1 /*
   2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2014, 2015, Red Hat Inc. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #ifndef CPU_AARCH64_VM_MACROASSEMBLER_AARCH64_HPP
  27 #define CPU_AARCH64_VM_MACROASSEMBLER_AARCH64_HPP
  28 
  29 #include "asm/assembler.hpp"
  30 
  31 // MacroAssembler extends Assembler by frequently used macros.
  32 //
  33 // Instructions for which a 'better' code sequence exists depending
  34 // on arguments should also go in here.
  35 
  36 class MacroAssembler: public Assembler {
  37   friend class LIR_Assembler;
  38 
  39  public:
  40   using Assembler::mov;
  41   using Assembler::movi;
  42 
  43  protected:
  44 
  45   // Support for VM calls
  46   //
  47   // This is the base routine called by the different versions of call_VM_leaf. The interpreter
  48   // may customize this version by overriding it for its purposes (e.g., to save/restore
  49   // additional registers when doing a VM call).
  50   virtual void call_VM_leaf_base(
  51     address entry_point,               // the entry point
  52     int     number_of_arguments,        // the number of arguments to pop after the call
  53     Label *retaddr = NULL
  54   );
  55 
  56   virtual void call_VM_leaf_base(
  57     address entry_point,               // the entry point
  58     int     number_of_arguments,        // the number of arguments to pop after the call
  59     Label &retaddr) {
  60     call_VM_leaf_base(entry_point, number_of_arguments, &retaddr);
  61   }
  62 
  63   // This is the base routine called by the different versions of call_VM. The interpreter
  64   // may customize this version by overriding it for its purposes (e.g., to save/restore
  65   // additional registers when doing a VM call).
  66   //
  67   // If no java_thread register is specified (noreg) than rthread will be used instead. call_VM_base
  68   // returns the register which contains the thread upon return. If a thread register has been
  69   // specified, the return value will correspond to that register. If no last_java_sp is specified
  70   // (noreg) than rsp will be used instead.
  71   virtual void call_VM_base(           // returns the register containing the thread upon return
  72     Register oop_result,               // where an oop-result ends up if any; use noreg otherwise
  73     Register java_thread,              // the thread if computed before     ; use noreg otherwise
  74     Register last_java_sp,             // to set up last_Java_frame in stubs; use noreg otherwise
  75     address  entry_point,              // the entry point
  76     int      number_of_arguments,      // the number of arguments (w/o thread) to pop after the call
  77     bool     check_exceptions          // whether to check for pending exceptions after return
  78   );
  79 
  80   void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true);
  81 
  82   // True if an XOR can be used to expand narrow klass references.
  83   bool use_XOR_for_compressed_class_base;
  84 
  85  public:
  86   MacroAssembler(CodeBuffer* code) : Assembler(code) {
  87     use_XOR_for_compressed_class_base
  88       = (operand_valid_for_logical_immediate(false /*is32*/,
  89                                              (uint64_t)Universe::narrow_klass_base())
  90          && ((uint64_t)Universe::narrow_klass_base()
  91              > (1UL << log2_intptr(Universe::narrow_klass_range()))));
  92   }
  93 
  94  // These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code.
  95  // The implementation is only non-empty for the InterpreterMacroAssembler,
  96  // as only the interpreter handles PopFrame and ForceEarlyReturn requests.
  97  virtual void check_and_handle_popframe(Register java_thread);
  98  virtual void check_and_handle_earlyret(Register java_thread);
  99 
 100   void safepoint_poll(Label& slow_path);
 101   void safepoint_poll_acquire(Label& slow_path);
 102 
 103   // Biased locking support
 104   // lock_reg and obj_reg must be loaded up with the appropriate values.
 105   // swap_reg is killed.
 106   // tmp_reg must be supplied and must not be rscratch1 or rscratch2
 107   // Optional slow case is for implementations (interpreter and C1) which branch to
 108   // slow case directly. Leaves condition codes set for C2's Fast_Lock node.
 109   // Returns offset of first potentially-faulting instruction for null
 110   // check info (currently consumed only by C1). If
 111   // swap_reg_contains_mark is true then returns -1 as it is assumed
 112   // the calling code has already passed any potential faults.
 113   int biased_locking_enter(Register lock_reg, Register obj_reg,
 114                            Register swap_reg, Register tmp_reg,
 115                            bool swap_reg_contains_mark,
 116                            Label& done, Label* slow_case = NULL,
 117                            BiasedLockingCounters* counters = NULL);
 118   void biased_locking_exit (Register obj_reg, Register temp_reg, Label& done);
 119 
 120 
 121   // Helper functions for statistics gathering.
 122   // Unconditional atomic increment.
 123   void atomic_incw(Register counter_addr, Register tmp, Register tmp2);
 124   void atomic_incw(Address counter_addr, Register tmp1, Register tmp2, Register tmp3) {
 125     lea(tmp1, counter_addr);
 126     atomic_incw(tmp1, tmp2, tmp3);
 127   }
 128   // Load Effective Address
 129   void lea(Register r, const Address &a) {
 130     InstructionMark im(this);
 131     code_section()->relocate(inst_mark(), a.rspec());
 132     a.lea(this, r);
 133   }
 134 
 135   void addmw(Address a, Register incr, Register scratch) {
 136     ldrw(scratch, a);
 137     addw(scratch, scratch, incr);
 138     strw(scratch, a);
 139   }
 140 
 141   // Add constant to memory word
 142   void addmw(Address a, int imm, Register scratch) {
 143     ldrw(scratch, a);
 144     if (imm > 0)
 145       addw(scratch, scratch, (unsigned)imm);
 146     else
 147       subw(scratch, scratch, (unsigned)-imm);
 148     strw(scratch, a);
 149   }
 150 
 151   void bind(Label& L) {
 152     Assembler::bind(L);
 153     code()->clear_last_insn();
 154   }
 155 
 156   void membar(Membar_mask_bits order_constraint);
 157 
 158   using Assembler::ldr;
 159   using Assembler::str;
 160 
 161   void ldr(Register Rx, const Address &adr);
 162   void ldrw(Register Rw, const Address &adr);
 163   void str(Register Rx, const Address &adr);
 164   void strw(Register Rx, const Address &adr);
 165 
 166   // Frame creation and destruction shared between JITs.
 167   void build_frame(int framesize);
 168   void remove_frame(int framesize);
 169 
 170   virtual void _call_Unimplemented(address call_site) {
 171     mov(rscratch2, call_site);
 172     haltsim();
 173   }
 174 
 175 #define call_Unimplemented() _call_Unimplemented((address)__PRETTY_FUNCTION__)
 176 
 177   virtual void notify(int type);
 178 
 179   // aliases defined in AARCH64 spec
 180 
 181   template<class T>
 182   inline void cmpw(Register Rd, T imm)  { subsw(zr, Rd, imm); }
 183   // imm is limited to 12 bits.
 184   inline void cmp(Register Rd, unsigned imm)  { subs(zr, Rd, imm); }
 185 
 186   inline void cmnw(Register Rd, unsigned imm) { addsw(zr, Rd, imm); }
 187   inline void cmn(Register Rd, unsigned imm) { adds(zr, Rd, imm); }
 188 
 189   void cset(Register Rd, Assembler::Condition cond) {
 190     csinc(Rd, zr, zr, ~cond);
 191   }
 192   void csetw(Register Rd, Assembler::Condition cond) {
 193     csincw(Rd, zr, zr, ~cond);
 194   }
 195 
 196   void cneg(Register Rd, Register Rn, Assembler::Condition cond) {
 197     csneg(Rd, Rn, Rn, ~cond);
 198   }
 199   void cnegw(Register Rd, Register Rn, Assembler::Condition cond) {
 200     csnegw(Rd, Rn, Rn, ~cond);
 201   }
 202 
 203   inline void movw(Register Rd, Register Rn) {
 204     if (Rd == sp || Rn == sp) {
 205       addw(Rd, Rn, 0U);
 206     } else {
 207       orrw(Rd, zr, Rn);
 208     }
 209   }
 210   inline void mov(Register Rd, Register Rn) {
 211     assert(Rd != r31_sp && Rn != r31_sp, "should be");
 212     if (Rd == Rn) {
 213     } else if (Rd == sp || Rn == sp) {
 214       add(Rd, Rn, 0U);
 215     } else {
 216       orr(Rd, zr, Rn);
 217     }
 218   }
 219 
 220   inline void moviw(Register Rd, unsigned imm) { orrw(Rd, zr, imm); }
 221   inline void movi(Register Rd, unsigned imm) { orr(Rd, zr, imm); }
 222 
 223   inline void tstw(Register Rd, Register Rn) { andsw(zr, Rd, Rn); }
 224   inline void tst(Register Rd, Register Rn) { ands(zr, Rd, Rn); }
 225 
 226   inline void tstw(Register Rd, uint64_t imm) { andsw(zr, Rd, imm); }
 227   inline void tst(Register Rd, uint64_t imm) { ands(zr, Rd, imm); }
 228 
 229   inline void bfiw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 230     bfmw(Rd, Rn, ((32 - lsb) & 31), (width - 1));
 231   }
 232   inline void bfi(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 233     bfm(Rd, Rn, ((64 - lsb) & 63), (width - 1));
 234   }
 235 
 236   inline void bfxilw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 237     bfmw(Rd, Rn, lsb, (lsb + width - 1));
 238   }
 239   inline void bfxil(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 240     bfm(Rd, Rn, lsb , (lsb + width - 1));
 241   }
 242 
 243   inline void sbfizw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 244     sbfmw(Rd, Rn, ((32 - lsb) & 31), (width - 1));
 245   }
 246   inline void sbfiz(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 247     sbfm(Rd, Rn, ((64 - lsb) & 63), (width - 1));
 248   }
 249 
 250   inline void sbfxw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 251     sbfmw(Rd, Rn, lsb, (lsb + width - 1));
 252   }
 253   inline void sbfx(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 254     sbfm(Rd, Rn, lsb , (lsb + width - 1));
 255   }
 256 
 257   inline void ubfizw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 258     ubfmw(Rd, Rn, ((32 - lsb) & 31), (width - 1));
 259   }
 260   inline void ubfiz(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 261     ubfm(Rd, Rn, ((64 - lsb) & 63), (width - 1));
 262   }
 263 
 264   inline void ubfxw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 265     ubfmw(Rd, Rn, lsb, (lsb + width - 1));
 266   }
 267   inline void ubfx(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 268     ubfm(Rd, Rn, lsb , (lsb + width - 1));
 269   }
 270 
 271   inline void asrw(Register Rd, Register Rn, unsigned imm) {
 272     sbfmw(Rd, Rn, imm, 31);
 273   }
 274 
 275   inline void asr(Register Rd, Register Rn, unsigned imm) {
 276     sbfm(Rd, Rn, imm, 63);
 277   }
 278 
 279   inline void lslw(Register Rd, Register Rn, unsigned imm) {
 280     ubfmw(Rd, Rn, ((32 - imm) & 31), (31 - imm));
 281   }
 282 
 283   inline void lsl(Register Rd, Register Rn, unsigned imm) {
 284     ubfm(Rd, Rn, ((64 - imm) & 63), (63 - imm));
 285   }
 286 
 287   inline void lsrw(Register Rd, Register Rn, unsigned imm) {
 288     ubfmw(Rd, Rn, imm, 31);
 289   }
 290 
 291   inline void lsr(Register Rd, Register Rn, unsigned imm) {
 292     ubfm(Rd, Rn, imm, 63);
 293   }
 294 
 295   inline void rorw(Register Rd, Register Rn, unsigned imm) {
 296     extrw(Rd, Rn, Rn, imm);
 297   }
 298 
 299   inline void ror(Register Rd, Register Rn, unsigned imm) {
 300     extr(Rd, Rn, Rn, imm);
 301   }
 302 
 303   inline void sxtbw(Register Rd, Register Rn) {
 304     sbfmw(Rd, Rn, 0, 7);
 305   }
 306   inline void sxthw(Register Rd, Register Rn) {
 307     sbfmw(Rd, Rn, 0, 15);
 308   }
 309   inline void sxtb(Register Rd, Register Rn) {
 310     sbfm(Rd, Rn, 0, 7);
 311   }
 312   inline void sxth(Register Rd, Register Rn) {
 313     sbfm(Rd, Rn, 0, 15);
 314   }
 315   inline void sxtw(Register Rd, Register Rn) {
 316     sbfm(Rd, Rn, 0, 31);
 317   }
 318 
 319   inline void uxtbw(Register Rd, Register Rn) {
 320     ubfmw(Rd, Rn, 0, 7);
 321   }
 322   inline void uxthw(Register Rd, Register Rn) {
 323     ubfmw(Rd, Rn, 0, 15);
 324   }
 325   inline void uxtb(Register Rd, Register Rn) {
 326     ubfm(Rd, Rn, 0, 7);
 327   }
 328   inline void uxth(Register Rd, Register Rn) {
 329     ubfm(Rd, Rn, 0, 15);
 330   }
 331   inline void uxtw(Register Rd, Register Rn) {
 332     ubfm(Rd, Rn, 0, 31);
 333   }
 334 
 335   inline void cmnw(Register Rn, Register Rm) {
 336     addsw(zr, Rn, Rm);
 337   }
 338   inline void cmn(Register Rn, Register Rm) {
 339     adds(zr, Rn, Rm);
 340   }
 341 
 342   inline void cmpw(Register Rn, Register Rm) {
 343     subsw(zr, Rn, Rm);
 344   }
 345   inline void cmp(Register Rn, Register Rm) {
 346     subs(zr, Rn, Rm);
 347   }
 348 
 349   inline void negw(Register Rd, Register Rn) {
 350     subw(Rd, zr, Rn);
 351   }
 352 
 353   inline void neg(Register Rd, Register Rn) {
 354     sub(Rd, zr, Rn);
 355   }
 356 
 357   inline void negsw(Register Rd, Register Rn) {
 358     subsw(Rd, zr, Rn);
 359   }
 360 
 361   inline void negs(Register Rd, Register Rn) {
 362     subs(Rd, zr, Rn);
 363   }
 364 
 365   inline void cmnw(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) {
 366     addsw(zr, Rn, Rm, kind, shift);
 367   }
 368   inline void cmn(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) {
 369     adds(zr, Rn, Rm, kind, shift);
 370   }
 371 
 372   inline void cmpw(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) {
 373     subsw(zr, Rn, Rm, kind, shift);
 374   }
 375   inline void cmp(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) {
 376     subs(zr, Rn, Rm, kind, shift);
 377   }
 378 
 379   inline void negw(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) {
 380     subw(Rd, zr, Rn, kind, shift);
 381   }
 382 
 383   inline void neg(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) {
 384     sub(Rd, zr, Rn, kind, shift);
 385   }
 386 
 387   inline void negsw(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) {
 388     subsw(Rd, zr, Rn, kind, shift);
 389   }
 390 
 391   inline void negs(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) {
 392     subs(Rd, zr, Rn, kind, shift);
 393   }
 394 
 395   inline void mnegw(Register Rd, Register Rn, Register Rm) {
 396     msubw(Rd, Rn, Rm, zr);
 397   }
 398   inline void mneg(Register Rd, Register Rn, Register Rm) {
 399     msub(Rd, Rn, Rm, zr);
 400   }
 401 
 402   inline void mulw(Register Rd, Register Rn, Register Rm) {
 403     maddw(Rd, Rn, Rm, zr);
 404   }
 405   inline void mul(Register Rd, Register Rn, Register Rm) {
 406     madd(Rd, Rn, Rm, zr);
 407   }
 408 
 409   inline void smnegl(Register Rd, Register Rn, Register Rm) {
 410     smsubl(Rd, Rn, Rm, zr);
 411   }
 412   inline void smull(Register Rd, Register Rn, Register Rm) {
 413     smaddl(Rd, Rn, Rm, zr);
 414   }
 415 
 416   inline void umnegl(Register Rd, Register Rn, Register Rm) {
 417     umsubl(Rd, Rn, Rm, zr);
 418   }
 419   inline void umull(Register Rd, Register Rn, Register Rm) {
 420     umaddl(Rd, Rn, Rm, zr);
 421   }
 422 
 423 #define WRAP(INSN)                                                            \
 424   void INSN(Register Rd, Register Rn, Register Rm, Register Ra) {             \
 425     if ((VM_Version::features() & VM_Version::CPU_A53MAC) && Ra != zr)        \
 426       nop();                                                                  \
 427     Assembler::INSN(Rd, Rn, Rm, Ra);                                          \
 428   }
 429 
 430   WRAP(madd) WRAP(msub) WRAP(maddw) WRAP(msubw)
 431   WRAP(smaddl) WRAP(smsubl) WRAP(umaddl) WRAP(umsubl)
 432 #undef WRAP
 433 
 434 
 435   // macro assembly operations needed for aarch64
 436 
 437   // first two private routines for loading 32 bit or 64 bit constants
 438 private:
 439 
 440   void mov_immediate64(Register dst, u_int64_t imm64);
 441   void mov_immediate32(Register dst, u_int32_t imm32);
 442 
 443   int push(unsigned int bitset, Register stack);
 444   int pop(unsigned int bitset, Register stack);
 445 
 446   void mov(Register dst, Address a);
 447 
 448 public:
 449   void push(RegSet regs, Register stack) { if (regs.bits()) push(regs.bits(), stack); }
 450   void pop(RegSet regs, Register stack) { if (regs.bits()) pop(regs.bits(), stack); }
 451 
 452   // Push and pop everything that might be clobbered by a native
 453   // runtime call except rscratch1 and rscratch2.  (They are always
 454   // scratch, so we don't have to protect them.)  Only save the lower
 455   // 64 bits of each vector register.
 456   void push_call_clobbered_registers();
 457   void pop_call_clobbered_registers();
 458 
 459   // now mov instructions for loading absolute addresses and 32 or
 460   // 64 bit integers
 461 
 462   inline void mov(Register dst, address addr)
 463   {
 464     mov_immediate64(dst, (u_int64_t)addr);
 465   }
 466 
 467   inline void mov(Register dst, u_int64_t imm64)
 468   {
 469     mov_immediate64(dst, imm64);
 470   }
 471 
 472   inline void movw(Register dst, u_int32_t imm32)
 473   {
 474     mov_immediate32(dst, imm32);
 475   }
 476 
 477   inline void mov(Register dst, long l)
 478   {
 479     mov(dst, (u_int64_t)l);
 480   }
 481 
 482   inline void mov(Register dst, int i)
 483   {
 484     mov(dst, (long)i);
 485   }
 486 
 487   void mov(Register dst, RegisterOrConstant src) {
 488     if (src.is_register())
 489       mov(dst, src.as_register());
 490     else
 491       mov(dst, src.as_constant());
 492   }
 493 
 494   void movptr(Register r, uintptr_t imm64);
 495 
 496   void mov(FloatRegister Vd, SIMD_Arrangement T, u_int32_t imm32);
 497 
 498   void mov(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) {
 499     orr(Vd, T, Vn, Vn);
 500   }
 501 
 502 public:
 503 
 504   // Generalized Test Bit And Branch, including a "far" variety which
 505   // spans more than 32KiB.
 506   void tbr(Condition cond, Register Rt, int bitpos, Label &dest, bool far = false) {
 507     assert(cond == EQ || cond == NE, "must be");
 508 
 509     if (far)
 510       cond = ~cond;
 511 
 512     void (Assembler::* branch)(Register Rt, int bitpos, Label &L);
 513     if (cond == Assembler::EQ)
 514       branch = &Assembler::tbz;
 515     else
 516       branch = &Assembler::tbnz;
 517 
 518     if (far) {
 519       Label L;
 520       (this->*branch)(Rt, bitpos, L);
 521       b(dest);
 522       bind(L);
 523     } else {
 524       (this->*branch)(Rt, bitpos, dest);
 525     }
 526   }
 527 
 528   // macro instructions for accessing and updating floating point
 529   // status register
 530   //
 531   // FPSR : op1 == 011
 532   //        CRn == 0100
 533   //        CRm == 0100
 534   //        op2 == 001
 535 
 536   inline void get_fpsr(Register reg)
 537   {
 538     mrs(0b11, 0b0100, 0b0100, 0b001, reg);
 539   }
 540 
 541   inline void set_fpsr(Register reg)
 542   {
 543     msr(0b011, 0b0100, 0b0100, 0b001, reg);
 544   }
 545 
 546   inline void clear_fpsr()
 547   {
 548     msr(0b011, 0b0100, 0b0100, 0b001, zr);
 549   }
 550 
 551   // DCZID_EL0: op1 == 011
 552   //            CRn == 0000
 553   //            CRm == 0000
 554   //            op2 == 111
 555   inline void get_dczid_el0(Register reg)
 556   {
 557     mrs(0b011, 0b0000, 0b0000, 0b111, reg);
 558   }
 559 
 560   // CTR_EL0:   op1 == 011
 561   //            CRn == 0000
 562   //            CRm == 0000
 563   //            op2 == 001
 564   inline void get_ctr_el0(Register reg)
 565   {
 566     mrs(0b011, 0b0000, 0b0000, 0b001, reg);
 567   }
 568 
 569   // idiv variant which deals with MINLONG as dividend and -1 as divisor
 570   int corrected_idivl(Register result, Register ra, Register rb,
 571                       bool want_remainder, Register tmp = rscratch1);
 572   int corrected_idivq(Register result, Register ra, Register rb,
 573                       bool want_remainder, Register tmp = rscratch1);
 574 
 575   // Support for NULL-checks
 576   //
 577   // Generates code that causes a NULL OS exception if the content of reg is NULL.
 578   // If the accessed location is M[reg + offset] and the offset is known, provide the
 579   // offset. No explicit code generation is needed if the offset is within a certain
 580   // range (0 <= offset <= page_size).
 581 
 582   virtual void null_check(Register reg, int offset = -1);
 583   static bool needs_explicit_null_check(intptr_t offset);
 584 
 585   static address target_addr_for_insn(address insn_addr, unsigned insn);
 586   static address target_addr_for_insn(address insn_addr) {
 587     unsigned insn = *(unsigned*)insn_addr;
 588     return target_addr_for_insn(insn_addr, insn);
 589   }
 590 
 591   // Required platform-specific helpers for Label::patch_instructions.
 592   // They _shadow_ the declarations in AbstractAssembler, which are undefined.
 593   static int pd_patch_instruction_size(address branch, address target);
 594   static void pd_patch_instruction(address branch, address target) {
 595     pd_patch_instruction_size(branch, target);
 596   }
 597   static address pd_call_destination(address branch) {
 598     return target_addr_for_insn(branch);
 599   }
 600 #ifndef PRODUCT
 601   static void pd_print_patched_instruction(address branch);
 602 #endif
 603 
 604   static int patch_oop(address insn_addr, address o);
 605   static int patch_narrow_klass(address insn_addr, narrowKlass n);
 606 
 607   address emit_trampoline_stub(int insts_call_instruction_offset, address target);
 608 
 609   // The following 4 methods return the offset of the appropriate move instruction
 610 
 611   // Support for fast byte/short loading with zero extension (depending on particular CPU)
 612   int load_unsigned_byte(Register dst, Address src);
 613   int load_unsigned_short(Register dst, Address src);
 614 
 615   // Support for fast byte/short loading with sign extension (depending on particular CPU)
 616   int load_signed_byte(Register dst, Address src);
 617   int load_signed_short(Register dst, Address src);
 618 
 619   int load_signed_byte32(Register dst, Address src);
 620   int load_signed_short32(Register dst, Address src);
 621 
 622   // Support for sign-extension (hi:lo = extend_sign(lo))
 623   void extend_sign(Register hi, Register lo);
 624 
 625   // Load and store values by size and signed-ness
 626   void load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2 = noreg);
 627   void store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2 = noreg);
 628 
 629   // Support for inc/dec with optimal instruction selection depending on value
 630 
 631   // x86_64 aliases an unqualified register/address increment and
 632   // decrement to call incrementq and decrementq but also supports
 633   // explicitly sized calls to incrementq/decrementq or
 634   // incrementl/decrementl
 635 
 636   // for aarch64 the proper convention would be to use
 637   // increment/decrement for 64 bit operatons and
 638   // incrementw/decrementw for 32 bit operations. so when porting
 639   // x86_64 code we can leave calls to increment/decrement as is,
 640   // replace incrementq/decrementq with increment/decrement and
 641   // replace incrementl/decrementl with incrementw/decrementw.
 642 
 643   // n.b. increment/decrement calls with an Address destination will
 644   // need to use a scratch register to load the value to be
 645   // incremented. increment/decrement calls which add or subtract a
 646   // constant value greater than 2^12 will need to use a 2nd scratch
 647   // register to hold the constant. so, a register increment/decrement
 648   // may trash rscratch2 and an address increment/decrement trash
 649   // rscratch and rscratch2
 650 
 651   void decrementw(Address dst, int value = 1);
 652   void decrementw(Register reg, int value = 1);
 653 
 654   void decrement(Register reg, int value = 1);
 655   void decrement(Address dst, int value = 1);
 656 
 657   void incrementw(Address dst, int value = 1);
 658   void incrementw(Register reg, int value = 1);
 659 
 660   void increment(Register reg, int value = 1);
 661   void increment(Address dst, int value = 1);
 662 
 663 
 664   // Alignment
 665   void align(int modulus);
 666 
 667   // Stack frame creation/removal
 668   void enter()
 669   {
 670     stp(rfp, lr, Address(pre(sp, -2 * wordSize)));
 671     mov(rfp, sp);
 672   }
 673   void leave()
 674   {
 675     mov(sp, rfp);
 676     ldp(rfp, lr, Address(post(sp, 2 * wordSize)));
 677   }
 678 
 679   // Support for getting the JavaThread pointer (i.e.; a reference to thread-local information)
 680   // The pointer will be loaded into the thread register.
 681   void get_thread(Register thread);
 682 
 683 
 684   // Support for VM calls
 685   //
 686   // It is imperative that all calls into the VM are handled via the call_VM macros.
 687   // They make sure that the stack linkage is setup correctly. call_VM's correspond
 688   // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
 689 
 690 
 691   void call_VM(Register oop_result,
 692                address entry_point,
 693                bool check_exceptions = true);
 694   void call_VM(Register oop_result,
 695                address entry_point,
 696                Register arg_1,
 697                bool check_exceptions = true);
 698   void call_VM(Register oop_result,
 699                address entry_point,
 700                Register arg_1, Register arg_2,
 701                bool check_exceptions = true);
 702   void call_VM(Register oop_result,
 703                address entry_point,
 704                Register arg_1, Register arg_2, Register arg_3,
 705                bool check_exceptions = true);
 706 
 707   // Overloadings with last_Java_sp
 708   void call_VM(Register oop_result,
 709                Register last_java_sp,
 710                address entry_point,
 711                int number_of_arguments = 0,
 712                bool check_exceptions = true);
 713   void call_VM(Register oop_result,
 714                Register last_java_sp,
 715                address entry_point,
 716                Register arg_1, bool
 717                check_exceptions = true);
 718   void call_VM(Register oop_result,
 719                Register last_java_sp,
 720                address entry_point,
 721                Register arg_1, Register arg_2,
 722                bool check_exceptions = true);
 723   void call_VM(Register oop_result,
 724                Register last_java_sp,
 725                address entry_point,
 726                Register arg_1, Register arg_2, Register arg_3,
 727                bool check_exceptions = true);
 728 
 729   void get_vm_result  (Register oop_result, Register thread);
 730   void get_vm_result_2(Register metadata_result, Register thread);
 731 
 732   // These always tightly bind to MacroAssembler::call_VM_base
 733   // bypassing the virtual implementation
 734   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
 735   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true);
 736   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
 737   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
 738   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4, bool check_exceptions = true);
 739 
 740   void call_VM_leaf(address entry_point,
 741                     int number_of_arguments = 0);
 742   void call_VM_leaf(address entry_point,
 743                     Register arg_1);
 744   void call_VM_leaf(address entry_point,
 745                     Register arg_1, Register arg_2);
 746   void call_VM_leaf(address entry_point,
 747                     Register arg_1, Register arg_2, Register arg_3);
 748 
 749   // These always tightly bind to MacroAssembler::call_VM_leaf_base
 750   // bypassing the virtual implementation
 751   void super_call_VM_leaf(address entry_point);
 752   void super_call_VM_leaf(address entry_point, Register arg_1);
 753   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2);
 754   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3);
 755   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4);
 756 
 757   // last Java Frame (fills frame anchor)
 758   void set_last_Java_frame(Register last_java_sp,
 759                            Register last_java_fp,
 760                            address last_java_pc,
 761                            Register scratch);
 762 
 763   void set_last_Java_frame(Register last_java_sp,
 764                            Register last_java_fp,
 765                            Label &last_java_pc,
 766                            Register scratch);
 767 
 768   void set_last_Java_frame(Register last_java_sp,
 769                            Register last_java_fp,
 770                            Register last_java_pc,
 771                            Register scratch);
 772 
 773   void reset_last_Java_frame(Register thread);
 774 
 775   // thread in the default location (rthread)
 776   void reset_last_Java_frame(bool clear_fp);
 777 
 778   // Stores
 779   void store_check(Register obj);                // store check for obj - register is destroyed afterwards
 780   void store_check(Register obj, Address dst);   // same as above, dst is exact store location (reg. is destroyed)
 781 
 782   void resolve_jobject(Register value, Register thread, Register tmp);
 783 
 784   // oop manipulations
 785   void load_klass(Register dst, Register src);
 786   void store_klass(Register dst, Register src);
 787   void cmp_klass(Register oop, Register trial_klass, Register tmp);
 788 
 789   void resolve_oop_handle(Register result, Register tmp = r5);
 790   void load_mirror(Register dst, Register method, Register tmp = r5);
 791 
 792   void load_heap_oop(Register dst, Address src);
 793 
 794   void load_heap_oop_not_null(Register dst, Address src);
 795   void store_heap_oop(Address dst, Register src);
 796 
 797   // currently unimplemented
 798   // Used for storing NULL. All other oop constants should be
 799   // stored using routines that take a jobject.
 800   void store_heap_oop_null(Address dst);
 801 
 802   void load_prototype_header(Register dst, Register src);
 803 
 804   void store_klass_gap(Register dst, Register src);
 805 
 806   // This dummy is to prevent a call to store_heap_oop from
 807   // converting a zero (like NULL) into a Register by giving
 808   // the compiler two choices it can't resolve
 809 
 810   void store_heap_oop(Address dst, void* dummy);
 811 
 812   void encode_heap_oop(Register d, Register s);
 813   void encode_heap_oop(Register r) { encode_heap_oop(r, r); }
 814   void decode_heap_oop(Register d, Register s);
 815   void decode_heap_oop(Register r) { decode_heap_oop(r, r); }
 816   void encode_heap_oop_not_null(Register r);
 817   void decode_heap_oop_not_null(Register r);
 818   void encode_heap_oop_not_null(Register dst, Register src);
 819   void decode_heap_oop_not_null(Register dst, Register src);
 820 
 821   void set_narrow_oop(Register dst, jobject obj);
 822 
 823   void encode_klass_not_null(Register r);
 824   void decode_klass_not_null(Register r);
 825   void encode_klass_not_null(Register dst, Register src);
 826   void decode_klass_not_null(Register dst, Register src);
 827 
 828   void set_narrow_klass(Register dst, Klass* k);
 829 
 830   // if heap base register is used - reinit it with the correct value
 831   void reinit_heapbase();
 832 
 833   DEBUG_ONLY(void verify_heapbase(const char* msg);)
 834 
 835   void push_CPU_state(bool save_vectors = false);
 836   void pop_CPU_state(bool restore_vectors = false) ;
 837 
 838   // Round up to a power of two
 839   void round_to(Register reg, int modulus);
 840 
 841   // allocation
 842   void eden_allocate(
 843     Register obj,                      // result: pointer to object after successful allocation
 844     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
 845     int      con_size_in_bytes,        // object size in bytes if   known at compile time
 846     Register t1,                       // temp register
 847     Label&   slow_case                 // continuation point if fast allocation fails
 848   );
 849   void tlab_allocate(
 850     Register obj,                      // result: pointer to object after successful allocation
 851     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
 852     int      con_size_in_bytes,        // object size in bytes if   known at compile time
 853     Register t1,                       // temp register
 854     Register t2,                       // temp register
 855     Label&   slow_case                 // continuation point if fast allocation fails
 856   );
 857   void zero_memory(Register addr, Register len, Register t1);
 858   void verify_tlab();
 859 
 860   void incr_allocated_bytes(Register thread,
 861                             Register var_size_in_bytes, int con_size_in_bytes,
 862                             Register t1 = noreg);
 863 
 864   // interface method calling
 865   void lookup_interface_method(Register recv_klass,
 866                                Register intf_klass,
 867                                RegisterOrConstant itable_index,
 868                                Register method_result,
 869                                Register scan_temp,
 870                                Label& no_such_interface,
 871                    bool return_method = true);
 872 
 873   // virtual method calling
 874   // n.b. x86 allows RegisterOrConstant for vtable_index
 875   void lookup_virtual_method(Register recv_klass,
 876                              RegisterOrConstant vtable_index,
 877                              Register method_result);
 878 
 879   // Test sub_klass against super_klass, with fast and slow paths.
 880 
 881   // The fast path produces a tri-state answer: yes / no / maybe-slow.
 882   // One of the three labels can be NULL, meaning take the fall-through.
 883   // If super_check_offset is -1, the value is loaded up from super_klass.
 884   // No registers are killed, except temp_reg.
 885   void check_klass_subtype_fast_path(Register sub_klass,
 886                                      Register super_klass,
 887                                      Register temp_reg,
 888                                      Label* L_success,
 889                                      Label* L_failure,
 890                                      Label* L_slow_path,
 891                 RegisterOrConstant super_check_offset = RegisterOrConstant(-1));
 892 
 893   // The rest of the type check; must be wired to a corresponding fast path.
 894   // It does not repeat the fast path logic, so don't use it standalone.
 895   // The temp_reg and temp2_reg can be noreg, if no temps are available.
 896   // Updates the sub's secondary super cache as necessary.
 897   // If set_cond_codes, condition codes will be Z on success, NZ on failure.
 898   void check_klass_subtype_slow_path(Register sub_klass,
 899                                      Register super_klass,
 900                                      Register temp_reg,
 901                                      Register temp2_reg,
 902                                      Label* L_success,
 903                                      Label* L_failure,
 904                                      bool set_cond_codes = false);
 905 
 906   // Simplified, combined version, good for typical uses.
 907   // Falls through on failure.
 908   void check_klass_subtype(Register sub_klass,
 909                            Register super_klass,
 910                            Register temp_reg,
 911                            Label& L_success);
 912 
 913   Address argument_address(RegisterOrConstant arg_slot, int extra_slot_offset = 0);
 914 
 915 
 916   // Debugging
 917 
 918   // only if +VerifyOops
 919   void verify_oop(Register reg, const char* s = "broken oop");
 920   void verify_oop_addr(Address addr, const char * s = "broken oop addr");
 921 
 922 // TODO: verify method and klass metadata (compare against vptr?)
 923   void _verify_method_ptr(Register reg, const char * msg, const char * file, int line) {}
 924   void _verify_klass_ptr(Register reg, const char * msg, const char * file, int line){}
 925 
 926 #define verify_method_ptr(reg) _verify_method_ptr(reg, "broken method " #reg, __FILE__, __LINE__)
 927 #define verify_klass_ptr(reg) _verify_klass_ptr(reg, "broken klass " #reg, __FILE__, __LINE__)
 928 
 929   // only if +VerifyFPU
 930   void verify_FPU(int stack_depth, const char* s = "illegal FPU state");
 931 
 932   // prints msg, dumps registers and stops execution
 933   void stop(const char* msg);
 934 
 935   // prints msg and continues
 936   void warn(const char* msg);
 937 
 938   static void debug64(char* msg, int64_t pc, int64_t regs[]);
 939 
 940   void untested()                                { stop("untested"); }
 941 
 942   void unimplemented(const char* what = "");
 943 
 944   void should_not_reach_here()                   { stop("should not reach here"); }
 945 
 946   // Stack overflow checking
 947   void bang_stack_with_offset(int offset) {
 948     // stack grows down, caller passes positive offset
 949     assert(offset > 0, "must bang with negative offset");
 950     sub(rscratch2, sp, offset);
 951     str(zr, Address(rscratch2));
 952   }
 953 
 954   // Writes to stack successive pages until offset reached to check for
 955   // stack overflow + shadow pages.  Also, clobbers tmp
 956   void bang_stack_size(Register size, Register tmp);
 957 
 958   // Check for reserved stack access in method being exited (for JIT)
 959   void reserved_stack_check();
 960 
 961   virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr,
 962                                                 Register tmp,
 963                                                 int offset);
 964 
 965   // Support for serializing memory accesses between threads
 966   void serialize_memory(Register thread, Register tmp);
 967 
 968   // Arithmetics
 969 
 970   void addptr(const Address &dst, int32_t src);
 971   void cmpptr(Register src1, Address src2);
 972 
 973   // Various forms of CAS
 974 
 975   void cmpxchg_obj_header(Register oldv, Register newv, Register obj, Register tmp,
 976                           Label &suceed, Label *fail);
 977   void cmpxchgptr(Register oldv, Register newv, Register addr, Register tmp,
 978                   Label &suceed, Label *fail);
 979 
 980   void cmpxchgw(Register oldv, Register newv, Register addr, Register tmp,
 981                   Label &suceed, Label *fail);
 982 
 983   void atomic_add(Register prev, RegisterOrConstant incr, Register addr);
 984   void atomic_addw(Register prev, RegisterOrConstant incr, Register addr);
 985   void atomic_addal(Register prev, RegisterOrConstant incr, Register addr);
 986   void atomic_addalw(Register prev, RegisterOrConstant incr, Register addr);
 987 
 988   void atomic_xchg(Register prev, Register newv, Register addr);
 989   void atomic_xchgw(Register prev, Register newv, Register addr);
 990   void atomic_xchgal(Register prev, Register newv, Register addr);
 991   void atomic_xchgalw(Register prev, Register newv, Register addr);
 992 
 993   void orptr(Address adr, RegisterOrConstant src) {
 994     ldr(rscratch1, adr);
 995     if (src.is_register())
 996       orr(rscratch1, rscratch1, src.as_register());
 997     else
 998       orr(rscratch1, rscratch1, src.as_constant());
 999     str(rscratch1, adr);
1000   }
1001 
1002   // A generic CAS; success or failure is in the EQ flag.
1003   // Clobbers rscratch1
1004   void cmpxchg(Register addr, Register expected, Register new_val,
1005                enum operand_size size,
1006                bool acquire, bool release, bool weak,
1007                Register result);
1008 
1009   // Calls
1010 
1011   address trampoline_call(Address entry, CodeBuffer *cbuf = NULL);
1012 
1013   static bool far_branches() {
1014     return ReservedCodeCacheSize > branch_range;
1015   }
1016 
1017   // Jumps that can reach anywhere in the code cache.
1018   // Trashes tmp.
1019   void far_call(Address entry, CodeBuffer *cbuf = NULL, Register tmp = rscratch1);
1020   void far_jump(Address entry, CodeBuffer *cbuf = NULL, Register tmp = rscratch1);
1021 
1022   static int far_branch_size() {
1023     if (far_branches()) {
1024       return 3 * 4;  // adrp, add, br
1025     } else {
1026       return 4;
1027     }
1028   }
1029 
1030   // Emit the CompiledIC call idiom
1031   address ic_call(address entry, jint method_index = 0);
1032 
1033 public:
1034 
1035   // Data
1036 
1037   void mov_metadata(Register dst, Metadata* obj);
1038   Address allocate_metadata_address(Metadata* obj);
1039   Address constant_oop_address(jobject obj);
1040 
1041   void movoop(Register dst, jobject obj, bool immediate = false);
1042 
1043   // CRC32 code for java.util.zip.CRC32::updateBytes() instrinsic.
1044   void kernel_crc32(Register crc, Register buf, Register len,
1045         Register table0, Register table1, Register table2, Register table3,
1046         Register tmp, Register tmp2, Register tmp3);
1047   // CRC32 code for java.util.zip.CRC32C::updateBytes() instrinsic.
1048   void kernel_crc32c(Register crc, Register buf, Register len,
1049         Register table0, Register table1, Register table2, Register table3,
1050         Register tmp, Register tmp2, Register tmp3);
1051 
1052   // Stack push and pop individual 64 bit registers
1053   void push(Register src);
1054   void pop(Register dst);
1055 
1056   // push all registers onto the stack
1057   void pusha();
1058   void popa();
1059 
1060   void repne_scan(Register addr, Register value, Register count,
1061                   Register scratch);
1062   void repne_scanw(Register addr, Register value, Register count,
1063                    Register scratch);
1064 
1065   typedef void (MacroAssembler::* add_sub_imm_insn)(Register Rd, Register Rn, unsigned imm);
1066   typedef void (MacroAssembler::* add_sub_reg_insn)(Register Rd, Register Rn, Register Rm, enum shift_kind kind, unsigned shift);
1067 
1068   // If a constant does not fit in an immediate field, generate some
1069   // number of MOV instructions and then perform the operation
1070   void wrap_add_sub_imm_insn(Register Rd, Register Rn, unsigned imm,
1071                              add_sub_imm_insn insn1,
1072                              add_sub_reg_insn insn2);
1073   // Seperate vsn which sets the flags
1074   void wrap_adds_subs_imm_insn(Register Rd, Register Rn, unsigned imm,
1075                              add_sub_imm_insn insn1,
1076                              add_sub_reg_insn insn2);
1077 
1078 #define WRAP(INSN)                                                      \
1079   void INSN(Register Rd, Register Rn, unsigned imm) {                   \
1080     wrap_add_sub_imm_insn(Rd, Rn, imm, &Assembler::INSN, &Assembler::INSN); \
1081   }                                                                     \
1082                                                                         \
1083   void INSN(Register Rd, Register Rn, Register Rm,                      \
1084              enum shift_kind kind, unsigned shift = 0) {                \
1085     Assembler::INSN(Rd, Rn, Rm, kind, shift);                           \
1086   }                                                                     \
1087                                                                         \
1088   void INSN(Register Rd, Register Rn, Register Rm) {                    \
1089     Assembler::INSN(Rd, Rn, Rm);                                        \
1090   }                                                                     \
1091                                                                         \
1092   void INSN(Register Rd, Register Rn, Register Rm,                      \
1093            ext::operation option, int amount = 0) {                     \
1094     Assembler::INSN(Rd, Rn, Rm, option, amount);                        \
1095   }
1096 
1097   WRAP(add) WRAP(addw) WRAP(sub) WRAP(subw)
1098 
1099 #undef WRAP
1100 #define WRAP(INSN)                                                      \
1101   void INSN(Register Rd, Register Rn, unsigned imm) {                   \
1102     wrap_adds_subs_imm_insn(Rd, Rn, imm, &Assembler::INSN, &Assembler::INSN); \
1103   }                                                                     \
1104                                                                         \
1105   void INSN(Register Rd, Register Rn, Register Rm,                      \
1106              enum shift_kind kind, unsigned shift = 0) {                \
1107     Assembler::INSN(Rd, Rn, Rm, kind, shift);                           \
1108   }                                                                     \
1109                                                                         \
1110   void INSN(Register Rd, Register Rn, Register Rm) {                    \
1111     Assembler::INSN(Rd, Rn, Rm);                                        \
1112   }                                                                     \
1113                                                                         \
1114   void INSN(Register Rd, Register Rn, Register Rm,                      \
1115            ext::operation option, int amount = 0) {                     \
1116     Assembler::INSN(Rd, Rn, Rm, option, amount);                        \
1117   }
1118 
1119   WRAP(adds) WRAP(addsw) WRAP(subs) WRAP(subsw)
1120 
1121   void add(Register Rd, Register Rn, RegisterOrConstant increment);
1122   void addw(Register Rd, Register Rn, RegisterOrConstant increment);
1123   void sub(Register Rd, Register Rn, RegisterOrConstant decrement);
1124   void subw(Register Rd, Register Rn, RegisterOrConstant decrement);
1125 
1126   void adrp(Register reg1, const Address &dest, unsigned long &byte_offset);
1127 
1128   void tableswitch(Register index, jint lowbound, jint highbound,
1129                    Label &jumptable, Label &jumptable_end, int stride = 1) {
1130     adr(rscratch1, jumptable);
1131     subsw(rscratch2, index, lowbound);
1132     subsw(zr, rscratch2, highbound - lowbound);
1133     br(Assembler::HS, jumptable_end);
1134     add(rscratch1, rscratch1, rscratch2,
1135         ext::sxtw, exact_log2(stride * Assembler::instruction_size));
1136     br(rscratch1);
1137   }
1138 
1139   // Form an address from base + offset in Rd.  Rd may or may not
1140   // actually be used: you must use the Address that is returned.  It
1141   // is up to you to ensure that the shift provided matches the size
1142   // of your data.
1143   Address form_address(Register Rd, Register base, long byte_offset, int shift);
1144 
1145   // Return true iff an address is within the 48-bit AArch64 address
1146   // space.
1147   bool is_valid_AArch64_address(address a) {
1148     return ((uint64_t)a >> 48) == 0;
1149   }
1150 
1151   // Load the base of the cardtable byte map into reg.
1152   void load_byte_map_base(Register reg);
1153 
1154   // Prolog generator routines to support switch between x86 code and
1155   // generated ARM code
1156 
1157   // routine to generate an x86 prolog for a stub function which
1158   // bootstraps into the generated ARM code which directly follows the
1159   // stub
1160   //
1161 
1162   public:
1163   // enum used for aarch64--x86 linkage to define return type of x86 function
1164   enum ret_type { ret_type_void, ret_type_integral, ret_type_float, ret_type_double};
1165 
1166 #ifdef BUILTIN_SIM
1167   void c_stub_prolog(int gp_arg_count, int fp_arg_count, int ret_type, address *prolog_ptr = NULL);
1168 #else
1169   void c_stub_prolog(int gp_arg_count, int fp_arg_count, int ret_type) { }
1170 #endif
1171 
1172   // special version of call_VM_leaf_base needed for aarch64 simulator
1173   // where we need to specify both the gp and fp arg counts and the
1174   // return type so that the linkage routine from aarch64 to x86 and
1175   // back knows which aarch64 registers to copy to x86 registers and
1176   // which x86 result register to copy back to an aarch64 register
1177 
1178   void call_VM_leaf_base1(
1179     address  entry_point,             // the entry point
1180     int      number_of_gp_arguments,  // the number of gp reg arguments to pass
1181     int      number_of_fp_arguments,  // the number of fp reg arguments to pass
1182     ret_type type,                    // the return type for the call
1183     Label*   retaddr = NULL
1184   );
1185 
1186   void ldr_constant(Register dest, const Address &const_addr) {
1187     if (NearCpool) {
1188       ldr(dest, const_addr);
1189     } else {
1190       unsigned long offset;
1191       adrp(dest, InternalAddress(const_addr.target()), offset);
1192       ldr(dest, Address(dest, offset));
1193     }
1194   }
1195 
1196   address read_polling_page(Register r, address page, relocInfo::relocType rtype);
1197   address read_polling_page(Register r, relocInfo::relocType rtype);
1198   void get_polling_page(Register dest, address page, relocInfo::relocType rtype);
1199 
1200   // CRC32 code for java.util.zip.CRC32::updateBytes() instrinsic.
1201   void update_byte_crc32(Register crc, Register val, Register table);
1202   void update_word_crc32(Register crc, Register v, Register tmp,
1203         Register table0, Register table1, Register table2, Register table3,
1204         bool upper = false);
1205 
1206   void string_compare(Register str1, Register str2,
1207                       Register cnt1, Register cnt2, Register result,
1208                       Register tmp1,
1209                       FloatRegister vtmp, FloatRegister vtmpZ, int ae);
1210 
1211   void has_negatives(Register ary1, Register len, Register result);
1212 
1213   void arrays_equals(Register a1, Register a2, Register result, Register cnt1,
1214                      Register tmp1, Register tmp2, Register tmp3, int elem_size);
1215 
1216   void string_equals(Register a1, Register a2, Register result, Register cnt1,
1217                      int elem_size);
1218 
1219   void fill_words(Register base, Register cnt, Register value);
1220   void zero_words(Register base, u_int64_t cnt);
1221   void zero_words(Register ptr, Register cnt);
1222   void zero_dcache_blocks(Register base, Register cnt);
1223 
1224   static const int zero_words_block_size;
1225 
1226   void byte_array_inflate(Register src, Register dst, Register len,
1227                           FloatRegister vtmp1, FloatRegister vtmp2,
1228                           FloatRegister vtmp3, Register tmp4);
1229 
1230   void char_array_compress(Register src, Register dst, Register len,
1231                            FloatRegister tmp1Reg, FloatRegister tmp2Reg,
1232                            FloatRegister tmp3Reg, FloatRegister tmp4Reg,
1233                            Register result);
1234 
1235   void encode_iso_array(Register src, Register dst,
1236                         Register len, Register result,
1237                         FloatRegister Vtmp1, FloatRegister Vtmp2,
1238                         FloatRegister Vtmp3, FloatRegister Vtmp4);
1239   void string_indexof(Register str1, Register str2,
1240                       Register cnt1, Register cnt2,
1241                       Register tmp1, Register tmp2,
1242                       Register tmp3, Register tmp4,
1243                       int int_cnt1, Register result, int ae);
1244   void string_indexof_char(Register str1, Register cnt1,
1245                            Register ch, Register result,
1246                            Register tmp1, Register tmp2, Register tmp3);
1247 private:
1248   void add2_with_carry(Register final_dest_hi, Register dest_hi, Register dest_lo,
1249                        Register src1, Register src2);
1250   void add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2) {
1251     add2_with_carry(dest_hi, dest_hi, dest_lo, src1, src2);
1252   }
1253   void multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
1254                              Register y, Register y_idx, Register z,
1255                              Register carry, Register product,
1256                              Register idx, Register kdx);
1257   void multiply_128_x_128_loop(Register y, Register z,
1258                                Register carry, Register carry2,
1259                                Register idx, Register jdx,
1260                                Register yz_idx1, Register yz_idx2,
1261                                Register tmp, Register tmp3, Register tmp4,
1262                                Register tmp7, Register product_hi);
1263   void kernel_crc32_using_crc32(Register crc, Register buf,
1264         Register len, Register tmp0, Register tmp1, Register tmp2,
1265         Register tmp3);
1266   void kernel_crc32c_using_crc32c(Register crc, Register buf,
1267         Register len, Register tmp0, Register tmp1, Register tmp2,
1268         Register tmp3);
1269 public:
1270   void multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z,
1271                        Register zlen, Register tmp1, Register tmp2, Register tmp3,
1272                        Register tmp4, Register tmp5, Register tmp6, Register tmp7);
1273   void mul_add(Register out, Register in, Register offs, Register len, Register k);
1274   // ISB may be needed because of a safepoint
1275   void maybe_isb() { isb(); }
1276 
1277 private:
1278   // Return the effective address r + (r1 << ext) + offset.
1279   // Uses rscratch2.
1280   Address offsetted_address(Register r, Register r1, Address::extend ext,
1281                             int offset, int size);
1282 
1283 private:
1284   // Returns an address on the stack which is reachable with a ldr/str of size
1285   // Uses rscratch2 if the address is not directly reachable
1286   Address spill_address(int size, int offset, Register tmp=rscratch2);
1287 
1288   bool merge_alignment_check(Register base, size_t size, long cur_offset, long prev_offset) const;
1289 
1290   // Check whether two loads/stores can be merged into ldp/stp.
1291   bool ldst_can_merge(Register rx, const Address &adr, size_t cur_size_in_bytes, bool is_store) const;
1292 
1293   // Merge current load/store with previous load/store into ldp/stp.
1294   void merge_ldst(Register rx, const Address &adr, size_t cur_size_in_bytes, bool is_store);
1295 
1296   // Try to merge two loads/stores into ldp/stp. If success, returns true else false.
1297   bool try_merge_ldst(Register rt, const Address &adr, size_t cur_size_in_bytes, bool is_store);
1298 
1299 public:
1300   void spill(Register Rx, bool is64, int offset) {
1301     if (is64) {
1302       str(Rx, spill_address(8, offset));
1303     } else {
1304       strw(Rx, spill_address(4, offset));
1305     }
1306   }
1307   void spill(FloatRegister Vx, SIMD_RegVariant T, int offset) {
1308     str(Vx, T, spill_address(1 << (int)T, offset));
1309   }
1310   void unspill(Register Rx, bool is64, int offset) {
1311     if (is64) {
1312       ldr(Rx, spill_address(8, offset));
1313     } else {
1314       ldrw(Rx, spill_address(4, offset));
1315     }
1316   }
1317   void unspill(FloatRegister Vx, SIMD_RegVariant T, int offset) {
1318     ldr(Vx, T, spill_address(1 << (int)T, offset));
1319   }
1320   void spill_copy128(int src_offset, int dst_offset,
1321                      Register tmp1=rscratch1, Register tmp2=rscratch2) {
1322     if (src_offset < 512 && (src_offset & 7) == 0 &&
1323         dst_offset < 512 && (dst_offset & 7) == 0) {
1324       ldp(tmp1, tmp2, Address(sp, src_offset));
1325       stp(tmp1, tmp2, Address(sp, dst_offset));
1326     } else {
1327       unspill(tmp1, true, src_offset);
1328       spill(tmp1, true, dst_offset);
1329       unspill(tmp1, true, src_offset+8);
1330       spill(tmp1, true, dst_offset+8);
1331     }
1332   }
1333 };
1334 
1335 #ifdef ASSERT
1336 inline bool AbstractAssembler::pd_check_instruction_mark() { return false; }
1337 #endif
1338 
1339 /**
1340  * class SkipIfEqual:
1341  *
1342  * Instantiating this class will result in assembly code being output that will
1343  * jump around any code emitted between the creation of the instance and it's
1344  * automatic destruction at the end of a scope block, depending on the value of
1345  * the flag passed to the constructor, which will be checked at run-time.
1346  */
1347 class SkipIfEqual {
1348  private:
1349   MacroAssembler* _masm;
1350   Label _label;
1351 
1352  public:
1353    SkipIfEqual(MacroAssembler*, const bool* flag_addr, bool value);
1354    ~SkipIfEqual();
1355 };
1356 
1357 struct tableswitch {
1358   Register _reg;
1359   int _insn_index; jint _first_key; jint _last_key;
1360   Label _after;
1361   Label _branches;
1362 };
1363 
1364 #endif // CPU_AARCH64_VM_MACROASSEMBLER_AARCH64_HPP