1 /* 2 * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #ifndef SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP 26 #define SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP 27 28 #ifdef TARGET_COMPILER_gcc 29 # include "utilities/globalDefinitions_gcc.hpp" 30 #endif 31 #ifdef TARGET_COMPILER_visCPP 32 # include "utilities/globalDefinitions_visCPP.hpp" 33 #endif 34 #ifdef TARGET_COMPILER_sparcWorks 35 # include "utilities/globalDefinitions_sparcWorks.hpp" 36 #endif 37 #ifdef TARGET_COMPILER_xlc 38 # include "utilities/globalDefinitions_xlc.hpp" 39 #endif 40 41 #ifndef NOINLINE 42 #define NOINLINE 43 #endif 44 #ifndef ALWAYSINLINE 45 #define ALWAYSINLINE inline 46 #endif 47 #ifndef PRAGMA_DIAG_PUSH 48 #define PRAGMA_DIAG_PUSH 49 #endif 50 #ifndef PRAGMA_DIAG_POP 51 #define PRAGMA_DIAG_POP 52 #endif 53 #ifndef PRAGMA_FORMAT_NONLITERAL_IGNORED 54 #define PRAGMA_FORMAT_NONLITERAL_IGNORED 55 #endif 56 #ifndef PRAGMA_FORMAT_IGNORED 57 #define PRAGMA_FORMAT_IGNORED 58 #endif 59 #ifndef PRAGMA_FORMAT_NONLITERAL_IGNORED_INTERNAL 60 #define PRAGMA_FORMAT_NONLITERAL_IGNORED_INTERNAL 61 #endif 62 #ifndef PRAGMA_FORMAT_NONLITERAL_IGNORED_EXTERNAL 63 #define PRAGMA_FORMAT_NONLITERAL_IGNORED_EXTERNAL 64 #endif 65 #ifndef ATTRIBUTE_PRINTF 66 #define ATTRIBUTE_PRINTF(fmt, vargs) 67 #endif 68 #ifndef ATTRIBUTE_SCANF 69 #define ATTRIBUTE_SCANF(fmt, vargs) 70 #endif 71 72 #include "utilities/macros.hpp" 73 74 // This file holds all globally used constants & types, class (forward) 75 // declarations and a few frequently used utility functions. 76 77 //---------------------------------------------------------------------------------------------------- 78 // Constants 79 80 const int LogBytesPerShort = 1; 81 const int LogBytesPerInt = 2; 82 #ifdef _LP64 83 const int LogBytesPerWord = 3; 84 #else 85 const int LogBytesPerWord = 2; 86 #endif 87 const int LogBytesPerLong = 3; 88 89 const int BytesPerShort = 1 << LogBytesPerShort; 90 const int BytesPerInt = 1 << LogBytesPerInt; 91 const int BytesPerWord = 1 << LogBytesPerWord; 92 const int BytesPerLong = 1 << LogBytesPerLong; 93 94 const int LogBitsPerByte = 3; 95 const int LogBitsPerShort = LogBitsPerByte + LogBytesPerShort; 96 const int LogBitsPerInt = LogBitsPerByte + LogBytesPerInt; 97 const int LogBitsPerWord = LogBitsPerByte + LogBytesPerWord; 98 const int LogBitsPerLong = LogBitsPerByte + LogBytesPerLong; 99 100 const int BitsPerByte = 1 << LogBitsPerByte; 101 const int BitsPerShort = 1 << LogBitsPerShort; 102 const int BitsPerInt = 1 << LogBitsPerInt; 103 const int BitsPerWord = 1 << LogBitsPerWord; 104 const int BitsPerLong = 1 << LogBitsPerLong; 105 106 const int WordAlignmentMask = (1 << LogBytesPerWord) - 1; 107 const int LongAlignmentMask = (1 << LogBytesPerLong) - 1; 108 109 const int WordsPerLong = 2; // Number of stack entries for longs 110 111 const int oopSize = sizeof(char*); // Full-width oop 112 extern int heapOopSize; // Oop within a java object 113 const int wordSize = sizeof(char*); 114 const int longSize = sizeof(jlong); 115 const int jintSize = sizeof(jint); 116 const int size_tSize = sizeof(size_t); 117 118 const int BytesPerOop = BytesPerWord; // Full-width oop 119 120 extern int LogBytesPerHeapOop; // Oop within a java object 121 extern int LogBitsPerHeapOop; 122 extern int BytesPerHeapOop; 123 extern int BitsPerHeapOop; 124 125 const int BitsPerJavaInteger = 32; 126 const int BitsPerJavaLong = 64; 127 const int BitsPerSize_t = size_tSize * BitsPerByte; 128 129 // Size of a char[] needed to represent a jint as a string in decimal. 130 const int jintAsStringSize = 12; 131 132 // In fact this should be 133 // log2_intptr(sizeof(class JavaThread)) - log2_intptr(64); 134 // see os::set_memory_serialize_page() 135 #ifdef _LP64 136 const int SerializePageShiftCount = 4; 137 #else 138 const int SerializePageShiftCount = 3; 139 #endif 140 141 // An opaque struct of heap-word width, so that HeapWord* can be a generic 142 // pointer into the heap. We require that object sizes be measured in 143 // units of heap words, so that that 144 // HeapWord* hw; 145 // hw += oop(hw)->foo(); 146 // works, where foo is a method (like size or scavenge) that returns the 147 // object size. 148 class HeapWord { 149 friend class VMStructs; 150 private: 151 char* i; 152 #ifndef PRODUCT 153 public: 154 char* value() { return i; } 155 #endif 156 }; 157 158 // Analogous opaque struct for metadata allocated from 159 // metaspaces. 160 class MetaWord { 161 private: 162 char* i; 163 }; 164 165 // HeapWordSize must be 2^LogHeapWordSize. 166 const int HeapWordSize = sizeof(HeapWord); 167 #ifdef _LP64 168 const int LogHeapWordSize = 3; 169 #else 170 const int LogHeapWordSize = 2; 171 #endif 172 const int HeapWordsPerLong = BytesPerLong / HeapWordSize; 173 const int LogHeapWordsPerLong = LogBytesPerLong - LogHeapWordSize; 174 175 // The larger HeapWordSize for 64bit requires larger heaps 176 // for the same application running in 64bit. See bug 4967770. 177 // The minimum alignment to a heap word size is done. Other 178 // parts of the memory system may require additional alignment 179 // and are responsible for those alignments. 180 #ifdef _LP64 181 #define ScaleForWordSize(x) align_size_down_((x) * 13 / 10, HeapWordSize) 182 #else 183 #define ScaleForWordSize(x) (x) 184 #endif 185 186 // The minimum number of native machine words necessary to contain "byte_size" 187 // bytes. 188 inline size_t heap_word_size(size_t byte_size) { 189 return (byte_size + (HeapWordSize-1)) >> LogHeapWordSize; 190 } 191 192 //------------------------------------------- 193 // Constant for jlong (standardized by C++11) 194 195 // Build a 64bit integer constant 196 #define CONST64(x) (x ## LL) 197 #define UCONST64(x) (x ## ULL) 198 199 const jlong min_jlong = CONST64(0x8000000000000000); 200 const jlong max_jlong = CONST64(0x7fffffffffffffff); 201 202 const size_t K = 1024; 203 const size_t M = K*K; 204 const size_t G = M*K; 205 const size_t HWperKB = K / sizeof(HeapWord); 206 207 // Constants for converting from a base unit to milli-base units. For 208 // example from seconds to milliseconds and microseconds 209 210 const int MILLIUNITS = 1000; // milli units per base unit 211 const int MICROUNITS = 1000000; // micro units per base unit 212 const int NANOUNITS = 1000000000; // nano units per base unit 213 214 const jlong NANOSECS_PER_SEC = CONST64(1000000000); 215 const jint NANOSECS_PER_MILLISEC = 1000000; 216 217 inline const char* proper_unit_for_byte_size(size_t s) { 218 #ifdef _LP64 219 if (s >= 10*G) { 220 return "G"; 221 } 222 #endif 223 if (s >= 10*M) { 224 return "M"; 225 } else if (s >= 10*K) { 226 return "K"; 227 } else { 228 return "B"; 229 } 230 } 231 232 template <class T> 233 inline T byte_size_in_proper_unit(T s) { 234 #ifdef _LP64 235 if (s >= 10*G) { 236 return (T)(s/G); 237 } 238 #endif 239 if (s >= 10*M) { 240 return (T)(s/M); 241 } else if (s >= 10*K) { 242 return (T)(s/K); 243 } else { 244 return s; 245 } 246 } 247 248 inline const char* exact_unit_for_byte_size(size_t s) { 249 #ifdef _LP64 250 if (s >= G && (s % G) == 0) { 251 return "G"; 252 } 253 #endif 254 if (s >= M && (s % M) == 0) { 255 return "M"; 256 } 257 if (s >= K && (s % K) == 0) { 258 return "K"; 259 } 260 return "B"; 261 } 262 263 inline size_t byte_size_in_exact_unit(size_t s) { 264 #ifdef _LP64 265 if (s >= G && (s % G) == 0) { 266 return s / G; 267 } 268 #endif 269 if (s >= M && (s % M) == 0) { 270 return s / M; 271 } 272 if (s >= K && (s % K) == 0) { 273 return s / K; 274 } 275 return s; 276 } 277 278 //---------------------------------------------------------------------------------------------------- 279 // VM type definitions 280 281 // intx and uintx are the 'extended' int and 'extended' unsigned int types; 282 // they are 32bit wide on a 32-bit platform, and 64bit wide on a 64bit platform. 283 284 typedef intptr_t intx; 285 typedef uintptr_t uintx; 286 287 const intx min_intx = (intx)1 << (sizeof(intx)*BitsPerByte-1); 288 const intx max_intx = (uintx)min_intx - 1; 289 const uintx max_uintx = (uintx)-1; 290 291 // Table of values: 292 // sizeof intx 4 8 293 // min_intx 0x80000000 0x8000000000000000 294 // max_intx 0x7FFFFFFF 0x7FFFFFFFFFFFFFFF 295 // max_uintx 0xFFFFFFFF 0xFFFFFFFFFFFFFFFF 296 297 typedef unsigned int uint; NEEDS_CLEANUP 298 299 300 //---------------------------------------------------------------------------------------------------- 301 // Java type definitions 302 303 // All kinds of 'plain' byte addresses 304 typedef signed char s_char; 305 typedef unsigned char u_char; 306 typedef u_char* address; 307 typedef uintptr_t address_word; // unsigned integer which will hold a pointer 308 // except for some implementations of a C++ 309 // linkage pointer to function. Should never 310 // need one of those to be placed in this 311 // type anyway. 312 313 // Utility functions to "portably" (?) bit twiddle pointers 314 // Where portable means keep ANSI C++ compilers quiet 315 316 inline address set_address_bits(address x, int m) { return address(intptr_t(x) | m); } 317 inline address clear_address_bits(address x, int m) { return address(intptr_t(x) & ~m); } 318 319 // Utility functions to "portably" make cast to/from function pointers. 320 321 inline address_word mask_address_bits(address x, int m) { return address_word(x) & m; } 322 inline address_word castable_address(address x) { return address_word(x) ; } 323 inline address_word castable_address(void* x) { return address_word(x) ; } 324 325 // Pointer subtraction. 326 // The idea here is to avoid ptrdiff_t, which is signed and so doesn't have 327 // the range we might need to find differences from one end of the heap 328 // to the other. 329 // A typical use might be: 330 // if (pointer_delta(end(), top()) >= size) { 331 // // enough room for an object of size 332 // ... 333 // and then additions like 334 // ... top() + size ... 335 // are safe because we know that top() is at least size below end(). 336 inline size_t pointer_delta(const volatile void* left, 337 const volatile void* right, 338 size_t element_size) { 339 return (((uintptr_t) left) - ((uintptr_t) right)) / element_size; 340 } 341 342 // A version specialized for HeapWord*'s. 343 inline size_t pointer_delta(const HeapWord* left, const HeapWord* right) { 344 return pointer_delta(left, right, sizeof(HeapWord)); 345 } 346 // A version specialized for MetaWord*'s. 347 inline size_t pointer_delta(const MetaWord* left, const MetaWord* right) { 348 return pointer_delta(left, right, sizeof(MetaWord)); 349 } 350 351 // 352 // ANSI C++ does not allow casting from one pointer type to a function pointer 353 // directly without at best a warning. This macro accomplishes it silently 354 // In every case that is present at this point the value be cast is a pointer 355 // to a C linkage function. In some case the type used for the cast reflects 356 // that linkage and a picky compiler would not complain. In other cases because 357 // there is no convenient place to place a typedef with extern C linkage (i.e 358 // a platform dependent header file) it doesn't. At this point no compiler seems 359 // picky enough to catch these instances (which are few). It is possible that 360 // using templates could fix these for all cases. This use of templates is likely 361 // so far from the middle of the road that it is likely to be problematic in 362 // many C++ compilers. 363 // 364 #define CAST_TO_FN_PTR(func_type, value) (reinterpret_cast<func_type>(value)) 365 #define CAST_FROM_FN_PTR(new_type, func_ptr) ((new_type)((address_word)(func_ptr))) 366 367 // Unsigned byte types for os and stream.hpp 368 369 // Unsigned one, two, four and eigth byte quantities used for describing 370 // the .class file format. See JVM book chapter 4. 371 372 typedef jubyte u1; 373 typedef jushort u2; 374 typedef juint u4; 375 typedef julong u8; 376 377 const jubyte max_jubyte = (jubyte)-1; // 0xFF largest jubyte 378 const jushort max_jushort = (jushort)-1; // 0xFFFF largest jushort 379 const juint max_juint = (juint)-1; // 0xFFFFFFFF largest juint 380 const julong max_julong = (julong)-1; // 0xFF....FF largest julong 381 382 typedef jbyte s1; 383 typedef jshort s2; 384 typedef jint s4; 385 typedef jlong s8; 386 387 const jbyte min_jbyte = -(1 << 7); // smallest jbyte 388 const jbyte max_jbyte = (1 << 7) - 1; // largest jbyte 389 const jshort min_jshort = -(1 << 15); // smallest jshort 390 const jshort max_jshort = (1 << 15) - 1; // largest jshort 391 392 const jint min_jint = (jint)1 << (sizeof(jint)*BitsPerByte-1); // 0x80000000 == smallest jint 393 const jint max_jint = (juint)min_jint - 1; // 0x7FFFFFFF == largest jint 394 395 //---------------------------------------------------------------------------------------------------- 396 // JVM spec restrictions 397 398 const int max_method_code_size = 64*K - 1; // JVM spec, 2nd ed. section 4.8.1 (p.134) 399 400 // Default ProtectionDomainCacheSize values 401 402 const int defaultProtectionDomainCacheSize = NOT_LP64(137) LP64_ONLY(2017); 403 404 //---------------------------------------------------------------------------------------------------- 405 // Default and minimum StringTableSize values 406 407 const int defaultStringTableSize = NOT_LP64(1009) LP64_ONLY(60013); 408 const int minimumStringTableSize = 1009; 409 410 const int defaultSymbolTableSize = 20011; 411 const int minimumSymbolTableSize = 1009; 412 413 414 //---------------------------------------------------------------------------------------------------- 415 // HotSwap - for JVMTI aka Class File Replacement and PopFrame 416 // 417 // Determines whether on-the-fly class replacement and frame popping are enabled. 418 419 #define HOTSWAP 420 421 //---------------------------------------------------------------------------------------------------- 422 // Object alignment, in units of HeapWords. 423 // 424 // Minimum is max(BytesPerLong, BytesPerDouble, BytesPerOop) / HeapWordSize, so jlong, jdouble and 425 // reference fields can be naturally aligned. 426 427 extern int MinObjAlignment; 428 extern int MinObjAlignmentInBytes; 429 extern int MinObjAlignmentInBytesMask; 430 431 extern int LogMinObjAlignment; 432 extern int LogMinObjAlignmentInBytes; 433 434 const int LogKlassAlignmentInBytes = 3; 435 const int LogKlassAlignment = LogKlassAlignmentInBytes - LogHeapWordSize; 436 const int KlassAlignmentInBytes = 1 << LogKlassAlignmentInBytes; 437 const int KlassAlignment = KlassAlignmentInBytes / HeapWordSize; 438 439 // Maximal size of heap where unscaled compression can be used. Also upper bound 440 // for heap placement: 4GB. 441 const uint64_t UnscaledOopHeapMax = (uint64_t(max_juint) + 1); 442 // Maximal size of heap where compressed oops can be used. Also upper bound for heap 443 // placement for zero based compression algorithm: UnscaledOopHeapMax << LogMinObjAlignmentInBytes. 444 extern uint64_t OopEncodingHeapMax; 445 446 // Maximal size of compressed class space. Above this limit compression is not possible. 447 // Also upper bound for placement of zero based class space. (Class space is further limited 448 // to be < 3G, see arguments.cpp.) 449 const uint64_t KlassEncodingMetaspaceMax = (uint64_t(max_juint) + 1) << LogKlassAlignmentInBytes; 450 451 // Machine dependent stuff 452 453 // The maximum size of the code cache. Can be overridden by targets. 454 #define CODE_CACHE_SIZE_LIMIT (2*G) 455 // Allow targets to reduce the default size of the code cache. 456 #define CODE_CACHE_DEFAULT_LIMIT CODE_CACHE_SIZE_LIMIT 457 458 #include CPU_HEADER(globalDefinitions) 459 460 // To assure the IRIW property on processors that are not multiple copy 461 // atomic, sync instructions must be issued between volatile reads to 462 // assure their ordering, instead of after volatile stores. 463 // (See "A Tutorial Introduction to the ARM and POWER Relaxed Memory Models" 464 // by Luc Maranget, Susmit Sarkar and Peter Sewell, INRIA/Cambridge) 465 #ifdef CPU_NOT_MULTIPLE_COPY_ATOMIC 466 const bool support_IRIW_for_not_multiple_copy_atomic_cpu = true; 467 #else 468 const bool support_IRIW_for_not_multiple_copy_atomic_cpu = false; 469 #endif 470 471 // The byte alignment to be used by Arena::Amalloc. See bugid 4169348. 472 // Note: this value must be a power of 2 473 474 #define ARENA_AMALLOC_ALIGNMENT (2*BytesPerWord) 475 476 // Signed variants of alignment helpers. There are two versions of each, a macro 477 // for use in places like enum definitions that require compile-time constant 478 // expressions and a function for all other places so as to get type checking. 479 480 #define align_size_up_(size, alignment) (((size) + ((alignment) - 1)) & ~((alignment) - 1)) 481 482 inline bool is_size_aligned(size_t size, size_t alignment) { 483 return align_size_up_(size, alignment) == size; 484 } 485 486 inline bool is_ptr_aligned(const void* ptr, size_t alignment) { 487 return align_size_up_((intptr_t)ptr, (intptr_t)alignment) == (intptr_t)ptr; 488 } 489 490 inline intptr_t align_size_up(intptr_t size, intptr_t alignment) { 491 return align_size_up_(size, alignment); 492 } 493 494 #define align_size_down_(size, alignment) ((size) & ~((alignment) - 1)) 495 496 inline intptr_t align_size_down(intptr_t size, intptr_t alignment) { 497 return align_size_down_(size, alignment); 498 } 499 500 #define is_size_aligned_(size, alignment) ((size) == (align_size_up_(size, alignment))) 501 502 inline void* align_ptr_up(const void* ptr, size_t alignment) { 503 return (void*)align_size_up((intptr_t)ptr, (intptr_t)alignment); 504 } 505 506 inline void* align_ptr_down(void* ptr, size_t alignment) { 507 return (void*)align_size_down((intptr_t)ptr, (intptr_t)alignment); 508 } 509 510 inline volatile void* align_ptr_down(volatile void* ptr, size_t alignment) { 511 return (volatile void*)align_size_down((intptr_t)ptr, (intptr_t)alignment); 512 } 513 514 // Align metaspace objects by rounding up to natural word boundary 515 516 inline intptr_t align_metadata_size(intptr_t size) { 517 return align_size_up(size, 1); 518 } 519 520 // Align objects in the Java Heap by rounding up their size, in HeapWord units. 521 // Since the size is given in words this is somewhat of a nop, but 522 // distinguishes it from align_object_size. 523 inline intptr_t align_object_size(intptr_t size) { 524 return align_size_up(size, MinObjAlignment); 525 } 526 527 inline bool is_object_aligned(intptr_t addr) { 528 return addr == align_object_size(addr); 529 } 530 531 // Pad out certain offsets to jlong alignment, in HeapWord units. 532 533 inline intptr_t align_object_offset(intptr_t offset) { 534 return align_size_up(offset, HeapWordsPerLong); 535 } 536 537 // Align down with a lower bound. If the aligning results in 0, return 'alignment'. 538 539 inline size_t align_size_down_bounded(size_t size, size_t alignment) { 540 size_t aligned_size = align_size_down_(size, alignment); 541 return aligned_size > 0 ? aligned_size : alignment; 542 } 543 544 // Clamp an address to be within a specific page 545 // 1. If addr is on the page it is returned as is 546 // 2. If addr is above the page_address the start of the *next* page will be returned 547 // 3. Otherwise, if addr is below the page_address the start of the page will be returned 548 inline address clamp_address_in_page(address addr, address page_address, intptr_t page_size) { 549 if (align_size_down(intptr_t(addr), page_size) == align_size_down(intptr_t(page_address), page_size)) { 550 // address is in the specified page, just return it as is 551 return addr; 552 } else if (addr > page_address) { 553 // address is above specified page, return start of next page 554 return (address)align_size_down(intptr_t(page_address), page_size) + page_size; 555 } else { 556 // address is below specified page, return start of page 557 return (address)align_size_down(intptr_t(page_address), page_size); 558 } 559 } 560 561 562 // The expected size in bytes of a cache line, used to pad data structures. 563 #ifndef DEFAULT_CACHE_LINE_SIZE 564 #define DEFAULT_CACHE_LINE_SIZE 64 565 #endif 566 567 568 //---------------------------------------------------------------------------------------------------- 569 // Utility macros for compilers 570 // used to silence compiler warnings 571 572 #define Unused_Variable(var) var 573 574 575 //---------------------------------------------------------------------------------------------------- 576 // Miscellaneous 577 578 // 6302670 Eliminate Hotspot __fabsf dependency 579 // All fabs() callers should call this function instead, which will implicitly 580 // convert the operand to double, avoiding a dependency on __fabsf which 581 // doesn't exist in early versions of Solaris 8. 582 inline double fabsd(double value) { 583 return fabs(value); 584 } 585 586 // Returns numerator/denominator as percentage value from 0 to 100. If denominator 587 // is zero, return 0.0. 588 template<typename T> 589 inline double percent_of(T numerator, T denominator) { 590 return denominator != 0 ? (double)numerator / denominator * 100.0 : 0.0; 591 } 592 593 //---------------------------------------------------------------------------------------------------- 594 // Special casts 595 // Cast floats into same-size integers and vice-versa w/o changing bit-pattern 596 typedef union { 597 jfloat f; 598 jint i; 599 } FloatIntConv; 600 601 typedef union { 602 jdouble d; 603 jlong l; 604 julong ul; 605 } DoubleLongConv; 606 607 inline jint jint_cast (jfloat x) { return ((FloatIntConv*)&x)->i; } 608 inline jfloat jfloat_cast (jint x) { return ((FloatIntConv*)&x)->f; } 609 610 inline jlong jlong_cast (jdouble x) { return ((DoubleLongConv*)&x)->l; } 611 inline julong julong_cast (jdouble x) { return ((DoubleLongConv*)&x)->ul; } 612 inline jdouble jdouble_cast (jlong x) { return ((DoubleLongConv*)&x)->d; } 613 614 inline jint low (jlong value) { return jint(value); } 615 inline jint high(jlong value) { return jint(value >> 32); } 616 617 // the fancy casts are a hopefully portable way 618 // to do unsigned 32 to 64 bit type conversion 619 inline void set_low (jlong* value, jint low ) { *value &= (jlong)0xffffffff << 32; 620 *value |= (jlong)(julong)(juint)low; } 621 622 inline void set_high(jlong* value, jint high) { *value &= (jlong)(julong)(juint)0xffffffff; 623 *value |= (jlong)high << 32; } 624 625 inline jlong jlong_from(jint h, jint l) { 626 jlong result = 0; // initialization to avoid warning 627 set_high(&result, h); 628 set_low(&result, l); 629 return result; 630 } 631 632 union jlong_accessor { 633 jint words[2]; 634 jlong long_value; 635 }; 636 637 void basic_types_init(); // cannot define here; uses assert 638 639 640 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java 641 enum BasicType { 642 T_BOOLEAN = 4, 643 T_CHAR = 5, 644 T_FLOAT = 6, 645 T_DOUBLE = 7, 646 T_BYTE = 8, 647 T_SHORT = 9, 648 T_INT = 10, 649 T_LONG = 11, 650 T_OBJECT = 12, 651 T_ARRAY = 13, 652 T_VOID = 14, 653 T_ADDRESS = 15, 654 T_NARROWOOP = 16, 655 T_METADATA = 17, 656 T_NARROWKLASS = 18, 657 T_CONFLICT = 19, // for stack value type with conflicting contents 658 T_ILLEGAL = 99 659 }; 660 661 inline bool is_java_primitive(BasicType t) { 662 return T_BOOLEAN <= t && t <= T_LONG; 663 } 664 665 inline bool is_subword_type(BasicType t) { 666 // these guys are processed exactly like T_INT in calling sequences: 667 return (t == T_BOOLEAN || t == T_CHAR || t == T_BYTE || t == T_SHORT); 668 } 669 670 inline bool is_signed_subword_type(BasicType t) { 671 return (t == T_BYTE || t == T_SHORT); 672 } 673 674 // Convert a char from a classfile signature to a BasicType 675 inline BasicType char2type(char c) { 676 switch( c ) { 677 case 'B': return T_BYTE; 678 case 'C': return T_CHAR; 679 case 'D': return T_DOUBLE; 680 case 'F': return T_FLOAT; 681 case 'I': return T_INT; 682 case 'J': return T_LONG; 683 case 'S': return T_SHORT; 684 case 'Z': return T_BOOLEAN; 685 case 'V': return T_VOID; 686 case 'L': return T_OBJECT; 687 case '[': return T_ARRAY; 688 } 689 return T_ILLEGAL; 690 } 691 692 extern char type2char_tab[T_CONFLICT+1]; // Map a BasicType to a jchar 693 inline char type2char(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2char_tab[t] : 0; } 694 extern int type2size[T_CONFLICT+1]; // Map BasicType to result stack elements 695 extern const char* type2name_tab[T_CONFLICT+1]; // Map a BasicType to a jchar 696 inline const char* type2name(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2name_tab[t] : NULL; } 697 extern BasicType name2type(const char* name); 698 699 // Auxiliary math routines 700 // least common multiple 701 extern size_t lcm(size_t a, size_t b); 702 703 704 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java 705 enum BasicTypeSize { 706 T_BOOLEAN_size = 1, 707 T_CHAR_size = 1, 708 T_FLOAT_size = 1, 709 T_DOUBLE_size = 2, 710 T_BYTE_size = 1, 711 T_SHORT_size = 1, 712 T_INT_size = 1, 713 T_LONG_size = 2, 714 T_OBJECT_size = 1, 715 T_ARRAY_size = 1, 716 T_NARROWOOP_size = 1, 717 T_NARROWKLASS_size = 1, 718 T_VOID_size = 0 719 }; 720 721 722 // maps a BasicType to its instance field storage type: 723 // all sub-word integral types are widened to T_INT 724 extern BasicType type2field[T_CONFLICT+1]; 725 extern BasicType type2wfield[T_CONFLICT+1]; 726 727 728 // size in bytes 729 enum ArrayElementSize { 730 T_BOOLEAN_aelem_bytes = 1, 731 T_CHAR_aelem_bytes = 2, 732 T_FLOAT_aelem_bytes = 4, 733 T_DOUBLE_aelem_bytes = 8, 734 T_BYTE_aelem_bytes = 1, 735 T_SHORT_aelem_bytes = 2, 736 T_INT_aelem_bytes = 4, 737 T_LONG_aelem_bytes = 8, 738 #ifdef _LP64 739 T_OBJECT_aelem_bytes = 8, 740 T_ARRAY_aelem_bytes = 8, 741 #else 742 T_OBJECT_aelem_bytes = 4, 743 T_ARRAY_aelem_bytes = 4, 744 #endif 745 T_NARROWOOP_aelem_bytes = 4, 746 T_NARROWKLASS_aelem_bytes = 4, 747 T_VOID_aelem_bytes = 0 748 }; 749 750 extern int _type2aelembytes[T_CONFLICT+1]; // maps a BasicType to nof bytes used by its array element 751 #ifdef ASSERT 752 extern int type2aelembytes(BasicType t, bool allow_address = false); // asserts 753 #else 754 inline int type2aelembytes(BasicType t, bool allow_address = false) { return _type2aelembytes[t]; } 755 #endif 756 757 758 // JavaValue serves as a container for arbitrary Java values. 759 760 class JavaValue { 761 762 public: 763 typedef union JavaCallValue { 764 jfloat f; 765 jdouble d; 766 jint i; 767 jlong l; 768 jobject h; 769 } JavaCallValue; 770 771 private: 772 BasicType _type; 773 JavaCallValue _value; 774 775 public: 776 JavaValue(BasicType t = T_ILLEGAL) { _type = t; } 777 778 JavaValue(jfloat value) { 779 _type = T_FLOAT; 780 _value.f = value; 781 } 782 783 JavaValue(jdouble value) { 784 _type = T_DOUBLE; 785 _value.d = value; 786 } 787 788 jfloat get_jfloat() const { return _value.f; } 789 jdouble get_jdouble() const { return _value.d; } 790 jint get_jint() const { return _value.i; } 791 jlong get_jlong() const { return _value.l; } 792 jobject get_jobject() const { return _value.h; } 793 JavaCallValue* get_value_addr() { return &_value; } 794 BasicType get_type() const { return _type; } 795 796 void set_jfloat(jfloat f) { _value.f = f;} 797 void set_jdouble(jdouble d) { _value.d = d;} 798 void set_jint(jint i) { _value.i = i;} 799 void set_jlong(jlong l) { _value.l = l;} 800 void set_jobject(jobject h) { _value.h = h;} 801 void set_type(BasicType t) { _type = t; } 802 803 jboolean get_jboolean() const { return (jboolean) (_value.i);} 804 jbyte get_jbyte() const { return (jbyte) (_value.i);} 805 jchar get_jchar() const { return (jchar) (_value.i);} 806 jshort get_jshort() const { return (jshort) (_value.i);} 807 808 }; 809 810 811 #define STACK_BIAS 0 812 // V9 Sparc CPU's running in 64 Bit mode use a stack bias of 7ff 813 // in order to extend the reach of the stack pointer. 814 #if defined(SPARC) && defined(_LP64) 815 #undef STACK_BIAS 816 #define STACK_BIAS 0x7ff 817 #endif 818 819 820 // TosState describes the top-of-stack state before and after the execution of 821 // a bytecode or method. The top-of-stack value may be cached in one or more CPU 822 // registers. The TosState corresponds to the 'machine representation' of this cached 823 // value. There's 4 states corresponding to the JAVA types int, long, float & double 824 // as well as a 5th state in case the top-of-stack value is actually on the top 825 // of stack (in memory) and thus not cached. The atos state corresponds to the itos 826 // state when it comes to machine representation but is used separately for (oop) 827 // type specific operations (e.g. verification code). 828 829 enum TosState { // describes the tos cache contents 830 btos = 0, // byte, bool tos cached 831 ztos = 1, // byte, bool tos cached 832 ctos = 2, // char tos cached 833 stos = 3, // short tos cached 834 itos = 4, // int tos cached 835 ltos = 5, // long tos cached 836 ftos = 6, // float tos cached 837 dtos = 7, // double tos cached 838 atos = 8, // object cached 839 vtos = 9, // tos not cached 840 number_of_states, 841 ilgl // illegal state: should not occur 842 }; 843 844 845 inline TosState as_TosState(BasicType type) { 846 switch (type) { 847 case T_BYTE : return btos; 848 case T_BOOLEAN: return ztos; 849 case T_CHAR : return ctos; 850 case T_SHORT : return stos; 851 case T_INT : return itos; 852 case T_LONG : return ltos; 853 case T_FLOAT : return ftos; 854 case T_DOUBLE : return dtos; 855 case T_VOID : return vtos; 856 case T_ARRAY : // fall through 857 case T_OBJECT : return atos; 858 } 859 return ilgl; 860 } 861 862 inline BasicType as_BasicType(TosState state) { 863 switch (state) { 864 case btos : return T_BYTE; 865 case ztos : return T_BOOLEAN; 866 case ctos : return T_CHAR; 867 case stos : return T_SHORT; 868 case itos : return T_INT; 869 case ltos : return T_LONG; 870 case ftos : return T_FLOAT; 871 case dtos : return T_DOUBLE; 872 case atos : return T_OBJECT; 873 case vtos : return T_VOID; 874 } 875 return T_ILLEGAL; 876 } 877 878 879 // Helper function to convert BasicType info into TosState 880 // Note: Cannot define here as it uses global constant at the time being. 881 TosState as_TosState(BasicType type); 882 883 884 // JavaThreadState keeps track of which part of the code a thread is executing in. This 885 // information is needed by the safepoint code. 886 // 887 // There are 4 essential states: 888 // 889 // _thread_new : Just started, but not executed init. code yet (most likely still in OS init code) 890 // _thread_in_native : In native code. This is a safepoint region, since all oops will be in jobject handles 891 // _thread_in_vm : Executing in the vm 892 // _thread_in_Java : Executing either interpreted or compiled Java code (or could be in a stub) 893 // 894 // Each state has an associated xxxx_trans state, which is an intermediate state used when a thread is in 895 // a transition from one state to another. These extra states makes it possible for the safepoint code to 896 // handle certain thread_states without having to suspend the thread - making the safepoint code faster. 897 // 898 // Given a state, the xxxx_trans state can always be found by adding 1. 899 // 900 enum JavaThreadState { 901 _thread_uninitialized = 0, // should never happen (missing initialization) 902 _thread_new = 2, // just starting up, i.e., in process of being initialized 903 _thread_new_trans = 3, // corresponding transition state (not used, included for completness) 904 _thread_in_native = 4, // running in native code 905 _thread_in_native_trans = 5, // corresponding transition state 906 _thread_in_vm = 6, // running in VM 907 _thread_in_vm_trans = 7, // corresponding transition state 908 _thread_in_Java = 8, // running in Java or in stub code 909 _thread_in_Java_trans = 9, // corresponding transition state (not used, included for completness) 910 _thread_blocked = 10, // blocked in vm 911 _thread_blocked_trans = 11, // corresponding transition state 912 _thread_max_state = 12 // maximum thread state+1 - used for statistics allocation 913 }; 914 915 916 917 //---------------------------------------------------------------------------------------------------- 918 // 'Forward' declarations of frequently used classes 919 // (in order to reduce interface dependencies & reduce 920 // number of unnecessary compilations after changes) 921 922 class ClassFileStream; 923 924 class Event; 925 926 class Thread; 927 class VMThread; 928 class JavaThread; 929 class Threads; 930 931 class VM_Operation; 932 class VMOperationQueue; 933 934 class CodeBlob; 935 class CompiledMethod; 936 class nmethod; 937 class RuntimeBlob; 938 class OSRAdapter; 939 class I2CAdapter; 940 class C2IAdapter; 941 class CompiledIC; 942 class relocInfo; 943 class ScopeDesc; 944 class PcDesc; 945 946 class Recompiler; 947 class Recompilee; 948 class RecompilationPolicy; 949 class RFrame; 950 class CompiledRFrame; 951 class InterpretedRFrame; 952 953 class frame; 954 955 class vframe; 956 class javaVFrame; 957 class interpretedVFrame; 958 class compiledVFrame; 959 class deoptimizedVFrame; 960 class externalVFrame; 961 class entryVFrame; 962 963 class RegisterMap; 964 965 class Mutex; 966 class Monitor; 967 class BasicLock; 968 class BasicObjectLock; 969 970 class PeriodicTask; 971 972 class JavaCallWrapper; 973 974 class oopDesc; 975 class metaDataOopDesc; 976 977 class NativeCall; 978 979 class zone; 980 981 class StubQueue; 982 983 class outputStream; 984 985 class ResourceArea; 986 987 class DebugInformationRecorder; 988 class ScopeValue; 989 class CompressedStream; 990 class DebugInfoReadStream; 991 class DebugInfoWriteStream; 992 class LocationValue; 993 class ConstantValue; 994 class IllegalValue; 995 996 class PrivilegedElement; 997 class MonitorArray; 998 999 class MonitorInfo; 1000 1001 class OffsetClosure; 1002 class OopMapCache; 1003 class InterpreterOopMap; 1004 class OopMapCacheEntry; 1005 class OSThread; 1006 1007 typedef int (*OSThreadStartFunc)(void*); 1008 1009 class Space; 1010 1011 class JavaValue; 1012 class methodHandle; 1013 class JavaCallArguments; 1014 1015 // Basic support for errors (general debug facilities not defined at this point fo the include phase) 1016 1017 extern void basic_fatal(const char* msg); 1018 1019 1020 //---------------------------------------------------------------------------------------------------- 1021 // Special constants for debugging 1022 1023 const jint badInt = -3; // generic "bad int" value 1024 const long badAddressVal = -2; // generic "bad address" value 1025 const long badOopVal = -1; // generic "bad oop" value 1026 const intptr_t badHeapOopVal = (intptr_t) CONST64(0x2BAD4B0BBAADBABE); // value used to zap heap after GC 1027 const int badHandleValue = 0xBC; // value used to zap vm handle area 1028 const int badResourceValue = 0xAB; // value used to zap resource area 1029 const int freeBlockPad = 0xBA; // value used to pad freed blocks. 1030 const int uninitBlockPad = 0xF1; // value used to zap newly malloc'd blocks. 1031 const juint uninitMetaWordVal= 0xf7f7f7f7; // value used to zap newly allocated metachunk 1032 const intptr_t badJNIHandleVal = (intptr_t) UCONST64(0xFEFEFEFEFEFEFEFE); // value used to zap jni handle area 1033 const juint badHeapWordVal = 0xBAADBABE; // value used to zap heap after GC 1034 const juint badMetaWordVal = 0xBAADFADE; // value used to zap metadata heap after GC 1035 const int badCodeHeapNewVal= 0xCC; // value used to zap Code heap at allocation 1036 const int badCodeHeapFreeVal = 0xDD; // value used to zap Code heap at deallocation 1037 1038 1039 // (These must be implemented as #defines because C++ compilers are 1040 // not obligated to inline non-integral constants!) 1041 #define badAddress ((address)::badAddressVal) 1042 #define badOop (cast_to_oop(::badOopVal)) 1043 #define badHeapWord (::badHeapWordVal) 1044 #define badJNIHandle (cast_to_oop(::badJNIHandleVal)) 1045 1046 // Default TaskQueue size is 16K (32-bit) or 128K (64-bit) 1047 #define TASKQUEUE_SIZE (NOT_LP64(1<<14) LP64_ONLY(1<<17)) 1048 1049 //---------------------------------------------------------------------------------------------------- 1050 // Utility functions for bitfield manipulations 1051 1052 const intptr_t AllBits = ~0; // all bits set in a word 1053 const intptr_t NoBits = 0; // no bits set in a word 1054 const jlong NoLongBits = 0; // no bits set in a long 1055 const intptr_t OneBit = 1; // only right_most bit set in a word 1056 1057 // get a word with the n.th or the right-most or left-most n bits set 1058 // (note: #define used only so that they can be used in enum constant definitions) 1059 #define nth_bit(n) (((n) >= BitsPerWord) ? 0 : (OneBit << (n))) 1060 #define right_n_bits(n) (nth_bit(n) - 1) 1061 #define left_n_bits(n) (right_n_bits(n) << (((n) >= BitsPerWord) ? 0 : (BitsPerWord - (n)))) 1062 1063 // bit-operations using a mask m 1064 inline void set_bits (intptr_t& x, intptr_t m) { x |= m; } 1065 inline void clear_bits (intptr_t& x, intptr_t m) { x &= ~m; } 1066 inline intptr_t mask_bits (intptr_t x, intptr_t m) { return x & m; } 1067 inline jlong mask_long_bits (jlong x, jlong m) { return x & m; } 1068 inline bool mask_bits_are_true (intptr_t flags, intptr_t mask) { return (flags & mask) == mask; } 1069 1070 // bit-operations using the n.th bit 1071 inline void set_nth_bit(intptr_t& x, int n) { set_bits (x, nth_bit(n)); } 1072 inline void clear_nth_bit(intptr_t& x, int n) { clear_bits(x, nth_bit(n)); } 1073 inline bool is_set_nth_bit(intptr_t x, int n) { return mask_bits (x, nth_bit(n)) != NoBits; } 1074 1075 // returns the bitfield of x starting at start_bit_no with length field_length (no sign-extension!) 1076 inline intptr_t bitfield(intptr_t x, int start_bit_no, int field_length) { 1077 return mask_bits(x >> start_bit_no, right_n_bits(field_length)); 1078 } 1079 1080 1081 //---------------------------------------------------------------------------------------------------- 1082 // Utility functions for integers 1083 1084 // Avoid use of global min/max macros which may cause unwanted double 1085 // evaluation of arguments. 1086 #ifdef max 1087 #undef max 1088 #endif 1089 1090 #ifdef min 1091 #undef min 1092 #endif 1093 1094 // The following defines serve the purpose of preventing use of accidentally 1095 // included min max macros from compiling, while continuing to allow innocent 1096 // min and max identifiers in the code to compile as intended. 1097 #define max max 1098 #define min min 1099 1100 // It is necessary to use templates here. Having normal overloaded 1101 // functions does not work because it is necessary to provide both 32- 1102 // and 64-bit overloaded functions, which does not work, and having 1103 // explicitly-typed versions of these routines (i.e., MAX2I, MAX2L) 1104 // will be even more error-prone than macros. 1105 template<class T> inline T MAX2(T a, T b) { return (a > b) ? a : b; } 1106 template<class T> inline T MIN2(T a, T b) { return (a < b) ? a : b; } 1107 template<class T> inline T MAX3(T a, T b, T c) { return MAX2(MAX2(a, b), c); } 1108 template<class T> inline T MIN3(T a, T b, T c) { return MIN2(MIN2(a, b), c); } 1109 template<class T> inline T MAX4(T a, T b, T c, T d) { return MAX2(MAX3(a, b, c), d); } 1110 template<class T> inline T MIN4(T a, T b, T c, T d) { return MIN2(MIN3(a, b, c), d); } 1111 1112 template<class T> inline T ABS(T x) { return (x > 0) ? x : -x; } 1113 1114 // true if x is a power of 2, false otherwise 1115 inline bool is_power_of_2(intptr_t x) { 1116 return ((x != NoBits) && (mask_bits(x, x - 1) == NoBits)); 1117 } 1118 1119 // long version of is_power_of_2 1120 inline bool is_power_of_2_long(jlong x) { 1121 return ((x != NoLongBits) && (mask_long_bits(x, x - 1) == NoLongBits)); 1122 } 1123 1124 // Returns largest i such that 2^i <= x. 1125 // If x < 0, the function returns 31 on a 32-bit machine and 63 on a 64-bit machine. 1126 // If x == 0, the function returns -1. 1127 inline int log2_intptr(intptr_t x) { 1128 int i = -1; 1129 uintptr_t p = 1; 1130 while (p != 0 && p <= (uintptr_t)x) { 1131 // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x) 1132 i++; p *= 2; 1133 } 1134 // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1)) 1135 // If p = 0, overflow has occurred and i = 31 or i = 63 (depending on the machine word size). 1136 return i; 1137 } 1138 1139 //* largest i such that 2^i <= x 1140 // A negative value of 'x' will return '63' 1141 inline int log2_long(jlong x) { 1142 int i = -1; 1143 julong p = 1; 1144 while (p != 0 && p <= (julong)x) { 1145 // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x) 1146 i++; p *= 2; 1147 } 1148 // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1)) 1149 // (if p = 0 then overflow occurred and i = 63) 1150 return i; 1151 } 1152 1153 //* the argument must be exactly a power of 2 1154 inline int exact_log2(intptr_t x) { 1155 #ifdef ASSERT 1156 if (!is_power_of_2(x)) basic_fatal("x must be a power of 2"); 1157 #endif 1158 return log2_intptr(x); 1159 } 1160 1161 //* the argument must be exactly a power of 2 1162 inline int exact_log2_long(jlong x) { 1163 #ifdef ASSERT 1164 if (!is_power_of_2_long(x)) basic_fatal("x must be a power of 2"); 1165 #endif 1166 return log2_long(x); 1167 } 1168 1169 1170 // returns integer round-up to the nearest multiple of s (s must be a power of two) 1171 inline intptr_t round_to(intptr_t x, uintx s) { 1172 #ifdef ASSERT 1173 if (!is_power_of_2(s)) basic_fatal("s must be a power of 2"); 1174 #endif 1175 const uintx m = s - 1; 1176 return mask_bits(x + m, ~m); 1177 } 1178 1179 // returns integer round-down to the nearest multiple of s (s must be a power of two) 1180 inline intptr_t round_down(intptr_t x, uintx s) { 1181 #ifdef ASSERT 1182 if (!is_power_of_2(s)) basic_fatal("s must be a power of 2"); 1183 #endif 1184 const uintx m = s - 1; 1185 return mask_bits(x, ~m); 1186 } 1187 1188 1189 inline bool is_odd (intx x) { return x & 1; } 1190 inline bool is_even(intx x) { return !is_odd(x); } 1191 1192 // "to" should be greater than "from." 1193 inline intx byte_size(void* from, void* to) { 1194 return (address)to - (address)from; 1195 } 1196 1197 //---------------------------------------------------------------------------------------------------- 1198 // Avoid non-portable casts with these routines (DEPRECATED) 1199 1200 // NOTE: USE Bytes class INSTEAD WHERE POSSIBLE 1201 // Bytes is optimized machine-specifically and may be much faster then the portable routines below. 1202 1203 // Given sequence of four bytes, build into a 32-bit word 1204 // following the conventions used in class files. 1205 // On the 386, this could be realized with a simple address cast. 1206 // 1207 1208 // This routine takes eight bytes: 1209 inline u8 build_u8_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) { 1210 return (( u8(c1) << 56 ) & ( u8(0xff) << 56 )) 1211 | (( u8(c2) << 48 ) & ( u8(0xff) << 48 )) 1212 | (( u8(c3) << 40 ) & ( u8(0xff) << 40 )) 1213 | (( u8(c4) << 32 ) & ( u8(0xff) << 32 )) 1214 | (( u8(c5) << 24 ) & ( u8(0xff) << 24 )) 1215 | (( u8(c6) << 16 ) & ( u8(0xff) << 16 )) 1216 | (( u8(c7) << 8 ) & ( u8(0xff) << 8 )) 1217 | (( u8(c8) << 0 ) & ( u8(0xff) << 0 )); 1218 } 1219 1220 // This routine takes four bytes: 1221 inline u4 build_u4_from( u1 c1, u1 c2, u1 c3, u1 c4 ) { 1222 return (( u4(c1) << 24 ) & 0xff000000) 1223 | (( u4(c2) << 16 ) & 0x00ff0000) 1224 | (( u4(c3) << 8 ) & 0x0000ff00) 1225 | (( u4(c4) << 0 ) & 0x000000ff); 1226 } 1227 1228 // And this one works if the four bytes are contiguous in memory: 1229 inline u4 build_u4_from( u1* p ) { 1230 return build_u4_from( p[0], p[1], p[2], p[3] ); 1231 } 1232 1233 // Ditto for two-byte ints: 1234 inline u2 build_u2_from( u1 c1, u1 c2 ) { 1235 return u2((( u2(c1) << 8 ) & 0xff00) 1236 | (( u2(c2) << 0 ) & 0x00ff)); 1237 } 1238 1239 // And this one works if the two bytes are contiguous in memory: 1240 inline u2 build_u2_from( u1* p ) { 1241 return build_u2_from( p[0], p[1] ); 1242 } 1243 1244 // Ditto for floats: 1245 inline jfloat build_float_from( u1 c1, u1 c2, u1 c3, u1 c4 ) { 1246 u4 u = build_u4_from( c1, c2, c3, c4 ); 1247 return *(jfloat*)&u; 1248 } 1249 1250 inline jfloat build_float_from( u1* p ) { 1251 u4 u = build_u4_from( p ); 1252 return *(jfloat*)&u; 1253 } 1254 1255 1256 // now (64-bit) longs 1257 1258 inline jlong build_long_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) { 1259 return (( jlong(c1) << 56 ) & ( jlong(0xff) << 56 )) 1260 | (( jlong(c2) << 48 ) & ( jlong(0xff) << 48 )) 1261 | (( jlong(c3) << 40 ) & ( jlong(0xff) << 40 )) 1262 | (( jlong(c4) << 32 ) & ( jlong(0xff) << 32 )) 1263 | (( jlong(c5) << 24 ) & ( jlong(0xff) << 24 )) 1264 | (( jlong(c6) << 16 ) & ( jlong(0xff) << 16 )) 1265 | (( jlong(c7) << 8 ) & ( jlong(0xff) << 8 )) 1266 | (( jlong(c8) << 0 ) & ( jlong(0xff) << 0 )); 1267 } 1268 1269 inline jlong build_long_from( u1* p ) { 1270 return build_long_from( p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7] ); 1271 } 1272 1273 1274 // Doubles, too! 1275 inline jdouble build_double_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) { 1276 jlong u = build_long_from( c1, c2, c3, c4, c5, c6, c7, c8 ); 1277 return *(jdouble*)&u; 1278 } 1279 1280 inline jdouble build_double_from( u1* p ) { 1281 jlong u = build_long_from( p ); 1282 return *(jdouble*)&u; 1283 } 1284 1285 1286 // Portable routines to go the other way: 1287 1288 inline void explode_short_to( u2 x, u1& c1, u1& c2 ) { 1289 c1 = u1(x >> 8); 1290 c2 = u1(x); 1291 } 1292 1293 inline void explode_short_to( u2 x, u1* p ) { 1294 explode_short_to( x, p[0], p[1]); 1295 } 1296 1297 inline void explode_int_to( u4 x, u1& c1, u1& c2, u1& c3, u1& c4 ) { 1298 c1 = u1(x >> 24); 1299 c2 = u1(x >> 16); 1300 c3 = u1(x >> 8); 1301 c4 = u1(x); 1302 } 1303 1304 inline void explode_int_to( u4 x, u1* p ) { 1305 explode_int_to( x, p[0], p[1], p[2], p[3]); 1306 } 1307 1308 1309 // Pack and extract shorts to/from ints: 1310 1311 inline int extract_low_short_from_int(jint x) { 1312 return x & 0xffff; 1313 } 1314 1315 inline int extract_high_short_from_int(jint x) { 1316 return (x >> 16) & 0xffff; 1317 } 1318 1319 inline int build_int_from_shorts( jushort low, jushort high ) { 1320 return ((int)((unsigned int)high << 16) | (unsigned int)low); 1321 } 1322 1323 // Convert pointer to intptr_t, for use in printing pointers. 1324 inline intptr_t p2i(const void * p) { 1325 return (intptr_t) p; 1326 } 1327 1328 // swap a & b 1329 template<class T> static void swap(T& a, T& b) { 1330 T tmp = a; 1331 a = b; 1332 b = tmp; 1333 } 1334 1335 // Printf-style formatters for fixed- and variable-width types as pointers and 1336 // integers. These are derived from the definitions in inttypes.h. If the platform 1337 // doesn't provide appropriate definitions, they should be provided in 1338 // the compiler-specific definitions file (e.g., globalDefinitions_gcc.hpp) 1339 1340 #define BOOL_TO_STR(_b_) ((_b_) ? "true" : "false") 1341 1342 // Format 32-bit quantities. 1343 #define INT32_FORMAT "%" PRId32 1344 #define UINT32_FORMAT "%" PRIu32 1345 #define INT32_FORMAT_W(width) "%" #width PRId32 1346 #define UINT32_FORMAT_W(width) "%" #width PRIu32 1347 1348 #define PTR32_FORMAT "0x%08" PRIx32 1349 #define PTR32_FORMAT_W(width) "0x%" #width PRIx32 1350 1351 // Format 64-bit quantities. 1352 #define INT64_FORMAT "%" PRId64 1353 #define UINT64_FORMAT "%" PRIu64 1354 #define UINT64_FORMAT_X "%" PRIx64 1355 #define INT64_FORMAT_W(width) "%" #width PRId64 1356 #define UINT64_FORMAT_W(width) "%" #width PRIu64 1357 1358 #define PTR64_FORMAT "0x%016" PRIx64 1359 1360 // Format jlong, if necessary 1361 #ifndef JLONG_FORMAT 1362 #define JLONG_FORMAT INT64_FORMAT 1363 #endif 1364 #ifndef JULONG_FORMAT 1365 #define JULONG_FORMAT UINT64_FORMAT 1366 #endif 1367 #ifndef JULONG_FORMAT_X 1368 #define JULONG_FORMAT_X UINT64_FORMAT_X 1369 #endif 1370 1371 // Format pointers which change size between 32- and 64-bit. 1372 #ifdef _LP64 1373 #define INTPTR_FORMAT "0x%016" PRIxPTR 1374 #define PTR_FORMAT "0x%016" PRIxPTR 1375 #else // !_LP64 1376 #define INTPTR_FORMAT "0x%08" PRIxPTR 1377 #define PTR_FORMAT "0x%08" PRIxPTR 1378 #endif // _LP64 1379 1380 #define INTPTR_FORMAT_W(width) "%" #width PRIxPTR 1381 1382 #define SSIZE_FORMAT "%" PRIdPTR 1383 #define SIZE_FORMAT "%" PRIuPTR 1384 #define SIZE_FORMAT_HEX "0x%" PRIxPTR 1385 #define SSIZE_FORMAT_W(width) "%" #width PRIdPTR 1386 #define SIZE_FORMAT_W(width) "%" #width PRIuPTR 1387 #define SIZE_FORMAT_HEX_W(width) "0x%" #width PRIxPTR 1388 1389 #define INTX_FORMAT "%" PRIdPTR 1390 #define UINTX_FORMAT "%" PRIuPTR 1391 #define INTX_FORMAT_W(width) "%" #width PRIdPTR 1392 #define UINTX_FORMAT_W(width) "%" #width PRIuPTR 1393 1394 1395 #define ARRAY_SIZE(array) (sizeof(array)/sizeof((array)[0])) 1396 1397 //---------------------------------------------------------------------------------------------------- 1398 // Sum and product which can never overflow: they wrap, just like the 1399 // Java operations. Note that we don't intend these to be used for 1400 // general-purpose arithmetic: their purpose is to emulate Java 1401 // operations. 1402 1403 // The goal of this code to avoid undefined or implementation-defined 1404 // behavior. The use of an lvalue to reference cast is explicitly 1405 // permitted by Lvalues and rvalues [basic.lval]. [Section 3.10 Para 1406 // 15 in C++03] 1407 #define JAVA_INTEGER_OP(OP, NAME, TYPE, UNSIGNED_TYPE) \ 1408 inline TYPE NAME (TYPE in1, TYPE in2) { \ 1409 UNSIGNED_TYPE ures = static_cast<UNSIGNED_TYPE>(in1); \ 1410 ures OP ## = static_cast<UNSIGNED_TYPE>(in2); \ 1411 return reinterpret_cast<TYPE&>(ures); \ 1412 } 1413 1414 JAVA_INTEGER_OP(+, java_add, jint, juint) 1415 JAVA_INTEGER_OP(-, java_subtract, jint, juint) 1416 JAVA_INTEGER_OP(*, java_multiply, jint, juint) 1417 JAVA_INTEGER_OP(+, java_add, jlong, julong) 1418 JAVA_INTEGER_OP(-, java_subtract, jlong, julong) 1419 JAVA_INTEGER_OP(*, java_multiply, jlong, julong) 1420 1421 #undef JAVA_INTEGER_OP 1422 1423 // Dereference vptr 1424 // All C++ compilers that we know of have the vtbl pointer in the first 1425 // word. If there are exceptions, this function needs to be made compiler 1426 // specific. 1427 static inline void* dereference_vptr(const void* addr) { 1428 return *(void**)addr; 1429 } 1430 1431 #endif // SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP --- EOF ---