1 /*
   2  * Copyright (c) 1999, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "code/vtableStubs.hpp"
  31 #include "compiler/compileBroker.hpp"
  32 #include "compiler/disassembler.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "jvm_linux.h"
  35 #include "memory/allocation.inline.hpp"
  36 #include "memory/filemap.hpp"
  37 #include "mutex_linux.inline.hpp"
  38 #include "oops/oop.inline.hpp"
  39 #include "os_linux.inline.hpp"
  40 #include "os_share_linux.hpp"
  41 #include "prims/jniFastGetField.hpp"
  42 #include "prims/jvm.h"
  43 #include "prims/jvm_misc.hpp"
  44 #include "runtime/arguments.hpp"
  45 #include "runtime/atomic.inline.hpp"
  46 #include "runtime/extendedPC.hpp"
  47 #include "runtime/globals.hpp"
  48 #include "runtime/interfaceSupport.hpp"
  49 #include "runtime/init.hpp"
  50 #include "runtime/java.hpp"
  51 #include "runtime/javaCalls.hpp"
  52 #include "runtime/mutexLocker.hpp"
  53 #include "runtime/objectMonitor.hpp"
  54 #include "runtime/orderAccess.inline.hpp"
  55 #include "runtime/osThread.hpp"
  56 #include "runtime/perfMemory.hpp"
  57 #include "runtime/sharedRuntime.hpp"
  58 #include "runtime/statSampler.hpp"
  59 #include "runtime/stubRoutines.hpp"
  60 #include "runtime/thread.inline.hpp"
  61 #include "runtime/threadCritical.hpp"
  62 #include "runtime/timer.hpp"
  63 #include "services/attachListener.hpp"
  64 #include "services/memTracker.hpp"
  65 #include "services/runtimeService.hpp"
  66 #include "utilities/decoder.hpp"
  67 #include "utilities/defaultStream.hpp"
  68 #include "utilities/events.hpp"
  69 #include "utilities/elfFile.hpp"
  70 #include "utilities/growableArray.hpp"
  71 #include "utilities/macros.hpp"
  72 #include "utilities/semaphore.hpp"
  73 #include "utilities/vmError.hpp"
  74 
  75 // put OS-includes here
  76 # include <sys/types.h>
  77 # include <sys/mman.h>
  78 # include <sys/stat.h>
  79 # include <sys/select.h>
  80 # include <pthread.h>
  81 # include <signal.h>
  82 # include <errno.h>
  83 # include <dlfcn.h>
  84 # include <stdio.h>
  85 # include <unistd.h>
  86 # include <sys/resource.h>
  87 # include <pthread.h>
  88 # include <sys/stat.h>
  89 # include <sys/time.h>
  90 # include <sys/times.h>
  91 # include <sys/utsname.h>
  92 # include <sys/socket.h>
  93 # include <sys/wait.h>
  94 # include <pwd.h>
  95 # include <poll.h>
  96 # include <semaphore.h>
  97 # include <fcntl.h>
  98 # include <string.h>
  99 # include <syscall.h>
 100 # include <sys/sysinfo.h>
 101 # include <gnu/libc-version.h>
 102 # include <sys/ipc.h>
 103 # include <sys/shm.h>
 104 # include <link.h>
 105 # include <stdint.h>
 106 # include <inttypes.h>
 107 # include <sys/ioctl.h>
 108 
 109 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
 110 
 111 // if RUSAGE_THREAD for getrusage() has not been defined, do it here. The code calling
 112 // getrusage() is prepared to handle the associated failure.
 113 #ifndef RUSAGE_THREAD
 114   #define RUSAGE_THREAD   (1)               /* only the calling thread */
 115 #endif
 116 
 117 #define MAX_PATH    (2 * K)
 118 
 119 #define MAX_SECS 100000000
 120 
 121 // for timer info max values which include all bits
 122 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
 123 
 124 #define LARGEPAGES_BIT (1 << 6)
 125 ////////////////////////////////////////////////////////////////////////////////
 126 // global variables
 127 julong os::Linux::_physical_memory = 0;
 128 
 129 address   os::Linux::_initial_thread_stack_bottom = NULL;
 130 uintptr_t os::Linux::_initial_thread_stack_size   = 0;
 131 
 132 int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
 133 int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
 134 int (*os::Linux::_pthread_setname_np)(pthread_t, const char*) = NULL;
 135 Mutex* os::Linux::_createThread_lock = NULL;
 136 pthread_t os::Linux::_main_thread;
 137 int os::Linux::_page_size = -1;
 138 const int os::Linux::_vm_default_page_size = (8 * K);
 139 bool os::Linux::_is_floating_stack = false;
 140 bool os::Linux::_is_NPTL = false;
 141 bool os::Linux::_supports_fast_thread_cpu_time = false;
 142 const char * os::Linux::_glibc_version = NULL;
 143 const char * os::Linux::_libpthread_version = NULL;
 144 pthread_condattr_t os::Linux::_condattr[1];
 145 
 146 static jlong initial_time_count=0;
 147 
 148 static int clock_tics_per_sec = 100;
 149 
 150 // For diagnostics to print a message once. see run_periodic_checks
 151 static sigset_t check_signal_done;
 152 static bool check_signals = true;
 153 
 154 static pid_t _initial_pid = 0;
 155 
 156 // Signal number used to suspend/resume a thread
 157 
 158 // do not use any signal number less than SIGSEGV, see 4355769
 159 static int SR_signum = SIGUSR2;
 160 sigset_t SR_sigset;
 161 
 162 // Declarations
 163 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
 164 
 165 // utility functions
 166 
 167 static int SR_initialize();
 168 
 169 julong os::available_memory() {
 170   return Linux::available_memory();
 171 }
 172 
 173 julong os::Linux::available_memory() {
 174   // values in struct sysinfo are "unsigned long"
 175   struct sysinfo si;
 176   sysinfo(&si);
 177 
 178   return (julong)si.freeram * si.mem_unit;
 179 }
 180 
 181 julong os::physical_memory() {
 182   return Linux::physical_memory();
 183 }
 184 
 185 // Return true if user is running as root.
 186 
 187 bool os::have_special_privileges() {
 188   static bool init = false;
 189   static bool privileges = false;
 190   if (!init) {
 191     privileges = (getuid() != geteuid()) || (getgid() != getegid());
 192     init = true;
 193   }
 194   return privileges;
 195 }
 196 
 197 
 198 #ifndef SYS_gettid
 199 // i386: 224, ia64: 1105, amd64: 186, sparc 143
 200   #ifdef __ia64__
 201     #define SYS_gettid 1105
 202   #else
 203     #ifdef __i386__
 204       #define SYS_gettid 224
 205     #else
 206       #ifdef __amd64__
 207         #define SYS_gettid 186
 208       #else
 209         #ifdef __sparc__
 210           #define SYS_gettid 143
 211         #else
 212           #error define gettid for the arch
 213         #endif
 214       #endif
 215     #endif
 216   #endif
 217 #endif
 218 
 219 // Cpu architecture string
 220 static char cpu_arch[] = HOTSPOT_LIB_ARCH;
 221 
 222 
 223 // pid_t gettid()
 224 //
 225 // Returns the kernel thread id of the currently running thread. Kernel
 226 // thread id is used to access /proc.
 227 //
 228 // (Note that getpid() on LinuxThreads returns kernel thread id too; but
 229 // on NPTL, it returns the same pid for all threads, as required by POSIX.)
 230 //
 231 pid_t os::Linux::gettid() {
 232   int rslt = syscall(SYS_gettid);
 233   if (rslt == -1) {
 234     // old kernel, no NPTL support
 235     return getpid();
 236   } else {
 237     return (pid_t)rslt;
 238   }
 239 }
 240 
 241 // Most versions of linux have a bug where the number of processors are
 242 // determined by looking at the /proc file system.  In a chroot environment,
 243 // the system call returns 1.  This causes the VM to act as if it is
 244 // a single processor and elide locking (see is_MP() call).
 245 static bool unsafe_chroot_detected = false;
 246 static const char *unstable_chroot_error = "/proc file system not found.\n"
 247                      "Java may be unstable running multithreaded in a chroot "
 248                      "environment on Linux when /proc filesystem is not mounted.";
 249 
 250 void os::Linux::initialize_system_info() {
 251   set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
 252   if (processor_count() == 1) {
 253     pid_t pid = os::Linux::gettid();
 254     char fname[32];
 255     jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
 256     FILE *fp = fopen(fname, "r");
 257     if (fp == NULL) {
 258       unsafe_chroot_detected = true;
 259     } else {
 260       fclose(fp);
 261     }
 262   }
 263   _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
 264   assert(processor_count() > 0, "linux error");
 265 }
 266 
 267 void os::init_system_properties_values() {
 268   // The next steps are taken in the product version:
 269   //
 270   // Obtain the JAVA_HOME value from the location of libjvm.so.
 271   // This library should be located at:
 272   // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
 273   //
 274   // If "/jre/lib/" appears at the right place in the path, then we
 275   // assume libjvm.so is installed in a JDK and we use this path.
 276   //
 277   // Otherwise exit with message: "Could not create the Java virtual machine."
 278   //
 279   // The following extra steps are taken in the debugging version:
 280   //
 281   // If "/jre/lib/" does NOT appear at the right place in the path
 282   // instead of exit check for $JAVA_HOME environment variable.
 283   //
 284   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
 285   // then we append a fake suffix "hotspot/libjvm.so" to this path so
 286   // it looks like libjvm.so is installed there
 287   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
 288   //
 289   // Otherwise exit.
 290   //
 291   // Important note: if the location of libjvm.so changes this
 292   // code needs to be changed accordingly.
 293 
 294   // See ld(1):
 295   //      The linker uses the following search paths to locate required
 296   //      shared libraries:
 297   //        1: ...
 298   //        ...
 299   //        7: The default directories, normally /lib and /usr/lib.
 300 #if defined(AMD64) || defined(_LP64) && (defined(SPARC) || defined(PPC) || defined(S390))
 301   #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
 302 #else
 303   #define DEFAULT_LIBPATH "/lib:/usr/lib"
 304 #endif
 305 
 306 // Base path of extensions installed on the system.
 307 #define SYS_EXT_DIR     "/usr/java/packages"
 308 #define EXTENSIONS_DIR  "/lib/ext"
 309 
 310   // Buffer that fits several sprintfs.
 311   // Note that the space for the colon and the trailing null are provided
 312   // by the nulls included by the sizeof operator.
 313   const size_t bufsize =
 314     MAX2((size_t)MAXPATHLEN,  // For dll_dir & friends.
 315          (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR)); // extensions dir
 316   char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
 317 
 318   // sysclasspath, java_home, dll_dir
 319   {
 320     char *pslash;
 321     os::jvm_path(buf, bufsize);
 322 
 323     // Found the full path to libjvm.so.
 324     // Now cut the path to <java_home>/jre if we can.
 325     pslash = strrchr(buf, '/');
 326     if (pslash != NULL) {
 327       *pslash = '\0';            // Get rid of /libjvm.so.
 328     }
 329     pslash = strrchr(buf, '/');
 330     if (pslash != NULL) {
 331       *pslash = '\0';            // Get rid of /{client|server|hotspot}.
 332     }
 333     Arguments::set_dll_dir(buf);
 334 
 335     if (pslash != NULL) {
 336       pslash = strrchr(buf, '/');
 337       if (pslash != NULL) {
 338         *pslash = '\0';          // Get rid of /<arch>.
 339         pslash = strrchr(buf, '/');
 340         if (pslash != NULL) {
 341           *pslash = '\0';        // Get rid of /lib.
 342         }
 343       }
 344     }
 345     Arguments::set_java_home(buf);
 346     set_boot_path('/', ':');
 347   }
 348 
 349   // Where to look for native libraries.
 350   //
 351   // Note: Due to a legacy implementation, most of the library path
 352   // is set in the launcher. This was to accomodate linking restrictions
 353   // on legacy Linux implementations (which are no longer supported).
 354   // Eventually, all the library path setting will be done here.
 355   //
 356   // However, to prevent the proliferation of improperly built native
 357   // libraries, the new path component /usr/java/packages is added here.
 358   // Eventually, all the library path setting will be done here.
 359   {
 360     // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
 361     // should always exist (until the legacy problem cited above is
 362     // addressed).
 363     const char *v = ::getenv("LD_LIBRARY_PATH");
 364     const char *v_colon = ":";
 365     if (v == NULL) { v = ""; v_colon = ""; }
 366     // That's +1 for the colon and +1 for the trailing '\0'.
 367     char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
 368                                                      strlen(v) + 1 +
 369                                                      sizeof(SYS_EXT_DIR) + sizeof("/lib/") + strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH) + 1,
 370                                                      mtInternal);
 371     sprintf(ld_library_path, "%s%s" SYS_EXT_DIR "/lib/%s:" DEFAULT_LIBPATH, v, v_colon, cpu_arch);
 372     Arguments::set_library_path(ld_library_path);
 373     FREE_C_HEAP_ARRAY(char, ld_library_path);
 374   }
 375 
 376   // Extensions directories.
 377   sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
 378   Arguments::set_ext_dirs(buf);
 379 
 380   FREE_C_HEAP_ARRAY(char, buf);
 381 
 382 #undef DEFAULT_LIBPATH
 383 #undef SYS_EXT_DIR
 384 #undef EXTENSIONS_DIR
 385 }
 386 
 387 ////////////////////////////////////////////////////////////////////////////////
 388 // breakpoint support
 389 
 390 void os::breakpoint() {
 391   BREAKPOINT;
 392 }
 393 
 394 extern "C" void breakpoint() {
 395   // use debugger to set breakpoint here
 396 }
 397 
 398 ////////////////////////////////////////////////////////////////////////////////
 399 // signal support
 400 
 401 debug_only(static bool signal_sets_initialized = false);
 402 static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
 403 
 404 bool os::Linux::is_sig_ignored(int sig) {
 405   struct sigaction oact;
 406   sigaction(sig, (struct sigaction*)NULL, &oact);
 407   void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
 408                                  : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
 409   if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN)) {
 410     return true;
 411   } else {
 412     return false;
 413   }
 414 }
 415 
 416 void os::Linux::signal_sets_init() {
 417   // Should also have an assertion stating we are still single-threaded.
 418   assert(!signal_sets_initialized, "Already initialized");
 419   // Fill in signals that are necessarily unblocked for all threads in
 420   // the VM. Currently, we unblock the following signals:
 421   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
 422   //                         by -Xrs (=ReduceSignalUsage));
 423   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
 424   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
 425   // the dispositions or masks wrt these signals.
 426   // Programs embedding the VM that want to use the above signals for their
 427   // own purposes must, at this time, use the "-Xrs" option to prevent
 428   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
 429   // (See bug 4345157, and other related bugs).
 430   // In reality, though, unblocking these signals is really a nop, since
 431   // these signals are not blocked by default.
 432   sigemptyset(&unblocked_sigs);
 433   sigemptyset(&allowdebug_blocked_sigs);
 434   sigaddset(&unblocked_sigs, SIGILL);
 435   sigaddset(&unblocked_sigs, SIGSEGV);
 436   sigaddset(&unblocked_sigs, SIGBUS);
 437   sigaddset(&unblocked_sigs, SIGFPE);
 438 #if defined(PPC64)
 439   sigaddset(&unblocked_sigs, SIGTRAP);
 440 #endif
 441   sigaddset(&unblocked_sigs, SR_signum);
 442 
 443   if (!ReduceSignalUsage) {
 444     if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
 445       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
 446       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
 447     }
 448     if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
 449       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
 450       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
 451     }
 452     if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
 453       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
 454       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
 455     }
 456   }
 457   // Fill in signals that are blocked by all but the VM thread.
 458   sigemptyset(&vm_sigs);
 459   if (!ReduceSignalUsage) {
 460     sigaddset(&vm_sigs, BREAK_SIGNAL);
 461   }
 462   debug_only(signal_sets_initialized = true);
 463 
 464 }
 465 
 466 // These are signals that are unblocked while a thread is running Java.
 467 // (For some reason, they get blocked by default.)
 468 sigset_t* os::Linux::unblocked_signals() {
 469   assert(signal_sets_initialized, "Not initialized");
 470   return &unblocked_sigs;
 471 }
 472 
 473 // These are the signals that are blocked while a (non-VM) thread is
 474 // running Java. Only the VM thread handles these signals.
 475 sigset_t* os::Linux::vm_signals() {
 476   assert(signal_sets_initialized, "Not initialized");
 477   return &vm_sigs;
 478 }
 479 
 480 // These are signals that are blocked during cond_wait to allow debugger in
 481 sigset_t* os::Linux::allowdebug_blocked_signals() {
 482   assert(signal_sets_initialized, "Not initialized");
 483   return &allowdebug_blocked_sigs;
 484 }
 485 
 486 void os::Linux::hotspot_sigmask(Thread* thread) {
 487 
 488   //Save caller's signal mask before setting VM signal mask
 489   sigset_t caller_sigmask;
 490   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
 491 
 492   OSThread* osthread = thread->osthread();
 493   osthread->set_caller_sigmask(caller_sigmask);
 494 
 495   pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
 496 
 497   if (!ReduceSignalUsage) {
 498     if (thread->is_VM_thread()) {
 499       // Only the VM thread handles BREAK_SIGNAL ...
 500       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
 501     } else {
 502       // ... all other threads block BREAK_SIGNAL
 503       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
 504     }
 505   }
 506 }
 507 
 508 //////////////////////////////////////////////////////////////////////////////
 509 // detecting pthread library
 510 
 511 void os::Linux::libpthread_init() {
 512   // Save glibc and pthread version strings. Note that _CS_GNU_LIBC_VERSION
 513   // and _CS_GNU_LIBPTHREAD_VERSION are supported in glibc >= 2.3.2. Use a
 514   // generic name for earlier versions.
 515   // Define macros here so we can build HotSpot on old systems.
 516 #ifndef _CS_GNU_LIBC_VERSION
 517   #define _CS_GNU_LIBC_VERSION 2
 518 #endif
 519 #ifndef _CS_GNU_LIBPTHREAD_VERSION
 520   #define _CS_GNU_LIBPTHREAD_VERSION 3
 521 #endif
 522 
 523   size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
 524   if (n > 0) {
 525     char *str = (char *)malloc(n, mtInternal);
 526     confstr(_CS_GNU_LIBC_VERSION, str, n);
 527     os::Linux::set_glibc_version(str);
 528   } else {
 529     // _CS_GNU_LIBC_VERSION is not supported, try gnu_get_libc_version()
 530     static char _gnu_libc_version[32];
 531     jio_snprintf(_gnu_libc_version, sizeof(_gnu_libc_version),
 532                  "glibc %s %s", gnu_get_libc_version(), gnu_get_libc_release());
 533     os::Linux::set_glibc_version(_gnu_libc_version);
 534   }
 535 
 536   n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
 537   if (n > 0) {
 538     char *str = (char *)malloc(n, mtInternal);
 539     confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
 540     // Vanilla RH-9 (glibc 2.3.2) has a bug that confstr() always tells
 541     // us "NPTL-0.29" even we are running with LinuxThreads. Check if this
 542     // is the case. LinuxThreads has a hard limit on max number of threads.
 543     // So sysconf(_SC_THREAD_THREADS_MAX) will return a positive value.
 544     // On the other hand, NPTL does not have such a limit, sysconf()
 545     // will return -1 and errno is not changed. Check if it is really NPTL.
 546     if (strcmp(os::Linux::glibc_version(), "glibc 2.3.2") == 0 &&
 547         strstr(str, "NPTL") &&
 548         sysconf(_SC_THREAD_THREADS_MAX) > 0) {
 549       free(str);
 550       os::Linux::set_libpthread_version("linuxthreads");
 551     } else {
 552       os::Linux::set_libpthread_version(str);
 553     }
 554   } else {
 555     // glibc before 2.3.2 only has LinuxThreads.
 556     os::Linux::set_libpthread_version("linuxthreads");
 557   }
 558 
 559   if (strstr(libpthread_version(), "NPTL")) {
 560     os::Linux::set_is_NPTL();
 561   } else {
 562     os::Linux::set_is_LinuxThreads();
 563   }
 564 
 565   // LinuxThreads have two flavors: floating-stack mode, which allows variable
 566   // stack size; and fixed-stack mode. NPTL is always floating-stack.
 567   if (os::Linux::is_NPTL() || os::Linux::supports_variable_stack_size()) {
 568     os::Linux::set_is_floating_stack();
 569   }
 570 }
 571 
 572 /////////////////////////////////////////////////////////////////////////////
 573 // thread stack
 574 
 575 // Force Linux kernel to expand current thread stack. If "bottom" is close
 576 // to the stack guard, caller should block all signals.
 577 //
 578 // MAP_GROWSDOWN:
 579 //   A special mmap() flag that is used to implement thread stacks. It tells
 580 //   kernel that the memory region should extend downwards when needed. This
 581 //   allows early versions of LinuxThreads to only mmap the first few pages
 582 //   when creating a new thread. Linux kernel will automatically expand thread
 583 //   stack as needed (on page faults).
 584 //
 585 //   However, because the memory region of a MAP_GROWSDOWN stack can grow on
 586 //   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
 587 //   region, it's hard to tell if the fault is due to a legitimate stack
 588 //   access or because of reading/writing non-exist memory (e.g. buffer
 589 //   overrun). As a rule, if the fault happens below current stack pointer,
 590 //   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
 591 //   application (see Linux kernel fault.c).
 592 //
 593 //   This Linux feature can cause SIGSEGV when VM bangs thread stack for
 594 //   stack overflow detection.
 595 //
 596 //   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
 597 //   not use this flag. However, the stack of initial thread is not created
 598 //   by pthread, it is still MAP_GROWSDOWN. Also it's possible (though
 599 //   unlikely) that user code can create a thread with MAP_GROWSDOWN stack
 600 //   and then attach the thread to JVM.
 601 //
 602 // To get around the problem and allow stack banging on Linux, we need to
 603 // manually expand thread stack after receiving the SIGSEGV.
 604 //
 605 // There are two ways to expand thread stack to address "bottom", we used
 606 // both of them in JVM before 1.5:
 607 //   1. adjust stack pointer first so that it is below "bottom", and then
 608 //      touch "bottom"
 609 //   2. mmap() the page in question
 610 //
 611 // Now alternate signal stack is gone, it's harder to use 2. For instance,
 612 // if current sp is already near the lower end of page 101, and we need to
 613 // call mmap() to map page 100, it is possible that part of the mmap() frame
 614 // will be placed in page 100. When page 100 is mapped, it is zero-filled.
 615 // That will destroy the mmap() frame and cause VM to crash.
 616 //
 617 // The following code works by adjusting sp first, then accessing the "bottom"
 618 // page to force a page fault. Linux kernel will then automatically expand the
 619 // stack mapping.
 620 //
 621 // _expand_stack_to() assumes its frame size is less than page size, which
 622 // should always be true if the function is not inlined.
 623 
 624 #if __GNUC__ < 3    // gcc 2.x does not support noinline attribute
 625   #define NOINLINE
 626 #else
 627   #define NOINLINE __attribute__ ((noinline))
 628 #endif
 629 
 630 static void _expand_stack_to(address bottom) NOINLINE;
 631 
 632 static void _expand_stack_to(address bottom) {
 633   address sp;
 634   size_t size;
 635   volatile char *p;
 636 
 637   // Adjust bottom to point to the largest address within the same page, it
 638   // gives us a one-page buffer if alloca() allocates slightly more memory.
 639   bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
 640   bottom += os::Linux::page_size() - 1;
 641 
 642   // sp might be slightly above current stack pointer; if that's the case, we
 643   // will alloca() a little more space than necessary, which is OK. Don't use
 644   // os::current_stack_pointer(), as its result can be slightly below current
 645   // stack pointer, causing us to not alloca enough to reach "bottom".
 646   sp = (address)&sp;
 647 
 648   if (sp > bottom) {
 649     size = sp - bottom;
 650     p = (volatile char *)alloca(size);
 651     assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
 652     p[0] = '\0';
 653   }
 654 }
 655 
 656 bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
 657   assert(t!=NULL, "just checking");
 658   assert(t->osthread()->expanding_stack(), "expand should be set");
 659   assert(t->stack_base() != NULL, "stack_base was not initialized");
 660 
 661   if (addr <  t->stack_base() && addr >= t->stack_yellow_zone_base()) {
 662     sigset_t mask_all, old_sigset;
 663     sigfillset(&mask_all);
 664     pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
 665     _expand_stack_to(addr);
 666     pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
 667     return true;
 668   }
 669   return false;
 670 }
 671 
 672 //////////////////////////////////////////////////////////////////////////////
 673 // create new thread
 674 
 675 static address highest_vm_reserved_address();
 676 
 677 // check if it's safe to start a new thread
 678 static bool _thread_safety_check(Thread* thread) {
 679   if (os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack()) {
 680     // Fixed stack LinuxThreads (SuSE Linux/x86, and some versions of Redhat)
 681     //   Heap is mmap'ed at lower end of memory space. Thread stacks are
 682     //   allocated (MAP_FIXED) from high address space. Every thread stack
 683     //   occupies a fixed size slot (usually 2Mbytes, but user can change
 684     //   it to other values if they rebuild LinuxThreads).
 685     //
 686     // Problem with MAP_FIXED is that mmap() can still succeed even part of
 687     // the memory region has already been mmap'ed. That means if we have too
 688     // many threads and/or very large heap, eventually thread stack will
 689     // collide with heap.
 690     //
 691     // Here we try to prevent heap/stack collision by comparing current
 692     // stack bottom with the highest address that has been mmap'ed by JVM
 693     // plus a safety margin for memory maps created by native code.
 694     //
 695     // This feature can be disabled by setting ThreadSafetyMargin to 0
 696     //
 697     if (ThreadSafetyMargin > 0) {
 698       address stack_bottom = os::current_stack_base() - os::current_stack_size();
 699 
 700       // not safe if our stack extends below the safety margin
 701       return stack_bottom - ThreadSafetyMargin >= highest_vm_reserved_address();
 702     } else {
 703       return true;
 704     }
 705   } else {
 706     // Floating stack LinuxThreads or NPTL:
 707     //   Unlike fixed stack LinuxThreads, thread stacks are not MAP_FIXED. When
 708     //   there's not enough space left, pthread_create() will fail. If we come
 709     //   here, that means enough space has been reserved for stack.
 710     return true;
 711   }
 712 }
 713 
 714 // Thread start routine for all newly created threads
 715 static void *java_start(Thread *thread) {
 716   // Try to randomize the cache line index of hot stack frames.
 717   // This helps when threads of the same stack traces evict each other's
 718   // cache lines. The threads can be either from the same JVM instance, or
 719   // from different JVM instances. The benefit is especially true for
 720   // processors with hyperthreading technology.
 721   static int counter = 0;
 722   int pid = os::current_process_id();
 723   alloca(((pid ^ counter++) & 7) * 128);
 724 
 725   ThreadLocalStorage::set_thread(thread);
 726 
 727   OSThread* osthread = thread->osthread();
 728   Monitor* sync = osthread->startThread_lock();
 729 
 730   // non floating stack LinuxThreads needs extra check, see above
 731   if (!_thread_safety_check(thread)) {
 732     // notify parent thread
 733     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
 734     osthread->set_state(ZOMBIE);
 735     sync->notify_all();
 736     return NULL;
 737   }
 738 
 739   // thread_id is kernel thread id (similar to Solaris LWP id)
 740   osthread->set_thread_id(os::Linux::gettid());
 741 
 742   if (UseNUMA) {
 743     int lgrp_id = os::numa_get_group_id();
 744     if (lgrp_id != -1) {
 745       thread->set_lgrp_id(lgrp_id);
 746     }
 747   }
 748   // initialize signal mask for this thread
 749   os::Linux::hotspot_sigmask(thread);
 750 
 751   // initialize floating point control register
 752   os::Linux::init_thread_fpu_state();
 753 
 754   // handshaking with parent thread
 755   {
 756     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
 757 
 758     // notify parent thread
 759     osthread->set_state(INITIALIZED);
 760     sync->notify_all();
 761 
 762     // wait until os::start_thread()
 763     while (osthread->get_state() == INITIALIZED) {
 764       sync->wait(Mutex::_no_safepoint_check_flag);
 765     }
 766   }
 767 
 768   // call one more level start routine
 769   thread->run();
 770 
 771   return 0;
 772 }
 773 
 774 bool os::create_thread(Thread* thread, ThreadType thr_type,
 775                        size_t stack_size) {
 776   assert(thread->osthread() == NULL, "caller responsible");
 777 
 778   // Allocate the OSThread object
 779   OSThread* osthread = new OSThread(NULL, NULL);
 780   if (osthread == NULL) {
 781     return false;
 782   }
 783 
 784   // set the correct thread state
 785   osthread->set_thread_type(thr_type);
 786 
 787   // Initial state is ALLOCATED but not INITIALIZED
 788   osthread->set_state(ALLOCATED);
 789 
 790   thread->set_osthread(osthread);
 791 
 792   // init thread attributes
 793   pthread_attr_t attr;
 794   pthread_attr_init(&attr);
 795   pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
 796 
 797   // stack size
 798   if (os::Linux::supports_variable_stack_size()) {
 799     // calculate stack size if it's not specified by caller
 800     if (stack_size == 0) {
 801       stack_size = os::Linux::default_stack_size(thr_type);
 802 
 803       switch (thr_type) {
 804       case os::java_thread:
 805         // Java threads use ThreadStackSize which default value can be
 806         // changed with the flag -Xss
 807         assert(JavaThread::stack_size_at_create() > 0, "this should be set");
 808         stack_size = JavaThread::stack_size_at_create();
 809         break;
 810       case os::compiler_thread:
 811         if (CompilerThreadStackSize > 0) {
 812           stack_size = (size_t)(CompilerThreadStackSize * K);
 813           break;
 814         } // else fall through:
 815           // use VMThreadStackSize if CompilerThreadStackSize is not defined
 816       case os::vm_thread:
 817       case os::pgc_thread:
 818       case os::cgc_thread:
 819       case os::watcher_thread:
 820         if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
 821         break;
 822       }
 823     }
 824 
 825     stack_size = MAX2(stack_size, os::Linux::min_stack_allowed);
 826     pthread_attr_setstacksize(&attr, stack_size);
 827   } else {
 828     // let pthread_create() pick the default value.
 829   }
 830 
 831   // glibc guard page
 832   pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
 833 
 834   ThreadState state;
 835 
 836   {
 837     // Serialize thread creation if we are running with fixed stack LinuxThreads
 838     bool lock = os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack();
 839     if (lock) {
 840       os::Linux::createThread_lock()->lock_without_safepoint_check();
 841     }
 842 
 843     pthread_t tid;
 844     int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
 845 
 846     pthread_attr_destroy(&attr);
 847 
 848     if (ret != 0) {
 849       if (PrintMiscellaneous && (Verbose || WizardMode)) {
 850         perror("pthread_create()");
 851       }
 852       // Need to clean up stuff we've allocated so far
 853       thread->set_osthread(NULL);
 854       delete osthread;
 855       if (lock) os::Linux::createThread_lock()->unlock();
 856       return false;
 857     }
 858 
 859     // Store pthread info into the OSThread
 860     osthread->set_pthread_id(tid);
 861 
 862     // Wait until child thread is either initialized or aborted
 863     {
 864       Monitor* sync_with_child = osthread->startThread_lock();
 865       MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 866       while ((state = osthread->get_state()) == ALLOCATED) {
 867         sync_with_child->wait(Mutex::_no_safepoint_check_flag);
 868       }
 869     }
 870 
 871     if (lock) {
 872       os::Linux::createThread_lock()->unlock();
 873     }
 874   }
 875 
 876   // Aborted due to thread limit being reached
 877   if (state == ZOMBIE) {
 878     thread->set_osthread(NULL);
 879     delete osthread;
 880     return false;
 881   }
 882 
 883   // The thread is returned suspended (in state INITIALIZED),
 884   // and is started higher up in the call chain
 885   assert(state == INITIALIZED, "race condition");
 886   return true;
 887 }
 888 
 889 /////////////////////////////////////////////////////////////////////////////
 890 // attach existing thread
 891 
 892 // bootstrap the main thread
 893 bool os::create_main_thread(JavaThread* thread) {
 894   assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
 895   return create_attached_thread(thread);
 896 }
 897 
 898 bool os::create_attached_thread(JavaThread* thread) {
 899 #ifdef ASSERT
 900   thread->verify_not_published();
 901 #endif
 902 
 903   // Allocate the OSThread object
 904   OSThread* osthread = new OSThread(NULL, NULL);
 905 
 906   if (osthread == NULL) {
 907     return false;
 908   }
 909 
 910   // Store pthread info into the OSThread
 911   osthread->set_thread_id(os::Linux::gettid());
 912   osthread->set_pthread_id(::pthread_self());
 913 
 914   // initialize floating point control register
 915   os::Linux::init_thread_fpu_state();
 916 
 917   // Initial thread state is RUNNABLE
 918   osthread->set_state(RUNNABLE);
 919 
 920   thread->set_osthread(osthread);
 921 
 922   if (UseNUMA) {
 923     int lgrp_id = os::numa_get_group_id();
 924     if (lgrp_id != -1) {
 925       thread->set_lgrp_id(lgrp_id);
 926     }
 927   }
 928 
 929   if (os::Linux::is_initial_thread()) {
 930     // If current thread is initial thread, its stack is mapped on demand,
 931     // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
 932     // the entire stack region to avoid SEGV in stack banging.
 933     // It is also useful to get around the heap-stack-gap problem on SuSE
 934     // kernel (see 4821821 for details). We first expand stack to the top
 935     // of yellow zone, then enable stack yellow zone (order is significant,
 936     // enabling yellow zone first will crash JVM on SuSE Linux), so there
 937     // is no gap between the last two virtual memory regions.
 938 
 939     JavaThread *jt = (JavaThread *)thread;
 940     address addr = jt->stack_yellow_zone_base();
 941     assert(addr != NULL, "initialization problem?");
 942     assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
 943 
 944     osthread->set_expanding_stack();
 945     os::Linux::manually_expand_stack(jt, addr);
 946     osthread->clear_expanding_stack();
 947   }
 948 
 949   // initialize signal mask for this thread
 950   // and save the caller's signal mask
 951   os::Linux::hotspot_sigmask(thread);
 952 
 953   return true;
 954 }
 955 
 956 void os::pd_start_thread(Thread* thread) {
 957   OSThread * osthread = thread->osthread();
 958   assert(osthread->get_state() != INITIALIZED, "just checking");
 959   Monitor* sync_with_child = osthread->startThread_lock();
 960   MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 961   sync_with_child->notify();
 962 }
 963 
 964 // Free Linux resources related to the OSThread
 965 void os::free_thread(OSThread* osthread) {
 966   assert(osthread != NULL, "osthread not set");
 967 
 968   if (Thread::current()->osthread() == osthread) {
 969     // Restore caller's signal mask
 970     sigset_t sigmask = osthread->caller_sigmask();
 971     pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
 972   }
 973 
 974   delete osthread;
 975 }
 976 
 977 //////////////////////////////////////////////////////////////////////////////
 978 // thread local storage
 979 
 980 // Restore the thread pointer if the destructor is called. This is in case
 981 // someone from JNI code sets up a destructor with pthread_key_create to run
 982 // detachCurrentThread on thread death. Unless we restore the thread pointer we
 983 // will hang or crash. When detachCurrentThread is called the key will be set
 984 // to null and we will not be called again. If detachCurrentThread is never
 985 // called we could loop forever depending on the pthread implementation.
 986 static void restore_thread_pointer(void* p) {
 987   Thread* thread = (Thread*) p;
 988   os::thread_local_storage_at_put(ThreadLocalStorage::thread_index(), thread);
 989 }
 990 
 991 int os::allocate_thread_local_storage() {
 992   pthread_key_t key;
 993   int rslt = pthread_key_create(&key, restore_thread_pointer);
 994   assert(rslt == 0, "cannot allocate thread local storage");
 995   return (int)key;
 996 }
 997 
 998 // Note: This is currently not used by VM, as we don't destroy TLS key
 999 // on VM exit.
1000 void os::free_thread_local_storage(int index) {
1001   int rslt = pthread_key_delete((pthread_key_t)index);
1002   assert(rslt == 0, "invalid index");
1003 }
1004 
1005 void os::thread_local_storage_at_put(int index, void* value) {
1006   int rslt = pthread_setspecific((pthread_key_t)index, value);
1007   assert(rslt == 0, "pthread_setspecific failed");
1008 }
1009 
1010 extern "C" Thread* get_thread() {
1011   return ThreadLocalStorage::thread();
1012 }
1013 
1014 //////////////////////////////////////////////////////////////////////////////
1015 // initial thread
1016 
1017 // Check if current thread is the initial thread, similar to Solaris thr_main.
1018 bool os::Linux::is_initial_thread(void) {
1019   char dummy;
1020   // If called before init complete, thread stack bottom will be null.
1021   // Can be called if fatal error occurs before initialization.
1022   if (initial_thread_stack_bottom() == NULL) return false;
1023   assert(initial_thread_stack_bottom() != NULL &&
1024          initial_thread_stack_size()   != 0,
1025          "os::init did not locate initial thread's stack region");
1026   if ((address)&dummy >= initial_thread_stack_bottom() &&
1027       (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size()) {
1028     return true;
1029   } else {
1030     return false;
1031   }
1032 }
1033 
1034 // Find the virtual memory area that contains addr
1035 static bool find_vma(address addr, address* vma_low, address* vma_high) {
1036   FILE *fp = fopen("/proc/self/maps", "r");
1037   if (fp) {
1038     address low, high;
1039     while (!feof(fp)) {
1040       if (fscanf(fp, "%p-%p", &low, &high) == 2) {
1041         if (low <= addr && addr < high) {
1042           if (vma_low)  *vma_low  = low;
1043           if (vma_high) *vma_high = high;
1044           fclose(fp);
1045           return true;
1046         }
1047       }
1048       for (;;) {
1049         int ch = fgetc(fp);
1050         if (ch == EOF || ch == (int)'\n') break;
1051       }
1052     }
1053     fclose(fp);
1054   }
1055   return false;
1056 }
1057 
1058 // Locate initial thread stack. This special handling of initial thread stack
1059 // is needed because pthread_getattr_np() on most (all?) Linux distros returns
1060 // bogus value for initial thread.
1061 void os::Linux::capture_initial_stack(size_t max_size) {
1062   // stack size is the easy part, get it from RLIMIT_STACK
1063   size_t stack_size;
1064   struct rlimit rlim;
1065   getrlimit(RLIMIT_STACK, &rlim);
1066   stack_size = rlim.rlim_cur;
1067 
1068   // 6308388: a bug in ld.so will relocate its own .data section to the
1069   //   lower end of primordial stack; reduce ulimit -s value a little bit
1070   //   so we won't install guard page on ld.so's data section.
1071   stack_size -= 2 * page_size();
1072 
1073   // 4441425: avoid crash with "unlimited" stack size on SuSE 7.1 or Redhat
1074   //   7.1, in both cases we will get 2G in return value.
1075   // 4466587: glibc 2.2.x compiled w/o "--enable-kernel=2.4.0" (RH 7.0,
1076   //   SuSE 7.2, Debian) can not handle alternate signal stack correctly
1077   //   for initial thread if its stack size exceeds 6M. Cap it at 2M,
1078   //   in case other parts in glibc still assumes 2M max stack size.
1079   // FIXME: alt signal stack is gone, maybe we can relax this constraint?
1080   // Problem still exists RH7.2 (IA64 anyway) but 2MB is a little small
1081   if (stack_size > 2 * K * K IA64_ONLY(*2)) {
1082     stack_size = 2 * K * K IA64_ONLY(*2);
1083   }
1084   // Try to figure out where the stack base (top) is. This is harder.
1085   //
1086   // When an application is started, glibc saves the initial stack pointer in
1087   // a global variable "__libc_stack_end", which is then used by system
1088   // libraries. __libc_stack_end should be pretty close to stack top. The
1089   // variable is available since the very early days. However, because it is
1090   // a private interface, it could disappear in the future.
1091   //
1092   // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
1093   // to __libc_stack_end, it is very close to stack top, but isn't the real
1094   // stack top. Note that /proc may not exist if VM is running as a chroot
1095   // program, so reading /proc/<pid>/stat could fail. Also the contents of
1096   // /proc/<pid>/stat could change in the future (though unlikely).
1097   //
1098   // We try __libc_stack_end first. If that doesn't work, look for
1099   // /proc/<pid>/stat. If neither of them works, we use current stack pointer
1100   // as a hint, which should work well in most cases.
1101 
1102   uintptr_t stack_start;
1103 
1104   // try __libc_stack_end first
1105   uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
1106   if (p && *p) {
1107     stack_start = *p;
1108   } else {
1109     // see if we can get the start_stack field from /proc/self/stat
1110     FILE *fp;
1111     int pid;
1112     char state;
1113     int ppid;
1114     int pgrp;
1115     int session;
1116     int nr;
1117     int tpgrp;
1118     unsigned long flags;
1119     unsigned long minflt;
1120     unsigned long cminflt;
1121     unsigned long majflt;
1122     unsigned long cmajflt;
1123     unsigned long utime;
1124     unsigned long stime;
1125     long cutime;
1126     long cstime;
1127     long prio;
1128     long nice;
1129     long junk;
1130     long it_real;
1131     uintptr_t start;
1132     uintptr_t vsize;
1133     intptr_t rss;
1134     uintptr_t rsslim;
1135     uintptr_t scodes;
1136     uintptr_t ecode;
1137     int i;
1138 
1139     // Figure what the primordial thread stack base is. Code is inspired
1140     // by email from Hans Boehm. /proc/self/stat begins with current pid,
1141     // followed by command name surrounded by parentheses, state, etc.
1142     char stat[2048];
1143     int statlen;
1144 
1145     fp = fopen("/proc/self/stat", "r");
1146     if (fp) {
1147       statlen = fread(stat, 1, 2047, fp);
1148       stat[statlen] = '\0';
1149       fclose(fp);
1150 
1151       // Skip pid and the command string. Note that we could be dealing with
1152       // weird command names, e.g. user could decide to rename java launcher
1153       // to "java 1.4.2 :)", then the stat file would look like
1154       //                1234 (java 1.4.2 :)) R ... ...
1155       // We don't really need to know the command string, just find the last
1156       // occurrence of ")" and then start parsing from there. See bug 4726580.
1157       char * s = strrchr(stat, ')');
1158 
1159       i = 0;
1160       if (s) {
1161         // Skip blank chars
1162         do { s++; } while (s && isspace(*s));
1163 
1164 #define _UFM UINTX_FORMAT
1165 #define _DFM INTX_FORMAT
1166 
1167         //                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2
1168         //              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8
1169         i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
1170                    &state,          // 3  %c
1171                    &ppid,           // 4  %d
1172                    &pgrp,           // 5  %d
1173                    &session,        // 6  %d
1174                    &nr,             // 7  %d
1175                    &tpgrp,          // 8  %d
1176                    &flags,          // 9  %lu
1177                    &minflt,         // 10 %lu
1178                    &cminflt,        // 11 %lu
1179                    &majflt,         // 12 %lu
1180                    &cmajflt,        // 13 %lu
1181                    &utime,          // 14 %lu
1182                    &stime,          // 15 %lu
1183                    &cutime,         // 16 %ld
1184                    &cstime,         // 17 %ld
1185                    &prio,           // 18 %ld
1186                    &nice,           // 19 %ld
1187                    &junk,           // 20 %ld
1188                    &it_real,        // 21 %ld
1189                    &start,          // 22 UINTX_FORMAT
1190                    &vsize,          // 23 UINTX_FORMAT
1191                    &rss,            // 24 INTX_FORMAT
1192                    &rsslim,         // 25 UINTX_FORMAT
1193                    &scodes,         // 26 UINTX_FORMAT
1194                    &ecode,          // 27 UINTX_FORMAT
1195                    &stack_start);   // 28 UINTX_FORMAT
1196       }
1197 
1198 #undef _UFM
1199 #undef _DFM
1200 
1201       if (i != 28 - 2) {
1202         assert(false, "Bad conversion from /proc/self/stat");
1203         // product mode - assume we are the initial thread, good luck in the
1204         // embedded case.
1205         warning("Can't detect initial thread stack location - bad conversion");
1206         stack_start = (uintptr_t) &rlim;
1207       }
1208     } else {
1209       // For some reason we can't open /proc/self/stat (for example, running on
1210       // FreeBSD with a Linux emulator, or inside chroot), this should work for
1211       // most cases, so don't abort:
1212       warning("Can't detect initial thread stack location - no /proc/self/stat");
1213       stack_start = (uintptr_t) &rlim;
1214     }
1215   }
1216 
1217   // Now we have a pointer (stack_start) very close to the stack top, the
1218   // next thing to do is to figure out the exact location of stack top. We
1219   // can find out the virtual memory area that contains stack_start by
1220   // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1221   // and its upper limit is the real stack top. (again, this would fail if
1222   // running inside chroot, because /proc may not exist.)
1223 
1224   uintptr_t stack_top;
1225   address low, high;
1226   if (find_vma((address)stack_start, &low, &high)) {
1227     // success, "high" is the true stack top. (ignore "low", because initial
1228     // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1229     stack_top = (uintptr_t)high;
1230   } else {
1231     // failed, likely because /proc/self/maps does not exist
1232     warning("Can't detect initial thread stack location - find_vma failed");
1233     // best effort: stack_start is normally within a few pages below the real
1234     // stack top, use it as stack top, and reduce stack size so we won't put
1235     // guard page outside stack.
1236     stack_top = stack_start;
1237     stack_size -= 16 * page_size();
1238   }
1239 
1240   // stack_top could be partially down the page so align it
1241   stack_top = align_size_up(stack_top, page_size());
1242 
1243   if (max_size && stack_size > max_size) {
1244     _initial_thread_stack_size = max_size;
1245   } else {
1246     _initial_thread_stack_size = stack_size;
1247   }
1248 
1249   _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
1250   _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1251 }
1252 
1253 ////////////////////////////////////////////////////////////////////////////////
1254 // time support
1255 
1256 // Time since start-up in seconds to a fine granularity.
1257 // Used by VMSelfDestructTimer and the MemProfiler.
1258 double os::elapsedTime() {
1259 
1260   return ((double)os::elapsed_counter()) / os::elapsed_frequency(); // nanosecond resolution
1261 }
1262 
1263 jlong os::elapsed_counter() {
1264   return javaTimeNanos() - initial_time_count;
1265 }
1266 
1267 jlong os::elapsed_frequency() {
1268   return NANOSECS_PER_SEC; // nanosecond resolution
1269 }
1270 
1271 bool os::supports_vtime() { return true; }
1272 bool os::enable_vtime()   { return false; }
1273 bool os::vtime_enabled()  { return false; }
1274 
1275 double os::elapsedVTime() {
1276   struct rusage usage;
1277   int retval = getrusage(RUSAGE_THREAD, &usage);
1278   if (retval == 0) {
1279     return (double) (usage.ru_utime.tv_sec + usage.ru_stime.tv_sec) + (double) (usage.ru_utime.tv_usec + usage.ru_stime.tv_usec) / (1000 * 1000);
1280   } else {
1281     // better than nothing, but not much
1282     return elapsedTime();
1283   }
1284 }
1285 
1286 jlong os::javaTimeMillis() {
1287   timeval time;
1288   int status = gettimeofday(&time, NULL);
1289   assert(status != -1, "linux error");
1290   return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1291 }
1292 
1293 void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
1294   timeval time;
1295   int status = gettimeofday(&time, NULL);
1296   assert(status != -1, "linux error");
1297   seconds = jlong(time.tv_sec);
1298   nanos = jlong(time.tv_usec) * 1000;
1299 }
1300 
1301 
1302 #ifndef CLOCK_MONOTONIC
1303   #define CLOCK_MONOTONIC (1)
1304 #endif
1305 
1306 void os::Linux::clock_init() {
1307   // we do dlopen's in this particular order due to bug in linux
1308   // dynamical loader (see 6348968) leading to crash on exit
1309   void* handle = dlopen("librt.so.1", RTLD_LAZY);
1310   if (handle == NULL) {
1311     handle = dlopen("librt.so", RTLD_LAZY);
1312   }
1313 
1314   if (handle) {
1315     int (*clock_getres_func)(clockid_t, struct timespec*) =
1316            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
1317     int (*clock_gettime_func)(clockid_t, struct timespec*) =
1318            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
1319     if (clock_getres_func && clock_gettime_func) {
1320       // See if monotonic clock is supported by the kernel. Note that some
1321       // early implementations simply return kernel jiffies (updated every
1322       // 1/100 or 1/1000 second). It would be bad to use such a low res clock
1323       // for nano time (though the monotonic property is still nice to have).
1324       // It's fixed in newer kernels, however clock_getres() still returns
1325       // 1/HZ. We check if clock_getres() works, but will ignore its reported
1326       // resolution for now. Hopefully as people move to new kernels, this
1327       // won't be a problem.
1328       struct timespec res;
1329       struct timespec tp;
1330       if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
1331           clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
1332         // yes, monotonic clock is supported
1333         _clock_gettime = clock_gettime_func;
1334         return;
1335       } else {
1336         // close librt if there is no monotonic clock
1337         dlclose(handle);
1338       }
1339     }
1340   }
1341   warning("No monotonic clock was available - timed services may " \
1342           "be adversely affected if the time-of-day clock changes");
1343 }
1344 
1345 #ifndef SYS_clock_getres
1346   #if defined(IA32) || defined(AMD64)
1347     #define SYS_clock_getres IA32_ONLY(266)  AMD64_ONLY(229)
1348     #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1349   #else
1350     #warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
1351     #define sys_clock_getres(x,y)  -1
1352   #endif
1353 #else
1354   #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1355 #endif
1356 
1357 void os::Linux::fast_thread_clock_init() {
1358   if (!UseLinuxPosixThreadCPUClocks) {
1359     return;
1360   }
1361   clockid_t clockid;
1362   struct timespec tp;
1363   int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1364       (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1365 
1366   // Switch to using fast clocks for thread cpu time if
1367   // the sys_clock_getres() returns 0 error code.
1368   // Note, that some kernels may support the current thread
1369   // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1370   // returned by the pthread_getcpuclockid().
1371   // If the fast Posix clocks are supported then the sys_clock_getres()
1372   // must return at least tp.tv_sec == 0 which means a resolution
1373   // better than 1 sec. This is extra check for reliability.
1374 
1375   if (pthread_getcpuclockid_func &&
1376       pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1377       sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1378     _supports_fast_thread_cpu_time = true;
1379     _pthread_getcpuclockid = pthread_getcpuclockid_func;
1380   }
1381 }
1382 
1383 jlong os::javaTimeNanos() {
1384   if (os::supports_monotonic_clock()) {
1385     struct timespec tp;
1386     int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
1387     assert(status == 0, "gettime error");
1388     jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1389     return result;
1390   } else {
1391     timeval time;
1392     int status = gettimeofday(&time, NULL);
1393     assert(status != -1, "linux error");
1394     jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1395     return 1000 * usecs;
1396   }
1397 }
1398 
1399 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1400   if (os::supports_monotonic_clock()) {
1401     info_ptr->max_value = ALL_64_BITS;
1402 
1403     // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1404     info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1405     info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1406   } else {
1407     // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1408     info_ptr->max_value = ALL_64_BITS;
1409 
1410     // gettimeofday is a real time clock so it skips
1411     info_ptr->may_skip_backward = true;
1412     info_ptr->may_skip_forward = true;
1413   }
1414 
1415   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1416 }
1417 
1418 // Return the real, user, and system times in seconds from an
1419 // arbitrary fixed point in the past.
1420 bool os::getTimesSecs(double* process_real_time,
1421                       double* process_user_time,
1422                       double* process_system_time) {
1423   struct tms ticks;
1424   clock_t real_ticks = times(&ticks);
1425 
1426   if (real_ticks == (clock_t) (-1)) {
1427     return false;
1428   } else {
1429     double ticks_per_second = (double) clock_tics_per_sec;
1430     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1431     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1432     *process_real_time = ((double) real_ticks) / ticks_per_second;
1433 
1434     return true;
1435   }
1436 }
1437 
1438 
1439 char * os::local_time_string(char *buf, size_t buflen) {
1440   struct tm t;
1441   time_t long_time;
1442   time(&long_time);
1443   localtime_r(&long_time, &t);
1444   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1445                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1446                t.tm_hour, t.tm_min, t.tm_sec);
1447   return buf;
1448 }
1449 
1450 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1451   return localtime_r(clock, res);
1452 }
1453 
1454 ////////////////////////////////////////////////////////////////////////////////
1455 // runtime exit support
1456 
1457 // Note: os::shutdown() might be called very early during initialization, or
1458 // called from signal handler. Before adding something to os::shutdown(), make
1459 // sure it is async-safe and can handle partially initialized VM.
1460 void os::shutdown() {
1461 
1462   // allow PerfMemory to attempt cleanup of any persistent resources
1463   perfMemory_exit();
1464 
1465   // needs to remove object in file system
1466   AttachListener::abort();
1467 
1468   // flush buffered output, finish log files
1469   ostream_abort();
1470 
1471   // Check for abort hook
1472   abort_hook_t abort_hook = Arguments::abort_hook();
1473   if (abort_hook != NULL) {
1474     abort_hook();
1475   }
1476 
1477 }
1478 
1479 // Note: os::abort() might be called very early during initialization, or
1480 // called from signal handler. Before adding something to os::abort(), make
1481 // sure it is async-safe and can handle partially initialized VM.
1482 void os::abort(bool dump_core) {
1483   abort(dump_core, NULL, NULL);
1484 }
1485 
1486 void os::abort(bool dump_core, void* siginfo, void* context) {
1487   os::shutdown();
1488   if (dump_core) {
1489 #ifndef PRODUCT
1490     fdStream out(defaultStream::output_fd());
1491     out.print_raw("Current thread is ");
1492     char buf[16];
1493     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1494     out.print_raw_cr(buf);
1495     out.print_raw_cr("Dumping core ...");
1496 #endif
1497     ::abort(); // dump core
1498   }
1499 
1500   ::exit(1);
1501 }
1502 
1503 // Die immediately, no exit hook, no abort hook, no cleanup.
1504 void os::die() {
1505   // _exit() on LinuxThreads only kills current thread
1506   ::abort();
1507 }
1508 
1509 
1510 // This method is a copy of JDK's sysGetLastErrorString
1511 // from src/solaris/hpi/src/system_md.c
1512 
1513 size_t os::lasterror(char *buf, size_t len) {
1514   if (errno == 0)  return 0;
1515 
1516   const char *s = ::strerror(errno);
1517   size_t n = ::strlen(s);
1518   if (n >= len) {
1519     n = len - 1;
1520   }
1521   ::strncpy(buf, s, n);
1522   buf[n] = '\0';
1523   return n;
1524 }
1525 
1526 intx os::current_thread_id() { return (intx)pthread_self(); }
1527 int os::current_process_id() {
1528 
1529   // Under the old linux thread library, linux gives each thread
1530   // its own process id. Because of this each thread will return
1531   // a different pid if this method were to return the result
1532   // of getpid(2). Linux provides no api that returns the pid
1533   // of the launcher thread for the vm. This implementation
1534   // returns a unique pid, the pid of the launcher thread
1535   // that starts the vm 'process'.
1536 
1537   // Under the NPTL, getpid() returns the same pid as the
1538   // launcher thread rather than a unique pid per thread.
1539   // Use gettid() if you want the old pre NPTL behaviour.
1540 
1541   // if you are looking for the result of a call to getpid() that
1542   // returns a unique pid for the calling thread, then look at the
1543   // OSThread::thread_id() method in osThread_linux.hpp file
1544 
1545   return (int)(_initial_pid ? _initial_pid : getpid());
1546 }
1547 
1548 // DLL functions
1549 
1550 const char* os::dll_file_extension() { return ".so"; }
1551 
1552 // This must be hard coded because it's the system's temporary
1553 // directory not the java application's temp directory, ala java.io.tmpdir.
1554 const char* os::get_temp_directory() { return "/tmp"; }
1555 
1556 static bool file_exists(const char* filename) {
1557   struct stat statbuf;
1558   if (filename == NULL || strlen(filename) == 0) {
1559     return false;
1560   }
1561   return os::stat(filename, &statbuf) == 0;
1562 }
1563 
1564 bool os::dll_build_name(char* buffer, size_t buflen,
1565                         const char* pname, const char* fname) {
1566   bool retval = false;
1567   // Copied from libhpi
1568   const size_t pnamelen = pname ? strlen(pname) : 0;
1569 
1570   // Return error on buffer overflow.
1571   if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
1572     return retval;
1573   }
1574 
1575   if (pnamelen == 0) {
1576     snprintf(buffer, buflen, "lib%s.so", fname);
1577     retval = true;
1578   } else if (strchr(pname, *os::path_separator()) != NULL) {
1579     int n;
1580     char** pelements = split_path(pname, &n);
1581     if (pelements == NULL) {
1582       return false;
1583     }
1584     for (int i = 0; i < n; i++) {
1585       // Really shouldn't be NULL, but check can't hurt
1586       if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1587         continue; // skip the empty path values
1588       }
1589       snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
1590       if (file_exists(buffer)) {
1591         retval = true;
1592         break;
1593       }
1594     }
1595     // release the storage
1596     for (int i = 0; i < n; i++) {
1597       if (pelements[i] != NULL) {
1598         FREE_C_HEAP_ARRAY(char, pelements[i]);
1599       }
1600     }
1601     if (pelements != NULL) {
1602       FREE_C_HEAP_ARRAY(char*, pelements);
1603     }
1604   } else {
1605     snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
1606     retval = true;
1607   }
1608   return retval;
1609 }
1610 
1611 // check if addr is inside libjvm.so
1612 bool os::address_is_in_vm(address addr) {
1613   static address libjvm_base_addr;
1614   Dl_info dlinfo;
1615 
1616   if (libjvm_base_addr == NULL) {
1617     if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1618       libjvm_base_addr = (address)dlinfo.dli_fbase;
1619     }
1620     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1621   }
1622 
1623   if (dladdr((void *)addr, &dlinfo) != 0) {
1624     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1625   }
1626 
1627   return false;
1628 }
1629 
1630 bool os::dll_address_to_function_name(address addr, char *buf,
1631                                       int buflen, int *offset) {
1632   // buf is not optional, but offset is optional
1633   assert(buf != NULL, "sanity check");
1634 
1635   Dl_info dlinfo;
1636 
1637   if (dladdr((void*)addr, &dlinfo) != 0) {
1638     // see if we have a matching symbol
1639     if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1640       if (!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
1641         jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1642       }
1643       if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1644       return true;
1645     }
1646     // no matching symbol so try for just file info
1647     if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1648       if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1649                           buf, buflen, offset, dlinfo.dli_fname)) {
1650         return true;
1651       }
1652     }
1653   }
1654 
1655   buf[0] = '\0';
1656   if (offset != NULL) *offset = -1;
1657   return false;
1658 }
1659 
1660 struct _address_to_library_name {
1661   address addr;          // input : memory address
1662   size_t  buflen;        //         size of fname
1663   char*   fname;         // output: library name
1664   address base;          //         library base addr
1665 };
1666 
1667 static int address_to_library_name_callback(struct dl_phdr_info *info,
1668                                             size_t size, void *data) {
1669   int i;
1670   bool found = false;
1671   address libbase = NULL;
1672   struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1673 
1674   // iterate through all loadable segments
1675   for (i = 0; i < info->dlpi_phnum; i++) {
1676     address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1677     if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1678       // base address of a library is the lowest address of its loaded
1679       // segments.
1680       if (libbase == NULL || libbase > segbase) {
1681         libbase = segbase;
1682       }
1683       // see if 'addr' is within current segment
1684       if (segbase <= d->addr &&
1685           d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1686         found = true;
1687       }
1688     }
1689   }
1690 
1691   // dlpi_name is NULL or empty if the ELF file is executable, return 0
1692   // so dll_address_to_library_name() can fall through to use dladdr() which
1693   // can figure out executable name from argv[0].
1694   if (found && info->dlpi_name && info->dlpi_name[0]) {
1695     d->base = libbase;
1696     if (d->fname) {
1697       jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1698     }
1699     return 1;
1700   }
1701   return 0;
1702 }
1703 
1704 bool os::dll_address_to_library_name(address addr, char* buf,
1705                                      int buflen, int* offset) {
1706   // buf is not optional, but offset is optional
1707   assert(buf != NULL, "sanity check");
1708 
1709   Dl_info dlinfo;
1710   struct _address_to_library_name data;
1711 
1712   // There is a bug in old glibc dladdr() implementation that it could resolve
1713   // to wrong library name if the .so file has a base address != NULL. Here
1714   // we iterate through the program headers of all loaded libraries to find
1715   // out which library 'addr' really belongs to. This workaround can be
1716   // removed once the minimum requirement for glibc is moved to 2.3.x.
1717   data.addr = addr;
1718   data.fname = buf;
1719   data.buflen = buflen;
1720   data.base = NULL;
1721   int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1722 
1723   if (rslt) {
1724     // buf already contains library name
1725     if (offset) *offset = addr - data.base;
1726     return true;
1727   }
1728   if (dladdr((void*)addr, &dlinfo) != 0) {
1729     if (dlinfo.dli_fname != NULL) {
1730       jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1731     }
1732     if (dlinfo.dli_fbase != NULL && offset != NULL) {
1733       *offset = addr - (address)dlinfo.dli_fbase;
1734     }
1735     return true;
1736   }
1737 
1738   buf[0] = '\0';
1739   if (offset) *offset = -1;
1740   return false;
1741 }
1742 
1743 // Loads .dll/.so and
1744 // in case of error it checks if .dll/.so was built for the
1745 // same architecture as Hotspot is running on
1746 
1747 
1748 // Remember the stack's state. The Linux dynamic linker will change
1749 // the stack to 'executable' at most once, so we must safepoint only once.
1750 bool os::Linux::_stack_is_executable = false;
1751 
1752 // VM operation that loads a library.  This is necessary if stack protection
1753 // of the Java stacks can be lost during loading the library.  If we
1754 // do not stop the Java threads, they can stack overflow before the stacks
1755 // are protected again.
1756 class VM_LinuxDllLoad: public VM_Operation {
1757  private:
1758   const char *_filename;
1759   char *_ebuf;
1760   int _ebuflen;
1761   void *_lib;
1762  public:
1763   VM_LinuxDllLoad(const char *fn, char *ebuf, int ebuflen) :
1764     _filename(fn), _ebuf(ebuf), _ebuflen(ebuflen), _lib(NULL) {}
1765   VMOp_Type type() const { return VMOp_LinuxDllLoad; }
1766   void doit() {
1767     _lib = os::Linux::dll_load_in_vmthread(_filename, _ebuf, _ebuflen);
1768     os::Linux::_stack_is_executable = true;
1769   }
1770   void* loaded_library() { return _lib; }
1771 };
1772 
1773 void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1774   void * result = NULL;
1775   bool load_attempted = false;
1776 
1777   // Check whether the library to load might change execution rights
1778   // of the stack. If they are changed, the protection of the stack
1779   // guard pages will be lost. We need a safepoint to fix this.
1780   //
1781   // See Linux man page execstack(8) for more info.
1782   if (os::uses_stack_guard_pages() && !os::Linux::_stack_is_executable) {
1783     ElfFile ef(filename);
1784     if (!ef.specifies_noexecstack()) {
1785       if (!is_init_completed()) {
1786         os::Linux::_stack_is_executable = true;
1787         // This is OK - No Java threads have been created yet, and hence no
1788         // stack guard pages to fix.
1789         //
1790         // This should happen only when you are building JDK7 using a very
1791         // old version of JDK6 (e.g., with JPRT) and running test_gamma.
1792         //
1793         // Dynamic loader will make all stacks executable after
1794         // this function returns, and will not do that again.
1795         assert(Threads::first() == NULL, "no Java threads should exist yet.");
1796       } else {
1797         warning("You have loaded library %s which might have disabled stack guard. "
1798                 "The VM will try to fix the stack guard now.\n"
1799                 "It's highly recommended that you fix the library with "
1800                 "'execstack -c <libfile>', or link it with '-z noexecstack'.",
1801                 filename);
1802 
1803         assert(Thread::current()->is_Java_thread(), "must be Java thread");
1804         JavaThread *jt = JavaThread::current();
1805         if (jt->thread_state() != _thread_in_native) {
1806           // This happens when a compiler thread tries to load a hsdis-<arch>.so file
1807           // that requires ExecStack. Cannot enter safe point. Let's give up.
1808           warning("Unable to fix stack guard. Giving up.");
1809         } else {
1810           if (!LoadExecStackDllInVMThread) {
1811             // This is for the case where the DLL has an static
1812             // constructor function that executes JNI code. We cannot
1813             // load such DLLs in the VMThread.
1814             result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1815           }
1816 
1817           ThreadInVMfromNative tiv(jt);
1818           debug_only(VMNativeEntryWrapper vew;)
1819 
1820           VM_LinuxDllLoad op(filename, ebuf, ebuflen);
1821           VMThread::execute(&op);
1822           if (LoadExecStackDllInVMThread) {
1823             result = op.loaded_library();
1824           }
1825           load_attempted = true;
1826         }
1827       }
1828     }
1829   }
1830 
1831   if (!load_attempted) {
1832     result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1833   }
1834 
1835   if (result != NULL) {
1836     // Successful loading
1837     return result;
1838   }
1839 
1840   Elf32_Ehdr elf_head;
1841   int diag_msg_max_length=ebuflen-strlen(ebuf);
1842   char* diag_msg_buf=ebuf+strlen(ebuf);
1843 
1844   if (diag_msg_max_length==0) {
1845     // No more space in ebuf for additional diagnostics message
1846     return NULL;
1847   }
1848 
1849 
1850   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1851 
1852   if (file_descriptor < 0) {
1853     // Can't open library, report dlerror() message
1854     return NULL;
1855   }
1856 
1857   bool failed_to_read_elf_head=
1858     (sizeof(elf_head)!=
1859      (::read(file_descriptor, &elf_head,sizeof(elf_head))));
1860 
1861   ::close(file_descriptor);
1862   if (failed_to_read_elf_head) {
1863     // file i/o error - report dlerror() msg
1864     return NULL;
1865   }
1866 
1867   typedef struct {
1868     Elf32_Half  code;         // Actual value as defined in elf.h
1869     Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1870     char        elf_class;    // 32 or 64 bit
1871     char        endianess;    // MSB or LSB
1872     char*       name;         // String representation
1873   } arch_t;
1874 
1875 #ifndef EM_486
1876   #define EM_486          6               /* Intel 80486 */
1877 #endif
1878 #ifndef EM_AARCH64
1879   #define EM_AARCH64    183               /* ARM AARCH64 */
1880 #endif
1881 
1882   static const arch_t arch_array[]={
1883     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1884     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1885     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1886     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1887     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1888     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1889     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1890     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1891 #if defined(VM_LITTLE_ENDIAN)
1892     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2LSB, (char*)"Power PC 64"},
1893 #else
1894     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1895 #endif
1896     {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1897     {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1898     {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1899     {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1900     {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1901     {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1902     {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"},
1903     {EM_AARCH64,     EM_AARCH64, ELFCLASS64, ELFDATA2LSB, (char*)"AARCH64"},
1904   };
1905 
1906 #if  (defined IA32)
1907   static  Elf32_Half running_arch_code=EM_386;
1908 #elif   (defined AMD64)
1909   static  Elf32_Half running_arch_code=EM_X86_64;
1910 #elif  (defined IA64)
1911   static  Elf32_Half running_arch_code=EM_IA_64;
1912 #elif  (defined __sparc) && (defined _LP64)
1913   static  Elf32_Half running_arch_code=EM_SPARCV9;
1914 #elif  (defined __sparc) && (!defined _LP64)
1915   static  Elf32_Half running_arch_code=EM_SPARC;
1916 #elif  (defined __powerpc64__)
1917   static  Elf32_Half running_arch_code=EM_PPC64;
1918 #elif  (defined __powerpc__)
1919   static  Elf32_Half running_arch_code=EM_PPC;
1920 #elif  (defined ARM)
1921   static  Elf32_Half running_arch_code=EM_ARM;
1922 #elif  (defined S390)
1923   static  Elf32_Half running_arch_code=EM_S390;
1924 #elif  (defined ALPHA)
1925   static  Elf32_Half running_arch_code=EM_ALPHA;
1926 #elif  (defined MIPSEL)
1927   static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1928 #elif  (defined PARISC)
1929   static  Elf32_Half running_arch_code=EM_PARISC;
1930 #elif  (defined MIPS)
1931   static  Elf32_Half running_arch_code=EM_MIPS;
1932 #elif  (defined M68K)
1933   static  Elf32_Half running_arch_code=EM_68K;
1934 #elif  (defined AARCH64)
1935   static  Elf32_Half running_arch_code=EM_AARCH64;
1936 #else
1937     #error Method os::dll_load requires that one of following is defined:\
1938          IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K, AARCH64
1939 #endif
1940 
1941   // Identify compatability class for VM's architecture and library's architecture
1942   // Obtain string descriptions for architectures
1943 
1944   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1945   int running_arch_index=-1;
1946 
1947   for (unsigned int i=0; i < ARRAY_SIZE(arch_array); i++) {
1948     if (running_arch_code == arch_array[i].code) {
1949       running_arch_index    = i;
1950     }
1951     if (lib_arch.code == arch_array[i].code) {
1952       lib_arch.compat_class = arch_array[i].compat_class;
1953       lib_arch.name         = arch_array[i].name;
1954     }
1955   }
1956 
1957   assert(running_arch_index != -1,
1958          "Didn't find running architecture code (running_arch_code) in arch_array");
1959   if (running_arch_index == -1) {
1960     // Even though running architecture detection failed
1961     // we may still continue with reporting dlerror() message
1962     return NULL;
1963   }
1964 
1965   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1966     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1967     return NULL;
1968   }
1969 
1970 #ifndef S390
1971   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1972     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1973     return NULL;
1974   }
1975 #endif // !S390
1976 
1977   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1978     if (lib_arch.name!=NULL) {
1979       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1980                  " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1981                  lib_arch.name, arch_array[running_arch_index].name);
1982     } else {
1983       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1984                  " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1985                  lib_arch.code,
1986                  arch_array[running_arch_index].name);
1987     }
1988   }
1989 
1990   return NULL;
1991 }
1992 
1993 void * os::Linux::dlopen_helper(const char *filename, char *ebuf,
1994                                 int ebuflen) {
1995   void * result = ::dlopen(filename, RTLD_LAZY);
1996   if (result == NULL) {
1997     ::strncpy(ebuf, ::dlerror(), ebuflen - 1);
1998     ebuf[ebuflen-1] = '\0';
1999   }
2000   return result;
2001 }
2002 
2003 void * os::Linux::dll_load_in_vmthread(const char *filename, char *ebuf,
2004                                        int ebuflen) {
2005   void * result = NULL;
2006   if (LoadExecStackDllInVMThread) {
2007     result = dlopen_helper(filename, ebuf, ebuflen);
2008   }
2009 
2010   // Since 7019808, libjvm.so is linked with -noexecstack. If the VM loads a
2011   // library that requires an executable stack, or which does not have this
2012   // stack attribute set, dlopen changes the stack attribute to executable. The
2013   // read protection of the guard pages gets lost.
2014   //
2015   // Need to check _stack_is_executable again as multiple VM_LinuxDllLoad
2016   // may have been queued at the same time.
2017 
2018   if (!_stack_is_executable) {
2019     JavaThread *jt = Threads::first();
2020 
2021     while (jt) {
2022       if (!jt->stack_guard_zone_unused() &&        // Stack not yet fully initialized
2023           jt->stack_yellow_zone_enabled()) {       // No pending stack overflow exceptions
2024         if (!os::guard_memory((char *) jt->stack_red_zone_base() - jt->stack_red_zone_size(),
2025                               jt->stack_yellow_zone_size() + jt->stack_red_zone_size())) {
2026           warning("Attempt to reguard stack yellow zone failed.");
2027         }
2028       }
2029       jt = jt->next();
2030     }
2031   }
2032 
2033   return result;
2034 }
2035 
2036 void* os::dll_lookup(void* handle, const char* name) {
2037   void* res = dlsym(handle, name);
2038   return res;
2039 }
2040 
2041 void* os::get_default_process_handle() {
2042   return (void*)::dlopen(NULL, RTLD_LAZY);
2043 }
2044 
2045 static bool _print_ascii_file(const char* filename, outputStream* st) {
2046   int fd = ::open(filename, O_RDONLY);
2047   if (fd == -1) {
2048     return false;
2049   }
2050 
2051   char buf[32];
2052   int bytes;
2053   while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
2054     st->print_raw(buf, bytes);
2055   }
2056 
2057   ::close(fd);
2058 
2059   return true;
2060 }
2061 
2062 void os::print_dll_info(outputStream *st) {
2063   st->print_cr("Dynamic libraries:");
2064 
2065   char fname[32];
2066   pid_t pid = os::Linux::gettid();
2067 
2068   jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
2069 
2070   if (!_print_ascii_file(fname, st)) {
2071     st->print("Can not get library information for pid = %d\n", pid);
2072   }
2073 }
2074 
2075 int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
2076   FILE *procmapsFile = NULL;
2077 
2078   // Open the procfs maps file for the current process
2079   if ((procmapsFile = fopen("/proc/self/maps", "r")) != NULL) {
2080     // Allocate PATH_MAX for file name plus a reasonable size for other fields.
2081     char line[PATH_MAX + 100];
2082 
2083     // Read line by line from 'file'
2084     while (fgets(line, sizeof(line), procmapsFile) != NULL) {
2085       u8 base, top, offset, inode;
2086       char permissions[5];
2087       char device[6];
2088       char name[PATH_MAX + 1];
2089 
2090       // Parse fields from line
2091       sscanf(line, "%lx-%lx %4s %lx %5s %ld %s", &base, &top, permissions, &offset, device, &inode, name);
2092 
2093       // Filter by device id '00:00' so that we only get file system mapped files.
2094       if (strcmp(device, "00:00") != 0) {
2095 
2096         // Call callback with the fields of interest
2097         if(callback(name, (address)base, (address)top, param)) {
2098           // Oops abort, callback aborted
2099           fclose(procmapsFile);
2100           return 1;
2101         }
2102       }
2103     }
2104     fclose(procmapsFile);
2105   }
2106   return 0;
2107 }
2108 
2109 void os::print_os_info_brief(outputStream* st) {
2110   os::Linux::print_distro_info(st);
2111 
2112   os::Posix::print_uname_info(st);
2113 
2114   os::Linux::print_libversion_info(st);
2115 
2116 }
2117 
2118 void os::print_os_info(outputStream* st) {
2119   st->print("OS:");
2120 
2121   os::Linux::print_distro_info(st);
2122 
2123   os::Posix::print_uname_info(st);
2124 
2125   // Print warning if unsafe chroot environment detected
2126   if (unsafe_chroot_detected) {
2127     st->print("WARNING!! ");
2128     st->print_cr("%s", unstable_chroot_error);
2129   }
2130 
2131   os::Linux::print_libversion_info(st);
2132 
2133   os::Posix::print_rlimit_info(st);
2134 
2135   os::Posix::print_load_average(st);
2136 
2137   os::Linux::print_full_memory_info(st);
2138 }
2139 
2140 // Try to identify popular distros.
2141 // Most Linux distributions have a /etc/XXX-release file, which contains
2142 // the OS version string. Newer Linux distributions have a /etc/lsb-release
2143 // file that also contains the OS version string. Some have more than one
2144 // /etc/XXX-release file (e.g. Mandrake has both /etc/mandrake-release and
2145 // /etc/redhat-release.), so the order is important.
2146 // Any Linux that is based on Redhat (i.e. Oracle, Mandrake, Sun JDS...) have
2147 // their own specific XXX-release file as well as a redhat-release file.
2148 // Because of this the XXX-release file needs to be searched for before the
2149 // redhat-release file.
2150 // Since Red Hat has a lsb-release file that is not very descriptive the
2151 // search for redhat-release needs to be before lsb-release.
2152 // Since the lsb-release file is the new standard it needs to be searched
2153 // before the older style release files.
2154 // Searching system-release (Red Hat) and os-release (other Linuxes) are a
2155 // next to last resort.  The os-release file is a new standard that contains
2156 // distribution information and the system-release file seems to be an old
2157 // standard that has been replaced by the lsb-release and os-release files.
2158 // Searching for the debian_version file is the last resort.  It contains
2159 // an informative string like "6.0.6" or "wheezy/sid". Because of this
2160 // "Debian " is printed before the contents of the debian_version file.
2161 void os::Linux::print_distro_info(outputStream* st) {
2162   if (!_print_ascii_file("/etc/oracle-release", st) &&
2163       !_print_ascii_file("/etc/mandriva-release", st) &&
2164       !_print_ascii_file("/etc/mandrake-release", st) &&
2165       !_print_ascii_file("/etc/sun-release", st) &&
2166       !_print_ascii_file("/etc/redhat-release", st) &&
2167       !_print_ascii_file("/etc/lsb-release", st) &&
2168       !_print_ascii_file("/etc/SuSE-release", st) &&
2169       !_print_ascii_file("/etc/turbolinux-release", st) &&
2170       !_print_ascii_file("/etc/gentoo-release", st) &&
2171       !_print_ascii_file("/etc/ltib-release", st) &&
2172       !_print_ascii_file("/etc/angstrom-version", st) &&
2173       !_print_ascii_file("/etc/system-release", st) &&
2174       !_print_ascii_file("/etc/os-release", st)) {
2175 
2176     if (file_exists("/etc/debian_version")) {
2177       st->print("Debian ");
2178       _print_ascii_file("/etc/debian_version", st);
2179     } else {
2180       st->print("Linux");
2181     }
2182   }
2183   st->cr();
2184 }
2185 
2186 void os::Linux::print_libversion_info(outputStream* st) {
2187   // libc, pthread
2188   st->print("libc:");
2189   st->print("%s ", os::Linux::glibc_version());
2190   st->print("%s ", os::Linux::libpthread_version());
2191   if (os::Linux::is_LinuxThreads()) {
2192     st->print("(%s stack)", os::Linux::is_floating_stack() ? "floating" : "fixed");
2193   }
2194   st->cr();
2195 }
2196 
2197 void os::Linux::print_full_memory_info(outputStream* st) {
2198   st->print("\n/proc/meminfo:\n");
2199   _print_ascii_file("/proc/meminfo", st);
2200   st->cr();
2201 }
2202 
2203 void os::print_memory_info(outputStream* st) {
2204 
2205   st->print("Memory:");
2206   st->print(" %dk page", os::vm_page_size()>>10);
2207 
2208   // values in struct sysinfo are "unsigned long"
2209   struct sysinfo si;
2210   sysinfo(&si);
2211 
2212   st->print(", physical " UINT64_FORMAT "k",
2213             os::physical_memory() >> 10);
2214   st->print("(" UINT64_FORMAT "k free)",
2215             os::available_memory() >> 10);
2216   st->print(", swap " UINT64_FORMAT "k",
2217             ((jlong)si.totalswap * si.mem_unit) >> 10);
2218   st->print("(" UINT64_FORMAT "k free)",
2219             ((jlong)si.freeswap * si.mem_unit) >> 10);
2220   st->cr();
2221 }
2222 
2223 void os::pd_print_cpu_info(outputStream* st) {
2224   st->print("\n/proc/cpuinfo:\n");
2225   if (!_print_ascii_file("/proc/cpuinfo", st)) {
2226     st->print("  <Not Available>");
2227   }
2228   st->cr();
2229 }
2230 
2231 void os::print_siginfo(outputStream* st, void* siginfo) {
2232   const siginfo_t* si = (const siginfo_t*)siginfo;
2233 
2234   os::Posix::print_siginfo_brief(st, si);
2235 #if INCLUDE_CDS
2236   if (si && (si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
2237       UseSharedSpaces) {
2238     FileMapInfo* mapinfo = FileMapInfo::current_info();
2239     if (mapinfo->is_in_shared_space(si->si_addr)) {
2240       st->print("\n\nError accessing class data sharing archive."   \
2241                 " Mapped file inaccessible during execution, "      \
2242                 " possible disk/network problem.");
2243     }
2244   }
2245 #endif
2246   st->cr();
2247 }
2248 
2249 
2250 static void print_signal_handler(outputStream* st, int sig,
2251                                  char* buf, size_t buflen);
2252 
2253 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2254   st->print_cr("Signal Handlers:");
2255   print_signal_handler(st, SIGSEGV, buf, buflen);
2256   print_signal_handler(st, SIGBUS , buf, buflen);
2257   print_signal_handler(st, SIGFPE , buf, buflen);
2258   print_signal_handler(st, SIGPIPE, buf, buflen);
2259   print_signal_handler(st, SIGXFSZ, buf, buflen);
2260   print_signal_handler(st, SIGILL , buf, buflen);
2261   print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
2262   print_signal_handler(st, SR_signum, buf, buflen);
2263   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
2264   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2265   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
2266   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2267 #if defined(PPC64)
2268   print_signal_handler(st, SIGTRAP, buf, buflen);
2269 #endif
2270 }
2271 
2272 static char saved_jvm_path[MAXPATHLEN] = {0};
2273 
2274 // Find the full path to the current module, libjvm.so
2275 void os::jvm_path(char *buf, jint buflen) {
2276   // Error checking.
2277   if (buflen < MAXPATHLEN) {
2278     assert(false, "must use a large-enough buffer");
2279     buf[0] = '\0';
2280     return;
2281   }
2282   // Lazy resolve the path to current module.
2283   if (saved_jvm_path[0] != 0) {
2284     strcpy(buf, saved_jvm_path);
2285     return;
2286   }
2287 
2288   char dli_fname[MAXPATHLEN];
2289   bool ret = dll_address_to_library_name(
2290                                          CAST_FROM_FN_PTR(address, os::jvm_path),
2291                                          dli_fname, sizeof(dli_fname), NULL);
2292   assert(ret, "cannot locate libjvm");
2293   char *rp = NULL;
2294   if (ret && dli_fname[0] != '\0') {
2295     rp = realpath(dli_fname, buf);
2296   }
2297   if (rp == NULL) {
2298     return;
2299   }
2300 
2301   if (Arguments::sun_java_launcher_is_altjvm()) {
2302     // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
2303     // value for buf is "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".
2304     // If "/jre/lib/" appears at the right place in the string, then
2305     // assume we are installed in a JDK and we're done. Otherwise, check
2306     // for a JAVA_HOME environment variable and fix up the path so it
2307     // looks like libjvm.so is installed there (append a fake suffix
2308     // hotspot/libjvm.so).
2309     const char *p = buf + strlen(buf) - 1;
2310     for (int count = 0; p > buf && count < 5; ++count) {
2311       for (--p; p > buf && *p != '/'; --p)
2312         /* empty */ ;
2313     }
2314 
2315     if (strncmp(p, "/jre/lib/", 9) != 0) {
2316       // Look for JAVA_HOME in the environment.
2317       char* java_home_var = ::getenv("JAVA_HOME");
2318       if (java_home_var != NULL && java_home_var[0] != 0) {
2319         char* jrelib_p;
2320         int len;
2321 
2322         // Check the current module name "libjvm.so".
2323         p = strrchr(buf, '/');
2324         if (p == NULL) {
2325           return;
2326         }
2327         assert(strstr(p, "/libjvm") == p, "invalid library name");
2328 
2329         rp = realpath(java_home_var, buf);
2330         if (rp == NULL) {
2331           return;
2332         }
2333 
2334         // determine if this is a legacy image or modules image
2335         // modules image doesn't have "jre" subdirectory
2336         len = strlen(buf);
2337         assert(len < buflen, "Ran out of buffer room");
2338         jrelib_p = buf + len;
2339         snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
2340         if (0 != access(buf, F_OK)) {
2341           snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
2342         }
2343 
2344         if (0 == access(buf, F_OK)) {
2345           // Use current module name "libjvm.so"
2346           len = strlen(buf);
2347           snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
2348         } else {
2349           // Go back to path of .so
2350           rp = realpath(dli_fname, buf);
2351           if (rp == NULL) {
2352             return;
2353           }
2354         }
2355       }
2356     }
2357   }
2358 
2359   strncpy(saved_jvm_path, buf, MAXPATHLEN);
2360   saved_jvm_path[MAXPATHLEN - 1] = '\0';
2361 }
2362 
2363 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2364   // no prefix required, not even "_"
2365 }
2366 
2367 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2368   // no suffix required
2369 }
2370 
2371 ////////////////////////////////////////////////////////////////////////////////
2372 // sun.misc.Signal support
2373 
2374 static volatile jint sigint_count = 0;
2375 
2376 static void UserHandler(int sig, void *siginfo, void *context) {
2377   // 4511530 - sem_post is serialized and handled by the manager thread. When
2378   // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
2379   // don't want to flood the manager thread with sem_post requests.
2380   if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1) {
2381     return;
2382   }
2383 
2384   // Ctrl-C is pressed during error reporting, likely because the error
2385   // handler fails to abort. Let VM die immediately.
2386   if (sig == SIGINT && is_error_reported()) {
2387     os::die();
2388   }
2389 
2390   os::signal_notify(sig);
2391 }
2392 
2393 void* os::user_handler() {
2394   return CAST_FROM_FN_PTR(void*, UserHandler);
2395 }
2396 
2397 Semaphore::Semaphore(uint value, uint max) {
2398   guarantee(value <= max, "value lower than max");
2399   guarantee(max == Semaphore::NoMaxCount || max <= SEM_VALUE_MAX, "Max value set too high");
2400 
2401   int ret = sem_init(&_semaphore, 0, value);
2402   guarantee(ret == 0, "Failed to initialize semaphore");
2403 }
2404 
2405 Semaphore::~Semaphore() {
2406   sem_destroy(&_semaphore);
2407 }
2408 
2409 void Semaphore::signal() {
2410   int ret = sem_post(&_semaphore);
2411   guarantee(ret == 0, err_msg("sem_post failed: %d", ret));
2412 }
2413 
2414 void Semaphore::signal(uint count) {
2415   for (uint i = 0; i < count; i++) {
2416     signal();
2417   }
2418 }
2419 
2420 void Semaphore::wait() {
2421   while (sem_wait(&_semaphore) == -1 && errno == EINTR) {
2422     // Retry if the wait was interrupted by a signal.
2423   }
2424 }
2425 
2426 bool Semaphore::trywait() {
2427   return sem_trywait(&_semaphore) == 0;
2428 }
2429 
2430 bool Semaphore::timedwait(unsigned int sec, int nsec) {
2431 
2432   struct timespec ts;
2433   // Semaphore's are always associated with CLOCK_REALTIME
2434   os::Linux::clock_gettime(CLOCK_REALTIME, &ts);
2435   // see unpackTime for discussion on overflow checking
2436   if (sec >= MAX_SECS) {
2437     ts.tv_sec += MAX_SECS;
2438     ts.tv_nsec = 0;
2439   } else {
2440     ts.tv_sec += sec;
2441     ts.tv_nsec += nsec;
2442     if (ts.tv_nsec >= NANOSECS_PER_SEC) {
2443       ts.tv_nsec -= NANOSECS_PER_SEC;
2444       ++ts.tv_sec; // note: this must be <= max_secs
2445     }
2446   }
2447 
2448   while (1) {
2449     int result = sem_timedwait(&_semaphore, &ts);
2450     if (result == 0) {
2451       return true;
2452     } else if (errno == EINTR) {
2453       continue;
2454     } else if (errno == ETIMEDOUT) {
2455       return false;
2456     } else {
2457       return false;
2458     }
2459   }
2460 }
2461 
2462 extern "C" {
2463   typedef void (*sa_handler_t)(int);
2464   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2465 }
2466 
2467 void* os::signal(int signal_number, void* handler) {
2468   struct sigaction sigAct, oldSigAct;
2469 
2470   sigfillset(&(sigAct.sa_mask));
2471   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2472   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2473 
2474   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2475     // -1 means registration failed
2476     return (void *)-1;
2477   }
2478 
2479   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2480 }
2481 
2482 void os::signal_raise(int signal_number) {
2483   ::raise(signal_number);
2484 }
2485 
2486 // The following code is moved from os.cpp for making this
2487 // code platform specific, which it is by its very nature.
2488 
2489 // Will be modified when max signal is changed to be dynamic
2490 int os::sigexitnum_pd() {
2491   return NSIG;
2492 }
2493 
2494 // a counter for each possible signal value
2495 static volatile jint pending_signals[NSIG+1] = { 0 };
2496 
2497 // Linux(POSIX) specific hand shaking semaphore.
2498 static sem_t sig_sem;
2499 static Semaphore sr_semaphore;
2500 
2501 void os::signal_init_pd() {
2502   // Initialize signal structures
2503   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2504 
2505   // Initialize signal semaphore
2506   ::sem_init(&sig_sem, 0, 0);
2507 }
2508 
2509 void os::signal_notify(int sig) {
2510   Atomic::inc(&pending_signals[sig]);
2511   ::sem_post(&sig_sem);
2512 }
2513 
2514 static int check_pending_signals(bool wait) {
2515   Atomic::store(0, &sigint_count);
2516   for (;;) {
2517     for (int i = 0; i < NSIG + 1; i++) {
2518       jint n = pending_signals[i];
2519       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2520         return i;
2521       }
2522     }
2523     if (!wait) {
2524       return -1;
2525     }
2526     JavaThread *thread = JavaThread::current();
2527     ThreadBlockInVM tbivm(thread);
2528 
2529     bool threadIsSuspended;
2530     do {
2531       thread->set_suspend_equivalent();
2532       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2533       ::sem_wait(&sig_sem);
2534 
2535       // were we externally suspended while we were waiting?
2536       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2537       if (threadIsSuspended) {
2538         // The semaphore has been incremented, but while we were waiting
2539         // another thread suspended us. We don't want to continue running
2540         // while suspended because that would surprise the thread that
2541         // suspended us.
2542         ::sem_post(&sig_sem);
2543 
2544         thread->java_suspend_self();
2545       }
2546     } while (threadIsSuspended);
2547   }
2548 }
2549 
2550 int os::signal_lookup() {
2551   return check_pending_signals(false);
2552 }
2553 
2554 int os::signal_wait() {
2555   return check_pending_signals(true);
2556 }
2557 
2558 ////////////////////////////////////////////////////////////////////////////////
2559 // Virtual Memory
2560 
2561 int os::vm_page_size() {
2562   // Seems redundant as all get out
2563   assert(os::Linux::page_size() != -1, "must call os::init");
2564   return os::Linux::page_size();
2565 }
2566 
2567 // Solaris allocates memory by pages.
2568 int os::vm_allocation_granularity() {
2569   assert(os::Linux::page_size() != -1, "must call os::init");
2570   return os::Linux::page_size();
2571 }
2572 
2573 // Rationale behind this function:
2574 //  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2575 //  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2576 //  samples for JITted code. Here we create private executable mapping over the code cache
2577 //  and then we can use standard (well, almost, as mapping can change) way to provide
2578 //  info for the reporting script by storing timestamp and location of symbol
2579 void linux_wrap_code(char* base, size_t size) {
2580   static volatile jint cnt = 0;
2581 
2582   if (!UseOprofile) {
2583     return;
2584   }
2585 
2586   char buf[PATH_MAX+1];
2587   int num = Atomic::add(1, &cnt);
2588 
2589   snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
2590            os::get_temp_directory(), os::current_process_id(), num);
2591   unlink(buf);
2592 
2593   int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2594 
2595   if (fd != -1) {
2596     off_t rv = ::lseek(fd, size-2, SEEK_SET);
2597     if (rv != (off_t)-1) {
2598       if (::write(fd, "", 1) == 1) {
2599         mmap(base, size,
2600              PROT_READ|PROT_WRITE|PROT_EXEC,
2601              MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2602       }
2603     }
2604     ::close(fd);
2605     unlink(buf);
2606   }
2607 }
2608 
2609 static bool recoverable_mmap_error(int err) {
2610   // See if the error is one we can let the caller handle. This
2611   // list of errno values comes from JBS-6843484. I can't find a
2612   // Linux man page that documents this specific set of errno
2613   // values so while this list currently matches Solaris, it may
2614   // change as we gain experience with this failure mode.
2615   switch (err) {
2616   case EBADF:
2617   case EINVAL:
2618   case ENOTSUP:
2619     // let the caller deal with these errors
2620     return true;
2621 
2622   default:
2623     // Any remaining errors on this OS can cause our reserved mapping
2624     // to be lost. That can cause confusion where different data
2625     // structures think they have the same memory mapped. The worst
2626     // scenario is if both the VM and a library think they have the
2627     // same memory mapped.
2628     return false;
2629   }
2630 }
2631 
2632 static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2633                                     int err) {
2634   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2635           ", %d) failed; error='%s' (errno=%d)", addr, size, exec,
2636           strerror(err), err);
2637 }
2638 
2639 static void warn_fail_commit_memory(char* addr, size_t size,
2640                                     size_t alignment_hint, bool exec,
2641                                     int err) {
2642   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2643           ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", addr, size,
2644           alignment_hint, exec, strerror(err), err);
2645 }
2646 
2647 // NOTE: Linux kernel does not really reserve the pages for us.
2648 //       All it does is to check if there are enough free pages
2649 //       left at the time of mmap(). This could be a potential
2650 //       problem.
2651 int os::Linux::commit_memory_impl(char* addr, size_t size, bool exec) {
2652   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2653   uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2654                                      MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2655   if (res != (uintptr_t) MAP_FAILED) {
2656     if (UseNUMAInterleaving) {
2657       numa_make_global(addr, size);
2658     }
2659     return 0;
2660   }
2661 
2662   int err = errno;  // save errno from mmap() call above
2663 
2664   if (!recoverable_mmap_error(err)) {
2665     warn_fail_commit_memory(addr, size, exec, err);
2666     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "committing reserved memory.");
2667   }
2668 
2669   return err;
2670 }
2671 
2672 bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2673   return os::Linux::commit_memory_impl(addr, size, exec) == 0;
2674 }
2675 
2676 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2677                                   const char* mesg) {
2678   assert(mesg != NULL, "mesg must be specified");
2679   int err = os::Linux::commit_memory_impl(addr, size, exec);
2680   if (err != 0) {
2681     // the caller wants all commit errors to exit with the specified mesg:
2682     warn_fail_commit_memory(addr, size, exec, err);
2683     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
2684   }
2685 }
2686 
2687 // Define MAP_HUGETLB here so we can build HotSpot on old systems.
2688 #ifndef MAP_HUGETLB
2689   #define MAP_HUGETLB 0x40000
2690 #endif
2691 
2692 // Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
2693 #ifndef MADV_HUGEPAGE
2694   #define MADV_HUGEPAGE 14
2695 #endif
2696 
2697 int os::Linux::commit_memory_impl(char* addr, size_t size,
2698                                   size_t alignment_hint, bool exec) {
2699   int err = os::Linux::commit_memory_impl(addr, size, exec);
2700   if (err == 0) {
2701     realign_memory(addr, size, alignment_hint);
2702   }
2703   return err;
2704 }
2705 
2706 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2707                           bool exec) {
2708   return os::Linux::commit_memory_impl(addr, size, alignment_hint, exec) == 0;
2709 }
2710 
2711 void os::pd_commit_memory_or_exit(char* addr, size_t size,
2712                                   size_t alignment_hint, bool exec,
2713                                   const char* mesg) {
2714   assert(mesg != NULL, "mesg must be specified");
2715   int err = os::Linux::commit_memory_impl(addr, size, alignment_hint, exec);
2716   if (err != 0) {
2717     // the caller wants all commit errors to exit with the specified mesg:
2718     warn_fail_commit_memory(addr, size, alignment_hint, exec, err);
2719     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
2720   }
2721 }
2722 
2723 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2724   if (UseTransparentHugePages && alignment_hint > (size_t)vm_page_size()) {
2725     // We don't check the return value: madvise(MADV_HUGEPAGE) may not
2726     // be supported or the memory may already be backed by huge pages.
2727     ::madvise(addr, bytes, MADV_HUGEPAGE);
2728   }
2729 }
2730 
2731 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2732   // This method works by doing an mmap over an existing mmaping and effectively discarding
2733   // the existing pages. However it won't work for SHM-based large pages that cannot be
2734   // uncommitted at all. We don't do anything in this case to avoid creating a segment with
2735   // small pages on top of the SHM segment. This method always works for small pages, so we
2736   // allow that in any case.
2737   if (alignment_hint <= (size_t)os::vm_page_size() || can_commit_large_page_memory()) {
2738     commit_memory(addr, bytes, alignment_hint, !ExecMem);
2739   }
2740 }
2741 
2742 void os::numa_make_global(char *addr, size_t bytes) {
2743   Linux::numa_interleave_memory(addr, bytes);
2744 }
2745 
2746 // Define for numa_set_bind_policy(int). Setting the argument to 0 will set the
2747 // bind policy to MPOL_PREFERRED for the current thread.
2748 #define USE_MPOL_PREFERRED 0
2749 
2750 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2751   // To make NUMA and large pages more robust when both enabled, we need to ease
2752   // the requirements on where the memory should be allocated. MPOL_BIND is the
2753   // default policy and it will force memory to be allocated on the specified
2754   // node. Changing this to MPOL_PREFERRED will prefer to allocate the memory on
2755   // the specified node, but will not force it. Using this policy will prevent
2756   // getting SIGBUS when trying to allocate large pages on NUMA nodes with no
2757   // free large pages.
2758   Linux::numa_set_bind_policy(USE_MPOL_PREFERRED);
2759   Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
2760 }
2761 
2762 bool os::numa_topology_changed() { return false; }
2763 
2764 size_t os::numa_get_groups_num() {
2765   int max_node = Linux::numa_max_node();
2766   return max_node > 0 ? max_node + 1 : 1;
2767 }
2768 
2769 int os::numa_get_group_id() {
2770   int cpu_id = Linux::sched_getcpu();
2771   if (cpu_id != -1) {
2772     int lgrp_id = Linux::get_node_by_cpu(cpu_id);
2773     if (lgrp_id != -1) {
2774       return lgrp_id;
2775     }
2776   }
2777   return 0;
2778 }
2779 
2780 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2781   for (size_t i = 0; i < size; i++) {
2782     ids[i] = i;
2783   }
2784   return size;
2785 }
2786 
2787 bool os::get_page_info(char *start, page_info* info) {
2788   return false;
2789 }
2790 
2791 char *os::scan_pages(char *start, char* end, page_info* page_expected,
2792                      page_info* page_found) {
2793   return end;
2794 }
2795 
2796 
2797 int os::Linux::sched_getcpu_syscall(void) {
2798   unsigned int cpu;
2799   int retval = -1;
2800 
2801 #if defined(IA32)
2802   #ifndef SYS_getcpu
2803     #define SYS_getcpu 318
2804   #endif
2805   retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
2806 #elif defined(AMD64)
2807 // Unfortunately we have to bring all these macros here from vsyscall.h
2808 // to be able to compile on old linuxes.
2809   #define __NR_vgetcpu 2
2810   #define VSYSCALL_START (-10UL << 20)
2811   #define VSYSCALL_SIZE 1024
2812   #define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
2813   typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
2814   vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
2815   retval = vgetcpu(&cpu, NULL, NULL);
2816 #endif
2817 
2818   return (retval == -1) ? retval : cpu;
2819 }
2820 
2821 // Something to do with the numa-aware allocator needs these symbols
2822 extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
2823 extern "C" JNIEXPORT void numa_error(char *where) { }
2824 extern "C" JNIEXPORT int fork1() { return fork(); }
2825 
2826 
2827 // If we are running with libnuma version > 2, then we should
2828 // be trying to use symbols with versions 1.1
2829 // If we are running with earlier version, which did not have symbol versions,
2830 // we should use the base version.
2831 void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
2832   void *f = dlvsym(handle, name, "libnuma_1.1");
2833   if (f == NULL) {
2834     f = dlsym(handle, name);
2835   }
2836   return f;
2837 }
2838 
2839 bool os::Linux::libnuma_init() {
2840   // sched_getcpu() should be in libc.
2841   set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2842                                   dlsym(RTLD_DEFAULT, "sched_getcpu")));
2843 
2844   // If it's not, try a direct syscall.
2845   if (sched_getcpu() == -1) {
2846     set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2847                                     (void*)&sched_getcpu_syscall));
2848   }
2849 
2850   if (sched_getcpu() != -1) { // Does it work?
2851     void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
2852     if (handle != NULL) {
2853       set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
2854                                            libnuma_dlsym(handle, "numa_node_to_cpus")));
2855       set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
2856                                        libnuma_dlsym(handle, "numa_max_node")));
2857       set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
2858                                         libnuma_dlsym(handle, "numa_available")));
2859       set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
2860                                             libnuma_dlsym(handle, "numa_tonode_memory")));
2861       set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
2862                                                 libnuma_dlsym(handle, "numa_interleave_memory")));
2863       set_numa_set_bind_policy(CAST_TO_FN_PTR(numa_set_bind_policy_func_t,
2864                                               libnuma_dlsym(handle, "numa_set_bind_policy")));
2865 
2866 
2867       if (numa_available() != -1) {
2868         set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
2869         // Create a cpu -> node mapping
2870         _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
2871         rebuild_cpu_to_node_map();
2872         return true;
2873       }
2874     }
2875   }
2876   return false;
2877 }
2878 
2879 // rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
2880 // The table is later used in get_node_by_cpu().
2881 void os::Linux::rebuild_cpu_to_node_map() {
2882   const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
2883                               // in libnuma (possible values are starting from 16,
2884                               // and continuing up with every other power of 2, but less
2885                               // than the maximum number of CPUs supported by kernel), and
2886                               // is a subject to change (in libnuma version 2 the requirements
2887                               // are more reasonable) we'll just hardcode the number they use
2888                               // in the library.
2889   const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
2890 
2891   size_t cpu_num = os::active_processor_count();
2892   size_t cpu_map_size = NCPUS / BitsPerCLong;
2893   size_t cpu_map_valid_size =
2894     MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
2895 
2896   cpu_to_node()->clear();
2897   cpu_to_node()->at_grow(cpu_num - 1);
2898   size_t node_num = numa_get_groups_num();
2899 
2900   unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
2901   for (size_t i = 0; i < node_num; i++) {
2902     if (numa_node_to_cpus(i, cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
2903       for (size_t j = 0; j < cpu_map_valid_size; j++) {
2904         if (cpu_map[j] != 0) {
2905           for (size_t k = 0; k < BitsPerCLong; k++) {
2906             if (cpu_map[j] & (1UL << k)) {
2907               cpu_to_node()->at_put(j * BitsPerCLong + k, i);
2908             }
2909           }
2910         }
2911       }
2912     }
2913   }
2914   FREE_C_HEAP_ARRAY(unsigned long, cpu_map);
2915 }
2916 
2917 int os::Linux::get_node_by_cpu(int cpu_id) {
2918   if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
2919     return cpu_to_node()->at(cpu_id);
2920   }
2921   return -1;
2922 }
2923 
2924 GrowableArray<int>* os::Linux::_cpu_to_node;
2925 os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
2926 os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
2927 os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
2928 os::Linux::numa_available_func_t os::Linux::_numa_available;
2929 os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
2930 os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
2931 os::Linux::numa_set_bind_policy_func_t os::Linux::_numa_set_bind_policy;
2932 unsigned long* os::Linux::_numa_all_nodes;
2933 
2934 bool os::pd_uncommit_memory(char* addr, size_t size) {
2935   uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
2936                                      MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
2937   return res  != (uintptr_t) MAP_FAILED;
2938 }
2939 
2940 static address get_stack_commited_bottom(address bottom, size_t size) {
2941   address nbot = bottom;
2942   address ntop = bottom + size;
2943 
2944   size_t page_sz = os::vm_page_size();
2945   unsigned pages = size / page_sz;
2946 
2947   unsigned char vec[1];
2948   unsigned imin = 1, imax = pages + 1, imid;
2949   int mincore_return_value = 0;
2950 
2951   assert(imin <= imax, "Unexpected page size");
2952 
2953   while (imin < imax) {
2954     imid = (imax + imin) / 2;
2955     nbot = ntop - (imid * page_sz);
2956 
2957     // Use a trick with mincore to check whether the page is mapped or not.
2958     // mincore sets vec to 1 if page resides in memory and to 0 if page
2959     // is swapped output but if page we are asking for is unmapped
2960     // it returns -1,ENOMEM
2961     mincore_return_value = mincore(nbot, page_sz, vec);
2962 
2963     if (mincore_return_value == -1) {
2964       // Page is not mapped go up
2965       // to find first mapped page
2966       if (errno != EAGAIN) {
2967         assert(errno == ENOMEM, "Unexpected mincore errno");
2968         imax = imid;
2969       }
2970     } else {
2971       // Page is mapped go down
2972       // to find first not mapped page
2973       imin = imid + 1;
2974     }
2975   }
2976 
2977   nbot = nbot + page_sz;
2978 
2979   // Adjust stack bottom one page up if last checked page is not mapped
2980   if (mincore_return_value == -1) {
2981     nbot = nbot + page_sz;
2982   }
2983 
2984   return nbot;
2985 }
2986 
2987 
2988 // Linux uses a growable mapping for the stack, and if the mapping for
2989 // the stack guard pages is not removed when we detach a thread the
2990 // stack cannot grow beyond the pages where the stack guard was
2991 // mapped.  If at some point later in the process the stack expands to
2992 // that point, the Linux kernel cannot expand the stack any further
2993 // because the guard pages are in the way, and a segfault occurs.
2994 //
2995 // However, it's essential not to split the stack region by unmapping
2996 // a region (leaving a hole) that's already part of the stack mapping,
2997 // so if the stack mapping has already grown beyond the guard pages at
2998 // the time we create them, we have to truncate the stack mapping.
2999 // So, we need to know the extent of the stack mapping when
3000 // create_stack_guard_pages() is called.
3001 
3002 // We only need this for stacks that are growable: at the time of
3003 // writing thread stacks don't use growable mappings (i.e. those
3004 // creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
3005 // only applies to the main thread.
3006 
3007 // If the (growable) stack mapping already extends beyond the point
3008 // where we're going to put our guard pages, truncate the mapping at
3009 // that point by munmap()ping it.  This ensures that when we later
3010 // munmap() the guard pages we don't leave a hole in the stack
3011 // mapping. This only affects the main/initial thread
3012 
3013 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
3014   if (os::Linux::is_initial_thread()) {
3015     // As we manually grow stack up to bottom inside create_attached_thread(),
3016     // it's likely that os::Linux::initial_thread_stack_bottom is mapped and
3017     // we don't need to do anything special.
3018     // Check it first, before calling heavy function.
3019     uintptr_t stack_extent = (uintptr_t) os::Linux::initial_thread_stack_bottom();
3020     unsigned char vec[1];
3021 
3022     if (mincore((address)stack_extent, os::vm_page_size(), vec) == -1) {
3023       // Fallback to slow path on all errors, including EAGAIN
3024       stack_extent = (uintptr_t) get_stack_commited_bottom(
3025                                                            os::Linux::initial_thread_stack_bottom(),
3026                                                            (size_t)addr - stack_extent);
3027     }
3028 
3029     if (stack_extent < (uintptr_t)addr) {
3030       ::munmap((void*)stack_extent, (uintptr_t)(addr - stack_extent));
3031     }
3032   }
3033 
3034   return os::commit_memory(addr, size, !ExecMem);
3035 }
3036 
3037 // If this is a growable mapping, remove the guard pages entirely by
3038 // munmap()ping them.  If not, just call uncommit_memory(). This only
3039 // affects the main/initial thread, but guard against future OS changes
3040 // It's safe to always unmap guard pages for initial thread because we
3041 // always place it right after end of the mapped region
3042 
3043 bool os::remove_stack_guard_pages(char* addr, size_t size) {
3044   uintptr_t stack_extent, stack_base;
3045 
3046   if (os::Linux::is_initial_thread()) {
3047     return ::munmap(addr, size) == 0;
3048   }
3049 
3050   return os::uncommit_memory(addr, size);
3051 }
3052 
3053 static address _highest_vm_reserved_address = NULL;
3054 
3055 // If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
3056 // at 'requested_addr'. If there are existing memory mappings at the same
3057 // location, however, they will be overwritten. If 'fixed' is false,
3058 // 'requested_addr' is only treated as a hint, the return value may or
3059 // may not start from the requested address. Unlike Linux mmap(), this
3060 // function returns NULL to indicate failure.
3061 static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
3062   char * addr;
3063   int flags;
3064 
3065   flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
3066   if (fixed) {
3067     assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
3068     flags |= MAP_FIXED;
3069   }
3070 
3071   // Map reserved/uncommitted pages PROT_NONE so we fail early if we
3072   // touch an uncommitted page. Otherwise, the read/write might
3073   // succeed if we have enough swap space to back the physical page.
3074   addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
3075                        flags, -1, 0);
3076 
3077   if (addr != MAP_FAILED) {
3078     // anon_mmap() should only get called during VM initialization,
3079     // don't need lock (actually we can skip locking even it can be called
3080     // from multiple threads, because _highest_vm_reserved_address is just a
3081     // hint about the upper limit of non-stack memory regions.)
3082     if ((address)addr + bytes > _highest_vm_reserved_address) {
3083       _highest_vm_reserved_address = (address)addr + bytes;
3084     }
3085   }
3086 
3087   return addr == MAP_FAILED ? NULL : addr;
3088 }
3089 
3090 // Don't update _highest_vm_reserved_address, because there might be memory
3091 // regions above addr + size. If so, releasing a memory region only creates
3092 // a hole in the address space, it doesn't help prevent heap-stack collision.
3093 //
3094 static int anon_munmap(char * addr, size_t size) {
3095   return ::munmap(addr, size) == 0;
3096 }
3097 
3098 char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
3099                             size_t alignment_hint) {
3100   return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
3101 }
3102 
3103 bool os::pd_release_memory(char* addr, size_t size) {
3104   return anon_munmap(addr, size);
3105 }
3106 
3107 static address highest_vm_reserved_address() {
3108   return _highest_vm_reserved_address;
3109 }
3110 
3111 static bool linux_mprotect(char* addr, size_t size, int prot) {
3112   // Linux wants the mprotect address argument to be page aligned.
3113   char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());
3114 
3115   // According to SUSv3, mprotect() should only be used with mappings
3116   // established by mmap(), and mmap() always maps whole pages. Unaligned
3117   // 'addr' likely indicates problem in the VM (e.g. trying to change
3118   // protection of malloc'ed or statically allocated memory). Check the
3119   // caller if you hit this assert.
3120   assert(addr == bottom, "sanity check");
3121 
3122   size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
3123   return ::mprotect(bottom, size, prot) == 0;
3124 }
3125 
3126 // Set protections specified
3127 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3128                         bool is_committed) {
3129   unsigned int p = 0;
3130   switch (prot) {
3131   case MEM_PROT_NONE: p = PROT_NONE; break;
3132   case MEM_PROT_READ: p = PROT_READ; break;
3133   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
3134   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
3135   default:
3136     ShouldNotReachHere();
3137   }
3138   // is_committed is unused.
3139   return linux_mprotect(addr, bytes, p);
3140 }
3141 
3142 bool os::guard_memory(char* addr, size_t size) {
3143   return linux_mprotect(addr, size, PROT_NONE);
3144 }
3145 
3146 bool os::unguard_memory(char* addr, size_t size) {
3147   return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
3148 }
3149 
3150 bool os::Linux::transparent_huge_pages_sanity_check(bool warn,
3151                                                     size_t page_size) {
3152   bool result = false;
3153   void *p = mmap(NULL, page_size * 2, PROT_READ|PROT_WRITE,
3154                  MAP_ANONYMOUS|MAP_PRIVATE,
3155                  -1, 0);
3156   if (p != MAP_FAILED) {
3157     void *aligned_p = align_ptr_up(p, page_size);
3158 
3159     result = madvise(aligned_p, page_size, MADV_HUGEPAGE) == 0;
3160 
3161     munmap(p, page_size * 2);
3162   }
3163 
3164   if (warn && !result) {
3165     warning("TransparentHugePages is not supported by the operating system.");
3166   }
3167 
3168   return result;
3169 }
3170 
3171 bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
3172   bool result = false;
3173   void *p = mmap(NULL, page_size, PROT_READ|PROT_WRITE,
3174                  MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
3175                  -1, 0);
3176 
3177   if (p != MAP_FAILED) {
3178     // We don't know if this really is a huge page or not.
3179     FILE *fp = fopen("/proc/self/maps", "r");
3180     if (fp) {
3181       while (!feof(fp)) {
3182         char chars[257];
3183         long x = 0;
3184         if (fgets(chars, sizeof(chars), fp)) {
3185           if (sscanf(chars, "%lx-%*x", &x) == 1
3186               && x == (long)p) {
3187             if (strstr (chars, "hugepage")) {
3188               result = true;
3189               break;
3190             }
3191           }
3192         }
3193       }
3194       fclose(fp);
3195     }
3196     munmap(p, page_size);
3197   }
3198 
3199   if (warn && !result) {
3200     warning("HugeTLBFS is not supported by the operating system.");
3201   }
3202 
3203   return result;
3204 }
3205 
3206 // Set the coredump_filter bits to include largepages in core dump (bit 6)
3207 //
3208 // From the coredump_filter documentation:
3209 //
3210 // - (bit 0) anonymous private memory
3211 // - (bit 1) anonymous shared memory
3212 // - (bit 2) file-backed private memory
3213 // - (bit 3) file-backed shared memory
3214 // - (bit 4) ELF header pages in file-backed private memory areas (it is
3215 //           effective only if the bit 2 is cleared)
3216 // - (bit 5) hugetlb private memory
3217 // - (bit 6) hugetlb shared memory
3218 //
3219 static void set_coredump_filter(void) {
3220   FILE *f;
3221   long cdm;
3222 
3223   if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
3224     return;
3225   }
3226 
3227   if (fscanf(f, "%lx", &cdm) != 1) {
3228     fclose(f);
3229     return;
3230   }
3231 
3232   rewind(f);
3233 
3234   if ((cdm & LARGEPAGES_BIT) == 0) {
3235     cdm |= LARGEPAGES_BIT;
3236     fprintf(f, "%#lx", cdm);
3237   }
3238 
3239   fclose(f);
3240 }
3241 
3242 // Large page support
3243 
3244 static size_t _large_page_size = 0;
3245 
3246 size_t os::Linux::find_large_page_size() {
3247   size_t large_page_size = 0;
3248 
3249   // large_page_size on Linux is used to round up heap size. x86 uses either
3250   // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
3251   // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
3252   // page as large as 256M.
3253   //
3254   // Here we try to figure out page size by parsing /proc/meminfo and looking
3255   // for a line with the following format:
3256   //    Hugepagesize:     2048 kB
3257   //
3258   // If we can't determine the value (e.g. /proc is not mounted, or the text
3259   // format has been changed), we'll use the largest page size supported by
3260   // the processor.
3261 
3262 #ifndef ZERO
3263   large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M)
3264                      ARM32_ONLY(2 * M) PPC_ONLY(4 * M) AARCH64_ONLY(2 * M);
3265 #endif // ZERO
3266 
3267   FILE *fp = fopen("/proc/meminfo", "r");
3268   if (fp) {
3269     while (!feof(fp)) {
3270       int x = 0;
3271       char buf[16];
3272       if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
3273         if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
3274           large_page_size = x * K;
3275           break;
3276         }
3277       } else {
3278         // skip to next line
3279         for (;;) {
3280           int ch = fgetc(fp);
3281           if (ch == EOF || ch == (int)'\n') break;
3282         }
3283       }
3284     }
3285     fclose(fp);
3286   }
3287 
3288   if (!FLAG_IS_DEFAULT(LargePageSizeInBytes) && LargePageSizeInBytes != large_page_size) {
3289     warning("Setting LargePageSizeInBytes has no effect on this OS. Large page size is "
3290             SIZE_FORMAT "%s.", byte_size_in_proper_unit(large_page_size),
3291             proper_unit_for_byte_size(large_page_size));
3292   }
3293 
3294   return large_page_size;
3295 }
3296 
3297 size_t os::Linux::setup_large_page_size() {
3298   _large_page_size = Linux::find_large_page_size();
3299   const size_t default_page_size = (size_t)Linux::page_size();
3300   if (_large_page_size > default_page_size) {
3301     _page_sizes[0] = _large_page_size;
3302     _page_sizes[1] = default_page_size;
3303     _page_sizes[2] = 0;
3304   }
3305 
3306   return _large_page_size;
3307 }
3308 
3309 bool os::Linux::setup_large_page_type(size_t page_size) {
3310   if (FLAG_IS_DEFAULT(UseHugeTLBFS) &&
3311       FLAG_IS_DEFAULT(UseSHM) &&
3312       FLAG_IS_DEFAULT(UseTransparentHugePages)) {
3313 
3314     // The type of large pages has not been specified by the user.
3315 
3316     // Try UseHugeTLBFS and then UseSHM.
3317     UseHugeTLBFS = UseSHM = true;
3318 
3319     // Don't try UseTransparentHugePages since there are known
3320     // performance issues with it turned on. This might change in the future.
3321     UseTransparentHugePages = false;
3322   }
3323 
3324   if (UseTransparentHugePages) {
3325     bool warn_on_failure = !FLAG_IS_DEFAULT(UseTransparentHugePages);
3326     if (transparent_huge_pages_sanity_check(warn_on_failure, page_size)) {
3327       UseHugeTLBFS = false;
3328       UseSHM = false;
3329       return true;
3330     }
3331     UseTransparentHugePages = false;
3332   }
3333 
3334   if (UseHugeTLBFS) {
3335     bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
3336     if (hugetlbfs_sanity_check(warn_on_failure, page_size)) {
3337       UseSHM = false;
3338       return true;
3339     }
3340     UseHugeTLBFS = false;
3341   }
3342 
3343   return UseSHM;
3344 }
3345 
3346 void os::large_page_init() {
3347   if (!UseLargePages &&
3348       !UseTransparentHugePages &&
3349       !UseHugeTLBFS &&
3350       !UseSHM) {
3351     // Not using large pages.
3352     return;
3353   }
3354 
3355   if (!FLAG_IS_DEFAULT(UseLargePages) && !UseLargePages) {
3356     // The user explicitly turned off large pages.
3357     // Ignore the rest of the large pages flags.
3358     UseTransparentHugePages = false;
3359     UseHugeTLBFS = false;
3360     UseSHM = false;
3361     return;
3362   }
3363 
3364   size_t large_page_size = Linux::setup_large_page_size();
3365   UseLargePages          = Linux::setup_large_page_type(large_page_size);
3366 
3367   set_coredump_filter();
3368 }
3369 
3370 #ifndef SHM_HUGETLB
3371   #define SHM_HUGETLB 04000
3372 #endif
3373 
3374 char* os::Linux::reserve_memory_special_shm(size_t bytes, size_t alignment,
3375                                             char* req_addr, bool exec) {
3376   // "exec" is passed in but not used.  Creating the shared image for
3377   // the code cache doesn't have an SHM_X executable permission to check.
3378   assert(UseLargePages && UseSHM, "only for SHM large pages");
3379   assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
3380 
3381   if (!is_size_aligned(bytes, os::large_page_size()) || alignment > os::large_page_size()) {
3382     return NULL; // Fallback to small pages.
3383   }
3384 
3385   key_t key = IPC_PRIVATE;
3386   char *addr;
3387 
3388   bool warn_on_failure = UseLargePages &&
3389                         (!FLAG_IS_DEFAULT(UseLargePages) ||
3390                          !FLAG_IS_DEFAULT(UseSHM) ||
3391                          !FLAG_IS_DEFAULT(LargePageSizeInBytes));
3392   char msg[128];
3393 
3394   // Create a large shared memory region to attach to based on size.
3395   // Currently, size is the total size of the heap
3396   int shmid = shmget(key, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
3397   if (shmid == -1) {
3398     // Possible reasons for shmget failure:
3399     // 1. shmmax is too small for Java heap.
3400     //    > check shmmax value: cat /proc/sys/kernel/shmmax
3401     //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
3402     // 2. not enough large page memory.
3403     //    > check available large pages: cat /proc/meminfo
3404     //    > increase amount of large pages:
3405     //          echo new_value > /proc/sys/vm/nr_hugepages
3406     //      Note 1: different Linux may use different name for this property,
3407     //            e.g. on Redhat AS-3 it is "hugetlb_pool".
3408     //      Note 2: it's possible there's enough physical memory available but
3409     //            they are so fragmented after a long run that they can't
3410     //            coalesce into large pages. Try to reserve large pages when
3411     //            the system is still "fresh".
3412     if (warn_on_failure) {
3413       jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
3414       warning("%s", msg);
3415     }
3416     return NULL;
3417   }
3418 
3419   // attach to the region
3420   addr = (char*)shmat(shmid, req_addr, 0);
3421   int err = errno;
3422 
3423   // Remove shmid. If shmat() is successful, the actual shared memory segment
3424   // will be deleted when it's detached by shmdt() or when the process
3425   // terminates. If shmat() is not successful this will remove the shared
3426   // segment immediately.
3427   shmctl(shmid, IPC_RMID, NULL);
3428 
3429   if ((intptr_t)addr == -1) {
3430     if (warn_on_failure) {
3431       jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
3432       warning("%s", msg);
3433     }
3434     return NULL;
3435   }
3436 
3437   return addr;
3438 }
3439 
3440 static void warn_on_large_pages_failure(char* req_addr, size_t bytes,
3441                                         int error) {
3442   assert(error == ENOMEM, "Only expect to fail if no memory is available");
3443 
3444   bool warn_on_failure = UseLargePages &&
3445       (!FLAG_IS_DEFAULT(UseLargePages) ||
3446        !FLAG_IS_DEFAULT(UseHugeTLBFS) ||
3447        !FLAG_IS_DEFAULT(LargePageSizeInBytes));
3448 
3449   if (warn_on_failure) {
3450     char msg[128];
3451     jio_snprintf(msg, sizeof(msg), "Failed to reserve large pages memory req_addr: "
3452                  PTR_FORMAT " bytes: " SIZE_FORMAT " (errno = %d).", req_addr, bytes, error);
3453     warning("%s", msg);
3454   }
3455 }
3456 
3457 char* os::Linux::reserve_memory_special_huge_tlbfs_only(size_t bytes,
3458                                                         char* req_addr,
3459                                                         bool exec) {
3460   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3461   assert(is_size_aligned(bytes, os::large_page_size()), "Unaligned size");
3462   assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
3463 
3464   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3465   char* addr = (char*)::mmap(req_addr, bytes, prot,
3466                              MAP_PRIVATE|MAP_ANONYMOUS|MAP_HUGETLB,
3467                              -1, 0);
3468 
3469   if (addr == MAP_FAILED) {
3470     warn_on_large_pages_failure(req_addr, bytes, errno);
3471     return NULL;
3472   }
3473 
3474   assert(is_ptr_aligned(addr, os::large_page_size()), "Must be");
3475 
3476   return addr;
3477 }
3478 
3479 // Helper for os::Linux::reserve_memory_special_huge_tlbfs_mixed().
3480 // Allocate (using mmap, NO_RESERVE, with small pages) at either a given request address
3481 //   (req_addr != NULL) or with a given alignment.
3482 //  - bytes shall be a multiple of alignment.
3483 //  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
3484 //  - alignment sets the alignment at which memory shall be allocated.
3485 //     It must be a multiple of allocation granularity.
3486 // Returns address of memory or NULL. If req_addr was not NULL, will only return
3487 //  req_addr or NULL.
3488 static char* anon_mmap_aligned(size_t bytes, size_t alignment, char* req_addr) {
3489 
3490   size_t extra_size = bytes;
3491   if (req_addr == NULL && alignment > 0) {
3492     extra_size += alignment;
3493   }
3494 
3495   char* start = (char*) ::mmap(req_addr, extra_size, PROT_NONE,
3496     MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
3497     -1, 0);
3498   if (start == MAP_FAILED) {
3499     start = NULL;
3500   } else {
3501     if (req_addr != NULL) {
3502       if (start != req_addr) {
3503         ::munmap(start, extra_size);
3504         start = NULL;
3505       }
3506     } else {
3507       char* const start_aligned = (char*) align_ptr_up(start, alignment);
3508       char* const end_aligned = start_aligned + bytes;
3509       char* const end = start + extra_size;
3510       if (start_aligned > start) {
3511         ::munmap(start, start_aligned - start);
3512       }
3513       if (end_aligned < end) {
3514         ::munmap(end_aligned, end - end_aligned);
3515       }
3516       start = start_aligned;
3517     }
3518   }
3519   return start;
3520 
3521 }
3522 
3523 // Reserve memory using mmap(MAP_HUGETLB).
3524 //  - bytes shall be a multiple of alignment.
3525 //  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
3526 //  - alignment sets the alignment at which memory shall be allocated.
3527 //     It must be a multiple of allocation granularity.
3528 // Returns address of memory or NULL. If req_addr was not NULL, will only return
3529 //  req_addr or NULL.
3530 char* os::Linux::reserve_memory_special_huge_tlbfs_mixed(size_t bytes,
3531                                                          size_t alignment,
3532                                                          char* req_addr,
3533                                                          bool exec) {
3534   size_t large_page_size = os::large_page_size();
3535   assert(bytes >= large_page_size, "Shouldn't allocate large pages for small sizes");
3536 
3537   assert(is_ptr_aligned(req_addr, alignment), "Must be");
3538   assert(is_size_aligned(bytes, alignment), "Must be");
3539 
3540   // First reserve - but not commit - the address range in small pages.
3541   char* const start = anon_mmap_aligned(bytes, alignment, req_addr);
3542 
3543   if (start == NULL) {
3544     return NULL;
3545   }
3546 
3547   assert(is_ptr_aligned(start, alignment), "Must be");
3548 
3549   char* end = start + bytes;
3550 
3551   // Find the regions of the allocated chunk that can be promoted to large pages.
3552   char* lp_start = (char*)align_ptr_up(start, large_page_size);
3553   char* lp_end   = (char*)align_ptr_down(end, large_page_size);
3554 
3555   size_t lp_bytes = lp_end - lp_start;
3556 
3557   assert(is_size_aligned(lp_bytes, large_page_size), "Must be");
3558 
3559   if (lp_bytes == 0) {
3560     // The mapped region doesn't even span the start and the end of a large page.
3561     // Fall back to allocate a non-special area.
3562     ::munmap(start, end - start);
3563     return NULL;
3564   }
3565 
3566   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3567 
3568   void* result;
3569 
3570   // Commit small-paged leading area.
3571   if (start != lp_start) {
3572     result = ::mmap(start, lp_start - start, prot,
3573                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3574                     -1, 0);
3575     if (result == MAP_FAILED) {
3576       ::munmap(lp_start, end - lp_start);
3577       return NULL;
3578     }
3579   }
3580 
3581   // Commit large-paged area.
3582   result = ::mmap(lp_start, lp_bytes, prot,
3583                   MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED|MAP_HUGETLB,
3584                   -1, 0);
3585   if (result == MAP_FAILED) {
3586     warn_on_large_pages_failure(lp_start, lp_bytes, errno);
3587     // If the mmap above fails, the large pages region will be unmapped and we
3588     // have regions before and after with small pages. Release these regions.
3589     //
3590     // |  mapped  |  unmapped  |  mapped  |
3591     // ^          ^            ^          ^
3592     // start      lp_start     lp_end     end
3593     //
3594     ::munmap(start, lp_start - start);
3595     ::munmap(lp_end, end - lp_end);
3596     return NULL;
3597   }
3598 
3599   // Commit small-paged trailing area.
3600   if (lp_end != end) {
3601     result = ::mmap(lp_end, end - lp_end, prot,
3602                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3603                     -1, 0);
3604     if (result == MAP_FAILED) {
3605       ::munmap(start, lp_end - start);
3606       return NULL;
3607     }
3608   }
3609 
3610   return start;
3611 }
3612 
3613 char* os::Linux::reserve_memory_special_huge_tlbfs(size_t bytes,
3614                                                    size_t alignment,
3615                                                    char* req_addr,
3616                                                    bool exec) {
3617   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3618   assert(is_ptr_aligned(req_addr, alignment), "Must be");
3619   assert(is_size_aligned(alignment, os::vm_allocation_granularity()), "Must be");
3620   assert(is_power_of_2(os::large_page_size()), "Must be");
3621   assert(bytes >= os::large_page_size(), "Shouldn't allocate large pages for small sizes");
3622 
3623   if (is_size_aligned(bytes, os::large_page_size()) && alignment <= os::large_page_size()) {
3624     return reserve_memory_special_huge_tlbfs_only(bytes, req_addr, exec);
3625   } else {
3626     return reserve_memory_special_huge_tlbfs_mixed(bytes, alignment, req_addr, exec);
3627   }
3628 }
3629 
3630 char* os::reserve_memory_special(size_t bytes, size_t alignment,
3631                                  char* req_addr, bool exec) {
3632   assert(UseLargePages, "only for large pages");
3633 
3634   char* addr;
3635   if (UseSHM) {
3636     addr = os::Linux::reserve_memory_special_shm(bytes, alignment, req_addr, exec);
3637   } else {
3638     assert(UseHugeTLBFS, "must be");
3639     addr = os::Linux::reserve_memory_special_huge_tlbfs(bytes, alignment, req_addr, exec);
3640   }
3641 
3642   if (addr != NULL) {
3643     if (UseNUMAInterleaving) {
3644       numa_make_global(addr, bytes);
3645     }
3646 
3647     // The memory is committed
3648     MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, CALLER_PC);
3649   }
3650 
3651   return addr;
3652 }
3653 
3654 bool os::Linux::release_memory_special_shm(char* base, size_t bytes) {
3655   // detaching the SHM segment will also delete it, see reserve_memory_special_shm()
3656   return shmdt(base) == 0;
3657 }
3658 
3659 bool os::Linux::release_memory_special_huge_tlbfs(char* base, size_t bytes) {
3660   return pd_release_memory(base, bytes);
3661 }
3662 
3663 bool os::release_memory_special(char* base, size_t bytes) {
3664   bool res;
3665   if (MemTracker::tracking_level() > NMT_minimal) {
3666     Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
3667     res = os::Linux::release_memory_special_impl(base, bytes);
3668     if (res) {
3669       tkr.record((address)base, bytes);
3670     }
3671 
3672   } else {
3673     res = os::Linux::release_memory_special_impl(base, bytes);
3674   }
3675   return res;
3676 }
3677 
3678 bool os::Linux::release_memory_special_impl(char* base, size_t bytes) {
3679   assert(UseLargePages, "only for large pages");
3680   bool res;
3681 
3682   if (UseSHM) {
3683     res = os::Linux::release_memory_special_shm(base, bytes);
3684   } else {
3685     assert(UseHugeTLBFS, "must be");
3686     res = os::Linux::release_memory_special_huge_tlbfs(base, bytes);
3687   }
3688   return res;
3689 }
3690 
3691 size_t os::large_page_size() {
3692   return _large_page_size;
3693 }
3694 
3695 // With SysV SHM the entire memory region must be allocated as shared
3696 // memory.
3697 // HugeTLBFS allows application to commit large page memory on demand.
3698 // However, when committing memory with HugeTLBFS fails, the region
3699 // that was supposed to be committed will lose the old reservation
3700 // and allow other threads to steal that memory region. Because of this
3701 // behavior we can't commit HugeTLBFS memory.
3702 bool os::can_commit_large_page_memory() {
3703   return UseTransparentHugePages;
3704 }
3705 
3706 bool os::can_execute_large_page_memory() {
3707   return UseTransparentHugePages || UseHugeTLBFS;
3708 }
3709 
3710 // Reserve memory at an arbitrary address, only if that area is
3711 // available (and not reserved for something else).
3712 
3713 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3714   const int max_tries = 10;
3715   char* base[max_tries];
3716   size_t size[max_tries];
3717   const size_t gap = 0x000000;
3718 
3719   // Assert only that the size is a multiple of the page size, since
3720   // that's all that mmap requires, and since that's all we really know
3721   // about at this low abstraction level.  If we need higher alignment,
3722   // we can either pass an alignment to this method or verify alignment
3723   // in one of the methods further up the call chain.  See bug 5044738.
3724   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
3725 
3726   // Repeatedly allocate blocks until the block is allocated at the
3727   // right spot. Give up after max_tries. Note that reserve_memory() will
3728   // automatically update _highest_vm_reserved_address if the call is
3729   // successful. The variable tracks the highest memory address every reserved
3730   // by JVM. It is used to detect heap-stack collision if running with
3731   // fixed-stack LinuxThreads. Because here we may attempt to reserve more
3732   // space than needed, it could confuse the collision detecting code. To
3733   // solve the problem, save current _highest_vm_reserved_address and
3734   // calculate the correct value before return.
3735   address old_highest = _highest_vm_reserved_address;
3736 
3737   // Linux mmap allows caller to pass an address as hint; give it a try first,
3738   // if kernel honors the hint then we can return immediately.
3739   char * addr = anon_mmap(requested_addr, bytes, false);
3740   if (addr == requested_addr) {
3741     return requested_addr;
3742   }
3743 
3744   if (addr != NULL) {
3745     // mmap() is successful but it fails to reserve at the requested address
3746     anon_munmap(addr, bytes);
3747   }
3748 
3749   int i;
3750   for (i = 0; i < max_tries; ++i) {
3751     base[i] = reserve_memory(bytes);
3752 
3753     if (base[i] != NULL) {
3754       // Is this the block we wanted?
3755       if (base[i] == requested_addr) {
3756         size[i] = bytes;
3757         break;
3758       }
3759 
3760       // Does this overlap the block we wanted? Give back the overlapped
3761       // parts and try again.
3762 
3763       ptrdiff_t top_overlap = requested_addr + (bytes + gap) - base[i];
3764       if (top_overlap >= 0 && (size_t)top_overlap < bytes) {
3765         unmap_memory(base[i], top_overlap);
3766         base[i] += top_overlap;
3767         size[i] = bytes - top_overlap;
3768       } else {
3769         ptrdiff_t bottom_overlap = base[i] + bytes - requested_addr;
3770         if (bottom_overlap >= 0 && (size_t)bottom_overlap < bytes) {
3771           unmap_memory(requested_addr, bottom_overlap);
3772           size[i] = bytes - bottom_overlap;
3773         } else {
3774           size[i] = bytes;
3775         }
3776       }
3777     }
3778   }
3779 
3780   // Give back the unused reserved pieces.
3781 
3782   for (int j = 0; j < i; ++j) {
3783     if (base[j] != NULL) {
3784       unmap_memory(base[j], size[j]);
3785     }
3786   }
3787 
3788   if (i < max_tries) {
3789     _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
3790     return requested_addr;
3791   } else {
3792     _highest_vm_reserved_address = old_highest;
3793     return NULL;
3794   }
3795 }
3796 
3797 size_t os::read(int fd, void *buf, unsigned int nBytes) {
3798   return ::read(fd, buf, nBytes);
3799 }
3800 
3801 size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
3802   return ::pread(fd, buf, nBytes, offset);
3803 }
3804 
3805 // Short sleep, direct OS call.
3806 //
3807 // Note: certain versions of Linux CFS scheduler (since 2.6.23) do not guarantee
3808 // sched_yield(2) will actually give up the CPU:
3809 //
3810 //   * Alone on this pariticular CPU, keeps running.
3811 //   * Before the introduction of "skip_buddy" with "compat_yield" disabled
3812 //     (pre 2.6.39).
3813 //
3814 // So calling this with 0 is an alternative.
3815 //
3816 void os::naked_short_sleep(jlong ms) {
3817   struct timespec req;
3818 
3819   assert(ms < 1000, "Un-interruptable sleep, short time use only");
3820   req.tv_sec = 0;
3821   if (ms > 0) {
3822     req.tv_nsec = (ms % 1000) * 1000000;
3823   } else {
3824     req.tv_nsec = 1;
3825   }
3826 
3827   nanosleep(&req, NULL);
3828 
3829   return;
3830 }
3831 
3832 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
3833 void os::infinite_sleep() {
3834   while (true) {    // sleep forever ...
3835     ::sleep(100);   // ... 100 seconds at a time
3836   }
3837 }
3838 
3839 // Used to convert frequent JVM_Yield() to nops
3840 bool os::dont_yield() {
3841   return DontYieldALot;
3842 }
3843 
3844 void os::naked_yield() {
3845   sched_yield();
3846 }
3847 
3848 ////////////////////////////////////////////////////////////////////////////////
3849 // thread priority support
3850 
3851 // Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
3852 // only supports dynamic priority, static priority must be zero. For real-time
3853 // applications, Linux supports SCHED_RR which allows static priority (1-99).
3854 // However, for large multi-threaded applications, SCHED_RR is not only slower
3855 // than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
3856 // of 5 runs - Sep 2005).
3857 //
3858 // The following code actually changes the niceness of kernel-thread/LWP. It
3859 // has an assumption that setpriority() only modifies one kernel-thread/LWP,
3860 // not the entire user process, and user level threads are 1:1 mapped to kernel
3861 // threads. It has always been the case, but could change in the future. For
3862 // this reason, the code should not be used as default (ThreadPriorityPolicy=0).
3863 // It is only used when ThreadPriorityPolicy=1 and requires root privilege.
3864 
3865 int os::java_to_os_priority[CriticalPriority + 1] = {
3866   19,              // 0 Entry should never be used
3867 
3868    4,              // 1 MinPriority
3869    3,              // 2
3870    2,              // 3
3871 
3872    1,              // 4
3873    0,              // 5 NormPriority
3874   -1,              // 6
3875 
3876   -2,              // 7
3877   -3,              // 8
3878   -4,              // 9 NearMaxPriority
3879 
3880   -5,              // 10 MaxPriority
3881 
3882   -5               // 11 CriticalPriority
3883 };
3884 
3885 static int prio_init() {
3886   if (ThreadPriorityPolicy == 1) {
3887     // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
3888     // if effective uid is not root. Perhaps, a more elegant way of doing
3889     // this is to test CAP_SYS_NICE capability, but that will require libcap.so
3890     if (geteuid() != 0) {
3891       if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
3892         warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
3893       }
3894       ThreadPriorityPolicy = 0;
3895     }
3896   }
3897   if (UseCriticalJavaThreadPriority) {
3898     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
3899   }
3900   return 0;
3901 }
3902 
3903 OSReturn os::set_native_priority(Thread* thread, int newpri) {
3904   if (!UseThreadPriorities || ThreadPriorityPolicy == 0) return OS_OK;
3905 
3906   int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
3907   return (ret == 0) ? OS_OK : OS_ERR;
3908 }
3909 
3910 OSReturn os::get_native_priority(const Thread* const thread,
3911                                  int *priority_ptr) {
3912   if (!UseThreadPriorities || ThreadPriorityPolicy == 0) {
3913     *priority_ptr = java_to_os_priority[NormPriority];
3914     return OS_OK;
3915   }
3916 
3917   errno = 0;
3918   *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
3919   return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
3920 }
3921 
3922 // Hint to the underlying OS that a task switch would not be good.
3923 // Void return because it's a hint and can fail.
3924 void os::hint_no_preempt() {}
3925 
3926 ////////////////////////////////////////////////////////////////////////////////
3927 // suspend/resume support
3928 
3929 //  the low-level signal-based suspend/resume support is a remnant from the
3930 //  old VM-suspension that used to be for java-suspension, safepoints etc,
3931 //  within hotspot. Now there is a single use-case for this:
3932 //    - calling get_thread_pc() on the VMThread by the flat-profiler task
3933 //      that runs in the watcher thread.
3934 //  The remaining code is greatly simplified from the more general suspension
3935 //  code that used to be used.
3936 //
3937 //  The protocol is quite simple:
3938 //  - suspend:
3939 //      - sends a signal to the target thread
3940 //      - polls the suspend state of the osthread using a yield loop
3941 //      - target thread signal handler (SR_handler) sets suspend state
3942 //        and blocks in sigsuspend until continued
3943 //  - resume:
3944 //      - sets target osthread state to continue
3945 //      - sends signal to end the sigsuspend loop in the SR_handler
3946 //
3947 //  Note that the SR_lock plays no role in this suspend/resume protocol.
3948 
3949 static void resume_clear_context(OSThread *osthread) {
3950   osthread->set_ucontext(NULL);
3951   osthread->set_siginfo(NULL);
3952 }
3953 
3954 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo,
3955                                  ucontext_t* context) {
3956   osthread->set_ucontext(context);
3957   osthread->set_siginfo(siginfo);
3958 }
3959 
3960 // Handler function invoked when a thread's execution is suspended or
3961 // resumed. We have to be careful that only async-safe functions are
3962 // called here (Note: most pthread functions are not async safe and
3963 // should be avoided.)
3964 //
3965 // Note: sigwait() is a more natural fit than sigsuspend() from an
3966 // interface point of view, but sigwait() prevents the signal hander
3967 // from being run. libpthread would get very confused by not having
3968 // its signal handlers run and prevents sigwait()'s use with the
3969 // mutex granting granting signal.
3970 //
3971 // Currently only ever called on the VMThread and JavaThreads (PC sampling)
3972 //
3973 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
3974   // Save and restore errno to avoid confusing native code with EINTR
3975   // after sigsuspend.
3976   int old_errno = errno;
3977 
3978   Thread* thread = Thread::current();
3979   OSThread* osthread = thread->osthread();
3980   assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
3981 
3982   os::SuspendResume::State current = osthread->sr.state();
3983   if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
3984     suspend_save_context(osthread, siginfo, context);
3985 
3986     // attempt to switch the state, we assume we had a SUSPEND_REQUEST
3987     os::SuspendResume::State state = osthread->sr.suspended();
3988     if (state == os::SuspendResume::SR_SUSPENDED) {
3989       sigset_t suspend_set;  // signals for sigsuspend()
3990 
3991       // get current set of blocked signals and unblock resume signal
3992       pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
3993       sigdelset(&suspend_set, SR_signum);
3994 
3995       sr_semaphore.signal();
3996       // wait here until we are resumed
3997       while (1) {
3998         sigsuspend(&suspend_set);
3999 
4000         os::SuspendResume::State result = osthread->sr.running();
4001         if (result == os::SuspendResume::SR_RUNNING) {
4002           sr_semaphore.signal();
4003           break;
4004         }
4005       }
4006 
4007     } else if (state == os::SuspendResume::SR_RUNNING) {
4008       // request was cancelled, continue
4009     } else {
4010       ShouldNotReachHere();
4011     }
4012 
4013     resume_clear_context(osthread);
4014   } else if (current == os::SuspendResume::SR_RUNNING) {
4015     // request was cancelled, continue
4016   } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
4017     // ignore
4018   } else {
4019     // ignore
4020   }
4021 
4022   errno = old_errno;
4023 }
4024 
4025 
4026 static int SR_initialize() {
4027   struct sigaction act;
4028   char *s;
4029   // Get signal number to use for suspend/resume
4030   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
4031     int sig = ::strtol(s, 0, 10);
4032     if (sig > 0 || sig < _NSIG) {
4033       SR_signum = sig;
4034     }
4035   }
4036 
4037   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
4038          "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
4039 
4040   sigemptyset(&SR_sigset);
4041   sigaddset(&SR_sigset, SR_signum);
4042 
4043   // Set up signal handler for suspend/resume
4044   act.sa_flags = SA_RESTART|SA_SIGINFO;
4045   act.sa_handler = (void (*)(int)) SR_handler;
4046 
4047   // SR_signum is blocked by default.
4048   // 4528190 - We also need to block pthread restart signal (32 on all
4049   // supported Linux platforms). Note that LinuxThreads need to block
4050   // this signal for all threads to work properly. So we don't have
4051   // to use hard-coded signal number when setting up the mask.
4052   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
4053 
4054   if (sigaction(SR_signum, &act, 0) == -1) {
4055     return -1;
4056   }
4057 
4058   // Save signal flag
4059   os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
4060   return 0;
4061 }
4062 
4063 static int sr_notify(OSThread* osthread) {
4064   int status = pthread_kill(osthread->pthread_id(), SR_signum);
4065   assert_status(status == 0, status, "pthread_kill");
4066   return status;
4067 }
4068 
4069 // "Randomly" selected value for how long we want to spin
4070 // before bailing out on suspending a thread, also how often
4071 // we send a signal to a thread we want to resume
4072 static const int RANDOMLY_LARGE_INTEGER = 1000000;
4073 static const int RANDOMLY_LARGE_INTEGER2 = 100;
4074 
4075 // returns true on success and false on error - really an error is fatal
4076 // but this seems the normal response to library errors
4077 static bool do_suspend(OSThread* osthread) {
4078   assert(osthread->sr.is_running(), "thread should be running");
4079   assert(!sr_semaphore.trywait(), "semaphore has invalid state");
4080 
4081   // mark as suspended and send signal
4082   if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
4083     // failed to switch, state wasn't running?
4084     ShouldNotReachHere();
4085     return false;
4086   }
4087 
4088   if (sr_notify(osthread) != 0) {
4089     ShouldNotReachHere();
4090   }
4091 
4092   // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
4093   while (true) {
4094     if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4095       break;
4096     } else {
4097       // timeout
4098       os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
4099       if (cancelled == os::SuspendResume::SR_RUNNING) {
4100         return false;
4101       } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
4102         // make sure that we consume the signal on the semaphore as well
4103         sr_semaphore.wait();
4104         break;
4105       } else {
4106         ShouldNotReachHere();
4107         return false;
4108       }
4109     }
4110   }
4111 
4112   guarantee(osthread->sr.is_suspended(), "Must be suspended");
4113   return true;
4114 }
4115 
4116 static void do_resume(OSThread* osthread) {
4117   assert(osthread->sr.is_suspended(), "thread should be suspended");
4118   assert(!sr_semaphore.trywait(), "invalid semaphore state");
4119 
4120   if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
4121     // failed to switch to WAKEUP_REQUEST
4122     ShouldNotReachHere();
4123     return;
4124   }
4125 
4126   while (true) {
4127     if (sr_notify(osthread) == 0) {
4128       if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4129         if (osthread->sr.is_running()) {
4130           return;
4131         }
4132       }
4133     } else {
4134       ShouldNotReachHere();
4135     }
4136   }
4137 
4138   guarantee(osthread->sr.is_running(), "Must be running!");
4139 }
4140 
4141 ///////////////////////////////////////////////////////////////////////////////////
4142 // signal handling (except suspend/resume)
4143 
4144 // This routine may be used by user applications as a "hook" to catch signals.
4145 // The user-defined signal handler must pass unrecognized signals to this
4146 // routine, and if it returns true (non-zero), then the signal handler must
4147 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
4148 // routine will never retun false (zero), but instead will execute a VM panic
4149 // routine kill the process.
4150 //
4151 // If this routine returns false, it is OK to call it again.  This allows
4152 // the user-defined signal handler to perform checks either before or after
4153 // the VM performs its own checks.  Naturally, the user code would be making
4154 // a serious error if it tried to handle an exception (such as a null check
4155 // or breakpoint) that the VM was generating for its own correct operation.
4156 //
4157 // This routine may recognize any of the following kinds of signals:
4158 //    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
4159 // It should be consulted by handlers for any of those signals.
4160 //
4161 // The caller of this routine must pass in the three arguments supplied
4162 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
4163 // field of the structure passed to sigaction().  This routine assumes that
4164 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
4165 //
4166 // Note that the VM will print warnings if it detects conflicting signal
4167 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
4168 //
4169 extern "C" JNIEXPORT int JVM_handle_linux_signal(int signo,
4170                                                  siginfo_t* siginfo,
4171                                                  void* ucontext,
4172                                                  int abort_if_unrecognized);
4173 
4174 void signalHandler(int sig, siginfo_t* info, void* uc) {
4175   assert(info != NULL && uc != NULL, "it must be old kernel");
4176   int orig_errno = errno;  // Preserve errno value over signal handler.
4177   JVM_handle_linux_signal(sig, info, uc, true);
4178   errno = orig_errno;
4179 }
4180 
4181 
4182 // This boolean allows users to forward their own non-matching signals
4183 // to JVM_handle_linux_signal, harmlessly.
4184 bool os::Linux::signal_handlers_are_installed = false;
4185 
4186 // For signal-chaining
4187 struct sigaction os::Linux::sigact[MAXSIGNUM];
4188 unsigned int os::Linux::sigs = 0;
4189 bool os::Linux::libjsig_is_loaded = false;
4190 typedef struct sigaction *(*get_signal_t)(int);
4191 get_signal_t os::Linux::get_signal_action = NULL;
4192 
4193 struct sigaction* os::Linux::get_chained_signal_action(int sig) {
4194   struct sigaction *actp = NULL;
4195 
4196   if (libjsig_is_loaded) {
4197     // Retrieve the old signal handler from libjsig
4198     actp = (*get_signal_action)(sig);
4199   }
4200   if (actp == NULL) {
4201     // Retrieve the preinstalled signal handler from jvm
4202     actp = get_preinstalled_handler(sig);
4203   }
4204 
4205   return actp;
4206 }
4207 
4208 static bool call_chained_handler(struct sigaction *actp, int sig,
4209                                  siginfo_t *siginfo, void *context) {
4210   // Call the old signal handler
4211   if (actp->sa_handler == SIG_DFL) {
4212     // It's more reasonable to let jvm treat it as an unexpected exception
4213     // instead of taking the default action.
4214     return false;
4215   } else if (actp->sa_handler != SIG_IGN) {
4216     if ((actp->sa_flags & SA_NODEFER) == 0) {
4217       // automaticlly block the signal
4218       sigaddset(&(actp->sa_mask), sig);
4219     }
4220 
4221     sa_handler_t hand;
4222     sa_sigaction_t sa;
4223     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
4224     // retrieve the chained handler
4225     if (siginfo_flag_set) {
4226       sa = actp->sa_sigaction;
4227     } else {
4228       hand = actp->sa_handler;
4229     }
4230 
4231     if ((actp->sa_flags & SA_RESETHAND) != 0) {
4232       actp->sa_handler = SIG_DFL;
4233     }
4234 
4235     // try to honor the signal mask
4236     sigset_t oset;
4237     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
4238 
4239     // call into the chained handler
4240     if (siginfo_flag_set) {
4241       (*sa)(sig, siginfo, context);
4242     } else {
4243       (*hand)(sig);
4244     }
4245 
4246     // restore the signal mask
4247     pthread_sigmask(SIG_SETMASK, &oset, 0);
4248   }
4249   // Tell jvm's signal handler the signal is taken care of.
4250   return true;
4251 }
4252 
4253 bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
4254   bool chained = false;
4255   // signal-chaining
4256   if (UseSignalChaining) {
4257     struct sigaction *actp = get_chained_signal_action(sig);
4258     if (actp != NULL) {
4259       chained = call_chained_handler(actp, sig, siginfo, context);
4260     }
4261   }
4262   return chained;
4263 }
4264 
4265 struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
4266   if ((((unsigned int)1 << sig) & sigs) != 0) {
4267     return &sigact[sig];
4268   }
4269   return NULL;
4270 }
4271 
4272 void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
4273   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4274   sigact[sig] = oldAct;
4275   sigs |= (unsigned int)1 << sig;
4276 }
4277 
4278 // for diagnostic
4279 int os::Linux::sigflags[MAXSIGNUM];
4280 
4281 int os::Linux::get_our_sigflags(int sig) {
4282   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4283   return sigflags[sig];
4284 }
4285 
4286 void os::Linux::set_our_sigflags(int sig, int flags) {
4287   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4288   sigflags[sig] = flags;
4289 }
4290 
4291 void os::Linux::set_signal_handler(int sig, bool set_installed) {
4292   // Check for overwrite.
4293   struct sigaction oldAct;
4294   sigaction(sig, (struct sigaction*)NULL, &oldAct);
4295 
4296   void* oldhand = oldAct.sa_sigaction
4297                 ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
4298                 : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
4299   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
4300       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
4301       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
4302     if (AllowUserSignalHandlers || !set_installed) {
4303       // Do not overwrite; user takes responsibility to forward to us.
4304       return;
4305     } else if (UseSignalChaining) {
4306       // save the old handler in jvm
4307       save_preinstalled_handler(sig, oldAct);
4308       // libjsig also interposes the sigaction() call below and saves the
4309       // old sigaction on it own.
4310     } else {
4311       fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
4312                     "%#lx for signal %d.", (long)oldhand, sig));
4313     }
4314   }
4315 
4316   struct sigaction sigAct;
4317   sigfillset(&(sigAct.sa_mask));
4318   sigAct.sa_handler = SIG_DFL;
4319   if (!set_installed) {
4320     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4321   } else {
4322     sigAct.sa_sigaction = signalHandler;
4323     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4324   }
4325   // Save flags, which are set by ours
4326   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4327   sigflags[sig] = sigAct.sa_flags;
4328 
4329   int ret = sigaction(sig, &sigAct, &oldAct);
4330   assert(ret == 0, "check");
4331 
4332   void* oldhand2  = oldAct.sa_sigaction
4333                   ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
4334                   : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
4335   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
4336 }
4337 
4338 // install signal handlers for signals that HotSpot needs to
4339 // handle in order to support Java-level exception handling.
4340 
4341 void os::Linux::install_signal_handlers() {
4342   if (!signal_handlers_are_installed) {
4343     signal_handlers_are_installed = true;
4344 
4345     // signal-chaining
4346     typedef void (*signal_setting_t)();
4347     signal_setting_t begin_signal_setting = NULL;
4348     signal_setting_t end_signal_setting = NULL;
4349     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4350                                           dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
4351     if (begin_signal_setting != NULL) {
4352       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4353                                           dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
4354       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
4355                                          dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
4356       libjsig_is_loaded = true;
4357       assert(UseSignalChaining, "should enable signal-chaining");
4358     }
4359     if (libjsig_is_loaded) {
4360       // Tell libjsig jvm is setting signal handlers
4361       (*begin_signal_setting)();
4362     }
4363 
4364     set_signal_handler(SIGSEGV, true);
4365     set_signal_handler(SIGPIPE, true);
4366     set_signal_handler(SIGBUS, true);
4367     set_signal_handler(SIGILL, true);
4368     set_signal_handler(SIGFPE, true);
4369 #if defined(PPC64)
4370     set_signal_handler(SIGTRAP, true);
4371 #endif
4372     set_signal_handler(SIGXFSZ, true);
4373 
4374     if (libjsig_is_loaded) {
4375       // Tell libjsig jvm finishes setting signal handlers
4376       (*end_signal_setting)();
4377     }
4378 
4379     // We don't activate signal checker if libjsig is in place, we trust ourselves
4380     // and if UserSignalHandler is installed all bets are off.
4381     // Log that signal checking is off only if -verbose:jni is specified.
4382     if (CheckJNICalls) {
4383       if (libjsig_is_loaded) {
4384         if (PrintJNIResolving) {
4385           tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
4386         }
4387         check_signals = false;
4388       }
4389       if (AllowUserSignalHandlers) {
4390         if (PrintJNIResolving) {
4391           tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
4392         }
4393         check_signals = false;
4394       }
4395     }
4396   }
4397 }
4398 
4399 // This is the fastest way to get thread cpu time on Linux.
4400 // Returns cpu time (user+sys) for any thread, not only for current.
4401 // POSIX compliant clocks are implemented in the kernels 2.6.16+.
4402 // It might work on 2.6.10+ with a special kernel/glibc patch.
4403 // For reference, please, see IEEE Std 1003.1-2004:
4404 //   http://www.unix.org/single_unix_specification
4405 
4406 jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
4407   struct timespec tp;
4408   int rc = os::Linux::clock_gettime(clockid, &tp);
4409   assert(rc == 0, "clock_gettime is expected to return 0 code");
4410 
4411   return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
4412 }
4413 
4414 /////
4415 // glibc on Linux platform uses non-documented flag
4416 // to indicate, that some special sort of signal
4417 // trampoline is used.
4418 // We will never set this flag, and we should
4419 // ignore this flag in our diagnostic
4420 #ifdef SIGNIFICANT_SIGNAL_MASK
4421   #undef SIGNIFICANT_SIGNAL_MASK
4422 #endif
4423 #define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
4424 
4425 static const char* get_signal_handler_name(address handler,
4426                                            char* buf, int buflen) {
4427   int offset;
4428   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
4429   if (found) {
4430     // skip directory names
4431     const char *p1, *p2;
4432     p1 = buf;
4433     size_t len = strlen(os::file_separator());
4434     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
4435     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
4436   } else {
4437     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
4438   }
4439   return buf;
4440 }
4441 
4442 static void print_signal_handler(outputStream* st, int sig,
4443                                  char* buf, size_t buflen) {
4444   struct sigaction sa;
4445 
4446   sigaction(sig, NULL, &sa);
4447 
4448   // See comment for SIGNIFICANT_SIGNAL_MASK define
4449   sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4450 
4451   st->print("%s: ", os::exception_name(sig, buf, buflen));
4452 
4453   address handler = (sa.sa_flags & SA_SIGINFO)
4454     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
4455     : CAST_FROM_FN_PTR(address, sa.sa_handler);
4456 
4457   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
4458     st->print("SIG_DFL");
4459   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
4460     st->print("SIG_IGN");
4461   } else {
4462     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
4463   }
4464 
4465   st->print(", sa_mask[0]=");
4466   os::Posix::print_signal_set_short(st, &sa.sa_mask);
4467 
4468   address rh = VMError::get_resetted_sighandler(sig);
4469   // May be, handler was resetted by VMError?
4470   if (rh != NULL) {
4471     handler = rh;
4472     sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
4473   }
4474 
4475   st->print(", sa_flags=");
4476   os::Posix::print_sa_flags(st, sa.sa_flags);
4477 
4478   // Check: is it our handler?
4479   if (handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
4480       handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
4481     // It is our signal handler
4482     // check for flags, reset system-used one!
4483     if ((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
4484       st->print(
4485                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
4486                 os::Linux::get_our_sigflags(sig));
4487     }
4488   }
4489   st->cr();
4490 }
4491 
4492 
4493 #define DO_SIGNAL_CHECK(sig)                      \
4494   do {                                            \
4495     if (!sigismember(&check_signal_done, sig)) {  \
4496       os::Linux::check_signal_handler(sig);       \
4497     }                                             \
4498   } while (0)
4499 
4500 // This method is a periodic task to check for misbehaving JNI applications
4501 // under CheckJNI, we can add any periodic checks here
4502 
4503 void os::run_periodic_checks() {
4504   if (check_signals == false) return;
4505 
4506   // SEGV and BUS if overridden could potentially prevent
4507   // generation of hs*.log in the event of a crash, debugging
4508   // such a case can be very challenging, so we absolutely
4509   // check the following for a good measure:
4510   DO_SIGNAL_CHECK(SIGSEGV);
4511   DO_SIGNAL_CHECK(SIGILL);
4512   DO_SIGNAL_CHECK(SIGFPE);
4513   DO_SIGNAL_CHECK(SIGBUS);
4514   DO_SIGNAL_CHECK(SIGPIPE);
4515   DO_SIGNAL_CHECK(SIGXFSZ);
4516 #if defined(PPC64)
4517   DO_SIGNAL_CHECK(SIGTRAP);
4518 #endif
4519 
4520   // ReduceSignalUsage allows the user to override these handlers
4521   // see comments at the very top and jvm_solaris.h
4522   if (!ReduceSignalUsage) {
4523     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
4524     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
4525     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
4526     DO_SIGNAL_CHECK(BREAK_SIGNAL);
4527   }
4528 
4529   DO_SIGNAL_CHECK(SR_signum);
4530   DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
4531 }
4532 
4533 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
4534 
4535 static os_sigaction_t os_sigaction = NULL;
4536 
4537 void os::Linux::check_signal_handler(int sig) {
4538   char buf[O_BUFLEN];
4539   address jvmHandler = NULL;
4540 
4541 
4542   struct sigaction act;
4543   if (os_sigaction == NULL) {
4544     // only trust the default sigaction, in case it has been interposed
4545     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
4546     if (os_sigaction == NULL) return;
4547   }
4548 
4549   os_sigaction(sig, (struct sigaction*)NULL, &act);
4550 
4551 
4552   act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4553 
4554   address thisHandler = (act.sa_flags & SA_SIGINFO)
4555     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
4556     : CAST_FROM_FN_PTR(address, act.sa_handler);
4557 
4558 
4559   switch (sig) {
4560   case SIGSEGV:
4561   case SIGBUS:
4562   case SIGFPE:
4563   case SIGPIPE:
4564   case SIGILL:
4565   case SIGXFSZ:
4566     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
4567     break;
4568 
4569   case SHUTDOWN1_SIGNAL:
4570   case SHUTDOWN2_SIGNAL:
4571   case SHUTDOWN3_SIGNAL:
4572   case BREAK_SIGNAL:
4573     jvmHandler = (address)user_handler();
4574     break;
4575 
4576   case INTERRUPT_SIGNAL:
4577     jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
4578     break;
4579 
4580   default:
4581     if (sig == SR_signum) {
4582       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
4583     } else {
4584       return;
4585     }
4586     break;
4587   }
4588 
4589   if (thisHandler != jvmHandler) {
4590     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
4591     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
4592     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
4593     // No need to check this sig any longer
4594     sigaddset(&check_signal_done, sig);
4595     // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
4596     if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
4597       tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
4598                     exception_name(sig, buf, O_BUFLEN));
4599     }
4600   } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
4601     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
4602     tty->print("expected:" PTR32_FORMAT, os::Linux::get_our_sigflags(sig));
4603     tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
4604     // No need to check this sig any longer
4605     sigaddset(&check_signal_done, sig);
4606   }
4607 
4608   // Dump all the signal
4609   if (sigismember(&check_signal_done, sig)) {
4610     print_signal_handlers(tty, buf, O_BUFLEN);
4611   }
4612 }
4613 
4614 extern void report_error(char* file_name, int line_no, char* title,
4615                          char* format, ...);
4616 
4617 extern bool signal_name(int signo, char* buf, size_t len);
4618 
4619 const char* os::exception_name(int exception_code, char* buf, size_t size) {
4620   if (0 < exception_code && exception_code <= SIGRTMAX) {
4621     // signal
4622     if (!signal_name(exception_code, buf, size)) {
4623       jio_snprintf(buf, size, "SIG%d", exception_code);
4624     }
4625     return buf;
4626   } else {
4627     return NULL;
4628   }
4629 }
4630 
4631 // this is called _before_ the most of global arguments have been parsed
4632 void os::init(void) {
4633   char dummy;   // used to get a guess on initial stack address
4634 //  first_hrtime = gethrtime();
4635 
4636   // With LinuxThreads the JavaMain thread pid (primordial thread)
4637   // is different than the pid of the java launcher thread.
4638   // So, on Linux, the launcher thread pid is passed to the VM
4639   // via the sun.java.launcher.pid property.
4640   // Use this property instead of getpid() if it was correctly passed.
4641   // See bug 6351349.
4642   pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
4643 
4644   _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
4645 
4646   clock_tics_per_sec = sysconf(_SC_CLK_TCK);
4647 
4648   init_random(1234567);
4649 
4650   ThreadCritical::initialize();
4651 
4652   Linux::set_page_size(sysconf(_SC_PAGESIZE));
4653   if (Linux::page_size() == -1) {
4654     fatal(err_msg("os_linux.cpp: os::init: sysconf failed (%s)",
4655                   strerror(errno)));
4656   }
4657   init_page_sizes((size_t) Linux::page_size());
4658 
4659   Linux::initialize_system_info();
4660 
4661   // main_thread points to the aboriginal thread
4662   Linux::_main_thread = pthread_self();
4663 
4664   Linux::clock_init();
4665   initial_time_count = javaTimeNanos();
4666 
4667   // pthread_condattr initialization for monotonic clock
4668   int status;
4669   pthread_condattr_t* _condattr = os::Linux::condAttr();
4670   if ((status = pthread_condattr_init(_condattr)) != 0) {
4671     fatal(err_msg("pthread_condattr_init: %s", strerror(status)));
4672   }
4673   // Only set the clock if CLOCK_MONOTONIC is available
4674   if (os::supports_monotonic_clock()) {
4675     if ((status = pthread_condattr_setclock(_condattr, CLOCK_MONOTONIC)) != 0) {
4676       if (status == EINVAL) {
4677         warning("Unable to use monotonic clock with relative timed-waits" \
4678                 " - changes to the time-of-day clock may have adverse affects");
4679       } else {
4680         fatal(err_msg("pthread_condattr_setclock: %s", strerror(status)));
4681       }
4682     }
4683   }
4684   // else it defaults to CLOCK_REALTIME
4685 
4686   // If the pagesize of the VM is greater than 8K determine the appropriate
4687   // number of initial guard pages.  The user can change this with the
4688   // command line arguments, if needed.
4689   if (vm_page_size() > (int)Linux::vm_default_page_size()) {
4690     StackYellowPages = 1;
4691     StackRedPages = 1;
4692     StackShadowPages = round_to((StackShadowPages*Linux::vm_default_page_size()), vm_page_size()) / vm_page_size();
4693   }
4694 
4695   // retrieve entry point for pthread_setname_np
4696   Linux::_pthread_setname_np =
4697     (int(*)(pthread_t, const char*))dlsym(RTLD_DEFAULT, "pthread_setname_np");
4698 
4699 }
4700 
4701 // To install functions for atexit system call
4702 extern "C" {
4703   static void perfMemory_exit_helper() {
4704     perfMemory_exit();
4705   }
4706 }
4707 
4708 // this is called _after_ the global arguments have been parsed
4709 jint os::init_2(void) {
4710   Linux::fast_thread_clock_init();
4711 
4712   // Allocate a single page and mark it as readable for safepoint polling
4713   address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4714   guarantee(polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page");
4715 
4716   os::set_polling_page(polling_page);
4717 
4718 #ifndef PRODUCT
4719   if (Verbose && PrintMiscellaneous) {
4720     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n",
4721                (intptr_t)polling_page);
4722   }
4723 #endif
4724 
4725   if (!UseMembar) {
4726     address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4727     guarantee(mem_serialize_page != MAP_FAILED, "mmap Failed for memory serialize page");
4728     os::set_memory_serialize_page(mem_serialize_page);
4729 
4730 #ifndef PRODUCT
4731     if (Verbose && PrintMiscellaneous) {
4732       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n",
4733                  (intptr_t)mem_serialize_page);
4734     }
4735 #endif
4736   }
4737 
4738   // initialize suspend/resume support - must do this before signal_sets_init()
4739   if (SR_initialize() != 0) {
4740     perror("SR_initialize failed");
4741     return JNI_ERR;
4742   }
4743 
4744   Linux::signal_sets_init();
4745   Linux::install_signal_handlers();
4746 
4747   // Check minimum allowable stack size for thread creation and to initialize
4748   // the java system classes, including StackOverflowError - depends on page
4749   // size.  Add a page for compiler2 recursion in main thread.
4750   // Add in 2*BytesPerWord times page size to account for VM stack during
4751   // class initialization depending on 32 or 64 bit VM.
4752   os::Linux::min_stack_allowed = MAX2(os::Linux::min_stack_allowed,
4753                                       (size_t)(StackYellowPages+StackRedPages+StackShadowPages) * Linux::page_size() +
4754                                       (2*BytesPerWord COMPILER2_PRESENT(+1)) * Linux::vm_default_page_size());
4755 
4756   size_t threadStackSizeInBytes = ThreadStackSize * K;
4757   if (threadStackSizeInBytes != 0 &&
4758       threadStackSizeInBytes < os::Linux::min_stack_allowed) {
4759     tty->print_cr("\nThe stack size specified is too small, "
4760                   "Specify at least %dk",
4761                   os::Linux::min_stack_allowed/ K);
4762     return JNI_ERR;
4763   }
4764 
4765   // Make the stack size a multiple of the page size so that
4766   // the yellow/red zones can be guarded.
4767   JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
4768                                                 vm_page_size()));
4769 
4770   Linux::capture_initial_stack(JavaThread::stack_size_at_create());
4771 
4772 #if defined(IA32)
4773   workaround_expand_exec_shield_cs_limit();
4774 #endif
4775 
4776   Linux::libpthread_init();
4777   if (PrintMiscellaneous && (Verbose || WizardMode)) {
4778     tty->print_cr("[HotSpot is running with %s, %s(%s)]\n",
4779                   Linux::glibc_version(), Linux::libpthread_version(),
4780                   Linux::is_floating_stack() ? "floating stack" : "fixed stack");
4781   }
4782 
4783   if (UseNUMA) {
4784     if (!Linux::libnuma_init()) {
4785       UseNUMA = false;
4786     } else {
4787       if ((Linux::numa_max_node() < 1)) {
4788         // There's only one node(they start from 0), disable NUMA.
4789         UseNUMA = false;
4790       }
4791     }
4792     // With SHM and HugeTLBFS large pages we cannot uncommit a page, so there's no way
4793     // we can make the adaptive lgrp chunk resizing work. If the user specified
4794     // both UseNUMA and UseLargePages (or UseSHM/UseHugeTLBFS) on the command line - warn and
4795     // disable adaptive resizing.
4796     if (UseNUMA && UseLargePages && !can_commit_large_page_memory()) {
4797       if (FLAG_IS_DEFAULT(UseNUMA)) {
4798         UseNUMA = false;
4799       } else {
4800         if (FLAG_IS_DEFAULT(UseLargePages) &&
4801             FLAG_IS_DEFAULT(UseSHM) &&
4802             FLAG_IS_DEFAULT(UseHugeTLBFS)) {
4803           UseLargePages = false;
4804         } else if (UseAdaptiveSizePolicy || UseAdaptiveNUMAChunkSizing) {
4805           warning("UseNUMA is not fully compatible with SHM/HugeTLBFS large pages, disabling adaptive resizing (-XX:-UseAdaptiveSizePolicy -XX:-UseAdaptiveNUMAChunkSizing)");
4806           UseAdaptiveSizePolicy = false;
4807           UseAdaptiveNUMAChunkSizing = false;
4808         }
4809       }
4810     }
4811     if (!UseNUMA && ForceNUMA) {
4812       UseNUMA = true;
4813     }
4814   }
4815 
4816   if (MaxFDLimit) {
4817     // set the number of file descriptors to max. print out error
4818     // if getrlimit/setrlimit fails but continue regardless.
4819     struct rlimit nbr_files;
4820     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
4821     if (status != 0) {
4822       if (PrintMiscellaneous && (Verbose || WizardMode)) {
4823         perror("os::init_2 getrlimit failed");
4824       }
4825     } else {
4826       nbr_files.rlim_cur = nbr_files.rlim_max;
4827       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
4828       if (status != 0) {
4829         if (PrintMiscellaneous && (Verbose || WizardMode)) {
4830           perror("os::init_2 setrlimit failed");
4831         }
4832       }
4833     }
4834   }
4835 
4836   // Initialize lock used to serialize thread creation (see os::create_thread)
4837   Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
4838 
4839   // at-exit methods are called in the reverse order of their registration.
4840   // atexit functions are called on return from main or as a result of a
4841   // call to exit(3C). There can be only 32 of these functions registered
4842   // and atexit() does not set errno.
4843 
4844   if (PerfAllowAtExitRegistration) {
4845     // only register atexit functions if PerfAllowAtExitRegistration is set.
4846     // atexit functions can be delayed until process exit time, which
4847     // can be problematic for embedded VM situations. Embedded VMs should
4848     // call DestroyJavaVM() to assure that VM resources are released.
4849 
4850     // note: perfMemory_exit_helper atexit function may be removed in
4851     // the future if the appropriate cleanup code can be added to the
4852     // VM_Exit VMOperation's doit method.
4853     if (atexit(perfMemory_exit_helper) != 0) {
4854       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
4855     }
4856   }
4857 
4858   // initialize thread priority policy
4859   prio_init();
4860 
4861   return JNI_OK;
4862 }
4863 
4864 // Mark the polling page as unreadable
4865 void os::make_polling_page_unreadable(void) {
4866   if (!guard_memory((char*)_polling_page, Linux::page_size())) {
4867     fatal("Could not disable polling page");
4868   }
4869 }
4870 
4871 // Mark the polling page as readable
4872 void os::make_polling_page_readable(void) {
4873   if (!linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
4874     fatal("Could not enable polling page");
4875   }
4876 }
4877 
4878 int os::active_processor_count() {
4879   // Linux doesn't yet have a (official) notion of processor sets,
4880   // so just return the number of online processors.
4881   int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
4882   assert(online_cpus > 0 && online_cpus <= processor_count(), "sanity check");
4883   return online_cpus;
4884 }
4885 
4886 void os::set_native_thread_name(const char *name) {
4887   if (Linux::_pthread_setname_np) {
4888     char buf [16]; // according to glibc manpage, 16 chars incl. '/0'
4889     snprintf(buf, sizeof(buf), "%s", name);
4890     buf[sizeof(buf) - 1] = '\0';
4891     const int rc = Linux::_pthread_setname_np(pthread_self(), buf);
4892     // ERANGE should not happen; all other errors should just be ignored.
4893     assert(rc != ERANGE, "pthread_setname_np failed");
4894   }
4895 }
4896 
4897 bool os::distribute_processes(uint length, uint* distribution) {
4898   // Not yet implemented.
4899   return false;
4900 }
4901 
4902 bool os::bind_to_processor(uint processor_id) {
4903   // Not yet implemented.
4904   return false;
4905 }
4906 
4907 ///
4908 
4909 void os::SuspendedThreadTask::internal_do_task() {
4910   if (do_suspend(_thread->osthread())) {
4911     SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
4912     do_task(context);
4913     do_resume(_thread->osthread());
4914   }
4915 }
4916 
4917 class PcFetcher : public os::SuspendedThreadTask {
4918  public:
4919   PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
4920   ExtendedPC result();
4921  protected:
4922   void do_task(const os::SuspendedThreadTaskContext& context);
4923  private:
4924   ExtendedPC _epc;
4925 };
4926 
4927 ExtendedPC PcFetcher::result() {
4928   guarantee(is_done(), "task is not done yet.");
4929   return _epc;
4930 }
4931 
4932 void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
4933   Thread* thread = context.thread();
4934   OSThread* osthread = thread->osthread();
4935   if (osthread->ucontext() != NULL) {
4936     _epc = os::Linux::ucontext_get_pc((ucontext_t *) context.ucontext());
4937   } else {
4938     // NULL context is unexpected, double-check this is the VMThread
4939     guarantee(thread->is_VM_thread(), "can only be called for VMThread");
4940   }
4941 }
4942 
4943 // Suspends the target using the signal mechanism and then grabs the PC before
4944 // resuming the target. Used by the flat-profiler only
4945 ExtendedPC os::get_thread_pc(Thread* thread) {
4946   // Make sure that it is called by the watcher for the VMThread
4947   assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
4948   assert(thread->is_VM_thread(), "Can only be called for VMThread");
4949 
4950   PcFetcher fetcher(thread);
4951   fetcher.run();
4952   return fetcher.result();
4953 }
4954 
4955 int os::Linux::safe_cond_timedwait(pthread_cond_t *_cond,
4956                                    pthread_mutex_t *_mutex,
4957                                    const struct timespec *_abstime) {
4958   if (is_NPTL()) {
4959     return pthread_cond_timedwait(_cond, _mutex, _abstime);
4960   } else {
4961     // 6292965: LinuxThreads pthread_cond_timedwait() resets FPU control
4962     // word back to default 64bit precision if condvar is signaled. Java
4963     // wants 53bit precision.  Save and restore current value.
4964     int fpu = get_fpu_control_word();
4965     int status = pthread_cond_timedwait(_cond, _mutex, _abstime);
4966     set_fpu_control_word(fpu);
4967     return status;
4968   }
4969 }
4970 
4971 ////////////////////////////////////////////////////////////////////////////////
4972 // debug support
4973 
4974 bool os::find(address addr, outputStream* st) {
4975   Dl_info dlinfo;
4976   memset(&dlinfo, 0, sizeof(dlinfo));
4977   if (dladdr(addr, &dlinfo) != 0) {
4978     st->print(PTR_FORMAT ": ", addr);
4979     if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
4980       st->print("%s+%#x", dlinfo.dli_sname,
4981                 addr - (intptr_t)dlinfo.dli_saddr);
4982     } else if (dlinfo.dli_fbase != NULL) {
4983       st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
4984     } else {
4985       st->print("<absolute address>");
4986     }
4987     if (dlinfo.dli_fname != NULL) {
4988       st->print(" in %s", dlinfo.dli_fname);
4989     }
4990     if (dlinfo.dli_fbase != NULL) {
4991       st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
4992     }
4993     st->cr();
4994 
4995     if (Verbose) {
4996       // decode some bytes around the PC
4997       address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
4998       address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
4999       address       lowest = (address) dlinfo.dli_sname;
5000       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
5001       if (begin < lowest)  begin = lowest;
5002       Dl_info dlinfo2;
5003       if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
5004           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin) {
5005         end = (address) dlinfo2.dli_saddr;
5006       }
5007       Disassembler::decode(begin, end, st);
5008     }
5009     return true;
5010   }
5011   return false;
5012 }
5013 
5014 ////////////////////////////////////////////////////////////////////////////////
5015 // misc
5016 
5017 // This does not do anything on Linux. This is basically a hook for being
5018 // able to use structured exception handling (thread-local exception filters)
5019 // on, e.g., Win32.
5020 void
5021 os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
5022                          JavaCallArguments* args, Thread* thread) {
5023   f(value, method, args, thread);
5024 }
5025 
5026 void os::print_statistics() {
5027 }
5028 
5029 int os::message_box(const char* title, const char* message) {
5030   int i;
5031   fdStream err(defaultStream::error_fd());
5032   for (i = 0; i < 78; i++) err.print_raw("=");
5033   err.cr();
5034   err.print_raw_cr(title);
5035   for (i = 0; i < 78; i++) err.print_raw("-");
5036   err.cr();
5037   err.print_raw_cr(message);
5038   for (i = 0; i < 78; i++) err.print_raw("=");
5039   err.cr();
5040 
5041   char buf[16];
5042   // Prevent process from exiting upon "read error" without consuming all CPU
5043   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
5044 
5045   return buf[0] == 'y' || buf[0] == 'Y';
5046 }
5047 
5048 int os::stat(const char *path, struct stat *sbuf) {
5049   char pathbuf[MAX_PATH];
5050   if (strlen(path) > MAX_PATH - 1) {
5051     errno = ENAMETOOLONG;
5052     return -1;
5053   }
5054   os::native_path(strcpy(pathbuf, path));
5055   return ::stat(pathbuf, sbuf);
5056 }
5057 
5058 bool os::check_heap(bool force) {
5059   return true;
5060 }
5061 
5062 // Is a (classpath) directory empty?
5063 bool os::dir_is_empty(const char* path) {
5064   DIR *dir = NULL;
5065   struct dirent *ptr;
5066 
5067   dir = opendir(path);
5068   if (dir == NULL) return true;
5069 
5070   // Scan the directory
5071   bool result = true;
5072   char buf[sizeof(struct dirent) + MAX_PATH];
5073   while (result && (ptr = ::readdir(dir)) != NULL) {
5074     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
5075       result = false;
5076     }
5077   }
5078   closedir(dir);
5079   return result;
5080 }
5081 
5082 // This code originates from JDK's sysOpen and open64_w
5083 // from src/solaris/hpi/src/system_md.c
5084 
5085 int os::open(const char *path, int oflag, int mode) {
5086   if (strlen(path) > MAX_PATH - 1) {
5087     errno = ENAMETOOLONG;
5088     return -1;
5089   }
5090 
5091   // All file descriptors that are opened in the Java process and not
5092   // specifically destined for a subprocess should have the close-on-exec
5093   // flag set.  If we don't set it, then careless 3rd party native code
5094   // might fork and exec without closing all appropriate file descriptors
5095   // (e.g. as we do in closeDescriptors in UNIXProcess.c), and this in
5096   // turn might:
5097   //
5098   // - cause end-of-file to fail to be detected on some file
5099   //   descriptors, resulting in mysterious hangs, or
5100   //
5101   // - might cause an fopen in the subprocess to fail on a system
5102   //   suffering from bug 1085341.
5103   //
5104   // (Yes, the default setting of the close-on-exec flag is a Unix
5105   // design flaw)
5106   //
5107   // See:
5108   // 1085341: 32-bit stdio routines should support file descriptors >255
5109   // 4843136: (process) pipe file descriptor from Runtime.exec not being closed
5110   // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
5111   //
5112   // Modern Linux kernels (after 2.6.23 2007) support O_CLOEXEC with open().
5113   // O_CLOEXEC is preferable to using FD_CLOEXEC on an open file descriptor
5114   // because it saves a system call and removes a small window where the flag
5115   // is unset.  On ancient Linux kernels the O_CLOEXEC flag will be ignored
5116   // and we fall back to using FD_CLOEXEC (see below).
5117 #ifdef O_CLOEXEC
5118   oflag |= O_CLOEXEC;
5119 #endif
5120 
5121   int fd = ::open64(path, oflag, mode);
5122   if (fd == -1) return -1;
5123 
5124   //If the open succeeded, the file might still be a directory
5125   {
5126     struct stat64 buf64;
5127     int ret = ::fstat64(fd, &buf64);
5128     int st_mode = buf64.st_mode;
5129 
5130     if (ret != -1) {
5131       if ((st_mode & S_IFMT) == S_IFDIR) {
5132         errno = EISDIR;
5133         ::close(fd);
5134         return -1;
5135       }
5136     } else {
5137       ::close(fd);
5138       return -1;
5139     }
5140   }
5141 
5142 #ifdef FD_CLOEXEC
5143   // Validate that the use of the O_CLOEXEC flag on open above worked.
5144   // With recent kernels, we will perform this check exactly once.
5145   static sig_atomic_t O_CLOEXEC_is_known_to_work = 0;
5146   if (!O_CLOEXEC_is_known_to_work) {
5147     int flags = ::fcntl(fd, F_GETFD);
5148     if (flags != -1) {
5149       if ((flags & FD_CLOEXEC) != 0)
5150         O_CLOEXEC_is_known_to_work = 1;
5151       else
5152         ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
5153     }
5154   }
5155 #endif
5156 
5157   return fd;
5158 }
5159 
5160 
5161 // create binary file, rewriting existing file if required
5162 int os::create_binary_file(const char* path, bool rewrite_existing) {
5163   int oflags = O_WRONLY | O_CREAT;
5164   if (!rewrite_existing) {
5165     oflags |= O_EXCL;
5166   }
5167   return ::open64(path, oflags, S_IREAD | S_IWRITE);
5168 }
5169 
5170 // return current position of file pointer
5171 jlong os::current_file_offset(int fd) {
5172   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
5173 }
5174 
5175 // move file pointer to the specified offset
5176 jlong os::seek_to_file_offset(int fd, jlong offset) {
5177   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
5178 }
5179 
5180 // This code originates from JDK's sysAvailable
5181 // from src/solaris/hpi/src/native_threads/src/sys_api_td.c
5182 
5183 int os::available(int fd, jlong *bytes) {
5184   jlong cur, end;
5185   int mode;
5186   struct stat64 buf64;
5187 
5188   if (::fstat64(fd, &buf64) >= 0) {
5189     mode = buf64.st_mode;
5190     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
5191       // XXX: is the following call interruptible? If so, this might
5192       // need to go through the INTERRUPT_IO() wrapper as for other
5193       // blocking, interruptible calls in this file.
5194       int n;
5195       if (::ioctl(fd, FIONREAD, &n) >= 0) {
5196         *bytes = n;
5197         return 1;
5198       }
5199     }
5200   }
5201   if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
5202     return 0;
5203   } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
5204     return 0;
5205   } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
5206     return 0;
5207   }
5208   *bytes = end - cur;
5209   return 1;
5210 }
5211 
5212 // Map a block of memory.
5213 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
5214                         char *addr, size_t bytes, bool read_only,
5215                         bool allow_exec) {
5216   int prot;
5217   int flags = MAP_PRIVATE;
5218 
5219   if (read_only) {
5220     prot = PROT_READ;
5221   } else {
5222     prot = PROT_READ | PROT_WRITE;
5223   }
5224 
5225   if (allow_exec) {
5226     prot |= PROT_EXEC;
5227   }
5228 
5229   if (addr != NULL) {
5230     flags |= MAP_FIXED;
5231   }
5232 
5233   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
5234                                      fd, file_offset);
5235   if (mapped_address == MAP_FAILED) {
5236     return NULL;
5237   }
5238   return mapped_address;
5239 }
5240 
5241 
5242 // Remap a block of memory.
5243 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
5244                           char *addr, size_t bytes, bool read_only,
5245                           bool allow_exec) {
5246   // same as map_memory() on this OS
5247   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
5248                         allow_exec);
5249 }
5250 
5251 
5252 // Unmap a block of memory.
5253 bool os::pd_unmap_memory(char* addr, size_t bytes) {
5254   return munmap(addr, bytes) == 0;
5255 }
5256 
5257 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
5258 
5259 static clockid_t thread_cpu_clockid(Thread* thread) {
5260   pthread_t tid = thread->osthread()->pthread_id();
5261   clockid_t clockid;
5262 
5263   // Get thread clockid
5264   int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
5265   assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
5266   return clockid;
5267 }
5268 
5269 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
5270 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
5271 // of a thread.
5272 //
5273 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
5274 // the fast estimate available on the platform.
5275 
5276 jlong os::current_thread_cpu_time() {
5277   if (os::Linux::supports_fast_thread_cpu_time()) {
5278     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5279   } else {
5280     // return user + sys since the cost is the same
5281     return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
5282   }
5283 }
5284 
5285 jlong os::thread_cpu_time(Thread* thread) {
5286   // consistent with what current_thread_cpu_time() returns
5287   if (os::Linux::supports_fast_thread_cpu_time()) {
5288     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5289   } else {
5290     return slow_thread_cpu_time(thread, true /* user + sys */);
5291   }
5292 }
5293 
5294 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
5295   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5296     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5297   } else {
5298     return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
5299   }
5300 }
5301 
5302 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5303   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5304     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5305   } else {
5306     return slow_thread_cpu_time(thread, user_sys_cpu_time);
5307   }
5308 }
5309 
5310 //  -1 on error.
5311 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5312   pid_t  tid = thread->osthread()->thread_id();
5313   char *s;
5314   char stat[2048];
5315   int statlen;
5316   char proc_name[64];
5317   int count;
5318   long sys_time, user_time;
5319   char cdummy;
5320   int idummy;
5321   long ldummy;
5322   FILE *fp;
5323 
5324   snprintf(proc_name, 64, "/proc/self/task/%d/stat", tid);
5325   fp = fopen(proc_name, "r");
5326   if (fp == NULL) return -1;
5327   statlen = fread(stat, 1, 2047, fp);
5328   stat[statlen] = '\0';
5329   fclose(fp);
5330 
5331   // Skip pid and the command string. Note that we could be dealing with
5332   // weird command names, e.g. user could decide to rename java launcher
5333   // to "java 1.4.2 :)", then the stat file would look like
5334   //                1234 (java 1.4.2 :)) R ... ...
5335   // We don't really need to know the command string, just find the last
5336   // occurrence of ")" and then start parsing from there. See bug 4726580.
5337   s = strrchr(stat, ')');
5338   if (s == NULL) return -1;
5339 
5340   // Skip blank chars
5341   do { s++; } while (s && isspace(*s));
5342 
5343   count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
5344                  &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
5345                  &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
5346                  &user_time, &sys_time);
5347   if (count != 13) return -1;
5348   if (user_sys_cpu_time) {
5349     return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
5350   } else {
5351     return (jlong)user_time * (1000000000 / clock_tics_per_sec);
5352   }
5353 }
5354 
5355 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5356   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5357   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5358   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5359   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5360 }
5361 
5362 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5363   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5364   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5365   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5366   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5367 }
5368 
5369 bool os::is_thread_cpu_time_supported() {
5370   return true;
5371 }
5372 
5373 // System loadavg support.  Returns -1 if load average cannot be obtained.
5374 // Linux doesn't yet have a (official) notion of processor sets,
5375 // so just return the system wide load average.
5376 int os::loadavg(double loadavg[], int nelem) {
5377   return ::getloadavg(loadavg, nelem);
5378 }
5379 
5380 void os::pause() {
5381   char filename[MAX_PATH];
5382   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
5383     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
5384   } else {
5385     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
5386   }
5387 
5388   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
5389   if (fd != -1) {
5390     struct stat buf;
5391     ::close(fd);
5392     while (::stat(filename, &buf) == 0) {
5393       (void)::poll(NULL, 0, 100);
5394     }
5395   } else {
5396     jio_fprintf(stderr,
5397                 "Could not open pause file '%s', continuing immediately.\n", filename);
5398   }
5399 }
5400 
5401 
5402 // Refer to the comments in os_solaris.cpp park-unpark. The next two
5403 // comment paragraphs are worth repeating here:
5404 //
5405 // Assumption:
5406 //    Only one parker can exist on an event, which is why we allocate
5407 //    them per-thread. Multiple unparkers can coexist.
5408 //
5409 // _Event serves as a restricted-range semaphore.
5410 //   -1 : thread is blocked, i.e. there is a waiter
5411 //    0 : neutral: thread is running or ready,
5412 //        could have been signaled after a wait started
5413 //    1 : signaled - thread is running or ready
5414 //
5415 // Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
5416 // hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
5417 // For specifics regarding the bug see GLIBC BUGID 261237 :
5418 //    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
5419 // Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
5420 // will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
5421 // is used.  (The simple C test-case provided in the GLIBC bug report manifests the
5422 // hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
5423 // and monitorenter when we're using 1-0 locking.  All those operations may result in
5424 // calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
5425 // of libpthread avoids the problem, but isn't practical.
5426 //
5427 // Possible remedies:
5428 //
5429 // 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
5430 //      This is palliative and probabilistic, however.  If the thread is preempted
5431 //      between the call to compute_abstime() and pthread_cond_timedwait(), more
5432 //      than the minimum period may have passed, and the abstime may be stale (in the
5433 //      past) resultin in a hang.   Using this technique reduces the odds of a hang
5434 //      but the JVM is still vulnerable, particularly on heavily loaded systems.
5435 //
5436 // 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
5437 //      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
5438 //      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
5439 //      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
5440 //      thread.
5441 //
5442 // 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
5443 //      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
5444 //      a timeout request to the chron thread and then blocking via pthread_cond_wait().
5445 //      This also works well.  In fact it avoids kernel-level scalability impediments
5446 //      on certain platforms that don't handle lots of active pthread_cond_timedwait()
5447 //      timers in a graceful fashion.
5448 //
5449 // 4.   When the abstime value is in the past it appears that control returns
5450 //      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
5451 //      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
5452 //      can avoid the problem by reinitializing the condvar -- by cond_destroy()
5453 //      followed by cond_init() -- after all calls to pthread_cond_timedwait().
5454 //      It may be possible to avoid reinitialization by checking the return
5455 //      value from pthread_cond_timedwait().  In addition to reinitializing the
5456 //      condvar we must establish the invariant that cond_signal() is only called
5457 //      within critical sections protected by the adjunct mutex.  This prevents
5458 //      cond_signal() from "seeing" a condvar that's in the midst of being
5459 //      reinitialized or that is corrupt.  Sadly, this invariant obviates the
5460 //      desirable signal-after-unlock optimization that avoids futile context switching.
5461 //
5462 //      I'm also concerned that some versions of NTPL might allocate an auxilliary
5463 //      structure when a condvar is used or initialized.  cond_destroy()  would
5464 //      release the helper structure.  Our reinitialize-after-timedwait fix
5465 //      put excessive stress on malloc/free and locks protecting the c-heap.
5466 //
5467 // We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
5468 // It may be possible to refine (4) by checking the kernel and NTPL verisons
5469 // and only enabling the work-around for vulnerable environments.
5470 
5471 // utility to compute the abstime argument to timedwait:
5472 // millis is the relative timeout time
5473 // abstime will be the absolute timeout time
5474 // TODO: replace compute_abstime() with unpackTime()
5475 
5476 static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
5477   if (millis < 0)  millis = 0;
5478 
5479   jlong seconds = millis / 1000;
5480   millis %= 1000;
5481   if (seconds > 50000000) { // see man cond_timedwait(3T)
5482     seconds = 50000000;
5483   }
5484 
5485   if (os::supports_monotonic_clock()) {
5486     struct timespec now;
5487     int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
5488     assert_status(status == 0, status, "clock_gettime");
5489     abstime->tv_sec = now.tv_sec  + seconds;
5490     long nanos = now.tv_nsec + millis * NANOSECS_PER_MILLISEC;
5491     if (nanos >= NANOSECS_PER_SEC) {
5492       abstime->tv_sec += 1;
5493       nanos -= NANOSECS_PER_SEC;
5494     }
5495     abstime->tv_nsec = nanos;
5496   } else {
5497     struct timeval now;
5498     int status = gettimeofday(&now, NULL);
5499     assert(status == 0, "gettimeofday");
5500     abstime->tv_sec = now.tv_sec  + seconds;
5501     long usec = now.tv_usec + millis * 1000;
5502     if (usec >= 1000000) {
5503       abstime->tv_sec += 1;
5504       usec -= 1000000;
5505     }
5506     abstime->tv_nsec = usec * 1000;
5507   }
5508   return abstime;
5509 }
5510 
5511 void os::PlatformEvent::park() {       // AKA "down()"
5512   // Transitions for _Event:
5513   //   -1 => -1 : illegal
5514   //    1 =>  0 : pass - return immediately
5515   //    0 => -1 : block; then set _Event to 0 before returning
5516 
5517   // Invariant: Only the thread associated with the Event/PlatformEvent
5518   // may call park().
5519   // TODO: assert that _Assoc != NULL or _Assoc == Self
5520   assert(_nParked == 0, "invariant");
5521 
5522   int v;
5523   for (;;) {
5524     v = _Event;
5525     if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5526   }
5527   guarantee(v >= 0, "invariant");
5528   if (v == 0) {
5529     // Do this the hard way by blocking ...
5530     int status = pthread_mutex_lock(_mutex);
5531     assert_status(status == 0, status, "mutex_lock");
5532     guarantee(_nParked == 0, "invariant");
5533     ++_nParked;
5534     while (_Event < 0) {
5535       status = pthread_cond_wait(_cond, _mutex);
5536       // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
5537       // Treat this the same as if the wait was interrupted
5538       if (status == ETIME) { status = EINTR; }
5539       assert_status(status == 0 || status == EINTR, status, "cond_wait");
5540     }
5541     --_nParked;
5542 
5543     _Event = 0;
5544     status = pthread_mutex_unlock(_mutex);
5545     assert_status(status == 0, status, "mutex_unlock");
5546     // Paranoia to ensure our locked and lock-free paths interact
5547     // correctly with each other.
5548     OrderAccess::fence();
5549   }
5550   guarantee(_Event >= 0, "invariant");
5551 }
5552 
5553 int os::PlatformEvent::park(jlong millis) {
5554   // Transitions for _Event:
5555   //   -1 => -1 : illegal
5556   //    1 =>  0 : pass - return immediately
5557   //    0 => -1 : block; then set _Event to 0 before returning
5558 
5559   guarantee(_nParked == 0, "invariant");
5560 
5561   int v;
5562   for (;;) {
5563     v = _Event;
5564     if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5565   }
5566   guarantee(v >= 0, "invariant");
5567   if (v != 0) return OS_OK;
5568 
5569   // We do this the hard way, by blocking the thread.
5570   // Consider enforcing a minimum timeout value.
5571   struct timespec abst;
5572   compute_abstime(&abst, millis);
5573 
5574   int ret = OS_TIMEOUT;
5575   int status = pthread_mutex_lock(_mutex);
5576   assert_status(status == 0, status, "mutex_lock");
5577   guarantee(_nParked == 0, "invariant");
5578   ++_nParked;
5579 
5580   // Object.wait(timo) will return because of
5581   // (a) notification
5582   // (b) timeout
5583   // (c) thread.interrupt
5584   //
5585   // Thread.interrupt and object.notify{All} both call Event::set.
5586   // That is, we treat thread.interrupt as a special case of notification.
5587   // We ignore spurious OS wakeups unless FilterSpuriousWakeups is false.
5588   // We assume all ETIME returns are valid.
5589   //
5590   // TODO: properly differentiate simultaneous notify+interrupt.
5591   // In that case, we should propagate the notify to another waiter.
5592 
5593   while (_Event < 0) {
5594     status = os::Linux::safe_cond_timedwait(_cond, _mutex, &abst);
5595     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5596       pthread_cond_destroy(_cond);
5597       pthread_cond_init(_cond, os::Linux::condAttr());
5598     }
5599     assert_status(status == 0 || status == EINTR ||
5600                   status == ETIME || status == ETIMEDOUT,
5601                   status, "cond_timedwait");
5602     if (!FilterSpuriousWakeups) break;                 // previous semantics
5603     if (status == ETIME || status == ETIMEDOUT) break;
5604     // We consume and ignore EINTR and spurious wakeups.
5605   }
5606   --_nParked;
5607   if (_Event >= 0) {
5608     ret = OS_OK;
5609   }
5610   _Event = 0;
5611   status = pthread_mutex_unlock(_mutex);
5612   assert_status(status == 0, status, "mutex_unlock");
5613   assert(_nParked == 0, "invariant");
5614   // Paranoia to ensure our locked and lock-free paths interact
5615   // correctly with each other.
5616   OrderAccess::fence();
5617   return ret;
5618 }
5619 
5620 void os::PlatformEvent::unpark() {
5621   // Transitions for _Event:
5622   //    0 => 1 : just return
5623   //    1 => 1 : just return
5624   //   -1 => either 0 or 1; must signal target thread
5625   //         That is, we can safely transition _Event from -1 to either
5626   //         0 or 1.
5627   // See also: "Semaphores in Plan 9" by Mullender & Cox
5628   //
5629   // Note: Forcing a transition from "-1" to "1" on an unpark() means
5630   // that it will take two back-to-back park() calls for the owning
5631   // thread to block. This has the benefit of forcing a spurious return
5632   // from the first park() call after an unpark() call which will help
5633   // shake out uses of park() and unpark() without condition variables.
5634 
5635   if (Atomic::xchg(1, &_Event) >= 0) return;
5636 
5637   // Wait for the thread associated with the event to vacate
5638   int status = pthread_mutex_lock(_mutex);
5639   assert_status(status == 0, status, "mutex_lock");
5640   int AnyWaiters = _nParked;
5641   assert(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
5642   if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
5643     AnyWaiters = 0;
5644     pthread_cond_signal(_cond);
5645   }
5646   status = pthread_mutex_unlock(_mutex);
5647   assert_status(status == 0, status, "mutex_unlock");
5648   if (AnyWaiters != 0) {
5649     // Note that we signal() *after* dropping the lock for "immortal" Events.
5650     // This is safe and avoids a common class of  futile wakeups.  In rare
5651     // circumstances this can cause a thread to return prematurely from
5652     // cond_{timed}wait() but the spurious wakeup is benign and the victim
5653     // will simply re-test the condition and re-park itself.
5654     // This provides particular benefit if the underlying platform does not
5655     // provide wait morphing.
5656     status = pthread_cond_signal(_cond);
5657     assert_status(status == 0, status, "cond_signal");
5658   }
5659 }
5660 
5661 
5662 // JSR166
5663 // -------------------------------------------------------
5664 
5665 // The solaris and linux implementations of park/unpark are fairly
5666 // conservative for now, but can be improved. They currently use a
5667 // mutex/condvar pair, plus a a count.
5668 // Park decrements count if > 0, else does a condvar wait.  Unpark
5669 // sets count to 1 and signals condvar.  Only one thread ever waits
5670 // on the condvar. Contention seen when trying to park implies that someone
5671 // is unparking you, so don't wait. And spurious returns are fine, so there
5672 // is no need to track notifications.
5673 
5674 // This code is common to linux and solaris and will be moved to a
5675 // common place in dolphin.
5676 //
5677 // The passed in time value is either a relative time in nanoseconds
5678 // or an absolute time in milliseconds. Either way it has to be unpacked
5679 // into suitable seconds and nanoseconds components and stored in the
5680 // given timespec structure.
5681 // Given time is a 64-bit value and the time_t used in the timespec is only
5682 // a signed-32-bit value (except on 64-bit Linux) we have to watch for
5683 // overflow if times way in the future are given. Further on Solaris versions
5684 // prior to 10 there is a restriction (see cond_timedwait) that the specified
5685 // number of seconds, in abstime, is less than current_time  + 100,000,000.
5686 // As it will be 28 years before "now + 100000000" will overflow we can
5687 // ignore overflow and just impose a hard-limit on seconds using the value
5688 // of "now + 100,000,000". This places a limit on the timeout of about 3.17
5689 // years from "now".
5690 
5691 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
5692   assert(time > 0, "convertTime");
5693   time_t max_secs = 0;
5694 
5695   if (!os::supports_monotonic_clock() || isAbsolute) {
5696     struct timeval now;
5697     int status = gettimeofday(&now, NULL);
5698     assert(status == 0, "gettimeofday");
5699 
5700     max_secs = now.tv_sec + MAX_SECS;
5701 
5702     if (isAbsolute) {
5703       jlong secs = time / 1000;
5704       if (secs > max_secs) {
5705         absTime->tv_sec = max_secs;
5706       } else {
5707         absTime->tv_sec = secs;
5708       }
5709       absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
5710     } else {
5711       jlong secs = time / NANOSECS_PER_SEC;
5712       if (secs >= MAX_SECS) {
5713         absTime->tv_sec = max_secs;
5714         absTime->tv_nsec = 0;
5715       } else {
5716         absTime->tv_sec = now.tv_sec + secs;
5717         absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
5718         if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5719           absTime->tv_nsec -= NANOSECS_PER_SEC;
5720           ++absTime->tv_sec; // note: this must be <= max_secs
5721         }
5722       }
5723     }
5724   } else {
5725     // must be relative using monotonic clock
5726     struct timespec now;
5727     int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
5728     assert_status(status == 0, status, "clock_gettime");
5729     max_secs = now.tv_sec + MAX_SECS;
5730     jlong secs = time / NANOSECS_PER_SEC;
5731     if (secs >= MAX_SECS) {
5732       absTime->tv_sec = max_secs;
5733       absTime->tv_nsec = 0;
5734     } else {
5735       absTime->tv_sec = now.tv_sec + secs;
5736       absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_nsec;
5737       if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5738         absTime->tv_nsec -= NANOSECS_PER_SEC;
5739         ++absTime->tv_sec; // note: this must be <= max_secs
5740       }
5741     }
5742   }
5743   assert(absTime->tv_sec >= 0, "tv_sec < 0");
5744   assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
5745   assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
5746   assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
5747 }
5748 
5749 void Parker::park(bool isAbsolute, jlong time) {
5750   // Ideally we'd do something useful while spinning, such
5751   // as calling unpackTime().
5752 
5753   // Optional fast-path check:
5754   // Return immediately if a permit is available.
5755   // We depend on Atomic::xchg() having full barrier semantics
5756   // since we are doing a lock-free update to _counter.
5757   if (Atomic::xchg(0, &_counter) > 0) return;
5758 
5759   Thread* thread = Thread::current();
5760   assert(thread->is_Java_thread(), "Must be JavaThread");
5761   JavaThread *jt = (JavaThread *)thread;
5762 
5763   // Optional optimization -- avoid state transitions if there's an interrupt pending.
5764   // Check interrupt before trying to wait
5765   if (Thread::is_interrupted(thread, false)) {
5766     return;
5767   }
5768 
5769   // Next, demultiplex/decode time arguments
5770   timespec absTime;
5771   if (time < 0 || (isAbsolute && time == 0)) { // don't wait at all
5772     return;
5773   }
5774   if (time > 0) {
5775     unpackTime(&absTime, isAbsolute, time);
5776   }
5777 
5778 
5779   // Enter safepoint region
5780   // Beware of deadlocks such as 6317397.
5781   // The per-thread Parker:: mutex is a classic leaf-lock.
5782   // In particular a thread must never block on the Threads_lock while
5783   // holding the Parker:: mutex.  If safepoints are pending both the
5784   // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
5785   ThreadBlockInVM tbivm(jt);
5786 
5787   // Don't wait if cannot get lock since interference arises from
5788   // unblocking.  Also. check interrupt before trying wait
5789   if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
5790     return;
5791   }
5792 
5793   int status;
5794   if (_counter > 0)  { // no wait needed
5795     _counter = 0;
5796     status = pthread_mutex_unlock(_mutex);
5797     assert(status == 0, "invariant");
5798     // Paranoia to ensure our locked and lock-free paths interact
5799     // correctly with each other and Java-level accesses.
5800     OrderAccess::fence();
5801     return;
5802   }
5803 
5804 #ifdef ASSERT
5805   // Don't catch signals while blocked; let the running threads have the signals.
5806   // (This allows a debugger to break into the running thread.)
5807   sigset_t oldsigs;
5808   sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
5809   pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
5810 #endif
5811 
5812   OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5813   jt->set_suspend_equivalent();
5814   // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
5815 
5816   assert(_cur_index == -1, "invariant");
5817   if (time == 0) {
5818     _cur_index = REL_INDEX; // arbitrary choice when not timed
5819     status = pthread_cond_wait(&_cond[_cur_index], _mutex);
5820   } else {
5821     _cur_index = isAbsolute ? ABS_INDEX : REL_INDEX;
5822     status = os::Linux::safe_cond_timedwait(&_cond[_cur_index], _mutex, &absTime);
5823     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5824       pthread_cond_destroy(&_cond[_cur_index]);
5825       pthread_cond_init(&_cond[_cur_index], isAbsolute ? NULL : os::Linux::condAttr());
5826     }
5827   }
5828   _cur_index = -1;
5829   assert_status(status == 0 || status == EINTR ||
5830                 status == ETIME || status == ETIMEDOUT,
5831                 status, "cond_timedwait");
5832 
5833 #ifdef ASSERT
5834   pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
5835 #endif
5836 
5837   _counter = 0;
5838   status = pthread_mutex_unlock(_mutex);
5839   assert_status(status == 0, status, "invariant");
5840   // Paranoia to ensure our locked and lock-free paths interact
5841   // correctly with each other and Java-level accesses.
5842   OrderAccess::fence();
5843 
5844   // If externally suspended while waiting, re-suspend
5845   if (jt->handle_special_suspend_equivalent_condition()) {
5846     jt->java_suspend_self();
5847   }
5848 }
5849 
5850 void Parker::unpark() {
5851   int status = pthread_mutex_lock(_mutex);
5852   assert(status == 0, "invariant");
5853   const int s = _counter;
5854   _counter = 1;
5855   if (s < 1) {
5856     // thread might be parked
5857     if (_cur_index != -1) {
5858       // thread is definitely parked
5859       if (WorkAroundNPTLTimedWaitHang) {
5860         status = pthread_cond_signal(&_cond[_cur_index]);
5861         assert(status == 0, "invariant");
5862         status = pthread_mutex_unlock(_mutex);
5863         assert(status == 0, "invariant");
5864       } else {
5865         status = pthread_mutex_unlock(_mutex);
5866         assert(status == 0, "invariant");
5867         status = pthread_cond_signal(&_cond[_cur_index]);
5868         assert(status == 0, "invariant");
5869       }
5870     } else {
5871       pthread_mutex_unlock(_mutex);
5872       assert(status == 0, "invariant");
5873     }
5874   } else {
5875     pthread_mutex_unlock(_mutex);
5876     assert(status == 0, "invariant");
5877   }
5878 }
5879 
5880 
5881 extern char** environ;
5882 
5883 // Run the specified command in a separate process. Return its exit value,
5884 // or -1 on failure (e.g. can't fork a new process).
5885 // Unlike system(), this function can be called from signal handler. It
5886 // doesn't block SIGINT et al.
5887 int os::fork_and_exec(char* cmd) {
5888   const char * argv[4] = {"sh", "-c", cmd, NULL};
5889 
5890   pid_t pid = fork();
5891 
5892   if (pid < 0) {
5893     // fork failed
5894     return -1;
5895 
5896   } else if (pid == 0) {
5897     // child process
5898 
5899     execve("/bin/sh", (char* const*)argv, environ);
5900 
5901     // execve failed
5902     _exit(-1);
5903 
5904   } else  {
5905     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5906     // care about the actual exit code, for now.
5907 
5908     int status;
5909 
5910     // Wait for the child process to exit.  This returns immediately if
5911     // the child has already exited. */
5912     while (waitpid(pid, &status, 0) < 0) {
5913       switch (errno) {
5914       case ECHILD: return 0;
5915       case EINTR: break;
5916       default: return -1;
5917       }
5918     }
5919 
5920     if (WIFEXITED(status)) {
5921       // The child exited normally; get its exit code.
5922       return WEXITSTATUS(status);
5923     } else if (WIFSIGNALED(status)) {
5924       // The child exited because of a signal
5925       // The best value to return is 0x80 + signal number,
5926       // because that is what all Unix shells do, and because
5927       // it allows callers to distinguish between process exit and
5928       // process death by signal.
5929       return 0x80 + WTERMSIG(status);
5930     } else {
5931       // Unknown exit code; pass it through
5932       return status;
5933     }
5934   }
5935 }
5936 
5937 // is_headless_jre()
5938 //
5939 // Test for the existence of xawt/libmawt.so or libawt_xawt.so
5940 // in order to report if we are running in a headless jre
5941 //
5942 // Since JDK8 xawt/libmawt.so was moved into the same directory
5943 // as libawt.so, and renamed libawt_xawt.so
5944 //
5945 bool os::is_headless_jre() {
5946   struct stat statbuf;
5947   char buf[MAXPATHLEN];
5948   char libmawtpath[MAXPATHLEN];
5949   const char *xawtstr  = "/xawt/libmawt.so";
5950   const char *new_xawtstr = "/libawt_xawt.so";
5951   char *p;
5952 
5953   // Get path to libjvm.so
5954   os::jvm_path(buf, sizeof(buf));
5955 
5956   // Get rid of libjvm.so
5957   p = strrchr(buf, '/');
5958   if (p == NULL) {
5959     return false;
5960   } else {
5961     *p = '\0';
5962   }
5963 
5964   // Get rid of client or server
5965   p = strrchr(buf, '/');
5966   if (p == NULL) {
5967     return false;
5968   } else {
5969     *p = '\0';
5970   }
5971 
5972   // check xawt/libmawt.so
5973   strcpy(libmawtpath, buf);
5974   strcat(libmawtpath, xawtstr);
5975   if (::stat(libmawtpath, &statbuf) == 0) return false;
5976 
5977   // check libawt_xawt.so
5978   strcpy(libmawtpath, buf);
5979   strcat(libmawtpath, new_xawtstr);
5980   if (::stat(libmawtpath, &statbuf) == 0) return false;
5981 
5982   return true;
5983 }
5984 
5985 // Get the default path to the core file
5986 // Returns the length of the string
5987 int os::get_core_path(char* buffer, size_t bufferSize) {
5988   /*
5989    * Max length of /proc/sys/kernel/core_pattern is 128 characters.
5990    * See https://www.kernel.org/doc/Documentation/sysctl/kernel.txt
5991    */
5992   const int core_pattern_len = 129;
5993   char core_pattern[core_pattern_len] = {0};
5994 
5995   int core_pattern_file = ::open("/proc/sys/kernel/core_pattern", O_RDONLY);
5996   if (core_pattern_file != -1) {
5997     ssize_t ret = ::read(core_pattern_file, core_pattern, core_pattern_len);
5998     ::close(core_pattern_file);
5999 
6000     if (ret > 0) {
6001       char *last_char = core_pattern + strlen(core_pattern) - 1;
6002 
6003       if (*last_char == '\n') {
6004         *last_char = '\0';
6005       }
6006     }
6007   }
6008 
6009   if (strlen(core_pattern) == 0) {
6010     return -1;
6011   }
6012 
6013   char *pid_pos = strstr(core_pattern, "%p");
6014   int written;
6015 
6016   if (core_pattern[0] == '/') {
6017     written = jio_snprintf(buffer, bufferSize, core_pattern);
6018   } else {
6019     char cwd[PATH_MAX];
6020 
6021     const char* p = get_current_directory(cwd, PATH_MAX);
6022     if (p == NULL) {
6023       return -1;
6024     }
6025 
6026     if (core_pattern[0] == '|') {
6027       written = jio_snprintf(buffer, bufferSize,
6028                         "\"%s\" (or dumping to %s/core.%d)",
6029                                      &core_pattern[1], p, current_process_id());
6030     } else {
6031       written = jio_snprintf(buffer, bufferSize, "%s/%s", p, core_pattern);
6032     }
6033   }
6034 
6035   if (written < 0) {
6036     return -1;
6037   }
6038 
6039   if (((size_t)written < bufferSize) && (pid_pos == NULL) && (core_pattern[0] != '|')) {
6040     int core_uses_pid_file = ::open("/proc/sys/kernel/core_uses_pid", O_RDONLY);
6041 
6042     if (core_uses_pid_file != -1) {
6043       char core_uses_pid = 0;
6044       ssize_t ret = ::read(core_uses_pid_file, &core_uses_pid, 1);
6045       ::close(core_uses_pid_file);
6046 
6047       if (core_uses_pid == '1') {
6048         jio_snprintf(buffer + written, bufferSize - written,
6049                                           ".%d", current_process_id());
6050       }
6051     }
6052   }
6053 
6054   return strlen(buffer);
6055 }
6056 
6057 /////////////// Unit tests ///////////////
6058 
6059 #ifndef PRODUCT
6060 
6061 #define test_log(...)              \
6062   do {                             \
6063     if (VerboseInternalVMTests) {  \
6064       tty->print_cr(__VA_ARGS__);  \
6065       tty->flush();                \
6066     }                              \
6067   } while (false)
6068 
6069 class TestReserveMemorySpecial : AllStatic {
6070  public:
6071   static void small_page_write(void* addr, size_t size) {
6072     size_t page_size = os::vm_page_size();
6073 
6074     char* end = (char*)addr + size;
6075     for (char* p = (char*)addr; p < end; p += page_size) {
6076       *p = 1;
6077     }
6078   }
6079 
6080   static void test_reserve_memory_special_huge_tlbfs_only(size_t size) {
6081     if (!UseHugeTLBFS) {
6082       return;
6083     }
6084 
6085     test_log("test_reserve_memory_special_huge_tlbfs_only(" SIZE_FORMAT ")", size);
6086 
6087     char* addr = os::Linux::reserve_memory_special_huge_tlbfs_only(size, NULL, false);
6088 
6089     if (addr != NULL) {
6090       small_page_write(addr, size);
6091 
6092       os::Linux::release_memory_special_huge_tlbfs(addr, size);
6093     }
6094   }
6095 
6096   static void test_reserve_memory_special_huge_tlbfs_only() {
6097     if (!UseHugeTLBFS) {
6098       return;
6099     }
6100 
6101     size_t lp = os::large_page_size();
6102 
6103     for (size_t size = lp; size <= lp * 10; size += lp) {
6104       test_reserve_memory_special_huge_tlbfs_only(size);
6105     }
6106   }
6107 
6108   static void test_reserve_memory_special_huge_tlbfs_mixed() {
6109     size_t lp = os::large_page_size();
6110     size_t ag = os::vm_allocation_granularity();
6111 
6112     // sizes to test
6113     const size_t sizes[] = {
6114       lp, lp + ag, lp + lp / 2, lp * 2,
6115       lp * 2 + ag, lp * 2 - ag, lp * 2 + lp / 2,
6116       lp * 10, lp * 10 + lp / 2
6117     };
6118     const int num_sizes = sizeof(sizes) / sizeof(size_t);
6119 
6120     // For each size/alignment combination, we test three scenarios:
6121     // 1) with req_addr == NULL
6122     // 2) with a non-null req_addr at which we expect to successfully allocate
6123     // 3) with a non-null req_addr which contains a pre-existing mapping, at which we
6124     //    expect the allocation to either fail or to ignore req_addr
6125 
6126     // Pre-allocate two areas; they shall be as large as the largest allocation
6127     //  and aligned to the largest alignment we will be testing.
6128     const size_t mapping_size = sizes[num_sizes - 1] * 2;
6129     char* const mapping1 = (char*) ::mmap(NULL, mapping_size,
6130       PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
6131       -1, 0);
6132     assert(mapping1 != MAP_FAILED, "should work");
6133 
6134     char* const mapping2 = (char*) ::mmap(NULL, mapping_size,
6135       PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
6136       -1, 0);
6137     assert(mapping2 != MAP_FAILED, "should work");
6138 
6139     // Unmap the first mapping, but leave the second mapping intact: the first
6140     // mapping will serve as a value for a "good" req_addr (case 2). The second
6141     // mapping, still intact, as "bad" req_addr (case 3).
6142     ::munmap(mapping1, mapping_size);
6143 
6144     // Case 1
6145     test_log("%s, req_addr NULL:", __FUNCTION__);
6146     test_log("size            align           result");
6147 
6148     for (int i = 0; i < num_sizes; i++) {
6149       const size_t size = sizes[i];
6150       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6151         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, NULL, false);
6152         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " ->  " PTR_FORMAT " %s",
6153             size, alignment, p, (p != NULL ? "" : "(failed)"));
6154         if (p != NULL) {
6155           assert(is_ptr_aligned(p, alignment), "must be");
6156           small_page_write(p, size);
6157           os::Linux::release_memory_special_huge_tlbfs(p, size);
6158         }
6159       }
6160     }
6161 
6162     // Case 2
6163     test_log("%s, req_addr non-NULL:", __FUNCTION__);
6164     test_log("size            align           req_addr         result");
6165 
6166     for (int i = 0; i < num_sizes; i++) {
6167       const size_t size = sizes[i];
6168       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6169         char* const req_addr = (char*) align_ptr_up(mapping1, alignment);
6170         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
6171         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " " PTR_FORMAT " ->  " PTR_FORMAT " %s",
6172             size, alignment, req_addr, p,
6173             ((p != NULL ? (p == req_addr ? "(exact match)" : "") : "(failed)")));
6174         if (p != NULL) {
6175           assert(p == req_addr, "must be");
6176           small_page_write(p, size);
6177           os::Linux::release_memory_special_huge_tlbfs(p, size);
6178         }
6179       }
6180     }
6181 
6182     // Case 3
6183     test_log("%s, req_addr non-NULL with preexisting mapping:", __FUNCTION__);
6184     test_log("size            align           req_addr         result");
6185 
6186     for (int i = 0; i < num_sizes; i++) {
6187       const size_t size = sizes[i];
6188       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6189         char* const req_addr = (char*) align_ptr_up(mapping2, alignment);
6190         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
6191         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " " PTR_FORMAT " ->  " PTR_FORMAT " %s",
6192             size, alignment, req_addr, p,
6193             ((p != NULL ? "" : "(failed)")));
6194         // as the area around req_addr contains already existing mappings, the API should always
6195         // return NULL (as per contract, it cannot return another address)
6196         assert(p == NULL, "must be");
6197       }
6198     }
6199 
6200     ::munmap(mapping2, mapping_size);
6201 
6202   }
6203 
6204   static void test_reserve_memory_special_huge_tlbfs() {
6205     if (!UseHugeTLBFS) {
6206       return;
6207     }
6208 
6209     test_reserve_memory_special_huge_tlbfs_only();
6210     test_reserve_memory_special_huge_tlbfs_mixed();
6211   }
6212 
6213   static void test_reserve_memory_special_shm(size_t size, size_t alignment) {
6214     if (!UseSHM) {
6215       return;
6216     }
6217 
6218     test_log("test_reserve_memory_special_shm(" SIZE_FORMAT ", " SIZE_FORMAT ")", size, alignment);
6219 
6220     char* addr = os::Linux::reserve_memory_special_shm(size, alignment, NULL, false);
6221 
6222     if (addr != NULL) {
6223       assert(is_ptr_aligned(addr, alignment), "Check");
6224       assert(is_ptr_aligned(addr, os::large_page_size()), "Check");
6225 
6226       small_page_write(addr, size);
6227 
6228       os::Linux::release_memory_special_shm(addr, size);
6229     }
6230   }
6231 
6232   static void test_reserve_memory_special_shm() {
6233     size_t lp = os::large_page_size();
6234     size_t ag = os::vm_allocation_granularity();
6235 
6236     for (size_t size = ag; size < lp * 3; size += ag) {
6237       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6238         test_reserve_memory_special_shm(size, alignment);
6239       }
6240     }
6241   }
6242 
6243   static void test() {
6244     test_reserve_memory_special_huge_tlbfs();
6245     test_reserve_memory_special_shm();
6246   }
6247 };
6248 
6249 void TestReserveMemorySpecial_test() {
6250   TestReserveMemorySpecial::test();
6251 }
6252 
6253 #endif