, 8140 false /* recordPreGCUsage */, 8141 false /* recordPeakUsage */, 8142 false /* recordPostGCusage */, 8143 true /* recordAccumulatedGCTime */, 8144 false /* recordGCEndTime */, 8145 false /* countCollection */ ); 8146 break; 8147 8148 case CMSCollector::Sweeping: 8149 initialize(manager /* GC manager */ , 8150 cause /* cause of the GC */, 8151 false /* recordGCBeginTime */, 8152 false /* recordPreGCUsage */, 8153 true /* recordPeakUsage */, 8154 true /* recordPostGCusage */, 8155 false /* recordAccumulatedGCTime */, 8156 true /* recordGCEndTime */, 8157 true /* countCollection */ ); 8158 break; 8159 8160 default: 8161 ShouldNotReachHere(); 8162 } 8163 }